WO2013056631A1 - 低碳环保乳化炸药及其制备方法和氧化剂盐水溶液的制备装置 - Google Patents

低碳环保乳化炸药及其制备方法和氧化剂盐水溶液的制备装置 Download PDF

Info

Publication number
WO2013056631A1
WO2013056631A1 PCT/CN2012/082751 CN2012082751W WO2013056631A1 WO 2013056631 A1 WO2013056631 A1 WO 2013056631A1 CN 2012082751 W CN2012082751 W CN 2012082751W WO 2013056631 A1 WO2013056631 A1 WO 2013056631A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
tank
water
pipe
filter
Prior art date
Application number
PCT/CN2012/082751
Other languages
English (en)
French (fr)
Inventor
薛世忠
Original Assignee
Xue Shizhong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110319584.5A external-priority patent/CN102603439B/zh
Priority claimed from CN201110319585.XA external-priority patent/CN102603433B/zh
Priority claimed from CN201110410658.6A external-priority patent/CN103159576B/zh
Application filed by Xue Shizhong filed Critical Xue Shizhong
Publication of WO2013056631A1 publication Critical patent/WO2013056631A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B47/00Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
    • C06B47/14Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase
    • C06B47/145Water in oil emulsion type explosives in which a carbonaceous fuel forms the continuous phase

Definitions

  • the invention relates to a low-carbon environmentally-friendly emulsion explosive, a preparation method thereof and a device for preparing an oxidant salt aqueous solution. Background technique
  • the traditional industrial explosives are Class 1.1 explosives with No. 8 industrial detonator sensitivity. Even if they do not have the No. 8 industrial detonator sensitivity, they are also Class 1. Dangerous goods. The ability to be intrinsically safe; and the coupling charge cannot be achieved when charging, the cost of perforation is wasted, and the water in the hole cannot be effectively eliminated.
  • the packaging materials used in traditional industrial explosives include paper tubes, paraffin, medium-sized plastic bags, backing plates, paper boxes, and packaging tapes. When explosives explode, paper tubes and waxes participate in chemical reactions, generate toxic gases, and produce carbon oxide emissions. And the production efficiency is low, the manufacturing cost is high, and the charging efficiency is low.
  • the packaged emulsion explosive formula is relatively complicated.
  • the oxidant salt preparation technology is relatively backward, resulting in the amount of toxic and harmful gases after the detonation reaction.
  • the emission of toxic gases such as carbon dioxide reaches 70L/kg, even reaches 100L/kg, the pollution to the atmosphere is very serious, and the underground smoke is caused by the large amount of gun smoke generated after the explosive explosion. Longer, causing the occurrence of gun poisoning incidents, resulting in a large number of pollutant emissions.
  • the existing emulsion emulsifier brine solution is manufactured on the basis of controlling the input of raw materials, and the quality is greatly affected by the quality of raw materials and the level of measurement control; the density of explosives in the existing packaged explosives mixing process is not adjustable; The influence of the external environment is large, and transportation is very difficult when the ambient temperature is low, and it is a high-voltage input.
  • the object of the present invention is to provide a low-carbon environmentally-friendly and easy-to-use low-carbon environmentally-friendly emulsion explosive to solve the problem that the existing emulsion explosive explosives have large gun smoke and poor adaptability. .
  • the present invention provides a low-carbon environmentally-friendly emulsion explosive, which is obtained by sensitizing an emulsified substrate by a sensitizing liquid, wherein the emulsified substrate is formed by emulsification of an oxidizing agent aqueous solution and an oil phase, and a component thereof.
  • the weight ratio is as follows,
  • composition and ratio of the oxidizer brine solution are:
  • the composition of the oil phase is: paraffin oil or engine oil, emulsifier, the weight ratio is (2.5 ⁇ 3. 5): 1 ;
  • the composition of the emulsified matrix is: oxidant brine solution, oil phase, the weight ratio is (92 ⁇ 95) : ( 5 ⁇ 8 ) ;
  • the composition of the sensitizing liquid is: sodium nitrite, sodium sulfonate or sodium hydrogencarbonate, water, and the weight ratio thereof is (0. 9 ⁇ 1. 1): (0. 9 ⁇ 1. 1) : (23 - 29);
  • Emulsion explosive composition emulsified matrix, sensitizing liquid, the weight ratio is (98 ⁇ 102): (2.8 ⁇ 3. 2).
  • the composition and ratio of the oxidizing agent salt aqueous solution are:
  • the emulsifier is a combination of one or more of polyisobutylene succinic anhydride emulsifiers or a mixture of polyisobutylene succinic anhydride emulsifier and Span 80, wherein the polyisobutylene succinic anhydride is emulsified.
  • the weight ratio of the agent to the Span 80 is 1: ( 0.01 -1 ) 0
  • the preparation method of the low-carbon environmentally-friendly emulsion explosive according to the present invention comprises the following steps:
  • oxidizing agent brine solution Ammonium nitrate, thiourea, dissolved in water and heated to 80 ° C ⁇ 90 ° C, pH adjustment agent is used to adjust the pH value to 3.5 ⁇ 4.0, the solution turbidity ⁇ 1 NTU, The crystallization point is 69 °C ⁇ 71 °C, after the preparation of the solution, the diatomaceous earth adsorbent is added, and the pure oxidant salt aqueous solution is prepared by circulating filtration;
  • emulsifying matrix 92 ⁇ 95 parts by weight of oxidizing agent salt solution, 5 ⁇ 8 parts by weight of oil phase, added to the emulsifier by flow controller, emulsified to form water-in-oil emulsified matrix, substrate temperature 78 °C ⁇ 90 ° C, viscosity 14 ⁇ 26BU, the emulsified substrate is kept at a temperature higher than 40 ° C during sensitization;
  • sensitizing liquid sodium nitrite, sodium thiocyanate or sodium hydrogencarbonate, water is formulated into a sensitizing solution having a specific gravity of 1.041 to 1.061 g/cm 3 ;
  • the pH adjusting agent is selected from the group consisting of acetic acid, sodium carbonate, sodium hydroxide or potassium hydroxide.
  • the invention also provides a preparation device of the oxidant salt aqueous solution, comprising:
  • a coarse filter tank wherein a coarse filter screen is disposed, and an upper space of the coarse filter mesh is connected to a bottom opening of the preparation tank through a first pipe;
  • a fine filter having at least one fine filter body therein, the bottom of the fine filter body being connected through a second pipe Receiving a lower space of the coarse filter screen in the coarse filter tank, and the top of the fine filter body is communicated with the preparation tank through a third pipe;
  • the fourth pipe is provided with a fourth three-way valve, and the fifth pipe drawn by the fourth three-way valve is connected to the upper space of the coarse filter in the coarse filter tank.
  • the preparation tank, the coarse filter tank, the fine filter, and the pipeline are each independently provided with an insulation layer.
  • the top of the preparation tank is provided with a feed inlet.
  • the third conduit and/or the fourth conduit are in communication with the top of the preparation tank or the upper portion of the tank wall.
  • a first three-way valve is disposed in the first pipe, and the solution outlet is taken out from the first three-way valve.
  • the first pipe is joined to the fifth pipe downstream of the first three-way valve and connected to the upper space of the coarse mesh in the coarse filter tank.
  • a bottom of the coarse filter tank is provided with a sewage outlet.
  • the second pipe is provided with a pipeline pump for driving the working fluid circulation in the preparation device.
  • the filler in the fine filter body is diatomaceous earth.
  • the device for preparing an oxidant salt aqueous solution further includes:
  • a wastewater concentration sedimentation tank disposed below the level of the preparation device and used to collect wastewater generated by the preparation device during the production process
  • a water recovery filter wherein a filter screen is disposed, and an upper space of the filter mesh is connected to the liquid level of the waste water concentration sedimentation tank through a pipeline;
  • Recycling a water tank wherein a lower space of the filter screen in the recovered water filter can inject the filtered recovered water in the recovered water filter into the recovery water tank through a pipeline, and the recycled water tank can pass the recovered water therein
  • the pipe is injected into the preparation tank
  • the fourth pipe is provided with a fourth three-way valve, and the fifth pipe drawn by the fourth three-way valve is connected to the upper space of the coarse filter in the coarse filter tank.
  • the bulk emulsified substrate provided by the invention can be filled by the bulk explosive automatic filling device, and the emulsified substrate of the dangerous goods grade of 5.1 grade is loaded into the blasthole for 15-20 minutes to become an explosive, which solves the problem of intrinsic safety;
  • the density can be adjusted according to the concentration and addition amount of the sensitizing liquid.
  • the density of the explosive can be adjusted according to different rock conditions; the coupling charge can be realized to save the perforation cost; the water in the blasthole can be effectively discharged, and the blasting quality can be ensured; not only the packaging material is saved, Relatively reduced carbon dioxide emissions; and formula tube, effectively reducing the production of toxic gases;
  • oxidant salt preparation technology is relatively mature, to control the crystallization point, pH value, turbidity, temperature as indicators in the aqueous solution, control terminal quality, maximum The degree of actual zero-oxygen equilibrium reaction is achieved, and the emission of toxic and harmful gases is reduced.
  • the toxic gas content is detected to be about 20 L/kg, which achieves the goal of low-carbon and environmental protection. Since the viscosity of the matrix is controlled, the transportation is smooth, and the charging construction is not affected.
  • FIG. 1 is a schematic view showing an embodiment of an apparatus for producing an oxidizing agent aqueous solution and a coarse filtration fine filtration apparatus according to an embodiment 5 of the present invention.
  • Fig. 2 is a flow chart showing an embodiment of a method for preparing an oxidizing agent aqueous solution according to Example 5 of the present invention.
  • Fig. 3 is a schematic view showing an embodiment of an apparatus for producing an oxidizing agent aqueous solution according to Embodiment 6 of the present invention.
  • Fig. 4 is a partial flow chart showing an embodiment of a method for preparing an oxidizing agent aqueous solution according to Embodiment 6 of the present invention.
  • Fig. 5 is a partial flow chart showing an embodiment of a method for preparing an oxidizing agent aqueous solution according to Example 6 of the present invention. detailed description
  • the pH of the ammonium nitrate is adjusted to 3.
  • the sodium hydroxide and acetic acid are used to adjust the pH to 3.
  • the sodium nitrate is 0.2 kg
  • the thiourea is 0. 2 kg
  • the acetic acid is 0.1 kg
  • the sodium carbonate is 0.03 kg
  • the water is 19.67 kg. 5
  • the crystallization point is 71 ° C
  • the turbidity of the solution is 0.9 NTU
  • the diatomaceous earth adsorbent is added to the solution, and filtered by a strainer and a fine filter for 30 minutes to become a pure oxidizing agent aqueous solution
  • the 2.3 kg of LZ2820 is emulsified.
  • the toxic gas emissions measured by the test are 20L/kg.
  • the oxidant salt aqueous solution obtained above and the oil phase are emulsified in an emulsifier to form a water-in-oil type emulsified substrate, maintaining a temperature of 78 ° C, and measuring a viscosity of 23 BU; sodium nitrite 0.10 kg, sodium bicarbonate 0.11 kg, and water 2.7 kg were placed in a sensitizing solution; the above emulsifying base and sensitizer were mixed to obtain a bulk emulsion explosive.
  • the test measured a toxic gas emission of 19L / kg.
  • the mixture was mixed into an oxidizing agent aqueous solution at 90 ° C, and the pH was adjusted to 4.0 with sodium hydroxide and acetic acid.
  • the crystallization point was 70 ° C, the turbidity of the solution was 0.8 NTU, and the diatomaceous earth adsorbent was added to the solution.
  • the fine filter is filtered for 30 minutes to become a pure oxidizing agent brine solution; 0.55 kg of LZ2731 emulsifier and LZ2721 emulsifier, and 3.9 kg of paraffin oil are melted and mixed uniformly at 80 ° C to obtain an oil phase; And the oil phase is emulsified in an emulsifier to form a water-in-oil type emulsified matrix, maintaining a temperature of 90 ° C, and measuring a viscosity of 15 BU; sodium nitrite 0.11 kg, sodium thiocyanate 0.09 kg, water 3.0 kg a sensitizing solution; mixing the above emulsified substrate and a sensitizer to obtain a bulk emulsion explosive.
  • the test measured toxic gas emissions of 22L / kg.
  • the pores were sensitized at a temperature of 40 ° C for 15 minutes to obtain an emulsion explosive, which was measured (national standard GB/18095-2000, the following examples were subjected to the same measurement method as in the present example), and the density was 1.1 g/cm 3 . .
  • the emulsified substrate in this embodiment can be normally transported by a plunger pump when the input pressure is 0.4 MPa, and can be transported for up to 50 m when the diameter of the conveying pipe is 19 ⁇ .
  • the explosive detonation velocity in this example measured by the test is 4800 m/s.
  • the viscosity of the emulsifying matrix is low, and it is only 14-20 BU at 78 - 90 °C.
  • the viscosity is greatly reduced compared with the existing emulsified matrix.
  • the emulsified substrate can be transported normally when the input pressure is only 0.4Mpa while the plunger pump or the screw pump is used to ensure the performance of the explosive, and the pumping of the emulsion explosive is solved. The problem is convenient for the delivery of explosives.
  • the emulsified matrix delivery tube can be used with a small diameter.
  • the inner diameter of the delivery tube can be transported normally when it is only 19 inches.
  • the conveying distance Due to the low viscosity, the conveying distance is increased, the conveying distance can reach 50 meters, and the farthest effective safety distance is 60 meters.
  • the pumpable emulsified substrate of the present invention has a raw material bill, such as only three or four kinds of oil phase materials, moderate water content (about 17%), and a small viscosity range at normal temperature.
  • the vegetable oil is used in the oil of the oil phase, so that the obtained emulsified substrate is not easily solidified even at a low temperature, and has a low viscosity and is convenient for pumping.
  • the oxidant salt aqueous solution, the melting tank, the filter, the emulsifier, the measuring instrument and the like used in the preparation of the oil phase are general-purpose equipment in the technical field, and are used in the technical field.
  • the normal operating parameters; the materials used for paraffin oil and engine oil must comply with the commonly used national standards.
  • FIG. 1 is a schematic illustration of one embodiment of an apparatus for preparing an aqueous oxidizer salt solution provided by the present invention.
  • the apparatus for preparing an oxidizing agent brine solution comprises:
  • a coarse filter tank 12 wherein a coarse filter screen 121 is disposed, and an upper space 122 of the coarse filter mesh is connected to the bottom opening 112 of the preparation tank 11 through a first pipe 181;
  • the fine filter 13 is provided with at least one fine filter body 131, and the bottom of the fine filter body is connected to the lower space 123 of the coarse filter mesh in the coarse filter can by the second pipe 182, and the top of the fine filter body passes through a three-pipe 183 communicating with the preparation tank 11;
  • the water tank 14 is in communication with the preparation tank 11 through a fourth conduit 184.
  • a fourth three-way valve 1841 is disposed in the fourth duct 184, and the fourth three A fifth conduit 185 leading from the valve 1841 is connected to the upper space 122 of the coarse screen in the coarse canister.
  • the arrangement of the fifth conduits 185 facilitates system operation, particularly when they are used to clean various components of the system, however those skilled in the art understand that cleaning of the various components of the apparatus of the present invention can also be accomplished without the use of the fifth conduit 185.
  • the can body of the preparation tank 11 includes a heating layer 113. That is, as is conventionally referred to as a heating jacket, the heating medium circulates hot water in the jacket and heats the liquid in the preparation tank.
  • the preparation tank, the coarse canister, the fine filter, and the various delivery conduits are each independently provided with an insulation layer similar to the preparation tank 11 including the heating layer 13 or other type of insulation layer.
  • the preparation device is optional, and the agitator 111 provided in the preparation tank 11 is driven by the explosion-proof motor 114.
  • the top of the preparation tank 11 is provided with a feed port 115.
  • a material such as ammonium nitrate, sodium nitrate or the like may be added to the preparation tank 11 through the feed port 115.
  • the third conduit 183 and/or the fourth conduit 184 are in communication with the top of the preparation tank 11 or the upper portion of the tank wall.
  • the first pipe 181 is provided with a first three-way valve 1811, and the first three-way valve
  • the first duct 181 is joined to the fifth duct 85 downstream of the first three-way valve 1811 and connected to the upper space 122 of the coarse screen in the coarse filter tank.
  • the coarse filter screen 121 is a filter screen capable of trapping diatomaceous earth that has adsorbed impurities.
  • the top of the coarse canister 12 is provided with a fastening flange handle 124.
  • the fastening flange handle is provided with a fastening flange handle 124.
  • the fastening flange handle 124 can open or seal the coarse canister 12 to seal the entire coarse canister 12 in an operational state, and the fastening flange handle 124 can be opened after the work is completed, and the coarse mesh 121 and/or the coarse filter can be applied.
  • the can 12 is cleaned or cleaned.
  • the bottom of the coarse canister 12 is provided with a sewage outlet 125.
  • Contaminants deposited at the bottom of the canister 12 after the work is completed can be discharged from the drain port 125.
  • a pipe pump 1821 is disposed on the second pipe 182.
  • the line pump 1821 can drive the circulation of the working fluid in the preparation apparatus of the present invention.
  • the filler in the fine filter body 131 is diatomaceous earth.
  • both ends of the fine filter body 131 may be provided with a microporous gasket (not shown) which allows the solution to pass but does not allow the diatomaceous earth particles to pass.
  • the fine filter bodies 131 may be combined in parallel or in series; compared with the parallel combination, the series combination will help to obtain a better oxidizing agent brine solution. , but the filtering speed is slower.
  • a valve may be disposed in each pipeline.
  • the valve may be independently disposed before and after the first conduit 181 and the fifth conduit 185 meet; and, for example, the pipeline pump 1821 Set the valve upstream or downstream. The setting of these valves helps to keep the entire process running and to facilitate the suspension in the event of a fault.
  • the coarse filter screen 121 may be horizontally disposed in the strainer, thereby separating the inner space of the coarse filter into upper and lower portions, that is, an upper space 122 and a lower space 123. It is understood by those skilled in the art that the coarse filter screen 121 may be vertically disposed in the strainer, thereby separating the internal space of the strainer into two parts, upstream and downstream of the liquid material, and the upstream and downstream portions may be respectively referred to as The upper space 122 and the lower space 123.
  • the coarse screen 121 horizontal setting is optional.
  • both the fine filter 13 and the water tank 14 may each independently provide a drain at the bottom thereof, such as a drain port 125 at the bottom of the canister 12 for process operation or cleaning.
  • Figure 2 depicts a schematic flow diagram of one embodiment of a process for formulating an aqueous oxidizer salt solution of the present invention. As shown in FIG. 2, the preparation method includes the following steps:
  • steps (iii) and (iv) are cycled until the turbidity of the solution meets the specifications; (vi) the first three-way valve 1811 is opened, and the treated oxidant salt aqueous solution is introduced into the solution discharge port 1812 , complete the preparation process.
  • the qualified oxidizing agent salt aqueous solution obtained by the present invention can be directly used in the subsequent emulsification process or introduced into the oxidizer salt aqueous solution spare tank for the subsequent emulsification process.
  • step (i) and/or after step (vi) the step of washing the preparation device is further included.
  • These cleaning steps can use valves and other related components in the pipeline, for example, the fourth three-way valve 1841 can be opened during the cleaning process to directly introduce the water in the water tank 14 into the strainer; for example, the strainer 12 can be opened.
  • the flange handle 124 is tightened to clean the coarse screen 121 and the strainer 12.
  • step (V) if there is significant deposit in the lower space 123 of the coarse screen in the coarse canister, the deposit may be discharged through the drain port 125 during operation.
  • the second duct 182 is taken out from the lower space 123 of the coarse screen in the coarse filter tank, the outlet is preferably not disposed at the bottom of the strainer, and the drain 122 is preferably disposed at the bottom of the bottom of the strainer.
  • the sewage outlet is also designed at the bottom of the fine filter to facilitate the removal of the bottom sediment and cleaning of the sewage.
  • it can be performed by any one of the embodiments of the preparation device of the first aspect of the invention.
  • any of the embodiments of the first aspect of the invention can be applied to the preparation method of the second aspect of the invention (technical field) The person understands that these embodiments of the first aspect can be appropriately adapted to the method of the second aspect).
  • the main raw material of the oxidizing agent salt aqueous solution is a nitrate oxidizing agent such as ammonium nitrate or sodium nitrate, which is easily soluble in water and is generally corrosive.
  • impurity adsorption, coarse filtration, fine filtration, and circulation filtration can be effectively achieved.
  • the final quality index of the oxidizer brine solution can be used to measure the quality of the resulting oxidizer brine solution by measuring turbidity, pH, crystallization point, and temperature.
  • turbidity is the most important indicator for measuring the quality of oxidant brine solution. After filtration, the turbidity is detected, too high, and filtration is continued until it is qualified.
  • the oxidizing agent brine solution is subjected to coarse filtration and fine filtration to measure turbidity, and the finally obtained oxidizing agent salt aqueous solution preferably has a turbidity of less than 3 NTU, more preferably less than 2 NTU, more preferably less than 1 NTU;
  • the diatomaceous earth must be a product that meets the national standard.
  • the diatomaceous earth added to the fine filter should be replaced periodically. Generally, 30 batches of replacement will help to prepare the oxidant brine solution.
  • the basic process is: adding metered water to the oxidizer brine solution preparation tank, and oxidizing agent salts such as ammonium nitrate and sodium nitrate are metered and crushed, added to the preparation tank, and heated by circulating hot water.
  • oxidizing agent salts such as ammonium nitrate and sodium nitrate are metered and crushed, added to the preparation tank, and heated by circulating hot water.
  • To the specified temperature usually between 85-102 degrees Celsius, measure the temperature, measure and adjust the PH value, detect the crystallization point, add diatomaceous earth to stir and absorb when qualified, filter by means of suction filter, filter by fine filter and fine filter Circulate for 30 minutes, check the turbidity.
  • the amount of the liquid in the preparation tank 11 of the diatomaceous earth is 0. 1 -0. 5% (w / V), preferably 0. 1-0. 4% (w/v), preferably 0. 1-0. 3% (w/v) 0
  • process control parameters are available, for example Including pH 3. 5-4. 0, solution turbidity ⁇ 1 NTU, and / or crystallization point 69 ° C -71 ° C, an optional aqueous solution within these parameters.
  • each of the three-way valves may be a three-way valve in an electronically commutated mode, and may also be referred to as an electronically directional control valve in the present invention.
  • components such as a preparation tank, a filter, and a delivery line in the preparation device are independently provided with a hot water insulation layer (ie, a heating medium interlayer).
  • a hot water insulation layer ie, a heating medium interlayer
  • the electronic directional control valve of the water tank is switched, the pipeline is rinsed with clean water, and the cleaning water is discharged into the preparation tank.
  • Example 6 Referring to Figure 3, there is depicted a schematic representation of one embodiment of an apparatus for preparing an aqueous oxidizer salt solution in accordance with the present invention.
  • the preparation device of the oxidizing agent aqueous solution of the invention comprises:
  • a coarse filter tank 2 wherein a coarse filter 21 is disposed, and an upper space 22 of the coarse filter mesh is connected to a bottom opening 12 of the preparation tank 1 through a first pipe 81;
  • a fine filter 3 in which at least one fine filter body 31 is disposed, the bottom of the fine filter body is connected to a lower space 23 of the coarse filter mesh in the coarse filter can by a second pipe 82, and the top of the fine filter body passes through a third pipe 83 is in communication with the preparation tank 1;
  • a water tank 4 which communicates with the preparation tank 1 through a fourth conduit 84;
  • a wastewater concentration sedimentation tank 7 disposed below the level of the preparation device and used to collect wastewater generated during the production process of the preparation device (ie, the wastewater concentration sedimentation tank 7 is designed at a low temperature in the floor of the production workshop, The interior of the workshop is designed to be inclined to the low point);
  • a water recovery filter 5 in which a sieve 51 is disposed, and an upper space 52 of the sieve is connected to a level below the liquid level of the wastewater concentration sedimentation tank through a pipe 72;
  • the water tank 6 is recovered, and the lower space 53 of the screen in the recovered water filter 5 can inject the filtered recovered water in the recovered water filter 5 into the recovery water tank 6 through the pipe 54, and the recovery water tank 6 The recovered water therein can be injected into the preparation tank 1 through the pipe 61.
  • the fourth pipe 84 is provided with a fourth three-way valve 841, and the fifth pipe 85 led out by the fourth three-way valve 841 is connected to the coarse mesh of the coarse filter tank. Upper space 22.
  • the arrangement of the fifth conduits 85 facilitates system operation, particularly as they are useful in cleaning various components of the system, however those skilled in the art understand that cleaning of the various components of the apparatus of the present invention can also be accomplished without the use of the fifth conduit 85.
  • the preparation apparatus in which the can body of the preparation tank 1 includes the heating layer 13. That is, as is conventionally referred to as a heating jacket, a heating medium such as hot water circulates in the jacket and heats the liquid in the preparation tank.
  • a heating medium such as hot water circulates in the jacket and heats the liquid in the preparation tank.
  • the preparation tank, the coarse canister, the fine filter, and the various delivery conduits are each independently provided with an insulation layer similar to the preparation tank 1 including the heating layer 13 or other type of insulation layer.
  • the preparation device in which the agitator 1 1 provided in the preparation tank 1 is driven by the explosion-proof motor 14.
  • the preparation apparatus in which the top of the preparation tank 1 is provided with a feed port 15.
  • a material such as ammonium nitrate, sodium nitrate or the like may be added to the preparation tank 1 through the feed port 15.
  • the preparation apparatus wherein the third duct 83 and/or the fourth duct 84 communicate with the top of the preparation tank 1 or the upper portion of the tank wall.
  • the preparation device has a first three-way valve 81 1 disposed in the first pipe 81, and the first three-way valve 811 leads the solution discharge port 812.
  • the preparation apparatus wherein the first duct 81 is joined to the fifth duct 85 downstream of the first three-way valve 811 and connected to the upper space 22 of the coarse screen in the coarse filter tank.
  • the preparation apparatus wherein the coarse filter 21 is a sieve capable of retaining diatomaceous earth.
  • the preparation apparatus is provided with a fastening flange handle 24 at the top of the coarse canister 2.
  • the fastening flange handle 24 can open or seal the coarse canister 2 to seal the entire coarse canister 2 under working conditions, and the fastening flange handle 24 can be opened after the work is completed, and the coarse filter mesh can be 21 and/or coarse canister 2 is cleaned.
  • the preparation device is provided with a drain outlet 25 at the bottom of the coarse canister 2.
  • the dirt deposited on the bottom of the coarse canister 2 after the work is completed can be discharged from the drain port 25.
  • the preparation device is provided with a pipe pump 821 on the second pipe 82.
  • a line pump 821 can drive the circulation of the working fluid in the preparation apparatus of the present invention.
  • the preparation apparatus wherein the filler in the fine filter body 31 is diatomaceous earth.
  • both ends of the fine filter body 31 may be provided with a microporous gasket (not shown) which allows the solution to pass but does not allow the diatomaceous earth particles to pass.
  • the fine filter bodies 31 may be combined in parallel or in series; compared with the parallel combination, the series combination will help to obtain a better oxidizing agent brine solution. , but the filtering speed is slower.
  • the preparation device may also be provided with a valve in each pipe for the convenience of operation.
  • the valve may be independently disposed before and after the junction of the first pipe 81 and the fifth pipe 85; for example, A valve is provided upstream or downstream of the pipeline pump 821. The setting of these valves helps to make the whole The operation process is continuously performed and it is easy to suspend the operation in the event of a failure.
  • the coarse filter 21 of the preparation device may be horizontally disposed in the strainer, thereby separating the internal space of the strainer into upper and lower portions, that is, the upper space 22 and the lower space 23.
  • the coarse filter screen 21 may be vertically disposed in the coarse filter, thereby separating the internal space of the coarse filter into two parts, upstream and downstream of the liquid material, and the upstream and downstream portions may be respectively referred to as The upper space 22 and the lower space 23.
  • the coarse screen 21 horizontal setting is optional.
  • the wastewater concentration sedimentation tank 7 of the preparation device is disposed in the entire preparation device of the present invention (including but not limited to the preparation tank 1, the coarse filter tank 2, the fine filter 3, the water tank 4, the recovered water filter 5, and
  • the water tank 6 is recovered, below the level of all piping systems, and is used to collect the wastewater produced by the preparation unit during the production process (these wastewater contains recyclable oxidizer salts that are not desired to be discharged into the environment).
  • wastewater contains recyclable oxidizer salts that are not desired to be discharged into the environment.
  • the oxidant salt that can be recycled in the environment can be collected through the wastewater concentration sedimentation tank 7.
  • a recovery water pipe pump 55 may be disposed in the pipe 54 of the preparation apparatus in which the lower space 53 of the filter in the recovery water filter 5 and the recovery water tank 6 are connected.
  • the lower space 53 of the sieve in the recovered water filter 5 can be evacuated, and then the waste water in the wastewater concentration sedimentation tank 7 is drawn into the recovery water filter 5 through the pipe 72.
  • the upper space 52 of the middle screen passes through the screen 51 and eventually reaches the recovery water tank 6.
  • the preparation device is connected to a pipe 72 between the upper space 52 of the screen in the recovery water filter and the waste water concentration sedimentation tank 7, and a coarse filter screen 71 is disposed at the lower end portion of the pipe 72.
  • the coarse filter can prevent the concentrated sedimentation tank of the wastewater from being sucked into the recovery water filter 5 .
  • the preparation device is provided with an opening at the bottom of the lower space 53 of the filter in the recovery water filter 5, the opening being connected to the waste water through a recovery water filter discharge pipe 73 which can be opened/closed (for example, by a valve control) Concentrate on the sedimentation tank 7. Thereby, the deposit (if present) deposited in the lower space 53 of the screen in the recovered water filter 5 can be discharged through the outlet.
  • the preparation device wherein the fine filter 3, the water tank 4 and the recovery water tank 6 can each independently provide a sewage outlet at the bottom thereof, for example, similar to the sewage outlet 25 at the bottom of the coarse canister 2, for process operation or Clean up.
  • FIG. 5 a schematic flow diagram of one embodiment of a method of formulating an aqueous oxidizing agent solution in accordance with a second aspect of the present invention
  • Figure 4 depicts primarily the use of the apparatus and method of the present invention for coarse filtration/fine filtration to remove impurities.
  • Figure 5 primarily depicts a portion of the process for recovering oxidizer salts and reducing oxidant salt emissions using the apparatus and method of the present invention.
  • the recovered liquid obtained by the process shown in FIG. 5 can be calculated and added to the preparation process shown in FIG. 4 as the preparation solvent added with the oxidant salt, thereby reducing the use of the recovered liquid shown in FIG.
  • the raw materials such as ammonium nitrate and sodium nitrate used in the aqueous oxidizing agent solution of the present invention are prepared.
  • the method of preparation comprises the steps of:
  • the material is filtered by the fine filter body 31 of the fine filter 3, enters the third pipe 83, and further enters the preparation tank 1;
  • steps (iii) and (iv) are cycled until the turbidity of the solution meets the specifications; (vi) the first three-way valve 811 is opened to allow the treated oxidant salt aqueous solution to be introduced into the solution discharge port 812 , complete the preparation process,
  • the recovered salt and water in the recovery water tank 6 are collected by a wastewater concentration sedimentation tank 7 disposed below the level of the preparation device and filtered through the recovery water filter 5.
  • the qualified oxidizing agent salt aqueous solution obtained by the invention can be directly used in the subsequent emulsification process or temporarily stored in a suitable container for the subsequent emulsification process.
  • the preparation water may be pure water in the water tank 4, or may be recovered water containing the oxidant salt in the recovery water tank 6, or both mixture.
  • the type and content of various oxidant salts in the recovered water can be measured first, and these oxidant salts present in the recovered water are deducted at the time of preparation.
  • step (i) and/or after step (v i) the step of washing the preparation device is further included.
  • These cleaning steps can use valves and other related components in the pipeline, for example, the fourth three-way valve 841 can be opened during the cleaning process to directly introduce the water in the water tank 4 into the strainer; for example, the strainer 2 can be opened.
  • the flange handle 24 is tightened to clean the coarse screen 21 and the strainer 2.
  • the deposit can be discharged through the drain port 25 during the operation.
  • the second duct 82 is taken out from the lower space 23 of the coarse filter in the coarse canister, and the outlet is preferably not provided at the bottom of the coarse filter, and the drain 25 is preferably provided at the bottom of the bottom of the strainer.
  • the wastewater produced by the production apparatus in the production process is collected by the wastewater concentration sedimentation tank 7 (these wastewater contains recyclable oxidant salts which are not desired to be discharged into the environment).
  • the wastewater concentration sedimentation tank 7 these wastewater contains recyclable oxidant salts which are not desired to be discharged into the environment.
  • the materials left over from the production process (these materials contain recyclable oxidizer salts that are not expected to be discharged into the environment), or the wastewater generated for cleaning equipment or the ground (these wastewaters contain undesirable
  • the oxidant salt that can be recycled in the environment can be collected through the wastewater concentration sedimentation tank 7.
  • a recovery water pipe pump 55 is disposed in the pipe 54 connecting the lower space 53 of the screen and the recovery water tank 6 in the recovery water filter 5.
  • the lower space 53 of the sieve in the recovered water filter 5 can be evacuated, and then the waste water in the wastewater concentration sedimentation tank 7 is drawn into the recovery water filter 5 through the pipe 72.
  • the upper space 52 of the middle screen passes through the screen 51 and eventually reaches the recovery water tank 6.
  • the upper space 52 of the filter in the recycled water filter is connected to the wastewater
  • a duct 72 between the ponds 7 is provided with a coarse screen 71 at the lower end of the duct 72.
  • the wastewater in the wastewater concentration sedimentation tank 7 is pre-filtered through the coarse filter screen 71 before entering the recovery water filter 5, so that the working load of the recovered water filter 5 can be alleviated.
  • the bottom of the lower space 53 of the filter screen in the recovery water filter 5 is provided with an opening which is connected to the wastewater concentration through a recovery water filter drain pipe 73 which can be opened/closed (for example, by a valve control). Sedimentation tank 7. Thereby, the sediment deposited on the bottom of the recovered water filter can be discharged through the outlet when needed.
  • any of the first aspects of the invention can be applied to the preparation method of the second aspect of the invention (this embodiment)
  • these embodiments of the first aspect can be suitably adapted to the methods of the second aspect.
  • the problem to be solved by the present invention is to concentrate all the wastewater in the production process, remove the visible impurities by purification treatment, concentrate on the metering water tank, and use it as a water solvent in the manufacture of the oxidizer salt aqueous solution.
  • the proportion of the composition ratio is inevitably caused by the formulation, which makes the quality of the oxidant salt aqueous solution unbalanced, ultimately affects the quality of the explosive, and controls the quality of the terminal by controlling process parameters. . Changes in the mixing of impurities, changes in raw materials, and the amount of moisture content may directly affect the ratio, resulting in an imbalance in the ratio.
  • the invention is expected to carry out impurity adsorption, coarse filtration and fine filtration on the oxidizing agent aqueous solution manufacturing process to achieve the purpose of purity.
  • Another object of the present invention is to stabilize the constant quality of an aqueous solution by controlling the pH, crystallization point, temperature, and turbidity during the manufacture of the oxidizing agent brine solution.
  • the main raw material contained in the oxidizing agent salt aqueous solution is a nitrate oxidizing agent such as ammonium nitrate or sodium nitrate, which is easily soluble in water and is generally corrosive.
  • the final quality index of the oxidizer salt solution can be used to measure the quality of the resulting oxidizer salt solution by detecting turbidity, pH, crystallization point, and even temperature.
  • turbidity is the most important indicator for measuring the quality of oxidant brine solution.
  • the turbidity is detected after filtration and filtration, and the filtration is continued until it is qualified.
  • the oxidizing agent salt aqueous solution is subjected to coarse filtration and fine filtration to measure turbidity, and the finally obtained oxidizing agent salt aqueous solution preferably has a turbidity of less than 3 NTU, more preferably less than 2 NTU, more preferably less than 1 NTU;
  • the diatomaceous earth must be a product that meets the national standard.
  • the diatomaceous earth added to the fine filter should be replaced periodically. Generally, 30 batches of replacement will help to prepare the oxidant brine solution.
  • the basic process is: adding metered water to the oxidizer brine solution preparation tank, and oxidant salts such as ammonium nitrate and sodium nitrate are metered and crushed, added to the preparation tank, and heated to a prescribed temperature by circulating hot water. , usually between 85-102 degrees Celsius, measure the temperature, measure and adjust the pH value, detect the crystallization point, add diatomaceous earth when passing, pass the filtration method, filter through the strainer and fine filter, cycle for 30 minutes, detect the turbidity When the turbidity is qualified, the suction filtration is stopped and pumped to the batch tank for use.
  • each of the three-way valves may be a three-way valve in an electronic commutation mode, and may also be referred to as an electronic directional control valve in the present invention.
  • the preparation tank, the filter, the filter line, and the like are separately provided with a hot water insulation layer (i.e., a heating medium interlayer).
  • a hot water insulation layer i.e., a heating medium interlayer
  • the electronic directional control valve of the water tank is switched, the pipeline is rinsed with clean water, and the cleaning water is discharged into the preparation tank.
  • the coarse filter flange cover is opened to remove the filtered impurities; the fine filter flange cover is opened to check whether it is normal, and the fine filtration device is periodically replaced.
  • waste water can be recycled and utilized, and useful components such as ammonium nitrate contained in the wastewater can be recovered.
  • all the generated wastewater is naturally left to the recovery tank for primary precipitation, primary filtration, and pumped to the recovery water tank by a first-stage filtration (secondary filtration if necessary) to recover the wastewater of the recovery tank.
  • a first-stage filtration secondary filtration if necessary
  • the oxidant salt is heated and dissolved. When the temperature reaches a certain temperature, the pH value, turbidity, temperature and crystallization point are measured.
  • the standard index is adjusted by the acid or alkali debugging agent, which meets the standard requirements.
  • the process layout of the factory building needs to design a low-concave water tank (ie, the wastewater centralized sedimentation tank of the present invention) at the lowest planar horizontal position of the plant, so that all the industrial wastewater generated in the production process is concentrated in the sump. .
  • a low-concave water tank ie, the wastewater centralized sedimentation tank of the present invention
  • the crystallization point can be tested. In one embodiment, the crystallization point is measured. According to experience, each crystallization point is less than 1 degree, which is equivalent to adding 3. 3 kg of water per ton of solution, calculated according to the total solution tonnage and the number of crystallization points to be adjusted. Add more water, and then calculate the amount of ammonium nitrate to be added according to the formula. For each degree above the standard, adding about 3 kg of water per ton of solution can reduce the crystallization point by 1 degree.
  • the pH test can be tested. O. 01 ⁇ ; The pH value can be increased by 0.01 units; if the solution is more than 0.45, the acetic acid can be added, if it is less than 3.5, the sodium carbonate can be added; 1 ⁇ By adding 0. 1kg of acetic acid, p H value can be reduced by 0.1 units.
  • the process control parameters usable include, for example, a pH of 3.5-4. 0, a solution turbidity ⁇ 1 NTU, and/or a crystallization point of 69 ° C _7 rC within these parameters. An optional aqueous solution.
  • the invention solves the problem of recycling and utilization of wastewater generated by the oxidizer salt aqueous solution manufacturing process, and at the same time recycles and utilizes effective substances such as nitrate contained in the wastewater, and ensures uniform mass balance of the oxidant brine solution through unified control of process parameters in the process control.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种低碳环保乳化炸药及氧化剂盐水溶液的制备装置,所述乳化炸药由乳化基质经敏化液敏化而成,所述乳化基质是由氧化剂盐水溶液和油相经乳化作用而成,氧化剂盐水溶液组分为硝酸铵、硫脲和水;油相组成为石蜡油或机油、乳化剂;敏化液的组成为亚硝酸钠、硫氰酸钠或碳酸氢钠、水。本发明的乳化炸药不但节省了包装材料,相对减少了二氧化碳排放,而且配方简单,有效减少了有毒气体产生,涉及的有毒气体排放量20L/kg左右,而且输送畅通,装药施工不受影响。

Description

环保乳化炸药及其制备方法和氧化剂盐水溶液的制备装置 本申请要求以下中国专利申请的优先权:
1、 201 1年 12月 12 日提交中国专利局、 申请号为 201110410658. 6、 名称 为 "低粘度可泵送乳化基质及其制备方法" 的中国专利申请。
2、 201 1年 10月 20 日提交中国专利局、 申请号为 201110319584. 5、 名称 为 "氧化剂盐水溶液的杂质吸附粗滤精滤方法" 的中国专利申请。
3、 201 1年 10月 20 日提交中国专利局、 申请号为 201110319585. X、 名称 为 "零排放配制氧化剂盐水溶液的装置和方法" 的中国专利申请。 技术领域
本发明涉及一种低碳环保乳化炸药及其制备方法和氧化剂盐水溶液的 制备装置。 背景技术
传统的工业炸药在生产、 储存、 运输、 保管、 装填过程中是具备 8号工业 雷管感度的 1.1 级爆炸物品, 即使不具备 8号工业雷管感度, 也属于 1. 1级危险 品, 过程不具备本质安全化的能力; 而且装药时不能实现耦合装药, 浪费穿孔 成本,不能有效排除孔内的积水。而且传统工业炸药使用的包装材料包括纸筒、 石蜡、 中包塑料袋、 垫板、 纸包装箱、 包装带, 炸药爆炸时纸筒和蜡参与化学 反应, 产生有毒气体, 产生碳氧化合物的排放; 且生产效率低, 制造成本高, 装药效率低。
目前使用的包装乳化炸药配方相对比较复杂,为达到良好的储存稳定性和 稳定的爆炸性能, 原材料种类较多, 达十几种, 氧化剂盐制备技术相对落后, 造成爆轰反应后有毒有害气体量大; 现有的炸药配方爆炸后,二氧化碳等有毒 气体排放量达到 70L/kg 左右, 甚至达到 100L/kg, 对大气的污染很严重, 而且 由于炸药爆炸后产生炮烟大,导致井下矿通风时间较长,造成炮烟中毒事件时 有发生, 造成了大量的污染物排放。 另外, 现有的乳化炸药氧化剂盐水溶液的制造以控制原材料投入量为基 准, 品质受原材料质量和计量控制水平的影响较大; 现有的包装炸药混装过程 炸药密度不可调; 而且基质粘度受外界环境的影响较大, 环境温度较低时输送 非常困难, 且属于高压输入。 发明内容
鉴于现有技术中存在的上述问题,本发明的目的是提供一种低碳环保而且 使用方便的低碳环保乳化炸药, 以解决现有的乳化炸药炸药爆炸后产生炮烟 大, 适应性差的问题。
为实现上述目的, 本发明提供一种低碳环保乳化炸药, 其由乳化基质经敏 化液敏化而成, 所述乳化基质是由氧化剂盐水溶液和油相经乳化作用而成, 其 组分和重量份配比如下,
氧化剂盐水溶液组分与配比为:
成 分 重量份
10 硝酸铵 80 - 85
硫 脲 Q. 1 ~ 0. 2
水 15 - 20
油相组成为: 石蜡油或机油、 乳化剂, 其重量比为(2. 5 ~ 3. 5) : 1 ; 乳化基质组成为: 氧化剂盐水溶液、 油相, 其重量比为( 92 ~ 95 ): ( 5 ~ 8 ) ;
敏化液的组成为:亚硝酸钠、石充氰酸钠或碳酸氢钠、水,其重量比为(0. 9 ~ 1. 1) : (0. 9 ~ 1. 1) : (23 - 29);
乳化炸药组成:乳化基质、敏化液,其重量比为( 98 ~ 102 ) : ( 2. 8 ~ 3. 2 )。 优选的, 所述氧化剂盐水溶液组分与配比为:
成分 重量份
硝酸铵 80 - 85
硫脲 0. 1 ~ 0. 2 乙酸 0.1 ~ 0.2
碳酸钠 0.01 - 0.03
水 15 ~20。
可选的, 所述乳化剂为聚异丁烯丁二酸酐乳化剂中的一种或多种的组合或 聚异丁烯丁二酸酐乳化剂与司盘 80的混合物, 其中, 所述聚异丁烯丁二酸酐乳 化剂与司盘 80的重量比为 1: ( 0.01 -1 ) 0
本发明所述的低碳环保乳化炸药的制备方法, 包括如下步骤:
( 1 )氧化剂盐水溶液制备: 将硝酸铵、 硫脲、 溶于水并加热至 80°C ~90 °C, 用 pH值调节剂将 pH 值调节至 3.5 ~ 4.0, 其溶液浊度 < 1NTU, 析晶点 69 °C ~71°C, 溶液制备结束后加入硅藻土吸附剂, 经循环抽滤成为纯净的氧化剂 盐水溶液备用;
(2)油相制备: 将乳化剂、 石蜡油或机油熔化混合均匀, 温度为 70 °C ~ 80°C, 油相制备结束后经过滤备用;
( 3 )乳化基质制备:将氧化剂盐水溶液 92 ~ 95 重量份,油相 5 ~ 8重量份, 经流量控制器加入乳化器, 经乳化形成油包水型的乳化基质,基质温度 78°C ~ 90°C, 粘度为 14~26BU, 将乳化基质保温, 使其在敏化时的温度高于 40°C;
(4)敏化液配制: 将亚硝酸钠、 硫氰酸钠或碳酸氢钠、 水配制成比重为 1.041 ~ 1.061g/cm3 的敏化溶液;
( 5 )装填敏化: 乳化基质和敏化液按 ( 98 - 102 ) : (2.8 - 3.2) 的重 量比经散装乳化基质装填设备装入炮孔, 经 15 ~ 20 分钟敏化成密度为 1.05 ~ 1.25g/cm3 的炸药。
可选的, 所述 pH值调节剂选自乙酸、 碳酸钠、 氢氧化钠或氢氧化钾。 本发明还提供了一种所述的氧化剂盐水溶液的制备装置, 包括:
制备罐, 其中设置有搅拌器;
粗滤罐, 其中设置有粗滤网,粗滤网的上部空间通过第一管道连接到所述 制备罐的底部开口;
精滤器, 其内设置有至少一个精滤体, 该精滤体的底部通过第二管道连 接到所述粗滤罐中粗滤网的下部空间,并且精滤体的顶部通过第三管道与所述 制备罐相通;
水罐, 其通过第四管道与所述制备罐相通;
其中, 所述第四管道中设置有第四三通阀, 由该第四三通阀引出的第五 管道连接到所述粗滤罐中粗滤网的上部空间。
可选的, 所述制备罐、 粗滤罐、 精滤器、 管道各自独立地设置保温层。 可选的, 所述制备罐的顶部设置有进料口。
可选的, 所述第三管道和 /或第四管道与所述制备罐的顶部或者罐壁上部 连通。
可选的, 所述第一管道中设置有第一三通阀, 由该第一三通阀引出溶液出 料口。
可选的,所述第一管道在第一三通阀的下游与所述第五管道汇合一起连接 到所述粗滤罐中粗滤网的上部空间。
可选的, 所述粗滤罐底部设置有排污口。
可选的, 所述第二管道上设置有管道泵, 其用于驱动所述制备装置中工作 液体循环。
可选的, 所述精滤体中的填料是硅藻土。
可选的, 所述的氧化剂盐水溶液的制备装置, 还包括:
废水集中沉淀池,其设置于所述制备装置的水平面以下,并用于收集所述 制备装置在生产过程中产生的废水;
回收水过滤器, 其中设置有滤网, 滤网的上部空间通过管道连接到所述废 水集中沉淀池的液面以下;
回收水罐,所述回收水过滤器中滤网的下部空间通过管道可将回收水过滤 器中经过滤的回收水注入到该回收水罐中,并且该回收水罐可将其中的回收水 通过管道注入到制备罐中,
其中, 所述第四管道中设置有第四三通阀, 由该第四三通阀引出的第五管 道连接到所述粗滤罐中粗滤网的上部空间。 本发明所提供的散装乳化基质可通过散装炸药自动装填设备装填, 装填 5. 1 级危险货物等级的乳化基质, 进入炮孔 15 ~ 20 分钟后才成为炸药, 解决 了本质安全化的问题; 炸药密度可根据敏化液浓度和加入量调整, 可根据岩石 条件的不同调节炸药密度; 实现耦合装药, 节省穿孔成本; 能有效排出炮孔内 积水, 保证爆破质量; 不但节省了包装材料, 相对减少了二氧化碳排放; 而且 配方筒单, 有效减少了有毒气体产生; 另外, 氧化剂盐制备技术比较成熟, 以 控制水溶液中析晶点、 pH 值、 浑浊度、 温度为指标, 控制终端品质, 最大程 度的达到实际的零氧平衡反应, 减少有毒有害气体排放,有毒气体含量检测为 20 L/ kg 左右, 达到低碳环保的目的; 由于控制了基质粘度, 输送畅通, 装 药施工不受影响。 附图说明
图 1 是本发明实施例 5氧化剂盐水溶液的制备装置及粗滤精滤装置的一 个实施方案的示意图。
图 2是本发明实施例 5氧化剂盐水溶液的配制方法的一个实施方案的流 程示意图。
图 3 是本发明实施例 6氧化剂盐水溶液的制备装置的一个实施方案的示 意图。
图 4本发明实施例 6的氧化剂盐水溶液的配制方法的一个实施方案的局部 流程示意图
图 5是本发明实施例 6的氧化剂盐水溶液的配制方法的一个实施方案的局 部流程示意图。 具体实施方式
实施例 1
将硝酸铵 72kg , 硫脲 0. 2 kg , 乙酸 0. lkg , 碳酸钠 0. 03kg , 水 19. 67kg 在 80 °C混合配置成氧化剂水溶液, 用氢氧化钠和乙酸将 pH值调节至 3. 5 , 测 得其析晶点为 71°C, 溶液浊度为 0.9NTU, 溶液中加入硅藻土吸附剂, 经粗滤 器、精滤器抽滤 30分钟成为纯净的氧化剂盐水溶液备用; 将 2.3kg的 LZ2820 乳化剂, 5.7kg的石蜡油在 70°C熔化混合均匀, 制得油相; 将上述获得的氧 化剂盐水溶液和油相在乳化器中经乳化形成油包水型的乳化基质,保持温度为 78°C, 测得其粘度为 25BU; 将亚硝酸钠 0.09 kg、硫氰酸钠 0.11 kg、 水 2.6 kg 配置成敏化液;将上述乳化基质和敏化剂经散装乳化基质装填设备混合得到散 装乳化炸药。
根据工业炸药爆炸后有毒气体含量的测定(GB 18098-2000, 以下实施例 相同), 试验测得其有毒气体排放量为 20L/ kg。
根据 GB/T13228-1991工业炸药爆速测定方法, 试验测得爆速 4868m/ s。 实施例 2
将硝酸铵 75kg、硫脲 Q. lkg,水 17.9kg在 86 °C混合配置成氧化剂水溶液, 用碳酸钠和乙酸将 pH 值调节至 3.8, 测得其析晶点为 71°C, 溶液浊度为 0.8NTU, 溶液中加入硅藻土吸附剂, 经粗滤器、 精滤器抽滤 30分钟成为纯净 的氧化剂盐水溶液备用; 将 1.2kg的 LZ2745乳化剂, 5.8kg的机油在 70°C熔 化混合均勾, 制得油相; 将上述获得的氧化剂盐水溶液和油相在乳化器中经乳 化形成油包水型的乳化基质, 保持温度为 78°C, 测得其粘度为 23BU; 将亚硝 酸钠 0.10 kg、 碳酸氢钠 0.11 kg、 水 2.7 kg配置成敏化液; 将上述乳化基质 和敏化剂混合得到散装乳化炸药。
试验测得其有毒气体排放量为 19L/ kg。
根据 GB/T13228-1991工业炸药爆速测定方法, 试验测得爆速 4926m/ s。 实施例 3
将硝酸铵 80kg、 硫脲 0.1 kg、 乙酸 0.2kg、 碳酸钠 0.01kg水 14.69kg在
90°C混合配置成氧化剂水溶液, 用氢氧化钠和乙酸将 pH值调节至 4.0, 测得 其析晶点为 70°C, 溶液浊度为 0.8NTU, 溶液中加入硅藻土吸附剂, 经粗滤器、 精滤器抽滤 30 分钟成为纯净的氧化剂盐水溶液备用; 将 LZ2731 乳化剂和 LZ2721乳化剂各 0.55kg, 石蜡油 3.9kg在 80°C熔化混合均匀, 制得油相; 将 上述获得的氧化剂盐水溶液和油相在乳化器中经乳化形成油包水型的乳化基 质, 保持温度为 90°C, 测得其粘度为 15BU; 将亚硝酸钠 0.11 kg、 硫氰酸钠 0.09 kg, 水 3.0kg配置成敏化液; 将上述乳化基质和敏化剂混合得到散装乳 化炸药。
试验测得其有毒气体排放量为 22L/ kg。
根据 GB/T13228-1991工业炸药爆速测定方法, 试验测得爆速 4736m/s。 实施例 4
将硝酸铵 79.9kg、 硫脲 0.122 kg, 水 14.1 kg, 在 80°C混合均匀后, 用 氢氧化钠和乙酸将 pH 值调节至 3.5, 测得其析晶点为 70°C, 溶液浊度为 0.8NTU, 往溶液中加入硅藻土吸附剂, 经粗滤器、 精滤器总共抽滤 30分钟成 为纯净的氧化剂盐水溶液备用;将 0.89kg的 LZ2820聚异丁烯丁二酸酐乳化剂, 0.89kg的司盘 80, 6.22kg的石蜡油在 70°C熔化混合均匀, 制得油相, 备用; 将上述获得的氧化剂盐水溶液和油相在乳化器中于 8 (TC条件下经乳化形成油 包水型的乳化基质,经测定,粘度为 15BU;将亚硝酸钠 0.09kg,碳酸氢钠 0.09 kg、 水 2.62 kg配置成敏化液; 将上述乳化基质和敏化液经乳化炸药现场混装 设备装入炮孔,在温度 40°C条件下经 15分钟敏化,得到乳化炸药,经测定(国 标 GB/18095 - 2000,以下实施例采用与本实施例相同的测定方法),密度为 1.1 g/cm3
经测定, 本实施例中的乳化基质, 输入压力为 0.4Mpa时采用柱塞泵可正 常输送, 在输送管直径为 19匪时可输送距离长达 50m。
根据 GB/T13228 - 1991工业炸药爆速测定方法,试验测得的本实施例中的 炸药爆速为 4800m/s。
本发明实施例提供的技术方案具有如下一种或多种优点:
( 1 )本发明实施例中乳化基质粘度低, 在 78 - 90°C时, 仅为 14- 20 BU, 粘度比现有的乳化基质大大降低, 此乳化基质在保证了炸药性能的同时, 用柱 塞泵或螺杆泵输送时, 输入压力仅为 0.4Mpa时就可以正常输送, 解决了乳化 炸药的泵送问题, 方便了炸药的输送。
(2) 由于粘度较低粘, 乳化基质输送管可以采用小管径, 输送管管内径 在仅有 19匪时就可以正常输送。
( 3)由于粘度低, 输送距离增大, 输送距离可达 50米, 最远有效安全距 离 60米。
(4) 另外本发明的可泵送的乳化基质还具有原料筒单, 如油相材料仅为 三种或四种, 含水适中 (约为 17% ), 粘度在常温下变化范围小的优点。
(5 )在油相的油份中使用植物油, 使得制得的乳化基质即使在温度较低 时也不易凝固, 粘度较低, 方便泵送。
在上述实施例中, 若没有特别说明, 氧化剂盐水溶液、 油相的制备所使用 的溶化罐、 过滤器、 乳化器、 计量仪器等设备为本技术领域内的通用设备, 且 采用本技术领域内的常规操作参数;所使用的石蜡油和机油等物料需符合常用 的国家标准。 实施例 5
图 1 描绘了本发明提供的氧化剂盐水溶液的制备装置的一个实施方案的 示意图。 如图 1所示, 氧化剂盐水溶液的制备装置其包括:
制备罐 11, 其中设置有搅拌器 111;
粗滤罐 12, 其中设置有粗滤网 121, 粗滤网的上部空间 122通过第一管 道 181连接到所述制备罐 11的底部开口 112;
精滤器 13, 其内设置有至少一个精滤体 131, 该精滤体的底部通过第二 管道 182连接到所述粗滤罐中粗滤网的下部空间 123, 并且精滤体的顶部通过 第三管道 183与所述制备罐 11相通; 和
水罐 14, 其通过第四管道 184与所述制备罐 11相通。
本实施例中, 所述第四管道 184中设置有第四三通阀 1841, 由该第四三 通阀 1841 引出的第五管道 185连接到所述粗滤罐中粗滤网的上部空间 122。 第五管道 185的设置有利于系统操作特别是它们在清洗系统各部件时使用,然 而本领域技术人员理解不使用第五管道 185 亦可以实现本发明制备装置各部 件的清洗。
制备装置可选的, 所述制备罐 11的罐体包括加热层 113。 即人们通常所 说的加热夹套,加热介质为热水在该夹套中循环并使制备罐内的液体加热。在 一个实施方案中, 制备罐、 粗滤罐、 精滤器、 和各种输送管道各自独立地设置 了类似于制备罐 11的罐体包括加热层 13的保温层或者其它类型的保温层。
制备装置可选的, 所述制备罐 11中设置的搅拌器 111由防爆电机 114驱 动。
制备装置可选的, 所述制备罐 11的顶部设置有进料口 115。 物料例如硝 酸铵、 硝酸钠等可以经该进料口 115加入到制备罐 11中。
可选的, 述第三管道 183和 /或第四管道 184与所述制备罐 11的顶部或 者罐壁上部连通。
可选的, 所述第一管道 181 中设置有第一三通阀 1811 , 由该第一三通阀
1811引出溶液出料口 1812。
可选的,所述第一管道 181在第一三通阀 1811的下游与所述第五管道 85 汇合一起连接到所述粗滤罐中粗滤网的上部空间 122。
可选的, 所述粗滤网 121是能够截留已经吸附杂质硅藻土的滤网。
可选的, 所述粗滤罐 12顶部设置有紧固法兰手柄 124。 该紧固法兰手柄
124可以使该粗滤罐 12开启或密封, 从而在工作状态使整个粗滤罐 12密封, 而工作完成之后可以打开该紧固法兰手柄 124 , 并可以对粗滤网 121和 /或粗 滤罐 12进行清理或清洗。
可选的, 其中所述粗滤罐 12底部设置有排污口 125。 在工作完成之后沉 积在粗滤罐 12底部的污物可从该排污口 125排出。
可选的, 其中所述第二管道 182上设置有管道泵 1821。 管道泵 1821可以 驱动本发明制备装置中工作液体循环。 可选的, 其中所述精滤体 131中的填料是硅藻土。 本领域技术人员理解, 所述精滤体 131的两端可以设置微孔垫片(图中未示出),该微孔垫片可以让溶 液通过但不能使硅藻土颗粒通过。 当所述精滤体 131有两个或两个以上时, 它 们可以是以并联或者是串联的方式组合; 与并联组合相比, 串联组合将有助于 获得除杂效果更好的氧化剂盐水溶液, 但过滤速度较慢。
可选的, 为了操作上的方便, 还可以在各管道中设置阀门, 例如可以在 第一管道 181与第五管道 185汇合点前、后各自独立地设置阀门; 又例如还可 以在管道泵 1821的上游或下游设置阀门。 这些阀门的设置有助于使整个操作 工艺连续进行并且在出现故障时便于中止操作。
可选的, 所述粗滤网 121 可以是水平设置于所述粗滤器中, 由此将粗滤 器的内部空间分开成上、 下两部分, 即上部空间 122和下部空间 123。 本领域 技术人员理解,粗滤网 121可以是垂直设置于所述粗滤器中, 由此将粗滤器的 内部空间分开成液料的上游、 下游两部分, 该上游和下游两部分可以分别称为 上部空间 122和下部空间 123。就本发明而言,粗滤网 121水平设置是可选的。
可选的, 其中精滤器 13和水罐 14二者可以各自独立地在其底部设置排 污口, 例如类似于粗滤罐 12底部的排污口 125 , 以便工艺操作或清理。
图 2描绘了本发明氧化剂盐水溶液的配制方法的一个实施方案的流程示 意图。 如图 2所示, 所述配制方法包括以下步骤:
(i)由进料口 115向制备罐 11 中加入计算量的、 破碎的氧化剂, 以及从 水罐 14经由第四管道 184向制备罐 11中加入计算量的水, 在 85-102 °C (优选
85-95 °C)加热下搅拌使物料溶解, 测定 pH值和析晶点, 必要时调整至 pH值和 析晶点合格;
(i i)向制备罐 11中加入硅藻土, 继续搅拌;
(i i i)使制备罐 11中的物料经第一管道 181进入粗滤罐 12中的粗滤网的 上部空间 122 , 在管道泵 1821抽滤作用下物料通过粗滤网 121进入粗滤网的 下部空间 123 , 物料进一步经由第二管道 182前行到精滤器 3;
(iv)物料经精滤器 13的精滤体 131过滤作用, 进入第三管道 183 , 并进 一步进入制备罐 11 ;
(V)任选地, 使步骤(i i i )和(i v)循环, 直至溶液的浑浊度符合规定; (v i)开启第一三通阀 1811 , 使处理合格的氧化剂盐水溶液导入溶液出料 口 1812 , 完成配制工序。
本发明所得合格的氧化剂盐水溶液可以直接用于后续乳化工序或者导入 氧化剂盐水溶液备用罐用于后续乳化工序。
可选的, 在步骤(i)之前和 /或在步骤(vi)之后, 还包括对制备装置进行 清洗的步骤。这些清洗步骤可以使用到管路中的阀门及其它相关部件, 例如在 清洗过程中可以开启第四三通阀 1841使水罐 14中的水直接引入粗滤器中;又 例如可以打开粗滤器 12的紧固法兰手柄 124 , 以对粗滤网 121和粗滤器 12进 行清洗。
可选的, 在步骤(V)的循环过程中, 如果粗滤罐中粗滤网的下部空间 123 有明显的沉积物, 则可在操作过程中通过排污口 125将该沉积物排出。 由此, 第二管道 182从粗滤罐中粗滤网的下部空间 123引出,引出口优选不是设置在 粗滤器的底部, 而排污口 125则优选设置在粗滤器的底部的最底部。
同时在精滤器底部也设计排污口, 便于清除底部沉积物及清洗污水。 可选的, 可通过本发明第一方面所述制备装置的任一实施方案来执行, 换言之,本发明第一方面任一实施方案均可适用于本发明第二方面的配制方法 (本领域技术人员理解可以对第一方面的这些实施方案进行适当调整以适应第 二方面的方法)。
可选的, 所述氧化剂盐水溶液含有的主要原材料是硝酸铵、 硝酸钠等硝 酸盐氧化剂, 它们易溶于水, 通常而言具有腐蚀性。
可选的, 在氧化剂盐水溶液制造过程中, 进行杂质吸附、 粗滤、 精滤、 循环抽滤, 可以有效地达到纯化的目的。
可选的, 氧化剂盐水溶液的最终质量指标可通过检测浑浊度、 pH值、 析 晶点、 温度来衡量所得氧化剂盐水溶液的品质。
可选的, 浑浊度是衡量氧化剂盐水溶液质量的最主要的指标, 经粗滤精 滤后检测浑浊度, 过高, 继续抽滤, 直至合格。 根据本发明, 氧化剂盐水溶液 经粗滤精滤后测量浑浊度,最终得到的氧化剂盐水溶液优选浑浊度小于 3 NTU, 更优选小于 2 NTU, 更优选小于 1 NTU;
可选的, 硅藻土必须是符合国标的产品, 精滤器中加入的硅藻土需定期 更换, 一般 30个批次更换会有助于氧化剂盐水溶液的配制。
在本发明的一个实施方案中, 基本工艺过程是: 在氧化剂盐水溶液制备 罐中加入经计量的水,硝酸铵、硝酸钠等氧化剂盐经计量破碎后加入到制备罐 中, 利用循环热水加热至规定的温度, 通常是 85-102摄氏度之间, 测量温度, 测量调节 PH值, 检测析晶点, 合格时加入硅藻土搅拌吸附, 通过抽滤的方式, 经粗滤器、 精滤器过滤, 循环 30分钟, 检测浑浊度, 浑浊度合格时, 停止抽 滤, 泵送至批次罐备用。
可选的, 向制备罐 11加入硅藻土的量是本领域技术人员根据已有知识容 易确定的, 例如硅藻土的制备罐 11 中液料量的 0. 1 -0. 5% (w/ V) , 优选 0. 1-0. 4% (w/v) , 优选 0. 1-0. 3% (w/v) 0 根据本申请案的装置和方法, 其中可 用的工艺控制参数例如包括 PH值 3. 5-4. 0、溶液浊度 < 1NTU、和 /或析晶点 69 °C -71 °C , 在这些参数范围内为可选的水溶液。
可选的, 各三通阀可以是电子换向模式的三通阀, 在本发明中亦可称为 电子换向阀。
可选的, 所述制备装置中制备罐、 过滤器及输料管路等部件各自独立地 设置有热水保温层(即加热介质夹层)。
可选的, 在日工作结束后, 制备罐中制成氧化剂盐水溶液已经转移至储 备罐或已经使用完毕, 切换水罐的电子换向阀, 用清水沖洗管道, 将清洗水排 入制备罐。
可选的, 管道清洗结束后, 打开粗滤器法兰盖, 清除过滤出的杂质; 打 开精滤器法兰盖, 查看是否正常, 并定期更换精滤装置。 实施例 6 参见图 3,其中描绘了根据本发明的氧化剂盐水溶液的制备装置的一个实 施方案的示意图。 本发明氧化剂盐水溶液的制备装置包括:
制备罐 1, 其中设置有搅拌器 11;
粗滤罐 2, 其中设置有粗滤网 21, 粗滤网的上部空间 22通过第一管道 81 连接到所述制备罐 1的底部开口 12;
精滤器 3, 其内设置有至少一个精滤体 31, 该精滤体的底部通过第二管 道 82连接到所述粗滤罐中粗滤网的下部空间 23, 并且精滤体的顶部通过第三 管道 83与所述制备罐 1相通;
水罐 4, 其通过第四管道 84与所述制备罐 1相通;
废水集中沉淀池 7, 其设置于所述制备装置的水平面以下, 并用于收集所 述制备装置在生产过程中产生的废水(即所述废水集中沉淀池 7是设计在生产 车间地面的低洼处, 车间内地面向该低洼处倾斜设计);
回收水过滤器 5, 其中设置有滤网 51, 滤网的上部空间 52通过管道 72 连接到所述废水集中沉淀池的液面以下; 和
回收水罐 6,所述回收水过滤器 5中滤网的下部空间 53通过管道 54可将 回收水过滤器 5中经过滤的回收水注入到该回收水罐 6中, 并且该回收水罐 6 可将其中的回收水通过管道 61注入到制备罐 1中。
制备装置本实施例中, 其中所述第四管道 84中设置有第四三通阀 841, 由该第四三通阀 841引出的第五管道 85连接到所述粗滤罐中粗滤网的上部空 间 22。 第五管道 85的设置有利于系统操作特别是它们在清洗系统各部件时非 常有用, 然而本领域技术人员理解不使用第五管道 85亦可以实现本发明制备 装置各部件的清洗。
本实施例中, 制备装置其中所述制备罐 1的罐体包括加热层 13。 即人们 通常所说的加热夹套,加热介质例如热水在该夹套中循环并使制备罐内的液体 加热。 在一个实施方案中, 制备罐、 粗滤罐、 精滤器、 和各种输送管道各自独 立地设置了类似于制备罐 1的罐体包括加热层 13的保温层或者其它类型的保 温层。 本实施例中, 制备装置其中所述制备罐 1中设置的搅拌器 1 1由防爆电机 14驱动。
本实施例中, 制备装置其中所述制备罐 1的顶部设置有进料口 15。 物料 例如硝酸铵、 硝酸钠等可以经该进料口 15加入到制备罐 1中。
本实施例中, 制备装置其中所述第三管道 83和 /或第四管道 84与所述制 备罐 1的顶部或者罐壁上部连通。
本实施例中, 制备装置其中所述第一管道 81 中设置有第一三通阀 81 1 , 由该第一三通阀 811引出溶液出料口 812。
本实施例中, 制备装置其中所述第一管道 81在第一三通阀 811的下游与 所述第五管道 85汇合一起连接到所述粗滤罐中粗滤网的上部空间 22。
本实施例中, 制备装置其中所述粗滤网 21是能够截留硅藻土的滤网。 本实施例中, 制备装置其中所述粗滤罐 2顶部设置有紧固法兰手柄 24。 该紧固法兰手柄 24可以使该粗滤罐 2开启或密封, 从而在工作状态使整个粗 滤罐 2密封, 而工作完成之后可以打开该紧固法兰手柄 24 , 并可以对粗滤网 21和 /或粗滤罐 2进行清洗。
本实施例中, 制备装置其中所述粗滤罐 2底部设置有排污口 25。 在工作 完成之后沉积在粗滤罐 2底部的污物可从该排污口 25排出。
本实施例中, 制备装置其中所述第二管道 82上设置有管道泵 821。 管道 泵 821可以驱动本发明制备装置中工作液体循环。
本实施例中, 制备装置其中所述精滤体 31中的填料是硅藻土。 本领域技 术人员理解, 所述精滤体 31的两端可以设置微孔垫片(图中未示出), 该微孔 垫片可以让溶液通过但不能使硅藻土颗粒通过。 当所述精滤体 31有两个或两 个以上时, 它们可以是以并联或者是串联的方式组合; 与并联组合相比, 串联 组合将有助于获得除杂效果更好的氧化剂盐水溶液, 但过滤速度较慢。
本实施例中, 制备装置为了操作上的方便, 还可以在各管道中设置阀门, 例如可以在第一管道 81与第五管道 85汇合点前、后各自独立地设置阀门; 又 例如还可以在管道泵 821的上游或下游设置阀门。这些阀门的设置有助于使整 个操作工艺连续进行并且在出现故障时便于中止操作。
本实施例中, 制备装置所述粗滤网 21可以是水平设置于所述粗滤器中, 由此将粗滤器的内部空间分开成上、下两部分,即上部空间 22和下部空间 23。 本领域技术人员理解, 粗滤网 21可以是垂直设置于所述粗滤器中, 由此将粗 滤器的内部空间分开成液料的上游、 下游两部分, 该上游和下游两部分可以分 别称为上部空间 22和下部空间 23。 就本发明而言, 粗滤网 21水平设置是可 选的。
本实施例中, 制备装置所述废水集中沉淀池 7设置于本发明整个制备装 置(包括但不限于制备罐 1、 粗滤罐 2、 精滤器 3、 水罐 4、 回收水过滤器 5、 和回收水罐 6 , 以及所有管道系统)的水平面以下, 并用于收集所述制备装置 在生产过程中产生的废水(这些废水中包含不希望向环境中排放的可以回收利 用的氧化剂盐)。 由此, 不论是生产过程中遗落的物料 (这些物料中包含不希望 向环境中排放的可以回收利用的氧化剂盐), 还是为清洗设备或地面而产生的 废水(这些废水中包含不希望向环境中排放的可以回收利用的氧化剂盐),均可 通过该废水集中沉淀池 7收集起来。
本实施例中, 制备装置其中连接回收水过滤器 5中滤网的下部空间 53与 回收水罐 6的管道 54中可设置回收水管道泵 55。 通过该回收水管道泵 55的 抽吸作用, 可以将回收水过滤器 5中滤网的下部空间 53抽成真空, 继而使废 水集中沉淀池 7中的废水通过管道 72抽入回收水过滤器 5中滤网的上部空间 52 , 通过滤网 51并最终达到回收水罐 6。
本实施例中, 制备装置其中连通回收水过滤器中滤网的上部空间 52与废 水集中沉淀池 7之间的管道 72 ,在该管道 72的下端部设置有一粗滤网 71。该 粗滤网可以避免废水集中沉淀池 Ί吸入回收水过滤器 5。
本实施例中, 制备装置其中回收水过滤器 5中滤网的下部空间 53的底部 设置有一开口, 该开口通过可开启 /闭合(例如通过阀门控制)的回收水过滤器 排污管 73连通到废水集中沉淀池 7。 由此, 在回收水过滤器 5 中滤网的下部 空间 53沉积的沉淀物(如果存在的话)可以通过该出口排出。 本实施例中, 制备装置其中精滤器 3、 水罐 4和回收水罐 6三者可以各自 独立地在其底部设置排污口, 例如类似于粗滤罐 2底部的排污口 25 , 以便工 艺操作或清理。
再参见图 4和图 5 ,其中描绘了根据本发明第二方面氧化剂盐水溶液的配 制方法的一个实施方案的流程示意图,图 4主要描绘了使用本发明装置和方法 进行粗滤 /精滤除杂质的一部分过程, 图 5主要描绘了使用本发明装置和方法 回收氧化剂盐并减少氧化剂盐排放的一部分过程。图 5所示过程得到的回收液 经测定其中的氧化剂盐含量后, 可以经计算加入到图 4所示配制流程中,作为 添加有氧化剂盐的制备溶剂,由此可以减少单独使用图 4所示流程配制本发明 氧化剂盐水溶液中所用的硝酸铵、 硝酸钠等原材料。
在一个实施方案中, 所述配制方法包括以下步骤:
(i)由进料口 15向制备罐 1 中加入计算量的、 破碎的氧化剂; 从水罐 4 经由第四管道 84向制备罐 1中加入计算量的水,和 /或从回收水罐 6经由管道 61向制备罐 1 中加入计算量的回收盐和水, 使得制备罐 1 中的物料达到需要 的浓度; 在 85-102 °C (优选 85-95 °C)加热下搅拌使物料溶解, 测定 pH值和析 晶点, 必要时调整至 pH值和析晶点合格;
(i i)向制备罐 1中加入硅藻土, 继续搅拌;
(i i i)使制备罐 1 中的物料经第一管道 81进入粗滤罐 2中的粗滤网的上 部空间 22 , 在管道泵 821抽滤作用下物料通过粗滤网 21进入粗滤网的下部空 间 23 , 物料进一步经由第二管道 82前行到精滤器 3;
(iv)物料经精滤器 3的精滤体 31过滤作用, 进入第三管道 83 , 并进一步 进入制备罐 1 ;
(V)任选地, 使步骤(i i i )和(i v)循环, 直至溶液的浑浊度符合规定; (v i)开启第一三通阀 811 ,使处理合格的氧化剂盐水溶液导入溶液出料口 812 , 完成配制工序,
其中, 所述回收水罐 6 中的回收盐和水是通过设置于制备装置的水平面 以下的废水集中沉淀池 7收集并经回收水过滤器 5过滤处理得到的。 本发明所得合格的氧化剂盐水溶液可以直接用于后续乳化工序或者用适 宜容器暂存后用于后续乳化工序。
根据本发明第二方面的配制方法, 其中在步骤(i)中, 制备用水可以是水 罐 4中的纯水,还可以是回收水罐 6中含有氧化剂盐的回收水, 亦可以是二者 的混合物。在使用回收水时, 可以先对回收水中各种氧化剂盐的种类和含量进 行测定, 并在制备投料时扣减这些存在于回收水中的氧化剂盐。
本实施例中, 其中在步骤(i)之前和 /或在步骤(v i)之后, 还包括对制备 装置进行清洗的步骤。 这些清洗步骤可以使用到管路中的阀门及其它相关部 件,例如在清洗过程中可以开启第四三通阀 841使水罐 4中的水直接引入粗滤 器中; 又例如可以打开粗滤器 2的紧固法兰手柄 24 , 以对粗滤网 21和粗滤器 2进行清洗。
本实施例中, 在步骤(V)的循环过程中, 如果粗滤罐中粗滤网的下部空间 23有明显的沉积物,则可在操作过程中通过排污口 25将该沉积物排出。由此, 第二管道 82从粗滤罐中粗滤网的下部空间 23引出,引出口优选不是设置在粗 滤器的底部, 而排污口 25则优选设置在粗滤器的底部的最底部。
本实施例中, 通过废水集中沉淀池 7 收集所述制备装置在生产过程中产 生的废水(这些废水中包含不希望向环境中排放的可以回收利用的氧化剂盐)。 由此, 不论是生产过程中遗落的物料(这些物料中包含不希望向环境中排放的 可以回收利用的氧化剂盐),还是为清洗设备或地面而产生的废水(这些废水中 包含不希望向环境中排放的可以回收利用的氧化剂盐), 均可通过该废水集中 沉淀池 7收集起来。
本实施例中, 在连接回收水过滤器 5中滤网的下部空间 53与回收水罐 6 的管道 54中设置了回收水管道泵 55。 通过该回收水管道泵 55的抽吸作用, 可以将回收水过滤器 5中滤网的下部空间 53抽成真空, 继而使废水集中沉淀 池 7中的废水通过管道 72抽入回收水过滤器 5中滤网的上部空间 52 , 通过滤 网 51并最终达到回收水罐 6。
本实施例中, 其中连通回收水过滤器中滤网的上部空间 52与废水集中沉 淀池 7之间的管道 72 ,在该管道 72的下端部设置有一粗滤网 71。废水集中沉 淀池 7中的废水在进入回收水过滤器 5前经过该粗滤网 71作了预先过滤, 从 而可以减轻回收水过滤器 5的工作负荷。
本实施例中, 其中回收水过滤器 5中滤网的下部空间 5 3的底部设置有一 开口, 该开口通过可开启 /闭合(例如通过阀门控制)的回收水过滤器排污管 73 连通到废水集中沉淀池 7。 由此, 在需要的时候, 通过该出口可以将回收水过 滤器底部沉积的沉淀物排出。
本实施例中, 其可通过本发明第一方面所述制备装置的任一实施方案来 执行,换言之, 本发明第一方面任一实施方案均可适用于本发明第二方面的配 制方法(本领域技术人员理解可以对第一方面的这些实施方案进行适当调整以 适应第二方面的方法)。
总体上讲, 本发明所要解决的问题是将生产过程中所有的废水集中起来, 通过净化处理, 去除可见杂质, 集中在计量水罐中, 作为氧化剂盐水溶液制造 时的水溶剂, 回收利用。 本领域技术人员知晓, 由于回收利用的水中含有或多 或少的氧化剂盐,按照配方投料必然造成成分比例差距,使得氧化剂盐水溶液 质量不均衡, 最终影响炸药品质, 通过控制过程参数, 控制终端品质。 在杂质 的混入、 原材料的变化、 水分含量的大小等方面的变化都可能直接影响配比, 造成配比失衡。 本发明期望对氧化剂盐水溶液制造过程进行杂质吸附、 粗滤、 精滤, 以达到纯度的目的。本发明的另一个目的是通过控制氧化剂盐水溶液制 造过程中的 pH值、 析晶点、 温度、 浑浊度来稳定水溶液的恒定品质。
本实施例中, 所述氧化剂盐水溶液含有的主要原材料是硝酸铵、 硝酸钠 等硝酸盐氧化剂, 它们易溶于水, 通常而言具有腐蚀性。
本实施例中, 在氧化剂盐水溶液制造过程中, 进行杂质吸附、 粗滤、 精 滤、 循环抽滤, 可以有效地达到纯化的目的。
本实施例中, 氧化剂盐水溶液的最终质量指标可通过检测浑浊度、 pH值、 析晶点甚至温度来衡量所得氧化剂盐水溶液的品质。
本实施例中, 浑浊度是衡量氧化剂盐水溶液质量的最主要的指标, 经粗 滤精滤后检测浑浊度, 过高, 继续抽滤, 直至合格。 根据本发明, 氧化剂盐水 溶液经粗滤精滤后测量浑浊度, 最终得到的氧化剂盐水溶液优选浑浊度小于 3 NTU, 更优选小于 2 NTU, 更优选小于 1 NTU;
本实施例中, 硅藻土必须是符合国标的产品, 精滤器中加入的硅藻土需 定期更换, 一般 30个批次更换会有助于氧化剂盐水溶液的配制。
本实施例中, 基本工艺过程是: 在氧化剂盐水溶液制备罐中加入经计量 的水, 硝酸铵、 硝酸钠等氧化剂盐经计量破碎后加入到制备罐中, 利用循环热 水加热至规定的温度, 通常是 85-102 摄氏度之间, 测量温度, 测量调节 PH 值,检测析晶点,合格时加入硅藻土通过抽滤的方式, 经粗滤器、精滤器过滤, 循环 30分钟, 检测浑浊度, 浑浊度合格时, 停止抽滤, 泵送至批次罐备用。
本实施例中, 向制备罐 1 加入硅藻土的量是本领域技术人员根据已有知 识容易确定的, 例如硅藻土的制备罐 1 中液料量的 0. 1-0. 5% (w/v) , 优选 0. 1-0. 4% (w/v) , 优选 0. 1-0. 3% (w/v) 。
本实施例中, 各三通阀可以是电子换向模式的三通阀, 在本发明中亦可 称为电子换向阀。
本实施例中, 所述制备装置中制备罐、 过滤器及输料管路等部件各自独 立地设置有热水保温层(即加热介质夹层)。
本实施例中, 在日工作结束后, 制备罐中制成氧化剂盐水溶液已经转移 至储备罐或已经使用完毕, 切换水罐的电子换向阀, 用清水沖洗管道, 将清洗 水排入制备罐。
本实施例中, 管道清洗结束后, 打开粗滤器法兰盖, 清除过滤出的杂质; 打开精滤器法兰盖, 查看是否正常, 并定期更换精滤装置。
本实施例中, 能够对废水进行回收利用, 同时回收废水中含有的硝酸铵 等有用成分。
本实施例中, 所有产生的废水自然留到回收池, 进行初级沉淀, 初级过 滤, 用水泵经一级过滤(必要时经二级过滤)泵送到回收水罐中,对回收水罐的 废水按批次加入到制备罐中, 以此做为溶剂, 按工艺要求加入硝酸铵、 硝酸钠 等氧化剂盐, 加热溶解, 达到某温度时进行 pH值、 浑浊度、 温度、 析晶点测 定, 通过酸或碱的调试剂调节标准指标, 达到标准要求为准。
本实施例中, 厂房的工艺布置需要在厂房的最低平面水平位置设计低凹 的积水槽(即本发明的废水集中沉淀池),使所有生产过程中产生的工业废水全 部集中到积水槽内。
本实施例中, 可以测试析晶点。 在一个实施方案中, 测量析晶点, 根据 经验, 析晶点每低于标准 1度, 相当于每吨溶液多加 3. 3kg水, 根据总溶液吨 数和需调整的析晶点度数计算出多加的水量,再按配方计算出需补加的硝酸铵 的量。 每高于标准一度, 按每吨溶液中加入约 3 kg水, 可以降低析晶点 1度。
本实施例中, 可以测试 pH值测试。 在一个实施方案中, 测量 pH值, 若 大于 4. 0则可加入醋酸, 若小于 3. 5 则可加入碳酸钠; 每吨溶液中加入 10g 碳酸钠, pH值可以提高 0. 01个单位; 每吨溶液中加入 0. 1kg 乙酸, p H值可 以降低 0. 1个单位。根据本申请案的装置和方法, 其中可用的工艺控制参数例 如包括 PH值 3. 5-4. 0、 溶液浊度 < 1NTU、 和 /或析晶点 69 °C _7 rC , 在这些参 数范围内为可选的水溶液。
本发明解决了氧化剂盐水溶液制造过程产生的废水回收利用问题, 同时 对废水中含有的硝酸盐等有效物质回收利用,通过对过程控制中工艺参数的统 一控制, 保证了氧化剂盐水溶液的质量均衡。

Claims

权 利 要 求 书
1. 一种低碳环保乳化炸药, 其特征在于, 由乳化基质经敏化液敏化而成, 所述的乳化基质是由氧化剂盐水溶液和油相经乳化作用而成,其组分和重量份 配比如下, 氧化剂盐水溶液组分与配比为:
成分 重量份
硝酸铵 80 ~ 85
硫脲 0.1-0.2
水 15 ~ 20
油相组成为: 石蜡油或机油、 乳化剂, 其重量比为(2.5 ~ 3.5) : 1;
敏化液的组成为: 亚硝酸钠、硫氰酸钠或碳酸氢钠、水,其重量比为(0.9 ~ 1.1) : (0.9-1.1) : (23~29)。
2. 如权利要求 1 所述的低碳环保乳化炸药, 其特征在于, 所述氧化剂盐 水溶液组分与配比为:
成分 重量份
硝酸铵 80 ~ 85
硫脲 0.1-0.2
乙酸 0.1-0.2
碳酸 ] 0.01 ~ 0.03
水 15~20。
3. 如权利要求 1 或 2 所述的低碳环保乳化炸药, 其特征在于, 所述乳化 剂为聚异丁烯丁二酸酐乳化剂中的一种或多种的组合或者是聚异丁烯丁二酸 酐乳化剂与司盘 80的混合物, 其中, 所述聚异丁烯丁二酸酐乳化剂与司盘 80 的重量比为 1: (0.01-1 ) 。
4. 一种如权利要求 1-3中任一项所述的低碳环保乳化炸药的制备方法, 其 特征在于, 包括如下步骤:
( 1)氧化剂盐水溶液制备: 将硝酸铵、 硫脲、 溶于水并加热至 80°C ~90 °C , 用 pH 值调节剂将 pH 值调节至 3.5 ~ 4.0, 其溶液浊度 < 1NTU, 析晶点 69 °C ~ 71 °C , 溶液制备结束后加入硅藻土吸附剂, 经循环抽滤成为纯净的氧化剂 盐水溶液备用;
( 2 )油相制备: 将乳化剂、 石蜡油或机油熔化混合均匀, 温度为 70 °C ~ 80°C , 油相制备结束后经过滤备用;
( 3 )乳化基质制备:将氧化剂盐水溶液 92 ~ 95 重量份,油相 5 ~ 8重量份, 经流量控制器加入乳化器, 经乳化形成油包水型的乳化基质,基质温度 78°C ~ 90 °C , 粘度为 14 ~ 26BU, 将乳化基质保温, 使其在敏化时的温度高于 40°C;
( 4 )敏化液配制: 将亚硝酸钠、 硫氰酸钠或碳酸氢钠、 水配制成比重为 1.041 ~ 1.061 g/cm3 的敏化液;
( 5 )装填敏化: 乳化基质和敏化液按 ( 98 - 102 ) : ( 2.8 ~ 3.2 )的重量 比经散装乳化基质装填设备装入炮孔, 经 15 ~ 20 分钟敏化成密度为 1.05 ~ 1.25g/cm 的炸药。
5. 如权利要求 4所述的低碳环保乳化炸药的制备方法, 其特征在于, 所 述 pH 值调节剂选自乙酸、 碳酸钠、 氢氧化钠或氢氧化钾。
6. 一种氧化剂盐水溶液的制备装置, 其特征在于, 包括:
制备罐, 其中设置有搅拌器;
粗滤罐, 其中设置有粗滤网,粗滤网的上部空间通过第一管道连接到所述 制备罐的底部开口;
精滤器, 其内设置有至少一个精滤体, 该精滤体的底部通过第二管道连 接到所述粗滤罐中粗滤网的下部空间,并且精滤体的顶部通过第三管道与所述 制备罐相通;
水罐, 其通过第四管道与所述制备罐相通;
其中, 所述第四管道中设置有第四三通阀, 由该第四三通阀引出的第五 管道连接到所述粗滤罐中粗滤网的上部空间。
7. 根据权利要求 6 的氧化剂盐水溶液的制备装置, 其特征在于, 所述制 备罐、 粗滤罐、 精滤器、 管道各自独立地设置有保温层。
8. 根据权利要求 6或 7的氧化剂盐水溶液的制备装置, 其特征在于, 所述 制备罐的顶部设置有进料口; 所述第三管道和 /或第四管道与所述制备罐的顶 部或者罐壁上部连通; 所述第一管道中设置有第一三通阀, 由该第一三通阀引 出溶液出料口;所述第一管道在第一三通阀的下游与所述第五管道汇合一起连 接到所述粗滤罐中粗滤网的上部空间; 所述粗滤罐底部设置有排污口。
9. 根据权利要求 6-8 中任一项所述的氧化剂盐水溶液的制备装置, 其特 征在于, 所述精滤体中的填料是硅藻土。
10. 根据权利要求 6-8中任一项所述的氧化剂盐水溶液的制备装置, 其特 征在于, 还包括:
废水集中沉淀池,其设置于所述制备装置的水平面以下,并用于收集所述 制备装置在生产过程中产生的废水;
回收水过滤器, 其中设置有滤网, 滤网的上部空间通过管道连接到所述废 水集中沉淀池的液面以下;
回收水罐,所述回收水过滤器中滤网的下部空间通过管道可将回收水过滤 器中经过滤的回收水注入到该回收水罐中,并且该回收水罐可将其中的回收水 通过管道注入到制备罐中,
其中, 所述第四管道中设置有第四三通阀, 由该第四三通阀引出的第五管 道连接到所述粗滤罐中粗滤网的上部空间。
PCT/CN2012/082751 2011-10-20 2012-10-11 低碳环保乳化炸药及其制备方法和氧化剂盐水溶液的制备装置 WO2013056631A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201110319584.5 2011-10-20
CN201110319584.5A CN102603439B (zh) 2011-10-20 2011-10-20 氧化剂盐水溶液的杂质吸附粗滤精滤方法
CN201110319585.XA CN102603433B (zh) 2011-10-20 2011-10-20 零排放配制氧化剂盐水溶液的装置和方法
CN201110319585.X 2011-10-20
CN201110410658.6 2011-12-12
CN201110410658.6A CN103159576B (zh) 2011-12-12 2011-12-12 低粘度可泵送乳化炸药基质及其制备方法

Publications (1)

Publication Number Publication Date
WO2013056631A1 true WO2013056631A1 (zh) 2013-04-25

Family

ID=48140354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082751 WO2013056631A1 (zh) 2011-10-20 2012-10-11 低碳环保乳化炸药及其制备方法和氧化剂盐水溶液的制备装置

Country Status (1)

Country Link
WO (1) WO2013056631A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104803814A (zh) * 2015-04-22 2015-07-29 长沙亦川机电设备科技有限责任公司 一种中温敏化的乳化炸药及其制备方法
CN109942353A (zh) * 2019-04-16 2019-06-28 山西壶化集团金星化工有限公司 一种具有长期储存稳定性的乳化炸药

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035817A (zh) * 1988-03-02 1989-09-27 澳大利亚卜内门军品独占有限公司 炸药组合物
CN1206391A (zh) * 1995-12-29 1999-01-27 澳大利亚澳瑞凯有限公司 生产乳剂炸药组合物的方法及设备
CN101037373A (zh) * 2007-04-19 2007-09-19 贵州宏福实业开发有限总公司 乳化炸药添加剂
CN101863722A (zh) * 2010-04-27 2010-10-20 中国神华能源股份有限公司 一种超低密度乳化炸药及其制备方法
CN102070380A (zh) * 2010-12-06 2011-05-25 陕西华秦新能源科技有限责任公司 一种炸药用的发泡剂
CN102070378A (zh) * 2010-12-06 2011-05-25 陕西华秦新能源科技有限责任公司 一种快速发泡剂
CN102603439A (zh) * 2011-10-20 2012-07-25 薛世忠 氧化剂盐水溶液的杂质吸附粗滤精滤方法
CN202346926U (zh) * 2011-10-20 2012-07-25 薛世忠 氧化剂盐水溶液的配制装置及粗滤精滤装置
CN102603433A (zh) * 2011-10-20 2012-07-25 薛世忠 零排放配制氧化剂盐水溶液的装置和方法
CN202415396U (zh) * 2011-10-20 2012-09-05 薛世忠 零排放配制氧化剂盐水溶液的装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035817A (zh) * 1988-03-02 1989-09-27 澳大利亚卜内门军品独占有限公司 炸药组合物
CN1206391A (zh) * 1995-12-29 1999-01-27 澳大利亚澳瑞凯有限公司 生产乳剂炸药组合物的方法及设备
CN101037373A (zh) * 2007-04-19 2007-09-19 贵州宏福实业开发有限总公司 乳化炸药添加剂
CN101863722A (zh) * 2010-04-27 2010-10-20 中国神华能源股份有限公司 一种超低密度乳化炸药及其制备方法
CN102070380A (zh) * 2010-12-06 2011-05-25 陕西华秦新能源科技有限责任公司 一种炸药用的发泡剂
CN102070378A (zh) * 2010-12-06 2011-05-25 陕西华秦新能源科技有限责任公司 一种快速发泡剂
CN102603439A (zh) * 2011-10-20 2012-07-25 薛世忠 氧化剂盐水溶液的杂质吸附粗滤精滤方法
CN202346926U (zh) * 2011-10-20 2012-07-25 薛世忠 氧化剂盐水溶液的配制装置及粗滤精滤装置
CN102603433A (zh) * 2011-10-20 2012-07-25 薛世忠 零排放配制氧化剂盐水溶液的装置和方法
CN202415396U (zh) * 2011-10-20 2012-09-05 薛世忠 零排放配制氧化剂盐水溶液的装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104803814A (zh) * 2015-04-22 2015-07-29 长沙亦川机电设备科技有限责任公司 一种中温敏化的乳化炸药及其制备方法
CN109942353A (zh) * 2019-04-16 2019-06-28 山西壶化集团金星化工有限公司 一种具有长期储存稳定性的乳化炸药

Similar Documents

Publication Publication Date Title
CN207521417U (zh) 一种钡渣无害化处理系统
RU2686149C1 (ru) Растворный узел карбамидно аммиачной смеси
WO2013056631A1 (zh) 低碳环保乳化炸药及其制备方法和氧化剂盐水溶液的制备装置
CN111253198A (zh) 一种无雷管感度乳化粒状铵油炸药配方及生产工艺
CN103319288B (zh) 一种多功能炸药混装车
KR101042622B1 (ko) 혼합토 제조장치 및 이 혼합토 제조방법
CN103196337B (zh) 一种多功能重铵油炸药混装车
CN205933282U (zh) 氮化反应釜
CN102603439B (zh) 氧化剂盐水溶液的杂质吸附粗滤精滤方法
RU129550U1 (ru) Установка для приготовления и закачки в скважину растворов из сыпучих и жидких химреагентов
CN102603433B (zh) 零排放配制氧化剂盐水溶液的装置和方法
CN216756026U (zh) 一种乳化炸药发泡剂自动配料装置
CN205442058U (zh) 乳化炸药混合输送装置
CN202415396U (zh) 零排放配制氧化剂盐水溶液的装置
CN112157797B (zh) 一种装配式建筑预制构件生产线砂浆混配系统
WO2013007166A1 (zh) 双组份联动柱塞泵及采用该柱塞泵的乳化炸药现场混装设备
CN112479794A (zh) 一种高性能乳化粒状铵油炸药及其制备方法
CN107814367B (zh) 一种硝基甲苯废硫酸处理低浓度稀硝酸的提浓方法
CN102491860A (zh) 现场混装膨化硝铵炸药及其生产方法
CN108478985B (zh) 一种飞灰稳定化处理系统及处理方法
CN202346926U (zh) 氧化剂盐水溶液的配制装置及粗滤精滤装置
CN207822824U (zh) 用于烟气脱硝的尿素溶液在线制备系统
CN103159576B (zh) 低粘度可泵送乳化炸药基质及其制备方法
CN116282257B (zh) 一种纳米级钙基活性复合碱及其制备方法、制备装置与应用
CN101007201A (zh) 产生二氧化碳灭火气体的灭火装置及原料配方

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841401

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28-08-2014 )

122 Ep: pct application non-entry in european phase

Ref document number: 12841401

Country of ref document: EP

Kind code of ref document: A1