WO2013058243A1 - 空調装置 - Google Patents

空調装置 Download PDF

Info

Publication number
WO2013058243A1
WO2013058243A1 PCT/JP2012/076722 JP2012076722W WO2013058243A1 WO 2013058243 A1 WO2013058243 A1 WO 2013058243A1 JP 2012076722 W JP2012076722 W JP 2012076722W WO 2013058243 A1 WO2013058243 A1 WO 2013058243A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
water level
air
drain
air conditioner
Prior art date
Application number
PCT/JP2012/076722
Other languages
English (en)
French (fr)
Inventor
堀口忠史
池辺竜司
松村良太
Original Assignee
因幡電機産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 因幡電機産業株式会社 filed Critical 因幡電機産業株式会社
Priority to CN201280051139.8A priority Critical patent/CN103930732A/zh
Priority to KR1020147012122A priority patent/KR20140080527A/ko
Priority to JP2013539647A priority patent/JP5617044B2/ja
Publication of WO2013058243A1 publication Critical patent/WO2013058243A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate

Definitions

  • the present invention relates to an air conditioner used for air conditioning of a living room.
  • a flat heat transfer section including a heat transfer tube through which the heat medium passes is provided, and the flat heat transfer section is arranged in a vertical posture and exposed in a surface-facing state with respect to the air-conditioning target area.
  • An air conditioner provided with a drain pan that receives the condensed water while the condensed water generated in the flat heat transfer portion flows down during the cooling operation in which the heat transfer pipe is cooled to absorb the flat heat transfer portion.
  • Patent Document 1 discloses an air conditioner having the following configuration.
  • a number of vertical heat transfer tubes through which the heat medium passes are arranged in the left-right direction to form a flat heat transfer section, and the vertical heat transfer section in the vertical position is exposed face-to-face with each of the front space and the rear space. I am letting.
  • each heat transfer tube On the front side and the rear side of each heat transfer tube, a plurality of fin portions extending in the vertical direction over the entire length of each heat transfer tube are arranged radially in plan view.
  • An upper holding frame body is provided at the upper end portion of the flat heat transfer section composed of the parallel rows of heat transfer tubes, and a lower holding frame body is provided at the lower end portion of the flat heat transfer section. The upper end and lower end of the heat transfer tube are supported.
  • the upper holding frame body and the lower holding frame body are connected by a pair of left and right side surface holding frame bodies, and these four holding frame bodies surround the periphery of the flat heat transfer portion in the vertical posture.
  • the drain pan that receives the condensed water is disposed below the lower holding frame body.
  • the chamber wall adjacent to the back of the apparatus is also strongly cooled or heated, which causes a problem that condensation or burning (colored) tends to occur on the surface of the chamber wall.
  • the main problem of the present invention is to provide an excellent air conditioner capable of solving the above problems.
  • the first characteristic configuration of the present invention is: Provide a flat heat transfer section with a heat transfer tube through which the heat medium passes, While arranging this flat heat transfer section in a vertical posture, it is exposed in a face-facing state with respect to the air conditioning target area, In the cooling operation in which the heat transfer tube is cooled by the heat medium and the flat heat transfer portion absorbs heat, the condensed water generated in the flat heat transfer portion flows down, and a drain pan that receives the dew condensation water is provided.
  • An airframe lower case is disposed below the flat heat transfer section, The entire drain pan is disposed inside the lower case of the fuselage.
  • the air conditioner having this configuration basically, in the cooling operation in which the heat transfer tube is cooled by the heat medium and the flat heat transfer section absorbs heat, the air is cooled in the vertical posture by the air cooling in the flat heat transfer section. It falls naturally along the hot part.
  • the descending cold air smoothly flows out from the lower part of the flat heat transfer section to the air-conditioning target area opposed to the flat heat transfer section.
  • air is drawn into the upper part of the flat heat transfer section from the air-conditioning area facing the air, and the inflow air naturally falls due to cooling in the flat heat transfer section. .
  • the air-conditioning target area can be effectively and gently cooled satisfactorily by the smooth outflow cold air in a state where a very low-speed large air convection is generated in the air-conditioning target area by this cold air outflow and air attraction.
  • the heating operation is performed by air heating in the flat heat transfer section so that warm air is in a vertical posture. Ascends naturally.
  • the raised warm air flows out smoothly from the upper part of the flat heat transfer section to the air-conditioning target area. It flows out smoothly with a change in the horizontal direction from the bottom. As the warm air naturally rises and flows out, air is attracted and flows into the lower part of the flat heat transfer section from the air-conditioning target area, and the inflow air naturally rises due to heating in the flat heat transfer section. .
  • the air conditioning target area is defined by smooth outflow warm air and heat radiation from the flat heat transfer section to the air conditioning target area. Effective, gentle and good heating.
  • the entire drain pan is arranged inside the lower case of the machine body, the aesthetics of the device can be improved compared to the conventional device in which the drain pan is exposed.
  • the second characteristic configuration of the present invention is: The upper surface of the lower case of the machine body is in an inclined posture that becomes lower toward the air conditioning target area.
  • the cold air that naturally descends along the flat heat transfer section in the vertical position during cooling operation flows out to the air-conditioning target area while smoothly turning in the horizontal direction by guidance from the inclined upper surface of the lower case of the fuselage. Can be made.
  • the third characteristic configuration of the present invention is:
  • the flat heat transfer portion is composed of a heat transfer element in a vertical posture made of a heat conducting material and the heat transfer tube in close contact with the heat transfer element, Inserting the lower end of the heat transfer element into the lower case of the fuselage through an insertion hole formed in the upper surface of the lower case of the fuselage, The dew condensation water flowing down through the heat transfer element flows into the drain pan through the insertion hole.
  • the lower end of the heat transfer element in the vertical posture is also concealed by the lower case of the fuselage, so that the aesthetics of the device can be further improved, and dust can enter the drain pan more effectively. Can be prevented.
  • the fourth characteristic configuration of the present invention is: A machine body upper frame in a lateral orientation is provided above the flat heat transfer section, The lower surface portion of the upper frame of the machine body is in an inclined posture that becomes higher toward the air conditioning target area.
  • the air flowing from the air-conditioning target area to the upper part of the flat heat insulating part due to the attraction associated with the natural descent of the cooling air in the cooling operation is smoothly turned downward by the guidance by the inclined lower surface part of the upper frame of the fuselage.
  • it can be made to flow into the upper part of the flat heat transfer part.
  • the fifth characteristic configuration of the present invention is: A horizontal body upper frame disposed above the flat heat transfer section, the gas lower case, and both sides of the flat heat transfer section, the lower body case and the upper body frame.
  • the machine body side frame in a vertical posture connecting the two is surrounded by the flat heat transfer section.
  • the pair of machine body side frames can suppress the outflow of air from the flat heat transfer section to the side and the inflow of air from the side to the flat heat transfer section. It is possible to further stabilize the natural descent of the cold air and the natural rise of the warm air, thereby further promoting the air convection in the air-conditioning target area and further enhancing the heat absorption effect and heat radiation effect of the flat heat transfer section. it can.
  • this configuration has a configuration in which the upper surface portion of the lower case of the fuselage is inclined to a lower position toward the air-conditioning target area (second characteristic configuration), and the lower surface portion of the upper frame of the fuselage is positioned higher toward the air-conditioning target area.
  • the vertical posture is combined with the guiding action of the inclined upper surface portion and the inclined lower surface portion against the descending cold air, the rising warm air, or the induced air as described above. The natural fall of cold air and the natural rise of warm air along the flat heat transfer section can be more effectively stabilized.
  • the sixth characteristic configuration of the present invention is: Exposing the front part of the flat heat transfer part to the front air-conditioning area; The rear surface portion of the flat heat transfer portion is closed by a rear plate portion with respect to the rear space, The rear plate portion is in a multi-layer structure including a heat conducting material layer on the front side and a heat insulating material layer on the rear side.
  • diffusive cooling conduction in the direction of the plate surface by the heat conducting material layer on the front side allows the heat conducting material layer on the front side to be more efficient and uniform in air cooling in the flat heat transfer section. This can contribute to better cooling air generation.
  • the warm air and radiant heat are blocked by the rear plate portion, and the diffusive heat conduction in the plate surface direction by the heat conducting material layer on the front surface side in the rear plate portion is
  • heat insulation by the heat insulating material layer on the rear side of the rear plate part effectively prevents the occurrence of scorching (colored) on the chamber wall close to the back of the device (chamber wall close to the rear side of the flat heat transfer part). can do.
  • diffusive heat conduction in the direction of the plate surface by the heat conducting material layer on the front side makes the heat conducting material layer on the front side more efficient and uniform in air heating in the flat heat transfer section. This can contribute to the generation of rising warm air.
  • the seventh characteristic configuration of the present invention is:
  • the both side surfaces of the flat heat transfer portion are closed by side plates with respect to the side space,
  • This side plate part is in a point having a multilayer structure including a heat conducting material layer on the inner surface side and a heat insulating material layer on the outer surface side,
  • the heat conducting material layer on the inner surface side is cooled by air in the flat heat transfer portion by diffusive heat conduction in the plate surface direction by the heat conducting material layer on the inner surface side in the side plate portion.
  • frames are often arranged on the side of the flat heat transfer section. According to this configuration, in the cooling operation, the cooling of the cold air by the side plate section and the side plate section are performed. Frames arranged on the side of the flat heat transfer section by diffusive cooling heat conduction in the plate surface direction by the heat conducting material layer on the inner surface side and heat insulation by the heat insulating material layer on the outer surface side of the side plate portion It is also possible to effectively prevent the occurrence of condensation in
  • the eighth feature of the present invention is The front surface of the rear plate portion is a glossy surface that reflects radiant heat.
  • the heat radiation from the rear surface side of the flat heat transfer portion can be reflected by the glossy surface, and thereby the front of the flat heat transfer portion.
  • the heating effect by the heat radiation given to the air conditioning target area can be enhanced.
  • the ninth feature of the present invention is While passing the heat transfer tube in a vertical position through the center of a vertical heat transfer element made of a heat conducting material, A number of fins extending in the vertical direction over substantially the entire length of the heat transfer element are formed side by side in the left-right direction on the front side and the rear side of the heat transfer element, respectively.
  • the heat transfer elements including the heat transfer tubes and the fin portions are juxtaposed in the left-right direction to constitute the flat heat transfer portion, About the fin part on the front side in each of the heat transfer elements, the fin part located on the left and right center side of each heat transfer element is a fin part with a longer forward length,
  • the fin portions on the rear surface side in each of the heat transfer elements are in the form of fin portions having the same length of extension to the rear.
  • the virtual envelope in a plan view connecting the tips of the fins on the rear surface side is a straight line or a substantially straight line, diffusive cooling conduction in the plate surface direction by the heat conducting material layer on the front surface side in the rear plate part In combination with heat conduction, air cooling and air heating in the flat heat transfer section can be further promoted.
  • the tenth characteristic configuration of the present invention is that an air inflow portion is formed at an intermediate portion in the vertical direction of the rear plate portion,
  • the structure is such that the air in the rear space flows into the arrangement portion of the flat heat transfer portion through the air inflow portion by attraction by the draft flow generated in the flat heat transfer portion.
  • the air in the rear space is guided by the draft flow generated in the flat heat transfer section (that is, the natural downflow of cool air in the cooling operation and the natural upflow of warm air in the heating operation). Since the air flows into the arrangement part of the flat heat transfer part through the inflow of the induced air, it is possible to promote the outflow of cold air and warm air from the flat heat transfer part to the front air-conditioning target area.
  • this air inflow portion is provided at the middle portion in the vertical direction of the rear plate portion, the air in the rear space is efficiently flattened by the already stabilized draft flow attraction in the middle portion of the flat heat transfer portion. It can be made to flow into the arrangement
  • the shape of the rear plate portion is a flat plate shape, a U-shape in a plan view in which the middle portion in the left-right direction is located behind, or an arc shape in a plan view located in the rear in the middle in the left-right direction.
  • Various shapes can be adopted as long as the shape can close the rear space.
  • region) of the rear-surface board part which provides an air inflow part is an intermediate part of an up-down direction, it will not be limited to the site
  • the part etc. which were removed from the outside in the left-right direction may be used.
  • the eleventh characteristic configuration of the present invention is
  • the rear plate portion is composed of an upper plate portion disposed on the upper side and a lower plate portion disposed on the lower side, Among the upper plate portion and the lower plate portion, the plate portion located on the downstream side in the draft flow direction is disposed behind the plate portion located on the upstream side in the draft flow direction, and Place the lower part of the upper plate part, the lower plate part and the upper part so as to wrap in the front-rear direction, In this wrap portion, a gap as the air inflow portion is formed between the lower portion of the upper plate portion and the upper portion of the lower plate portion.
  • the said clearance gap as an air inflow part is formed in the form of the cylindrical air inflow path which has the exit (namely, exit with respect to the arrangement
  • the twelfth feature of the present invention is
  • the front side plate portion disposed in front of the upper side plate portion and the lower side plate portion has a multilayer structure including a heat conducting material layer on the front side and a heat insulating material layer on the rear side,
  • the rear side plate portion arranged behind the upper side plate portion and the lower side plate portion is in the point that the whole is formed of a heat conducting material.
  • the retained cold heat and retained heat of the reverse draft flow that flows out to the rear space through the gap are caused by the rear side plate portion entirely formed of the heat conducting material and the reverse draft flow. It can be effectively taken away by direct heat exchange between the two, and the reverse draft flow can be discharged to the rear space.
  • An air outflow portion that allows a part of the air flowing in from the air inflow portion to pass through and flow out of the flat heat transfer portion may be provided downstream of the air inflow portion in the draft flow direction.
  • An auxiliary air inflow part that allows air to flow into the arrangement part of the flat heat transfer part by induction by a draft flow may be provided on the side part of the flat heat transfer part.
  • Inflow direction changing means for changing the inflow direction of air from the air inflow portion may be provided.
  • Opening / closing means for opening / closing the air inflow portion may be provided.
  • An opening area adjusting means for adjusting the opening area of the air inflow portion may be provided.
  • the thirteenth feature of the present invention is The flat heat transfer portion is composed of a heat transfer element in a vertical posture made of a heat conducting material and the heat transfer tube in close contact with the heat transfer element, A pair of element lower support frames that support the lower end portion of the heat transfer element in a vertical posture are arranged inside the machine body lower case, The heat transfer tube protruding from the lower end of the heat transfer element is inserted in a gap between the element lower support frames in a non-contact state with the pair of element lower support frames, The lower end portion of the heat transfer element is fixed to each of the pair of element lower support frames in this heat transfer tube insertion state, and the lower end portion of the heat transfer element is supported by the pair of element lower support frames. It is in.
  • the heat transfer tube and the heat transfer element have a function of supporting the heat transfer element at the lower end of the pair of element lower support frames.
  • An integrated object can be supported.
  • an integrated product of the heat transfer tube and the heat transfer element can be supported by the pair of element lower support frames via the heat transfer element. it can.
  • the support load in supporting the integrated body of the heat transfer tube and the heat transfer element is heat transfer. It is possible to avoid hanging on the heat transfer tube protruding from the lower end of the element.
  • the dedicated support as described above is unnecessary, so the condensed water is generated in such a dedicated support.
  • the integrated body of the heat transfer tube and the heat transfer element can be supported by the pair of element lower support frames.
  • the design of the device is facilitated in terms of sufficiently securing the support strength for the integrated body of the heat transfer tube and the heat transfer element, and the response to the generated condensed water in the cooling operation is achieved.
  • the design of the apparatus can be facilitated.
  • fixing the lower end portion of the heat transfer element to the element lower support frame is not limited to integrally connecting the lower end portion of the heat transfer element to the element lower support frame.
  • the movement of the lower end portion of the heat transfer element with respect to is restricted in at least one required direction.
  • the fourteenth feature of the present invention is A machine body upper frame in a lateral orientation is disposed above the flat heat transfer section, A pair of element upper support frames that support the upper end portions of the heat transfer elements in a vertical posture are arranged inside the machine body upper frame, The heat transfer tube protruding from the upper end of the heat transfer element is inserted into a gap between the element upper support frames in a non-contact state with the pair of element upper support frames, The upper end portion of the heat transfer element is fixed to each of the pair of element upper support frames in this heat transfer tube insertion state, and the upper end portion of the heat transfer element is supported by the pair of element upper support frames. It is in.
  • an integrated product of the heat transfer tube and the element can be supported by the pair of element upper support frames via the heat transfer element in a state where the heat transfer element in close contact with the heat transfer tube is used as the support.
  • the support load (especially a load having a horizontal component) in the support of the integrated body of the heat transfer tube and the element is: It is also possible to avoid hanging on the heat transfer tube protruding from the upper end of the heat transfer element.
  • the dedicated support as described above is unnecessary, so the condensed water is generated in such a dedicated support.
  • the integrated body of the heat transfer tube and the heat transfer element can be supported by the pair of element upper support frames.
  • the design of the apparatus is further facilitated in terms of sufficiently securing the support strength for the integrated body of the heat transfer tube and the heat transfer element.
  • fixing the upper end of the heat transfer element to the element upper support frame is not limited to the case where the upper end of the heat transfer element is integrally connected to the element upper support frame.
  • the movement of the upper end of the heat transfer element with respect to is restricted in at least one required direction.
  • the fifteenth feature of the present invention is The upper end portion of the heat transfer element is supported by the pair of element upper support frames in a state allowing thermal expansion and contraction in the vertical direction.
  • the sixteenth feature of the present invention is The drain pan is disposed below the pair of element lower support frames inside the lower case of the fuselage, The lower surface of each of the pair of element lower support frames is inclined to approach the gap between the pair of element lower frames toward the lower side.
  • the dew condensation water is generated on the inclined lower surface of each element lower support frame. It can be caused to flow down in a state where it is transferred to the side between the pair of lower support frames of the elements (that is, in a state where it is close to the side where the drain pan is easily received). Can be more reliably prevented.
  • the lower surface of each of the pair of element upper support frames is arranged on the lower side of the pair of element upper support frames, as in the sixteenth feature configuration. You may make it the inclination lower surface which approaches the side of the said clearance gap between upper support frames.
  • the dew condensation water is supplied to the above-mentioned inclination of each element upper support frame. It can be caused to flow down in a state of being transmitted to the lower surface and approaching the side of the gap between the pair of upper support frames of the elements (that is, a state of approaching to the side that is easily received by the drain pan).
  • the seventeenth feature of the present invention is The drain receiving device that receives the condensed water flowing down through the heat transfer element and guides it to the drain pan is placed on the element lower support frame in a state straddling the pair of element lower support frames, The lower end of the heat transfer element is supported by the pair of element lower support frames via the drain receiver while being placed on the drain receiver.
  • the heat transfer element and the lower part of the heat transfer element are supported in the cooling operation by the interposition of the drain receiver as compared with the support form in which the lower end of the heat transfer element is directly placed on the element lower support frame. It is possible to effectively prevent the occurrence of condensed water in the lower support frame of the element due to direct contact with the frame, and thereby more reliably prevent the occurrence of water leakage trouble due to the generated condensed water. .
  • the element lower support frame and the element upper support frame described above are formed of a common frame material, and the common frame material used as the element lower support frame and the common frame material used as the element upper support frame have a cross section. You may arrange
  • the frame material type required for manufacturing the device can be reduced, and the device cost can be reduced.
  • the device can be made easier.
  • the nineteenth feature of the present invention is The flat heat transfer portion is composed of a heat transfer element in a vertical posture made of a heat conducting material and the heat transfer tube in close contact with the heat transfer element,
  • An element lower support frame that supports a lower end portion of the heat transfer element in a vertical posture is disposed inside the machine body lower case,
  • a drain receiver that receives the condensed water flowing down through the heat transfer element is disposed between a lower end portion of the heat transfer element and the element lower support frame, The drain receiver is configured to guide the dew condensation water received to the drain pan without touching the element lower support frame.
  • the element lower support frame can be prevented from getting wet by the condensed water flowing down from the heat transfer element in the cooling operation by the condensed water guide as described above by the drain receiver.
  • the device design can be further facilitated in terms of handling the generated condensed water.
  • the nineteenth feature of the present invention is A leg portion that is in contact with a part of the upper surface of the lower support frame of the element is provided on the lower surface of the drain receiver, The lower end portion of the heat transfer element is fixed to the element lower support frame by a fixing screw penetrating the leg portion.
  • a drainage cylinder portion that guides the dew condensation water discharged from the drainage port portion of the bottom portion to the lower position where it does not touch the element lower support frame may be provided on the lower surface of the bottom portion of the drain receptacle.
  • the drain receiver is configured to have a length corresponding to the width of the flat heat transfer section, and a common drain outlet is formed at the bottom of the drain receiver to guide the condensed water flowing down from the heat transfer element to the drain pan. May be.
  • the drain tube part of the drain receptacle may be held by fitting it to the element lower support frame from above.
  • the twentieth feature of the present invention is The flat heat transfer portion is composed of a heat transfer element in a vertical posture made of a heat conducting material and the heat transfer tube in close contact with the heat transfer element,
  • An element lower support frame that supports a lower end portion of the heat transfer element in a vertical posture is disposed inside the machine body lower case,
  • a gap filling material made of a heat insulating material is disposed inside the aircraft lower case at least in the vicinity of the upper opening of the aircraft lower case, In the cooling operation, the gap filling material prevents the cool air that is cooled and lowered by the flat heat transfer section from flowing into the lower case of the airframe.
  • the gap filling material is made of a heat insulating material, dew condensation occurs on the outer surface of the gap filling material itself due to the low temperature due to the descending cold air, or on the inner and outer surfaces of the lower case of the fuselage due to the cold heat propagation from the low temperature gap filling material. It is possible to effectively prevent the occurrence of condensation.
  • the twenty-first characteristic configuration of the present invention is The gap filling material is formed by joining the front divided portion and the rear divided portion, Inside the gap filling portion, an accommodation space that is opened by releasing the joining of the front divided portion and the rear divided portion is formed, In the state where the gap filling material is disposed inside the fuselage lower case, the equipment inside the fuselage lower case is configured to be accommodated in the accommodation space.
  • the internal equipment for example, the drain pan and the element lower support frame
  • the gap filling material made of heat insulating material
  • the gap filling material is assembled to the inside of the lower case of the fuselage by joining the internal parts of the lower case of the fuselage between the front and rear divided parts.
  • the twenty-second feature of the present invention is While bringing the front-side divided portion into close contact with the inner surface of the front panel portion in the fuselage lower case, The rear divided portion is in close contact with the inner surface of the rear panel portion of the lower case.
  • the front-side divided portion and the rear-side divided portion in the gap filling material made of heat insulating material can be directly insulated against the inner surface of the front panel portion and the inner surface of the rear panel portion in the fuselage lower case.
  • any of the configurations listed below may be employed.
  • the twenty-third characteristic configuration of the present invention is A drain pump for draining from the drain pan through a drain pipe; Water level detection means for detecting the water level in the drain pan; A drainage control means for operating the drain pump when the detected water level by the water level detection means is equal to or higher than a set drainage water level, The drainage control means starts operation of the drain pump in response to the detected water level being equal to or higher than the set drainage water level, and then starts measuring the set drainage time when the detected water level becomes lower than the set drainage water level. And Thereafter, when the set drainage time has elapsed, the operation of the drain pump is stopped.
  • the drain pump when the detected water level becomes equal to or higher than the set drainage water level and the drain pump is started, the drain pump is stopped when the detected water level becomes lower than the set drainage water level during the operation of the drain pump. Timing of the set drainage time that defines the time is started.
  • the pump operation time ie, the set drainage time until the detected drainage level becomes lower than the set drainage water level and the set drainage time starts to be measured accordingly.
  • the substantial pump extended operation time becomes longer.
  • the condensed water flowing into the drain pan from the flat heat insulating portion is reduced.
  • the frequency of starting and stopping the drain pump can be effectively suppressed.
  • the pump operation time (the above-described substantial pump extended operation time) until the detected water level becomes lower than the set drainage water level and the set drainage time starts to be measured is shortened.
  • the water level in the drain pan has dropped to the set timing start water level lower than the set drainage water level after starting the drain pump. At the time of detection, or it may be detected that the water level in the drain pan has dropped to the set drainage stop water level, and the drain pump operation may be stopped at that time. Conceivable.
  • the number of water level detection points can be reduced. For example, when a float switch is used as the water level detection means, only one float switch for the set drainage water level can be used.
  • the number of water level detection points can be reduced and the device configuration for water level detection can be simplified.
  • the twenty-fourth characteristic configuration of the present invention is
  • the set drainage time is, in terms of design, the time required for the water level in the drain pan to decrease from the water level at the start of timing of the set drainage time to the vicinity of the bottom of the drain pan in the operation of the drain pump. .
  • the drain pump operation stop time (that is, when the set drainage time has elapsed) can be set to a time when the water level of the drain pan is lowered to the vicinity of the bottom of the drain pan with high accuracy.
  • the frequency of starting and stopping the drain pump can be more effectively reduced while preventing the drain pump from operating idly.
  • the 25th characteristic configuration of the present invention is
  • the drainage control means is configured to stop the cooling operation when the detected water level rises to a set upper limit water level higher than the set drainage water level.
  • a detection unit for low level that detects whether the water level in the drain pan is equal to or higher than the set drainage water level
  • a detection for high level that detects whether the water level in the drain pan has risen to the set upper limit water level.
  • Each of the water levels may be detected independently of each other, for example, by configuring each of the units with separate float switches.
  • the independent water level by the high level detection unit indicates that the water level in the drain pan has risen to the set upper limit water level. This can be detected by detection, and in this respect, it is possible to more reliably prevent a water leakage trouble that overflows the stored water in the drain pan.
  • the twenty-sixth feature of the present invention is The drainage control means starts measuring the set maintenance time when the detected water level becomes lower than the set upper limit water level after stopping the cooling operation in response to the detected water level rising to the set upper limit water level, Thereafter, when the set maintenance time has elapsed, the drain pump is stopped.
  • the drain pump is operated for the set maintenance time from the time when the water level in the drain pan drops to the set upper limit water level by continuous operation of the drain pump.
  • the drain pump stops when the set maintenance time has elapsed.
  • the drain pump operation stop point is specified.
  • the set maintenance time is started.
  • the detected water level is accordingly lower than the set upper limit water level and the set maintenance time.
  • the pump operation time substantially pump extension operation time
  • the 23rd feature configuration it is only necessary to detect whether or not the water level in the drain pan is equal to or higher than the set upper limit water level, and the hysteresis on the water level detection when the water level rises and when the water level falls is used. In this state, it is possible to make a difference between the water level at which the cooling operation is stopped and the water level at which the set maintenance time is started.
  • the number of water level detection points can be reduced. For example, when a float switch is used as the water level detection means, only one float switch for the set upper limit water level can be used.
  • the twenty-seventh feature of the present invention is
  • the set maintenance time is, in design, the time required for the water level in the drain pan to decrease from the water level at the start of timing of the set maintenance time to the vicinity of the bottom of the drain pan in the operation of the drain pump. .
  • the drain pan rises to the set upper limit water level and the cooling operation is stopped, the residual dew condensation water still remaining in the air cooling section continues to flow into the drain pan as set above.
  • the stored water existing in the drain pan is drained from the drain pan, including the entire amount of residual condensed water flowing in from the flat heat transfer section that has been shut down even after the start of timing of the set maintenance time.
  • the drain pump can be stopped in a state where the drainage is almost completed.
  • the drain pan can be kept almost empty in preparation for the start of the next cooling operation or maintenance and inspection up to that point.
  • the safety against water leakage problems during maintenance and inspection up to that time can be further enhanced.
  • any of the configurations listed below may be adopted.
  • a pocket piping part extending downward from the drain outlet at the bottom of the drain pan and then extending upward is formed in the drain pipe, and a drain pump is interposed in the pocket piping part in the drain pipe at a position lower than the bottom of the drain pan.
  • the drainage control means stops the cooling operation and tries to start the drain pump operation again.
  • the drainage control means starts counting the set maintenance time from the time when the drain pump operation start operation is retried in response to the detected water level rising to the set upper limit water level, and then when this set maintenance time has elapsed. Use a configuration to stop the drain pump.
  • the set maintenance time is the total amount of residual condensed water flowing into the drain pan from the flat heat transfer section even after the cooling operation is stopped in response to the detected water level rising to the set upper limit water level. The time required to drain from the drain pan.
  • the capacity of the drain pan is, by design, the capacity to store the entire amount of residual dew water flowing into the drain pan from the flat heat transfer section even after the cooling operation is stopped in response to the detected water level rising to the set upper limit water level.
  • the drainage control means starts measuring the set time limit with the start of the drain pump, and when the operation of the drain pump is continued until the set time limit elapses, at the time when the set time limit elapses. Use a configuration that forcibly stops the operation of the drain pump.
  • the twenty-eighth feature of the present invention is While providing a machine body upper frame in a lateral orientation to connect the upper end of the flat heat transfer section, A guide groove extending in the left-right direction is formed on the upper surface of the machine body upper frame, A slide member is provided that can freely move in the left-right direction along the guide groove and can be fixed to the guide groove by a fixing operation.
  • the fall prevention tool that can be connected to the wall located behind the lower case of the machine body is attached to the slide member in a state that it can move in the left and right direction integrally with the slide member. is there.
  • FIG. 1 shows an indoor unit 1 in a natural convection type air conditioner.
  • This indoor unit 1 includes a flat heat transfer section 2 in a vertical posture exposed toward the front of the body.
  • This flat heat transfer part 2 is a vertically long rectangle in the front-rear direction view.
  • the indoor unit 1 has a pair of left and right vertical postures extending across the upper body frame 1A in the horizontal orientation disposed in the upper portion, the lower body case 1B disposed in the lower portion, and the upper body frame 1A and the lower body case 1B. And a machine body side frame 1C. That is, the flat heat transfer section 2 is surrounded by the machine body upper frame 1A, the machine body lower case 1B, and a pair of left and right machine body side frames 1C.
  • the flat heat transfer section 2 includes a plurality of heat transfer elements 3 for absorbing and radiating heat (seven in this example) extending vertically between the machine body upper frame 1 ⁇ / b> A and the machine body lower case section 1 ⁇ / b> B.
  • the flat heat transfer section 2 includes a plurality of heat transfer elements 3 for absorbing and radiating heat (seven in this example) extending vertically between the machine body upper frame 1 ⁇ / b> A and the machine body lower case section 1 ⁇ / b> B.
  • the flat heat transfer section 2 is composed of a juxtaposed group of heat transfer elements 3 in a vertical posture.
  • the straight pipe portion 4 a of the heat transfer tube 4 is passed through the entire length of the heat transfer element 3 in the longitudinal center shaft portion of each heat transfer element 3.
  • the heat transfer element 3 and the heat transfer tube 4 are both made of a heat conducting material.
  • the heat transfer element 3 is made of aluminum.
  • the heat transfer tube 4 is a copper tube.
  • adjacent pairs of the upper projecting portions in the straight tube portion 4a of the heat transfer tube 4 penetrating each heat transfer element 3 are connected to each other by the upper bend tube 4b.
  • the adjacent pair of the lower protrusions in the straight tube portion 4a of the heat transfer tube 4 penetrated through each heat transfer element 3 is connected by the lower bend tube 4c alternately with the upper side.
  • the heat transfer tube 4 is a meandering tube formed by connecting a plurality of straight tube portions 4a in series by upper and lower bend tubes 4b and 4c.
  • One end of the meandering heat transfer tube 4 is connected to an outdoor unit (not shown) installed outside through a liquid side refrigerant tube 5a covered with a heat insulating material, and the other end of the meandering heat transfer tube 4 is also a gas covered with a heat insulating material. It connects to the outdoor unit through the side crossing refrigerant pipe 5b.
  • the outdoor unit installed outdoors is equipped with a compressor, an outdoor heat exchanger, an expansion valve, and a four-way valve.
  • the outdoor unit and the indoor unit are passed through the two transition refrigerant pipes 5a and 5b so that the outdoor heat exchanger functions as a condenser and the meandering heat transfer tube 4 of the indoor unit 1 functions as an evaporator.
  • the refrigerant R is circulated to and from 1.
  • the refrigerant path is switched by a four-way valve, so that the outdoor heat exchanger functions as an evaporator, and the meandering heat transfer tube 4 of the indoor unit 1 functions as a condenser.
  • the refrigerant R is circulated between the outdoor unit and the indoor unit 1 through the transition refrigerant pipes 5a and 5b.
  • the heat transfer tube 4 and the heat transfer element 3 that is in close contact with the heat transfer tube 4 are cooled by taking the heat of vaporization accompanying the evaporation of the refrigerant R inside the meandering heat transfer tube 4 functioning as an evaporator.
  • This cooling causes the flat heat transfer section 2 to absorb heat to cool the ambient air.
  • the air (cold air) cooled by the flat heat transfer section 2 naturally falls along the flat heat transfer section 2 in the vertical posture due to the specific gravity difference due to the temperature difference. This descending cold air flows out from the lower part of the flat heat transfer section 2 diagonally downward to the indoor unit installation room which is the air conditioning target area.
  • the heat transfer tube 4 and the heat transfer element 3 that is in close contact with the heat transfer tube 4 are heated by the release of the condensation heat accompanying the condensation of the refrigerant R inside the meandering heat transfer tube 4 that functions as a condenser.
  • the flat heat transfer section 2 is radiated to radiate heat from the surface of the flat heat transfer section 2 and the surrounding air is heated.
  • the air (warm air) heated in the flat heat transfer section 2 naturally rises along the flat heat transfer section 2 in the vertical posture due to the specific gravity difference due to the temperature difference. This rising warm air flows from the upper part of the flat heat transfer section 2 to the indoor unit installation room obliquely upward in the forward direction.
  • the room is heated in cooperation with the heat radiation in such a form that a large convection of the room air is generated in the indoor unit installation room as the warm air flows out.
  • the cross refrigerant pipe 5a on the liquid side is connected to one end of the meandering heat transfer pipe 4 located at the lower part on the left and right sides in the flat heat transfer section 2.
  • a gas-side transition refrigerant pipe 5b is connected to the other end of the meandering heat transfer pipe 4 located at the upper part on the left and right other sides in the flat heat transfer section 2.
  • a plurality of fin portions 3 a and 3 b extending in the vertical direction over the entire length of the heat transfer element 3 are integrally formed on the front surface side and the rear surface side of each heat transfer element 3.
  • each heat transfer element 3 includes a columnar core portion 3c and a substrate portion 3d extending from the core portion 3c toward the left and right outwards in a cross-sectional view.
  • a base 3A extending in the left-right direction is formed.
  • a plurality of front side fin portions 3a are extended forward from the core base portion 3A (3c, 3d) in an arrangement in which the front side fin portions 3a are arranged at equal intervals on the left and right sides in a parallel posture.
  • the rear fin portions 3b of the same number as the front fin portions 3a are arranged at equal intervals on the left and right in a parallel posture so as to correspond to the front fin portions 3a and rearward from the base portion 3A (3c, 3d). It is extended to.
  • a tube insertion hole 3e through which the heat transfer tube 4 passes is formed in the core portion 3c.
  • the front-side central fin portion 3a ′ extended from the core portion 3c of the front-side fin portion 3a and the rear-side central fin portion 3b ′ extended from the core portion 3c of the rear-side fin portion 3b Are arranged in the middle part of the front and rear to form a stopper insertion hole 3f for fixing the element.
  • each of the heat transfer elements 3 with the fin portions 3a and 3b having these vertical postures, a large heat transfer area and heat radiation area with respect to the ambient air of the heat transfer element 3 are ensured.
  • the cooling air around the heat transfer element 3 is naturally lowered smoothly through the vertical groove portion between the fin portions 3a and 3b, and uncooled room air is generated around the heat transfer element 3 accordingly. Try to be attracted smoothly.
  • the dew condensation water generated on the surface of the heat transfer element 3 is transferred to the surface of the heat transfer element 3 and smoothly flows down naturally.
  • the heating air around the heat transfer element 3 is smoothly raised naturally through a vertical groove portion between the fin portions 3a and 3b with a so-called chimney effect. Ensure that unheated room air is drawn smoothly around.
  • the rear surface portion and the left and right side surface portions of the flat heat transfer portion 2 have a rear surface plate portion 6 ⁇ / b> A and left and right side surface plate portions 6 ⁇ / b> B having a cross-sectional shape in a plan view It is blocked by a shaped blocking plate 6.
  • the boundary portion between the rear plate portion 6A and the left and right side portions 6B is an arcuate curved surface having a center on the inner side in plan view.
  • the closing plate 6 has a two-layer structure (an example of a multilayer structure) having a heat conducting material layer 6a and a heat insulating material layer 6b.
  • the inner surface side (corresponding to the front surface side in the rear surface plate portion 6A) of the blocking plate 6 facing the rear surface portion and the side surface portion of the flat heat transfer portion 2 is a thermally conductive plate material 6a having a glossy surface (in this example). (Aluminum plate).
  • the outer surface side (corresponding to the rear surface side in the rear surface plate portion 6A) of the closing plate 6 on the opposite side is formed of a heat insulating material 6b (in this example, foamed polystyrene).
  • condensation of the surface of the chamber wall K may occur due to the cooling of the chamber wall K on the rear side of the indoor unit as the heat transfer element 3 is cooled. Further, in the heating operation, the chamber wall K on the rear side of the indoor unit is heated as the heat transfer element 3 is heated, so that there is a possibility that the surface of the chamber wall K may be burned (colored).
  • the closing plate 6 have the two-layer structure as described above, in the cooling operation, cooling air is blocked by the closing plate 6 and diffused in the plate surface direction by the heat conducting material layer 6a on the inner surface side. Condensation on the chamber wall K is reliably prevented by the cold heat conduction and the heat insulation by the heat insulating material layer 6b on the outer surface side.
  • the inner surface side of the closing plate 6 is uniformly cooled in the plate surface direction by the diffusive cooling heat conduction in the plate surface direction by the heat conducting material layer 6a on the inner surface side, so that the flat transmission is achieved.
  • Air cooling in the heat section 2 is made more uniform and more efficient in the left-right width direction. This further promotes the outflow of cold air from the lower portion of the flat heat transfer section 2 and also improves the uniformity of the outflow of cold air in the left-right width direction.
  • the local low temperature on the front side of the closing plate 6 is avoided by the diffusive cooling conduction in the plate surface direction by the heat conducting material layer 6a as described above. Thereby, generation
  • the inner surface side of the closing plate 6 is uniformly heated in the plate surface direction by diffusive heat conduction in the plate surface direction by the heat conducting material layer 6a on the inner surface side, thereby flattening.
  • Air heating in the heat transfer section 2 is made more uniform and more efficient in the left-right width direction. This further promotes the warm air outflow from the upper part of the flat heat transfer section 2 and enhances the uniformity of the warm air outflow in the left-right width direction.
  • the heat radiation from the surface of the heat transfer element 3 toward the rear and the side is reflected by the glossy surface on the inner surface side of the closing plate 6, whereby the room from the flat heat transfer section 2 is reflected.
  • the heat radiation is further promoted and the uniformity of the heat radiation is enhanced.
  • each heat transfer element 3 has a longer forward length as it is located at the center in the left-right direction.
  • the virtual envelope in plan view that connects the tips of the front-side fin portions 3a is a pointed or semicircular curve that protrudes forward.
  • the rearward fin portions 3b of the heat transfer elements 3 have rearward extending lengths that are equal (or substantially equal) to each other.
  • the virtual envelope in plan view connecting the tips of the rear fin portions 3b is a straight line.
  • the heat transfer element 3 is manufactured by extrusion molding. And by this extrusion molding, each of fin part 3a, 3b, the core part 3c, the board
  • the rear fin portions 3b having the same extension length are arranged so as to extend downward. Then, extrusion molding is advanced in a state where the front end group of the rear surface side fin portion 3b is received and guided on the feeder.
  • the inner diameter of the tube insertion hole 3 e is made slightly larger than the outer diameter of the heat transfer tube 4. Thereby, after shaping
  • the diameter of the straight pipe portion 4a of the heat transfer pipe 4 is increased by applying a pressure such as hydraulic pressure in the pipe of the straight pipe portion 4a of the heat transfer pipe 4.
  • a pressure such as hydraulic pressure in the pipe of the straight pipe portion 4a of the heat transfer pipe 4.
  • the diameter expansion processing of the heat transfer pipe straight pipe portion 4a as described above is performed for each straight pipe portion 4a prior to connecting the straight pipe portions 4a of the heat transfer pipe 4 with the bend pipes 4b and 4c. Also good.
  • the meandering heat transfer tubes 4 may be formed by connecting the straight tube portions 4a of the heat transfer tubes 4 with the bend tubes 4b and 4c, and then the plurality of straight tube portions 4a may be performed simultaneously.
  • tube parts 4a of the heat-transfer tube 4, and the bend pipes 4b and 4c connected to these protrusion parts are pinched and hold
  • the back panel of the upper and lower divided structure is used as the exterior material on the back side of the indoor unit on the back surface of the blocking plate 6 (that is, the back surface of the heat insulating material layer 6 b on the outer surface side). 7 is attached in a surface contact state.
  • the upper and lower ends of the rear panel 7 are rear panels of the upper body frame 1A and the lower body case 1B, respectively.
  • the outer frame of the left and right machine body side frames 1 ⁇ / b> C extends in the vertical direction, and the upper and lower end parts are side panels of the machine body upper frame 1 ⁇ / b> A and the machine body lower case 1 ⁇ / b> B. It is formed by the left and right side surface plate portions 6B of the closing plate 6 serving as side surfaces.
  • a side frame 9 extending in the vertical direction is arranged in a state where the left and right side plate portions 6B of the closing plate 6 are in surface contact with each other.
  • the outer frame of the fuselage upper frame 1 ⁇ / b> A includes a front panel 10, an upper panel 11, upper ends of the rear panel 7, and upper ends of the left and right side panels 8. And a cap panel 8 a that closes the upper end opening of the side panel 8.
  • a plurality of upper notches 10b are arranged in the left and right directions to form a wave shape.
  • the lower portion 10c of the front panel 10 in the upper frame 1A of the airframe is inclined so that the lower side is retracted backward.
  • the inclined portion 10c forms a lower surface portion of the machine body upper frame 1A together with the rearward extending portion 10a continuous with the inclined portion 10c.
  • the inclined portion 10c in the front panel 10 of the machine body upper frame 1A constitutes an airflow guide surface with respect to the upper portion of the flat heat transfer section 2.
  • a pair of front and rear upper frames 12 and a pair of front and rear element upper support frames 13 below are arranged inside the machine body upper frame 1A.
  • the top panel 11 is attached to the front and rear upper frames 12.
  • the front panel 10, the front and rear upper frames 12, and the front and rear element upper support frames 13 are connected to the left and right side frames 9, respectively.
  • the outer casing of the lower case 1 ⁇ / b> B includes a front panel 14, a rear upper panel 15 that receives the lower end of the closing plate 6, a lower end of the rear panel 7, It is formed with the lower ends of the left and right side panels 8.
  • a plurality of lower notches 14b serving as insertion holes through which the lower end portions of the respective heat transfer elements 3 are inserted are arranged in the left and right directions to form a wave shape.
  • the rear upper surface panel 15 is formed with engaging protrusions 15a that are engaged with and connected to the tops of the wavy portions of the rear extension 14a.
  • the upper part 14c of the front panel 14 in the machine body lower case 1B is in an inclined posture that retreats backward as it goes upward.
  • the inclined portion 14c forms an upper surface portion of the machine body lower case 1B together with the rearward extending portion 14a continuous with the inclined portion 14c.
  • the inclined portion 14c in the front panel 14 of the lower body case 1B constitutes an airflow guide surface with respect to the lower portion of the flat heat transfer section 2.
  • a pair of front and rear lower frames 16 and a pair of front and rear element lower support frames 17 above the lower frame 16 are arranged inside the machine body lower case 1B.
  • the front panel 14, the rear upper panel 15, the front and rear lower frames 16, and the front and rear element lower support frames 17 are respectively connected to the left and right side frames 9.
  • a drain pan 18 for receiving condensed water flowing down from each heat transfer element 3 during the cooling operation is provided between the front and rear lower frames 16 and the front and rear element lower support frames 17 positioned above the lower frame 16. Is arranged.
  • the fuselage lower case 1B is internally provided with a drain pump 20 for discharging the condensed water received in the drain pan 18 to the outside through the drain pipe 19.
  • a base 21 is attached to the lower surface of the fuselage lower case 1B. That is, the indoor unit 1 is. It is installed indoors through this base 21.
  • the pair of front and rear element lower support frames 17 disposed in the lower case 1B is substantially L-shaped in cross section.
  • the frame material is formed.
  • These front and rear element lower support frames 17 are arranged in a line-symmetric posture in which the inner portions of the L-shaped cross-sectional shape face each other and the one side 17a is substantially horizontal in a side view. It is.
  • front and rear element lower support frames 17 are arranged in a parallel posture in which a gap S1 is formed between them in this line-symmetric posture.
  • each element lower support frame 17 in the state which straddled the shallow container-like resin drain receptacle 22 extended in the left-right direction on the one side part 17a before and behind these, It is placed in a hollow shape via a pair of leg portions 22 ⁇ / b> C formed on the lower surface of the receiver 22.
  • the drain receiver 22 is formed of a resin (ABS resin in this example) which is a material having a lower heat conductivity than the metal material constituting the element lower support frame 17.
  • dew condensation water flowing down from each of the heat transfer elements 3 flows down to the drain pan 18 side at the front and rear center portions of the bottom portion 22A of the drain receiver 22 and over the substantially entire length in the longitudinal direction (left and right direction).
  • a common slit-shaped drain port portion 22a to be guided is formed.
  • a rectangular tubular drain tube portion 22D communicating with the drain port portion 22a is formed.
  • the slit-shaped drain tube portion 22D of the drain receiver 22 is arranged between the element lower support frames 17 from above. It is made to face the lower drain pan 18 from directly above by being inserted into the gap S1 between the two.
  • the drain cylinder 22D of the drain receiver 22 protrudes to a lower position than the side edge portion 17e bent downward along the gap S1 side in one side portion 17a of the horizontal posture of the front and lower element lower support frames 17. It is formed to do.
  • the drain receiver 22 receives the condensed water flowing down from the surface of the heat transfer element 3 by the drain receiver 22 and guides the condensed water to the drain pan 18 without touching the front and rear element lower support frames 17. Is configured to do.
  • the heat transfer element 3 is supported by the front and rear element lower support frames 17 via the drain receiver 22 by placing the lower end of the heat transfer element 3 on the bottom of the resin drain receiver 22.
  • the lower bend pipe 4c which is a heat transfer pipe protruding from the lower end of the heat absorbing / dissipating element 3, is not in contact with the slit-shaped drain cylinder 22D of the drain receiving tool 22 having an opening width larger than the outer diameter from above. Insert in the state.
  • the lower end of the heat transfer element 3 is fixedly connected to the front and rear element lower support frames 17 by an element fixing screw 23 as a stopper in a state where it is placed on the drain receiver 22.
  • the element fixing screw 23 is inserted from below into a through hole 17f formed in one side 17a of the front and rear element lower support frames 17 and a through hole 22h formed in the leg 22C of the drain receiver 22. Then, the lower end of the heat transfer element 3 is fixedly connected to the front and rear element lower support frames 17 by screwing the front end side of the element fixing screw 23 to the lower end of the stopper insertion hole 3f in the heat absorbing / dissipating element 3. .
  • the lower bend pipe 4c and the heat transfer element 3 are not in direct contact with the front and rear element lower support frames 17, and the lower bend pipe 4c is not subjected to a supporting load (particularly gravity load).
  • the heat transfer element 3 is supported by the front and rear element lower support frames 17.
  • the bottom 22A of the drain receiver 22 is formed in a rounded rectangular outline in which the corners of the four corners are formed in an arc shape.
  • a side wall 22B is integrally formed on the periphery of the bottom 22A.
  • the upper surface of the bottom portion 22A of the drain receiver 22 has a number of strip-shaped mounting surfaces 22b along the front-rear direction that contact the lower end surface of the heat transfer element 3 and dew condensation water flowing down from each of the heat transfer elements 3.
  • a large number of flow guide grooves 22 d that are guided along the direction to the slit-shaped drain port portion 22 a are alternately arranged along the longitudinal direction of the drain receiver 22.
  • the leg portion 22C of the drain receiving tool 22 includes an annular leg plate 22e, a reinforcing plate 22f, and a reinforcing cylindrical body 2g.
  • the annular leg plate 22e is integrally formed on the bottom surface of the bottom portion 22A in a state where an annular rectangular space is formed between the annular leg plate 22e and the outer peripheral surface of the drainage cylinder portion 22D. Further, the reinforcing plate 22f and the reinforcing cylindrical body 2g are integrally formed at a plurality of locations between the inner peripheral surface of the annular leg plate 22e and the outer peripheral surface of the drain tube portion 22D.
  • a space S ⁇ b> 4 is formed between the lower surface of the bottom portion 22 ⁇ / b> A of the drain receiver 22 and the upper surface of the one side portion 17 a of the element lower support frame 17. That is, the presence of the space S4 can further effectively suppress the propagation of cold heat from the heat transfer element 3 to the element lower support frame 17.
  • the front-rear width of the drain receiver 22 is larger than the front-rear width of the lower end surface of the heat transfer element 3 and the maximum front-rear width of the element lower support frame 17 in the attached state (maximum front-rear width of attachment). Further, the length of the drain receiving tool 22 in the left-right direction is slightly longer than the parallel arrangement size of the heat transfer elements 3.
  • the front-rear width of the drain pan 18 is larger than the front-rear width of the arrangement area of the front and lower element lower support frames 17. Further, the front-end refracting portion 17c of the other side portion 17b in the L-shaped cross-sectional shape of the front and rear element lower support frames 17 is located on the lower side of each element lower support frame 17 in the above-described line-symmetrical arrangement, and the lower side. Inclined posture approaching the front and rear and the inner side.
  • the pair of front and rear element upper support frames 13 arranged in the upper body frame 1 ⁇ / b> A is also a frame having a substantially L-shaped cross section like the element lower support frame 17. It is made of material.
  • These front and rear element upper support frames 13 are lines in which the inner portions in the L-shaped cross-sectional shape thereof face each other in the side view and the tip refracting portions 13c in the other side portions 13b are substantially horizontal. They are arranged in a symmetrical posture.
  • the front and rear element upper support frames 13 are arranged in a parallel posture in which the gap S2 is formed between them in this line target posture.
  • the upper end of the heat transfer element 3 is inserted through the upper bend pipe 4b, which is a heat transfer pipe protruding from the upper end, into the gap S2 having an opening width larger than the outer diameter from below.
  • the upper end of the heat transfer element 3 is opposed from the lower end to the tip refracting portion 13c of the other side portion 13b in each element upper support frame 13. Further, an accommodation gap S3 is provided between the upper end of the heat transfer element 3 and the lower surface of the tip refracting portion 13c.
  • the upper end of the heat transfer element 3 is fixed to the front and rear element upper support frames 13 by an element fixing pin 24 as a stopper.
  • the element fixing pins 24 are penetrated from the upper side to the front end refracting portions 13c of the front and rear element upper support frames 13.
  • the tip end side of the element fixing pin 24 is inserted into the upper end portion of the stopper insertion hole 3 f in the heat absorbing / dissipating element 3 to be fastened to the element upper support frame 13 before and after the upper end of the heat transfer element 3.
  • the upper bend pipe 4b and the heat absorbing / dissipating element 3 are not in direct contact with the element upper support frame 13, and the upper bend pipe 4b is supported with a supporting load (particularly horizontal).
  • the upper end portion of the heat transfer element 3 is supported by the front and rear element upper support frames 13 without applying a load having a directional component.
  • the other side portion 13b in the L-shaped cross-sectional shape of the front and rear element upper support frames 13 is positioned on the lower side of each element upper support frame 13 in the above-described line-symmetrical arrangement, and the tip refracting portion 13c in a horizontal posture is provided. Except for this, the lower side is inclined to the front / rear / inward side.
  • the element fixing screw 23 and the element fixing pin 24 prevent the heat transfer element 3 from being displaced in the horizontal direction and rotating around the vertical axis. Further, the lower end of the heat transfer element 3 is connected to the element lower support frame 17 by the element fixing screw 23 to prevent the heat transfer element 3 from being lifted.
  • the upper end of the heat transfer element 3 is made to face the tip refracting portion 13c of the element upper support frame 13 with a clearance gap S3, and the upper end of the heat transfer element 3 is made to be an element fixing pin 24 for the stopper insertion hole 3f.
  • the heat transfer element 3 is thermally expanded and contracted by cooling and heating, and the element fixing pin 24 and the stopper insertion hole 3f are slid relative to each other in the vertical direction. Allow in the state to be allowed.
  • the pair of front and rear upper frames 12 are formed of a frame material provided with a C-shaped guide groove 12a having a cross-sectional shape opened upward. These upper frames 12 are arranged in a state in which the opening of the guide groove 12a is exposed indoors along the side edge of the top panel 11 in the fuselage upper frame 1A.
  • the guide groove 12a is in a state along the rear wall surface K.
  • the bolt head of one bolt 25 is engaged with the guide groove 12a of the upper frame 12 on the rear side.
  • the bolt 25 is slidably moved in the left-right direction along the guide groove 12a by the guide of the guide groove 12a as a slide member.
  • the bolt 25 as a slide member is prevented from being detached from the guide groove 12a and rotating due to the engagement between the bolt head and the guide groove 12a.
  • the bolt 25 is connected with a fall prevention tool 27 having an L-shaped cross section by a nut 26.
  • a fall prevention tool 27 having an L-shaped cross section by a nut 26.
  • the overturn prevention tool 27 includes a horizontal piece portion 27a that is a connecting portion to the bolt 25, a vertical piece portion 27b that is bent at right angles to the horizontal piece portion 27a, and a horizontal piece portion thereof.
  • 27a includes a pair of tongue pieces 27c that are bent at a right angle to the side opposite to the vertical piece 27b with respect to the horizontal piece 27a.
  • FIG. 16 (a) shows the overturn prevention tool 27 before molding in which the vertical piece 27b and the pair of tongue pieces 27c are bent at right angles to the horizontal piece 27a.
  • a long screw hole 27d that is long in the front-rear direction for inserting the bolt 25 is formed.
  • the fall prevention tool 27 is connected and fixed to the wall surface K by screwing the screws 27f into the wall surface K through these screw holes 27e.
  • the pair of tongue pieces 27c are in sliding contact with the opening edge of the guide groove 12a.
  • the fall prevention tool 27 is maintained in a posture in which the vertical piece portion 27 b faces the wall surface K (that is, an appropriate connection posture with respect to the wall surface K).
  • the rotation of the fall prevention tool 27 is prevented by the contact of the pair of tongue pieces 27c with the opening edge of the guide groove 12a.
  • the fall prevention tool 27 is maintained in an appropriate connection posture with respect to the wall surface K.
  • a pair of tongue pieces 27c in a posture orthogonal to the wall surface K may be provided on the left and right sides of the horizontal piece portion 27a.
  • the lateral piece 27a is formed into a bifurcated shape having two tip portions. And while providing the screw hole 27d in each of these two front-end
  • tongue pieces 27c may be formed in a cut-and-raised form on the left and right sides of the screw hole 27d in the horizontal piece portion 27a.
  • the pair of front and rear lower frames 16 is formed of a frame material having a C-shaped engagement groove portion 16 a having a cross-sectional shape opened downward.
  • These lower frames 16 are provided with a base 21 by means of a base connecting bolt 28 that is prevented from being detached and rotated by inserting a bolt head inside the engaging groove 16 a and a nut 29 that is screwed to the bolt 28. Are connected.
  • the upper frame 12 and the lower frame 16 provided with engaging groove portions 12a and 16a having a C-shaped cross section are formed of a common frame material. That is, the common frame material provided with the engaging groove portions 12a and 16a is used by changing the posture between the state where the engaging groove portions 12a and 16a are located at the upper portion of the frame and the state where the engaging groove portions 12a and 16a are located at the lower portion of the frame.
  • the frame material is used for both the upper frame 12 and the lower frame 16.
  • the element upper support frame 13 and the element lower support frame 17 having an L-shaped cross section are formed of a common frame material. That is, the common frame member having the L-shaped cross-sectional shape has the side portions 13a and 17a in the L-shaped cross-sectional shape in a horizontal posture, and the tip refracting portions 13c and 17c in the other side portions 13b and 17b
  • the common frame material is used as both the element upper support frame 13 and the element lower support frame 17 by changing the posture to the horizontal posture.
  • the box lower case portion 1B is filled with a box-shaped molded heat insulating material 30 as a gap filling material.
  • a housing portion 30 a that is, a housing space that houses the element lower support frame 17 and the drain pan 18 is formed.
  • the outer shape of the molded heat insulating material 30 is shaped to match the inner surface of the front panel 14 and the inner surface of the back panel 7 of the lower case 1B.
  • this molded heat insulating material 30 is divided into two parts, a front divided part 30A and a rear divided part 30B. And the front side division
  • segmentation part 30A is attached to the inner surface of the front panel 14 of the fuselage lower case 1B.
  • the rear divided portion 30B is attached to the inner surface of the lower end portion of the rear panel 7 of the lower body case 1B.
  • the front panel 14 and the rear panel 7 of the lower body case 1B are assembled so that the molded heat insulating material 30 is filled inside the lower body case 1B.
  • the partition portion 30 c positioned between the lower end portions of the heat transfer element 3, and the drain receiver 22.
  • the upper closed portion 30b is formed so as to enter between the upper surface and the inner surface of the lower case portion 1B.
  • the lower half side 30 d of the storage portion 30 a in the molded heat insulating material 30 is shaped to be in close contact with the outer surface of the drain pan 18. That is, the close contact of the lower half side 30d with the drain pan 18 prevents the occurrence of condensation on the outer surface of the drain pan 18, and reduces the dripping sound of the condensed water when the condensed water is received by the drain pan 18.
  • a mounting recess 30e into which the bowl-shaped upper edge portion 18a of the drain pan 18 enters is formed.
  • a gap 30 f for disposing the drain pump 20 and the drain pipe 19 is formed on the lower side inside the molded heat insulating material 30. That is, by covering the drain pump 20 and the drain pipe 19 with the molded heat insulating material 30, the drainage sound accompanied by the operation sound of the drain pump 20 is reduced by the sound insulating action or the sound absorbing action by the molded heat insulating material 30.
  • the left and right side portions of the molded heat insulating material 30 are provided with through holes 30g for penetrating the left and right side portions of the lower frame 16 and through holes 30h for penetrating the left and right side portions of the drain pan 18 in the storage portion 30a. It is formed in communication.
  • an engaging portion for assembly comprising a pair of concave stripes 30i and a pair of convex stripes 30k extending in the left-right width direction. Is formed.
  • the molded heat insulating material 30 is brought into close contact with the inner surface of the machine lower case B and the outer surface of the drain pan 18. Cover internal equipment. Thereby, the cold-fall air from the flat heat transfer part 2 is prevented from entering the inside of the fuselage lower case 1B.
  • the left and right airframe side frames 1 ⁇ / b> C are filled with a molded heat insulating material 31 interposed between the side panel 8 and the side frame 9.
  • the outer shape of the molded heat insulating material 31 is shaped to match the inner surface of the side panel 8 and the outer surface of the side frame 9. With the formation of the molded heat insulating material 31, the occurrence of condensation on the outer surface of the side panel 8 is prevented.
  • a heat insulating material layer on the outer surface side of the closing plate 6 is provided between the heat conducting material layer 6a on the inner surface side of the left and right side surface plate portions 6A of the closing plate 6 and the inner side surface of the side frame 9 that is closely opposed thereto. 6b intervenes. Thereby, the cold heat conduction to the side frame 9 is suppressed.
  • both end portions of the pair of front and rear element lower support frames 17 are arranged in such a manner that the heat insulating spacer 32 made of resin is interposed between the side frame and the side frame. 9 is connected. Thereby, the cooling heat conduction from the element lower support frame 17 to the side frame 9 is also suppressed, and the generation of condensation on the side frame 9 and the generation of condensation on the outer surface of the side panel 8 are more reliably prevented. .
  • notches 31a for pipe insertion extending in the vertical direction are formed in the molded heat insulating material 31 in the left and right machine body side frames 1C. That is, the transition refrigerant pipe 5a connected to one end of the meandering heat transfer pipe 4 at the lower part of the flat heat transfer part 2 is guided to the upper body frame 1A through the pipe insertion notch 31a in the left and right machine body side frames 1C.
  • drain pipe 19 from the drain pan 18 is led to the machine body upper frame 1A through a pipe insertion notch 31a in the left and right side case part 1C.
  • transition refrigerant pipe 5a and the drain pipe 19 led to the upper part through these notches 31a for pipe insertion, and the transition refrigerant pipe 5b connected to the other end of the meandering heat transfer pipe 4 at the upper part of the flat heat transfer part 2.
  • the pipes are extended outside the machine upper frame 1A in a state where they are gathered.
  • the three pipes 5a, 5b, and 19 can be extended to the outside by using a piping through hole in the upper part of the chamber wall used in a general wall-mounted air conditioner.
  • a heat insulating material 6 c connected to a heat insulating material layer 6 b on the rear surface side of the closing plate 6 in the assembled state is provided on the inner surface of the upper surface of the rear panel 7 which is the rear surface panel of the aircraft upper frame 1 ⁇ / b> A. Attached.
  • the fuselage upper frame 1 ⁇ / b> A includes operations for turning on and off operation lamps and abnormal lamps provided on the front panel 10, processing of a remote control transmission signal received by a receiver provided on the front panel 10, and the like.
  • a controller 33 is provided for performing the operation.
  • the drain pan 18 is provided with a strainer 34 that collects foreign matters such as dust in the drainage discharged to the drain pipe 19, and a drain port of the drain pan deep bottom portion 18 a (that is, the drain pipe 19. (Connection port).
  • the drain pan 18 is provided with first and second float switches 35a and 35b that are turned on and off by a change in the water level in the drain pan 18 as a water level detecting means for detecting the water level in the drain pan 18, and the deep bottom portion 18a of the drain pan 18 and its Equipped separately at the bottom of the neighborhood.
  • the controller 33 also performs drainage control such as starting and stopping the drain pump 20 based on the on / off operation of the float switches 35a and 35b as drainage control means.
  • the first float switch 35a is turned on when the water level in the drain pan 18 becomes equal to or higher than the set drainage water level L1. Further, the first float switch 35a is turned off when the water level in the drain pan 18 becomes lower than the set drainage water level L1.
  • the second float switch 35b is turned on when the water level in the drain pan 18 becomes equal to or higher than the set upper limit water level L2. Further, the second float switch 35b is turned off when the water level in the drain pan 18 becomes lower than the set upper limit water level L2.
  • the upper limit water level L2 is higher than the set drainage water level L1.
  • the controller 33 performs a control operation as follows based on the on / off operation of the float switches 35a and 35b (see FIGS. 20 to 22).
  • the controller 33 starts the operation of the drain pump 20. Thereby, drainage from the drain pan 18 is started.
  • the controller 33 When the water level in the drain pan 18 falls below the set drainage water level L1 due to the start of drainage and the first float switch 35a is turned off, the controller 33 starts measuring the set drainage time T1. Then, when the set drainage time T1 elapses from the time when the first float switch 35a is turned off at this time, the controller 33 stops the operation of the drain pump 20. Thereby, drainage from the drain pan 18 is stopped.
  • the dew condensation water continuously flows into the drain pan 18, whereas the water level in the drain pan 18 is intermittently operated by the drain pump 20 based on the on / off operation of the first float switch 35a as described above. Is kept lower than the set upper limit water level L2, which is the on / off water level of the second float switch 35b.
  • the controller 33 causes the first float switch to move forward. While the operation of the drain pump 20 by the ON operation of 35a is continued, the operation of the compressor is stopped and the circulation of the refrigerant R is stopped (that is, the cooling operation is stopped). Thereby, new generation
  • the controller 33 counts the set maintenance time T2. To start. Then, when the set maintenance time T2 has elapsed from the time when the second float switch 35b is turned off at this time, the controller 33 starts the operation of the drain pump 20 when the water level in the drain pan 18 rises to the set drainage water level L1. Stop.
  • the operation of the drain pump 20 over the set maintenance time T2 avoids unnecessary operation of the drain pump 20 in a state where the cooling operation is stopped while reliably draining a large amount of stored water in the drain pan 18.
  • the controller 33 sets the time limit for each start of operation of the drain pump 20 in parallel with the start / stop operation of the drain pump 20 based on the on / off operation of the first and second float switches 35a and 35b as described above. Start timing of T3. Then, when the operation of the drain pump 20 is continued until the time when the setting time limit T3 elapses in the time counting of the setting time limit T3, the time when the setting time limit T3 has elapsed since the start of the operation of the drain pump 20 as an abnormality. Thus, the operation of the drain pump 20 is forcibly stopped.
  • the set time limit T3 is considerably longer than the set drainage time T1 and the set maintenance time T2.
  • the water level in the drain pan 18 is set by drainage by operation of the drain pump 20, including drainage of residual condensed water that flows into the drain pan 18 even after the second float switch 35b is turned off.
  • the time required for the maintenance time T2 to drop from the water level at the start of timing (that is, the water level at which the second float switch 35b is turned off) to the drain port of the drain pan 18 (that is, near the bottom surface of the drain pan deep bottom portion 18a) is set. It is.
  • the set drainage time T1 is set as the drainage port portion of the drain pan 18 from the water level at the time when the first float switch 35a is turned off by the drainage due to the operation of the drain pump 20 as the set drainage time T1.
  • the time required to decrease to the vicinity of the bottom surface of the drain pan deep bottom portion 18a is set.
  • the capacity of the drain pan 18 is not limited to the total amount of residual condensed water flowing into the drain pan 18 even after the compressor is stopped by the ON operation of the second float switch 35b (at the time of the ON operation of the second float switch 35b). Including the amount of water in the drain pan 18). Thereby, even when the cause of the drainage failure is a failure of the drain pump 20 itself, it is possible to reliably avoid a water leakage trouble in which the stored water overflows from the drain pan 18.
  • the drain pump 20 is a pump having a check valve function. As a result, the backflow of the drainage from the drain pipe 19 toward the drain pan 18 is prevented.
  • the drain pipe 19 is formed with a pocket pipe portion 19 a that extends downward from the drain port portion of the drain pan 18 and then extends upward.
  • the drain pump 20 is interposed in this pocket piping part 19a (namely, piping part used as a water pool state) in the position lower than the deep bottom part 18a of the drain pan 18.
  • the drain pump 20 is operated idly (that is, the suction water is sufficiently charged) (Pump operation in the absence).
  • the heat medium R passed through the heat transfer tube 4 may be cold water, brine, ice water slurry, hot water, steam, or the like instead of the refrigerant used in the heat pump.
  • the rear plate portion 6A and the side plate portion 6B may have a multilayer structure of three or more layers instead of the two-layer structure including the heat conducting material layer 6a and the heat insulating material layer 6b.
  • the rear surface portion of the flat heat transfer portion 2 may be partially constituted by a member other than the rear plate portion 6A, or may be partially opened as a gap, instead of being entirely closed by the rear plate portion 6A. Good.
  • a part of the side surface portion is constituted by a member other than the side surface plate portion 6B, or a part thereof is opened as a gap. Etc.
  • the upper end of the vertical heat transfer element 3 constituting the flat heat transfer section 2 is fixed to the element upper support frame 13 in a state allowing thermal expansion and contraction in the vertical direction by an engagement structure and a fitting structure other than the pins. May be.
  • the upper end portion of the heat transfer element 3 in the vertical posture is fixed to the element upper support frame 13 by an elastic member such as a coil spring or a columnar rubber material, thereby allowing the heat transfer element 3 to be thermally expanded and contracted in the vertical direction. You may do it.
  • the element upper support frame 13 can be moved up and down by a connecting structure such that both end portions of the element upper support frame 13 are inserted into elongated holes formed in the side frame 9. Thermal expansion and contraction in the direction may be allowed.
  • each of the element lower support frame 17 and the element upper support frame 13 is not limited to the cross-sectional shape shown in the first embodiment, and various changes can be made.
  • a plurality of drain ports 22a for guiding the condensed water flowing down from each heat transfer element 3 to the drain pan 18 may be formed.
  • a separate drain receiver 22 may be disposed between the element lower support frame 17 and the lower ends of the plurality of heat transfer elements 3.
  • each of the drain receiver 22 and the drain pan 18 is not limited to the cross-sectional shape shown in the first embodiment, and various changes can be made.
  • the drain receiver 22 is not limited to resin, and may be a low heat transfer metal, ceramic, or a resin film formed by appropriate means such as resin coating around the metal.
  • the gap filling material that prevents intrusion of cool air descending from the flat heat transfer section 2 may be disposed only on the upper part of the lower case 1B.
  • the gap filling material may be a sheet-like or putty-like heat insulating material.
  • the specific structure of the element lower support frame 17 that supports the lower end portion of the heat transfer element 3 is not limited to the structure shown in the first embodiment, and various modifications can be made.
  • the controller 33 as the drainage control means stops the cooling operation by stopping the compressor and operates the drain pump 20.
  • the operation of the drain pump 20 is started at the time when the set maintenance time T2 has elapsed from the time when the second float switch 35b is turned on. May be configured to stop (see FIG. 23).
  • the set maintenance time T2 is the total amount of residual condensed water that flows into the drain pan 18 even after the cooling operation is stopped in response to the detected water level rising to the set upper limit water level L2 (second float). It is desirable to set the time required for draining from the drain pan 18 by the operation of the drain pump 20 (including the stored water already present in the drain pan 18 when the switch 35b is turned on).
  • water level detection means for the drain pan 18 various types of detection methods such as an electrode type and a pressure type can be adopted.
  • the controller 33 may be notified of the occurrence of an abnormality along with the cooling operation being stopped.
  • the drain pump 20 may be disposed at a location that is substantially the same height as the drain pan 18 or at a location that is somewhat higher than the drain pan 18. .
  • a missing portion for accommodating the drain pump 20 is formed at the location where the drain pump 20 is arranged in the columnar molded heat insulating material 31 in the left and right one of the machine body side frames 1C.
  • the drain pump 20 when the drain pump 20 is disposed in the lower space portion of the drain pan 18, it is possible to expect a silencing effect on the pump operation sound of the molded heat insulating material 30 (30a, 30b) surrounding the drain pump 20.
  • the pump operation sound is in a state where it falls over the lower space portion of the drain pan 18, and the molded heat insulating material 30 (30a, 30b) vibrates with the operation of the drain pump 20.
  • the drain pump 20 is arranged in the columnar space between the side frame 9 and the side panel 8 as described above, the acoustic discomfort due to such a pumping noise is effective. Can be avoided.
  • the flat heat transfer section 2 is not limited to be configured by juxtaposing the heat transfer elements 3 penetrating the heat transfer tubes 4, but may also be configured by bringing the heat transfer tubes 4 into close contact with the plate-shaped heat transfer elements in a vertical posture. Often. Various modifications of the specific structure of the flat heat transfer section 2 are possible.
  • [Second Embodiment] 24 to 32 show a second embodiment of the indoor unit 1.
  • symbol used in 1st Embodiment is stopped, and the detailed description is abbreviate
  • the rear surface portion and the side surface portion of the flat heat transfer portion 2 composed of the juxtaposed group of the heat transfer elements 3 in the vertical posture are closed by the closing plate 6, whereas FIG. 29 and FIG. 32, the air inflow portion 47 for allowing the air IA to flow from the rear side into the arrangement portion of the flat heat transfer portion 2 in the heating operation is representatively shown in the rear plate portion 6A of the closing plate 6 as shown in FIGS. It is provided at the middle in the vertical direction.
  • the air IA in the rear space is transferred to the flat heat transfer portion 2 through the air inflow portion 47 by the attracting action by the rising draft flow DA of the warm air generated in the flat heat transfer portion 2 as the heat transfer element 3 is heated. It is made to flow into the arrangement part.
  • the rear plate portion 6A of the closing plate 6 is composed of an upper plate portion 48 disposed on the upper side and a lower plate portion 49 disposed on the lower side.
  • the upper plate portion 48 that is on the downstream side in the flow direction of the rising draft flow DA during the heating operation is positioned on the rear side of the lower plate portion 49. .
  • the lower portion 48b of the upper plate portion 48 and the upper portion 49c of the lower plate portion 49 are wrapped in a front-rear direction view. That is, in this lap portion, a cylindrical gap formed between the lower portion 48 b of the upper plate portion 48 and the upper portion 49 c of the lower plate portion 49 is used as the air inflow portion 47.
  • the air inflow portion 47 includes a cylindrical air guide path 47b formed of the cylindrical gap.
  • the air guide path 47b includes an air outlet 47a that opens toward the upper side, which is the downstream side of the rising draft flow DA.
  • forward-facing leg portions 48 c are formed on the left and right side portions of the upper plate portion 48.
  • An attachment piece 48d is formed on the tip side of the leg 48c. That is, by fixing the attachment piece portion 48d to the side frame 9 with a fixing tool such as a fixing screw, the flat heat transfer portion 2 in a state where the upper side plate portion 48 is positioned behind the lower side plate portion 49. It is arrange
  • the heat between the upper plate 48 and the side frame 9 is between the mounting piece 48d of the leg 48c and the side frame 9 and the side plate 6B.
  • a heat insulating material 45 that suppresses conduction is interposed.
  • the air inflow portion 47 is provided in the upper end side portion of the rear plate portion 6A in the closing plate 6 (that is, the downstream portion in the flow direction of the upward draft flow DA with respect to the air inflow portion 47). Is provided with an air outflow portion 43 for flowing out the inflow air IA from the flat heat transfer portion 2.
  • the air outflow portion 43 has an opening shape that is congruent with the above-described cylindrical air guide path 47b in a plan view, and is open upward.
  • the flat heat transfer portion 2 is arranged by the attracting action by the rising draft flow DA of the warm air generated in the flat heat transfer portion 2 in the heating operation.
  • An auxiliary air inflow portion 44 through which the air IA flows from the side is provided.
  • the auxiliary air inflow portion 44 is specifically composed of two vertically long openings 48e formed in each of a pair of left and right legs 48c in the upper plate portion 48.
  • the lower plate portion 49 is formed by laminating a heat conducting material layer 49a, a heat insulating material layer 49b, and a back panel 49d on the front side. Further, in this lamination, the heat insulating material layer 49b is put in the concave surface portion 49e on the back side of the heat conducting material layer 49a on the front side.
  • the lower plate portion 49 is fixed to the lower half of the rear surface portion of the flat heat transfer portion 2 by fixing the right and left side edges of the heat conducting material layer 49a and the back panel 49d to the side frame 9 with fixing screws or the like. It is arranged.
  • the induced air IA is rectified in the process of passing through the cylindrical air guide path 47b provided with the upward draft flow DA and the upward air outlet 47a in the same direction as the flow direction, thereby the flat heat transfer section.
  • the inflow of the attraction air IA to the arrangement portion 2 becomes more efficient and further stabilized.
  • the lower plate portion 49 that is downstream in the flow direction of the descending draft flow DA ′ during the cooling operation is disposed behind the upper plate portion 48, and The lower part 48b and the upper part 49c of the lower plate part 49 are wrapped in the front-rear direction view.
  • a cylindrical gap formed between the lower portion 48b of the upper plate portion 48 and the upper portion 49c of the lower plate portion 49 may be used as the air inflow portion.
  • the flat heat transfer section 2 in the cooling operation is caused by causing the air IA in the rear space to flow into the arrangement section of the flat heat transfer section 2 through the air inflow section by being attracted by the descending draft flow DA ′ during the cooling operation. It is possible to promote cold air outflow from the lower part of the room to the room and to promote heat exchange between the heat transfer element 3 and the air in the flat heat transfer part 2.
  • a plurality of guide blades 35 (an example of inflow direction changing means) whose posture can be changed by turning around an axial center along the left-right width direction at least in the middle in the vertical direction of the rear plate portion 6. It may be configured to change the inflow direction of the air IA into the element accommodating portion 2 by changing the posture of the guide blade 35.
  • the inflow direction of the air IA from the air inflow portion 47 to the flat heat transfer portion 2 is optimized according to the operating condition (heating operation, cooling operation, operation output) of the indoor unit 1 and the indoor condition. Can be a thing.
  • the air IA can be smoothly flown in a state where there is little attraction resistance in the heating operation by making the inflow direction of the air IA obliquely upward by changing the posture of the guide blade 55. It is possible to promote the outflow of warm air from the upper part of the flat heat transfer section 2 into the room.
  • the inflow direction of the air IA is inclined downward, so that the air IA can smoothly flow in the state of low attraction resistance even in the cooling operation, and the flat heat transfer section 2 The cold air outflow from the lower part into the room can be promoted.
  • an opening / closing door 56 (an example of an inlet opening / closing means, an example of an opening area adjusting means) that can open and close the air inflow portion 47 may be provided.
  • the use form which attracts air IA from the air inflow part 47 to the flat heat-transfer part 2 by the opening and closing of the door 56, and the use which does not attract air IA from the air inflow part 47 to the flat heat-transfer part 2 The form can be optimized according to the operation status (heating operation, cooling operation, operation output) of the indoor unit 1 and the indoor condition.
  • the opening degree of the opening / closing door 56 the amount of air that flows into the flat heat transfer section 2 from the air outflow section 47 depends on the operation status (heating operation, cooling operation, operation output) of the indoor unit 1 and the indoor conditions. Can be optimized.
  • the opening / closing door 56 is fully opened during heating operation, and air IA is caused to flow from the air inflow portion 47 to the flat heat transfer portion 2 by the attraction action by the draft flow DA during heating. It becomes possible to promote the outflow of warm air from the upper part of the flat heat transfer section 2 into the room.
  • the air inflow portion 47 is configured by a gap formed between the plurality of plate portions 48 and 49 has been described as an example, but for example, an opening portion formed through a single plate. You may comprise from.
  • the flat heat-transfer part 2 is the front and side of the indoor unit 1 You may make it open with respect to the direction.
  • the front surface of the rear plate portion 6A is a glossy surface
  • the front surface of the rear plate portion 6A is not necessarily a glossy surface
  • the air conditioner according to the present invention can be used for air-conditioning areas for various uses in various fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

 静寂な空調装置を提供する。 熱媒Rが通過する伝熱管4を備える偏平伝熱部2を設け、この偏平伝熱部2を、縦姿勢に配置するとともに、空調対象域に対して面対向状態で露出させ、前記熱媒Rにより前記伝熱管4を冷却して前記偏平伝熱部2を吸熱作用させる冷房運転の際に前記偏平伝熱部2で発生した結露水が流下するのに対して、その結露水を受け入れるドレンパン18を設ける空調装置において、前記偏平伝熱部2の下方に機体下部ケース1Bを配設し、前記ドレンパン18の全体を前記機体下部ケース1Bの内部に配置する。

Description

空調装置
  本発明は居室の冷暖房等に用いる空調装置に関する。
 詳しくは、熱媒が通過する伝熱管を備える偏平伝熱部を設け、この偏平伝熱部を、縦姿勢に配置するとともに、空調対象域に対して面対向状態で露出させ、前記熱媒により前記伝熱管を冷却して前記偏平伝熱部を吸熱作用させる冷房運転の際に前記偏平伝熱部で発生した結露水が流下するのに対して、その結露水を受け入れるドレンパンを設けた空調装置に関する。
 従来、この種の空調装置として、特許文献1には次の構成の空調装置が示されている。
 熱媒が通過する多数の縦姿勢の伝熱管を左右方向に並べて偏平伝熱部を構成し、この縦姿勢の偏平伝熱部を、前方空間及び後方空間の夫々に対して面対向状態で露出させている。
 伝熱管夫々の前面側及び後面側には、各伝熱管の全長にわたって縦方向に延びる複数のフィン部を平面視で放射状に配置して設けてある。
 伝熱管の並設列からなる偏平伝熱部の上端部には上部保持枠体を設け、扁平伝熱部の下端部には下部保持枠体を設け、これら保持枠体により縦姿勢の多数の伝熱管の上端部及び下端部を支持している。
 上部保持枠体と下部保持枠体とは左右一対の側面保持枠体により連結してあり、これら4つの保持枠体により縦姿勢の偏平伝熱部の周囲を囲ってある。
 そして、熱媒により伝熱管を冷却して偏平伝熱部を吸熱作用させる冷房運転の際に偏平伝熱部で発生した結露水(具体的には、伝熱管の表面やフィン部の表面で発生した結露水)が流下するのに対して、その結露水を受け入れるドレンパンを下部保持枠体の下方に配置してある。
実用新案登録第3170417号公報
 特許文献1に示される上記の空調装置では、ドレンパンが露出しているため、装置の美観が劣るとともに、流下する結露水がドレンパンに受け止められる際の滴下音が使用者の耳に直接に届き、この滴下音が続くことで煩わしく感じる問題があった。また、空調対象域に埃がドレンパンの内部に侵入し易い問題もあった。
 さらに、装置を壁際に設置した場合、熱媒により伝熱管を冷却して偏平伝熱部を吸熱作用させる冷房運転や、熱媒により伝熱管を加熱して偏平伝熱部を放熱作用させる暖房運転の実施で、装置背面に近接する室壁も強く冷却又は加熱され、そのことで室壁の表面に結露や焼け(色付き)が生じ易い問題などもあった。
 本発明の主たる課題は、上記の如き問題を解消し得る優れた空調装置を提供する点にある。
 本発明の第1特徴構成は、
 熱媒が通過する伝熱管を備える偏平伝熱部を設け、
 この偏平伝熱部を、縦姿勢に配置するとともに、空調対象域に対して面対向状態で露出させ、
 前記熱媒により前記伝熱管を冷却して前記偏平伝熱部を吸熱作用させる冷房運転の際に前記偏平伝熱部で発生した結露水が流下するのに対して、その結露水を受け入れるドレンパンを設けた空調装置において、
 前記偏平伝熱部の下方に機体下部ケースを配設し、
 前記ドレンパンの全体を前記機体下部ケースの内部に配置してある点にある。
 この構成の空調装置によれば、基本的に、熱媒により伝熱管を冷却して偏平伝熱部を吸熱作用させる冷房運転では、偏平伝熱部での空気冷却により冷気が縦姿勢の偏平伝熱部に沿って自然降下する。
 降下した冷気は、偏平伝熱部が対向する空調対象域へ偏平伝熱部の下部から滑らかに流出する。
 また、この冷気の自然降下及び流出に伴い、偏平伝熱部の上部へは、対向する空調対象域から空気が誘引されて流入し、この流入空気が偏平伝熱部での冷却により自然降下する。
 即ち、この冷気流出及び空気誘引により空調対象域に極低速の大きな空気対流を生じさせた状態で、滑らかな流出冷気により空調対象域を効果的かつ優しく良好に冷房することができる。
 一方、熱媒により伝熱管を加熱して偏平伝熱部を放熱作用させる暖房運転を可能にした場合、その暖房運転では、偏平伝熱部での空気加熱により暖気が縦姿勢の偏平伝熱部に沿って自然上昇する。
 上昇した暖気は、偏平伝熱部の上部から空調対象域へ滑らかに流出する。
下部から水平向きへの変向を伴いながら滑らかに流出する。
 また、この暖気の自然上昇及び流出に伴い、偏平伝熱部の下部へは、対向する空調対象域から空気が誘引されて流入し、この流入空気が偏平伝熱部での加熱により自然上昇する。
 即ち、この暖気流出及び空気誘引により空調対象域に極低速の大きな空気対流を生じさせた状態で、滑らかな流出暖気と空調対象域に対する偏平伝熱部からの熱輻射とにより、空調対象域を効果的かつ優しく良好に暖房することができる。
 そして特に、この構成によれば、ドレンパンの全体を機体下部ケースの内部に配置するから、ドレンパンを露出させた従来装置に比べ、装置の美観を向上することができる。
 また、使用者の耳に届く結露水の滴下音を効果的に低減することができ、ファン騒音の無い自然対流式の装置であることとも相俟って、静寂な空調装置にすることができる。
 さらに、空調対象域の埃がドレンパンの内部に侵入することも効果的に防止することができ、ドレンパンの清掃メンテナンスの負担を軽減し得るとともに、埃侵入に原因する排水詰まりなども効果的に防止することができる。
 本発明の第2特徴構成は、
 前記機体下部ケースの上面部を、前記空調対象域の側ほど低位となる傾斜姿勢にしてある点にある。
 この構成によれば、冷房運転で縦姿勢の偏平伝熱部に沿って自然降下する冷気を、機体下部ケースの傾斜上面部による案内により、円滑に水平向きに向き変化させながら空調対象域に流出させることができる。
 また、暖房運転を可能にした場合、その暖房運転では、暖気の自然上昇に伴う誘引で空調対象域から偏平断熱部の下部に流入する空気を、機体下部ケースの傾斜上面部による案内により、円滑に上向きに向き変化させながら偏平伝熱部の下部に流入させることができる。
 即ち、これらのことにより、空調対象域における空気対流を促進するとともに、偏平伝熱部の吸熱作用や放熱作用を高めることができる。
 本発明の第3特徴構成は、
 熱良導材からなる縦姿勢の伝熱エレメントと、その伝熱エレメントに密着させた前記伝熱管とで前記偏平伝熱部を構成し、
 前記機体下部ケースの上面部に形成した挿通孔を通じて前記伝熱エレメントの下端部を前記機体下部ケースに挿入し、
 前記伝熱エレメントを伝って流下する前記結露水が前記挿通孔を通じて前記ドレンパンに流入する構成にしてある点にある。
 この構成によれば、縦姿勢の伝熱エレメントの下端も機体下部ケースにより隠蔽されることで装置の美観を一層向上することができ、また、ドレンパンの内部への埃の侵入も一層効果的に防止することができる。
 本発明の第4特徴構成は、
 前記偏平伝熱部の上方に横向き姿勢の機体上部枠を設け、
 この機体上部枠の下面部を、前記空調対象域の側ほど高位となる傾斜姿勢にしてある点にある。
 この構成によれば、冷房運転において冷気の自然降下に伴う誘引で空調対象域から偏平断熱部の上部に流入する空気を、機体上部枠の傾斜下面部による案内により、円滑に下向きに向き変化させながら偏平伝熱部の上部に流入させることができる。
 また、暖房運転を可能にした場合、その暖房運転では、縦姿勢の偏平伝熱部に沿って自然上昇する暖気を、機体上部枠の傾斜下面部による案内により、円滑に水平向きに向き変化させながら空調対象域に流出させることができる。
 即ち、これらのことにより、空調対象域における空気対流を促進するとともに、偏平伝熱部の吸熱作用や放熱作用を高めることができる。
 本発明の第5特徴構成は、
 前記偏平伝熱部の上方に配設された横向き姿勢の機体上部枠と、前記気体下部ケースと、前記扁平伝熱部の両側方夫々に配設されて前記機体下部ケースと前記機体上部枠とを連結する縦姿勢の機体側部枠とで、前記偏平伝熱部の周囲を囲んである点にある。
 この構成によれば、高い装置強度を確保することができる。
 また、一対の機体側部枠により、偏平伝熱部から側方への空気流出や偏平伝熱部への側方からの空気流入を抑止することができて、縦姿勢の偏平伝熱部に沿った冷気の自然降下や暖気の自然上昇を一層安定化することができ、これにより、空調対象域における空気対流を一層促進するとともに、偏平伝熱部の吸熱作用や放熱作用を一層高めることができる。
 そして特に、この構成を、機体下部ケースの上面部を空調対象域の側ほど低位となる傾斜姿勢にする構成(第2特徴構成)や、機体上部枠の下面部を空調対象域の側ほど高位となる傾斜姿勢にする構成(第4特徴構成)と並行実施した場合は、前述の如き降下冷気や上昇暖気あるいは誘引空気に対する傾斜上面部や傾斜下面部の案内作用と相俟って、縦姿勢の偏平伝熱部に沿った冷気の自然降下や暖気の自然上昇をさらに効果的に安定化することができる。
 本発明の第6特徴構成は、
 前記偏平伝熱部の前面部を前方の前記空調対象域に対して露出させ、
 前記偏平伝熱部の後面部を後方空間に対して後面板部により閉塞し、
 この後面板部は、前面側の熱良導材層と後面側の断熱材層とを備える複層構造にしてある点にある。
 この構成によれば、冷房運転において、後面板部による冷気の遮断と、後面板部における前面側の熱良導材層による板面方向への拡散的な冷熱伝導と、後面板部における後面側の断熱材層による断熱とにより、装置背面に近接する室壁(即ち、偏平伝熱部の後面側に近接する室壁)での結露発生を効果的に防止することができる。
 また、前面側の熱良導材層による板面方向への拡散的な冷熱伝導により、後面板部の前面側での局部的な低温化も回避することができて、その局部的な低温化に原因する後面板部の前面側での結露発生も効果的に防止することができる。
しかも、前面側の熱良導材層による板面方向への拡散的な冷熱伝導により、その前面側の熱良導材層を、偏平伝熱部での空気冷却の効率化及び均一化にも寄与させることができて、降下冷気の生成を一層良好にすることもできる。
 さらに、暖房運転を可能にする場合、その暖房運転では、後面板部による暖気及び輻射熱の遮断と、後面板部における前面側の熱良導材層による板面方向への拡散的な温熱伝導と、後面板部における後面側の断熱材層による断熱とにより、装置背面に近接する室壁(偏平伝熱部の後面側に近接する室壁)での焼け(色付き)の発生を効果的に防止することができる。
 また、前面側の熱良導材層による板面方向への拡散的な温熱伝導により、その前面側の熱良導材層を、偏平伝熱部での空気加熱の効率化及び均一化にも寄与させることができて、上昇暖気の生成を一層良好にすることもできる。
 本発明の第7特徴構成は、
 前記偏平伝熱部の両側面部を側方空間に対して側面板部により閉塞し、
 この側面板部は、内面側の熱良導材層と外面側の断熱材層とを備える複層構造にしてある点にある、
 この構成によれば、側面板部における内面側の熱良導材層による板面方向への拡散的な温熱伝導により、その内面側の熱良導材層を、偏平伝熱部での空気冷却や空気加熱の効率化及び均一化に寄与させることができて、降下冷気や上昇暖気の生成をさらに良好にすることができる。
 また、この種の空調装置では、偏平伝熱部の側方にフレーム類が配置されることも多いが、この構成によれば、冷房運転において、側面板部よる冷気の遮断と、側面板部における内面側の熱良導材層による板面方向への拡散的な冷熱伝導と、側面板部における外面側の断熱材層による断熱とにより、偏平伝熱部の側方に配置されたフレーム類での結露発生も効果的に防止することができる。
 本発明の第8特徴構成は、
 前記後面板部の前面を、輻射熱が反射する光沢面にしてある点にある。
 この構成によれば、暖房運転を可能とする場合、その暖房運転において、偏平伝熱部の後面側からの熱輻射を上記光沢面により反射させることができ、これにより、偏平伝熱部の前方の空調対象域に付与する熱輻射による暖房効果を高めることができる。
 本発明の第9特徴構成は、
 熱良導材からなる縦姿勢の伝熱エレメントの中心部に前記伝熱管を縦姿勢で貫通させるとともに、
 前記伝熱エレメントにおける前面側及び後面側の夫々に、前記伝熱エレメントのほぼ全長にわたって縦方向に延びる多数のフィン部を、左右方向に並べて形成し、
 これら伝熱管及びフィン部を備える前記伝熱エレメントを左右方向に並置して前記偏平伝熱部を構成し、
 前記伝熱エレメントの夫々における前面側の前記フィン部については、各伝熱エレメントの左右中央側に位置するフィン部ほど前方への延出長さが大きいフィン部にし、
 前記伝熱エレメントの夫々においる後面側の前記フィン部については、後方への延出長さが互いい等しいフィン部にしてある点にある。
 この構成によれば、前面側のフィン部の先端どうしを結ぶ平面視の仮想包絡線が前方に向かって突出する形状になるから、伝熱管の冷却や加熱(即ち、各伝熱エレメントの冷却や加熱)による冷房運転や暖房運転において、偏平伝熱部から前方の空調対象域への冷気流出や暖気流出並びに熱輻射に左右幅方向への拡がりを与えることができる。
 一方、後面側のフィン部の先端どうしを結ぶ平面視の仮想包絡線は直線又は略直線になるから、後面板部における前面側の熱良導材層による板面方向への拡散的な冷熱伝導やお熱伝導と相俟って、偏平伝熱部での空気冷却や空気加熱の均一化を一層促進することができる。
 本発明の第10特徴構成は、前記後面板部の上下方向中間部に空気流入部を形成し、
 前記偏平伝熱部で発生するドラフト流による誘引により前記後方空間の空気が前記空気流入部を通じて前記偏平伝熱部の配置部に流入する構成にしてある点にある。
  この構成によれば、偏平伝熱部で発生するドラフト流(即ち、冷房運転では冷気の自然降下流、暖房運転では暖気の自然上昇流)による誘引により、後方空間の空気が上記の空気流入部を通じて偏平伝熱部の配置部に流入するから、その誘引空気の流入により、偏平伝熱部から前方の空調対象域への冷気流出や暖気流出を促進することができる。
 また、この空気流入部を後面板部の上下方向中間部に設けるから、偏平伝熱部における上下方向中間部の既に安定化したドラフト流の誘引作用により、後方空間における空気を効率的に偏平伝熱部の配置部に流入させることができ、これにより、空調対象域への冷気流出や暖気流出を一層効果的に促進することができる。
 なお、後面板部の形状は、平板状、左右方向中間部が後方に位置する平面視コの字状、左右方向中央側ほど後方に位置する平面視弧状など、偏平伝熱部の後面側を後方空間に対して閉塞し得る形状であれば、種々の形状を採用することができる。
 また、空気流入部を設ける後面板部の具体的な部位(領域)は、上下方向中間部であれば、偏平伝熱部の直後方に位置する部位に限らず、偏平伝熱部の直後方から左右方向の外側に外れた部位などであってもよい。
 本発明の第11特徴構成は、
 前記後面板部を、上側に配置する上側板部と下側に配置する下側板部とで構成し、
 これら上側板部と下側板部とのうち前記ドラフト流の流れ方向下流側に位置する板部を、前記ドラフト流の流れ方向上流側に位置する板部よりも後方に配置するとともに、
 それら上側板部の下側部分と下側板部と上側部分とを前後方向でラップさせて配置し、
 このラップ部において前記上側板部の下側部分と前記下側板部の上側部分との間に、前記空気流入部としての隙間を形成してある点にある。
 この構成によれば、空気流入部としての上記隙間が、ドラフト流の流れ方向下流側に向かう出口(即ち、偏平伝熱部の配置部に対する出口)を有する筒状の空気流入路の形態で形成されるから、この筒状の空気流入路における通過過程で後方空間からの誘引空気を整流した状態で偏平伝熱部の配置部に対し円滑かつ安定的に流入させることができる。
 従って、偏平伝熱部から前方の空調対象域への冷気流出や暖気流出をさらに効果的に促進することができる。
 本発明の第12特徴構成は、
 前記上側板部と前記下側板部とのうち前方に配置される前側板部は、前面側の熱良導材層と後面側の断熱材層とを備える複層構造にし、
 前記上側板部と前記下側板部とのうち後方に配置される後側板部は、その全体を熱良導材で形成してある点にある。
 この構成によれば、複層構造とする前側板部については基本的に、前述した第7特徴構成の同様の効果を得ることができる。
 ところで、第11特徴構成を採用した場合、空気流入部から空気流入させる運転(暖房運転と冷房運転とのいずれか一方の運転)とは逆の運転(暖房運転と冷房運転とのいずれか他方の運転)を実施するとき、その逆運転時のドラフト流(以下、逆向きドラフト流と称することもある。)の一部が、筒状空気流入路の形態の上記隙間を逆向きに通過して後方空間に流出することも考えられる。
 これに対し、上記構成によれば、上記隙間を通じて後方空間に流出する逆向きドラフト流の保有冷熱や保有温熱を、全体が熱良導材で形成された後側板部と逆向きドラフト流との間での直接熱交換により効果的に奪った上で、その逆向きドラフト流を後方空間に流出させることができる。
 なお、上記第10~第12特徴構成のいずれかの実施においては、次に列記する構成を採用してもよい。
 空気流入部からの流入空気の一部を偏平伝熱部に対して素通り的に通過させて流出させる空気流出部を、空気流入部よりもドラフト流の流れ方向下流側に設けてもよい。
 ドラフト流による誘引で偏平伝熱部の配置部に空気を流入させる補助空気流入部を、偏平伝熱部の側部に設けてもよい。
 空気流入部からの空気の流入向きを変更する流入向き変更手段を設けてもよい。
 空気流入部を開閉する開閉手段を設けてもよい。
 空気流入部の開口面積を調整する開口面積調整手段を設けてもよい。
 本発明の第13特徴構成は、
 熱良導材からなる縦姿勢の伝熱エレメントと、その伝熱エレメントに密着させた前記伝熱管とで前記偏平伝熱部を構成し、
 縦姿勢の前記伝熱エレメントの下端部を支持する一対のエレメント下部支持フレームを前記機体下部ケースの内部に配置し、
 前記伝熱エレメントの下端から突出する前記伝熱管を、前記一対のエレメント下部支持フレームに対して非接触の状態で、それらエレメント下部支持フレームどうしの間の隙間に挿通し、
 この伝熱管挿通状態で前記伝熱エレメントの下端部を前記一対のエレメント下部支持フレームの夫々に固定することで、前記伝熱エレメントの下端部を前記一対のエレメント下部支持フレームにより支持してある点にある。
 この構成によれば、伝熱管に対して直接的に連結する専用支持具を無くした状態で、一対のエレメント下部支持フレームの伝熱エレメント下端部に対する支持機能をもって、伝熱管と伝熱エレメントとの一体化物を支持することができる。
 換言すれば、伝熱管と密着する伝熱エレメントを支持具に利用した状態で、伝熱管と伝熱エレメントとの一体化物を、伝熱エレメントを介して一対のエレメント下部支持フレームにより支持することができる。
 従って、伝熱管として銅管やアルミニウム管などの軟質な低強度の管を用いるにしても、伝熱管と伝熱エレメントとの一体化物の支持において、その支持荷重(特に重力荷重)が、伝熱エレメントの下端から突出する伝熱管に掛かることを回避することができる。
 また、冷房運転では、吸熱作用する伝熱エレメントでの結露水の発生は本来的にあるとしても、上記の如き専用支持具が不要であることから、そのような専用支持具での結露水発生の問題も伴うことなく、伝熱管と伝熱エレメントとの一体化物を一対のエレメント下部支持フレームにより支持することができる。
 これらのことから、この構成によれば、伝熱管と伝熱エレメントとの一体化物に対する支持強度を十分に確保する面で、装置の設計を容易にするとともに、冷房運転での発生結露水に対する対応面でも装置の設計を容易にすることができる。
 なお、この構成において、伝熱エレメントの下端部をエレメント下部支持フレームに固定するとは、伝熱エレメントの下端部をエレメント下部支持フレームに対して一体的に連結する場合に限らず、エレメント下部支持フレームに対する伝熱エレメント下端部の移動を少なくとも所要の一方向について制限することを言う。
 本発明の第14特徴構成は、
 前記偏平伝熱部の上方に横向き姿勢の機体上部枠を配設し、
 縦姿勢の前記伝熱エレメントの上端部を支持する一対のエレメント上部支持フレームを、前記機体上部枠の内部に配置し、
 前記伝熱エレメントの上端から突出する前記伝熱管を、前記一対のエレメント上部支持フレームに対して非接触の状態で、それらエレメント上部支持フレームどうしの間の隙間に挿通し、
 この伝熱管挿通状態で前記伝熱エレメントの上端部を前記一対のエレメント上部支持フレームの夫々に固定することで、前記伝熱エレメントの上端部を前記一対のエレメント上部支持フレームにより支持してある点にある。
 この構成によれば、伝熱管に対して直接的に連結する専用支持具を無くした状態で、一対のエレメント上部支持フレームの伝熱エレメント上端部に対する支持機能をもって、伝熱管とエレメントとの一体化物を支持することができる。
 換言すれば、伝熱管と密着する伝熱エレメントを支持具に利用した状態で、伝熱管とエレメントとの一体化物を、伝熱エレメントを介して一対のエレメント上部支持フレームにより支持することができる。
 従って、伝熱管として銅管やアルミニウム管などの軟質な低強度の管を用いるにしても、伝熱管とエレメントとの一体化物の支持において、その支持荷重(特に水平方向成分を持つ荷重)が、伝熱エレメントの上端からの突出する伝熱管に掛かることも回避することができる。
 また、冷房運転では、吸熱作用する伝熱エレメントでの結露水の発生は本来的にあるとしても、上記の如き専用支持具が不要であることから、そのような専用支持具での結露水発生の問題も伴うことなく、伝熱管と伝熱エレメントとの一体化物を一対のエレメント上部支持フレームにより支持することができる。
 これらのことから、上記構成によれば、上述した第13特徴構成と相俟って、伝熱管と伝熱エレメントとの一体化物に対する支持強度を十分に確保する面で、装置の設計を一層容易にするとともに、冷房運転での発生結露水に対する対応面でも装置の設計を一層容易することができる。
 なお、この構成において、伝熱エレメントの上端部をエレメント上部支持フレームに固定するとは、伝熱エレメントの上端部をエレメント上部支持フレームに対して一体的に連結する場合に限らず、エレメント上部支持フレームに対する伝熱エレメント上端部の移動を少なくとも所要の一方向について制限することを言う。
 本発明の第15特徴構成は、
 前記伝熱エレメントの上端部は、上下方向での熱伸縮を許す状態で前記一対のエレメント上部支持フレームにより支持してある点にある。
 この構成によれば、縦姿勢にした伝熱エレメントの熱伸縮(特に熱伸張)によりエレメント下部支持フレームやエレメント上部支持フレームに無理な力が作用するのを回避することができる。
 したがって、装置の耐久性を一層高めるとともに、上記の無理な力に原因するきしみ音などの異音発生も効果的に抑止することができる。
 本発明の第16特徴構成は、
 前記機体下部ケースの内部において前記ドレンパンを前記一対のエレメント下部支持フレームの下方に配置し、
 前記一対のエレメント下部支持フレーム夫々の下面を、その下側ほど前記一対のエレメント下部フレームどうしの間の前記間隙の側に寄る傾斜姿勢にしてある点にある。
 この構成によれば、冷房運転において伝熱管及び伝熱エレメントの冷却に伴いエレメント下部支持フレームの表面で結露水の発生が生じたとしても、その結露水をエレメント下部支持フレーム夫々の上記傾斜下面に伝わらせて一対のエレメント下部支持フレームどうしの間の側に寄せた状態で(即ち、上記ドレンパンに受け入れられ易い側に寄せた状態)で流下させることができ、これにより、発生結露水による漏水トラブルの発生をより確実に防止することができる。
 なお、機体下部ケースの内部においてドレンパンを一対のエレメント下部支持フレームの下方に配置する場合、上記第16特徴構成と同様、一対のエレメント上部支持フレーム各々の下面を、その下側ほど前記一対のエレメント上部支持フレームどうしの間の前記隙間の側に寄る傾斜下面にしてもよい。
 即ち、この構成によれば、冷房運転において伝熱管及び伝熱エレメントの冷却に伴いエレメント上部支持フレームの表面で結露水の発生が生じたとしても、その結露水をエレメント上部支持フレーム夫々の上記傾斜下面に伝わらせて一対のエレメント上部支持フレームどうしの間の間隙の側に寄せた状態(即ち、上記ドレンパンに受け入れられ易い側に寄せた状態)で流下させることができる。
 本発明の第17特徴構成は、
 前記伝熱エレメントを伝って流下する前記結露水を受け止めて前記ドレンパンに案内するドレン受具を、前記一対のエレメント下部支持フレームに跨らせた状態で、それらエレメント下部支持フレームに載置し、
 前記伝熱エレメントの下端を、前記ドレン受具に載せ置いた状態で、前記ドレン受具を介して前記一対のエレメント下部支持フレームにより支持してある点にある。
 この構成によれば、伝熱エレメントの下端をエレメント下部支持フレームに対して直接に載せ置く支持形態を採るのに比べ、上記ドレン受具の介在により、冷房運転において、伝熱エレメントとエレメント下部支持フレームとの直接的な接触に原因するエレメント下部支持フレームでの結露水の発生を効果的に防止することができ、これにより、発生結露水による漏水トラブルの発生を一層確実に防止することができる。
 なお、上記したエレメント下部支持フレームとエレメント上部支持フレームとを、共通フレーム材により形成し、エレメント下部支持フレームとして使用する共通フレーム材と、エレメント上部支持フレームとして使用する共通フレーム材とは、横断面視の姿勢を互い異ならせた状態で伝熱エレメントに対する夫々の支持位置に配設してもよい。
 このようにすれば、エレメント下部支持フレームとエレメント上部支持フレームとの異なるフレーム材で形成するのに比べ、装置の製作に要するフレーム材種を少なくすることができて、装置コストを低減し得るとともに、装置の製作を一層容易にすることができる。
 本発明の第19特徴構成は、
 熱良導材からなる縦姿勢の伝熱エレメントと、その伝熱エレメントに密着させた前記伝熱管とで前記偏平伝熱部を構成し、
 縦姿勢の前記伝熱エレメントの下端部を支持するエレメント下部支持フレームを前記機体下部ケースの内部に配置し、
 前記伝熱エレメントを伝って流下する前記結露水を受け止めるドレン受具を、前記伝熱エレメントの下端部と前記エレメント下部支持フレームとの間に配置し、
 このドレン受具は、受け止めた前記結露水を前記エレメント下部支持フレームに触れさせることなく前記ドレンパンに案内する構成にしてある点にある。
 この構成によれば、冷房運転において、エレメント下部支持フレームが伝熱エレメントからの流下結露水により濡れることを、ドレン受具による上記如きの結露水案内により防止することができる。
 また、伝熱エレメント下端とエレメント下部支持フレームとの間でのドレン受具による断熱により、エレメント下部支持フレームでの結露発生も効果的の抑止することができる。
 これらのことにより、発生結露水に対する対応面で装置設計を一層容易化することができる。
 本発明の第19特徴構成は、
 前記エレメント下部支持フレームの上面の一部に当接させる脚部を前記ドレン受具の下面に設け、
 この脚部を貫通する固定ネジにより前記伝熱エレメントの下端部を前記エレメント下部支持フレームに固定してある点にある。
 この構成によれば、上記固定ネジの中間部分がドレン受具の脚部の貫通孔内に位置することから、この固定ネジでの結露水の発生も効果的に防止することができる。
 なお、上記第18又は第19特徴構成の実施においては、次に列記する構成を作用してもよい。
 ドレン受具の底部の下面に、当該底部の排水口部から排出される結露水をエレメント下部支持フレームに触れない下方位置にまで流下案内する排水筒部を設けてもよい。
 ドレン受具を、偏平伝熱部の横幅寸法に対応する長さに構成し、ドレン受具の底部に、伝熱エレメントから流下する結露水をドレンパン側に流下案内する共通の排水口部を形成してもよい。
 ドレン受具の排水筒部をエレメント下部支持フレームに対し上方から嵌合させることで保持してもよい。
 本発明の第20特徴構成は、
 熱良導材からなる縦姿勢の伝熱エレメントと、その伝熱エレメントに密着させた前記伝熱管とで前記偏平伝熱部を構成し、
 縦姿勢の前記伝熱エレメントの下端部を支持するエレメント下部支持フレームを前記機体下部ケースの内部に配置し、
 少なくとも前記機体下部ケースの上部開口部の近傍で前記機体下部ケースの内部に断熱材製の隙間埋め材を配設し、
 前記冷房運転の際に前記偏平伝熱部で冷却されて降下する冷気が前記機体下部ケースの内部に流入するのを前記隙間埋め材により防止する構成にしてある点にある。
 つまり、冷房運転において偏平伝熱部からの降下冷気が機体下部ケースの内部に侵入すすると、その侵入冷気により機体下部ケースが内面側から冷却されることで、機体下部ケースの外面で結露が生じる場合がある。
 これに対し、上記構成によれば、このような冷気侵入による機体下部ケースの外面での結露の発生を効果的に防止することができる。
 また、隙間埋め材を断熱材製にするから、降下冷気による低温化により隙間埋め材そのものの外面で結露が発生したり、低温化した隙間埋め材からの冷熱伝播により機体下部ケースの内外面で結露が発生することなども効果的に防止することができる。
 本発明の第21特徴構成は、
 前記隙間埋め材を、前側分割部と後側分割部との接合により形成し、
 この隙間埋め部の内部には、前記前側分割部と前記後側分割部との接合解除により開かれる収容空間を形成し、
 前記隙間埋め材を前記機体下部ケースの内部に配置した状態において、前記機体下部ケースの内部の装備物を前記収容空間に収容する構成にしてある点にある。
 この構成によれば、隙間埋め材の内部の収容空間に収容した機体下部ケースの内部装備物(例えば、ドレンパンやエレメント下部支持フレーム)は、断熱材製の隙間埋め材により囲まれる形態になる。
 したがって、機体下部ケースにおける内部装備物の外面での結露の発生や、それら内部装備物からの冷熱伝播による機体下部ケースの内外面などでの結露の発生も一層効果的に防止することができる。
 また、機体下部ケースの内部に対する隙間埋め材の組み付けは、前側分割部と後側分割部との間に機体下部ケースの内部装備物を挟み込むようにして、それら分割部どうしを接合する。
 これにより、機体下部ケースの内部装備物を隙間埋め材の内部の収容空間に収容した状態で、隙間埋め材を機体下部ケースの内部に容易に組み付けることができる。
 さらに、機体下部ケースの内部装備物に対する点検や補修の際には、前側分割部と後側分割部との接合を解除して、その一方を取り外すだけで機体下部ケースの内部装備物に対する点検や補修も容易に行うことができる。
 本発明の第22特徴構成は、
 前記前側分割部を前記機体下部ケースにおける前面パネル部の内面に対して密着させるとともに、
 前記後側分割部を前記機体下部ケースにおける後面パネル部の内面に対して密着させてある点にある。
 この構成によれば、断熱材製の隙間埋め材における前側分割部及び後側分割部を、機体下部ケースにおける前面パネル部の内面及び後面パネル部の内面に対して直接に断熱作用させることができる。
 従って、下部ケースにおける前面パネル部や後面パネル部での結露の発生を一層確実に防止することができる。
 なお、上記第20~第22特徴構成の実施においては、次に列記する構成のいずれかを採用してもよい。
 隙間埋め材によりエレメント下部支持フレームを覆う状態にして、隙間埋め材を機体下部ケースの内部に配置する。
 隙間埋め材によりドレンパンを覆う状態にして、隙間埋め材を機体下部ケースの内部に配置する。
 機体下部ケースの内面とドレンパンの外面とにわたらせる充填状態にして、隙間埋め材を機体下部ケース部の内部に配置する。
 機体下部ケースの前面パネル部の内面に、隙間埋め材の前側分割部を取り付けるとともに、機体下部ケースの後面パネル部の内面に、隙間埋め材の後側分割部を取り付ける。
 本発明の第23特徴構成は、
 前記ドレンパンから排水管を通じて排水するドレンポンプと、
 前記ドレンパンにおける水位を検出する水位検出手段と、
 この水位検出手段による検出水位が設定排水水位以上のとき前記ドレンポンプを運転する排水制御手段とを設け、
 前記排水制御手段は、前記検出水位が前記設定排水水位以上であることに応じて前記ドレンポンプの運転を開始し、その後、前記検出水位が前記設定排水水位より低くなると設定排水時間の計時を開始し、
 その後、この設定排水時間が経過した時点で前記ドレンポンプの運転を停止する構成にしてある点にある。
 この構成によれば、検出水位が設定排水水位以上になってドレンポンプの運転が開始された後、そのドレンポンプの運転で検出水位が設定排水水位より低くなったときに、ドレンポンプの運転停止時点を規定する設定排水時間の計時が開始される。
 従って、偏平伝熱部からドレンパンに流入する結露水が多い状況では、それに応じ、検出水位が設定排水水位より低くなって設定排水時間の計時開始に至るまでのポンプ運転時間(言わば、設定排水時間に対する実質的なポンプ延長運転時間)が長くなる。
 そして、その分だけ、ドレンポンプの運転開始から運転停止に至るまでの運転時間も長くなって、ドレンポンプ運転一回あたりの排水量が増加する。
 このことにより、例えば、検出水位が設定排水水位以上になったときにドレンポンプの運転を開始するとともに設定排水時間の計時も開始するのに比べて、偏平断熱部からドレンパンに流入する結露水が多い状況において、ドレンポンプの発停頻度が高くなることを効果的に抑制することができる。
 従って、ドレンポンプの発停により使用者に与える音響的な不快感を効果的に軽減することができる。
 また、このように結露水の流入水量が多い状況でのドレンポンプ発停頻度の増大を効果的に防止しながらも、逆に空気冷却部からドレンパンに流入する結露水が通常より少ない状況では、それに応じ、検出水位が設定排水水位より低くなって設定排水時間の計時開始に至るまでのポンプ運転時間(上記実質的なポンプ延長運転時間)が短くなる。
 そして、その分だけ、ドレンポンプの運転開始から運転停止に至るまでの運転時間も短くなって、ドレンポンプ運転一回あたりの排水量が減少する。
 このことにより、偏平伝熱部からドレンパンに流入する結露水が少ない状況において、ドレンポンプの運転時間が過度に長すぎることで、ドレンポンプの運転停止に至る前にドレンパンが空になって、ドレンポンプの空運転(即ち、十分な吸込水の無い状態でのポンプ運転)を招くことも効果的に防止することができる。
 従って、ドレンポンプの空運転による音響的な不快感やドレンポンプの早期劣化も効果的に防止することができる。
 ちなみに、ドレンパンへの結露水の流入水量の変化に応じてドレンポンプの運転時間を変化させるのに、ドレンポンプの運転開始後、ドレンパンにおける水位が設定排水水位より低い設定計時開始水位に低下したことを検出して、その検出時点で設定排水時間の計時を開始する、あるいは、ドレンパンにおける水位が設定排水停止水位に低下したことを検出して、その検出時点でドレンポンプの運転を停止することも考えられる。
 しかし、これらの場合、ドレンパンにおける水位が設定排水水位以上か否かの検出とは別に、ドレンパンにおける水位が設定計時開始水位あるいは設定排水停止水位に低下したことの検出が必要になり、水位の検出点数が増加する。
 これに対し、上記構成であれば、ドレンパンにおける水位が設定排水水位以上か否かの検出だけで済み、水位上昇時と水位低下時との水位検出上のヒステリシスを利用した状態で、ドレンポンプの運転を開始する水位と設定排水時間の計時を開始する水位とに差を持たせることもできる。
 従って、水位の検出点数を少なくなくすることができ、例えば水位検出手段としてフロートスイッチを用いる場合には、設定排水水位用の1つのフロートスイッチだけで済ませることができる。
 即ち、タイマー制御によりドレンポンプの運転停止を行なうことで、水位の検出点数を少なくして水位検出のための装置構成を簡素にするができる。
 本発明の第24特徴構成は、
 前記設定排水時間は、設計上において、前記ドレンポンプの運転で前記ドレンパンにおける水位が前記設定排水時間の計時開始時点における水位から前記ドレンパンの底部近傍まで低下するのに要する時間にしてある点にある。
 この構成によれば、偏平伝熱部からドレンパンに流入する結露水の流量が多少変化するにしても、その流入水量の変化に応じた前述の如き実質的なポンプ延長運転時間の変化とも相俟って、ドレンポンプの運転停止時点(即ち、設定排水時間の経過時点)を確度的に高い状態で、ドレンパンの水位がドレンパンの底部近傍にまで低下した時点にすることができる。
 従って、ドレンポンプの空運転を防止しながらドレンポンプの発停頻度を一層効果的に低減することができる。
 本発明の第25特徴構成は、
 前記排水制御手段は、前記検出水位が前記設定排水水位より高い設定上限水位まで上昇したとき、前記冷房運転を停止する構成にしてある点にある。
 この構成によれば、何らかの原因でドレンパンにおける水位が設定排水水位を超えてさらに上昇したとしても、検出水位が設定上限水位まで上昇したとき、冷房運転が停止されて偏平伝熱部でのそれ以上の結露水の発生が停止される。
 従って、ドレンパンの貯留水が溢れ出る漏水トラブルに至ることを一層確実に防止することができる。
 また、この構成の実施においては、ドレンパンにおける水位が設定排水水位以上か否かを検出する低位用の検出部と、ドレンパンにおける水位が設定上限水位まで上昇したか否かを検出する高位用の検出部とを、例えば各別のフロートスイッチで構成するなど、互いに独立して各水位を検出するものにしてもよい。
 この場合、低位用検出部の不良が原因でドレンパンにおける水位が設定排水水位を超えて上昇したしても、その後、ドレンパンにおける水位が設定上限水位まで上昇したことを高位用検出部による独立の水位検出により検出することができ、この点で、ドレンパンの貯留水が溢れ出る漏水トラブルをさらに確実に防止することができる。
 本発明の第26特徴構成は、
 前記排水制御手段は、前記検出水位が前記設定上限水位まで上昇したことに応じて前記冷房運転を停止した後、前記検出水位が前記設定上限水位より低くなると設定保全時間の計時を開始し、
 その後、この設定保全時間が経過した時点で前記ドレンポンプの運転を停止する構成にしてある点にある。
 この構成によれば、検出水位が設定上限水位まで上昇して冷房運転を停止した後、ドレンポンプの継続運転でドレンパンにおける水位が設定上限水位まで低下した時点から設定保全時間だけドレンポンプが運転され、設定保全時間の経過時点でドレンポンプが停止する。
 従って、冷房運転を停止した状態において必要以上にドレンポンプを運転することを回避することができて、その必要以上のポンプ運転で使用者に対し却って漏水トラブルの懸念を与えることを回避することができる。
 また、検出水位が設定上限水位以上になって空気冷却部の運転を停止した後、ドレンポンプの継続運転で検出水位が設定上限水位より低くなったときに、ドレンポンプの運転停止時点を規定する設定保全時間の計時が開始される。
 従って、第23特徴構成と同様、冷房運転が停止された後も偏平伝熱部からドレンパンに流入する残留結露水が多い状況では、それに応じ、検出水位が設定上限水位より低くなって設定保全時間の計時開始に至るまでのポンプ運転時間(実質的なポンプ延長運転時間)が長くなる。
 また逆に、冷房運転が停止された状態において偏平伝熱部からドレンパンに流入する残留結露水が少ない状況では、それに応じ、検出水位が設定上限水位より低くなって設定保全時間の計時開始に至るまでのポンプ運転時間(実質的なポンプ延長運転時間)が短くなる。
 従って、冷房運転が停止された状態において偏平伝熱部からドレンパンに流入する残留結露水を確実にドレンパンから排水するようにしながら、冷房運転停止後における必要以上のドレンポンプ運転を効果的に回避することができる。
 さらにまた、上記構成であれば、第23特徴構成と同様、ドレンパンにおける水位が設定上限水位以上か否かの検出だけで済み、水位上昇時と水位低下時との水位検出上のヒステリシスを利用した状態で、冷房運転を停止する水位と設定保全時間の計時を開始する水位とに差を持たせることもできる。
 従って、水位の検出点数を少なくなくすることができ、例えば水位検出手段としてフロートスイッチを用いる場合には、設定上限水位用の1つのフロートスイッチだけで済ませることができる。
 本発明の第27特徴構成は、
 前記設定保全時間は、設計上において、前記ドレンポンプの運転で前記ドレンパンにおける水位が前記設定保全時間の計時開始時点における水位から前記ドレンパンの底部近傍まで低下するのに要する時間にしてある点にある。
 この構成によれば、ドレンパンにおける水位が設定上限水位まで上昇して冷房運転を停止した後も、未だ空気冷却部に残っている残留結露水が引き続きドレンパンに流入することに対し、上記の如く設定保全時間を設定しておくことにより、設定保全時間の計時開始時点以降も運転停止状態の偏平伝熱部から流入する残留結露水の全量を含めて、ドレンパンに存在する貯留水をドレンパンから排水し、その排水がほぼ完了した状態でドレンポンプを停止させることができる。
 従って、ドレンポンプの空運転を防止しながらも、次の冷房運転開始やそれに至るまでの保守点検などに備えてドレンパンをほぼ空の状態にしておくことができ、これにより、次回の冷房運転の際やそれに至るまでの保守点検の際の漏水トラブルに対する安全性を一層高めることができる。
 なお、第23~第27特徴構成のいずれかの実施においては、次に列記する構成のいずれかを採用してもよい。
 ドレンパンの底部排水口から下方へ延びて、それに続き上方へ延びるポケット配管部を排水管に形成し、ドレンポンプをドレンパンの底部より低い位置で排水管におけるポケット配管部に介装する。
 排水制御手段は、検出水位が設定排水水位より高い設定上限水位まで上昇したとき、冷房運転を停止するとともに、ドレンポンプの運転開始操作を再度試みる構成にする。
 排水制御手段は、検出水位が設定上限水位まで上昇したことに応じてドレンポンプの運転開始操作を再度試みた時点から設定保全時間の計時を開始し、その後、この設定保全時間が経過した時点でドレンポンプの運転停止操作を行う構成にする。
 設定保全時間は、設計上において、検出水位が設定上限水位まで上昇したことに応じて冷房運転を停止した後も偏平伝熱部からドレンパンに流入する残留結露水の全量を、ドレンポンプの運転によりドレンパンから排水するのに要する時間にする。
 ドレンパンの容量は、設計上において、検出水位が前記設定上限水位まで上昇したことに応じて冷房運転を停止した後も偏平伝熱部からドレンパンに流入する残留結露水の全量を、貯留可能な容量にする。
 排水制御手段は、ドレンポンプの運転開始に伴い設定制限時間の計時を開始し、その後、この設定制限時間の経過時点までドレンポンプの運転が継続されているときには、その設定制限時間の経過時点でドレンポンプの運転を強制的に停止する構成にする。
 本発明の第28特徴構成は、
 前記偏平伝熱部の上端部を連結する横向き姿勢の機体上部枠を設けるとともに、
 この機体上部枠の上面部に左右方向に延びる案内溝を形成し、
 この案内溝に沿って左右方向に移動が自在で、かつ、固定操作により前記案内溝に対して固定可能なスライド部材を設け、
 前記機体下部ケースの後方に位置する壁体に対して連結可能な転倒防止具を、前記スライド部材との一体的な左右方向への移動が可能な状態で、前記スライド部材に取り付けてある点にある。
 この構成によれば、スライド部材の左右方向への移動により、壁体に対する転倒防止具の適当な連結位置を選定することができる。そして、適当な連結位置を選定した後、固定操作によりスライド部材及びそれに連結した転倒防止具を案内溝に対して固定するとともに、その転倒防止具を壁体に対して連結することで、その転倒防止具により装置の転倒を防止をすることができる。
 従って、壁体構造などの設置条件に対する対応性の高い状態で、転倒防止の処置を適切に行なうことができる。
空調装置における室内機の斜視図 室内機の分解斜視図 室内機の側面視断面図 機体下部ケースの側面視断面図 機体上部枠の側面視断面図 室内機の平面視断面図 機体上部枠の前面パネル及びその取り付け状態を示す斜視図 機体下部ケースの前面パネル及びその取り付け状態を示す斜視図 伝熱エレメント並置群周りの分解斜視図 伝熱エレメントの下部支持構造の分解斜視図 ドレン受具の上面側斜視図 ドレン受具の下面側斜視図 成型断熱材の斜視図 成型断熱材の分解斜視図 転倒防止構造の斜視図 転倒防止具の形成前及び形成後を示す斜視図 転倒防止具の別実施形態を示す斜視図 転倒防止具の別実施形態を示す斜視図 転倒防止具の別実施形態を示す斜視図 ドレンポンプ周りの概略配管図 ドレンポンプ運転のタイムチャート 排水制御のフローチャート 排水制御の別実施形態を示すフローチャート 第2実施形態を示す空調装置における室内機の前面側斜視図 第2実施形態を示す空調装置における室内機の後面側斜視図 第2実施形態を示す室内機の分解斜視図 第2実施形態を示す室内機の要部の分解斜視図 第2実施形態を示す伝熱エレメント並置群周りの分解斜視図 第2実施形態を示す室内機の縦断面図 第2実施形態を示す室内機上部の横断面図 第2実施形態を示す室内機下部の横断面図 第2実施形態を示す冷房運転時(a)及び暖房運転時(b)の空気流れ説明図 別実施形態を示す冷房運転時(a)及び暖房運転時(b)の空気流れ説明図空気流れ説明図 別実施形態を示す冷房運転時(a)及び暖房運転時(b)の空気流れ説明図空気流れ説明図
 〔第1実施形態〕
 図1は自然対流式の空調装置における室内機1を示す。この室内機1は機体前方へ向けて露出させた縦姿勢の偏平伝熱部2を備えている。この偏平伝熱部2は前後方向視で縦長の長方形である。
 また、室内機1は、上部に配置させた横向き姿勢の機体上部枠1Aと、下部に配置された機体下部ケース1Bと、それら機体上部枠1Aと機体下部ケース1Bとにわたる左右一対の縦姿勢の機体側部枠1Cとを備えている。即ち、偏平伝熱部2は、これら機体上部枠1Aと機体下部ケース1Bと左右一対の機体側部枠1Cとにより囲んである。
 図1,図2に示すように、偏平伝熱部2は、機体上部枠1Aと機体下部ケース部1Bとにわたる縦姿勢の複数本(本例では7本)の吸放熱用の伝熱エレメント3を、平行姿勢で室内機1の左右幅方向に等間隔に並べて構成してある。
 即ち、偏平伝熱部2は縦姿勢の伝熱エレメント3の並置群からなる。
 各伝熱エレメント3の縦中心軸部には、図6,図9に示す如く、伝熱管4の直管部4aを伝熱エレメント3の全長にわたらせて貫通させてある。
 伝熱エレメント3及び伝熱管4はいずれも熱良導材で形成してある。本例では伝熱エレメント3をアルミニウム製にしてある。伝熱管4には銅管を用いてある。
 図7,図9に示すように、各伝熱エレメント3に貫通させた伝熱管4の直管部4aにおける上側突出部の隣接対は、一対置きに上側ベンド管4bにより接続してある。また、各伝熱エレメント3に貫通させた伝熱管4の直管部4aにおける下側突出部の隣接対は、上側とは交互の一対置きに下側ベンド管4cにより接続してある。
 即ち、伝熱管4は、複数の直管部4aを上下のベンド管4b,4cにより直列に接続して形成した蛇行管にしてある。
 この蛇行伝熱管4の一端は、断熱材被覆の液側渡り冷媒管5aを介して屋外設置の室外機(図示省略)に接続し、蛇行伝熱管4の他端は、同じく断熱材被覆の気体側渡り冷媒管5bを介して同室外機に接続する。
 屋外設置の室外機は、圧縮機、室外熱交換器、膨張弁、四方弁を備えている。
 即ち、冷房運転では、室外熱交換器を凝縮器として機能させるとともに、室内機1の蛇行伝熱管4を蒸発器として機能させるように、2本の渡り冷媒管5a,5bを通じて室外機と室内機1との間で冷媒Rを循環させる。
 また、暖房運転では、四方弁により冷媒経路を切り替えることで、逆に室外熱交換器を蒸発器として機能させるとともに、室内機1の蛇行伝熱管4を凝縮器として機能させるように、2本の渡り冷媒管5a,5bを通じて室外機と室内機1との間で冷媒Rを循環させる。
 つまり、冷房運転では、蒸発器として機能する蛇行伝熱管4の内部での冷媒Rの蒸発に伴う気化熱の奪取により、伝熱管4及び伝熱管4に密着する伝熱エレメント3を冷却する。この冷却により偏平伝熱部2を吸熱作用させて周囲空気を冷却する。
 偏平伝熱部2で冷却された空気(冷気)は、温度差による比重差により縦姿勢の偏平伝熱部2に沿って自然降下する。この降下冷気は偏平伝熱部2の下部から空調対象域である室内機設置室へ前方斜め下向きに流出する。
 これにより、その冷気流出に伴い室内機設置室において室内空気の大きな対流を生じさせる形態で、その室内を冷房する。
 暖房運転では、凝縮器として機能する蛇行伝熱管4の内部での冷媒Rの凝縮に伴う凝縮熱の放出により、伝熱管4及び伝熱管4に密着する伝熱エレメント3を加熱する。この加熱により、偏平伝熱部2を放熱作用させて、偏平伝熱部2の表面から熱輻射させるとともに周囲空気を加熱する。
 偏平伝熱部2で加熱された空気(暖気)は、温度差による比重差により縦姿勢の偏平伝熱部2に沿って自然上昇する。この上昇暖気は、偏平伝熱部2の上部から室内機設置室へ前方斜め上向きに流出する。
 これにより、その暖気流出に伴い室内機設置室において室内空気の大きな対流(冷房運転時とは逆回りの対流)を生じさせる形態で、上記熱輻射との協働により、その室内を暖房する。
 なお、本例では、図9に示すように、偏平伝熱部2における左右一側の下部に位置する蛇行伝熱管4の一端に液側の渡り冷媒管5aを接続してある。また、偏平伝熱部2における左右他側の上部に位置する蛇行伝熱管4の他端に気体側の渡り冷媒管5bを接続してある。
 図6に示すように、各伝熱エレメント3の前面側及び後面側には、伝熱エレメント3の全長にわたって縦方向に延びる複数のフィン部3a,3bを一体形成してある。
 具体的には、図6における拡大図部分に示す如く、各伝熱エレメント3には、その横断面視において、柱状の芯部3cと該芯部3cから左右外方に向かって延びる基板部3dとからなる左右方向に延びる基部3Aを形成してある。
 そして、複数の前面側フィン部3aを、平行姿勢で左右に等間隔に並べた配置で、芯部基部3A(3c,3d)から前方に延出させてある。
 同様に、前面側フィン部3aと同数の後面側フィン部3bを、前面側フィン部3aと対応位置させて平行姿勢で左右に等間隔に並べた配置で、基部3A(3c,3d)から後方に延出させてある。
 芯部3cには伝熱管4を貫通させる管挿通孔3eを形成してある。前面側フィン部3aのうち芯部3cから延出させた前面側の中央フィン部3a′、及び、後面側フィン部3bのうち芯部3cから延出させた後面側の中央フィン部3b′には、それらの前後途中部分に配置してエレメント固定用の止め具挿通孔3fを形成してある。
 即ち、これら縦姿勢の多数のフィン部3a,3bを各伝熱エレメント3に備えさせることで、伝熱エレメント3の周囲空気に対する伝熱面積及び熱輻射面積を大きく確保する。
 また、冷房運転では、伝熱エレメント3の周りの冷却空気をフィン部3a,3bどうしの間の縦溝部を通じて円滑に自然降下させるとともに、それに伴い伝熱エレメント3の周囲に未冷却の室内空気が円滑に誘引されるようにする。
 また、伝熱エレメント3の表面で生じる結露水を伝熱エレメント3の表面に伝わらせて円滑に自然流下させる。
 これにより、伝熱エレメント3の表面と周囲空気との間での熱交換の効率を高く保つようにし、そのことで偏平伝熱部2の下部からの冷気流出、及び、それに伴う室内での空気対流を効果的かつ安定的に生じさせる。
 同様に、暖房運転では、伝熱エレメント3の周りの加熱空気をフィン部3a,3bどうしの間の縦溝部を通じて所謂煙突効果を伴う状態で円滑に自然上昇させるとともに、それに伴い伝熱エレメント3の周囲に未加熱の室内空気が円滑に誘引されるようにする。
 これにより、伝熱エレメント3の表面と周囲空気との間での熱交換の効率を高く保つようにし、そのことで偏平伝熱部2の上部からの暖気流出、及び、それに伴う室内での空気対流を効果的かつ安定的に生じさせる。
 図2,図6に示すように、偏平伝熱部2の後面部と左右の側面部とは、後面板部6Aと左右の側面板部6Bとを備える平面視の断面形状が「C」字状の閉塞板6により閉塞してある。
 また、この閉塞板6において、後面板部6Aと左右の側面部6Bとの境界箇所は平面視で内方側に中心を有する弧状の湾曲面にしてある。
 この閉塞板6は熱良導材層6aと断熱材層6bとを有する2層構造(複層構造の一例)にしてある。
 即ち、偏平伝熱部2の後面部及び側面部に対向する閉塞板6の内面側(後面板部6Aでは前面側に該当)は、光沢面を有する熱良導性の板材6a(本例ではアルミニウム板)で形成してある。また、それとは反対側の閉塞板6の外面側(後面板部6Aでは後面側に該当)は、断熱材6b(本例では発泡スチロール)で形成してある。
 つまり、冷房運転では、伝熱エレメント3の冷却に伴い室内機背面側の室壁Kが冷却されることで、その室壁Kの表面に結露が生じる虞がある。また、暖房運転では伝熱エレメント3の加熱に伴い室内機背面側の室壁Kが加熱されることで、その室壁Kの表面に焼け(色付き)が生じる虞がある。
 これに対し、閉塞板6を上記の如き2層構造にすることで、冷房運転では、閉塞板6による冷気の遮断と、内面側の熱良導材層6aよる板面方向への拡散的な冷熱伝導と、外面側の断熱材層6bによる断熱とにより、室壁Kでの結露の発生を確実に防止する。
 また、暖房運転時では、閉塞板6による暖気の遮断と、内面側の熱良導材層6aよる板面方向への拡散的な温熱伝導と、外面側の断熱材層6bによる断熱とにより、室壁Kでの焼けの発生を確実に防止する。
 そしてまた、冷房運転では、内面側の熱良導材層6aによる板面方向への拡散的な冷熱伝導により、閉塞板6の内面側を板面方向で均一に低温化させることで、偏平伝熱部2での空気冷却を、左右幅方向において一層均一化するとともに一層効率化する。このことで、偏平伝熱部2の下部からの冷気流出を一層促進するとともに、その冷気流出の左右幅方向での均一性も高める。
 さらに、冷房運転では、上記の如き熱良導材層6aによる板面方向への拡散的な冷熱伝導により、閉塞板6の前面側での局部的な低温化を回避する。これにより、そのような局部的な低温化に原因する閉塞板6の前面側での結露の発生も防止する。
 同様に、暖房運転では、内面側の熱良導材層6aによる板面方向への拡散的な温熱伝導により、閉塞板6の内面側をその板面方向で均一に高温化させることで、偏平伝熱部2での空気加熱を、左右幅方向において一層均一化するとともに一層効率化する。このことで、偏平伝熱部2の上部からの暖気流出を一層促進するとともに、その暖気流出の左右幅方向での均一性も高める。
 さらに、暖房運転では、伝熱エレメント3の表面からの熱輻射のうち後方及び側方に向かうものを閉塞板6における内面側の光沢面により反射させ、これにより、偏平伝熱部2からの室内への熱輻射も一層促進するとともに、その熱輻射の均一性も高める。
 図6に示すように、各伝熱エレメント3における前面側のフィン部3aは、左右方向中央側に位置するものほど前方への延出長さを大きくしてある。
 換言すれば、それら前面側フィン部3aの先端どうしを結ぶ平面視の仮想包絡線が前方に向かって突出する尖頭状又は半円弧上の曲線になるようにしてある。これにより、冷房運転時における流出冷気、並びに、暖房運転時における流出暖気及び熱輻射に室内機左右幅方向への拡がりを与える。
 これに対し、各伝熱エレメント3における後面側のフィン部3bは、後方への延出長さを互いに等しく(ないしは略等しく)してある。
 換言すれば、それら後面側フィン部3bの先端どうしを結ぶ平面視の仮想包絡線が直線になるようにしてある。これにより、閉塞板6の内面側熱良導材層6aによる上述の如き拡散均な冷熱伝導や温熱伝導と相俟って、伝熱エレメント3の冷却又は加熱に伴う閉塞板6における内面側(特に、後面板部6Aにおける前面側)の低温化や高温化を面方向において一層均一化する。
 伝熱エレメント3は押し出し成型により製作してある。そして、この押し出し成型により、フィン部3a,3b、芯部3c、基板部3d、管挿通孔3e,止め具挿通孔3fの夫々を伝熱エレメント3に同時に一体形成する。
 この押し出し成型の際には、延出長さが互いに等しい後面側フィン部3bが下向き延出姿勢となる配置する。そして、それら後面側フィン部3bの先端群を送り具上に受け止めて案内する状態で、押し出し成型を進めるようにする。
 これにより、伝熱エレメント3の複雑な横断面形状にかかわらず、成型過程の伝熱エレメント3を安定姿勢に保った状態で押し出し成型を進められるようにする。また、成型過程での倒伏等による伝熱エレメント3の成型不良を回避する。
 伝熱エレメント3の成型においては、管挿通孔3eの内径を伝熱管4の外径より多少大きくしておく。これにより、伝熱エレメント3の成型後、管挿通孔3eに伝熱管4の直管部4aを無理なく貫通させる。
 その後、伝熱管4の直管部4aの管内に油圧等の圧力を印加することで、伝熱管4の直管部4aを拡径させる。これにより、管挿通孔3eの内面側に隙間が残ることを回避した状態で、伝熱管4の直管部4aと伝熱エレメント3とを緊密に一体化する。このようにすれば、伝熱管4と伝熱エレメント3との間での熱伝導性を高く確保することができる。
 なお、伝熱管直管部4aの上記の如き拡径加工は、ベンド管4b,4cにより伝熱管4の直管部4aどうしを接続するのに先立ち、それら直管部4aごとに行なうようにしてもよい。また、ベンド管4b,4cにより伝熱管4の直管部4aどうしを接続して蛇行伝熱管4を形成した後に、それら複数の直管部4aに対して同時に行なうようにしてもよい。
 また、上記拡径加工においては、伝熱管4の直管部4aのうち伝熱エレメント3の端部からの突出部分や、それら突出部分に接続したベンド管4b,4cを型具により挟圧保持することで、それら突出部分や接続ベンド管4b,4cの拡径は阻止する。
 図2,図3,図6に示すように、閉塞板6の背面(即ち、外面側の断熱材層6bの背面)には、室内機背面側の外装材として、上下2分割構造の背面パネル7を面接触状態で取り付けてある。この背面パネル7の上端部及び下端部は、機体上部枠1A及び機体下部ケース1B夫々の後面パネルになる。
 左右の機体側部枠1Cの外郭は、上下方向に延びて上端部及び下端部が機体上部枠1A及び機体下部ケース1B夫々の側面パネルとなる側部パネル8と、偏平伝熱部2の内側面となる閉塞板6の左右の側面板部6Bとで形成してある。
 これら機体側部枠1Cの内部には、上下方向に延びる側部フレーム9を、それに対して閉塞板6の左右の側面板部6Bを面接触させる状態で配設してある。
 図1、図2,図5,図7に示すように、機体上部枠1Aの外郭は、前面パネル10と、上面パネル11と、背面パネル7の上端部と、左右の側部パネル8の上端部と、側部パネル8の上端開口部を閉塞するキャップパネル8aとで形成してある。
 機体上部枠1Aにおける前面パネル10の後方延出部10a(即ち、偏平伝熱部2の配置部における天井面を形成する部分)には、各伝熱エレメント3の上端部を挿通する挿通孔としての複数の上部切欠き10bを左右に並べて波形状に形成してある。
 また、機体上部枠1Aにおける前面パネル10の下側部分10cは、下側ほど後方に引退する傾斜姿勢にしてある。この傾斜部分10cは、それに連なる後方延出部10aととともに機体上部枠1Aの下面部を形成する。
 即ち、機体上部枠1Aの下面部に上記の如き傾斜部分10cを設けることで、暖房運転時における偏平伝熱部2の上部からの暖気流出を円滑にするとともに、冷房運転時における偏平伝熱部2の上部への室内空気の誘引流入を円滑にする。
 つまり、機体上部枠1Aの前面パネル10における上記の傾斜部分10cは、偏平伝熱部2の上部に対する気流案内面を構成する。
 機体上部枠1Aの内部には、前後一対の上部フレーム12と、その下方における前後一対のエレメント上部支持フレーム13とを配置してある。そして、上面パネル11は、前後の上部フレーム12にわたらせて取り付けてある。
 また、前面パネル10と前後の上部フレーム12と前後のエレメント上部支持フレーム13とは夫々、それらの両端部を左右の側部フレーム9に連結してある。
 図1,図2、図4,図8に示すように、機体下部ケース1Bの外郭は、前面パネル14と、閉塞板6の下端を受け止める後部上面パネル15と、背面パネル7の下端部と、左右の側部パネル8の下端部とで形成してある。
 機体上部枠部1Aにおける前面パネル10における後方延出部10aと同様に、機体下部ケース1Bにおける前面パネル14の後方延出部14a(即ち、偏平伝熱部2の配置部における底面を形成する部分)には、各伝熱エレメント3の下端部を挿通する挿通孔としての複数の下部切欠き14bを左右に並べて波形状に形成してある。
 これに対し、後部上面パネル15には、その後方延出部14aにおける波形状部分の各頂部と係合連結させる係合突起15aを形成してある。
 機体下部ケース1Bにおける前面パネル14の上側部分14cは、上側ほど後方に引退する傾斜姿勢にしてある。この傾斜部分14cは、それに連なる後方延出部14aとともに機体下部ケース1Bの上面部を形成する。
 即ち、機体下部ケース1Bの上面部に上記の如き傾斜部分14cを設けることで、冷房運転時における偏平伝熱部2の下部からの冷気流出を円滑にするとともに、暖房運転時における偏平伝熱部2の下部への室内空気の誘引流入を円滑にする。
 つまり、機体下部ケース1Bの前面パネル14における上記の傾斜部分14cは、偏平伝熱部2の下部に対する気流案内面を構成する。
 機体下部ケース1Bの内部には、前後一対の下部フレーム16と、その上方における前後一対のエレメント下部支持フレーム17とを配置してある。そして、前面パネル14と後部上面パネル15と前後の下部フレーム16と前後のエレメント下部支持フレーム17とは夫々、それらの両端部を左右の側部フレーム9に連結してある。
 機体下部ケース1Bの内部において、前後の下部フレーム16とその上方に位置する前後のエレメント下部支持フレーム17との間には、冷房運転時において各伝熱エレメント3から流下する結露水を受け入れるドレンパン18を配置してある。
 これに付帯して、機体下部ケース1Bには、ドレンパン18に受け入れた結露水を排水管19を通じて外部へ排出するドレンポンプ20を内装してある。
 また、機体下部ケース1Bの下面部にはベース21を取り付けてある。即ち、室内機1は。このベース21を介して室内に設置する。
 伝熱エレメント3の支持については、図3,図4,図9,図10に示すように、機体下部ケース1Bに配置する前後一対のエレメント下部支持フレーム17を、横断面形状がほぼL字状のフレーム材で形成してある。
 これら前後のエレメント下部支持フレーム17は、側面視において、それらのL字状横断面形状における内方部どうしが対向し、かつ、各々の一辺部17aがほぼ水平となる線対称姿勢にして配置してある。
 また、前後のエレメント下部支持フレーム17は、この線対称姿勢において、それらの間に隙間S1が形成される平行姿勢にして配置してある。
 そして、各エレメント下部支持フレーム17における水平姿勢の一辺部17aには、左右方向に延びる浅器状の樹脂製ドレン受具22をそれら前後の一辺部17aに跨らせた状態で、かつ、ドレン受具22の下面に形成した一対の脚部22Cを介して中空状に載置してある。
 このドレン受具22は、エレメント下部支持フレーム17を構成する金属材料よりも低伝熱性の材料である樹脂(本例ではABS樹脂)で成形してある。
 また、このドレン受具22の底部22Aの前後中央箇所で、かつ、その長手方向(左右方向)の略全長にわたる部位には、伝熱エレメント3の各々から流下する結露水をドレンパン18側に流下案内する共通のスリット状の排水口部22aを形成してある。
 さらに、ドレン受具22の底部22Aの下面には、排水口部22aに連通する角筒状の排水筒部22Dを形成してある。
 そして、ドレン受具22を前後のエレメント下部支持フレーム17の水平姿勢の一辺部17aに載置することにおいて、ドレン受具22におけるスリット状の排水筒部22Dは、上方からエレメント下部支持フレーム17どうしの間の隙間S1に嵌合状態で挿通することで、下方のドレンパン18にその直上方から臨ませてある。
 ドレン受具22の排水筒部22Dは、前後のエレメント下部支持フレーム17の水平姿勢の一辺部17aにおいて、隙間S1側に沿って下方に折り曲げ形成された側縁部分17eよりも下方位置にまで突出するように形成されている。
 即ち、このドレン受具22は、伝熱エレメント3の表面から流下する結露水をドレン受具22で受け止め、この結露水を前後のエレメント下部支持フレーム17に対して触れさせずにドレンパン18に案内するように構成されている。
 伝熱エレメント3は、その下端を樹脂製のドレン受具22の底部に載せ置くことで、ドレン受具22を介して前後のエレメント下部支持フレーム17により受け止め支持してある。この支持において、吸放熱エレメント3の下端からの突出伝熱管である下側ベンド管4cは、その外径より大きい開口幅を有するドレン受具22のスリット状の排水筒部22Dに上方から非接触状態で挿通させる。
 伝熱エレメント3の下端は、ドレン受具22に載せ置いた状態において、止め具としてのエレメント固定ネジ23により前後のエレメント下部支持フレーム17に固定連結してある。
 このエレメント固定ネジ23は、前後のエレメント下部支持フレーム17の一辺部17aに形成された貫通孔17f及びドレン受具22の脚部22Cに形成された貫通孔22hに下方から挿通する。そして、このエレメント固定ネジ23の先端側を吸放熱エレメント3における止め具挿通孔3fの下端部に螺合操作することで、伝熱エレメント3の下端を前後のエレメント下部支持フレーム17に固定連結する。
 即ち、下側ベンド管4c及び伝熱エレメント3を前後のエレメント下部支持フレーム17に対して直接には接触させない状態で、また、下側ベンド管4cに支持荷重(特に重力荷重)を掛けない状態で、伝熱エレメント3を前後のエレメント下部支持フレーム17により支持してある。
 これにより、伝熱管4及び伝熱エレメント3の冷却に伴いエレメント下部支持フレーム17の表面でも結露が発生することを極力防止する。また、蛇行伝熱管4と複数の伝熱エレメント3との一体重量物を無理なく十分な強度で安定的に支持する。
 ドレン受具22の底部22Aは、図9、図11に示すように、四隅の角部が弧状に形成された隅丸長方形状の輪郭に形成してある。この底部22Aの周縁には側壁部22Bを一体形成してある。
 また、ドレン受具22の底部22Aの上面は、伝熱エレメント3の下端面に当接する多数の前後方向に沿う帯状の載置面22bと、伝熱エレメント3の各々から流下する結露水を前後方向に沿ってスリット状の排水口部22aに案内する多数の流動案内溝22dとを、ドレン受具22の長手方向に沿って交互に配置して形成してある。
 ドレン受具22の脚部22Cは、図12に示すように、環状脚板22eと補強板22fと補強円柱体2gとで構成されている。
 環状脚板22eは、排水筒部22Dの外周面との間に環状矩形空間を形成する状態で、底部22Aの底面に一体形成してある。また、補強板22fと補強円柱体2gとは、環状脚板22eの内周面と排水筒部22Dの外周面との間の複数箇所に一体形成してある。
 そして、図4、図10に示すように、ドレン受具22の脚部22Cが前後のエレメント下部支持フレーム17の一辺部17aの上面の一部に当接した状態では、その当接箇所以外のドレン受具22の底部22Aの下面とエレメント下部支持フレーム17の一辺部17aの上面との間に空間S4が形成される。即ち、この空間S4の存在により、伝熱エレメント3からエレメント下部支持フレーム17への冷熱の伝播を更に効果的に抑制することができる。
 ドレン受具22の前後幅は、伝熱エレメント3の下端面の前後幅及び取付け状態での前後のエレメント下部支持フレーム17の最大前後幅(取付け最大前後幅)よりも大きくしてある。また、ドレン受具22の左右方向長さは、伝熱エレメント3の並列配置寸法よりも少し大きな長さにしてある。
 ドレンパン18の前後幅は前後のエレメント下部支持フレーム17の配置領域の前後幅より大きくしてある。そして、前後のエレメント下部支持フレーム17のL字状横断面形状における他辺部17bの先端屈折部17cは、上記の線対称配置において各エレメント下部支持フレーム17の下部側に位置して下側ほど前後内方側に寄る傾斜姿勢にしてある。
 これにより、ドレン受具22の排水筒部22Dを通じてドレンパン18に受け入れる伝熱エレメント3からの流下結露水とは別に、伝熱管4及び伝熱エレメント3の冷却に伴いエレメント下部支持フレーム17の表面で結露が生じたとしても、そのフレーム表面における結露水を各エレメント下部支持フレーム17の他辺部17bにおける傾斜姿勢の先端屈折部17cに伝わらせて流下させることで、ドレンパン18の内部へ確実に受け入れる。
 一方、図3,図5,図9に示すように、機体上部枠1Aに配置する前後一対のエレメント上部支持フレーム13も、エレメント下部支持フレーム17と同様、横断面形状がほぼL字状のフレーム材で形成してある。これら前後のエレメント上部支持フレーム13は、側面視において、それらのL字状横断面形状における内方部どうしが対向し、かつ、各々の他辺部13bにおける先端屈折部13cがほぼ水平となる線対称姿勢にして配置してある。
 また、前後のエレメント上部支持フレーム13は、この線対象姿勢において、それらの間に隙間S2が形成される平行姿勢にして配置してある。伝熱エレメント3の上端は、その上端からの突出伝熱管である上側ベンド管4bをその外径より大きい開口幅を有する上記隙間S2に下方から挿通してある。
 そして、伝熱エレメント3の上端は、各エレメント上部支持フレーム13における他辺部13bの先端屈折部13cに対し下方から対向させてある。また、伝熱エレメント3の上端と先端屈折部13cの下面との間には融通隙間S3を設けてある。
 さらに、伝熱エレメント3の上端は、止め具としてのエレメント固定ピン24により前後のエレメント上部支持フレーム13に止め付けてある。このエレメント固定ピン24は、前後のエレメント上部支持フレーム13の先端屈折部13cに上方から貫通させてある。
 そして、このエレメント固定ピン24の先端側を吸放熱エレメント3における止め具挿通孔3fの上端部に挿入することで、伝熱エレメント3の上端前後のエレメント上部支持フレーム13に止め付けてある。
 即ち、伝熱エレメント3の上端側についても、上側ベンド管4b及び吸放熱エレメント3をエレメント上部支持フレーム13に対して直接には接触させない状態で、また、上側ベンド管4bに支持荷重(特に水平方向成分を有する荷重)を掛けない状態で、伝熱エレメント3の上端部を前後のエレメント上部支持フレーム13により支持してある。
 これにより、伝熱管4及び伝熱エレメント3の冷却に伴いエレメント上部支持フレーム13の表面でも結露が発生することを極力防止する。また、蛇行伝熱管4と複数の吸放熱エレメント3との一体重量物を無理なく安定的に支持する。
 前後のエレメント上部支持フレーム13のL字状横断面形状における他辺部13bは、上記の線対称配置において各エレメント上部支持フレーム13の下部側に位置させるとともに、水平姿勢となる先端屈折部13cを除いて、下側ほど前後内方側に寄る傾斜姿勢にしてある。
 これにより、伝熱管4及び伝熱エレメント3の冷却に伴いエレメント上部支持フレーム13の表面で結露が生じたとしても、そのフレーム表面における結露水を各エレメント上部支持フレーム13における傾斜姿勢の他辺部13bに伝わらせて、極力前後内方側に寄せた状態、即ち、ドレン受具22での受け止めを確実にした状態で流下させる。
 上記のエレメント支持構造では、エレメント固定ネジ23及びエレメント固定ピン24により、伝熱エレメント3の水平方向への変位及び縦軸芯周りでの回転を阻止する。また、伝熱エレメント3の下端をエレメント固定ネジ23によりエレメント下部支持フレーム17に連結することで、伝熱エレメント3の浮き上がりを阻止する。
 さらに、伝熱エレメント3の上端をエレメント上部支持フレーム13の先端屈折部13cに対して融通隙間S3のある状態で対向させるとともに、伝熱エレメント3の上端を止め具挿通孔3fに対するエレメント固定ピン24の挿入によりエレメント上部支持フレーム13に止め付けることで、冷却及び加熱による伝熱エレメント3の熱伸縮を、その熱伸縮に伴いエレメント固定ピン24と止め具挿通孔3fとを縦方向で相対摺動させる状態で許容する。
 これにより、伝熱エレメント3の熱伸縮(特に熱伸張)が原因で各フレームに過度な荷重が作用することを回避する。
 前後一対の上部フレーム12は、横断面形状が上向きに開口するC字状の案内溝12aを上部に備えるフレーム材で形成してある。これら上部フレーム12は、案内溝12aの開口部が機体上部枠1Aにおける上面パネル11の側縁に沿って室内に露呈する状態に配置してある。
 即ち、室内機1を後方の壁面Kに沿わせて配置したとき、この案内溝12aは後方の壁面Kに沿う状態になる。
 図1,図5,図15に示すように、後側の上部フレーム12の案内溝12aには一本のボルト25のボルト頭を係合させてある。この係合により、ボルト25はスライド部材として案内溝12aの案内により案内溝12aに沿って左右方向に自在にスライド移動する。
 また、スライド部材としてのボルト25は、そのボルト頭と案内溝12aとの係合により案内溝12aからの離脱及び回転が阻止される。
 このボルト25には、L字状横断面形状の転倒防止具27をナット26により連結してある。このナット26を固定操作としてボルト25に対して強く締め込むと、案内溝12の開口縁部がボルト25のボルト頭とナット26とにより挟持されることで、ボルト25のスライド移動が不能になる。即ち、この固定操作により、スライド部材としてのボルト25及びそれに連結した転倒防止具27が上部フレーム12に対して固定される。
 図16(b)に示すように、転倒防止具27は、ボルト25に対する連結部である横片部27aと、その横片部27aに対して直角に折り曲げ縦片部27bと、その横片部27aの左右で横片部27aに対して縦片部27bとは反対側に直角に折り曲げた一対の舌片27cを備えている。
 図16(a)は、縦片部27b及び一対の舌片27cを横片部27aに対して直角に折り曲げる成型前の転倒防止具27を示す。
 横片部27aには、ボルト25を挿通するための前後方向に長い長孔状のネジ孔27dを形成してある。このネジ孔27の長さ範囲内でのボルト25に対する転倒防止具27の移動により、壁面Kに対する転倒防止具27の位置を前後方向について微調整する。
 また、縦片部27bには3つのビス孔27eを形成してある。これらのビス孔27eを通じてビス27fを壁面Kにねじ込むことで、転倒防止具27を壁面Kに連結固定する。
 ボルト25及び転倒防止具27のスライド移動において、一対の舌片27cは案内溝12aの開口縁部に対して摺接する。この摺接により、転倒防止具27は、縦片部27bが壁面Kに対して対向する姿勢(即ち、壁面Kに対する適切な連結姿勢)に保たれる。
 また、固定操作としてナット26をボルト25に対して締め込む際にも、案内溝12aの開口縁部に対する一対の舌片27cの当接により、転倒防止具27の回転が阻止されることで、転倒防止具27が壁面Kに対する適切な連結姿勢に保たれる。
 即ち、これらのことで、転倒防止具27をスライド移動させる位置調整操作、及び、ナット26による固定操作が容易になる。
 つまり、この転倒防止具27を壁面Kに連結する際には、スライド部材としてのボルト25及び転倒防止具27の左右方向への移動により、壁体Kに対する転倒防止具27の適当な連結位置を選定する。その上で、上記固定操作によりボルト25及び転倒防止具27を上部フレーム1に対して固定するとともに、ビス27fにより転倒防止具27を壁面Kに連結する。これにより、地震などに原因する室内機1の転倒を効果的に防止することができる。
 なお、転倒防止具27については、別実施形態として、次のような構成を採用してもよい。
 図17に示すように、壁面Kに対して直交する姿勢の一対の舌片27cを横片部27aの左右に設けるようにしてもよい。
 図18に示すように、横片部27aを2つの先端部分を有する二股状にする。そして、それら2つの先端部分の夫々にネジ孔27dを設けるともに、壁面Kに沿う姿勢の1つの舌片27cを2つの先端部分の間に設けるようにしてもよい。
 図19に示すように、横片部27aにおいてネジ孔27dの左右両側に舌片27cを、切り起こし形態などで形成するようにしてもよい。
 一方、図4に示すように、前後一対の下部フレーム16は、横断面形状が下向きに開口するC字状の係合溝部16aを下部に備えるフレーム材で形成してある。これら下部フレーム16には、係合溝部16aの内部にボルト頭を入れることで離脱及び回転を阻止したベース連結用のボルト28と、そのボルト28に対して螺着するナット29とにより、ベース21を連結してある。
 横断面形状がC字状の係合溝部12a,16aを備える上部フレーム12と下部フレーム16とは共通のフレーム材により形成してある。即ち、係合溝部12a,16aを備える共通フレーム材を、その係合溝部12a,16aがフレーム上部に位置する状態とフレーム下部に位置する状態とに姿勢を異ならせて使用することで、その共通フレーム材を上部フレーム12と下部フレーム16とに兼用する。
 また同様に、横断面形状がL字状のエレメント上部支持フレーム13とエレメント下部支持フレーム17とは共通のフレーム材で形成してある。即ち、横断面形状がL字状の共通フレーム材を、そのL字状横断面形状における一辺部13a,17aが水平姿勢になる状態と、他辺部13b,17bにおける先端屈折部13c,17cが水平姿勢になる状態とに姿勢を異ならせて使用することで、その共通フレーム材をエレメント上部支持フレーム13とエレメント下部支持フレーム17とに兼用する。
 つまり、このように共通フレーム材を兼用することで、フレーム材の必要種数を少なくして室内機1の製作コストを低減する。
 図2,図3,図4に示すように、機体下部ケース部1Bの内部には、隙間埋め材としてのボックス状の成型断熱材30を充填してある。この成型断熱材30の内部には、エレメント下部支持フレーム17及びドレンパン18を収容する収容部30a(即ち、収容空間)を形成してある。
 また、この成型断熱材30の外郭は、機体下部ケース1Bの前面パネル14の内面及び背面パネル7の内面に合致する形状にしてある。
 さらに、この成型断熱材30は前側分割部30Aと後側分割部30Bとに2分割してある。そして、前側分割部30Aは機体下部ケース1Bの前面パネル14の内面に取り付けてある。また、後側分割部30Bは機体下部ケース1Bの背面パネル7の下端部の内面に取り付けてある。
 即ち、室内機1の組立において、機体下部ケース1Bの前面パネル14と背面パネル7とを組み付けることで、機体下部ケース1Bの内部に成型断熱材30が充填装備されるようにしてある。
 具体的には、図4、図13、図14に示すように、成型断熱材30の上方側には、伝熱エレメント3の下端部どうし間に位置する仕切部30c、及び、ドレン受具22の上面と機体下部ケース部1Bの内面との間に入り込む状態になる上側閉塞部30bを形成してある。
 これら上側閉塞部30bは、伝熱エレメント3の並置群からなる偏平伝熱部2からの降下冷気が機体下部ケース1Bの内部に侵入することを防止する。
 成型断熱材30における収納部30aの下半側30dは、ドレンパン18の外面に密着する形状にしてある。即ち、この下半側30dのドレンパン18に対する密着により、ドレンパン18の外面での結露の発生を防止するとともに、結露水がドレンパン18に受け止められる際の結露水の滴下音を小さくする。
 なお、この収納部30aの下半部30dの上縁には、ドレンパン18の鍔状上縁部18aが入り込む装着用の凹条30eを形成してある。
 前記成型断熱材30の内部の下方側には、ドレンポンプ20及び排水管19を配置するための隙間部30fが形成されている。つまり、ドレンポンプ20及び排水管19を成型断熱材30で覆うことで、成型断熱材30による遮音作用又は吸音作用によりドレンポンプ20の動作音を伴う排水音を小音化する。
 成型断熱材30の左右の両側部には、下部フレーム16の左右両側部を貫通させるための貫通穴30g、及び、ドレンパン18の左右両側部を貫通させるための貫通穴30hを、収納部30aに連通させて形成してある。
 成型断熱材30の下方側における両分割部30A、30Bの接合面間の下端部には、左右幅方向に延びる一対の凹条30iと一対の凸条30kとからなる組付け用の係合部を形成してある。
 つまり、成型断熱材30を機体下部ケース1Bの内部に組み付けることで、成型断熱材30を機体下部ケースBの内面及びドレンパン18の外面に密着させるとともに、その成型断熱材30により機体下部ケース1Bの内部装備物を覆う。これにより、偏平伝熱部2からの降下冷気が機体下部ケース1Bの内部に侵入することを防止する。
 このようにすることで、冷気侵入に原因する機体下部ケース1Bにおける前面パネル14の外面での結露の発生、及び、背面パネル7の下端部外面での結露の発生を防止することができる、また、ドレンパン18の外面での結露の発生を防止するとともに、機体下部ケース1Bの内部装備物からの発生音を消音することができる。
 図6に示すように、左右の機体側部枠1Cの内部には、成型断熱材31を側部パネル8と側部フレーム9との間に介在させる状態で充填してある。この成型断熱材31の外郭は、側部パネル8の内面及び側部フレーム9の外側面に合致する形状にしてある。この成型断熱材31の装備により、側部パネル8の外面での結露の発生を防止する。
 また、閉塞板6の左右の側面板部6Aにおける内面側の熱良導材層6aとそれに近接対向する側部フレーム9の内側面との間には、閉塞板6の外面側の断熱材層6bが介在する。これにより、側部フレーム9への冷熱伝導を抑止する。
 また、これと併せて、図9に示す如く、前後一対のエレメント下部支持フレーム17の両端部は、側部フレーム9との間に樹脂製の断熱スペーサ32を介在させた状態で、側部フレーム9に連結してある。これにより、側部フレーム9へのエレメント下部支持フレーム17からの冷熱伝導も抑止して、側部フレーム9での結露の発生及び側部パネル8の外面での結露の発生を一層確実に防止する。
 左右の機体側部枠1Cにおける成型断熱材31には、上下方向に延びる配管挿通用の切欠き31aを形成してある。即ち、偏平伝熱部2の下部で蛇行伝熱管4の一端に接続した渡り冷媒管5aは、左右一方の機体側部枠1Cにおける配管挿通用の切欠き31aを通じて機体上部枠1Aに導く。
 また、ドレンパン18からの排水管19は、左右他方の側部ケース部1Cにおける配管挿通用の切欠き31aを通じて機体上部枠1Aに導く。
 即ち、これら配管挿通用の切欠き31aを通じて上部に導いた渡り冷媒管5a及び排水管19と、偏平伝熱部2の上部で蛇行伝熱管4の他端に接続した渡り冷媒管5bとの三管は、それらを纏めた状態で機体上部枠1Aから機外に延出させる。これにより、一般の壁掛式エアコンで用いる室壁上部の配管用貫通孔を利用して、上記の三管5a,5b,19を室外に延出させることができるようにしてある。
 なお、室壁下部の配管用貫通孔を確保できる場合は、その室壁下部の配管用貫通孔を通じて上記三管5a,5b,19を室外に延出させてもよい。
 図3,図5に示すように、機体上部枠1Aの後面パネルとなる背面パネル7の上端部の内面には、組み付け状態において閉塞板6の後面側の断熱材層6bに連なる断熱材6cを貼設してある。
 機体上部枠1Aには、図1に示すように、前面パネル10に設けた運転ランプや異常ランプの点消灯操作、及び、前面パネル10に設けた受信部で受信したリモコン発信信号の処理などを行なう制御器33を内装してある。
 図4,図20に示すように、ドレンパン18には、排水管19へ排出する排水中の塵埃等異物を捕集するストレーナ34を、ドレンパン深底部18aの排水口部(即ち、排水管19の接続口部)に設けてある。
 また、ドレンパン18には、ドレンパン18における水位を検出する水位検出手段として、ドレンパン18における水位の変化によりオンオフ動作する第1及び第2のフロートスイッチ35a,35bを、ドレンパン18の深底部18aとその近傍の底部とに各別に装備してある。
 上記制御器33は、排水制御手段として、これらフロートスイッチ35a,35bのオンオフ動作に基づきドレンポンプ20を発停するなどの排水制御も実行する。
 この排水制御について具体的には(図20、図21参照)、第1フロートスイッチ35aは、ドレンパン18内の水位が設定排水水位L1以上になるとオン動作する。また、第1フロートスイッチ35aは、ドレンパン18内の水位が設定排水水位L1より低くなるとオフ動作する。
 同様に第2フロートスイッチ35bは、ドレンパン18内の水位が設定上限水位L2以上になるとオン動作する。また、第2フロートスイッチ35bは、ドレンパン18内の水位が設定上限水位L2より低くなるとオフ動作する。
 第1フロートスイッチ35aのオンオフ動作に基づくドレンポンプ20の発停でドレンパン18内の貯留水が適切に排出される状況では、第2フロートスイッチ35bがオン動作することのないように、上記の設定上限水位L2は設定排水水位L1より高くしてある。
 制御器33は、具体的にはフロートスイッチ35a,35bのオンオフ動作に基づいて次のように制御動作する(図20~図22参照)。
 ドレンパン18内の水位が設定排水水位L1に上昇して第1フロートスイッチ35aがオン動作すると、制御器33はドレンポンプ20の運転を開始する。これにより、ドレンパン18からの排水が開始される。
 この排水開始によりドレンパン18内の水位が設定排水水位L1より低下して第1フロートスイッチ35aがオフ動作すると、制御器33は、設定排水時間T1の計時を開始する。そして、この計時において第1フロートスイッチ35aのオフ動作時点から設定排水時間T1が経過すると、制御器33は、ドレンポンプ20の運転を停止する。これにより、ドレンパン18からの排水が停止される。
 即ち、冷房運転時においては結露水が連続してドレンパン18に流入することに対し、上記の如き第1フロートスイッチ35aのオンオフ動作に基づくドレンポンプ20の間欠的な運転により、ドレンパン18内の水位を、第2フロートスイッチ35bのオンオフ水位である設定上限水位L2より低位に保つ。
 一方、何らかの原因でドレンパン18内の水位が設定排水水位L1を超えて設定上限水位L2に上昇し、そのことで第2フロートスイッチ35bがオン動作すると、制御器33は、先の第1フロートスイッチ35aのオン動作によるドレンポンプ20の運転を継続したままの状態で、圧縮機の運転を停止して冷媒Rの循環を停止する(即ち、冷房運転を停止する)。これにより、偏平断熱部2での結露水の新たな発生を停止させる。
 その後、この冷房運転停止状態でのドレンポンプ20の運転により、ドレンパン18内の水位が設定上限水位L2より低下して第2フロートスイッチ35bがオフ動作すると、制御器33は設定保全時間T2の計時を開始する。そして、この計時において第2フロートスイッチ35bのオフ動作時点から設定保全時間T2が経過すると、制御器33は、ドレンパン18内の水位が設定排水水位L1に上昇したときからのドレンポンプ20の運転を停止する。
 即ち、この設定保全時間T2にわたるドレンポンプ20の運転により、ドレンパン18内の多量の貯留水を確実に排水しながら、冷房運転を停止した状態でのドレンポンプ20の必要以上の運転を回避する。
 また、制御器33は、上記の如き第1、第2フロートスイッチ35a,35bのオンオフ動作に基づくドレンポンプ20の発停操作に併行して、各回のドレンポンプ20の運転開始毎に設定制限時間T3の計時を開始する。そして、この設定制限時間T3の計時において設定制限時間T3が経過する時点までドレンポンプ20の運転が継続されているときには、異常として、ドレンポンプ20の運転開始時点から設定制限時間T3が経過した時点でドレンポンプ20の運転を強制的に停止する。
 なお、この設定制限時間T3は、前記した設定排水時間T1や設定保全時間T2よりかなり長い時間にしてある。
 設定保全時間T2としては、装置設計上、第2フロートスイッチ35bのオフ動作以降もドレンパン18に流入する残留結露水の排水を含めて、ドレンポンプ20の運転による排水でドレンパン18内の水位が設定保全時間T2の計時開始時点における水位(即ち、第2フロートスイッチ35bのオフ動作水位)からドレンパン18の排水口部(即ち、ドレンパン深底部18aの底面近傍)まで低下するのに要する時間を設定してある。
 また、本例では、設定排水時間T1として、装置設計上、ドレンポンプ20の運転による排水でドレンパン18内の水位が第1フロートスイッチ35aのオフ動作時点における水位から同じくドレンパン18の排水口部(ドレンパン深底部18aの底面近傍)まで低下するのに要する時間を設定してある。
 そしてまた、ドレンパン18の容量は、装置設計上、第2フロートスイッチ35bのオン動作による圧縮機の停止後もドレンパン18に流入する残留結露水の全量(第2フロートスイッチ35bのオン動作時点で既にドレンパン18にある水量を含む)を受け入れ貯留することができる容量にしてある。これにより、排水不良の原因がドレンポンプ20そのものの不良であった場合でも、ドレンパン18から貯留水がオーバーフローする漏水トラブルを確実に回避できる。
 ドレンポンプ20には逆止弁機能を備えるポンプを用いてある。これにより、排水管19からドレンパン18に向う排水の逆流を防止する。
 また。図10に示す如く、排水管19には、ドレンパン18の排水口部から下方へ延びて、それに続き上方へ延びるポケット配管部19aを形成してある。そして、ドレンポンプ20は、ドレンパン18の深底部18aより低い位置で、このポケット配管部19a(即ち、水溜まり状態となる配管部分)に介装してある。
 即ち、このポンプ配置により、設定排水時間T1を上記の如く設定することとも相俟って、異音発生やポンプ不良などの発生原因となるドレンポンプ20の空運転(即ち、吸込水が十分に存在しない状態でのポンプ運転)を防止する。
 なお、本例では、偏平伝熱部2を室内機1の前方に対してのみ露出させる例を示したが、閉塞板6を省略した形態で、偏平伝熱部2を室内機1の前方及び後方の両方に対して露出させるようにしてもよい。この場合、偏平伝熱部2から冷気流出や暖気流出による冷暖房を室内機1の前方室内領域と後方室内領域とに同時に施すこすことができる。
 〔第1実施形態に対する別実施形態〕
 上述した第1実施形態の装置構成に代えて、次に列記する構成のいずれかを採用してもよい。
 伝熱管4に通過させる熱媒Rは、ヒートポンプで使用する冷媒に代えて、冷水、ブライン、氷水スラリー、温水、蒸気などであってもよい。
 後面板部6Aや側面板部6Bは、熱良導材層6aと断熱材層6bとからなる2層構造に代えて、3層以上の複層構造にしてもよい。
 偏平伝熱部2の後面部は、その全部を後面板部6Aにより閉塞するのに代えて、一部を後面板部6A以外の部材で構成したり、一部を隙間として開放などしてもよい。
 同様に、偏平伝熱部2の側面部は、その全部を側面板部6Bにより閉塞するのに代えて、一部を側面板部6B以外の部材で構成したり、一部を隙間として開放するなどしてもよい。
 偏平伝熱部2を構成する縦姿勢の伝熱エレメント3の上端部は、ピン以外の係合構造や嵌合構造により、上下方向での熱伸縮を許す状態でエレメント上部支持フレーム13に固定してもよい。
 また、縦姿勢の伝熱エレメント3の上端部を、コイルバネや柱状のゴム材などの弾性部材によりエレメント上部支持フレーム13に固定し、これにより、伝熱エレメント3の上下方向での熱伸縮を許すようにしてもよい。
 あるいは、エレメント上部支持フレーム13の両端部を側部フレーム9に形成した長穴に挿通するなどの連結構造により、エレメント上部支持フレーム13の上下動を可能にすることで、伝熱エレメント3の上下方向での熱伸縮を許すようにしてもよい。
 エレメント下部支持フレーム17及びエレメント上部支持フレーム13夫々の横断面形状は、第1実施形態で示した横断面形状に限られるものではなく、種々の変更が可能である。
 各伝熱エレメント3から流下する結露水を各別にドレンパン18に案内する複数の排水口部22aを形成してもよい。
 エレメント下部支持フレーム17と複数の伝熱エレメント3夫々の下端部との間に、各別のドレン受具22を配設してもよい。
 ドレン受具22及びドレンパン18夫々の横断面形状は、第1実施形態で示した横断面形状に限られるものではなく、種々の変更が可能である。
 また、ドレン受具22は樹脂に限定されるものではなく、低伝熱性の金属、セラミック、金属の周囲に樹脂塗装等の適宜手段で樹脂皮膜を形成したものであってもよい。
 偏平伝熱部2から降下する冷気の侵入を阻止する隙間埋め材は、機体下部ケース1Bの上部のみに配置してもよい。
 また、隙間埋め材は、シート状やパテ状の断熱材であってもよい。
 伝熱エレメント3の下端部を支持するエレメント下部支持フレーム17の具体的構造は、上述の第1実施形態で示した構造に限らず種々の変更が可能である。
 排水制御手段としての制御器33は、ドレンパン18内の水位が設定上限水位L2に上昇して第2フロートスイッチ35bがオン動作すると、圧縮機停止により冷房運転を停止するとともに、ドレンポンプ20の運転開始操作を再度試みるとともに、この試みに伴い設定保全時間T2の計時を開始し、その後、この計時において第2フロートスイッチ35bのオン動作時点から設定保全時間T2が経過した時点でドレンポンプ20の運転を停止する構成にしてもよい(図23参照)。
 また、この場合、設定保全時間T2は、装置設計上、検出水位が設定上限水位L2まで上昇したことに応じて冷房運転を停止した後もドレンパン18に流入する残留結露水の全量(第2フロートスイッチ35bのオン動作時点で既にドレンパン18に存在する貯留水を含む)をドレンポンプ20の運転によりドレンパン18から排水するのに要する時間を設定するのが望ましい。
 ドレンパン18に対する水位検出手段には、電極式のものや圧力式のものなど各種検出方式のものを採用することができる。
 ドレンパン18における水位が設定上限水位L2に上昇したときには、冷房運転の停止とともに異常発生の報知を制御器33に実行させるようにしてもよい。
 左右一方の側部フレーム9とそれに対する側部パネル8との間の柱状の空間部において、ドレンパン18とほぼ同じ高さの箇所ないしはドレンパン18よりある程度高い箇所にドレンポンプ20を配置してもよい。
 なお、この場合、左右一方の機体側部枠1Cにおける柱状の成型断熱材31のうちドレンポンプ20の配置箇所には、ドレンポンプ20を収容するための欠損部を形成するようにする。
 つまり、ドレンパン18の下方空間部にドレンポンプ20を配置した場合、ドレンポンプ20を囲う成型断熱材30(30a,30b)のポンプ運転音に対する消音効果を期待することができる。しかし、その反面、ポンプ運転音がドレンパン18の下方空間部に篭る状態になって成型断熱材30(30a,30b)がドレンポンプ20の運転に伴い振動する状態になり、この為、却ってドレンポンプ20の運転に伴う音響的な不快感を使用者に与える虞がある。
 これに対し、上記の如く側部フレーム9と側部パネル8との間の柱状の空間部にドレンポンプ20を配置すれば、このようなポンプ運転音の篭りによる音響的な不快感を効果的に回避することができる。
 偏平伝熱部2は、伝熱管4を貫通させた伝熱エレメント3を並置して構成するのに限らず、縦姿勢の板状の伝熱エレメントに伝熱管4を密着させて構成してもよく。偏平伝熱部2の具体的構造の種々の変更が可能である。
 〔第2実施形態〕
 図24~図32は、室内機1の第2実施形態を示す。なお、第1実施形態の室内機1と同機能の部分については、第1実施形態で用いた符号と同じ符号を付すに止めて、その詳細な説明を省略する。
 図24に示す第2実施形態の室内機1では、縦姿勢の伝熱エレメント3の並置群からなる偏平伝熱部2の後面部及び側面部を閉塞板6により閉塞するのに対し、図25、図29、図32に代表的に示すように、暖房運転において偏平伝熱部2の配設部に後方側から空気IAを流入させる空気流入部47を、閉塞板6における後面板部6Aの上下方向中間部に設けてある。
 即ち、暖房運転では、伝熱エレメント3の加熱に伴い偏平伝熱部2で生じる暖気の上昇ドラフト流DAによる誘引作用により、この空気流入部47を通じて後方空間の空気IAを偏平伝熱部2の配設部に流入させる。
 この空気流入部47を形成するにあたり、閉塞板6の後面板部6Aは、上側に配置する上側板部48と、下側に配置する下側板部49とで構成してある。そして、これら上側板部48と下側板部49とのうち、暖房運転時の上昇ドラフト流DAの流れ方向下流側となる上側板部48は、下側板部49よりも後方側に位置させてある。
 また、上側板部48の下側部分48bと下側板部49の上側部分49cとは、前後方向視でラップさせてある。即ち、このラップ部において、上側板部48の下側部分48bと下側板部49の上側部分49cとの間に形成される筒状の隙間を、上記空気流入部47にしてある。
 換言すれば、この空気流入部47は、図29に示すように、上記の筒状隙間からなる筒状の空気案内路47bを備えている。また、この空気案内路47bは、上昇ドラフト流DAの下流側となる上側に向かって開口する空気出口47aを備えている。
 図30に示すように、上側板部48の左右の側辺部には、前方向きの脚部48cを形成してある。そして、この脚部48cの先端側には取付け片部48dを形成してある。即ち、この取付け片部48dを固定ビス等の止め具により側部フレーム9に固定することで、上側板部48を、下側板部49よりも後方に位置させた状態で、偏平伝熱部2の後面部に配設してある。
 図30における拡大図部分に示すように、脚部48cの取付け片部48dと側部フレーム9及び側面板部6Bとの間には、上側板部48と側部フレーム9との間での熱伝導を抑止する断熱材45を介在させてある。
 図25、図29に示すように、閉塞板6における後面板部6Aの上端側部分(即ち、空気流入部47よりも上昇ドラフト流DAの流れ方向下流側の部分)には、空気流入部47からの流入空気IAを偏平伝熱部2の配設部から流出させる空気流出部43を設けてある。この空気流出部43は、上記した筒状の空気案内路47bと平面視において合同な開口形状を有して上向きに開放している。
 さらに、閉塞板6における後面板部6Aの上半部の左右両側には、暖房運転において偏平伝熱部2で生じる暖気の上昇ドラフト流DAによる誘引作用により偏平伝熱部2の配設部に側方から空気IAを流入させる補助空気流入部44を設けてある。
 この補助空気流入部44は、具体的には上側板部48における左右一対の脚部48cの夫々において形成した上下2つの縦長開口48eからなる。
 下側板部49は、図26、図31に示すように、前面側の熱良導材層49aと断熱材層49bと背面パネル49dとを積層して形成してある。また、この積層において、断熱材層49bは前面側の熱良導材層49aの裏側の凹面部49eに入れ込んだ状態にしてある。
 そして、下側板部49は、熱良導材層49aと背面パネル49dの左右両側縁を固定ビスなどにより側部フレーム9に固定することで、偏平伝熱部2の後面部の下半部に配設してある。
なお、図31における拡大図部分に示すように、熱良導材層49aの左右両側縁と側部フレーム9及び側面板部6Bとの間には、下側板部48と側部フレーム9との間での熱伝導を抑止する断熱材50を介在させてある。
 即ち、図32(a)に示すように、暖房運転では、偏平伝熱部2で生じる暖気の上昇ドラフト流DAのうち、流れが安定した上下方向中間部の上昇ドラフト流DAによる誘引にり、後面板部6Aの空気流入部47を通じて、偏平伝熱部2の配設部に対し後方空間の空気iaを効率的に流入させる。
 また、この空気流入では、上昇ドラフト流DAと流れ向きと同じ上向きの空気出口47aを備える筒状の空気案内路47bを通過する過程で、誘引空気IAが整流されることにより、偏平伝熱部2の配設部に対する誘引空気IAの流入がさらに効率的になるとともに一層安定化する。
 このことにより、補助空気流入部44を通じた誘引空気IAの流入とも相俟って、また、空気流入部47からの流入空気IAの一部が偏平伝熱部2での加熱を経て上部の空気流出部43から上方へスムーズに流出することとも相俟って、偏平伝熱部2の上部からの室内への暖気流出が効果的に促進されるとともに、偏平伝熱部2での空気と伝熱エレメント3との熱交換も促進され、そのことで、暖房効果が効果的に向上する。
 一方、図32(b)に示すように、冷房運転では、空気流入部47における空気出口47aが上向きであるため、冷房運転時の降下ドラフト流DA´の一部が空気流入部47を通じて後方空間に流出する。
 しかし、このときは、空気流入部47を通じて流出する降下ドラフト流DA´と、熱良導材からなる上側板部48との効率的な熱交換により、後方空間へ流出する降下ドラフト流DA´の保有冷熱を効率的に奪うことができる。
 このこととにより、下側板部49に設けた断熱材層49bによる断熱とも相俟って、後方の室壁Kでの結露の発生を効果的に防止することができる。
 〔第2実施形態に対する別実施形態〕
 上述した第2実施形態の装置構成に代えて、次に列記する構成のいずれかを採用してもよい。
 上側板部48と下側板部49とのうち、冷房運転時の降下ドラフト流DA´の流れ方向下流側となる下側板部49を上側板部48より後方に配置するとともに、上側板部48の下側部分48bと下側板部49の上側部分49cとを、前後方向視でラップさせる。
 そして、このラップ部において、上側板部48の下側部分48bと下側板部49の上側部分49cとの間に形成される筒状の隙間を空気流入部にしてもよい。
 この場合、冷房運転時の降下ドラフト流DA´による誘引により、空気流入部を通じて後方空間の空気IAを偏平伝熱部2の配設部に流入させることで、冷房運転時における偏平伝熱部2の下部から室内への冷気流出を促進するとともに、偏平伝熱部2での伝熱エレメント3と空気との熱交換を促進することができる。
 図33に示すように、前記後面板部6の少なくとも上下方向中間部に左右幅方向に沿う軸心周りでの回動により姿勢変更自在な複数の案内羽35(流入向き変更手段の一例)を設け、この案内羽35の姿勢変更操作によりエレメント収容部2への空気IAの流入向きを変更し得るように構成してもよい。
 このようにすれば、空気流入部47から偏平伝熱部2への空気IAの流入向きを室内機1の運転状況(暖房運転、冷房運転、運転出力)や室内の状況などに応じた最適なものにすることができる。
 例えば、図33(a)に示すように、暖房運転時には、案内羽55の姿勢変更により空気IAの流入向きを斜め上向きにすることで、暖房運転において誘引抵抗の少ない状態で空気IAを円滑に流入させて偏平伝熱部2の上部からの室内への暖気流出を促進することができる。
 また、冷房運転時には、案内羽55の姿勢変更により空気IAの流入向きを斜め下向きにすることで、冷房運転においても誘引抵抗の少ない状態で空気IAを円滑に流入させて偏平伝熱部2の下部からの室内への冷気流出を促進することができる。
 さらにまた、例えば、図34に示すように、空気流入部47を開閉する開度調整自在な開閉扉56(流入口開閉手段の一例、開口面積調整手段の一例)を設けてもよい。
 このようにすれば、開閉扉56の開閉により、空気流入部47から偏平伝熱部2に空気IAを誘引させる使用形態と、空気流入部47から偏平伝熱部2に空気IAを誘引させない使用形態とを、室内機1の運転状況(暖房運転、冷房運転、運転出力)や室内の状況などに応じた最適なものにすることができる。
 また、開閉扉56の開度調整により、空気流出部47から偏平伝熱部2に流入させる空気量を室内機1の運転状況(暖房運転、冷房運転、運転出力)や室内の状況などに応じた最適なものにすることができる。
 例えば、図34(a)に示すように、暖房運転時には開閉扉56を全開状態として、暖房時のドラフト流DAによる誘引作用で空気流入部47から空気IAを偏平伝熱部2に流入させて偏平伝熱部2の上部からの室内への暖気流出を促進することが可能になる。
 一方、冷房運転時には開閉扉56を閉じ状態又は部分開状態として、偏平伝熱部2の下部から冷気流出をセーブするなどの使用形態を採ることも可能になる。
 上述した第2実施形態では、空気流入部47を複数の板部48、49の間に形成された隙間から構成する場合を例に示したが、例えば、一枚の板に貫通形成した開口部などから構成してもよい。
 上述した第2実施形態では、偏平伝熱部2を室内機1の前方に対してのみ開放する凹部から構成する場合を例に示したが、偏平伝熱部2を室内機1の前方及び側方に対して開放させるようにしてもよい。
 上述した第2実施形態では、偏平伝熱部2の左右の側面部の全部を左右の側面板部6Bで閉塞する場合を例に示したが、左右の側面板6Bに空気流入部47を開口形成するようにしてもよい。
 上述した第2実施形態では、後面板部6Aの前面を光沢面にする場合を例に示したが、後面板部6Aの前面は必ずしも光沢面にしなくともよい。
 本発明による空調装置は各種分野における種々の用途の空調対象域に対して使用することができる。
 R    熱媒
 4    伝熱管
 2    偏平伝熱部
 18     ドレンパン
 1B   機体下部ケース

Claims (28)

  1.  熱媒が通過する伝熱管を備える偏平伝熱部を設け、
     この偏平伝熱部を、縦姿勢に配置するとともに、空調対象域に対して面対向状態で露出させ、
     前記熱媒により前記伝熱管を冷却して前記偏平伝熱部を吸熱作用させる冷房運転の際に前記偏平伝熱部で発生した結露水が流下するのに対して、その結露水を受け入れるドレンパンを設けた空調装置であって、
     前記偏平伝熱部の下方に機体下部ケースを配設し、
     前記ドレンパンの全体を前記機体下部ケースの内部に配置してある空調装置。
  2.  前記機体下部ケースの上面部を、前記空調対象域の側ほど低位となる傾斜姿勢にしてある請求項1記載の空調装置。
  3.  熱良導材からなる縦姿勢の伝熱エレメントと、その伝熱エレメントに密着させた前記伝熱管とで前記偏平伝熱部を構成し、
     前記機体下部ケースの上面部に形成した挿通孔を通じて前記伝熱エレメントの下端部を前記機体下部ケースに挿入し、
     前記伝熱エレメントを伝って流下する前記結露水が前記挿通孔を通じて前記ドレンパンに流入する構成にしてある請求項1又は2記載の空調装置。
  4.  前記偏平伝熱部の上方に横向き姿勢の機体上部枠を設け、
     この機体上部枠の下面部を、前記空調対象域の側ほど高位となる傾斜姿勢にしてある請求項1~3のいずれか1項に記載の空調装置。
  5.  前記偏平伝熱部の上方に配設された横向き姿勢の機体上部枠と、前記気体下部ケースと、前記扁平伝熱部の両側方夫々に配設されて前記機体下部ケースと前記機体上部枠とを連結する縦姿勢の機体側部枠とで、前記偏平伝熱部の周囲を囲んである請求項1~4のいずか1項に記載の空調装置。
  6.  前記偏平伝熱部の前面部を前方の前記空調対象域に対して露出させ、
     前記偏平伝熱部の後面部を後方空間に対して後面板部により閉塞し、
     この後面板部は、前面側の熱良導材層と後面側の断熱材層とを備える複層構造にしてある請求項1~5のいずれか1項に記載の空調装置。
  7.  前記偏平伝熱部の両側面部を側方空間に対して側面板部により閉塞し、
     この側面板部は、内面側の熱良導材層と外面側の断熱材層とを備える複層構造にしてある請求項6記載の空調装置。
  8.  前記後面板部の前面を、輻射熱が反射する光沢面にしてある請求項6又は7記載の空調装置。
  9.  熱良導材からなる縦姿勢の伝熱エレメントの中心部に前記伝熱管を縦姿勢で貫通させるとともに、
     前記伝熱エレメントにおける前面側及び後面側の夫々に、前記伝熱エレメントのほぼ全長にわたって縦方向に延びる多数のフィン部を、左右方向に並べて形成し、
     これら伝熱管及びフィン部を備える前記伝熱エレメントを左右方向に並置して前記偏平伝熱部を構成し、
     前記伝熱エレメントの夫々における前面側の前記フィン部については、各伝熱エレメントの左右中央側に位置するフィン部ほど前方への延出長さが大きいフィン部にし、
     前記伝熱エレメントの夫々においる後面側の前記フィン部については、後方への延出長さが互いい等しいフィン部にしてある請求項6~8のいずれか1項に記載の空調装置。
  10.  前記後面板部の上下方向中間部に空気流入部を形成し、
     前記偏平伝熱部で発生するドラフト流による誘引により前記後方空間の空気が前記空気流入部を通じて前記偏平伝熱部の配置部に流入する構成にしてある請求項6~9のいずれか1項に記載の空調装置。
  11.  前記後面板部を、上側に配置する上側板部と下側に配置する下側板部とで構成し、
     これら上側板部と下側板部とのうち前記ドラフト流の流れ方向下流側に位置する板部を、前記ドラフト流の流れ方向上流側に位置する板部よりも後方に配置するとともに、
     それら上側板部の下側部分と下側板部と上側部分とを前後方向でラップさせて配置し、
     このラップ部において前記上側板部の下側部分と前記下側板部の上側部分との間に、前記空気流入部としての隙間を形成してある請求項10記載の空調装置。
  12.  前記上側板部と前記下側板部とのうち前方に配置される前側板部は、前面側の熱良導材層と後面側の断熱材層とを備える複層構造にし、
     前記上側板部と前記下側板部とのうち後方に配置される後側板部は、その全体を熱良導材で形成してある請求項11記載の空調装置。
  13.  熱良導材からなる縦姿勢の伝熱エレメントと、その伝熱エレメントに密着させた前記伝熱管とで前記偏平伝熱部を構成し、
     縦姿勢の前記伝熱エレメントの下端部を支持する一対のエレメント下部支持フレームを前記機体下部ケースの内部に配置し、
     前記伝熱エレメントの下端から突出する前記伝熱管を、前記一対のエレメント下部支持フレームに対して非接触の状態で、それらエレメント下部支持フレームどうしの間の隙間に挿通し、
     この伝熱管挿通状態で前記伝熱エレメントの下端部を前記一対のエレメント下部支持フレームの夫々に固定することで、前記伝熱エレメントの下端部を前記一対のエレメント下部支持フレームにより支持してある請求項1~12のいずれか1項に記載の空調装置。
  14.  前記偏平伝熱部の上方に横向き姿勢の機体上部枠を配設し、
     縦姿勢の前記伝熱エレメントの上端部を支持する一対のエレメント上部支持フレームを、前記機体上部枠の内部に配置し、
     前記伝熱エレメントの上端から突出する前記伝熱管を、前記一対のエレメント上部支持フレームに対して非接触の状態で、それらエレメント上部支持フレームどうしの間の隙間に挿通し、
     この伝熱管挿通状態で前記伝熱エレメントの上端部を前記一対のエレメント上部支持フレームの夫々に固定することで、前記伝熱エレメントの上端部を前記一対のエレメント上部支持フレームにより支持してある請求項13記載の空調装置。
  15.  前記伝熱エレメントの上端部は、上下方向での熱伸縮を許す状態で前記一対のエレメント上部支持フレームにより支持してある請求項14記載の空調装置。
  16.  前記機体下部ケースの内部において前記ドレンパンを前記一対のエレメント下部支持フレームの下方に配置し、
     前記一対のエレメント下部支持フレーム夫々の下面を、その下側ほど前記一対のエレメント下部フレームどうしの間の前記間隙の側に寄る傾斜姿勢にしてある請求項13~15のいずれか1項に記載の空調装置。
  17.  前記伝熱エレメントを伝って流下する前記結露水を受け止めて前記ドレンパンに案内するドレン受具を、前記一対のエレメント下部支持フレームに跨らせた状態で、それらエレメント下部支持フレームに載置し、
     前記伝熱エレメントの下端を、前記ドレン受具に載せ置いた状態で、前記ドレン受具を介して前記一対のエレメント下部支持フレームにより支持してある請求項13~16のいずれか1項に記載の空調装置。
  18.  熱良導材からなる縦姿勢の伝熱エレメントと、その伝熱エレメントに密着させた前記伝熱管とで前記偏平伝熱部を構成し、
     縦姿勢の前記伝熱エレメントの下端部を支持するエレメント下部支持フレームを前記機体下部ケースの内部に配置し、
     前記伝熱エレメントを伝って流下する前記結露水を受け止めるドレン受具を、前記伝熱エレメントの下端部と前記エレメント下部支持フレームとの間に配置し、
     このドレン受具は、受け止めた前記結露水を前記エレメント下部支持フレームに触れさせることなく前記ドレンパンに案内する構成にしてある請求項1~17のいずれか1項に記載の空調装置。
  19.  前記エレメント下部支持フレームの上面の一部に当接させる脚部を前記ドレン受具の下面に設け、
     この脚部を貫通する固定ネジにより前記伝熱エレメントの下端部を前記エレメント下部支持フレームに固定してある請求項18記載の空調装置。
  20.  熱良導材からなる縦姿勢の伝熱エレメントと、その伝熱エレメントに密着させた前記伝熱管とで前記偏平伝熱部を構成し、
     縦姿勢の前記伝熱エレメントの下端部を支持するエレメント下部支持フレームを前記機体下部ケースの内部に配置し、
     少なくとも前記機体下部ケースの上部開口部の近傍で前記機体下部ケースの内部に断熱材製の隙間埋め材を配設し、
     前記冷房運転の際に前記偏平伝熱部で冷却されて降下する冷気が前記機体下部ケースの内部に流入するのを前記隙間埋め材により防止する構成にしてある請求項1~19のいずれか1項に記載の空調装置。
  21.  前記隙間埋め材を、前側分割部と後側分割部との接合により形成し、
     この隙間埋め部の内部には、前記前側分割部と前記後側分割部との接合解除により開かれる収容空間を形成し、
     前記隙間埋め材を前記機体下部ケースの内部に配置した状態において、前記機体下部ケースの内部の装備物を前記収容空間に収容する構成にしてある請求項20記載の空調設備。
  22.  前記前側分割部を前記機体下部ケースにおける前面パネル部の内面に対して密着させるとともに、
     前記後側分割部を前記機体下部ケースにおける後面パネル部の内面に対して密着させてある請求項21記載の空調装置。
  23.  前記ドレンパンから排水管を通じて排水するドレンポンプと、
     前記ドレンパンにおける水位を検出する水位検出手段と、
     この水位検出手段による検出水位が設定排水水位以上のとき前記ドレンポンプを運転する排水制御手段とを設け、
     前記排水制御手段は、前記検出水位が前記設定排水水位以上であることに応じて前記ドレンポンプの運転を開始し、その後、前記検出水位が前記設定排水水位より低くなると設定排水時間の計時を開始し、
     その後、この設定排水時間が経過した時点で前記ドレンポンプの運転を停止する構成にしてある請求項1~22のいずれか1項に記載の空調装置。
  24.  前記設定排水時間は、設計上において、前記ドレンポンプの運転で前記ドレンパンにおける水位が前記設定排水時間の計時開始時点における水位から前記ドレンパンの底部近傍まで低下するのに要する時間にしてある請求項23記載の空調装置。
  25.  前記排水制御手段は、前記検出水位が前記設定排水水位より高い設定上限水位まで上昇したとき、前記冷房運転を停止する構成にしてある請求項23又は24記載の空調装置。
  26.  前記排水制御手段は、前記検出水位が前記設定上限水位まで上昇したことに応じて前記冷房運転を停止した後、前記検出水位が前記設定上限水位より低くなると設定保全時間の計時を開始し、
     その後、この設定保全時間が経過した時点で前記ドレンポンプの運転を停止する構成にしてある請求項25記載の空調装置。
  27.  前記設定保全時間は、設計上において、前記ドレンポンプの運転で前記ドレンパンにおける水位が前記設定保全時間の計時開始時点における水位から前記ドレンパンの底部近傍まで低下するのに要する時間にしてある請求項26記載の空調装置。
  28.  前記偏平伝熱部の上端部を連結する横向き姿勢の機体上部枠を設けるとともに、
     この機体上部枠の上面部に左右方向に延びる案内溝を形成し、
     この案内溝に沿って左右方向に移動が自在で、かつ、固定操作により前記案内溝に対して固定可能なスライド部材を設け、
     前記機体下部ケースの後方に位置する壁体に対して連結可能な転倒防止具を、前記スライド部材との一体的な左右方向への移動が可能な状態で、前記スライド部材に取り付けてある請求項1~27のいずれか1項に記載の空調装置。
PCT/JP2012/076722 2011-10-19 2012-10-16 空調装置 WO2013058243A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280051139.8A CN103930732A (zh) 2011-10-19 2012-10-16 空调装置
KR1020147012122A KR20140080527A (ko) 2011-10-19 2012-10-16 공기조화 장치
JP2013539647A JP5617044B2 (ja) 2011-10-19 2012-10-16 空調装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011229954 2011-10-19
JP2011-229954 2011-10-19

Publications (1)

Publication Number Publication Date
WO2013058243A1 true WO2013058243A1 (ja) 2013-04-25

Family

ID=48140890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076722 WO2013058243A1 (ja) 2011-10-19 2012-10-16 空調装置

Country Status (5)

Country Link
JP (1) JP5617044B2 (ja)
KR (1) KR20140080527A (ja)
CN (1) CN103930732A (ja)
TW (1) TW201346191A (ja)
WO (1) WO2013058243A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964345A (zh) * 2015-06-25 2015-10-07 广东美的制冷设备有限公司 空调室内机及具有其的空调器
TWI621825B (zh) * 2013-06-11 2018-04-21 Asahi Kasei Homes Corp Radiation panel device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833148A (zh) * 2015-05-29 2015-08-12 广东志高空调有限公司 一种低温热泵防冻排水装置及方法
CN109695995B (zh) * 2017-10-24 2021-11-30 松下知识产权经营株式会社 低温陈列柜
CN110864355A (zh) * 2019-12-17 2020-03-06 宁波奥克斯电气股份有限公司 一种复合导风叶片结构及空调室内机
CN112484271A (zh) * 2020-11-17 2021-03-12 珠海格力电器股份有限公司 一种天井机空调控制方法、装置及天井机空调

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835714A (ja) * 1994-07-22 1996-02-06 Sanyo Electric Co Ltd 空気調和機のドレン水処理装置
JP2001141288A (ja) * 1999-11-16 2001-05-25 Daikin Ind Ltd 空気調和機
JP2001296037A (ja) * 2000-04-12 2001-10-26 Sanyo Electric Co Ltd 空気調和機
JP2005186800A (ja) * 2003-12-25 2005-07-14 Toshiba Corp 鉄道車両用空気調和装置
JP2006207857A (ja) * 2005-01-25 2006-08-10 P S Kogyo Kk 空調装置
JP2009222297A (ja) * 2008-03-17 2009-10-01 Tesuku:Kk 室内暖房用の温水循環放熱器
JP2010107151A (ja) * 2008-10-31 2010-05-13 Tonami Kiden Kogyo Kk 冷暖房用などのパネル
JP3170417U (ja) * 2011-07-04 2011-09-15 株式会社ケンコー 空気調和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315462A (ja) * 2004-04-27 2005-11-10 Sanki Eng Co Ltd 蓄熱式放射冷暖房パネル

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835714A (ja) * 1994-07-22 1996-02-06 Sanyo Electric Co Ltd 空気調和機のドレン水処理装置
JP2001141288A (ja) * 1999-11-16 2001-05-25 Daikin Ind Ltd 空気調和機
JP2001296037A (ja) * 2000-04-12 2001-10-26 Sanyo Electric Co Ltd 空気調和機
JP2005186800A (ja) * 2003-12-25 2005-07-14 Toshiba Corp 鉄道車両用空気調和装置
JP2006207857A (ja) * 2005-01-25 2006-08-10 P S Kogyo Kk 空調装置
JP2009222297A (ja) * 2008-03-17 2009-10-01 Tesuku:Kk 室内暖房用の温水循環放熱器
JP2010107151A (ja) * 2008-10-31 2010-05-13 Tonami Kiden Kogyo Kk 冷暖房用などのパネル
JP3170417U (ja) * 2011-07-04 2011-09-15 株式会社ケンコー 空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI621825B (zh) * 2013-06-11 2018-04-21 Asahi Kasei Homes Corp Radiation panel device
CN104964345A (zh) * 2015-06-25 2015-10-07 广东美的制冷设备有限公司 空调室内机及具有其的空调器

Also Published As

Publication number Publication date
JPWO2013058243A1 (ja) 2015-04-02
CN103930732A (zh) 2014-07-16
JP5617044B2 (ja) 2014-10-29
KR20140080527A (ko) 2014-06-30
TW201346191A (zh) 2013-11-16

Similar Documents

Publication Publication Date Title
JP5617044B2 (ja) 空調装置
EP3026168B1 (en) Clothes drying device
CN103604169B (zh) 冷暖型空调器
JP5355730B2 (ja) 空調装置
JP5869955B2 (ja) 輻射式空気調和機
JP2008121907A (ja) 冷暖房システム
JP4760995B1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2012107820A (ja) 空気調和機の室外機
JP5287685B2 (ja) 空調室外機
WO2007086641A3 (en) Indoor unit of air conditioner
JP5906540B2 (ja) 空調装置
JP4634530B1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP5898568B2 (ja) 輻射式空気調和機
KR102340914B1 (ko) 공기 조화기의 실외기
RU2451883C2 (ru) Теплообменный агрегат
JP2011153772A (ja) 貯湯式給湯装置
JP2015025650A (ja) 空気調和装置及び空気調和装置の運転方法
JP2013088057A (ja) 空調装置における室内機の転倒防止構造
JP5866683B2 (ja) 空調装置
JP6683210B2 (ja) 輻射パネル、及び空気調和装置
JP2013100970A (ja) 空調装置
JP2013100969A (ja) 空調装置
JP2013245829A (ja) 輻射式空気調和機
JPH0548014Y2 (ja)
CA2815500C (en) Endothermic base-mounted heat pump water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147012122

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12841719

Country of ref document: EP

Kind code of ref document: A1