WO2013058352A1 - Group iii nitride semiconductor crystal - Google Patents

Group iii nitride semiconductor crystal Download PDF

Info

Publication number
WO2013058352A1
WO2013058352A1 PCT/JP2012/077054 JP2012077054W WO2013058352A1 WO 2013058352 A1 WO2013058352 A1 WO 2013058352A1 JP 2012077054 W JP2012077054 W JP 2012077054W WO 2013058352 A1 WO2013058352 A1 WO 2013058352A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
crystal
plane
nitride semiconductor
group iii
Prior art date
Application number
PCT/JP2012/077054
Other languages
French (fr)
Japanese (ja)
Inventor
達寛 大畑
創 松本
哲 長尾
泰宏 内山
久保 秀一
健史 藤戸
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2013058352A1 publication Critical patent/WO2013058352A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Definitions

  • the present invention relates to a group III nitride semiconductor crystal having specific properties.
  • Nitride semiconductors typified by gallium nitride have a large band gap, and the transition between bands is a direct transition type. Therefore, light emitting diodes such as ultraviolet, blue and green, semiconductor lasers and the like on the relatively short wavelength side It has been put to practical use as a light emitting element. Recently, with the development of crystal growth technology, the manufacture of gallium nitride substrates used in these devices has also been realized. In order to improve the characteristics of these elements, it is necessary to establish a technique capable of manufacturing a nitride semiconductor substrate having a low dislocation density.
  • An ELO method (Epitaxial Lateral Overgrowth) is known as a method for manufacturing a gallium nitride substrate having a low dislocation density.
  • the ELO method is a crystal growth method in which a mask layer is formed on a base substrate and laterally grown on the mask from an opening.
  • a layer with few crystal defects can be formed.
  • Patent Document 1 a method of forming a mask layer on a base substrate and performing facet growth has been proposed, and it has been reported that threading dislocations can be integrated at predetermined positions (see Patent Documents 2 and 3).
  • the group III nitride semiconductor crystal is generally subjected to a molding process such as slicing or polishing after growth, but the crystal may be cracked during the molding process. It was a factor that lowered the yield.
  • An object of the present invention is to improve the yield due to crystal cracking.
  • a part of the crystal includes a region (region X) having a basal plane dislocation density of 1.0 ⁇ 10 6 cm ⁇ 2 or more and a region (region Y) having a basal plane dislocation density of less than 1.0 ⁇ 10 6 cm ⁇ 2.
  • a group III nitride semiconductor crystal characterized by the above.
  • FIG. 3 is an SEM-CL image of a group III nitride semiconductor crystal obtained in Example 2, which is an image observed from the M-plane side (micrograph). It is a SEM-CL image of the group III nitride semiconductor crystal obtained in Example 3, which is an image observed from the M-plane side (micrograph). It is a SEM-CL image of the group III nitride semiconductor crystal obtained by the comparative example, and is an image observed from the M plane side (micrograph).
  • FIG. 6b is a graph plotting the difference (
  • the group III nitride semiconductor crystal of the present invention will be described in detail below, but is not limited to these contents unless it is contrary to the gist of the present invention.
  • the “main surface” of the group III nitride semiconductor crystal refers to the widest surface of the group III nitride semiconductor crystal and the surface on which crystal growth is to be performed.
  • the “C plane” is a ⁇ 0001 ⁇ plane in a hexagonal crystal structure (wurtzite crystal structure) and is a plane orthogonal to the c-axis. Such a plane is a polar plane.
  • the “+ C plane” is a group III plane (gallium plane in the case of gallium nitride), and the “ ⁇ C plane” is a nitrogen plane.
  • the “M plane” means (1-100) plane, (01-10) plane, ( ⁇ 1010) plane, ( ⁇ 1100) plane, (0-110) plane, or (10 ⁇ 10) A plane that is perpendicular to the m-axis. Such a surface is usually a cleavage plane.
  • a plane means (2-1-10) plane, (-12-10) plane, ( ⁇ 1-120) plane, ( ⁇ 2110) plane, (1-210) plane. Or (11-20) plane, a plane orthogonal to the a-axis.
  • the “semipolar plane” is not particularly limited as long as both the group III metal element and the nitrogen element are present on the crystal plane, and the abundance ratio thereof is not 1: 1.
  • ⁇ 20 -21 ⁇ plane, ⁇ 10-11 ⁇ plane, ⁇ 10-12 ⁇ plane, ⁇ 11-21 ⁇ plane, ⁇ 11-22 ⁇ plane, ⁇ 11-23 ⁇ plane, ⁇ 11-24 ⁇ plane, etc. when referring to the C, M, A, or specific index plane, a range having an off angle within 10 ° from each crystal axis measured with an accuracy within ⁇ 0.01 °. Including the inner face. The off angle is preferably within 5 °, more preferably within 3 °.
  • a numerical range expressed using “to” in this specification means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the group III nitride semiconductor crystal of the present invention has a region (region X) in which the basal plane dislocation density is a specific value or more and a region (region Y) in which the basal plane dislocation density is less than a specific value.
  • the inventors of the present invention have skillfully applied the internal stress generated in the crystal during crystal growth by including the region X having many basal plane dislocations and the region Y having few basal plane dislocations in the group III nitride semiconductor crystal. Succeeded in relaxing and improving processability.
  • the “basal plane dislocation” is a linear defect (dislocation) generated on the C-plane (basal plane), and the direction and length of the dislocation line is particularly limited as long as it is perpendicular to the c-axis. In FIG. 1, 3 corresponds to this.
  • the “region” does not mean a planar region, but means a three-dimensional region. That is, the basal plane dislocation in the region X means not only the basal plane dislocation existing on the crystal surface of the region X but also the basal plane dislocation existing in the crystal of the region X. ing.
  • the basal plane dislocation density in the present invention means a value calculated by the following calculation formula (1).
  • the number N of basal plane dislocations is measured by using, for example, a transmission electron microscope method (TEM method), a cathodoluminescence method (SEM-CL method), or a method of observing surface pits by etching with an AFM or an optical microscope. can do. These methods have different observable fields of view.
  • TEM method transmission electron microscope method
  • SEM-CL method cathodoluminescence method
  • the dislocation density is mainly 1 ⁇ 10 5 cm ⁇ 2 or more
  • the method of observing surface pits by etching with an AFM or an optical microscope is suitable when the dislocation density is mainly 1 ⁇ 10 3 to 1 ⁇ 10 6 cm ⁇ 2 .
  • the specific measurement conditions when using the SEM-CL method are not particularly limited, but the acceleration voltage is usually preferably 3 to 5 kV, and more preferably 3 kV.
  • the number N of basal plane dislocations can be measured by the method as described above, but the measured value varies depending on the direction from which the crystal is observed, and the cross-sectional area A is also derived from the surface to be observed.
  • the value to be Therefore, the value of the basal plane dislocation density ⁇ can also vary depending on the direction from which the crystal is observed. Therefore, in the present invention, the group III nitride semiconductor crystal is specified by utilizing the value of the basal plane dislocation density ⁇ particularly when the ⁇ 10-10 ⁇ plane is observed. That is, in the present specification, when simply referred to as “basal plane dislocation density ( ⁇ )”, the number N of basal plane dislocations observed mainly as points when the M plane intersecting the basal plane is observed is measured.
  • the specific value of the cross-sectional area A for calculating the basal plane dislocation density ⁇ is not particularly limited, but is usually 1 ⁇ m 2 or more, preferably 25 ⁇ m 2 or more, more preferably 100 ⁇ m 2 or more. 22500 ⁇ m 2 or less, preferably set to 14400Myuemu 2 or less, and more preferably set to 10000 2 below. Within the above range, the value of the basal plane dislocation density can be calculated with good reproducibility.
  • the cross-sectional area A is preferably a rectangular area close to a rectangle or a square.
  • the basal plane dislocation is observed as a line.
  • a unit distance (cm) is set in a direction crossing the basal plane dislocation observed as a line, and the unit distance per unit distance is set.
  • the number of intersecting basal plane dislocations is referred to as “basal plane dislocation frequency in the C plane” and is distinguished from the “basal plane dislocation density ( ⁇ )”.
  • the “basal plane dislocation frequency in the C plane” does not consider the number of basal plane dislocations in the depth direction corresponding to the c-axis direction.
  • the number of basal plane dislocations when the ⁇ 10-10 ⁇ plane or ⁇ 0001 ⁇ plane is observed is used.
  • the measurement is preferably performed after molding the crystal so that the crystal plane appears on the crystal surface and the basal plane dislocations are easily observed.
  • the basal plane dislocation in the present invention is not particularly limited in the direction and length of the dislocation line as long as it is perpendicular to the c-axis as described above, but the dislocation line length is 0.1 ⁇ m or more. It is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more.
  • the basal plane dislocation density when the ⁇ 10-10 ⁇ plane of the crystal is observed is 1.0 ⁇ 10 6 cm ⁇ 2 or more, and 1.0 ⁇ 10 7 cm ⁇ 2 or more. It is preferably 1.0 ⁇ 10 8 cm ⁇ 2 or more.
  • the upper limit of the basal plane dislocation density is usually 1.0 ⁇ 10 10 cm ⁇ 2 or less, preferably 1.0 ⁇ 10 9 cm ⁇ 2 or less.
  • the C-plane basal plane dislocation frequency is preferably 1.0 ⁇ 10 6 cm ⁇ 1 or more, and 1.0 ⁇ 10 7 cm ⁇ 1. More preferably.
  • the upper limit value of the basal plane dislocation frequency of the C plane is usually 1.0 ⁇ 10 10 cm ⁇ 1 or less, preferably 1.0 ⁇ 10 9 cm ⁇ 1 or less.
  • the basal plane dislocation density when the ⁇ 10-10 ⁇ plane of the crystal is observed is less than 1.0 ⁇ 10 6 cm ⁇ 2 and less than 6.0 ⁇ 10 5 cm ⁇ 2. Preferably, it is less than 4.0 ⁇ 10 5 cm ⁇ 2 .
  • the basal plane dislocation frequency of the C plane when the ⁇ 0001 ⁇ plane of the crystal is observed is preferably less than 1.0 ⁇ 10 6 cm ⁇ 1 , and 6.0 ⁇ 10 5 cm ⁇ 1. More preferably, it is more preferably less than 4.0 ⁇ 10 5 cm ⁇ 1 .
  • the region X in the present invention preferably has a region (region X ′) having a uniform basal plane dislocation density.
  • the basal plane dislocation density calculated from any 80 ⁇ m ⁇ 80 ⁇ m region including the region is 1.0 ⁇ 10 6 cm ⁇ 2 or more, and 1 / A region of 40 ⁇ m ⁇ 40 ⁇ m corresponding to the area of 4 is arbitrarily extracted, and a basal plane dislocation density calculated from the region and a basal plane dislocation density calculated from the region of 80 ⁇ m ⁇ 80 ⁇ m are within a 1.5-fold difference. Shall point to.
  • the region X and / or the region Y in the present invention contains a basal plane dislocation array arranged in a polygon.
  • the basal plane dislocation array arranged in a polygonal arrangement refers to an array of basal plane dislocations arranged at intervals of 50 nm or less.
  • the arrangement direction is not particularly limited, but is preferably arranged in the c-axis direction.
  • the length in the arrangement direction of the basal plane dislocation arrangement arranged in a polygon is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 20 mm or less, and 10 mm or less. It is more preferable that
  • the region X and the region Y in the present invention are not particularly limited as to the form, number, and distribution of the regions in the crystal as long as the basal plane dislocation density is in a specific range, but the ratio of the region X in the entire crystal is usually 1% or more, preferably 3% or more, more preferably 5% or more, more preferably 10% or more, usually 95% or less, preferably 80% or less, more preferably 70% or less, more preferably 50% or less, particularly Preferably it is 30% or less.
  • the ratio of the region Y to the entire crystal is usually 10% or more, preferably 30% or more, more preferably 50% or more, still more preferably 70% or more, usually 99% or less, preferably 97% or less, more preferably Is 95% or less, more preferably 93% or less.
  • the ratio of the region X (or region Y) to the entire crystal means the ratio of the volume of the region X (or region Y) to the volume of the entire crystal. For example, as shown in FIG. In the case of a crystal, it can be calculated from the ratio of the short side of region X (a-axis direction) to the short side of region Y (a-axis direction).
  • the region Y usually has a size of 350 ⁇ m square or more, preferably a size of 400 ⁇ m square or more, and more preferably a size of 1 mm square or more. When it is in the above range, a size for producing a device or the like can be sufficiently secured. Further, the region X has a maximum length of preferably 100 ⁇ m or more, more preferably 300 ⁇ m or more, further preferably 500 ⁇ m or more, and preferably 21 cm or less, and 11 cm or less.
  • the region X is more preferably 5 mm or less, and particularly preferably 1 mm or less.
  • the region X is more preferably 5 mm or less, and particularly preferably 1 mm or less.
  • both the regions X and Y are widely distributed throughout the crystal.
  • the basal plane dislocation is a dislocation perpendicular to the c-axis as described above, the direction of the dislocation line is not particularly limited, but within the region X, when a plurality of basal plane dislocations face the same direction, This is preferable because the crystal forming process becomes easy.
  • the region X and the region Y are rectangular parallelepiped long in either direction,
  • the region X and the region Y are alternately and regularly arranged, that is, the region X and the region Y are arranged in a stripe shape, or the crystal shown in FIG.
  • the region X and the region Y are spread as a plane substantially perpendicular to the growth direction, and the region X and the region Y are alternately arranged, that is, the region X and the region Y are arranged in layers.
  • 5 is a basal plane dislocation
  • 6 is a region X
  • 7 is a region Y).
  • the long side direction of the region X arranged in a stripe shape is not particularly limited, but preferably extends in the m-axis direction, and the base existing in the region X It is preferable that the plane dislocation also extends in the m-axis direction.
  • the width (short side) of the region X is also not particularly limited, but is usually 10 to 500 ⁇ m, preferably 30 to 200 ⁇ m, more preferably 40 to 100 ⁇ m.
  • the width of the region Y is not particularly limited, but is usually preferably 100 ⁇ m or more, 200 ⁇ m or more, and more preferably 300 ⁇ m or more.
  • the long side direction of the region X arranged in a stripe shape is not particularly limited, but those extending in the a-axis direction are preferable.
  • the basal plane dislocation existing in the region X is also preferably extended in the a-axis direction.
  • the long side direction can be the a-axis direction and the short side direction can be the c-axis direction.
  • the width (short side) of the region X is also not particularly limited, but is usually 10 to 2000 ⁇ m, preferably 100 to 1000 ⁇ m, more preferably 200 to 750 ⁇ m.
  • the width of the region Y is not particularly limited, but is usually preferably 100 ⁇ m or more and 500 ⁇ m or more, more preferably 1000 ⁇ m or more, and particularly preferably 2000 ⁇ m or more. In such a group III nitride semiconductor crystal, internal stress is moderately dispersed and it is difficult to break, and a region with few basal plane dislocations can be sufficiently secured.
  • the region X arranged in a layered manner in the second embodiment is not particularly limited, even if it is a single layer or a plurality of regions.
  • the width of the region X (layer thickness) viewed from the M-plane direction is not particularly limited, but is usually 1 to 1000 ⁇ m, preferably 10 to 900 ⁇ m, more preferably 50 to 800 ⁇ m.
  • the width of the region Y (layer thickness) is not particularly limited, but is usually preferably 10 ⁇ m or more, 20 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • Such a group III nitride semiconductor crystal is preferable because it periodically includes basal plane dislocations, so that internal stress is moderately dispersed, and it is difficult to break when the substrate is cut out.
  • the group III nitride semiconductor crystal of the present invention is not particularly limited in the density and distribution of other defects as long as it includes a region (region X and Y) in which the basal plane dislocation density is in a specific range. Since the region Y is a highly practical region as a semiconductor crystal, it is preferable that there are few or no threading dislocations (edge dislocations, screw dislocations) and planar defects.
  • the group III nitride semiconductor crystal of the present invention includes a region (region X and Y) in which the basal plane dislocation density is in a specific range, but the internal stress in the crystal is relaxed by the presence of such a region. It is characterized by.
  • the internal stress remaining in the crystal can be grasped by the residual strain, and the residual strain can be measured by, for example, a phase difference by a photoelastic method.
  • the measurement of the residual strain amount by the photoelastic method is performed using the following relational expression (2) (see APPL. Phys. Lett. 47 (1985) pp. 365-367).
  • the residual strain amount is the absolute value
  • is the wavelength of light used for measurement
  • d is the thickness of the substrate used for measurement
  • n 0 is the refractive index
  • is the phase difference caused by the birefringence of the sample
  • is the main vibration azimuth
  • P 11 , P 12 , P44 is photoelastic constant
  • the specific numerical value of residual strain is not particularly limited.
  • the standard deviation of the phase difference ⁇ by the photoelastic method is preferably less than 0.1 nm, more preferably less than 0.09 nm.
  • the phase difference distribution if a portion where the value of the phase difference ⁇ is high or low is localized in the plane of the crystal, the residual strain is also unevenly distributed at a specific portion of the crystal. Therefore, in the group III nitride semiconductor crystal of the present invention, it is preferable that the phase difference distribution is uniformly dispersed in the plane. In another example, in the plane of the group III nitride semiconductor crystal, there are 10 or more consecutive sections where the difference ( ⁇ ) between two adjacent points at an interval of about 180 ⁇ m is 0.05 or more. It is preferable that there are more than 20 sections.
  • Examples of the group III nitride semiconductor crystal of the present invention include gallium nitride, aluminum nitride, indium nitride, and mixed crystals thereof.
  • the main surface of the group III nitride semiconductor crystal of the present invention includes a + C plane, a ⁇ C plane, an M plane, an A plane, or a semipolar plane, and a + C plane, an M plane, or a semipolar plane. It is preferable that it is an M plane or a semipolar plane.
  • the carrier concentration in the crystal is preferably 1 ⁇ 10 18 cm ⁇ 3 or more, and more preferably 1 ⁇ 10 19 cm ⁇ 3 .
  • the carrier concentration in the crystal can be measured using hole measurement by the van der Pauw method.
  • the group III nitride semiconductor crystal of the present invention includes the region X and the region Y, so that the warpage of the crystal plane of the main surface can be suppressed.
  • the curvature radius of curvature of the crystal face of the main surface is usually 3 m or more, preferably 3.5 m or more, more preferably 5 m or more, and further preferably 10 m or more. When it is within the above range, good quality can be ensured when used as a substrate.
  • any crystal axis substantially parallel to the crystal plane of the main surface is preferably within the above range.
  • the radius of curvature can be calculated from a tilt of the crystal axis measured by X-ray diffractometry or the like by a known method as an indication of the curvature of the crystal plane.
  • the group III nitride semiconductor crystal of the present invention contains the region X and the region Y, so that the a-axis direction and m There is a tendency that warpage in a direction other than the c-axis direction such as the axial direction is improved.
  • the group III nitride semiconductor crystal of the present invention is characterized by having regions (regions X and Y) having a basal plane dislocation density in a specific range.
  • regions X and Y regions having a basal plane dislocation density in a specific range.
  • the present inventors have the effect that the basal plane dislocations relieve the stress generated when the crystal plane is coreless by facet growth, and this effect makes the crystal difficult to break.
  • the inventors have also revealed that such basal plane dislocations have self-strain in the polar direction and perform a glide motion for relaxation of the self-strain during crystal growth.
  • basal plane dislocations occur randomly immediately before coreless (joining by lateral growth), but when coreless, the plane orientation of each crystal growth surface is fine. The deviation (off angle) becomes distortion, and the distortion is absorbed as basal plane dislocations along the mask. Even in a region where the core is not cored, the residual stress in the crystal becomes a driving force, and a glide motion is generated for optimal arrangement of the individual basal plane dislocations. Furthermore, according to the study by the present inventors, in the second aspect, it is presumed that basal plane dislocations are generated in layers due to a rapid change in the growth temperature or the like. By generating such stratified basal plane dislocations, the stress in the thickness direction is partially relieved, and if the position to be cut out is appropriately selected, the yield during processing can be increased.
  • the group III nitride semiconductor crystal of the present invention is not particularly limited in its production method as long as it includes a region (region X and Y) having a basal plane dislocation density in a specific range. Based on the method, the group III nitride semiconductor crystal of the present invention can be preferably produced.
  • a method for obtaining a semiconductor crystal in which the region X and the region Y according to the first embodiment are arranged in a stripe shape parallel to the m-axis in the group III nitride semiconductor crystal of the present invention will be specifically described below. explain.
  • semiconductor crystals arranged in stripes can be obtained by using the following method (A), (B), or (C).
  • a method in which a stripe mask parallel to the m-axis is placed on the base substrate, and a semiconductor crystal is facet grown in the c-axis direction that is, a method including the following steps).
  • A1 A step of forming a stripe mask parallel to the m-axis on the base substrate.
  • (A2) A step of performing facet growth in the c-axis direction from the exposed portion of the base substrate.
  • B A method in which a semiconductor crystal is facet grown in the c-axis direction using a group III nitride semiconductor substrate in which basal plane dislocations are aggregated in a line parallel to the m-axis obtained by the method of (A) as a base substrate ( That is, the method includes the following steps).
  • (B1) A step of preparing a group III nitride semiconductor substrate in which basal plane dislocations are aggregated in a line shape parallel to the m-axis.
  • B2 A step of facet growing a semiconductor crystal in the c-axis direction on the group III nitride semiconductor substrate.
  • (C) A method in which a semiconductor crystal is facet grown in a c-axis direction from a base substrate having a groove parallel to the m-axis.
  • (C1) A step of processing a plurality of grooves including recesses extending in the m-axis direction and forming a mask on the groove bottom surface.
  • (C2) A step of facet growing in the c-axis direction from the exposed portion of the convex portion (terrace) sandwiched between the grooves.
  • the growth surface in the case where the semiconductor crystal is facet grown is a facet surface (M-plane facet) appearing inclined from the M-plane.
  • FIG. 8 is a growth region from which growth starts
  • 9 is a region in which basal plane dislocations are aggregated (region X)
  • 10 is a crystal in which growth occurs.
  • the growth surface of each crystal enters the region 9 and the growth planes of adjacent crystals (M-plane facets) are angled. Collide with. Accordingly, the present inventors have found that when the growth planes of adjacent crystals collide approximately in the middle of the nine regions, the following drought process is taken.
  • basal plane dislocations are unlikely to occur, but in the case of collisions between grown crystals having different crystallographic orientations, the surface of each crystal growth surface at the time of coreless It can be inferred that a minute misalignment (off angle) of the orientation becomes a distortion, and the distortion is absorbed in the m-axis direction as a basal plane dislocation along the mask. That is, in order to obtain a semiconductor crystal having a stripe region X parallel to the m-axis (basal plane dislocations are also parallel to the m-axis), the occurrence of basal plane dislocations on the stripe mask or line is utilized.
  • a method for forming the M-plane facet is not particularly limited, and examples thereof include a temperature, a supply rate of the raw material, a supply amount, and a supply amount ratio (V / III ratio) between the group III raw material and the nitrogen raw material.
  • V / III ratio a supply amount ratio between the group III raw material and the nitrogen raw material.
  • an M-plane facet tends to be easily formed by performing initial growth at a temperature lower than that of main growth in the initial stage of growth.
  • the means is not limited to this as long as an M-plane facet can be formed.
  • the method for obtaining the semiconductor crystal in which the region X and the region Y according to the second embodiment are arranged in a layer shape approximately perpendicular to the growth direction will be specifically described below. explain.
  • a template substrate in which gallium nitride is grown by MOCVD on a heterogeneous substrate such as sapphire by about 15 ⁇ m is used as a base substrate for growth.
  • There is a method of growing a semiconductor crystal by exposing the C plane while periodically changing the crystal growth conditions. As a result, basal plane dislocations can be generated in a layered manner, and stress due to distortion with a different substrate can be released out of the crystal.
  • Examples of the growth conditions that are periodically changed include the temperature, the supply rate of the raw material, the supply amount, and the supply amount ratio (V / III ratio) of the group III raw material and the nitrogen raw material.
  • the means is not limited to this.
  • the preferred growth thickness of the semiconductor crystal is not particularly limited as long as it allows the substrate to be taken out, but it is preferably 1 mm or more.
  • the position to be cut out preferably includes a portion where basal plane dislocations are generated in a layered manner, and can be determined by the growth rate and growth conditions.
  • the crystal growth method for obtaining the group III nitride semiconductor crystal of the present invention is not particularly limited. Specifically, Hydride vapor phase epitaxy (HVPE method) 2. Metalorganic chemical vapor deposition (MOCVD) 3. Organometallic chloride vapor phase growth method (MOC method) 4).
  • HVPE method Hydride vapor phase epitaxy
  • MOCVD Metalorganic chemical vapor deposition
  • MOC method Organometallic chloride vapor phase growth method
  • a known vapor phase growth method such as a sublimation method can be appropriately employed. Among these, the HVPE method or the MOCVD method is preferable, and the HVPE method is particularly preferable.
  • the crystal growth method may be homoepitaxial growth or heteroepitaxial growth, and specific examples of the underlying substrate include silicon, sapphire, gallium arsenide, gallium nitride, aluminum nitride, and zinc oxide. Of these, gallium nitride is particularly preferred.
  • the mask pattern is not particularly limited, and either a dot shape or a stripe shape can be used.
  • a stripe mask When obtaining a group III nitride semiconductor crystal in which the regions X are arranged in stripes, it is preferable to use a stripe mask.
  • the pitch of the stripe mask is usually 100 ⁇ m to 3000 ⁇ m, preferably 200 ⁇ m to 2000 ⁇ m, more preferably 300 ⁇ m to 1000 ⁇ m.
  • the method for forming the mask is not particularly limited, and a mask layer is formed by appropriately adopting a known method such as a sputtering method, a CVD method (preferably a plasma CVD method), a vacuum deposition method, and the like, and then by a known photolithography method. Patterning and etching can be performed to form a mask having a desired shape.
  • the mask material is not particularly limited, and silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, tantalum oxide, zirconium oxide, hafnium oxide, or the like can be used.
  • the group III nitride semiconductor crystal of the present invention is obtained using a base substrate on which a stripe mask parallel to the m-axis is formed or a base substrate having a groove parallel to the m-axis
  • its manufacturing method is not particularly limited, For example, it can be obtained by the following operations (1) and (2).
  • a mask that inhibits crystal growth is formed on the main surface of the base substrate.
  • silicon oxide, silicon nitride, or the like can be used.
  • Hexamethyldisilazane is applied as a primer to this mask, and then a photoresist is applied. The photoresist is patterned by exposing and developing through a photomask having an arbitrary drawing.
  • a portion of the mask having no photoresist pattern is removed by etching.
  • the mask on the main surface of the base substrate is patterned.
  • the groove in the opening without the mask film by inductive coupling type reactive etching on the base substrate on which the mask is patterned, it is possible to form irregularities in a pattern parallel to the m-axis on the base substrate main surface.
  • a base substrate with deep grooves can be manufactured. If the growth conditions for epitaxially growing a semiconductor single crystal are conditions for promoting facet growth, a semiconductor crystal in which basal plane dislocations are aggregated in a line shape parallel to the m-axis can be produced on the underlying substrate.
  • a semiconductor crystal in which the regions X are arranged in stripes parallel to the m-axis can be obtained more easily.
  • a lift-off method, a self-alignment method using a photoresist, a method of performing dry etching or wet etching after forming a protective layer by patterning, etc. Is mentioned.
  • FIG. 4 the conceptual diagram of the manufacturing apparatus used for the manufacturing method which employ
  • the HVPE apparatus shown in FIG. 4 includes a susceptor 107 and a reservoir 105 for storing a raw material of a group III nitride semiconductor crystal to be grown in a reactor 100.
  • introduction pipes 101 to 104 for introducing gas into the reactor 100 and an exhaust pipe 108 for exhausting are installed.
  • a heater 106 for heating the reactor 100 from the side surface is installed.
  • quartz, sintered boron nitride, stainless steel, or the like can be used, but a preferable material is quartz.
  • the reactor 100 is filled with atmospheric gas in advance before starting the reaction.
  • the atmospheric gas include inert gases such as hydrogen, nitrogen, He, Ne, and Ar. These gases may be used alone or in combination.
  • the material of the susceptor 107 is preferably carbon, and more preferably one whose surface is coated with SiC.
  • the shape of the susceptor 107 is not particularly limited, but it is preferable that the structure does not exist in the vicinity of the crystal growth surface during crystal growth. If there is a structure that can grow near the crystal growth surface, polycrystals adhere to the structure, and HCl gas is generated as the product, which may adversely affect the crystal to be grown. is there.
  • the raw material of the III nitride semiconductor to be grown is put in the reservoir 105.
  • Ga, Al, In, etc. can be mentioned as a raw material used as a group III source.
  • a gas that reacts with the raw material put in the reservoir 105 is supplied from an introduction pipe 103 for introducing the gas into the reservoir 105.
  • HCl gas can be supplied from the introduction pipe 103.
  • the carrier gas may be supplied from the introduction pipe 103 together with the HCl gas.
  • the carrier gas include hydrogen, nitrogen, an inert gas such as He, Ne, and Ar. These gases may be used alone or in combination.
  • a source gas serving as a nitrogen source is supplied. Usually, NH 3 is supplied.
  • a carrier gas is supplied from the introduction pipe 101.
  • the carrier gas the same carrier gas supplied from the introduction pipe 104 can be exemplified. This carrier gas also has an effect of separating the source gas nozzle and preventing the polycrystal from adhering to the nozzle tip.
  • a dopant gas can also be supplied from the introduction pipe 102.
  • an n-type dopant gas such as oxygen, water, SiH 4 , SiH 2 Cl 2 , or H 2 S can be supplied.
  • the above gases supplied from the introduction pipes 101 to 104 may be exchanged with each other and supplied from different introduction pipes.
  • the source gas and the carrier gas serving as a nitrogen source may be mixed and supplied from the same introduction pipe.
  • a carrier gas may be mixed from another introduction pipe.
  • the gas exhaust pipe 108 can be installed on the top, bottom and side surfaces of the reactor inner wall. From the viewpoint of dust removal, it is preferably located below the crystal growth end, and more preferably a gas exhaust pipe 108 is installed on the bottom of the reactor as shown in FIG.
  • the temperature conditions for crystal growth are not particularly limited, but are usually preferably 800 ° C. to 1200 ° C., 850 ° C. to 1150 ° C., more preferably 900 ° C. to 1100 ° C., and even more preferably 970 ° C. to 1040 ° C.
  • the pressure in the reactor is not particularly limited, but is preferably 50 kPa to 120 kPa, and particularly preferably atmospheric pressure.
  • the growth rate of crystal growth varies depending on the growth method, growth temperature, raw material gas supply amount, crystal growth surface orientation, etc., but is generally in the range of 5 ⁇ m / h to 500 ⁇ m / h, and is 10 ⁇ m / h or more. Preferably, 50 ⁇ m / h or more is more preferable, 70 ⁇ m or more is further preferable, and 140 ⁇ m / h or more is particularly preferable.
  • the growth rate can be controlled by appropriately setting the type, flow rate, supply port-crystal growth end distance, etc. of the carrier gas.
  • the items to be changed periodically can be one type or a plurality of combinations.
  • the growth temperature, the ratio of nitrogen source to group III, and the type of carrier gas it is preferable to change the growth temperature, the ratio of nitrogen source to group III, and the type of carrier gas, alone or in combination.
  • a method for obtaining a crystal whose main surface is a nonpolar plane (M plane / A plane) or a semipolar plane the same method as described above can be employed.
  • a plurality of seed crystals arranged may be used as a base substrate.
  • the same method as described above can be adopted.
  • basal plane dislocations may be aggregated and generated in the crystal portion grown immediately above the junction between the seed crystals.
  • the production method for obtaining the group III nitride semiconductor crystal of the present invention may include a molding process (separation process and polishing process) described below.
  • the separation step is a step of separating the grown group III nitride semiconductor from the base substrate, and specifically includes a cutting operation and a slicing operation.
  • a slicing operation is particularly preferable.
  • a group III nitride semiconductor includes a part containing many threading dislocations from the seed crystal surface, it is preferable to remove the part, and the above-described cutting operation and slicing operation can be used. Examples of the slicing operation include wire slicing and inner peripheral edge slicing.
  • a polishing process is required to use the crystal as a semiconductor substrate.
  • the group III nitride semiconductor crystal according to the present invention can be used for various applications.
  • it is useful as a substrate for semiconductor devices such as light emitting diodes of ultraviolet, blue or green, etc., light emitting elements having relatively short wavelengths such as semiconductor lasers, and electronic devices.
  • Example 1 A single crystal gallium nitride (GaN) substrate was prepared as a base substrate.
  • This single crystal GaN substrate is a self-standing substrate having a disk shape with a thickness of 400 ⁇ m and a diameter of 50 mm, and having a ⁇ 0001 ⁇ plane (C plane).
  • About 0.1 ⁇ m of SiO 2 film was deposited on the surface of the GaN free-standing substrate by plasma CVD. This GaN free-standing substrate with SiO 2 film was subjected to ultrasonic cleaning for 10 minutes in each of acetone and methanol, and rinsed with pure water for 5 minutes.
  • HMDS Hexamethyldisilazane
  • Pre-baking is a process for fixing the resist.
  • the positive resist used is “OFPR-800” manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • the resist was exposed using a Cr mask for exposure.
  • a stripe pattern having a line (Mask) / space (Window) of 50 ⁇ m / 400 ⁇ m is formed, and the stripe direction is ⁇ 1-100> on the surface of the GaN free-standing substrate as the base substrate.
  • Exposure was performed with a Cr mask set so as to be parallel to the m-axis.
  • the exposure time was 8 seconds, and post-baking was performed at 120 ° C. for 30 minutes after exposure.
  • the -C surface is in contact with the substrate holder and does not come into direct contact with the source gas.
  • the temperature of the reaction chamber was raised to 970 ° C., and the raw material was supplied from the + C plane direction of the base substrate to grow the initial growth for 15 minutes.
  • O-doped GaN was grown by raising the temperature of the reaction chamber to 1005 ° C. and supplying the raw material from the + C plane direction of the base substrate.
  • O-doping is realized by facet growth.
  • the growth pressure is set to 1.01 ⁇ 10 5 Pa
  • the partial pressure of NH 3 gas is 8.13 ⁇ 10 3 Pa
  • the partial pressure of N 2 gas is 1.17 ⁇ 10 4 Pa
  • GaCl gas The partial pressure was 7.00 ⁇ 10 2 Pa
  • the partial pressure of H 2 gas was 8.04 ⁇ 10 4 Pa
  • the raw material was introduced from the introduction tube.
  • the temperature was lowered to room temperature.
  • the shape of the obtained gallium nitride single crystal was a circular shape with irregularities whose surface maintained the facet growth of the line, and the film thickness in the C-axis direction was about 6.3 mm.
  • the area of the main surface (C surface) was 1963 mm 2 as an effective diameter of 50 mm as a result of using a 57 mm base substrate.
  • (13) The obtained gallium nitride single crystal was processed into a disk shape by outer peripheral processing, and then sliced so that the C-plane became a plate shape of the main surface, which was suitable for fluorescence microscope observation and SEM-CL observation Polishing was performed until the surface state was obtained, and the gallium nitride semiconductor crystal substrate 1 was obtained. Next, the radius of curvature of the gallium nitride semiconductor crystal substrate 1 was measured.
  • the radius of curvature can be calculated by a well-known method from the inclination of the crystal axis measured by X-ray diffraction measurement or the like as an indication of the curvature of the crystal plane.
  • the radius of curvature of the + C plane was measured with an X-ray diffractometer, the radius of curvature in the direction parallel to the line, that is, the direction parallel to the m-axis was 10.3 m, and the radius of curvature in the direction parallel to the a-axis was 3 0.0 m.
  • the basal plane dislocation distribution of the gallium nitride semiconductor crystal substrate 1 was observed by SEM-CL using a JSM-7000 scanning electron microscope manufactured by JEOL Ltd.
  • the acceleration voltage of the cathodoluminescence scanning electron microscope was adjusted to 3.0 kV. Information from the sample surface to a depth of 0.08 ⁇ m is detected by this acceleration voltage.
  • FIGS. 5a and 5b SEM-CL images are shown in FIGS. 5a and 5b.
  • FIG. 5 a is an image observed from the C-plane side of the crystal, and the black line-shaped one is the basal plane dislocation. From this, it was confirmed that the basal plane dislocations having a dislocation line length of 3 ⁇ m or more are concentrated in a line shape parallel to the m-axis.
  • FIG. 5b is an image observed from the M-plane side of the crystal, and the black dots are basal plane dislocations.
  • the gallium nitride semiconductor crystal substrate 1 contained 11% of the region X and 89% of the region Y. Further, from the SEM-CL image or the like, the region X and the region Y are arranged in a stripe shape in the gallium nitride semiconductor crystal substrate 1, the width (short side) of the region X is 50 ⁇ m, and the width of the region Y ( It was confirmed that the short side was 400 ⁇ m. Further, it was confirmed that the maximum length of the region X was 50 mm.
  • positioning of the basal plane dislocation was observed using the TECNAI G2F20 transmission electron microscope made from FEI Company.
  • the acceleration voltage of the transmission electron microscope was adjusted to 200 kV. With this acceleration voltage, information on the region from the edge to the thickness of 1000 nm is detected for the knife-edge thin film sample.
  • a transmission electron microscope image is shown in FIG. FIG. 6 is an image in the region Y observed from the M-plane side of the crystal, and the linear dark contrast is the basal plane dislocation.
  • a polygonal arrangement of basal plane dislocations was confirmed. Since the basal plane dislocation itself has polar self-strain, the state of being arranged in a line in the polarity direction in FIG. 6 can be interpreted as a dislocation theory as a mechanism for reducing internal residual stress.
  • Example 2 A rectangular parallelepiped having a length of 25 mm in the [-12-10] direction and 10 mm in the [0001] direction and having a thickness of 330 ⁇ m, the main surface is ⁇ 1 in the [0001] direction from the (10-10) plane.
  • Ten GaN free-standing substrates having a 0 ° off-angle in the [-12-10] direction were prepared and used as seed substrates.
  • Ten seed substrates were arranged so that the (0001) plane, the (000-1) plane, the (1-210) plane, and the (-12-10) plane of the seed substrate were bonded surfaces.
  • 10 seed substrates are arranged in 5 rows in the [0001] direction and 2 rows in the [-12-10] direction, and the cross section of the (0001) plane and the (000-1) plane of each seed substrate. They were arranged on the susceptor 107 so that the cross sections face each other and the cross section of the (1-210) plane and the cross section of the (-12-10) plane face each other.
  • the susceptor was placed in the reactor 100, the temperature of the reaction chamber was raised to 970 ° C., and growth of the GaN single crystal layer was started by the HVPE method. Simultaneously with the start of growth, the temperature in the reaction chamber was raised from 970 ° C. to 1020 ° C.
  • the growth pressure is 1.01 ⁇ 10 5 Pa from the start of growth to the end of growth
  • the partial pressure of GaCl gas is 5.96 ⁇ 10 2 Pa
  • the partial pressure of NH 3 gas is 5.34. ⁇ 10 3 Pa.
  • the temperature was lowered to room temperature to obtain a GaN crystal.
  • the temperature was lowered to room temperature to obtain a group III nitride crystal. In the region above the boundary region between adjacent seed substrates in the obtained crystal, the group III nitride crystal was grown in combination and grew 3.5 mm in the [10-10] direction.
  • the obtained group III nitride crystal was subjected to outer shape processing and surface polishing treatment, and then sliced and polished by the same method as in Example 1 to obtain (10-10) having a diameter of 2 inches and a thickness of 440 ⁇ m.
  • Three gallium nitride semiconductor crystal substrates 2 having a main surface as a main surface were produced.
  • the radius of curvature was measured in the same manner as in Example 1.
  • the curvature radius of the M plane was measured with an X-ray diffractometer, the curvature radius in the direction parallel to the a-axis of the crystal was 3.6 m.
  • the distribution of basal plane dislocations was observed using a SEM-CL apparatus, and the basal plane dislocation density ⁇ was calculated.
  • FIGS. 7A and 7B SEM-CL images of region X and region Y are shown in FIGS. 7A and 7B, respectively.
  • 7A and 7B are images of the crystal observed from the M-plane side. Furthermore, in the low-magnification SEM-CL image, it was confirmed that the basal plane dislocations were concentrated in a layer shape approximately parallel to the growth direction. Further, the distribution of basal plane dislocations was observed in the same manner as in Example 1, and the basal plane dislocation density ⁇ in the regions X and Y was calculated. The results are shown in Table 1.
  • the dislocation density value calculated from the 80 ⁇ m ⁇ 80 ⁇ m region and the 40 ⁇ m ⁇ 40 ⁇ m region corresponding to 1/4 of the region are arbitrarily extracted, and the dislocation density calculated therefrom is calculated. It was confirmed to have a region X ′ whose value is within 1.5 times the difference. Further, from the SEM-CL image, it was confirmed that the gallium nitride semiconductor crystal substrate 2 contained 10% of the region X and 90% of the region Y.
  • the region X and the region Y are arranged in a stripe shape in the gallium nitride semiconductor crystal substrate 2, and the width (short side, c-axis direction) of the region X is 500 ⁇ m. It was confirmed that the width of Y (short side, c-axis direction) was 4500 ⁇ m. Further, it was confirmed that the maximum length of the region X was 50 mm.
  • a template substrate was prepared by growing gallium nitride by about 15 ⁇ m by MOCVD on a sapphire substrate.
  • the base substrate was placed on the substrate holder on the HVPE device susceptor with the + C surface facing upward. At this time, the -C surface is in contact with the substrate holder and does not come into direct contact with the source gas.
  • the concentration in the reaction chamber was raised to 1080 ° C., and the raw material was supplied from the + C plane direction of the base substrate to grow for 45 minutes (hereinafter also referred to as region Y growth).
  • the temperature of the reaction chamber was raised to 1020 ° C., and the raw material was supplied from the + C plane direction of the base substrate to grow Si-doped gallium nitride for 6 hours (hereinafter also referred to as region X growth).
  • the growth pressure is set to 1.01 ⁇ 10 5 Pa
  • the partial pressure of NH 3 gas is 8.13 ⁇ 10 3 Pa
  • the partial pressure of N 2 gas is 1.17 ⁇ 10 4 Pa
  • the partial pressure was 7.00 ⁇ 10 2 Pa
  • the partial pressure of H 2 gas was 8.04 ⁇ 10 4 Pa
  • the partial pressure of dichlorosilane gas was 1.74 ⁇ 10 ⁇ 1 Pa
  • the raw material was introduced from the introduction tube.
  • the region Y growth (1080 ° C., 45 minutes) and the region X growth (1020 ° C., 6 hours) were periodically repeated four times.
  • the temperature was lowered to room temperature.
  • the shape of the obtained gallium nitride single crystal was a circular shape with a mirror surface, and the film thickness in the C-axis direction was about 3.6 mm.
  • the area of the main surface (C surface) of the obtained gallium nitride single crystal was 2043 mm 2 and the effective diameter was 51 mm.
  • the obtained gallium nitride single crystal was shaped into a disk shape by outer periphery processing in the same manner as in Example 1, and then the C surface was the main surface, and the plate shape including the predesigned region X as a layer
  • the gallium nitride semiconductor crystal substrate 3 was obtained by slicing and polishing until a surface state suitable for fluorescence microscope observation and SEM-CL observation was obtained.
  • the curvature radius of the obtained gallium nitride semiconductor crystal substrate 3 was measured in the same manner as in Example 1.
  • FIG. 8 is an image obtained by observing the crystal from the M-plane side, and in the low-magnification SEM-CL image, it was confirmed that the basal plane dislocations were concentrated in a layer shape approximately perpendicular to the growth direction.
  • Table 1 shows the results of the basal plane dislocation density ⁇ . Further, when examining the region X, the dislocation density value calculated from the 80 ⁇ m ⁇ 80 ⁇ m region and the 40 ⁇ m ⁇ 40 ⁇ m region corresponding to 1/4 of the region are arbitrarily extracted, and the dislocation density calculated therefrom is calculated. It was confirmed to have a region X ′ whose value is within 1.5 times the difference.
  • the gallium nitride semiconductor crystal substrate contained 88% region X and 12% region Y. Further, from the SEM-CL image or the like, the region X and the region Y are arranged in layers in the gallium nitride semiconductor crystal substrate, the width of the region X (layer thickness) is 700 ⁇ m, and the width of the region Y (layer) Thickness) was 100 ⁇ m. Further, it was confirmed that the maximum length of the region X was 50 mm.
  • a template substrate was prepared by growing gallium nitride by about 15 ⁇ m by MOCVD on a sapphire substrate.
  • the base substrate was placed on the substrate holder on the HVPE device susceptor with the + C surface facing upward. At this time, the -C surface is in contact with the substrate holder and does not come into direct contact with the source gas.
  • the initial growth was performed for 1 hour 30 minutes by raising the concentration in the reaction chamber to 970 ° C. and supplying the raw material from the + C plane direction of the base substrate.
  • the temperature of the reaction chamber was raised to 1020 ° C., and the raw material was supplied from the + C plane direction of the base substrate to grow undoped gallium nitride.
  • the growth pressure is set to 1.01 ⁇ 10 5 Pa
  • the partial pressure of NH 3 gas is 7.54 ⁇ 10 3 Pa
  • the partial pressure of N 2 gas is 8.88 ⁇ 10 3 Pa
  • the GaCl gas The partial pressure was 6.52 ⁇ 10 2 Pa
  • the partial pressure of H 2 gas was 8.39 ⁇ 10 4 Pa
  • the raw material was introduced from the introduction tube.
  • the temperature was lowered to room temperature.
  • the shape of the obtained gallium nitride single crystal was a circular shape with a mirror surface, and the film thickness in the c-axis direction was about 4.1 mm.
  • the area of the main surface (C surface) of the obtained gallium nitride single crystal was 2376 mm 2 and the effective diameter was 55 mm.
  • the obtained gallium nitride single crystal was shaped into a disk shape by outer periphery processing, and then the C surface was the main surface and the plate shape did not include the region X.
  • the gallium nitride semiconductor crystal substrate was obtained by slicing and polishing until a surface state suitable for fluorescence microscope observation and SEM-CL observation was obtained.
  • the radius of curvature of the obtained gallium nitride semiconductor crystal substrate was measured in the same manner as in Example 1.
  • the radius of curvature of the + C plane was measured with an X-ray diffractometer, the radius of curvature in the direction parallel to the a-axis was 2.5 m, and the radius of curvature in the direction parallel to the m-axis was 2.8 m.
  • the basal plane dislocation distribution was observed using the SEM-CL apparatus in the same manner as in Example 1, and the basal plane dislocation density ⁇ was calculated.
  • An SEM-CL image is shown in FIG. Table 1 shows the results of the basal plane dislocation density ⁇ .
  • the region X and the crystal whose basal plane dislocation density is 1.0 ⁇ 10 6 cm ⁇ 2 or more when the ⁇ 10-10 ⁇ plane of the crystal is observed includes a region Y that is less than 1.0 ⁇ 10 6 cm ⁇ 2 .
  • the radius of curvature of the crystal plane of the main surface of the gallium nitride semiconductor single crystal substrate of Examples 1, 2, and 3 can be measured in both the a-axis direction and the m-axis direction. It is clear that it has a radius of curvature of 3.0 m or more.
  • FIG. 10b shows a graph in which the phase difference ( ⁇ ) of points adjacent to each other at intervals of 181 ⁇ m in the diameter direction is plotted for the phase difference distributions of Examples 1 and 3 and Comparative Example 1 shown in FIG. 10a.
  • FIG. 10c shows a graph in which the difference (
  • III nitride semiconductor crystal of the present invention is a crystal in which internal stress is uniformly dispersed within the crystal and cracking is less likely to occur during molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Since a group III nitride semiconductor crystal such as gallium nitride sometimes suffers from cracking during the processing such as slicing or polishing, the group III nitride semiconductor crystal has been a factor that lowers the production yield of a substrate or the like. By having a region (region X) where the basal plane dislocation density is not less than a specific value and a region (region Y) where the basal plane dislocation density is less than the specific value, the internal stress within the crystal is dispersed, a group III nitride semiconductor crystal becomes less susceptible to cracking during the processing such as slicing or polishing.

Description

III族窒化物半導体結晶Group III nitride semiconductor crystal
 本発明は、特定の性質を有するIII族窒化物半導体結晶に関する。 The present invention relates to a group III nitride semiconductor crystal having specific properties.
 窒化ガリウムに代表される窒化物半導体は、大きなバンドギャップを有し、またバンド間遷移が直接遷移型であることから、紫外、青色又は緑色等の発光ダイオード、半導体レーザー等の比較的短波長側の発光素子として実用化されている。また、最近では結晶成長技術の発達により、これらの素子に用いられる窒化ガリウム基板の製造も実現している。これらの素子の特性を向上させるためには、転位密度の低い窒化物半導体基板を製造できる技術を確立することが必要である。 Nitride semiconductors typified by gallium nitride have a large band gap, and the transition between bands is a direct transition type. Therefore, light emitting diodes such as ultraviolet, blue and green, semiconductor lasers and the like on the relatively short wavelength side It has been put to practical use as a light emitting element. Recently, with the development of crystal growth technology, the manufacture of gallium nitride substrates used in these devices has also been realized. In order to improve the characteristics of these elements, it is necessary to establish a technique capable of manufacturing a nitride semiconductor substrate having a low dislocation density.
 転位密度の低い窒化ガリウム基板を製造する方法としては、ELO法(Epitaxial Lateral Overgrowth)が知られている。ELO法は、下地基板上にマスク層を形成し、開口部からマスク上にラテラル成長させる結晶成長法であるが、貫通転位がラテラル成長によって止まるため、結晶欠陥の少ない層を形成できることが知られている(特許文献1参照)。また、同様に下地基板上にマスク層を形成し、ファセット成長させる方法も提案されており、貫通転位を所定の位置に集積させることができることが報告されている(特許文献2及び3参照)。 An ELO method (Epitaxial Lateral Overgrowth) is known as a method for manufacturing a gallium nitride substrate having a low dislocation density. The ELO method is a crystal growth method in which a mask layer is formed on a base substrate and laterally grown on the mask from an opening. However, since threading dislocations are stopped by lateral growth, a layer with few crystal defects can be formed. (See Patent Document 1). Similarly, a method of forming a mask layer on a base substrate and performing facet growth has been proposed, and it has been reported that threading dislocations can be integrated at predetermined positions (see Patent Documents 2 and 3).
特開平11-251253号公報Japanese Patent Laid-Open No. 11-251253 特開2003-165799号公報JP 2003-165799 A 特開2003-183100号公報JP 2003-183100 A
 III族窒化物半導体結晶は、成長後、スライスや研磨等の成形加工処理が行われることが一般的であるが、この成形加工時に結晶に割れが生じることがあり、基板等を製造する際の歩留りを低下させる要因となっていた。
 本発明は、結晶の割れによる歩留りを改善することを課題とする。
The group III nitride semiconductor crystal is generally subjected to a molding process such as slicing or polishing after growth, but the crystal may be cracked during the molding process. It was a factor that lowered the yield.
An object of the present invention is to improve the yield due to crystal cracking.
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、基底面転位が一定領域に集約させた場合に、スライス及び研磨等の成形加工時に割れが生じ難くなることを見出し、本発明を完成させた。 As a result of intensive investigations to solve the above problems, the present inventors have found that when basal plane dislocations are aggregated in a certain region, cracks are less likely to occur during molding processing such as slicing and polishing, The present invention has been completed.
 即ち本発明は以下のとおりである。
(1) 結晶の一部に基底面転位密度が1.0×106cm-2以上である領域(領域X)及び1.0×106cm-2未満である領域(領域Y)を含むことを特徴とするIII族窒化物半導体結晶。
(2) 前記領域Xと前記領域Yが結晶内でランダムに配置されている、(1)に記載のIII族窒化物半導体結晶。
(3) 前記領域Xと前記領域Yがストライプ状に配列されている、(1)に記載のIII族窒化物半導体結晶。
(4) 前記ストライプの方向がm軸に平行である、(3)に記載のIII族窒化物半導体結晶。
(5) M面から傾斜して現れるファセット面を形成するファセット成長により製造される、(1)~(4)の何れかに記載のIII族窒化物半導体結晶。
(6) 前記領域Xと前記領域Yが層状に配列されている、(1)に記載のIII族窒化物半導体結晶。
(7) 前記領域Xが、基底面転位密度が均一である領域(領域X’)を有する、(1)~(6)の何れかに記載のIII族窒化物半導体結晶。
(8) 結晶全体に占める前記領域Xの割合が3%以上である、(1)~(7)の何れかに記載のIII族窒化物半導体結晶。
(9) 前記領域X及び/又は前記領域Yが、ポリゴン化配列した基底面転位配列を含有する、(1)~(8)の何れかに記載のIII族窒化物半導体結晶。
(10)(1)~(9)の何れかに記載のIII族窒化物半導体結晶から得られる基板。
That is, the present invention is as follows.
(1) A part of the crystal includes a region (region X) having a basal plane dislocation density of 1.0 × 10 6 cm −2 or more and a region (region Y) having a basal plane dislocation density of less than 1.0 × 10 6 cm −2. A group III nitride semiconductor crystal characterized by the above.
(2) The group III nitride semiconductor crystal according to (1), wherein the region X and the region Y are randomly arranged in the crystal.
(3) The group III nitride semiconductor crystal according to (1), wherein the region X and the region Y are arranged in a stripe shape.
(4) The group III nitride semiconductor crystal according to (3), wherein the stripe direction is parallel to the m-axis.
(5) The group III nitride semiconductor crystal according to any one of (1) to (4), which is manufactured by facet growth that forms a facet surface that appears obliquely from the M plane.
(6) The group III nitride semiconductor crystal according to (1), wherein the region X and the region Y are arranged in layers.
(7) The group III nitride semiconductor crystal according to any one of (1) to (6), wherein the region X has a region (region X ′) having a uniform basal plane dislocation density.
(8) The group III nitride semiconductor crystal according to any one of (1) to (7), wherein a ratio of the region X to the entire crystal is 3% or more.
(9) The group III nitride semiconductor crystal according to any one of (1) to (8), wherein the region X and / or the region Y contains a basal plane dislocation array arranged in a polygon.
(10) A substrate obtained from the group III nitride semiconductor crystal according to any one of (1) to (9).
 本発明によれば、結晶内に残留する内部応力が分散されており、スライス等の成形加工時の割れが生じ難いIII族窒化物半導体結晶を提供することができる。 According to the present invention, it is possible to provide a group III nitride semiconductor crystal in which internal stress remaining in the crystal is dispersed and cracking during molding such as slicing is difficult to occur.
基底面転位及び貫通転位を示す概念図である。It is a conceptual diagram which shows a basal plane dislocation and a threading dislocation. 領域Xと領域Yがストライプ状または層状に配列されたIII族窒化物半導体結晶を示す概念図である。It is a conceptual diagram which shows the group III nitride semiconductor crystal in which the area | region X and the area | region Y were arranged in the stripe form or the layer form. 領域Xが形成される結晶成長の原理を示す概念図である。It is a conceptual diagram which shows the principle of the crystal growth in which the area | region X is formed. HVPE法に用いられる製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus used for HVPE method. 実施例1で得られたIII族窒化物半導体結晶のSEM-CL像であり、C面側から観察した像である(顕微鏡写真)。3 is a SEM-CL image of a group III nitride semiconductor crystal obtained in Example 1, which is an image observed from the C-plane side (micrograph). 実施例1で得られたIII族窒化物半導体結晶のSEM-CL像であり、M面側から観察した像である(顕微鏡写真)。3 is an SEM-CL image of the group III nitride semiconductor crystal obtained in Example 1, which is an image observed from the M-plane side (micrograph). 実施例1で得られたIII族窒化物半導体結晶の透過型電子顕微鏡像であり、M面側から観察した領域Yにおける像である(顕微鏡写真)。It is a transmission electron microscope image of the group III nitride semiconductor crystal obtained in Example 1, and is the image in the area | region Y observed from the M surface side (micrograph). 実施例2で得られたIII族窒化物半導体結晶のSEM-CL像であり、M面側から観察した像である(顕微鏡写真)。FIG. 3 is an SEM-CL image of a group III nitride semiconductor crystal obtained in Example 2, which is an image observed from the M-plane side (micrograph). 実施例3で得られたIII族窒化物半導体結晶のSEM-CL像であり、M面側から観察した像である(顕微鏡写真)。It is a SEM-CL image of the group III nitride semiconductor crystal obtained in Example 3, which is an image observed from the M-plane side (micrograph). 比較例で得られたIII族窒化物半導体結晶のSEM-CL像であり、M面側から観察した像である(顕微鏡写真)。It is a SEM-CL image of the group III nitride semiconductor crystal obtained by the comparative example, and is an image observed from the M plane side (micrograph). 実施例および比較例で得られたIII族窒化物半導体結晶の光弾性の測定結果である。It is a measurement result of the photoelasticity of the group III nitride semiconductor crystal obtained by the Example and the comparative example. 実施例および比較例の位相差分布について、直径方向に181μmの間隔で隣合う点の位相差(δ)をプロットしたグラフである。It is the graph which plotted the phase difference ((delta)) of the point which adjoins at an interval of 181 micrometers in the diameter direction about the phase difference distribution of an Example and a comparative example. 図6bでプロットした位相差(δ)の隣同士の点の差(|Δδ|)をプロットしたグラフである。FIG. 6b is a graph plotting the difference (| Δδ |) between adjacent points of the phase difference (δ) plotted in FIG. 6b.
 本発明のIII族窒化物半導体結晶ついて以下詳細に説明するが、本発明の趣旨に反しない限り、これらの内容に限定されるものではない。 The group III nitride semiconductor crystal of the present invention will be described in detail below, but is not limited to these contents unless it is contrary to the gist of the present invention.
 本明細書においてIII族窒化物半導体結晶の「主面」とは、当該III族窒化物半導体結晶における最も広い面であって、結晶成長を行うべき面を指す。
 本明細書において、「C面」とは、六方晶構造(ウルツ鉱型結晶構造)における{0001}面であり、c軸に直交する面である。かかる面は極性面であり、III族半導体結晶では「+C面」はIII族面(窒化ガリウムの場合はガリウム面)であり、「-C面」は窒素面である。
 また、本明細書において、「M面」とは(1-100)面、(01-10)面、(-1010)面、(-1100)面、(0-110)面、或いは(10-10)面であり、m軸に直交する面である。かかる面は、通常は劈開面である。
 また、本明細書において、「A面」とは(2-1-10)面、(-12-10)面、(-1-120)面、(-2110)面、(1-210)面、或いは(11-20)面であり、a軸に直交する面である。
 本明細書において「半極性面」とは、結晶面にIII族金属元素と窒素元素の両方が存在しており、その存在比が1:1でない面であれば特に限定されないが、例えば{20-21}面、{10-11}面、{10-12}面、{11-21}面、{11-22}面、{11-23}面、{11-24}面などがあげられる。
 また、本明細書においてC面、M面、A面や特定の指数面を称する場合には、±0.01°以内の精度で計測される各結晶軸から10°以内のオフ角を有する範囲内の面を含む。好ましくはオフ角が5°以内であり、より好ましくは3°以内である。
 さらに、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
In this specification, the “main surface” of the group III nitride semiconductor crystal refers to the widest surface of the group III nitride semiconductor crystal and the surface on which crystal growth is to be performed.
In the present specification, the “C plane” is a {0001} plane in a hexagonal crystal structure (wurtzite crystal structure) and is a plane orthogonal to the c-axis. Such a plane is a polar plane. In the group III semiconductor crystal, the “+ C plane” is a group III plane (gallium plane in the case of gallium nitride), and the “−C plane” is a nitrogen plane.
In this specification, the “M plane” means (1-100) plane, (01-10) plane, (−1010) plane, (−1100) plane, (0-110) plane, or (10− 10) A plane that is perpendicular to the m-axis. Such a surface is usually a cleavage plane.
In this specification, “A plane” means (2-1-10) plane, (-12-10) plane, (−1-120) plane, (−2110) plane, (1-210) plane. Or (11-20) plane, a plane orthogonal to the a-axis.
In this specification, the “semipolar plane” is not particularly limited as long as both the group III metal element and the nitrogen element are present on the crystal plane, and the abundance ratio thereof is not 1: 1. For example, {20 -21} plane, {10-11} plane, {10-12} plane, {11-21} plane, {11-22} plane, {11-23} plane, {11-24} plane, etc. .
Further, in this specification, when referring to the C, M, A, or specific index plane, a range having an off angle within 10 ° from each crystal axis measured with an accuracy within ± 0.01 °. Including the inner face. The off angle is preferably within 5 °, more preferably within 3 °.
Furthermore, a numerical range expressed using “to” in this specification means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
<本発明のIII族窒化物半導体結晶>
 本発明のIII族窒化物半導体結晶は、基底面転位密度が特定の値以上である領域(領域X)、及び基底面転位密度が特定の値未満である領域(領域Y)を有することを特徴とする。本発明者らは、III族窒化物半導体結晶の結晶内を基底面転位が多い領域Xと基底面転位が少ない領域Yとを含むものとすることによって、結晶成長時に結晶内に生じる内部応力を巧みに緩和し、加工性を向上させることに成功した。「基底面転位」とは、C面(基底面)上に生じる線状欠陥(転位)であり、c軸と垂直な関係にあるものであれば、その転位線の方向や長さは特に限定されず、図1においては3がこれに該当する。また、「領域」とは、平面状の領域を意味しているのではなく、3次元の領域を意味するものとする。即ち、領域Xの基底面転位とは、領域Xの結晶表面に存在する基底面転位のみを対象とするのではなく、領域Xの結晶内部に存在する基底面転位も対象とすることを意味している。
<Group III nitride semiconductor crystal of the present invention>
The group III nitride semiconductor crystal of the present invention has a region (region X) in which the basal plane dislocation density is a specific value or more and a region (region Y) in which the basal plane dislocation density is less than a specific value. And The inventors of the present invention have skillfully applied the internal stress generated in the crystal during crystal growth by including the region X having many basal plane dislocations and the region Y having few basal plane dislocations in the group III nitride semiconductor crystal. Succeeded in relaxing and improving processability. The “basal plane dislocation” is a linear defect (dislocation) generated on the C-plane (basal plane), and the direction and length of the dislocation line is particularly limited as long as it is perpendicular to the c-axis. In FIG. 1, 3 corresponds to this. Further, the “region” does not mean a planar region, but means a three-dimensional region. That is, the basal plane dislocation in the region X means not only the basal plane dislocation existing on the crystal surface of the region X but also the basal plane dislocation existing in the crystal of the region X. ing.
 本発明における基底面転位密度は、以下の計算式(1)によって算出された値を意味するものとする。 The basal plane dislocation density in the present invention means a value calculated by the following calculation formula (1).
Figure JPOXMLDOC01-appb-M000001
(ρ:基底面転位密度、N:測定された基底面転位の個数、A:基底面転位の個数を測定した部分の断面積)
Figure JPOXMLDOC01-appb-M000001
(Ρ: basal plane dislocation density, N: number of measured basal plane dislocations, A: sectional area of the portion where the number of basal plane dislocations was measured)
 基底面転位の個数Nは、例えば、透過型電子顕微鏡法(TEM法)、カソードルミネッセンス法(SEM-CL法)、エッチングによる表面ピットをAFMや光学顕微鏡等で観察する方法を利用することによって測定することができる。これらの方法は観測可能な視野が異なり、TEM法では転位密度が主に5×107cm-2以上の場合、SEM-CL法では転位密度が主に1×105cm-2以上の場合、エッチングによる表面ピットをAFMや光学顕微鏡等で観察する方法では転位密度が主に1×103~1×106cm-2の場合に好適である。本発明においては特にSEM-CL法を利用して測定することが好ましい。
 また、SEM-CL法を利用する場合の具体的な測定条件も特に限定されないが、加速電圧は通常3~5kVで測定することが好ましく、3kVで測定することが特に好ましい。
The number N of basal plane dislocations is measured by using, for example, a transmission electron microscope method (TEM method), a cathodoluminescence method (SEM-CL method), or a method of observing surface pits by etching with an AFM or an optical microscope. can do. These methods have different observable fields of view. In the TEM method, the dislocation density is mainly 5 × 10 7 cm −2 or more, and in the SEM-CL method, the dislocation density is mainly 1 × 10 5 cm −2 or more. The method of observing surface pits by etching with an AFM or an optical microscope is suitable when the dislocation density is mainly 1 × 10 3 to 1 × 10 6 cm −2 . In the present invention, it is particularly preferable to measure using the SEM-CL method.
Further, the specific measurement conditions when using the SEM-CL method are not particularly limited, but the acceleration voltage is usually preferably 3 to 5 kV, and more preferably 3 kV.
 基底面転位の個数Nは、前述のような方法によって測定することが可能であるが、かかる測定値はどの方向から結晶を観察したかによって差異が生じ、また断面積Aも観察する面に由来する値である。従って、基底面転位密度ρの値も、結晶をどの方向から観察したかによって差異が生じ得る。そこで、本発明においては特に{10-10}面を観察した場合における基底面転位密度ρの値を利用して、III族窒化物半導体結晶を特定するものとする。つまり、本明細書において単に「基底面転位密度(ρ)」と称する場合には、基底面に交差するM面を観察した場合に、主に点として観察される基底面転位の個数Nを測定し、これを単位面積(cm2)当たりの値に変換したものを表すものとする。また、基底面転位密度ρを算出する断面積Aの具体的な値も特に限定されないが、通常1μm2以上であればよく、好ましくは25μm2以上、より好ましくは100μm2以上であって、通常22500μm2以下であり、14400μm2以下とすることが好ましく、10000μm2以下とすることがより好ましい。上記範囲であると、基底面転位密度の値を再現よく算出することができる。上記断面積Aは長方形や正方形に近い四角形の面積であることが好ましい。
 一方で、結晶の{0001}面を観察した場合においては、基底面転位は線として観察される。本明細書においては、結晶の特定の表面として選択されるC面を観察した場合に、線として観察される基底面転位と交差する方向に単位距離(cm)を設定し、当該単位距離当たりに交差する基底面転位の本数を「C面での基底面転位頻度」と称し、前記「基底面転位密度(ρ)」と区別する。なお、「C面での基底面転位頻度」はc軸方向に相当する深さ方向での基底面転位の数は考慮しないこととなる。
The number N of basal plane dislocations can be measured by the method as described above, but the measured value varies depending on the direction from which the crystal is observed, and the cross-sectional area A is also derived from the surface to be observed. The value to be Therefore, the value of the basal plane dislocation density ρ can also vary depending on the direction from which the crystal is observed. Therefore, in the present invention, the group III nitride semiconductor crystal is specified by utilizing the value of the basal plane dislocation density ρ particularly when the {10-10} plane is observed. That is, in the present specification, when simply referred to as “basal plane dislocation density (ρ)”, the number N of basal plane dislocations observed mainly as points when the M plane intersecting the basal plane is observed is measured. It is assumed that this is converted into a value per unit area (cm 2 ). Further, the specific value of the cross-sectional area A for calculating the basal plane dislocation density ρ is not particularly limited, but is usually 1 μm 2 or more, preferably 25 μm 2 or more, more preferably 100 μm 2 or more. 22500μm 2 or less, preferably set to 14400Myuemu 2 or less, and more preferably set to 10000 2 below. Within the above range, the value of the basal plane dislocation density can be calculated with good reproducibility. The cross-sectional area A is preferably a rectangular area close to a rectangle or a square.
On the other hand, when the {0001} plane of the crystal is observed, the basal plane dislocation is observed as a line. In this specification, when a C plane selected as a specific surface of a crystal is observed, a unit distance (cm) is set in a direction crossing the basal plane dislocation observed as a line, and the unit distance per unit distance is set. The number of intersecting basal plane dislocations is referred to as “basal plane dislocation frequency in the C plane” and is distinguished from the “basal plane dislocation density (ρ)”. The “basal plane dislocation frequency in the C plane” does not consider the number of basal plane dislocations in the depth direction corresponding to the c-axis direction.
 本発明では、III族窒化物半導体結晶を特定するにあたり、{10-10}面又は{0001}面を観察した場合の基底面転位の数を利用しているが、基底面転位を測定する場合、上記結晶面が結晶表面に現れ、かつ基底面転位を観測しやすいように結晶を成型加工した後に測定することが好ましい。具体的には、{10-10}面又は{0001}面が結晶表面に現れるようにカッティング又はスライスし、さらにかかる面をダイヤモンドスラリーでのラッピング、CMPを行って研磨することが好ましい。 In the present invention, when specifying a group III nitride semiconductor crystal, the number of basal plane dislocations when the {10-10} plane or {0001} plane is observed is used. The measurement is preferably performed after molding the crystal so that the crystal plane appears on the crystal surface and the basal plane dislocations are easily observed. Specifically, it is preferable to perform cutting or slicing so that the {10-10} plane or {0001} plane appears on the crystal surface, and further polishing such a plane by lapping with diamond slurry and CMP.
 本発明における基底面転位は、前述のようにc軸と垂直な関係にあるものであれば、その転位線の方向や長さは特に限定されないが、転位線の長さは0.1μm以上であることが好ましく、1μm以上がより好ましく、3μm以上がさらに好ましい。 The basal plane dislocation in the present invention is not particularly limited in the direction and length of the dislocation line as long as it is perpendicular to the c-axis as described above, but the dislocation line length is 0.1 μm or more. It is preferably 1 μm or more, more preferably 3 μm or more.
 本発明における領域Xは、結晶の{10-10}面を観察した場合における基底面転位密度が1.0×106cm-2以上であり、1.0×107cm-2以上であることが好ましく、1.0×108cm-2以上であることがより好ましい。また、基底面転位密度の上限値は、通常1.0×1010cm-2以下、好ましくは1.0×109cm-2以下である。
 一方で、領域Xは結晶の{0001}面を観察した場合におけるC面の基底面転位頻度が1.0×106cm-1以上であることが好ましく、1.0×107cm-1以上であることがより好ましい。また、C面の基底面転位頻度の上限値は、通常1.0×1010cm-1以下、好ましくは1.0×109cm-1以下である。
In the region X in the present invention, the basal plane dislocation density when the {10-10} plane of the crystal is observed is 1.0 × 10 6 cm −2 or more, and 1.0 × 10 7 cm −2 or more. It is preferably 1.0 × 10 8 cm −2 or more. The upper limit of the basal plane dislocation density is usually 1.0 × 10 10 cm −2 or less, preferably 1.0 × 10 9 cm −2 or less.
On the other hand, in the region X, when the {0001} plane of the crystal is observed, the C-plane basal plane dislocation frequency is preferably 1.0 × 10 6 cm −1 or more, and 1.0 × 10 7 cm −1. More preferably. Further, the upper limit value of the basal plane dislocation frequency of the C plane is usually 1.0 × 10 10 cm −1 or less, preferably 1.0 × 10 9 cm −1 or less.
 本発明における領域Yは、結晶の{10-10}面を観察した場合における基底面転位密度が1.0×106cm-2未満であり、6.0×105cm-2未満であることが好ましく、4.0×105cm-2未満であることがより好ましい。
 一方で、領域Yは結晶の{0001}面を観察した場合におけるC面の基底面転位頻度が1.0×106cm-1未満であることが好ましく、6.0×105cm-1未満であることがより好ましく、4.0×105cm-1未満であることがさらに好ましい。
In the region Y in the present invention, the basal plane dislocation density when the {10-10} plane of the crystal is observed is less than 1.0 × 10 6 cm −2 and less than 6.0 × 10 5 cm −2. Preferably, it is less than 4.0 × 10 5 cm −2 .
On the other hand, in the region Y, the basal plane dislocation frequency of the C plane when the {0001} plane of the crystal is observed is preferably less than 1.0 × 10 6 cm −1 , and 6.0 × 10 5 cm −1. More preferably, it is more preferably less than 4.0 × 10 5 cm −1 .
 本発明における領域Xは、基底面転位密度が均一である領域(領域X’)を有することが好ましい。基底面転位密度が均一である領域X’は、当該領域を含む任意の80μm×80μmの部位から算出した基底面転位密度が1.0×10cm-2以上となり、かつかかる部位の1/4の面積に当たる40μm×40μmの部位を任意に抽出して、そこから算出した基底面転位密度と前記80μm×80μmの領域から算出した基底面転位密度とが1.5倍差以内となる領域を指すものとする。領域X’を有することで、結晶成長時に結晶内に生じる内部応力を効率的に緩和することができ、加工性が向上する傾向がある。 The region X in the present invention preferably has a region (region X ′) having a uniform basal plane dislocation density. In the region X ′ where the basal plane dislocation density is uniform, the basal plane dislocation density calculated from any 80 μm × 80 μm region including the region is 1.0 × 10 6 cm −2 or more, and 1 / A region of 40 μm × 40 μm corresponding to the area of 4 is arbitrarily extracted, and a basal plane dislocation density calculated from the region and a basal plane dislocation density calculated from the region of 80 μm × 80 μm are within a 1.5-fold difference. Shall point to. By having the region X ′, internal stress generated in the crystal during crystal growth can be efficiently relaxed, and the workability tends to be improved.
 さらに、本発明における領域X及び/又は領域Yが、ポリゴン化配列した基底面転位配列を含有するものであることが好ましい。なお、ポリゴン化配列した基底面転位配列とは、50nm以下の間隔で配列している基底面転位の配列体を指す。配列方向は特に限定されないが、c軸方向に配列していることが好ましい。ポリゴン化配列した基底面転位配列を含有することで、結晶成長時に結晶内に生じる内部応力が緩和され、加工性が向上する傾向がある。
 また、ポリゴン化配列した基底面転位配列の配列方向の長さも特に限定されないが、1μm以上であることが好ましく、10μm以上であることがより好ましく、また、20mm以下であることが好ましく、10mm以下であることがより好ましい。
Furthermore, it is preferable that the region X and / or the region Y in the present invention contains a basal plane dislocation array arranged in a polygon. The basal plane dislocation array arranged in a polygonal arrangement refers to an array of basal plane dislocations arranged at intervals of 50 nm or less. The arrangement direction is not particularly limited, but is preferably arranged in the c-axis direction. By including a basal plane dislocation array arranged in a polygon, internal stress generated in the crystal during crystal growth is relaxed, and workability tends to be improved.
Further, the length in the arrangement direction of the basal plane dislocation arrangement arranged in a polygon is not particularly limited, but is preferably 1 μm or more, more preferably 10 μm or more, and preferably 20 mm or less, and 10 mm or less. It is more preferable that
 本発明における領域X及び領域Yは、基底面転位密度が特定の範囲であれば、結晶内における領域の形態・数・分布については特に限定されないが、結晶全体に占める領域Xの割合は、通常1%以上、好ましくは3%以上、より好ましくは5%以上、さらに好ましくは10%以上、通常95%以下、好ましくは80%以下、より好ましくは70%以下、さらに好ましくは50%以下、特に好ましくは30%以下である。また、領域Yの結晶全体に占める割合は、通常10%以上、好ましくは30%以上、より好ましくは50%以上、さらに好ましくは70%以上、通常99%以下、好ましくは97%以下、より好ましくは95%以下、さらに好ましくは93%以下である。なお、結晶全体に占める領域X(又は領域Y)の割合とは、結晶全体の体積に対する領域X(又は領域Y)の体積の割合を意味するものであるが、例えば図2(b)に示される結晶の場合は、領域Xの短辺(a軸方向)と領域Yの短辺(a軸方向)の比から算出することができる。上記範囲であると、基底面転位が適度に集約され、成形加工時の割れを防止できるとともに、基底面転位の少ない領域を充分に確保することができる。また、領域Yは、通常350μm角以上の大きさ、好ましくは400μm角以上の大きさ、さらには1mm角以上の大きさを有することが好ましい。上記範囲であると、デバイス等を作製するための大きさを充分に確保することができる。さらに、領域Xは、その最大長さが100μm以上であることが好ましく、300μm以上であることがより好ましく、500μm以上であることがさらに好ましく、また、21cm以下であることが好ましく、11cm以下であることがより好ましく、5mm以下であることがさらに好ましく、1mm以下であることが特に好ましい。上記範囲の領域Xを有することで、結晶成長時に結晶内に生じる内部応力を効率的に緩和することができ、加工性が向上する傾向がある。また、領域X及び領域Yの分布は規則的に配列されていても、ランダムに配置されていてもよい。ただし、領域Xの存在によって内部応力が分散されるため、領域Xは結晶全体に広く分布している方が好ましい。また、基底面転位密度の異なる領域Xと領域Yの両者を有することが、内部応力の分散に効果的であると考えられるため、領域XとYとが周期的に配列されていることが好ましく、領域XとYの両者が結晶全体に広く分布していることがより好ましい。さらに、基底面転位は、前述のようにc軸と垂直な転位であれば、転位線の方向は特に限定されないが、領域X内で、複数の基底面転位が同一方向を向いていると、結晶の成形加工が容易になるため好ましい。 The region X and the region Y in the present invention are not particularly limited as to the form, number, and distribution of the regions in the crystal as long as the basal plane dislocation density is in a specific range, but the ratio of the region X in the entire crystal is usually 1% or more, preferably 3% or more, more preferably 5% or more, more preferably 10% or more, usually 95% or less, preferably 80% or less, more preferably 70% or less, more preferably 50% or less, particularly Preferably it is 30% or less. The ratio of the region Y to the entire crystal is usually 10% or more, preferably 30% or more, more preferably 50% or more, still more preferably 70% or more, usually 99% or less, preferably 97% or less, more preferably Is 95% or less, more preferably 93% or less. Note that the ratio of the region X (or region Y) to the entire crystal means the ratio of the volume of the region X (or region Y) to the volume of the entire crystal. For example, as shown in FIG. In the case of a crystal, it can be calculated from the ratio of the short side of region X (a-axis direction) to the short side of region Y (a-axis direction). Within the above range, basal plane dislocations are moderately aggregated, cracks during molding can be prevented, and a region with little basal plane dislocations can be secured sufficiently. The region Y usually has a size of 350 μm square or more, preferably a size of 400 μm square or more, and more preferably a size of 1 mm square or more. When it is in the above range, a size for producing a device or the like can be sufficiently secured. Further, the region X has a maximum length of preferably 100 μm or more, more preferably 300 μm or more, further preferably 500 μm or more, and preferably 21 cm or less, and 11 cm or less. More preferably, it is more preferably 5 mm or less, and particularly preferably 1 mm or less. By having the region X in the above range, the internal stress generated in the crystal during crystal growth can be efficiently relaxed, and the workability tends to be improved. Further, the distribution of the region X and the region Y may be regularly arranged or randomly arranged. However, since the internal stress is dispersed by the presence of the region X, it is preferable that the region X is widely distributed throughout the crystal. Further, since it is considered that having both the region X and the region Y having different basal plane dislocation densities is effective for dispersion of internal stress, it is preferable that the regions X and Y are periodically arranged. More preferably, both the regions X and Y are widely distributed throughout the crystal. Further, if the basal plane dislocation is a dislocation perpendicular to the c-axis as described above, the direction of the dislocation line is not particularly limited, but within the region X, when a plurality of basal plane dislocations face the same direction, This is preferable because the crystal forming process becomes easy.
 領域X及び領域Yの分布に係る好ましい具体例としては、第一の態様として図2(a)に示される結晶のように、領域X及び領域Yが何れかの方向に長い直方体状であり、かつ領域Xと領域Yが交互に規則的に配列した状態にあるもの、即ち領域Xと領域Yがストライプ状に配列されているものや、第二の態様として図2(b)に示される結晶のように、領域X及び領域Yは成長方向におおよそ垂直な面として広がっており、かつ領域Xと領域Yが交互に配列した状態にあるもの、即ち領域Xと領域Yは層状に配列されているものが挙げられる(図2の中で、5が基底面転位、6が領域X、7が領域Y)。 As a preferable specific example relating to the distribution of the region X and the region Y, as in the crystal shown in FIG. 2A as the first aspect, the region X and the region Y are rectangular parallelepiped long in either direction, In addition, the region X and the region Y are alternately and regularly arranged, that is, the region X and the region Y are arranged in a stripe shape, or the crystal shown in FIG. As described above, the region X and the region Y are spread as a plane substantially perpendicular to the growth direction, and the region X and the region Y are alternately arranged, that is, the region X and the region Y are arranged in layers. (In FIG. 2, 5 is a basal plane dislocation, 6 is a region X, and 7 is a region Y).
 第一の態様において主面がC面の場合には、ストライプ状に配列されている領域Xの長辺方向は特に限定されないが、m軸方向に伸びるものが好ましく、領域X内に存在する基底面転位もm軸方向に伸びているものが好ましい。領域Xの幅(短辺)も、特に限定されないが、通常10~500μm、好ましくは30~200μm、より好ましくは40~100μmである。また、領域Yの幅も特に限定されないが、通常100μm以上、200μm以上が好ましく、300μm以上がより好ましい。このようなIII族窒化物半導体結晶は、内部応力が適度に分散されて割れにくいとともに、基底面転位の少ない領域を充分に確保することができる。また、第一の態様において主面が非極性面又は半極性面の場合には、ストライプ状に配列されている領域Xの長辺方向は特に限定されないが、a軸方向に伸びるものが好ましく、領域X内に存在する基底面転位もa軸方向に伸びているものが好ましい。例えば、主面がM面の場合には、長辺方向をa軸方向に、短辺方向をc軸方向にすることができる。領域Xの幅(短辺)も、特に限定されないが、通常10~2000μm、好ましくは100~1000μm、より好ましくは200~750μmである。また、領域Yの幅も特に限定されないが、通常100μm以上、500μm以上が好ましく、1000μm以上がより好ましく、2000μm以上が特に好ましい。このようなIII族窒化物半導体結晶は、内部応力が適度に分散されて割れにくいとともに、基底面転位の少ない領域を充分に確保することができる。
 第二の態様において層状に配列されている領域Xは、1層であっても複数であっても特に限定されない。M面方向から見た領域Xの幅(層の厚み)は、特に限定されないが、通常1~1000μm、好ましくは10~900μm、より好ましくは50~800μmである。また、領域Yの幅(層の厚み)も特に限定されないが、通常10μm以上、20μm以上が好ましく、50μm以上がより好ましい。このようなIII族窒化物半導体結晶は、周期的に基底面転位を含んでいるため内部応力が適度に分散されており、基板切り出しを行う際に割れにくいので好ましい。
In the first embodiment, when the main surface is a C plane, the long side direction of the region X arranged in a stripe shape is not particularly limited, but preferably extends in the m-axis direction, and the base existing in the region X It is preferable that the plane dislocation also extends in the m-axis direction. The width (short side) of the region X is also not particularly limited, but is usually 10 to 500 μm, preferably 30 to 200 μm, more preferably 40 to 100 μm. Also, the width of the region Y is not particularly limited, but is usually preferably 100 μm or more, 200 μm or more, and more preferably 300 μm or more. In such a group III nitride semiconductor crystal, internal stress is moderately dispersed and it is difficult to break, and a region with few basal plane dislocations can be sufficiently secured. Further, in the first aspect, when the main surface is a nonpolar surface or a semipolar surface, the long side direction of the region X arranged in a stripe shape is not particularly limited, but those extending in the a-axis direction are preferable, The basal plane dislocation existing in the region X is also preferably extended in the a-axis direction. For example, when the main surface is the M plane, the long side direction can be the a-axis direction and the short side direction can be the c-axis direction. The width (short side) of the region X is also not particularly limited, but is usually 10 to 2000 μm, preferably 100 to 1000 μm, more preferably 200 to 750 μm. The width of the region Y is not particularly limited, but is usually preferably 100 μm or more and 500 μm or more, more preferably 1000 μm or more, and particularly preferably 2000 μm or more. In such a group III nitride semiconductor crystal, internal stress is moderately dispersed and it is difficult to break, and a region with few basal plane dislocations can be sufficiently secured.
The region X arranged in a layered manner in the second embodiment is not particularly limited, even if it is a single layer or a plurality of regions. The width of the region X (layer thickness) viewed from the M-plane direction is not particularly limited, but is usually 1 to 1000 μm, preferably 10 to 900 μm, more preferably 50 to 800 μm. Also, the width of the region Y (layer thickness) is not particularly limited, but is usually preferably 10 μm or more, 20 μm or more, and more preferably 50 μm or more. Such a group III nitride semiconductor crystal is preferable because it periodically includes basal plane dislocations, so that internal stress is moderately dispersed, and it is difficult to break when the substrate is cut out.
 本発明のIII族窒化物半導体結晶は、基底面転位密度が特定の範囲である領域(領域X及びY)を含むものであれば、その他の欠陥の密度、分布については特に限定されない。領域Yは半導体結晶として実用性の高い領域であるため、貫通転位(刃状転位、らせん転位)や面状欠陥等についても少ない、または無いことが好ましい。 The group III nitride semiconductor crystal of the present invention is not particularly limited in the density and distribution of other defects as long as it includes a region (region X and Y) in which the basal plane dislocation density is in a specific range. Since the region Y is a highly practical region as a semiconductor crystal, it is preferable that there are few or no threading dislocations (edge dislocations, screw dislocations) and planar defects.
 本発明のIII族窒化物半導体結晶は、基底面転位密度が特定の範囲である領域(領域X及びY)を含むものであるが、かかる領域の存在によって、結晶内の内部応力が緩和されていることを特徴とする。結晶内に残留する内部応力については、残留歪みによって把握することができ、残留歪みは例えば光弾性法による位相差で測定することができる。光弾性法による残留歪み量の測定は、以下の関係式(2)を利用して行われる(APPL.Phys.Lett.47(1985)pp.365-367参照)。残留歪み量は、半径方向の歪みSrと接線方向の歪みStとの差の絶対値|Sr-St|であるが、かかる値が位相差δの関数となるため、半導体結晶内の残留歪み分布を位相差δの分布で相対的に把握することができる。 The group III nitride semiconductor crystal of the present invention includes a region (region X and Y) in which the basal plane dislocation density is in a specific range, but the internal stress in the crystal is relaxed by the presence of such a region. It is characterized by. The internal stress remaining in the crystal can be grasped by the residual strain, and the residual strain can be measured by, for example, a phase difference by a photoelastic method. The measurement of the residual strain amount by the photoelastic method is performed using the following relational expression (2) (see APPL. Phys. Lett. 47 (1985) pp. 365-367). The residual strain amount is the absolute value | S r −S t | of the difference between the radial strain S r and the tangential strain S t, and this value is a function of the phase difference δ. Can be relatively grasped by the distribution of the phase difference δ.
Figure JPOXMLDOC01-appb-M000002
(λは測定に用いる光の波長、dは測定に用いる基板の厚さ、n0は屈折率、δは試料の複屈折によって生じる位相差、φは主振動方位角、P11、P12、P44は光弾性定数)
Figure JPOXMLDOC01-appb-M000002
(Λ is the wavelength of light used for measurement, d is the thickness of the substrate used for measurement, n 0 is the refractive index, δ is the phase difference caused by the birefringence of the sample, φ is the main vibration azimuth, P 11 , P 12 , P44 is photoelastic constant)
 本発明のIII族窒化物半導体結晶は、基底面転位密度が特定の範囲である領域(領域X及びY)を有するものであれば、残留歪み(内部応力)の具体的数値は特に限定されないが、例えば直径50mmの範囲のIII族窒化物半導体結晶において、光弾性法による位相差δの標準偏差が、0.1nm未満であることが好ましく、より好ましくは0.09nm未満である。上記範囲であると、加工成形時の割れが生じにくくなる。位相差分布としては、結晶の面内に位相差δの値が高い箇所、または低い箇所が局在していると、残留歪みも同様に結晶の特定の箇所に偏在する。よって、本発明のIII族窒化物半導体結晶では、位相差分布が面内で均一に分散していることが好ましい。
 また、別の例においては、III族窒化物半導体結晶の面内において約180μmの間隔で隣り合う2点の位相差δの差(Δδ)が0.05以上となる区間が10区間以上連続していることが好ましく、より好ましくは20区間以上である。
As long as the group III nitride semiconductor crystal of the present invention has a region (region X and Y) in which the basal plane dislocation density is in a specific range, the specific numerical value of residual strain (internal stress) is not particularly limited. For example, in a group III nitride semiconductor crystal having a diameter of 50 mm, the standard deviation of the phase difference δ by the photoelastic method is preferably less than 0.1 nm, more preferably less than 0.09 nm. When it is in the above range, cracks during processing and molding are less likely to occur. As the phase difference distribution, if a portion where the value of the phase difference δ is high or low is localized in the plane of the crystal, the residual strain is also unevenly distributed at a specific portion of the crystal. Therefore, in the group III nitride semiconductor crystal of the present invention, it is preferable that the phase difference distribution is uniformly dispersed in the plane.
In another example, in the plane of the group III nitride semiconductor crystal, there are 10 or more consecutive sections where the difference (Δδ) between two adjacent points at an interval of about 180 μm is 0.05 or more. It is preferable that there are more than 20 sections.
 本発明のIII族窒化物半導体結晶としては、窒化ガリウム、窒化アルミニウム、窒化インジウム、またはこれらの混晶等を挙げることができる。
 また、本発明のIII族窒化物半導体結晶の主面としては、+C面、-C面、M面、A面、または半極性面を挙げることができ、+C面、M面、または半極性面であることが好ましく、M面または半極性面であることが好ましい。
Examples of the group III nitride semiconductor crystal of the present invention include gallium nitride, aluminum nitride, indium nitride, and mixed crystals thereof.
The main surface of the group III nitride semiconductor crystal of the present invention includes a + C plane, a −C plane, an M plane, an A plane, or a semipolar plane, and a + C plane, an M plane, or a semipolar plane. It is preferable that it is an M plane or a semipolar plane.
 また、本発明のIII族窒化物半導体結晶は、結晶内キャリア濃度が1×1018cm-3以上であることが好ましく、1×1019cm-3であることがより好ましい。結晶内のキャリア濃度が高いと、結晶内の抵抗率が低く、導電性に優れた半導体結晶となる。上記結晶内のキャリア濃度は、van der Pauw法によるホール測定を用いて測定することができる。 In the group III nitride semiconductor crystal of the present invention, the carrier concentration in the crystal is preferably 1 × 10 18 cm −3 or more, and more preferably 1 × 10 19 cm −3 . When the carrier concentration in the crystal is high, the resistivity in the crystal is low and the semiconductor crystal is excellent in conductivity. The carrier concentration in the crystal can be measured using hole measurement by the van der Pauw method.
 本発明のIII族窒化物半導体結晶は、領域X及び領域Yを含有することで、主面の結晶面の反りを抑制したものとすることができる。具体的には、主面の結晶面の反りの曲率半径が通常3m以上、好ましくは3.5m以上、より好ましくは5m以上、さらに好ましくは10m以上である。上記範囲であると、基板として用いる場合に良好な品質を確保することができる。主面の結晶面の曲率半径としては、主面の結晶面と略平行ないずれかの結晶軸(例えば、c軸方向に成長させて得られたIII族窒化物半導体結晶においては、a軸及び/又はm軸)方向の曲率半径が上記範囲内であることが好ましい。ここで、曲率半径はX線回折測定などにより測定される結晶軸の傾きから、結晶面の反りを示すものとして公知の方法により算出することができる。
 ただし、基底面転位はc軸方向の歪み緩和への寄与は大きくないと考えられるため、本発明のIII族窒化物半導体結晶は、領域X及び領域Yを含有することで、a軸方向やm軸方向といったc軸方向以外の方向の反りが改善されている傾向がある。
The group III nitride semiconductor crystal of the present invention includes the region X and the region Y, so that the warpage of the crystal plane of the main surface can be suppressed. Specifically, the curvature radius of curvature of the crystal face of the main surface is usually 3 m or more, preferably 3.5 m or more, more preferably 5 m or more, and further preferably 10 m or more. When it is within the above range, good quality can be ensured when used as a substrate. As the radius of curvature of the crystal plane of the main surface, any crystal axis substantially parallel to the crystal plane of the main surface (for example, in a group III nitride semiconductor crystal obtained by growing in the c-axis direction, the a axis and (Or m-axis) direction radius of curvature is preferably within the above range. Here, the radius of curvature can be calculated from a tilt of the crystal axis measured by X-ray diffractometry or the like by a known method as an indication of the curvature of the crystal plane.
However, since the basal plane dislocation is not considered to contribute significantly to strain relaxation in the c-axis direction, the group III nitride semiconductor crystal of the present invention contains the region X and the region Y, so that the a-axis direction and m There is a tendency that warpage in a direction other than the c-axis direction such as the axial direction is improved.
 本発明のIII族窒化物半導体結晶は、基底面転位密度が特定の範囲である領域(領域X及びY)を有することを特徴とする。
 本発明者らは、例えば前記第一の態様において、ファセット成長により結晶面がコアレス(相会)する際に生じる応力を基底面転位が緩和する効果が有り、かかる効果によって結晶が割れにくくなることを明らかにした。また発明者等は、かかる基底面転位が、極性方向に自己歪みを有し、結晶育成時にその自己歪みの緩和のためのグライド運動することを明らかにした。例えば、ラインストライプ状に配列した下地基板上に結晶成長させる場合、コアレス(横方向成長による接合)する直前では基底面転位はランダムに生じるが、コアレス時には各々の結晶成長面の面方位の微細なズレ(オフ角)が歪みとなり、歪みがマスク上に沿うようにして基底面転位となって吸収される。またコアレスしていない領域においても、結晶内の残留応力が駆動力となって個々の基底面転位が最適な配置をとるためのグライド運動が生じる。
 さらに、本発明者らの検討によれば、前記第二の態様においては、成長温度等の急激な変化により、層状に基底面転位が発生すると推測される。このような、層状の基底面転位を発生させることで、厚み方向における応力が部分的に緩和されており、切り出す位置を適切に選択すれば、加工時の収率を高める事ができる。
The group III nitride semiconductor crystal of the present invention is characterized by having regions (regions X and Y) having a basal plane dislocation density in a specific range.
For example, in the first aspect, the present inventors have the effect that the basal plane dislocations relieve the stress generated when the crystal plane is coreless by facet growth, and this effect makes the crystal difficult to break. Was revealed. The inventors have also revealed that such basal plane dislocations have self-strain in the polar direction and perform a glide motion for relaxation of the self-strain during crystal growth. For example, when a crystal is grown on a base substrate arranged in a line stripe, basal plane dislocations occur randomly immediately before coreless (joining by lateral growth), but when coreless, the plane orientation of each crystal growth surface is fine. The deviation (off angle) becomes distortion, and the distortion is absorbed as basal plane dislocations along the mask. Even in a region where the core is not cored, the residual stress in the crystal becomes a driving force, and a glide motion is generated for optimal arrangement of the individual basal plane dislocations.
Furthermore, according to the study by the present inventors, in the second aspect, it is presumed that basal plane dislocations are generated in layers due to a rapid change in the growth temperature or the like. By generating such stratified basal plane dislocations, the stress in the thickness direction is partially relieved, and if the position to be cut out is appropriately selected, the yield during processing can be increased.
 本発明のIII族窒化物半導体結晶は、基底面転位密度が特定の範囲である領域(領域X及びY)を含むものであれば、その製造方法は特に限定されないが、例えば、以下に説明する方法に基づいて、本発明のIII族窒化物半導体結晶を好適に製造することができる。 The group III nitride semiconductor crystal of the present invention is not particularly limited in its production method as long as it includes a region (region X and Y) having a basal plane dislocation density in a specific range. Based on the method, the group III nitride semiconductor crystal of the present invention can be preferably produced.
 本発明のIII族窒化物半導体結晶の内、前記第一の態様である領域X及び領域Yがm軸に平行にストライプ状に配列されている半導体結晶を得るための方法について以下に具体的に説明する。
 例えば、以下の(A)、(B)又は(C)の方法を用いることによって、ストライプ状に配列されている半導体結晶を得ることができる。
(A)m軸に平行なストライプマスクを下地基板に設置し、c軸方向に半導体結晶をファセット成長させる方法(即ち、以下の工程を含む方法である)。
 (A1)下地基板にm軸平行なストライプマスクを形成させる工程。
 (A2)下地基板の露出部からc軸方向にファセット成長させる工程。
(B)(A)の方法によって得られるm軸に平行なライン状に基底面転位を集約したIII族窒化物半導体基板を下地基板として用いて、c軸方向に半導体結晶をファセット成長させる方法(即ち、以下の工程を含む方法である)。
 (B1)m軸に平行なライン状に基底面転位を集約したIII族窒化物半導体基板を準備する工程。
 (B2)前記III族窒化物半導体基板上に、半導体結晶をc軸方向にファセット成長させる工程。
(C)m軸に平行な溝を有する下地基板から、c軸方向に半導体結晶をファセット成長させる方法。
 (C1)m軸方向に延びる凹部からなる溝を複数加工し、溝底面にマスクを形成させる工程。
 (C2)溝の間に挟まれた凸部(テラス)の露出部からc軸方向にファセット成長させる工程。
 ここで、上述の(A)~(C)の方法において、半導体結晶をファセット成長させる場合の成長面は、M面から傾斜して現れるファセット面(M面ファセット)であることが好ましい。M面ファセットを形成しながら成長を行うことによって、基底面転位を効率よく特定の位置に集約させることができる。
A method for obtaining a semiconductor crystal in which the region X and the region Y according to the first embodiment are arranged in a stripe shape parallel to the m-axis in the group III nitride semiconductor crystal of the present invention will be specifically described below. explain.
For example, semiconductor crystals arranged in stripes can be obtained by using the following method (A), (B), or (C).
(A) A method in which a stripe mask parallel to the m-axis is placed on the base substrate, and a semiconductor crystal is facet grown in the c-axis direction (that is, a method including the following steps).
(A1) A step of forming a stripe mask parallel to the m-axis on the base substrate.
(A2) A step of performing facet growth in the c-axis direction from the exposed portion of the base substrate.
(B) A method in which a semiconductor crystal is facet grown in the c-axis direction using a group III nitride semiconductor substrate in which basal plane dislocations are aggregated in a line parallel to the m-axis obtained by the method of (A) as a base substrate ( That is, the method includes the following steps).
(B1) A step of preparing a group III nitride semiconductor substrate in which basal plane dislocations are aggregated in a line shape parallel to the m-axis.
(B2) A step of facet growing a semiconductor crystal in the c-axis direction on the group III nitride semiconductor substrate.
(C) A method in which a semiconductor crystal is facet grown in a c-axis direction from a base substrate having a groove parallel to the m-axis.
(C1) A step of processing a plurality of grooves including recesses extending in the m-axis direction and forming a mask on the groove bottom surface.
(C2) A step of facet growing in the c-axis direction from the exposed portion of the convex portion (terrace) sandwiched between the grooves.
Here, in the above-described methods (A) to (C), it is preferable that the growth surface in the case where the semiconductor crystal is facet grown is a facet surface (M-plane facet) appearing inclined from the M-plane. By performing growth while forming M-plane facets, basal plane dislocations can be efficiently aggregated at specific positions.
 (A)、(B)又は(C)の方法から本発明の半導体結晶を得る原理について、図3を参照して説明する。8が成長の起点となる成長領域、9が基底面転位が集約して発生する領域(領域X)、10が成長する結晶である。10の結晶がM面ファセットを維持しながらc軸方向にファセット成長を続けることにより、それぞれの結晶の成長面が9の領域に侵入し、隣接する結晶の成長面(M面ファセット)同士が角度をもって衝突する。
 そこで、本発明者らは、隣り合う結晶の成長面が9の領域のおよそ中間で衝突する場合、次のような淘汰過程をとることを見出した。a軸方向に成長した結晶同士が衝突する場合には、基底面転位は発生しにくいが、結晶学的方位が異なる成長結晶同士の衝突の場合には、コアレス時の各々の結晶成長面の面方位の微細なズレ(オフ角)が歪みとなり、歪みがマスク上に沿う様にして基底面転位となってm軸方向へ吸収されると推察できる。即ち、m軸平行なストライプ状の領域X(基底面転位もm軸に平行)を有する半導体結晶を得るためには、ストライプマスクやライン上に基底面転位が発生することを利用して、m軸に平行な成長領域及び基底面転位の発生領域を意図的に設定し、M面のファセットが生じるようにファセット成長をさせることによって可能となる(ストライプマスク上が基底面転位の発生領域)。M面ファセットを形成する方法も特に限定されないが、温度や原料の供給速度、供給量、III族原料と窒素原料の供給量比(V/III比)等が挙げられる。例えば、成長初期に本成長よりも低い温度で初期成長させることで、M面ファセットが形成されやすい傾向がある。その他の成長条件についても同様に、M面ファセットを形成できれば手段はこの限りではない。
The principle of obtaining the semiconductor crystal of the present invention from the method (A), (B) or (C) will be described with reference to FIG. 8 is a growth region from which growth starts, 9 is a region in which basal plane dislocations are aggregated (region X), and 10 is a crystal in which growth occurs. By continuing facet growth in the c-axis direction while 10 crystals maintain the M-plane facet, the growth surface of each crystal enters the region 9 and the growth planes of adjacent crystals (M-plane facets) are angled. Collide with.
Accordingly, the present inventors have found that when the growth planes of adjacent crystals collide approximately in the middle of the nine regions, the following drought process is taken. When crystals grown in the a-axis direction collide, basal plane dislocations are unlikely to occur, but in the case of collisions between grown crystals having different crystallographic orientations, the surface of each crystal growth surface at the time of coreless It can be inferred that a minute misalignment (off angle) of the orientation becomes a distortion, and the distortion is absorbed in the m-axis direction as a basal plane dislocation along the mask. That is, in order to obtain a semiconductor crystal having a stripe region X parallel to the m-axis (basal plane dislocations are also parallel to the m-axis), the occurrence of basal plane dislocations on the stripe mask or line is utilized. This is made possible by intentionally setting a growth region parallel to the axis and a basal plane dislocation generation region and performing facet growth so that an M-plane facet is generated (the basal plane dislocation generation region on the stripe mask). A method for forming the M-plane facet is not particularly limited, and examples thereof include a temperature, a supply rate of the raw material, a supply amount, and a supply amount ratio (V / III ratio) between the group III raw material and the nitrogen raw material. For example, an M-plane facet tends to be easily formed by performing initial growth at a temperature lower than that of main growth in the initial stage of growth. Similarly, with respect to other growth conditions, the means is not limited to this as long as an M-plane facet can be formed.
 本発明のIII族窒化物半導体結晶の内、前記第二の態様である領域X及び領域Yが成長方向におおよそ垂直な層状に配列されている半導体結晶を得るための方法について以下に具体的に説明する。
 c軸方向への成長にてIII族窒化物半導体結晶を得ようとする場合、例えば、成長用の下地基板として、サファイア等の異種基板にMOCVDで窒化ガリウムを15μm程度成長したテンプレート基板を用い、結晶成長条件を周期的に変更しながらC面を露出させて半導体結晶を成長させる方法が挙げられる。これにより基底面転位を層状に発生させる事ができ、異種基板との歪みによる応力を結晶外へ逃がすことができる。
Regarding the group III nitride semiconductor crystal of the present invention, the method for obtaining the semiconductor crystal in which the region X and the region Y according to the second embodiment are arranged in a layer shape approximately perpendicular to the growth direction will be specifically described below. explain.
When obtaining a group III nitride semiconductor crystal by growth in the c-axis direction, for example, as a base substrate for growth, a template substrate in which gallium nitride is grown by MOCVD on a heterogeneous substrate such as sapphire by about 15 μm is used. There is a method of growing a semiconductor crystal by exposing the C plane while periodically changing the crystal growth conditions. As a result, basal plane dislocations can be generated in a layered manner, and stress due to distortion with a different substrate can be released out of the crystal.
 周期的に変更させる成長条件としては、温度や原料の供給速度、供給量、III族原料と窒素原料の供給量比(V/III比)等が挙げられる。例えば、成長温度を下げると基底面転位が集約して発生しやすい傾向がある。その他の成長条件についても同様に、基底面転位を周期的に集約して発生させることができれば、手段はこの限りではない。
 半導体結晶の好ましい成長厚みとしては、基板を取り出すことが可能な厚みであれば、特に制限されるものではないが、1mm以上であることが好ましい。切り出す位置については、基底面転位が層状に発生した箇所を含むことが好ましく、成長速度と成長条件によって定めることができる。
Examples of the growth conditions that are periodically changed include the temperature, the supply rate of the raw material, the supply amount, and the supply amount ratio (V / III ratio) of the group III raw material and the nitrogen raw material. For example, when the growth temperature is lowered, basal plane dislocations tend to be concentrated and easily generated. Similarly, as long as basal plane dislocations can be generated periodically and aggregated for other growth conditions, the means is not limited to this.
The preferred growth thickness of the semiconductor crystal is not particularly limited as long as it allows the substrate to be taken out, but it is preferably 1 mm or more. The position to be cut out preferably includes a portion where basal plane dislocations are generated in a layered manner, and can be determined by the growth rate and growth conditions.
 本発明のIII族窒化物半導体結晶を得るための結晶成長方法は特に限定されない。具体的には
1.ハイドライド気相成長法(HVPE法)
2.有機金属化学蒸着法(MOCVD法)
3.有機金属塩化物気相成長法(MOC法)
4.昇華法
等の公知の気相成長方法を適宜採用することができる。この内、HVPE法またはMOCVD法が好ましく、HVPE法が特に好ましい。
The crystal growth method for obtaining the group III nitride semiconductor crystal of the present invention is not particularly limited. Specifically, Hydride vapor phase epitaxy (HVPE method)
2. Metalorganic chemical vapor deposition (MOCVD)
3. Organometallic chloride vapor phase growth method (MOC method)
4). A known vapor phase growth method such as a sublimation method can be appropriately employed. Among these, the HVPE method or the MOCVD method is preferable, and the HVPE method is particularly preferable.
 結晶成長方法は、ホモエピタキシャル成長であっても、ヘテロエピタキシャル成長であってもよく、具体的な下地基板としてはシリコン、サファイア、ガリウム砒素、窒化ガリウム、窒化アルミニウム、酸化亜鉛等を挙げることができる。この内、窒化ガリウムが特に好ましい。 The crystal growth method may be homoepitaxial growth or heteroepitaxial growth, and specific examples of the underlying substrate include silicon, sapphire, gallium arsenide, gallium nitride, aluminum nitride, and zinc oxide. Of these, gallium nitride is particularly preferred.
 マスクを利用して本発明のIII族窒化物半導体結晶を得る場合、そのマスクパターンは特に限定されず、ドット状又はストライプ状等の何れも利用することができる。領域Xがストライプ状に配列されているIII族窒化物半導体結晶を得る場合、ストライプマスクを利用することが好ましい。ストライプマスクのピッチは、通常100μm~3000μm、好ましくは200μm~2000μm、さらに好ましくは300μm~1000μmである。 When the group III nitride semiconductor crystal of the present invention is obtained using a mask, the mask pattern is not particularly limited, and either a dot shape or a stripe shape can be used. When obtaining a group III nitride semiconductor crystal in which the regions X are arranged in stripes, it is preferable to use a stripe mask. The pitch of the stripe mask is usually 100 μm to 3000 μm, preferably 200 μm to 2000 μm, more preferably 300 μm to 1000 μm.
 マスクの形成方法も特に限定されず、スパッタリング法、CVD法(好ましくはプラズマCVD法)、真空蒸着法等の公知の方法を適宜採用してマスク層を形成した後、公知のフォトリソグラフィ法によって、パターニング、及びエッチングし、所望の形状のマスクを形成することができる。マスク材料も特に限定されず、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化タンタル、酸化ジルコニウム、酸化ハフニウム等を利用することができる。 The method for forming the mask is not particularly limited, and a mask layer is formed by appropriately adopting a known method such as a sputtering method, a CVD method (preferably a plasma CVD method), a vacuum deposition method, and the like, and then by a known photolithography method. Patterning and etching can be performed to form a mask having a desired shape. The mask material is not particularly limited, and silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, tantalum oxide, zirconium oxide, hafnium oxide, or the like can be used.
 m軸に平行なストライプマスクを形成した下地基板や、m軸に平行な溝を有する下地基板を利用して本発明のIII族窒化物半導体結晶を得る場合、その製造方法も特に限定されないが、例えば以下の(1)や(2)の操作によって得ることができる。
(1)下地基板の主面に結晶成長を阻害するマスクを成膜する。該マスクの材料としては酸化珪素、窒化珪素等を用いることができる。このマスクにプライマーとしてヘキサメチルジシラザンを塗布し、続いてフォトレジストを塗布する。任意の図面を持つフォトマスクを介し露光、現像することにより、フォトレジストのパターニングを行う。続いて、バッファードフッ酸(NH4HF2)により、ウェットエッチングを行い、フォトレジストのパターンが無い部分のマスクをエッチングで取り除く。これで下地基板の主面のマスクがパターニングされる。
(2)下地基板の一方主面に凹部と凸部を設けて、m軸に平行な溝を有する下地基板を製造するためには、先ず主面に窒化珪素や酸化珪素のようなマスクを用いて上記(1)と同様にマスクパターンを作製する。マスクがパターニングされた下地基板に誘導結合型反応性エッチングにて、マスク膜が無い開口に溝を設けることにより、下地基板主面にm軸に平行なパターンで凹凸を形成することができる。このエッチング量を多くすることにより、溝を深くした下地基板を作製することができる。半導体単結晶をエピタキシャル成長させる際の成長条件をファセット成長を促進する条件とすれば、該下地基板上にm軸に平行なライン状に基底面転位を集約した半導体結晶を作製できる。
 また、溝の底面や側壁に窒化珪素や酸化珪素等のマスク膜を形成すると、より簡単に、領域Xがm軸に平行にストライプ状に配列されている半導体結晶が得られる。溝の底面や側壁のみにマスク膜を形成する方法としては、リフトオフ法や、フォトレジストを用いたセルフアライン法、あるいは、パターンニング等により保護層を形成した後にドライエッチングやウェットエッチングを行う方法等が挙げられる。
When the group III nitride semiconductor crystal of the present invention is obtained using a base substrate on which a stripe mask parallel to the m-axis is formed or a base substrate having a groove parallel to the m-axis, its manufacturing method is not particularly limited, For example, it can be obtained by the following operations (1) and (2).
(1) A mask that inhibits crystal growth is formed on the main surface of the base substrate. As the material for the mask, silicon oxide, silicon nitride, or the like can be used. Hexamethyldisilazane is applied as a primer to this mask, and then a photoresist is applied. The photoresist is patterned by exposing and developing through a photomask having an arbitrary drawing. Subsequently, wet etching is performed with buffered hydrofluoric acid (NH 4 HF 2 ), and a portion of the mask having no photoresist pattern is removed by etching. Thus, the mask on the main surface of the base substrate is patterned.
(2) In order to manufacture a base substrate having a groove parallel to the m-axis by providing a concave portion and a convex portion on one main surface of the base substrate, a mask such as silicon nitride or silicon oxide is first used on the main surface. Then, a mask pattern is prepared in the same manner as in the above (1). By providing the groove in the opening without the mask film by inductive coupling type reactive etching on the base substrate on which the mask is patterned, it is possible to form irregularities in a pattern parallel to the m-axis on the base substrate main surface. By increasing the etching amount, a base substrate with deep grooves can be manufactured. If the growth conditions for epitaxially growing a semiconductor single crystal are conditions for promoting facet growth, a semiconductor crystal in which basal plane dislocations are aggregated in a line shape parallel to the m-axis can be produced on the underlying substrate.
Further, when a mask film such as silicon nitride or silicon oxide is formed on the bottom or side wall of the groove, a semiconductor crystal in which the regions X are arranged in stripes parallel to the m-axis can be obtained more easily. As a method of forming a mask film only on the bottom and side walls of the groove, a lift-off method, a self-alignment method using a photoresist, a method of performing dry etching or wet etching after forming a protective layer by patterning, etc. Is mentioned.
 前述した気相成長法について、特にHVPE法を採用した場合の製造装置及び製造条件を以下に記載する。
 図4には、HVPE法を採用した製造方法に用いられる製造装置の概念図を示す。図4に図示したHVPE装置は、リアクター100内に、サセプター107と、成長させるIII族窒化物半導体結晶の原料を入れるリザーバー105とを備えている。また、リアクター100内にガスを導入するための導入管101~104と、排気するための排気管108が設置されている。さらに、リアクター100を側面から加熱するためのヒーター106が設置されている。
About the vapor phase growth method mentioned above, the manufacturing apparatus and manufacturing conditions at the time of employ | adopting especially HVPE method are described below.
In FIG. 4, the conceptual diagram of the manufacturing apparatus used for the manufacturing method which employ | adopted HVPE method is shown. The HVPE apparatus shown in FIG. 4 includes a susceptor 107 and a reservoir 105 for storing a raw material of a group III nitride semiconductor crystal to be grown in a reactor 100. In addition, introduction pipes 101 to 104 for introducing gas into the reactor 100 and an exhaust pipe 108 for exhausting are installed. Further, a heater 106 for heating the reactor 100 from the side surface is installed.
 リアクター100の材質としては、石英、焼結体窒化ホウ素、ステンレス等を用いることができるが、好ましい材質は石英である。リアクター100内には、反応開始前にあらかじめ雰囲気ガスを充填しておく。雰囲気ガス(キャリアガス)としては、例えば、水素、窒素、He、Ne、Arのような不活性ガス等を挙げることができる。これらのガスは1種のみで用いてもよく、混合して用いてもよい。 As a material of the reactor 100, quartz, sintered boron nitride, stainless steel, or the like can be used, but a preferable material is quartz. The reactor 100 is filled with atmospheric gas in advance before starting the reaction. Examples of the atmospheric gas (carrier gas) include inert gases such as hydrogen, nitrogen, He, Ne, and Ar. These gases may be used alone or in combination.
 サセプター107の材質としてはカーボンが好ましく、SiCで表面をコーティングしているものがより好ましい。サセプター107の形状は、特に制限されないが、結晶成長する際に結晶成長面付近に構造物が存在しないものであることが好ましい。結晶成長面付近に成長する可能性のある構造物が存在すると、そこに多結晶体が付着し、その生成物としてHClガスが発生して、結晶成長させようとしている結晶に悪影響が出る場合がある。 The material of the susceptor 107 is preferably carbon, and more preferably one whose surface is coated with SiC. The shape of the susceptor 107 is not particularly limited, but it is preferable that the structure does not exist in the vicinity of the crystal growth surface during crystal growth. If there is a structure that can grow near the crystal growth surface, polycrystals adhere to the structure, and HCl gas is generated as the product, which may adversely affect the crystal to be grown. is there.
 リザーバー105には、成長させるIII窒化物半導体の原料を入れる。III族源となる原料として、Ga、Al、Inなどを挙げることができる。リザーバー105にガスを導入するための導入管103からは、リザーバー105に入れた原料と反応するガスを供給する。例えば、リザーバー105にIII族源となる原料を入れた場合は、導入管103からHClガスを供給することができる。このとき、HClガスとともに、導入管103からキャリアガスを供給してもよい。キャリアガスとしては、例えば水素、窒素、He、Ne、Arのような不活性ガス等を挙げることができる。これらのガスは1種のみで用いてもよく、混合して用いてもよい。 The raw material of the III nitride semiconductor to be grown is put in the reservoir 105. Ga, Al, In, etc. can be mentioned as a raw material used as a group III source. A gas that reacts with the raw material put in the reservoir 105 is supplied from an introduction pipe 103 for introducing the gas into the reservoir 105. For example, when a raw material that is a group III source is put in the reservoir 105, HCl gas can be supplied from the introduction pipe 103. At this time, the carrier gas may be supplied from the introduction pipe 103 together with the HCl gas. Examples of the carrier gas include hydrogen, nitrogen, an inert gas such as He, Ne, and Ar. These gases may be used alone or in combination.
 導入管104からは、窒素源となる原料ガスを供給する。通常はNH3を供給する。また、導入管101からは、キャリアガスを供給する。キャリアガスとしては、導入管104から供給するキャリアガスと同じものを例示することができる。このキャリアガスは原料ガスノズルを分離し、ノズル先端にポリ結晶が付着することを防ぐ効果もある。また、導入管102からは、ドーパントガスを供給することもできる。例えば、酸素、水、SiH4、SiH2Cl2、H2S等のn型のドーパントガスを供給することができる。 From the introduction pipe 104, a source gas serving as a nitrogen source is supplied. Usually, NH 3 is supplied. A carrier gas is supplied from the introduction pipe 101. As the carrier gas, the same carrier gas supplied from the introduction pipe 104 can be exemplified. This carrier gas also has an effect of separating the source gas nozzle and preventing the polycrystal from adhering to the nozzle tip. A dopant gas can also be supplied from the introduction pipe 102. For example, an n-type dopant gas such as oxygen, water, SiH 4 , SiH 2 Cl 2 , or H 2 S can be supplied.
 導入管101~104から供給する上記ガスは、それぞれ互いに入れ替えて別の導入管から供給しても構わない。また、窒素源となる原料ガスとキャリアガスは、同じ導入管から混合して供給してもよい。さらに他の導入管からキャリアガスを混合してもよい。これらの供給態様は、リアクター100の大きさや形状、原料の反応性、目的とする結晶成長速度などに応じて、適宜決定することができる。 The above gases supplied from the introduction pipes 101 to 104 may be exchanged with each other and supplied from different introduction pipes. In addition, the source gas and the carrier gas serving as a nitrogen source may be mixed and supplied from the same introduction pipe. Further, a carrier gas may be mixed from another introduction pipe. These supply modes can be appropriately determined according to the size and shape of the reactor 100, the reactivity of the raw materials, the target crystal growth rate, and the like.
 ガス排気管108は、リアクター内壁の上面、底面、側面に設置することができる。ゴミ落ちの観点から結晶成長端よりも下部にあることが好ましく、図4のようにリアクター底面にガス排気管108が設置されていることがより好ましい。 The gas exhaust pipe 108 can be installed on the top, bottom and side surfaces of the reactor inner wall. From the viewpoint of dust removal, it is preferably located below the crystal growth end, and more preferably a gas exhaust pipe 108 is installed on the bottom of the reactor as shown in FIG.
 結晶成長の温度条件は、特に限定されないが、通常は800℃~1200℃、850℃~1150℃が好ましく、900℃~1100℃がより好ましく、970℃~1040℃がさらに好ましい。
 リアクター内の圧力は、特に限定されないが、50kPa~120kPaが好ましく、特に常圧が好ましい。
The temperature conditions for crystal growth are not particularly limited, but are usually preferably 800 ° C. to 1200 ° C., 850 ° C. to 1150 ° C., more preferably 900 ° C. to 1100 ° C., and even more preferably 970 ° C. to 1040 ° C.
The pressure in the reactor is not particularly limited, but is preferably 50 kPa to 120 kPa, and particularly preferably atmospheric pressure.
 また、結晶成長の成長速度は、成長方法、成長温度、原料ガス供給量、結晶成長面方位等により異なるが、一般的には5μm/h~500μm/hの範囲であり、10μm/h以上が好ましく、50μm/h以上がより好ましく、70μm以上であることがさらに好ましく、140μm/h以上が特に好ましい。成長速度は、キャリアガスの種類、流量、供給口-結晶成長端距離等を適宜設定することによって制御することができる。
 前記第二の態様の半導体結晶を得る場合は、上記の記載の項目を、周期的に変化させることが好ましい。周期的に変化させる項目は、1種類でも複数の組み合わせで行う事も出来る。特に、成長温度、窒素源とIII族の比率、キャリアガスの種類、を単独または組み合わせて変化させることが好ましい。
 また、主面が非極性面(M面・A面)や半極性面の結晶を得る方法としては、上述の方法と同様の方法を採用することができる。なお、主面が大面積の結晶を得るために、複数の種結晶を配列したものを下地基板として用いてもよい。領域X及びYを得る手段についても上述の方法と同様の方法を採用することができる。複数の種結晶を配列したものを下地基板として用いた場合には、種結晶同士の接合部分の直上に成長した結晶部分に、基底面転位を集約して発生させてもよい。
The growth rate of crystal growth varies depending on the growth method, growth temperature, raw material gas supply amount, crystal growth surface orientation, etc., but is generally in the range of 5 μm / h to 500 μm / h, and is 10 μm / h or more. Preferably, 50 μm / h or more is more preferable, 70 μm or more is further preferable, and 140 μm / h or more is particularly preferable. The growth rate can be controlled by appropriately setting the type, flow rate, supply port-crystal growth end distance, etc. of the carrier gas.
When obtaining the semiconductor crystal of the second aspect, it is preferable to periodically change the items described above. The items to be changed periodically can be one type or a plurality of combinations. In particular, it is preferable to change the growth temperature, the ratio of nitrogen source to group III, and the type of carrier gas, alone or in combination.
In addition, as a method for obtaining a crystal whose main surface is a nonpolar plane (M plane / A plane) or a semipolar plane, the same method as described above can be employed. In addition, in order to obtain a crystal having a large area on the main surface, a plurality of seed crystals arranged may be used as a base substrate. For the means for obtaining the regions X and Y, the same method as described above can be adopted. When an array of a plurality of seed crystals is used as the base substrate, basal plane dislocations may be aggregated and generated in the crystal portion grown immediately above the junction between the seed crystals.
 本発明のIII族窒化物半導体結晶を得るため製造方法には、以下に説明する成型加工工程(分離工程及び研磨工程)が含まれていてもよい。分離工程とは、成長したIII族窒化物半導体を下地基板から分離する工程であり、具体的にはカッティング操作、スライス操作が挙げられる。特にスライス操作が好ましい。また、III族窒化物半導体は種結晶表面からの貫通転位を多く含んでいる部分が存在するため、かかる部分を取り除くことが好ましく、前述のカッティング操作やスライス操作を利用することができる。スライス操作としては、例えば、ワイヤースライス、内周刃スライス等が挙げられる、いずれでもよい。 The production method for obtaining the group III nitride semiconductor crystal of the present invention may include a molding process (separation process and polishing process) described below. The separation step is a step of separating the grown group III nitride semiconductor from the base substrate, and specifically includes a cutting operation and a slicing operation. A slicing operation is particularly preferable. In addition, since a group III nitride semiconductor includes a part containing many threading dislocations from the seed crystal surface, it is preferable to remove the part, and the above-described cutting operation and slicing operation can be used. Examples of the slicing operation include wire slicing and inner peripheral edge slicing.
 分離工程を経た結晶の表面は、大きな凹凸が存在するため(スライス刃等の影響による)、結晶を半導体基板として使用するためには研磨工程が必要となる。具体的な研磨工程としては、ダイヤモンドスラリーでのラッピングし、CMPを行うことが好ましい。 Since the surface of the crystal that has undergone the separation process has large irregularities (due to the influence of a slicing blade or the like), a polishing process is required to use the crystal as a semiconductor substrate. As a specific polishing step, it is preferable to wrap with diamond slurry and perform CMP.
 本発明に係るIII族窒化物半導体結晶は、さまざまな用途に用いることができる。特に、紫外、青色又は緑色等の発光ダイオード、半導体レーザー等の比較的短波長側の発光素子や、電子デバイス等の半導体デバイスの基板として有用である。 The group III nitride semiconductor crystal according to the present invention can be used for various applications. In particular, it is useful as a substrate for semiconductor devices such as light emitting diodes of ultraviolet, blue or green, etc., light emitting elements having relatively short wavelengths such as semiconductor lasers, and electronic devices.
 以下、実施例と比較例を挙げて、本発明を更に詳細に説明するが、以下の実施例に示す具体的な形態にのみに限定的に解釈されることはない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to the specific modes shown in the following examples.
<実施例1>
(1)下地基板として、単結晶窒化ガリウム(GaN)基板を準備した。この単結晶GaN基板は、厚さ400μm、直径50mmの円盤状で、表面が{0001}面(C面)の自立基板である。
(2)GaN自立基板の表面に、プラズマCVD法により、SiO2膜を約0.1μm堆積させた。このSiO2膜付きGaN自立基板に、アセトンおよびメタノールの溶媒中で、それぞれ10分間の超音波洗浄を行い、純水で5分間リンスした。
(3)洗浄後のGaN自立基板の表面にプライマーとしてヘキサメチルジシラザン(HMDS:東京応化工業(株)製「OAP」)を塗布した。先ず1000rpmで7秒間、次に4000rpmで30秒間、スピナーで均一にした後、70℃で5分間ベーキングを行った。これはSiO2膜と後述のレジストの密着性を向上させるために必要な工程である。
(4)前述のHMDS上にポジ型レジストを塗布し、前述のOAP塗布と同様の手順でスピナーにより均一にした後、90℃で30分間のプリベーキングを行った。プリベーキングはレジストを定着させるための工程である。なお、用いたポジ型レジストは、東京応化工業(株)製「OFPR-800」である。
(5)露光用Crマスクを用いてレジストの露光を行った。このCrマスクのパターンには、ライン(Mask)/スペース(Window)が50μm/400μmのストライプ状パターンが形成されており、下地基板であるGaN自立基板の表面に、ストライプ方向が<1-100>(m軸と平行)となるようにCrマスクをセットして露光を行った。露光時間は8秒とし、露光後に120℃で30分間のポストベーキングを行った。
(6)露光後のGaN自立基板をポジ型レジスト用現像液(東京応化工業(株)製「NMD-3」)に30秒間浸し、露光部分のレジストおよびHMDSを除去した。その後、純水で約30秒間リンスした。
(7)濃度22%のバッファードフッ酸(NH4HF2)により、SiO2のウェットエッチングを行った。エッチング時間は5分20秒である。その後、アセトン溶媒中で超音波洗浄を行い、残存レジストおよびHMDSを溶解除去した。
(8)上記工程を経た下地基板を、HVPE装置サセプター上の基板ホルダーに、+C面を上向きにして設置した。この時-C面は基板ホルダーに接しており、直接原料ガスと触れることはない。
(9)反応室の温度を970℃に上げ、原料を下地基板の+C面方向から供給することにより、初期成長を15分間成長した。
(10)反応室の温度を1005℃まで上げ、原料を下地基板の+C面方向から供給することにより、OドープしたGaNを成長させた。ここで、Oドープはファセット成長によって実現している。この成長工程においては成長圧力を1.01×105Paとし、NH3ガスの分圧を8.13×103Pa、N2ガスの分圧を1.17×104Pa、GaClガスの分圧を7.00×102Pa、H2ガスの分圧を8.04×104Paとし、原料を導入管より導入した。
(11)60時間成長した後、室温まで降温した。
(12)得られた窒化ガリウム単結晶の形状は表面がラインのファセット成長が維持された凹凸を有する円状であり、C軸方向の膜厚が約6.3mmであった。主面(C面)の面積は、57mmの下地基板を使用した結果、有効径が50mmになり、1963mm2であった。
(13)得られた窒化ガリウム単結晶について、外周加工で円盤状に形状加工した後、C面が主面の板状となるようにスライスを行い、蛍光顕微鏡観察およびSEM-CL観察に適した表面状態になるまで研磨処理を行って、窒化ガリウム半導体結晶基板1を得た。次に、窒化ガリウム半導体結晶基板1の曲率半径を測定した。曲率半径はX線回折測定などにより測定される結晶軸の傾きから、結晶面の反りを示すものとして公知の方法により算出することができる。+C面の曲率半径をX線回折測定装置にて測定したところ、ラインと平行方向、すなわちm軸に平行な方向の曲率半径は10.3mであり、a軸に平行な方向の曲率半径は3.0mであった。
(14)窒化ガリウム半導体結晶基板1について、日本電子社製JSM-7000走査形電子顕微鏡とOXFORD社製カソードルミネッセンス検出器を用いて、基底面転位の分布をSEM-CL観察した。カソードルミネッセンス走査形電子顕微鏡の加速電圧は3.0kVに調整した。この加速電圧によりサンプル表面から0.08μm深い領域までの情報が検出される。
<Example 1>
(1) A single crystal gallium nitride (GaN) substrate was prepared as a base substrate. This single crystal GaN substrate is a self-standing substrate having a disk shape with a thickness of 400 μm and a diameter of 50 mm, and having a {0001} plane (C plane).
(2) About 0.1 μm of SiO 2 film was deposited on the surface of the GaN free-standing substrate by plasma CVD. This GaN free-standing substrate with SiO 2 film was subjected to ultrasonic cleaning for 10 minutes in each of acetone and methanol, and rinsed with pure water for 5 minutes.
(3) Hexamethyldisilazane (HMDS: “OAP” manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to the surface of the cleaned GaN free-standing substrate as a primer. First, it was homogenized with a spinner at 1000 rpm for 7 seconds, then at 4000 rpm for 30 seconds, and then baked at 70 ° C. for 5 minutes. This is a process necessary for improving the adhesion between the SiO 2 film and the resist described later.
(4) A positive resist was applied on the above-mentioned HMDS, and was made uniform by a spinner in the same procedure as the above-mentioned OAP application, and then prebaked at 90 ° C. for 30 minutes. Pre-baking is a process for fixing the resist. The positive resist used is “OFPR-800” manufactured by Tokyo Ohka Kogyo Co., Ltd.
(5) The resist was exposed using a Cr mask for exposure. In this Cr mask pattern, a stripe pattern having a line (Mask) / space (Window) of 50 μm / 400 μm is formed, and the stripe direction is <1-100> on the surface of the GaN free-standing substrate as the base substrate. Exposure was performed with a Cr mask set so as to be parallel to the m-axis. The exposure time was 8 seconds, and post-baking was performed at 120 ° C. for 30 minutes after exposure.
(6) The exposed GaN free-standing substrate was immersed in a positive resist developer (“NMD-3” manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 30 seconds to remove the exposed portion of the resist and HMDS. Then, it rinsed with pure water for about 30 seconds.
(7) Wet etching of SiO 2 was performed with buffered hydrofluoric acid (NH 4 HF 2 ) with a concentration of 22%. The etching time is 5 minutes and 20 seconds. Thereafter, ultrasonic cleaning was performed in an acetone solvent to dissolve and remove the remaining resist and HMDS.
(8) The base substrate having undergone the above steps was placed on the substrate holder on the HVPE device susceptor with the + C surface facing upward. At this time, the -C surface is in contact with the substrate holder and does not come into direct contact with the source gas.
(9) The temperature of the reaction chamber was raised to 970 ° C., and the raw material was supplied from the + C plane direction of the base substrate to grow the initial growth for 15 minutes.
(10) O-doped GaN was grown by raising the temperature of the reaction chamber to 1005 ° C. and supplying the raw material from the + C plane direction of the base substrate. Here, O-doping is realized by facet growth. In this growth step, the growth pressure is set to 1.01 × 10 5 Pa, the partial pressure of NH 3 gas is 8.13 × 10 3 Pa, the partial pressure of N 2 gas is 1.17 × 10 4 Pa, GaCl gas The partial pressure was 7.00 × 10 2 Pa, the partial pressure of H 2 gas was 8.04 × 10 4 Pa, and the raw material was introduced from the introduction tube.
(11) After growing for 60 hours, the temperature was lowered to room temperature.
(12) The shape of the obtained gallium nitride single crystal was a circular shape with irregularities whose surface maintained the facet growth of the line, and the film thickness in the C-axis direction was about 6.3 mm. The area of the main surface (C surface) was 1963 mm 2 as an effective diameter of 50 mm as a result of using a 57 mm base substrate.
(13) The obtained gallium nitride single crystal was processed into a disk shape by outer peripheral processing, and then sliced so that the C-plane became a plate shape of the main surface, which was suitable for fluorescence microscope observation and SEM-CL observation Polishing was performed until the surface state was obtained, and the gallium nitride semiconductor crystal substrate 1 was obtained. Next, the radius of curvature of the gallium nitride semiconductor crystal substrate 1 was measured. The radius of curvature can be calculated by a well-known method from the inclination of the crystal axis measured by X-ray diffraction measurement or the like as an indication of the curvature of the crystal plane. When the radius of curvature of the + C plane was measured with an X-ray diffractometer, the radius of curvature in the direction parallel to the line, that is, the direction parallel to the m-axis was 10.3 m, and the radius of curvature in the direction parallel to the a-axis was 3 0.0 m.
(14) The basal plane dislocation distribution of the gallium nitride semiconductor crystal substrate 1 was observed by SEM-CL using a JSM-7000 scanning electron microscope manufactured by JEOL Ltd. and a cathodoluminescence detector manufactured by OXFORD. The acceleration voltage of the cathodoluminescence scanning electron microscope was adjusted to 3.0 kV. Information from the sample surface to a depth of 0.08 μm is detected by this acceleration voltage.
 SEM-CL像を図5a、図5bに示す。図5aは結晶のC面側から観察した像であり、黒い線状のものが基底面転位である。これより、転位線の長さが3μm以上である基底面転位が、m軸に平行なライン状に集約していることが確認できた。図5bは結晶のM面側から観察した像であり、黒い点状のものが基底面転位である。基底面転位が黒点として認識可能な倍率で観察したSEM-CL像から、特に基底面転位の多い領域(領域X)及び基底面転位の少ない領域(領域Y)を選定し、基底面転位密度ρを算出した。結果を表1に示す。
 また、前記領域Xについて検討したところ、80μm×80μmの部位から算出した転位密度値と、かかる部位の1/4の面積に当たる40μm×40μmの部位を任意に抽出して、そこから算出した転位密度値とが1.5倍差以内である領域X’を有することが確認された。
 さらに、SEM-CL像から、窒化ガリウム半導体結晶基板1中には領域Xが11%、領域Yが89%含まれていることが確認された。
 また、SEM-CL像等から、窒化ガリウム半導体結晶基板1中には領域X及び領域Yがストライプ状に配列されており、領域Xの幅(短辺)が50μmであり、領域Yの幅(短辺)が400μmであることが確認された。また、領域Xの最大長さが50mmであることが確認された。
SEM-CL images are shown in FIGS. 5a and 5b. FIG. 5 a is an image observed from the C-plane side of the crystal, and the black line-shaped one is the basal plane dislocation. From this, it was confirmed that the basal plane dislocations having a dislocation line length of 3 μm or more are concentrated in a line shape parallel to the m-axis. FIG. 5b is an image observed from the M-plane side of the crystal, and the black dots are basal plane dislocations. From the SEM-CL image observed at a magnification at which the basal plane dislocation can be recognized as a black spot, a region with a large basal plane dislocation (region X) and a region with a small basal plane dislocation (region Y) are selected, and the basal plane dislocation density ρ Was calculated. The results are shown in Table 1.
Further, when examining the region X, the dislocation density value calculated from the 80 μm × 80 μm region and the 40 μm × 40 μm region corresponding to 1/4 of the region are arbitrarily extracted, and the dislocation density calculated therefrom is calculated. It was confirmed to have a region X ′ whose value is within 1.5 times the difference.
Further, from the SEM-CL image, it was confirmed that the gallium nitride semiconductor crystal substrate 1 contained 11% of the region X and 89% of the region Y.
Further, from the SEM-CL image or the like, the region X and the region Y are arranged in a stripe shape in the gallium nitride semiconductor crystal substrate 1, the width (short side) of the region X is 50 μm, and the width of the region Y ( It was confirmed that the short side was 400 μm. Further, it was confirmed that the maximum length of the region X was 50 mm.
 次に、窒化ガリウム半導体結晶基板1について、FEI Company社製TECNAI G2F20透過型電子顕微鏡を用いて、基底面転位の配置を観察した。透過型電子顕微鏡の加速電圧は200kVに調整した。この加速電圧によりナイフエッジ状薄膜サンプルに対してエッジから1000nm厚みまでの領域の情報が検出される。
 透過型電子顕微鏡像を図6に示す。図6は結晶のM面側から観察した領域Yにおける像であり線状の暗いコントラストが基底面転位である。これより、基底面転位のポリゴン化配列が確認された。基底面転位自体は極性のある自己歪みを有するため、図6の極性方向に縦一列に並ぶ様態は、内部残留応力の低減メカニズムであると転位論的解釈が可能である。
Next, about the gallium nitride semiconductor crystal substrate 1, the arrangement | positioning of the basal plane dislocation was observed using the TECNAI G2F20 transmission electron microscope made from FEI Company. The acceleration voltage of the transmission electron microscope was adjusted to 200 kV. With this acceleration voltage, information on the region from the edge to the thickness of 1000 nm is detected for the knife-edge thin film sample.
A transmission electron microscope image is shown in FIG. FIG. 6 is an image in the region Y observed from the M-plane side of the crystal, and the linear dark contrast is the basal plane dislocation. As a result, a polygonal arrangement of basal plane dislocations was confirmed. Since the basal plane dislocation itself has polar self-strain, the state of being arranged in a line in the polarity direction in FIG. 6 can be interpreted as a dislocation theory as a mechanism for reducing internal residual stress.
<実施例2>
(1)[-12-10]方向に25mm、[0001]方向に10mmの長さを有し、厚さ330μmの直方体で、主面が(10-10)面から[0001]方向に-1°、[-12-10]方向に0°のオフ角を有する面であるGaN自立基板を10枚用意し、シード基板として用いた。
(2)上記シード基板の(0001)面、(000-1)面、(1-210)面、(-12-10)面が接合面となるように、10枚のシード基板を配置した。具体的には、10枚のシード基板を[0001]方向5列、[-12-10]方向2列に配置し、各々のシード基板の(0001)面の断面と(000-1)面の断面とが対向するように、且つ(1-210)面の断面と(-12-10)面の断面とが対向するようにサセプター107上に並べた。
(3)サセプターをリアクター100内に配置して、反応室の温度を970℃まで上げ、HVPE法にてGaN単結晶層の成長を開始した。成長開始と同時に、反応室の温度を970℃から1020℃まで1時間で昇温させた後、1020℃一定で77時間成長させた。この単結晶成長工程においては成長開始から成長終了まで成長圧力を1.01×105Paとし、GaClガスの分圧を5.96×102Paとし、NH3ガスの分圧を5.34×103Paとした。単結晶成長工程が終了後、室温まで降温し、GaN結晶を得た。
 単結晶成長工程が終了後、室温まで降温し、III族窒化物結晶を得た。得られた結晶中の隣接したシード基板とシード基板の間の境界領域の上方領域では、III族窒化物結晶は結合して成長しており、[10-10]方向に3.5mm成長した。
 得られたIII族窒化物結晶について外形加工、表面研磨処理を行った後、実施例1と同様の手法でこれをスライスし、研磨を行って、直径2インチ、厚さ440μmの(10-10)面を主面とする窒化ガリウム半導体結晶基板2を3枚作製した。得られた窒化ガリウム半導体結晶基板2について、実施例1と同様に曲率半径の測定を行った。M面の曲率半径をX線回折測定装置にて測定したところ、当該結晶のa軸に平行な方向の曲率半径は3.6mであった。窒化ガリウム半導体結晶基板について、SEM-CL装置を用いて基底面転位の分布を観察し、基底面転位密度ρを算出した。
<Example 2>
(1) A rectangular parallelepiped having a length of 25 mm in the [-12-10] direction and 10 mm in the [0001] direction and having a thickness of 330 μm, the main surface is −1 in the [0001] direction from the (10-10) plane. Ten GaN free-standing substrates having a 0 ° off-angle in the [-12-10] direction were prepared and used as seed substrates.
(2) Ten seed substrates were arranged so that the (0001) plane, the (000-1) plane, the (1-210) plane, and the (-12-10) plane of the seed substrate were bonded surfaces. Specifically, 10 seed substrates are arranged in 5 rows in the [0001] direction and 2 rows in the [-12-10] direction, and the cross section of the (0001) plane and the (000-1) plane of each seed substrate. They were arranged on the susceptor 107 so that the cross sections face each other and the cross section of the (1-210) plane and the cross section of the (-12-10) plane face each other.
(3) The susceptor was placed in the reactor 100, the temperature of the reaction chamber was raised to 970 ° C., and growth of the GaN single crystal layer was started by the HVPE method. Simultaneously with the start of growth, the temperature in the reaction chamber was raised from 970 ° C. to 1020 ° C. over 1 hour, and then grown at a constant 1020 ° C. for 77 hours. In this single crystal growth step, the growth pressure is 1.01 × 10 5 Pa from the start of growth to the end of growth, the partial pressure of GaCl gas is 5.96 × 10 2 Pa, and the partial pressure of NH 3 gas is 5.34. × 10 3 Pa. After completing the single crystal growth step, the temperature was lowered to room temperature to obtain a GaN crystal.
After completion of the single crystal growth step, the temperature was lowered to room temperature to obtain a group III nitride crystal. In the region above the boundary region between adjacent seed substrates in the obtained crystal, the group III nitride crystal was grown in combination and grew 3.5 mm in the [10-10] direction.
The obtained group III nitride crystal was subjected to outer shape processing and surface polishing treatment, and then sliced and polished by the same method as in Example 1 to obtain (10-10) having a diameter of 2 inches and a thickness of 440 μm. ) Three gallium nitride semiconductor crystal substrates 2 having a main surface as a main surface were produced. About the obtained gallium nitride semiconductor crystal substrate 2, the radius of curvature was measured in the same manner as in Example 1. When the curvature radius of the M plane was measured with an X-ray diffractometer, the curvature radius in the direction parallel to the a-axis of the crystal was 3.6 m. With respect to the gallium nitride semiconductor crystal substrate, the distribution of basal plane dislocations was observed using a SEM-CL apparatus, and the basal plane dislocation density ρ was calculated.
 領域X及び領域YのSEM-CL像を、それぞれ図7の(a)及び(b)に示す。図7の(a)及び(b)は結晶をM面側から観察した像である。さらに低倍率のSEM-CL像では、基底面転位が成長方向におおよそ平行な層状に集約していることが確認できた。また、実施例1と同様の方法で基底面転位の分布を観察し、領域X及び領域Yの基底面転位密度ρを算出した。結果を表1に示す。
 また、前記領域Xについて検討したところ、80μm×80μmの部位から算出した転位密度値と、かかる部位の1/4の面積に当たる40μm×40μmの部位を任意に抽出して、そこから算出した転位密度値とが1.5倍差以内である領域X’を有することが確認された。
 さらに、SEM-CL像から、窒化ガリウム半導体結晶基板2中には領域Xが10%、領域Yが90%含まれていることが確認された。
 また、SEM-CL像等から、窒化ガリウム半導体結晶基板2中には領域X及び領域Yがストライプ状に配列されており、領域Xの幅(短辺、c軸方向)が500μmであり、領域Yの幅(短辺、c軸方向)が4500μmであることが確認された。また、領域Xの最大長さが50mmであることが確認された。
SEM-CL images of region X and region Y are shown in FIGS. 7A and 7B, respectively. 7A and 7B are images of the crystal observed from the M-plane side. Furthermore, in the low-magnification SEM-CL image, it was confirmed that the basal plane dislocations were concentrated in a layer shape approximately parallel to the growth direction. Further, the distribution of basal plane dislocations was observed in the same manner as in Example 1, and the basal plane dislocation density ρ in the regions X and Y was calculated. The results are shown in Table 1.
Further, when examining the region X, the dislocation density value calculated from the 80 μm × 80 μm region and the 40 μm × 40 μm region corresponding to 1/4 of the region are arbitrarily extracted, and the dislocation density calculated therefrom is calculated. It was confirmed to have a region X ′ whose value is within 1.5 times the difference.
Further, from the SEM-CL image, it was confirmed that the gallium nitride semiconductor crystal substrate 2 contained 10% of the region X and 90% of the region Y.
Further, from the SEM-CL image or the like, the region X and the region Y are arranged in a stripe shape in the gallium nitride semiconductor crystal substrate 2, and the width (short side, c-axis direction) of the region X is 500 μm. It was confirmed that the width of Y (short side, c-axis direction) was 4500 μm. Further, it was confirmed that the maximum length of the region X was 50 mm.
<実施例3>
(1)下地基板として、サファイア基板上にMOCVDで窒化ガリウムを15μm程度成長したテンプレート基板を準備した。
(2)HVPE装置サセプター上の基板ホルダーに、+C面を上向きにして上記下地基板を設置した。この時-C面は基板ホルダーに接しており、直接原料ガスと触れることはない。
(3)反応室の濃度を1080℃に上げ、原料を下地基板の+C面方向から供給することにより、45分間成長させた(以下、領域Y成長ともいう)。
(4)反応室の温度を1020℃まで上げ、原料を下地基板の+C面方向から供給することにより、Siドープ窒化ガリウムを6時間成長させた(以下、領域X成長ともいう)。
この成長工程においては成長圧力を1.01×105Paとし、NH3ガスの分圧を8.13×103Pa、N2ガスの分圧を1.17×104Pa、GaClガスの分圧を7.00×102Pa、H2ガスの分圧を8.04×104Pa、ジクロロシランガスの分圧を1.74×10-1Paとし、原料を導入管より導入した。
(5)その後、上記領域Y成長(1080℃、45分間)及び上記領域X成長(1020℃、6時間)を周期的に4回繰り返した。
(6)温度調整中の成長中断等の時間を含め、トータル35時間成長した後、室温まで降温した。
(7)得られた窒化ガリウム単結晶の形状は表面が鏡面を有する円状であり、C軸方向の膜厚が約3.6mmであった。直径が63mmの下地基板を使用した結果、得られた窒化ガリウム単結晶の主面(C面)の面積は2043mm2であり、有効径が51mmであった。
(8)得られた窒化ガリウム単結晶について、実施例1と同様に、外周加工で円盤状に形状加工した後、C面が主面であって、予め設計した領域Xを層として含む板状となるようにスライス行い、蛍光顕微鏡観察およびSEM-CL観察に適した表面状態になるまで研磨処理を行って、窒化ガリウム半導体結晶基板3を得た。得られた窒化ガリウム半導体結晶基板3について実施例1と同様に曲率半径を測定した。+C面の曲率半径をX線回折測定装置にて測定したところ、a軸に平行な方向の曲率半径は4.4mであり、m軸に平行な方向の曲率半径は3.8mであった。
(9)窒化ガリウム半導体結晶基板3について、実施例1と同様にSEM-CL装置を用いて基底面転位の分布を観察し、基底面転位密度ρを算出した。
<Example 3>
(1) As a base substrate, a template substrate was prepared by growing gallium nitride by about 15 μm by MOCVD on a sapphire substrate.
(2) The base substrate was placed on the substrate holder on the HVPE device susceptor with the + C surface facing upward. At this time, the -C surface is in contact with the substrate holder and does not come into direct contact with the source gas.
(3) The concentration in the reaction chamber was raised to 1080 ° C., and the raw material was supplied from the + C plane direction of the base substrate to grow for 45 minutes (hereinafter also referred to as region Y growth).
(4) The temperature of the reaction chamber was raised to 1020 ° C., and the raw material was supplied from the + C plane direction of the base substrate to grow Si-doped gallium nitride for 6 hours (hereinafter also referred to as region X growth).
In this growth step, the growth pressure is set to 1.01 × 10 5 Pa, the partial pressure of NH 3 gas is 8.13 × 10 3 Pa, the partial pressure of N 2 gas is 1.17 × 10 4 Pa, GaCl gas The partial pressure was 7.00 × 10 2 Pa, the partial pressure of H 2 gas was 8.04 × 10 4 Pa, the partial pressure of dichlorosilane gas was 1.74 × 10 −1 Pa, and the raw material was introduced from the introduction tube.
(5) Thereafter, the region Y growth (1080 ° C., 45 minutes) and the region X growth (1020 ° C., 6 hours) were periodically repeated four times.
(6) After growing for a total of 35 hours including the time of growth interruption during temperature adjustment, the temperature was lowered to room temperature.
(7) The shape of the obtained gallium nitride single crystal was a circular shape with a mirror surface, and the film thickness in the C-axis direction was about 3.6 mm. As a result of using the base substrate having a diameter of 63 mm, the area of the main surface (C surface) of the obtained gallium nitride single crystal was 2043 mm 2 and the effective diameter was 51 mm.
(8) The obtained gallium nitride single crystal was shaped into a disk shape by outer periphery processing in the same manner as in Example 1, and then the C surface was the main surface, and the plate shape including the predesigned region X as a layer The gallium nitride semiconductor crystal substrate 3 was obtained by slicing and polishing until a surface state suitable for fluorescence microscope observation and SEM-CL observation was obtained. The curvature radius of the obtained gallium nitride semiconductor crystal substrate 3 was measured in the same manner as in Example 1. When the radius of curvature of the + C plane was measured with an X-ray diffractometer, the radius of curvature in the direction parallel to the a-axis was 4.4 m, and the radius of curvature in the direction parallel to the m-axis was 3.8 m.
(9) For the gallium nitride semiconductor crystal substrate 3, the basal plane dislocation distribution was observed using the SEM-CL apparatus in the same manner as in Example 1, and the basal plane dislocation density ρ was calculated.
 SEM-CL像を図8に示す。図8は結晶をM面側から観察した像であり、低倍率のSEM-CL像では、基底面転位が成長方向におおよそ垂直な層状に集約していることが確認できた。基底面転位密度ρの結果を表1に示す。
 また、前記領域Xについて検討したところ、80μm×80μmの部位から算出した転位密度値と、かかる部位の1/4の面積に当たる40μm×40μmの部位を任意に抽出して、そこから算出した転位密度値とが1.5倍差以内である領域X’を有することが確認された。
 さらに、SEM-CL像から、窒化ガリウム半導体結晶基板中には領域Xが88%、領域Yが12%含まれていることが確認された。
 また、SEM-CL像等から、窒化ガリウム半導体結晶基板中には領域X及び領域Yが層状に配列されており、領域Xの幅(層の厚み)が700μmであり、領域Yの幅(層の厚み)が100μmであることが確認された。また、領域Xの最大長さが50mmであることが確認された。
A SEM-CL image is shown in FIG. FIG. 8 is an image obtained by observing the crystal from the M-plane side, and in the low-magnification SEM-CL image, it was confirmed that the basal plane dislocations were concentrated in a layer shape approximately perpendicular to the growth direction. Table 1 shows the results of the basal plane dislocation density ρ.
Further, when examining the region X, the dislocation density value calculated from the 80 μm × 80 μm region and the 40 μm × 40 μm region corresponding to 1/4 of the region are arbitrarily extracted, and the dislocation density calculated therefrom is calculated. It was confirmed to have a region X ′ whose value is within 1.5 times the difference.
Further, from the SEM-CL image, it was confirmed that the gallium nitride semiconductor crystal substrate contained 88% region X and 12% region Y.
Further, from the SEM-CL image or the like, the region X and the region Y are arranged in layers in the gallium nitride semiconductor crystal substrate, the width of the region X (layer thickness) is 700 μm, and the width of the region Y (layer) Thickness) was 100 μm. Further, it was confirmed that the maximum length of the region X was 50 mm.
<比較例>
(1)下地基板として、サファイア基板上にMOCVDで窒化ガリウムを15μm程度成長したテンプレート基板を準備した。
(2)HVPE装置サセプター上の基板ホルダーに、+C面を上向きにして上記下地基板を設置した。この時-C面は基板ホルダーに接しており、直接原料ガスと触れることはない。
(3)反応室の濃度を970℃に上げ、原料を下地基板の+C面方向から供給することにより、初期成長を1時間30分行った。
(4)反応室の温度を1020℃まで上げ、原料を下地基板の+C面方向から供給することにより、アンドープ窒化ガリウムを成長させた。この成長工程においては成長圧力を1.01×105Paとし、NH3ガスの分圧を7.54×103Pa、N2ガスの分圧を8.88×103Pa、GaClガスの分圧を6.52×102Pa、H2ガスの分圧を8.39×104Paとし、原料を導入管より導入した。
(5)29時間成長した後、室温まで降温した。
(6)得られた窒化ガリウム単結晶の形状は表面が鏡面を有する円状であり、c軸方向の膜厚が約4.1mmであった。直径が63mmの下地基板を使用した結果、得られた窒化ガリウム単結晶の主面(C面)の面積は2376mm2であり、有効径が55mmであった。
(7)実施例3と同様にして、得られた窒化ガリウム単結晶について、外周加工で円盤状に形状加工した後、C面が主面であって、領域Xを含まない板状となるようにスライス行い、蛍光顕微鏡観察およびSEM-CL観察に適した表面状態になるまで研磨処理を行って、窒化ガリウム半導体結晶基板を得た。得られた窒化ガリウム半導体結晶基板について実施例1と同様に曲率半径を測定した。+C面の曲率半径をX線回折測定装置にて測定したところ、a軸に平行な方向の曲率半径は2.5mであり、m軸に平行な方向の曲率半径は2.8mであった。
(8)窒化ガリウム半導体結晶基板について、実施例1と同様にSEM-CL装置を用いて基底面転位の分布を観察し、基底面転位密度ρを算出した。SEM-CL像を図9に示す。基底面転位密度ρの結果を表1に示す。
<Comparative example>
(1) As a base substrate, a template substrate was prepared by growing gallium nitride by about 15 μm by MOCVD on a sapphire substrate.
(2) The base substrate was placed on the substrate holder on the HVPE device susceptor with the + C surface facing upward. At this time, the -C surface is in contact with the substrate holder and does not come into direct contact with the source gas.
(3) The initial growth was performed for 1 hour 30 minutes by raising the concentration in the reaction chamber to 970 ° C. and supplying the raw material from the + C plane direction of the base substrate.
(4) The temperature of the reaction chamber was raised to 1020 ° C., and the raw material was supplied from the + C plane direction of the base substrate to grow undoped gallium nitride. In this growth step, the growth pressure is set to 1.01 × 10 5 Pa, the partial pressure of NH 3 gas is 7.54 × 10 3 Pa, the partial pressure of N 2 gas is 8.88 × 10 3 Pa, the GaCl gas The partial pressure was 6.52 × 10 2 Pa, the partial pressure of H 2 gas was 8.39 × 10 4 Pa, and the raw material was introduced from the introduction tube.
(5) After growing for 29 hours, the temperature was lowered to room temperature.
(6) The shape of the obtained gallium nitride single crystal was a circular shape with a mirror surface, and the film thickness in the c-axis direction was about 4.1 mm. As a result of using a base substrate having a diameter of 63 mm, the area of the main surface (C surface) of the obtained gallium nitride single crystal was 2376 mm 2 and the effective diameter was 55 mm.
(7) In the same manner as in Example 3, the obtained gallium nitride single crystal was shaped into a disk shape by outer periphery processing, and then the C surface was the main surface and the plate shape did not include the region X. The gallium nitride semiconductor crystal substrate was obtained by slicing and polishing until a surface state suitable for fluorescence microscope observation and SEM-CL observation was obtained. The radius of curvature of the obtained gallium nitride semiconductor crystal substrate was measured in the same manner as in Example 1. When the radius of curvature of the + C plane was measured with an X-ray diffractometer, the radius of curvature in the direction parallel to the a-axis was 2.5 m, and the radius of curvature in the direction parallel to the m-axis was 2.8 m.
(8) For the gallium nitride semiconductor crystal substrate, the basal plane dislocation distribution was observed using the SEM-CL apparatus in the same manner as in Example 1, and the basal plane dislocation density ρ was calculated. An SEM-CL image is shown in FIG. Table 1 shows the results of the basal plane dislocation density ρ.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1から、実施例1および2の窒化ガリウム単結晶は、結晶の{10-10}面を観察した場合における基底面転位密度が1.0×106cm-2以上である領域X及び結晶の{10-10}面を観察した場合における基底面転位密度が1.0×106cm-2未満である領域Yを含むことが明らかである。 From Table 1, in the gallium nitride single crystals of Examples 1 and 2, the region X and the crystal whose basal plane dislocation density is 1.0 × 10 6 cm −2 or more when the {10-10} plane of the crystal is observed It is clear that the basal plane dislocation density in the case of observing the {10-10} plane of the region includes a region Y that is less than 1.0 × 10 6 cm −2 .
 また曲率半径の測定結果をまとめて示す表2から、実施例1、2および3の窒化ガリウム半導体単結晶基板の主面の結晶面の曲率半径は、a軸方向・m軸方向のいずれにも3.0m以上の曲率半径を有することが明らかである。 Also, from Table 2 collectively showing the measurement results of the radius of curvature, the radius of curvature of the crystal plane of the main surface of the gallium nitride semiconductor single crystal substrate of Examples 1, 2, and 3 can be measured in both the a-axis direction and the m-axis direction. It is clear that it has a radius of curvature of 3.0 m or more.
<光弾性法による残留歪の測定>
 実施例及び比較例で得られた窒化ガリウム単結晶内の内部応力を観測するため、光弾性法により結晶中の残留歪を測定した。残留歪の測定は、(株)日本レーザー社製GaNウエハ残留歪み測定装置を用いて行った。実施例及び比較例の位相差分布の結果を図10に示す。比較例は、位相差分布が回転対称状に局在しており、歪みも同様に局在化していることが判る。実施例は、比較例のような位相差分布の局在化は認められず、均一に分散していることが明らかである。
 また、図10bに、図10aに示す実施例1、3、比較例1の位相差分布について直径方向に181μmの間隔で隣合う点の位相差(δ)をプロットしたグラフを示す。さらに、図10cには、図10bでプロットした位相差(δ)の隣同士の点の差(|Δδ|)をプロットしたグラフを示す。図10cより、実施例1、3では、隣合う点の位相差δの差(|Δδ|)が0.05以上となる区間が10区間以上連続しているのに対して、比較例では連続していないことがわかる。
<Measurement of residual strain by photoelastic method>
In order to observe the internal stress in the gallium nitride single crystals obtained in the examples and comparative examples, the residual strain in the crystals was measured by a photoelastic method. The residual strain was measured using a GaN wafer residual strain measuring device manufactured by Japan Laser Co., Ltd. The results of the phase difference distributions of the example and the comparative example are shown in FIG. In the comparative example, it can be seen that the phase difference distribution is localized in a rotationally symmetrical manner, and the distortion is also localized. In the example, localization of the phase difference distribution as in the comparative example is not recognized, and it is clear that the examples are uniformly dispersed.
FIG. 10b shows a graph in which the phase difference (δ) of points adjacent to each other at intervals of 181 μm in the diameter direction is plotted for the phase difference distributions of Examples 1 and 3 and Comparative Example 1 shown in FIG. 10a. Further, FIG. 10c shows a graph in which the difference (| Δδ |) between points adjacent to the phase difference (δ) plotted in FIG. 10b is plotted. From FIG. 10c, in Examples 1 and 3, the section in which the difference (| Δδ |) of the phase difference δ between adjacent points is 0.05 or more is continuous, whereas in the comparative example, it is continuous. You can see that they are not.
<結晶の割れの評価>
 実施例及び比較例で得られた窒化ガリウム単結晶を、ワイヤーソーでスライスし、CMPにて研磨仕上げを行った。スライス及び研磨によって窒化ガリウム単結晶が割れることなく得られる収率を評価した。結果を表3に示す。
<Evaluation of crystal cracking>
The gallium nitride single crystals obtained in the examples and comparative examples were sliced with a wire saw and polished by CMP. The yield obtained without breaking the gallium nitride single crystal by slicing and polishing was evaluated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明のIII窒化物半導体結晶は、内部応力が結晶内で均一に分散され、成形加工時に割れの生じにくい結晶であることが明らかである。 It is apparent that the III nitride semiconductor crystal of the present invention is a crystal in which internal stress is uniformly dispersed within the crystal and cracking is less likely to occur during molding.
1 下地基板
2 形成した結晶
3 基底面転位
4 貫通転位
5 基底面転位
6 領域X
7 領域Y
8 成長の起点となる成長領域
9 領域X(基底面転位が集約して発生する領域)
10 成長する結晶
100 リアクター
101 キャリアガス用配管
102 ドーパントガス用配管
103 III族原料用配管
104 V族原料用配管
105 III族原料用リザーバー
106 ヒーター
107 サセプター
108 排気管
109 基板ホルダー
G1  キャリアガス
G2  ドーパントガス
G3  III族原料ガス
G4  V族原料ガス
DESCRIPTION OF SYMBOLS 1 Base substrate 2 Formed crystal 3 Basal plane dislocation 4 Threading dislocation 5 Basal plane dislocation 6
7 Area Y
8 Growth region that is the starting point of growth 9 Region X (region where basal plane dislocations are aggregated)
10 Growing crystal 100 Reactor 101 Carrier gas pipe 102 Dopant gas pipe 103 Group III raw material pipe 104 Group V raw material pipe 105 Group III raw material reservoir 106 Heater 107 Susceptor 108 Exhaust pipe 109 Substrate holder G1 Carrier gas G2 Dopant gas G3 Group III source gas G4 Group V source gas

Claims (10)

  1. 結晶の一部に基底面転位密度が1.0×106cm-2以上である領域(領域X)、及び1.0×106cm-2未満である領域(領域Y)を含むことを特徴とするIII族窒化物半導体結晶。 A part of the crystal includes a region having a basal plane dislocation density of 1.0 × 10 6 cm −2 or more (region X) and a region having a basal plane dislocation density of less than 1.0 × 10 6 cm −2 (region Y). A group III nitride semiconductor crystal characterized.
  2. 前記領域Xと前記領域Yが結晶内でランダムに配置されている、請求項1に記載のIII族窒化物半導体結晶。 The group III nitride semiconductor crystal according to claim 1, wherein the region X and the region Y are randomly arranged in the crystal.
  3. 前記領域Xと前記領域Yがストライプ状に配列されている、請求項1に記載のIII族窒化物半導体結晶。 The group III nitride semiconductor crystal according to claim 1, wherein the region X and the region Y are arranged in a stripe shape.
  4. 前記ストライプの方向がm軸に平行である、請求項3に記載のIII族窒化物半導体結晶。 The group III nitride semiconductor crystal according to claim 3, wherein the stripe direction is parallel to the m-axis.
  5. M面から傾斜して現れるファセット面を形成するファセット成長により製造される、請求項1~4の何れか1項に記載のIII族窒化物半導体結晶。 The group III nitride semiconductor crystal according to any one of claims 1 to 4, wherein the group III nitride semiconductor crystal is manufactured by facet growth that forms a facet surface that appears obliquely from the M plane.
  6. 前記領域Xと前記領域Yが層状に配列されている、請求項1に記載のIII族窒化物半導体結晶。 The group III nitride semiconductor crystal according to claim 1, wherein the region X and the region Y are arranged in layers.
  7. 前記領域Xが、基底面転位密度が均一である領域(領域X’)を有する、請求項1~6の何れか1項に記載のIII族窒化物半導体結晶。 The group III nitride semiconductor crystal according to any one of claims 1 to 6, wherein the region X has a region (region X ') having a uniform basal plane dislocation density.
  8. 結晶全体に占める前記領域Xの割合が3%以上である、請求項1~7の何れか1項に記載のIII族窒化物半導体結晶。 The group III nitride semiconductor crystal according to any one of claims 1 to 7, wherein a ratio of the region X to the entire crystal is 3% or more.
  9. 前記領域X及び/又は前記領域Yが、ポリゴン化配列した基底面転位配列を含有する、請求項1~8の何れか1項に記載のIII族窒化物半導体結晶。 The group III nitride semiconductor crystal according to any one of claims 1 to 8, wherein the region X and / or the region Y contains a basal plane dislocation array arranged in a polygon.
  10. 請求項1~9の何れか1項に記載のIII族窒化物半導体結晶から得られる基板。 A substrate obtained from the group III nitride semiconductor crystal according to any one of claims 1 to 9.
PCT/JP2012/077054 2011-10-21 2012-10-19 Group iii nitride semiconductor crystal WO2013058352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-232017 2011-10-21
JP2011232017 2011-10-21

Publications (1)

Publication Number Publication Date
WO2013058352A1 true WO2013058352A1 (en) 2013-04-25

Family

ID=48140995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077054 WO2013058352A1 (en) 2011-10-21 2012-10-19 Group iii nitride semiconductor crystal

Country Status (2)

Country Link
JP (1) JPWO2013058352A1 (en)
WO (1) WO2013058352A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001650A (en) * 2014-06-11 2016-01-07 日本碍子株式会社 Group 13 element nitride crystal layer and function element
JP2016094337A (en) * 2014-11-10 2016-05-26 株式会社トクヤマ Apparatus for manufacturing group iii nitride single crystal, method for manufacturing group iii nitride single crystal using the same, and aluminium nitride single crystal
WO2016088696A1 (en) * 2014-12-01 2016-06-09 日本碍子株式会社 Group 13 element nitride crystal substrate and function element
WO2017098756A1 (en) * 2015-12-11 2017-06-15 日本碍子株式会社 Group 13 nitride crystal substrate and functional element
JP6203460B1 (en) * 2016-03-08 2017-09-27 株式会社サイオクス Nitride crystal substrate
JP2019112261A (en) * 2017-12-22 2019-07-11 昭和電工株式会社 METHOD FOR PROCESSING SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SiC INGOT

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349338A (en) * 1998-09-30 2000-12-15 Nec Corp GaN CRYSTAL FILM, AND III-FAMILY ELEMENT NITRIDE SEMICONDUCTOR WAFER AND ITS MANUFACTURE
JP2003133649A (en) * 2001-10-29 2003-05-09 Sharp Corp Nitride semiconductor laser device and method of manufacturing the same, and semiconductor optical device provided therewith
JP2003183100A (en) * 2001-10-09 2003-07-03 Sumitomo Electric Ind Ltd Single crystal gallium nitride substrate, crystal growth method for single crystal gallium nitride, and production method for single crystal gallium nitride substrate
JP2007254258A (en) * 2005-06-06 2007-10-04 Sumitomo Electric Ind Ltd Nitride semiconductor substrate and method for producing the same
JP2008037665A (en) * 2006-08-02 2008-02-21 Sumitomo Electric Ind Ltd Method for growing gallium nitride crystal
JP2008159620A (en) * 2006-12-20 2008-07-10 Sony Corp Method of manufacturing light-emitting diode, and method of manufacturing function element
JP2008243895A (en) * 2007-03-26 2008-10-09 Yamaguchi Univ SELECTIVE GROWTH METHOD OF GaN LAYER
JP2009280482A (en) * 2008-04-25 2009-12-03 Sumitomo Electric Ind Ltd Self-supporting group-iii nitride single-crystal substrate and method for producing semiconductor device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349338A (en) * 1998-09-30 2000-12-15 Nec Corp GaN CRYSTAL FILM, AND III-FAMILY ELEMENT NITRIDE SEMICONDUCTOR WAFER AND ITS MANUFACTURE
JP2003183100A (en) * 2001-10-09 2003-07-03 Sumitomo Electric Ind Ltd Single crystal gallium nitride substrate, crystal growth method for single crystal gallium nitride, and production method for single crystal gallium nitride substrate
JP2003133649A (en) * 2001-10-29 2003-05-09 Sharp Corp Nitride semiconductor laser device and method of manufacturing the same, and semiconductor optical device provided therewith
JP2007254258A (en) * 2005-06-06 2007-10-04 Sumitomo Electric Ind Ltd Nitride semiconductor substrate and method for producing the same
JP2008037665A (en) * 2006-08-02 2008-02-21 Sumitomo Electric Ind Ltd Method for growing gallium nitride crystal
JP2008159620A (en) * 2006-12-20 2008-07-10 Sony Corp Method of manufacturing light-emitting diode, and method of manufacturing function element
JP2008243895A (en) * 2007-03-26 2008-10-09 Yamaguchi Univ SELECTIVE GROWTH METHOD OF GaN LAYER
JP2009280482A (en) * 2008-04-25 2009-12-03 Sumitomo Electric Ind Ltd Self-supporting group-iii nitride single-crystal substrate and method for producing semiconductor device using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001650A (en) * 2014-06-11 2016-01-07 日本碍子株式会社 Group 13 element nitride crystal layer and function element
JP2016094337A (en) * 2014-11-10 2016-05-26 株式会社トクヤマ Apparatus for manufacturing group iii nitride single crystal, method for manufacturing group iii nitride single crystal using the same, and aluminium nitride single crystal
CN107002283A (en) * 2014-12-01 2017-08-01 日本碍子株式会社 13 race's element nitride crystal substrates and function element
JP5981074B1 (en) * 2014-12-01 2016-08-31 日本碍子株式会社 Group 13 element nitride crystal substrate and functional device
WO2016088696A1 (en) * 2014-12-01 2016-06-09 日本碍子株式会社 Group 13 element nitride crystal substrate and function element
US9941442B2 (en) 2014-12-01 2018-04-10 Ngk Insulators, Ltd. Group 13 element nitride crystal substrate and function element
CN107002283B (en) * 2014-12-01 2020-01-10 日本碍子株式会社 Group 13 element nitride crystal substrate and functional device
WO2017098756A1 (en) * 2015-12-11 2017-06-15 日本碍子株式会社 Group 13 nitride crystal substrate and functional element
JP6169292B1 (en) * 2015-12-11 2017-07-26 日本碍子株式会社 Group 13 element nitride crystal substrate and functional device
CN108291329A (en) * 2015-12-11 2018-07-17 日本碍子株式会社 13 race's element nitride crystal substrates and function element
CN108291329B (en) * 2015-12-11 2019-03-01 日本碍子株式会社 13 race's element nitride crystal substrates and function element
US11473212B2 (en) 2015-12-11 2022-10-18 Ngk Insulators, Ltd. Group 13 (III) nitride thick layer formed on an underlying layer having high and low carrier concentration regions with different defect densities
JP6203460B1 (en) * 2016-03-08 2017-09-27 株式会社サイオクス Nitride crystal substrate
JP2019112261A (en) * 2017-12-22 2019-07-11 昭和電工株式会社 METHOD FOR PROCESSING SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SiC INGOT

Also Published As

Publication number Publication date
JPWO2013058352A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5725086B2 (en) Group III nitride semiconductor crystal manufacturing method, group III nitride semiconductor substrate, and semiconductor light emitting device
JP5586233B2 (en) Fabrication of single crystal semiconductor materials using nanostructured templates
JP4691911B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
WO2013058352A1 (en) Group iii nitride semiconductor crystal
US10224201B2 (en) C-plane GaN substrate
JP5830973B2 (en) GaN free-standing substrate and method for manufacturing semiconductor light-emitting device
US7348278B2 (en) Method of making nitride-based compound semiconductor crystal and substrate
US10177217B2 (en) C-plane GaN substrate
JP5120285B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
JP2013203653A (en) Method for producing group iii nitride crystal, group iii nitride crystal, and group iii nitride crystal substrate
JP2013082611A (en) Group iii nitride semiconductor crystal and production method thereof, and group iii nitride substrate
JP2013075791A (en) Method for producing group iii nitride semiconductor crystal, group iii nitride semiconductor substrate, and group iii nitride semiconductor crystal
JP6405767B2 (en) Gallium nitride substrate
JP4562000B2 (en) Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate
JP2013212945A (en) Method for producing group 13 nitride crystal and group 13 nitride crystal
JP2013209273A (en) Periodic table group 13 metal nitride semiconductor crystal
JP2012197218A (en) Semiconductor bulk crystal, and method for producing the same
JP2013209271A (en) Manufacturing method of periodic table group 13 metal nitride semiconductor substrate, and groundwork substrate used for the manufacturing method
JP2013212946A (en) Group iii nitride semiconductor crystal
JP2013199412A (en) Method for manufacturing group iii nitride semiconductor crystal
JP2013209226A (en) Method of manufacturing semiconductor bulk crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539697

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842655

Country of ref document: EP

Kind code of ref document: A1