WO2013056507A1 - Heliostat angle deviation detection method for solar tower thermal power system - Google Patents

Heliostat angle deviation detection method for solar tower thermal power system Download PDF

Info

Publication number
WO2013056507A1
WO2013056507A1 PCT/CN2012/001049 CN2012001049W WO2013056507A1 WO 2013056507 A1 WO2013056507 A1 WO 2013056507A1 CN 2012001049 W CN2012001049 W CN 2012001049W WO 2013056507 A1 WO2013056507 A1 WO 2013056507A1
Authority
WO
WIPO (PCT)
Prior art keywords
heliostat
mirror
center
image
lens
Prior art date
Application number
PCT/CN2012/001049
Other languages
French (fr)
Chinese (zh)
Inventor
邵文远
Original Assignee
Shao Wenyuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shao Wenyuan filed Critical Shao Wenyuan
Publication of WO2013056507A1 publication Critical patent/WO2013056507A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • F24S2050/25Calibration means; Methods for initial positioning of solar concentrators or solar receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A heliostat angle deviation detection method for a solar tower thermal power system. The power system comprises a heat absorber (H) fixed on a tower (T), and several heliostats (M). The power system is provided with an imaging unit. The imaging unit comprises a lens (E), a camera or a video camera connected to the lens (E), and a computer connected to the camera or the video camera. The lens (E) is arranged at the center of the heat absorber (H) or along the periphery thereof. Steps for determining whether the positions of the heliostat mirrors are correct according to an image taken by the imaging unit are: (1) establishing coordinates of the center (QK) of each heliostat (M) in the heliostat field; (2) when the system operates, searching an obtained image for coordinates of the center (QK') of a virtual image of the sun or the virtual image of the sun; (3) determining whether the angle of each heliostat (M) is correct by determining the overlap ratio between the center (QK') of the virtual image of the sun and the center (QK) of the heliostat mirror or whether a virtual image of the sun exists. The advantages thereof are that the efficiency, degree of automation, and accuracy of the detection are improved.

Description

塔式太阳能热发电系统的定日镜角度偏差检测方法 技术领域  Heliostat angle deviation detection method for tower solar thermal power generation system
本发明涉及太阳能热发电系统,尤其涉及塔式太阳能热发电系统的定日 镜角度偏差检测方法。  The present invention relates to a solar thermal power generation system, and more particularly to a heliostat angular deviation detection method for a tower solar thermal power generation system.
背景技术 Background technique
目前利用太阳能热发电主要有槽式和塔式两种, 槽式结构相对简单, 但 吸热器的温度一般只能达到 200° C以上,发电效率低。而塔式结构相对复 杂, 但吸热器的温度一般能达到 500° C以上, 发电效率高。  At present, solar thermal power generation mainly includes two types of trough type and tower type, and the trough type structure is relatively simple, but the temperature of the heat absorber can generally only reach 200 ° C or more, and the power generation efficiency is low. The tower structure is relatively complicated, but the temperature of the heat absorber can generally reach 500 ° C or more, and the power generation efficiency is high.
塔式太阳能热发电技术的原理是用定日镜将阳光反射到位于高塔上的吸热 器, 实现大容量发电。 电站系统包括定日镜场、 吸热器、 蓄热装置和发电装置 等。  The principle of tower solar thermal power generation technology is to use a heliostat to reflect sunlight to a heat sink located on a high tower to realize large-capacity power generation. The power station system includes a heliostat field, a heat sink, a heat storage device, and a power generating device.
由于太阳东升西落, 定日镜场中的每一面定日镜也必须由东向西, 同时由 下而上、 再由上而下运动, 才能保证每一面定日镜对阳光的反射聚集到塔上的 吸热器上。 根据每一面定日镜与吸热器的相对位置、 时间、 地点等, 可以计算 出每一面定日镜在任何时刻的方位角和仰角, 但是, 由于大气折射、 机械误差、 热胀冷缩、 材料老化等原因, 将引起反射的偏差, 影响发电效率。 设计定曰镜 场角度偏差测量和校正系统, 可作为控制系统的负反馈参数, 及时调整每一面 定日镜的方位角和仰角, 使定日镜对阳光的反射永远对准吸热器, 提高发电效 率。  As the sun rises and falls, every heliostat in the heliostat field must also move from east to west, and from bottom to top, and then from top to bottom, to ensure that the reflection of sunlight on each side of the heliostat is concentrated. On the tower's heat sink. According to the relative position, time, location, etc. of each heliostat and heat sink, the azimuth and elevation angle of each heliostat at any time can be calculated, but due to atmospheric refraction, mechanical error, thermal expansion and contraction, Materials such as aging will cause deviations in reflection and affect power generation efficiency. Design the fixed angle field deviation measurement and correction system, which can be used as the negative feedback parameter of the control system. Adjust the azimuth and elevation angle of each surface heliostat in time, so that the reflection of sunlight from the heliostat is always aligned with the heat absorber. Power generation efficiency.
国外有的校正系统, 是在吸热器下面用一块白板, 把需要校正的定日镜的 阳光反射到白板上, 如果计算出的方位角和仰角准确, 则白板上的光斑正好在 白板的中心位置; 如果不在中心位置, 则需要手动调整到中心位置, 测量得出 方位角和仰角的理论值和实际值的误差。 最后向上移动一定的角度 (每一面定 日镜的上移角度都不完全相同)对准吸热器。 这种方法的缺点有四个: 一是一 旦有误差必须手动调整; 二是上移的时候也会产生误差; 三是每次只能调整一 面定日镜; 四是校正时不能贡献热量给吸热器。 There is a foreign calibration system that uses a whiteboard under the heat sink to reflect the sunlight of the heliostat that needs to be corrected to the whiteboard. If the calculated azimuth and elevation angle are accurate, the spot on the whiteboard is just at the center of the whiteboard. Position; if not in the center position, you need to manually adjust to the center position, measured The error between the theoretical and actual values of azimuth and elevation. Finally, move up a certain angle (the angle of the heliostats on each side is not exactly the same) and align the heat sink. There are four disadvantages of this method: one is that it must be manually adjusted once there is an error; the second is that it will also produce an error when moving up; the third is that it can only adjust one heliostat at a time; the fourth is that it cannot contribute heat to the suction during calibration. Heater.
发明内容 Summary of the invention
本发明的目的在于克服上述现有技术之不足, 提供无需人工干预、 自动校 验镜场中每面定日镜是否能将太阳光反射到吸热器,形成对应光斑的检测方法, 其具体技术方案如下:  The object of the present invention is to overcome the above-mentioned deficiencies of the prior art, and provide a detection method for forming a corresponding spot by automatically correcting whether each heliostat in the mirror field can reflect sunlight to the heat absorber without manual intervention. The plan is as follows:
所述塔式太阳能热发电系统的定日镜角度偏差检测方法之一, 该塔式太阳 能热发电系统包括固定于所述塔上的吸热器和能在对应固定位置转动的若干面 定曰镜, 所述若干面定日镜按设定方式排列, 形成镜场, 每一定日镜在正确位 置时将太阳光反射到吸热器上, 其特征在于, 在所述塔式太阳能热发电系统中 设置第一成像单元, 所述第一成像单元包括一个第一镜头 E和与第一镜头连接 的相机或摄像机以及与所述相机或摄像机连接的计算机, 所述第一镜头设置在 吸热器的中心区域, 与镜场中第 k面定日镜镜面中心 的距离为定值 Lk, 形成 第一中心连线 EQk。定日镜在水平面和垂直面转动的轴心线均通过镜面中心 Qk, 通过所述镜面中心 Qk的镜面宽度为 Dk, 高度为 Hk, 所述第一成像单元能拍摄 对应吸热器所对应的整个镜场的图像, 通过该图像来确定定日镜镜面位置是否 正确的步骤如下: One of the heliostat angle deviation detecting methods of the tower solar thermal power generation system, the tower solar thermal power generation system includes a heat absorber fixed to the tower and a plurality of surface fixed mirrors rotatable at corresponding fixed positions The plurality of surface heliostats are arranged in a set manner to form a mirror field, and each of the heliostats reflects sunlight to the heat absorber at the correct position, wherein the tower solar thermal power generation system is Providing a first imaging unit, the first imaging unit comprising a first lens E and a camera or camera connected to the first lens and a computer connected to the camera or the camera, the first lens being disposed on the heat sink The central region is at a constant value L k from the center of the mirror surface of the k-th surface of the mirror field to form a first center line EQ k . The axis of the heliostat rotating in the horizontal plane and the vertical plane passes through the mirror center Qk, and the mirror width of the mirror center Qk is D k and the height is H k , and the first imaging unit can photograph the corresponding heat sink The corresponding image of the entire mirror field, through which the steps of determining the mirror position of the heliostat are correct are as follows:
1 )建立镜场中心坐标  1) Establish mirror center coordinates
调节镜场中所有的定日镜, 使其镜面垂直于所述第一中心连线 EQk后, 用 第一成像单元对所对应的镜场拍摄, 形成镜场的初始图像, 通过该初始图像确 立每一面定日镜中心的像素坐标值作为该定日镜的中心坐标, 并计算所述镜面 宽度 Dk和高度 Hk的线性方向上所包含的像素量 NDk和 Ν ; Adjusting all the heliostats in the mirror field so that the mirror surface is perpendicular to the first center line EQ k , and then photographing the corresponding mirror field with the first imaging unit to form an initial image of the mirror field, through the initial image Establishing the pixel coordinate value of the center of each heliostat as the center coordinate of the heliostat, and calculating the mirror surface The amount of pixels N Dk and Ν contained in the linear direction of the width D k and the height H k ;
2) 系统工作时找太阳虚像中心坐标  2) Find the coordinates of the sun virtual image center when the system works
塔式太阳能热发电系统工作时, 在每一设定的时间间隔所述第一成像单元 对对应镜场进行一次拍摄, 形成镜场的当前图像, 所述计算机找出该当前图像 中的每一面定日镜所对应的太阳虚像中心 Q,的像素坐标值, 作为太阳虚像中心 坐标, 并计算每一面定日镜的太阳虚像中心 Q,至镜头 Ε的第二中心连线 EQ,与 所述第一中心连线 EQ所夹角在水平面上形成的方位角为 Θ和垂直面上形成仰角 为 Φ, 第 k面定日镜的太阳虚像中心为(V , 至镜头 E的第二中心连线 EQk' 与所述第一中心连线 EQk形成方位角 9k和仰角 (i)k; When the tower solar thermal power generation system is in operation, the first imaging unit performs a shooting on the corresponding mirror field at each set time interval to form a current image of the mirror field, and the computer finds each side of the current image. The pixel coordinate value of the sun virtual image center Q corresponding to the heliostat, as the central coordinate of the solar virtual image, and calculate the sun virtual image center Q of each heliostat, to the second center line EQ of the lens ,, and the said The angle formed by the angle of a central connection EQ on the horizontal plane is Θ and the elevation angle of the vertical plane is Φ, and the center of the solar virtual image of the k-th surface heliostat is (V, to the second center line E8 of the lens E) k 'and the line connecting the centers of the first k EQ k 9 k formed azimuth and elevation (I);
3 ) 判别定日镜镜面角度是否正确  3) Determine whether the mirror angle of the heliostat is correct
在所述时间间隔比较每一面定日镜的太阳虚像中心坐标与对应定日镜中心 坐标:  The center coordinates of the solar virtual image of each of the heliostats and the coordinates of the center of the corresponding heliostat are compared at the time interval:
如所述两中心的差距在设定的范围内, 对应定日镜镜面角度正确, 不需调 整, 如超过设定范围, 对应定日镜镜面角度不正确, 需调整。  If the difference between the two centers is within the set range, the mirror angle of the fixed heliostat is correct, and no adjustment is needed. If the setting range is exceeded, the mirror angle of the corresponding heliostat is incorrect and needs to be adjusted.
所述塔式太阳能热发电系统的定日镜角度偏差检测方法之二, 该塔式太阳 能热发电系统包括固定于所述塔上的吸热器和能在对应固定位置转动的若干面 定曰镜, 所述若干面定日镜按设定方式排列, 形成定日镜场, 每一定日镜在正 确位置时将太阳光反射到吸热器上, 其特征在于, 在所述塔式太阳能热发电系 统中设置第一成像单元和第二成像单元, 所述第一成像单元包括一个第一镜头 和与第一镜头连接的相机或摄像机及与所述相机或摄像机连接的计算机; 所述 第二成像单元包括若干个第二镜头、 与对应第二镜头连接的若干相机或摄像机 以及与所述相机或摄像机连接的计算机。 第一镜头设置在吸热器的中心区域, 与镜场中的第 k面定日镜中心的距离为定值 Lk, 形成的中心连线 6(¾与定日镜 平面的夹角, 该夹角分解为水平面上的方位角为 ek和垂直面上的仰角为 (b k, 定 日镜在水平面和垂直面转动的轴心线均通过镜面中心 Qk, 所述第一成像单元能 拍摄整个镜场的图像; 所述若干个第二镜头设置在吸热器外围一圈, 且相邻的 两第二镜头之间的距离小于最小反射光斑的宽度或高度, 通过第一、 第二成像 单元拍摄的图像来确定定日镜镜面位置是否正确的步骤如下: In the tower solar thermal power generation system, the heliostat angle deviation detecting method is the second, the tower solar thermal power generation system includes a heat absorber fixed to the tower and a plurality of surface fixed mirrors that can rotate at corresponding fixed positions. The plurality of heliostats are arranged in a set manner to form a heliostat field, and each of the heliostats reflects sunlight to the heat absorber at the correct position, wherein the tower solar thermal power generation a first imaging unit and a second imaging unit are disposed in the system, the first imaging unit including a first lens and a camera or camera connected to the first lens and a computer connected to the camera or the camera; the second imaging The unit includes a plurality of second lenses, a number of cameras or cameras coupled to the corresponding second lens, and a computer coupled to the camera or camera. The first lens is disposed in the central region of the heat sink, and the distance from the center of the k-th heliostat in the mirror field is a constant value L k , and the center line 6 is formed (3⁄4 and heliostat) The angle of the plane, the angle is decomposed into the azimuth angle on the horizontal plane is e k and the elevation angle on the vertical plane is (b k , the axis of the heliostat rotating in the horizontal plane and the vertical plane passes through the mirror center Q k , The first imaging unit can capture an image of the entire mirror field; the plurality of second lenses are disposed on the periphery of the heat absorber, and the distance between the adjacent two second lenses is smaller than the width or height of the minimum reflected spot. The steps of determining whether the mirror position of the heliostat is correct by the images taken by the first and second imaging units are as follows:
1 )建立镜场中心坐标  1) Establish mirror center coordinates
调节镜场中所有的定日镜, 使其镜面垂直于所述第一中心连线 EQk后, 分 别用第一、 第二成像单元对对应镜场拍摄, 形成镜场对应的初始图像, 通过该 初始图像分别建立对应于第一、 第二成像单元的每一面定日镜中心的像素坐标 值作为该定日镜的中心坐标,并计算所述镜面宽度 Dk和高度 Hk的线性方向上所 包含的像素量 NDk和 Ν ; Adjusting all the heliostats in the mirror field so that the mirror surface is perpendicular to the first center line EQ k , respectively, using the first and second imaging units respectively to shoot the corresponding mirror field, forming an initial image corresponding to the mirror field, the initial image to correspond to the first, respectively, on each side of the center pixel coordinate values of the heliostat second imaging unit as center coordinates of the heliostat, and calculates the linear mirror width direction and a height H k D k of The amount of pixels N Dk and Ν included ;
2)系统工作时找太阳虚像  2) Find the sun image when the system works
所述塔式太阳能热发电系统工作时, 在每一设定的时间间隔, 所述第二成 像单元对镜场进行一次拍摄, 形成镜场的当前图像, 所述计算机寻找该图像中 的每一面定日镜中有否太阳虚像;  When the tower solar thermal power generation system is in operation, the second imaging unit performs a shooting on the mirror field at each set time interval to form a current image of the mirror field, and the computer searches for each side of the image. Whether there is a sun image in the heliostat;
3 )判别定日镜镜面角度是否正确  3) Determine whether the mirror angle of the heliostat is correct
在所述时间间隔判别当前图像中的每一面定日镜中有否太阳虚像, 如无太 阳虚像, 镜场中全部定日镜镜面角度正确, 定日镜不需调整, 如有太阳虚像, 对应的定日镜需调整, 并计算镜头 E至对应定日镜的太阳虚像中心 Q' 连线 EQ' 与第一中心连线 EQ所夹的水平面上的方位角 Θ和垂直面上的仰角 Φ,。第 k面定日镜的太阳虚像中心为 Qk' , 至镜头 E的第二中心连线 EQk,与所述第一 中心连线 EQk形成方位角 6k和仰角 (i) kAt the time interval, it is determined whether there is a solar virtual image in each of the heliostats in the current image. If there is no solar virtual image, the mirror angle of all the heliostats in the mirror field is correct, and the heliostat does not need to be adjusted, if there is a sun virtual image, corresponding The heliostat needs to be adjusted, and the azimuth angle 水平 on the horizontal plane and the elevation angle Φ on the vertical plane of the lens E to the sun-definition center Q' line EQ' of the corresponding heliostat and the first center line EQ are calculated. . The center of the solar virtual image of the k- th surface heliostat is Q k ', and the second center line EQ k of the lens E forms an azimuth angle of 6 k and an elevation angle (i) k with the first center line EQk.
所述第 k面定日镜在镜面的水平转动角度 β 1{和垂直转动角度 δ k后太阳虚 像的中心 Qk' 与镜子的中心 Qk重合, 设上述转动前的定日镜中心 Qk至虚像中 心 Qk' 在水平方向上的间距为 nDk个像素量、在垂直方向上的间距为 η 个像素 量, 则第 k面定日镜水平转动角度 P k、 垂直转动角度 S k、 第一镜头至第 k面定 日镜中心的距离 Lk、 第 k面定日镜的方位角 8k、 第 k面定日镜的宽度 、 第 k 面定日镜的高度 Hk、 第 k面定日镜宽度 Dk线性方向上所包含的像素量 NDk、 第 k面定日镜高度 Hk线性方向上所包含的像素量 Ν 、 定日镜中心 Qk至虚像中心 Qk' 在水平方向上间距的像素量 nDk、 定日镜中心 Qk至虚像中心 Qk' 在垂直方 向上间距的像素量 存在如下关系: The k-th surface heliostat has a horizontal rotation angle β 1{{ and a vertical rotation angle δ k after the mirror surface The center Qk' of the image coincides with the center Q k of the mirror, and the pitch of the center of the heliostat Q k before the rotation to the center of the virtual image Qk' in the horizontal direction is n Dk pixels, and the pitch in the vertical direction is η The number of pixels, the k-th surface heliostat horizontal rotation angle P k , the vertical rotation angle S k , the distance L k from the first lens to the k-th surface of the heliostat, and the azimuth angle of the k-th surface heliostat 8 k The width of the k-th surface heliostat, the height H k of the k-th surface heliostat, the pixel amount N Dk included in the linear direction of the k-th surface heliostat width D k , and the k-th surface heliostat height H k The amount of pixels 线性 in the linear direction, the center of the heliostat Q k to the center of the virtual image Q k 'the amount of pixels in the horizontal direction n Dk , the distance from the center of the heliostat Q k to the center of the virtual image Q k ' in the vertical direction The amount of pixels has the following relationship:
6k=Dk X nDk/ NDk/ Lk 或 * k= nHk NHk Lk 6 k =D k X n Dk / N Dk / L k or * k = nHk NHk L k
e k= ek / 2 或 s k= Φ„/ 2 e k = e k / 2 or s k = Φ„/ 2
所述塔式太阳能热发电系统的定日镜角度偏差检测方法的进一步设计在 于, 所述第一镜头设置在吸热器的中心区域的一固定位置, 或设置在吸热器中 心区域的 U个定位位置上, 所述镜场划分为对应的 U个区域, 使第一镜头在每 一定位位置上都有一镜场区域与之对应。  A further design of the heliostat angle deviation detecting method of the tower solar thermal power generation system is that the first lens is disposed at a fixed position in a central region of the heat absorber or U cells disposed in a central region of the heat absorber In the positioning position, the mirror field is divided into corresponding U regions, so that the first lens has a mirror field corresponding to each of the positioning positions.
所述塔式太阳能热发电系统的定日镜角度偏差检测方法的进一步设计在 于, 所述定日镜为平面镜或抛物面镜。  The heliostat angle deviation detecting method of the tower solar thermal power generation system is further designed such that the heliostat is a plane mirror or a parabolic mirror.
上述塔式太阳能热发电系统的中的所述第一成像单元可以移动, 其移动误 误差的校正方法是, 在所述镜场中的无定日镜的位置处至少设置 3个不在一条 直线上的可控激光发射器或高亮度发光装置, 所述激光发射器或高亮度发光装 置发射的光束的范围覆盖所述第一成像单元和第二成像单元, 且可控激光发射 器或高亮度发光装置的发光频率与所述时间间隔对应, 对第一成像单元移动误 差的校正步骤如下:  The first imaging unit in the above-described tower solar thermal power generation system can be moved, and the correction method of the movement error is that at least three are not in a straight line at the position of the amorphous heliostat in the mirror field. a controllable laser emitter or a high-intensity illumination device, the range of the light beam emitted by the laser emitter or the high-intensity illumination device covering the first imaging unit and the second imaging unit, and the controllable laser emitter or high-brightness illumination The illumination frequency of the device corresponds to the time interval, and the steps of correcting the movement error of the first imaging unit are as follows:
1 )建立定日镜像素的基准坐标 用第一成像单元和第二成像单元拍摄包含可控激光发射器或高亮度发光装 置的镜场校正图像, 通过该校正图像确定可控激光发射器或高亮度发光装置的 像素坐标值, 以该像素坐标值为基准建立标准坐标系, 并确定镜场中每一定曰 镜的对应于标准坐标系的基准像素坐标; 1) Establish the reference coordinates of the heliostat pixels A mirror correction image including a controllable laser emitter or a high-intensity illumination device is captured by the first imaging unit and the second imaging unit, and the pixel coordinate value of the controllable laser emitter or the high-intensity illumination device is determined by the correction image, The pixel coordinate value is used as a reference to establish a standard coordinate system, and the reference pixel coordinates corresponding to the standard coordinate system of each certain 曰 mirror in the mirror field are determined;
2)确定当前对应定日镜的像素坐标  2) Determine the pixel coordinates of the current heliostat
选择对应于所述时间间隔的时间点, 用第一成像单元拍摄当前镜场图像, 对当前镜场图像进行相对于所述标准坐标系的当前定日镜像素位置的计算, 确 定对应定日镜的当前像素坐标;  Selecting a time point corresponding to the time interval, capturing a current mirror image with the first imaging unit, calculating a current mirror image with respect to a current heliostat pixel position of the standard coordinate system, and determining a corresponding heliostat Current pixel coordinates;
3)判别误差  3) Discriminant error
将定日镜的当前像素坐标与对应基准像素坐标比较, 如两像素坐标误差在 设定范围内, 对应定日镜不需调整, 如超过设定范围, 对应定日镜需调整。  The current pixel coordinates of the heliostat are compared with the corresponding reference pixel coordinates. If the two-pixel coordinate error is within the set range, the corresponding heliostat does not need to be adjusted. If the setting range is exceeded, the corresponding heliostat needs to be adjusted.
本发明在太阳能热发电系统中设置主要由镜头、 相机或摄像机及计算机组 成的成像单元, 根据镜头、 照相机或摄像机拍摄的图像, 通过计算机对该图像 进行分析计算, 从中确定太阳虚像位置, 由此来检测定日镜镜面是否反射阳光 到吸热器。 本发明中将镜头置于吸热器的中心区域, 该镜头具有合适的广角度, 能对整个镜场成像, 这样构成了本发明的第一技术方案; 为更好地保护置于吸 热器中心区域的镜头, 在吸热器周围一圈设置若干镜头。 位于吸热器的中心区 域的第一镜头一般用于对镜场中定日镜初始位置调整; 位于吸热器周围一圈的 第二镜头一般用于太阳能热发电系统工作时对定日镜位置的监控, 这样构成本 发明第二技术方案。 第一技术方案为基础应用方案; 第二技术方案是扩展应用 方案。  The invention provides an imaging unit mainly composed of a lens, a camera or a camera and a computer in a solar thermal power generation system, and analyzes and calculates the image according to an image taken by a lens, a camera or a camera, and determines a position of the sun virtual image from the solar thermal power generation system. To detect if the mirror of the heliostat reflects sunlight to the heat sink. In the present invention, the lens is placed in a central region of the heat absorber, and the lens has a suitable wide angle to image the entire mirror field, thus constituting the first technical solution of the present invention; In the lens of the center area, several lenses are placed around the heat absorber. The first lens located in the central area of the heat sink is generally used to adjust the initial position of the heliostat in the mirror field; the second lens located around the heat absorber is generally used for the position of the heliostat when the solar thermal power system is working. The monitoring thus constitutes the second technical solution of the present invention. The first technical solution is a basic application solution; the second technical solution is an extended application solution.
本发明中的定日镜其水平和垂直面的转动轴心线均通过镜面中心 Q, 参见 图 1,定日镜 M可绕过镜面中心点 Q的 Z轴做水平面(图中的 QXQY平面)上 的转动, 在同时还可绕过镜面中心点 Q的 BB轴 (当定日镜绕 Z轴转动到一定 角度, BB轴平行于 X轴) 做垂直面(图中的 QYQZ平面) 上的转动。 因此无 论定日镜如何转动其镜面中心 Q的位置保持不动, 镜头与镜面中心 Q的距离 L 为定值。 定日镜镜面在随太阳移动时所产生的转动是由以水平和垂直两方向转 动用而产生。 在第一镜头 E与定日镜镜面中心 Q的连线 EQ与太阳的虚像 Q'的 连线 EQ' 的夹角分解为水平方向的方位角 Θ和垂直方向的仰角 Φ。 本发明巧妙 利用光学和几何学原理使镜面角度的调整简便而精确,只要水平方向转动 β = Θ / 2 , 垂直方向转动 δ = φ / 2, 太阳虚像就可以与定日镜 Μ的中心位置重合。 下面以水平面即图 1中的 QXQY面为例 (垂直面原理相同)进行说明。 In the heliostat of the present invention, the horizontal axes of the horizontal and vertical planes pass through the mirror center Q. Referring to Fig. 1, the heliostat M can bypass the Z axis of the mirror center point Q as a horizontal plane (QXQY plane in the figure). On The rotation can also bypass the BB axis of the mirror center point Q (when the heliostat rotates around the Z axis to a certain angle, and the BB axis is parallel to the X axis) to make a vertical plane (QYQZ plane in the figure). Therefore, no matter how the heliostat rotates its mirror center Q, the distance L between the lens and the mirror center Q is constant. The rotation of the heliostat mirror as it moves with the sun is produced by rotation in both horizontal and vertical directions. The angle between the line EQ of the first lens E and the center Q of the heliostat mirror Q and the line EQ' of the virtual image Q' of the sun is decomposed into an azimuth angle 水平 in the horizontal direction and an elevation angle Φ in the vertical direction. The invention cleverly utilizes the principles of optics and geometry to make the adjustment of the mirror angle simple and precise. As long as the horizontal direction rotates β = Θ / 2 and the vertical direction rotates δ = φ / 2, the solar virtual image can coincide with the center position of the heliostat crucible. . In the following, the water level, that is, the QXQY surface in Fig. 1 will be described as an example (the principle of the vertical plane is the same).
对照图 2, S S2是太阳移动中的两个位置, 从81移动到 S2,
Figure imgf000009_0001
S2'分 别是 Si、 S2在定日镜 M中的虚像, M'是定日镜的延长线, A,、 A2是太阳在81 和 S2位置在定日镜中的对应成像位置与镜面的交点。 当第一镜头 E和定日镜 M 不动, 太阳从 移动到 S2时: 第一镜头 E观察到太阳的虚像从 移动到 S2', 反映到定日镜上就是从^移动到 A2, 其长度为 d。设第一镜头 E与第 k面定日 镜 M的镜面中心 Q的距离为 Lk, EQ与镜面的水平方向的夹角为 Ω, 且镜头 Ε 至 Α,、八2的距离基本相同(其差距可忽略不计), 基本等同于 L, 方位角 Θ对应 的弧长基本等同于对应的弦长, 则有:
Referring to Figure 2, SS 2 is the two positions in the sun movement, moving from 8 1 to S 2 .
Figure imgf000009_0001
S 2 'is the virtual image of Si, S 2 in heliostat M, M' is the extension of heliostat, A, A 2 is the corresponding imaging of the sun in the heliostat at 8 1 and S 2 positions. The intersection of the position and the mirror. When the first lens E and the heliostat M do not move, the sun moves from the time to the S 2 : the first lens E observes that the virtual image of the sun moves from the movement to the S 2 ', which is reflected on the heliostat from the movement of the ^ to the A 2 , its length is d. The distance between the first lens E and the mirror center Q of the k-th surface heliostat M is L k , the angle between the EQ and the horizontal direction of the mirror surface is Ω, and the distances from the lens Ε to Α, and the 八2 are substantially the same (the The difference is negligible), basically equivalent to L, and the arc length corresponding to the azimuth angle is basically equal to the corresponding chord length, then:
d X sin Q =L X θ ( 1 )  d X sin Q =L X θ ( 1 )
若将定日镜 、 Α2设定在定日镜的宽度的两端(定日镜的宽度 D是与定日镜转 动轴线垂直的镜面边长), 则能够在成像单元中通过定日镜看到太阳的最大变化 的方位角 0 max, 则有: If the heliostat and Α 2 are set at both ends of the width of the heliostat (the width D of the heliostat is the length of the mirror side perpendicular to the axis of rotation of the heliostat), the heliostat can be passed through the imaging unit. Seeing the azimuth of the sun's maximum change, 0 max, there are:
D X sin Q = L X Θ max (2)  D X sin Q = L X Θ max (2)
因此, 如果成像单元观察到的太阳的虚像在定日镜的中心, 则太阳方位角的变 化在 ±0.5 Θ max弧度范围内, 成像单元都可通过定日镜看到太阳的虚像, 并可 以准确判断方位角的变化量。 Therefore, if the virtual image of the sun observed by the imaging unit is at the center of the heliostat, the change in the azimuth of the sun In the range of ±0.5 Θ max radians, the imaging unit can see the virtual image of the sun through the heliostat, and can accurately determine the amount of change in the azimuth.
当第一镜头 E不动, 定日镜转动角度 P时, 请参见图 3, 图中, E是成像单 元的镜头, M1是定日镜(仍然假设是平面镜) 的初始位置, M2是定日镜以 Q 为圆心旋转角度为 P的位置, S S2是太阳没有移动但因定日镜移动分别在 E 上成像时的平行光线, S,,、 S2'分别是 S2在定日镜 ]^1和]^2位置的虚像, A„ 八2是太阳在 、 S2两位置上在定日镜镜面上形成的对应虚像位置。 当第一 镜头 E不动, 定日镜从]^到]^2转动, 第一镜头 E观察到太阳的虚像从 Si '移 动到 S2', 反映到定日镜上就是从^移动到 A2。 和 S2A2是平行线, 四边形 CA2QA,的内角和为 2π, 则有: When the first lens E does not move and the heliostat rotates at an angle P, refer to FIG. 3. In the figure, E is the lens of the imaging unit, and M 1 is the initial position of the heliostat (still assumed to be the plane mirror), and M 2 is The heliostat rotates at a position where P is the center of rotation, and SS 2 is the parallel light when the sun does not move but is imaged on E by heliostat movement. S, , and S 2 ' are S 2 in the day Mirror] ^ 1 and ] ^ 2 position of the virtual image, A „ 八2 is the position of the corresponding virtual image formed on the mirror surface of the sun at the position of S 2 . When the first lens E does not move, heliostat from] ^到]^ 2 Rotate, the first lens E observes that the virtual image of the sun moves from Si ' to S 2 ', which is reflected from the movement of ^ to A 2 on the heliostat. And S 2 A 2 is a parallel line, quadrilateral CA 2 QA, the inner angle sum is 2π, then there are:
(π-2α ) +Ζγ+Ζ (π- β ) +Ζα = 2π  (π-2α ) +Ζγ+Ζ (π- β ) +Ζα = 2π
γ = β +α  γ = β + α
三角形 EA2C的内角和为 π, 则有: The inner angle sum of the triangle EA 2 C is π, then:
θ + (π-2γ ) +2α =π θ + (π-2γ ) +2α = π
则可得: θ =2β (3) 从(1)、 (2) 式可得: Then you can get: θ = 2β (3) From (1), (2) can be obtained:
dX sinQ = LX23 (4) D X sinQ= L X2Praax (5) 这样, 在保持成像单元成像单元和太阳不动 (瞬时)、 定日镜旋转的情况下, 定 日镜旋转角度为 P时, 成像单元成像单元观察到的太阳的虚像角度变化为 Θ, 两者之间的关系为 θ =2β。 如果从第一镜头的成像中能够观察到对应定日镜中 的太阳虚像, 那么当太阳方位角移动为 Θ时, 定日镜相应旋转 Θ /2, 能够保证 定曰镜的镜面对着吸热器的相同位置, 即定日镜能反射太阳光线, 在吸热器上 形成对应光斑。 dX sinQ = LX23 (4) DX sinQ= L X2Praax (5) In this way, the imaging unit is rotated when the heliostat rotation angle is P while the imaging unit imaging unit and the sun are stationary (instantaneous) and the heliostat is rotated. The change in the virtual image angle of the sun observed by the imaging unit is Θ, and the relationship between the two is θ = 2β. If the solar virtual image in the corresponding heliostat can be observed from the imaging of the first lens, when the azimuth of the sun moves to Θ, the heliostat rotates correspondingly Θ /2, which ensures that the mirror of the fixed 面对 mirror faces the suction The same position of the heat, that is, the heliostat can reflect the sun's rays, on the heat sink A corresponding spot is formed.
从图 2中可以看出, 假定 A1为定日镜的旋转中心, 即 A1的位置不随着定 日镜的转动在成像单元中移动。当太阳的位置在32时,虚像为 S2',此时太阳的 水平角与准确角度差 Θ可由公式(1)计算出: As can be seen from Fig. 2, it is assumed that A1 is the center of rotation of the heliostat, i.e., the position of A1 does not move in the imaging unit with the rotation of the heliostat. When the position of the sun is 3 2 , the virtual image is S 2 ', and the difference between the horizontal angle of the sun and the exact angle can be calculated by formula (1):
θ= d XsinQ /L (6) d X sin Ω是定日镜 M在 EQ的垂直面上的投影,也就是成像单元的像素个 数与该定日镜宽度 (水平方向)的像素个数的比例;如图 4。图中看出, d = A!A2 , d X sinQ = A!A2 X sinQ =Α1Α2', 当成像单元 Ε与定日镜的连线与 Μ垂直 时, 定日镜的宽度 D在成像单元中为水平 ND个像素, 如图 4a; 当定日镜水平 偏转角度为 Ω 时,定日镜在成像单元中成为 M',宽度为 D X sinQ,如图 4b 。 A!A2在成像图像中为 ^ΑΛ 对应的像素量为 nD个, d X sinQ : nD = D : ND, 从而得到: θ= d XsinQ /L (6) d X sin Ω is the projection of the heliostat M on the vertical plane of the EQ, that is, the number of pixels of the imaging unit and the number of pixels of the heliostat width (horizontal direction) Proportion; as shown in Figure 4. It can be seen that d = A!A 2 , d X sinQ = A!A 2 X sinQ =Α 1 Α 2 ', when the connection between the imaging unit 定 and the heliostat is perpendicular to the Μ, the width of the heliostat D is horizontal N D pixels in the imaging unit, as shown in Fig. 4a; when the heliostat horizontal deflection angle is Ω, the heliostat becomes M' in the imaging unit and the width is DX sinQ, as shown in Fig. 4b. A!A 2 is ^ ΑΛ in the imaged image corresponding to the number of pixels n D , d X sinQ : n D = D : N D , which gives:
d X sinQ =D X nD/ND (7) 带入公式(6), 得到 d X sinQ =DX n D /N D (7) Bring into equation (6), get
Θ = D XnD/ND/L (8) D、 ND、 L是常数, nD是当时的太阳的虚像的中心到定日镜中心的水平像 素的个数, 利用上述公式, 可以准确计算水平方向的偏差角度。 当 Θ达到最大 偏差值时, 需要定日镜水平旋转 β=θ/2角度, Θ是可以设定的。 Θ = D Xn D / N D / L (8) D, N D , L are constants, n D is the number of horizontal pixels from the center of the virtual image of the sun to the center of the heliostat, which can be accurately determined by the above formula Calculate the deviation angle in the horizontal direction. When the maximum deviation value is reached, the heliostat horizontal rotation β=θ/2 angle is required, and Θ can be set.
同理, 垂直方向的仰角偏差公式:  Similarly, the elevation deviation formula in the vertical direction:
Φ =H XnH/NH/L (9) H、 NH、 L是常数, iiH是当时的太阳的虚像的中心到定日镜中心的垂直像 素的个数。 利用上述公式, 可以准确计算垂直方向的偏差角度。 当 Φ达到最大 偏差值时, 需要定日镜垂直旋转 δ =φ 12 角度, Φ是可以设定的。 由此, 如果从置于吸热器中心区域的第一镜头中观察不到对应定日镜中的 太阳虚像, 那么定日镜转动的角度 β或 δ不足设定的范围, 使定日镜上的光线 一定没有反射阳光到第一镜头上, 也就没有反射阳光到吸热器上。 如果从置于 吸热器外围四周的第二镜头中观察不到对应定日镜中的太阳虚像, 那么定日镜 一定反射阳光到第一镜头上, 一旦某面定日镜的反射阳光刚好偏离了吸热器, 对应的第二镜头就可以观察到太阳的虚像, 此时电脑可以判断是哪一面定日镜 偏离、 偏离的方向、 角度等, 可通知传动机构校正。 由于第二镜头安装在吸热 器外围, 不影响吸热器吸收热量, 而且吸热器外围的温度比中心低, 冷却系统 和寿命都会有较好的保证。 Φ = H Xn H / N H / L (9) H, N H , L are constants, and ii H is the number of vertical pixels from the center of the virtual image of the sun to the center of the heliostat. With the above formula, the deviation angle in the vertical direction can be accurately calculated. When Φ reaches the maximum deviation value, the heliostat vertical rotation δ = φ 12 angle is required, and Φ can be set. Therefore, if the solar virtual image in the corresponding heliostat is not observed from the first lens placed in the central region of the heat absorber, the angle β or δ of the heliostat rotation is less than the set range, so that the heliostat is on the heliostat. The light must not reflect the sunlight onto the first lens, and there is no reflection of sunlight onto the heat sink. If the solar virtual image in the corresponding heliostat is not observed from the second lens placed around the periphery of the heat absorber, the heliostat must reflect the sunlight onto the first lens, and the reflected sunlight of the surface of the heliostat just deviates. With the heat sink, the corresponding second lens can observe the virtual image of the sun. At this time, the computer can determine which side of the heliostat is deviated, the direction of deviation, the angle, etc., and can notify the transmission mechanism to correct. Since the second lens is mounted on the periphery of the heat absorber, it does not affect the heat absorption of the heat sink, and the temperature around the heat absorber is lower than the center, and the cooling system and life are better guaranteed.
按照上面的原理, 本发明通过设置的第一成像单元能得到如下有益效果: 只要方位角和仰角在一定的误差范围内, 通过对第一镜头中成像的分析可以自 动校正; 在工程技术和工艺允许的情况下, 甚至可以同时校正镜场中所有的定 日镜,自动化程度高,提高了定日镜偏差角度检测的准确性和检测工作的效率。 此外, 通过可控激光发射器或高亮度发光装置, 可以消除镜头移动造成的偏差。 设置第二成像单元可以减少第一成像单元的使用, 增加接收光的效率, 同时增 加检测偏转角度的范围。  According to the above principle, the first imaging unit provided by the present invention can obtain the following beneficial effects: as long as the azimuth and elevation angles are within a certain error range, the analysis of the imaging in the first lens can be automatically corrected; in engineering techniques and processes When allowed, all the heliostats in the mirror field can be corrected at the same time, and the degree of automation is high, which improves the accuracy of the hemispherical deviation angle detection and the efficiency of the detection work. In addition, deviations caused by lens movement can be eliminated by a controllable laser emitter or a high-intensity illumination device. Setting the second imaging unit can reduce the use of the first imaging unit, increase the efficiency of receiving light, and increase the range in which the deflection angle is detected.
附图说明 DRAWINGS
图 1 是第一镜头分别至定日镜中心及太阳虚像中心形成两连线的夹角在水 平和垂直两坐标平面上的投影示意图。  Figure 1 is a schematic diagram of the projection of the angle between the first lens and the center of the heliostat and the center of the solar virtual image on the horizontal and vertical coordinate planes.
图 2是太阳移动定日镜无转动时的成像原理示意图。  Figure 2 is a schematic diagram of the imaging principle when the sun moves the heliostat without rotation.
图 3是太阳无移动定日镜转动时的成像原理示意图。  Figure 3 is a schematic diagram of the imaging principle when the sun does not move the heliostat.
图 4是图 1中的一太阳虚像位置在定日镜中心位置时的成像原理示意图。 图 5是本发明只有第一成像单元的实施例结构示意图。 图 6是可旋转的第一镜头或多个第一镜头的放置位置的结构示意图。 4 is a schematic view showing the principle of imaging of a solar virtual image position in the center position of the heliostat in FIG. Fig. 5 is a schematic view showing the structure of an embodiment of the first imaging unit of the present invention. Fig. 6 is a structural schematic view showing a position where a first lens or a plurality of first lenses are rotatable.
图 7是第一成像单元建立定日镜像素的基准坐标所示拍摄的镜场的图像。 图 8是镜场中所有定日镜都处于正确位置时, 第一成像单元所拍摄的图像 示意图。  Fig. 7 is an image of a mirror field taken as indicated by the reference coordinates of the first imaging unit establishing the heliostat pixels. Figure 8 is a schematic diagram of an image taken by the first imaging unit when all of the heliostats in the mirror field are in the correct position.
图 9是第一成像单元所拍摄的图像中有定日镜镜面处于不正确位置时的示 意图。  Fig. 9 is a view showing a case where the heliostat mirror is in an incorrect position in the image taken by the first imaging unit.
图 10是对应图 8所示镜场状况第二成像所拍摄的图像示意图。  Fig. 10 is a view showing an image taken corresponding to the second imaging of the mirror field condition shown in Fig. 8.
图 11是本发明同时具有第一、 第二成像单元的实施例结构示意图。  Figure 11 is a schematic view showing the structure of an embodiment of the present invention having both the first and second image forming units.
具体实施方式 detailed description
下面结合附图及实施例对本发明及其优点作进一步说明。 仍然以水平的方 位角为例, 垂直的仰角原理相同。  The invention and its advantages are further described below in conjunction with the drawings and embodiments. Still taking the horizontal azimuth angle as an example, the vertical elevation angle principle is the same.
实施例 1 Example 1
对照图 5, 塔式太阳能热发电系统包括塔1\ 吸热器 H和定日镜^。 第一 成像单元 E固定于塔 T上吸热器 H中心区域, 若干面定日镜按设定方式排列在 塔下, 形成镜场(有可能塔 T的四周固定数个吸热器11, 镜场分环布于塔下四 周, 每一吸热器对应于镜场中的一部分, 本实施例以一个吸热器及所对应的镜 场为例)。 第 k面定日镜 Mk的镜面对着吸热器 H, 通过反射太阳的光线, 在吸 热器上形成一光斑。 该面定日镜 Mk位置被固定, 并能做的水平和垂直转动, 其 在水平面转动的轴心线 Z和垂直面转动的轴心线 X均通过镜面中心 Qk。通过镜 面中心 Qk的镜面宽度为 Dk, 高度为 Hk, k为 1、 2、 3〜m的自然数。 在太阳位 置的变化时, 镜面每隔设定的时间间隔做相应的转动, 使之能跟随太阳位置的 变化。 在上述的塔式太阳能热发电系统中设置第一成像单元, 该成像单元主要 由一个第一镜头 E和与第一镜头连接的相机或摄像机以及与所述相机或摄像机 连接的计算机组成, 第一镜头 E设置在对应于吸热器 H的中心区域, 与镜场中 第 k面定日镜镜面中心 Qk的距离为定值 Lk,, 形成的中心连线 EQk与定日镜平 面的夹角分解为水平面上的方位角为 ek和在垂直面上的仰角为 ci) k。如果镜场相 对于第一镜头 E的分辨率来说太大,可采用可旋转的第一镜头或多个第一镜头。 则第一镜头置于以吸热器中心为中心的圆周 U个可定位的位置上, 镜场被划分 为对应 U个区域, 每一区域与第一镜头在所述圆周上一定位位置相对应。 例如 图 6所示, 第一镜头 E在以吸热器中心 0H的圆周 CH有 4个可定位的位置, 镜 场被划分为对应 4个区域, 每一区域与第一镜头在圆周上一个定位位置相对应。 第一镜头应有足够分辨率、 广角度(可以观察整个镜场)、 伸縮镜头(类似炉膛 火焰探头), 可调接收光强度, 且耐高温和耐高亮度, 能对整个镜场成像, 即可 以在镜头 E里观察到镜场内的所有定日镜。 通过该图像来确定定日镜镜面位置 是否正确的步骤如下: Referring to Figure 5, the tower solar thermal power generation system includes a tower 1 \ a heat sink H and a heliostat ^. The first imaging unit E is fixed on the central region of the heat sink H on the tower T, and a plurality of surface heliostats are arranged under the tower in a set manner to form a mirror field (it is possible to fix a plurality of heat absorbers 11 around the tower T, the mirror field The sub-rings are arranged around the lower part of the tower, and each of the heat absorbers corresponds to a part of the mirror field. In this embodiment, a heat absorber and a corresponding mirror field are taken as an example. The mirror of the k-th surface heliostat M k faces the heat absorber H, and forms a spot on the heat sink by reflecting the light of the sun. The surface heliostat M k is fixed in position and can be rotated horizontally and vertically. The axis Z of the horizontal rotation and the axis X of the vertical rotation pass through the mirror center Q k . The mirror width Q k through the mirror center is D k , the height is H k , and k is a natural number of 1, 2, 3 to m. When the position of the sun changes, the mirror rotates at regular intervals to follow the change in the position of the sun. Providing a first imaging unit in the above-described tower solar thermal power generation system, the imaging unit mainly comprising a first lens E and a camera or camera connected to the first lens and the camera or the camera Connected to the computer, the first lens E is disposed in a central region corresponding to the heat absorber H, and the distance from the mirror surface center Q k of the k-th surface of the mirror field is a fixed value L k , and the center line EQ is formed. The angle between k and the plane of the heliostat is decomposed into an azimuth angle e k on the horizontal plane and ci) k on the vertical plane. If the mirror field is too large relative to the resolution of the first lens E, a rotatable first lens or a plurality of first lenses may be employed. The first lens is placed on a U-position that is centered around the center of the heat absorber, and the mirror field is divided into corresponding U regions, each of which corresponds to a positioning position of the first lens on the circumference. . For example as shown in FIG. 6, the first lens in a circumferential E C H 0 H of the center of the heat sink 4 can be positioned with a location corresponding to the mirror field is divided into four regions, each region on the circumference of the first lens A positioning position corresponds. The first lens should have sufficient resolution, wide angle (can observe the entire mirror field), telescopic lens (similar to the furnace flame probe), adjustable receiving light intensity, high temperature resistance and high brightness, and can image the entire mirror field, ie All heliostats in the mirror field can be observed in lens E. The steps to determine if the mirror position of the heliostat is correct by this image are as follows:
首先用第一成像单元对镜场拍摄, 镜场中所有的定日镜全部垂直于 EQk, 形成镜场的初始图像,参见图 7,通过该初始图像确立每一面定日镜中心的像素 坐标值作为该定日镜的中心坐标, 并计算镜面中心通过镜面宽度 Dk和高度 Hk 的线性方向上所包含的像素量 NDk和 ϊ½, 通过像素量及像素量单位长度, 从而 获得宽度 Dk和高度 ¾与像素量 NDk和 Ν 的对应值。进行上述初始拍摄选择晨 曦或日落或有云层遮挡住太阳的非阳光直射的天气, 避免调整镜场时可能有阳 光反射到第一成像单元上。 在塔式太阳能热发电系统工作时, 在每一设定的时 间间隔所述第一成像单元对镜场进行一次拍摄,形成图像如图 8,计算机对拍摄 的图像进行如下分析: 把照片中每面定日镜中有太阳虚像的区域(有强烈的反 射, 可以在照片上显示) 的中心计算出来, 如果虚像的中心 Qk' 与定日镜的中 心 Qk重合, 那么可以判定定日镜的方位角和仰角准确; 如果有定日镜其虚像的 中心与定日镜的中心一定像数的差距,如图 9中所示的第 k34位置上的定日镜, 根据公式: First, the first imaging unit is used to shoot the mirror field. All the heliostats in the mirror field are perpendicular to EQ k to form the initial image of the mirror field. Referring to FIG. 7, the pixel coordinates of the center of each heliostat are established by the initial image. The value is taken as the center coordinate of the heliostat, and the pixel amount N Dk and ϊ1⁄2 included in the linear direction of the mirror center through the mirror width D k and the height H k are calculated, and the pixel length and the pixel unit length are obtained, thereby obtaining the width D. The corresponding value of k and height 3⁄4 and the amount of pixels N Dk and Ν. Perform the above initial shooting to select the morning sun or sunset or the non-direct sunlight that shields the sun from the clouds. Avoid adjusting the mirror field to reflect sunlight on the first imaging unit. When the tower solar thermal power generation system is working, the first imaging unit performs a shooting on the mirror field at each set time interval to form an image as shown in FIG. 8. The computer analyzes the captured image as follows: The surface of the heliostat with a virtual image of the sun (with strong reflections, which can be displayed on the photo) is calculated. If the center Q k ' of the virtual image coincides with the center Q k of the heliostat, then the heliostat can be determined. Azimuth and elevation are accurate; if there is a heliostat with its virtual image The center of the center and the heliostat must have a certain number of gaps, as shown in Figure 9, at the k34 position of the heliostat, according to the formula:
θ34 = D34 X nD34/ ND34 L34 和 Φ 34 = Η34 XnH34/ NH34/ L34 β 34= θ34 / 2 和 δ 34= φ 34 / 2 θ 3 4 = D34 X n D34 / N D3 4 L 34 and Φ 34 = Η 3 4 Xn H34 / N H3 4/ L 3 4 β 34 = θ 34 / 2 and δ 34 = φ 34 / 2
可得 k34镜子需要方位角调整 β 34、 仰角调整 δ 34。 实施例 2 The k34 mirror requires azimuth adjustment β 34 and elevation angle adjustment δ 34 . Example 2
本实施例是鉴于上述实施例中的第一镜头 Ε在吸热器的中心区域, 会影响 到吸热效果, 而且温度很高, 影响镜头的寿命。 因此本实施例在上述实施例的 基础上再设置若干个第二镜头、 第二相机或若干个第二摄像机。 将若干个第二 镜头 F分布在吸热器外围一圈, 形成 "篱笆"状, 请参见图 11, 两个第二镜头 F之间的距离小于最小反射光斑的宽度或高度。所以,本实施例的成像单元实际 包含两个部分, 由第一成像单元和由若干第二镜头、 第二相机或若干个第二摄 像机及计算机组成的第二成像单元。  In this embodiment, in view of the fact that the first lens in the above embodiment is in the central region of the heat absorber, the heat absorption effect is affected, and the temperature is high, which affects the life of the lens. Therefore, in this embodiment, a plurality of second lenses, second cameras or a plurality of second cameras are further provided on the basis of the above embodiments. A plurality of second lenses F are distributed around the periphery of the heat absorber to form a "fence" shape. Referring to Figure 11, the distance between the two second lenses F is smaller than the width or height of the minimum reflected spot. Therefore, the imaging unit of the present embodiment actually includes two portions, a first imaging unit and a second imaging unit composed of a plurality of second lenses, a second camera or a plurality of second cameras and a computer.
初始时分别用第一成像单元和第二成像单元进行对对应镜场拍摄, 分别形 成镜场的对应初始图像, 通过该初始图像分别建立对应于第一、 第二成像单元 的每一面定日镜中心的像素坐标值, 作为该定日镜的中心坐标, 获得镜场中心 坐标集合。 并计算所述镜面宽度 D和高度 Η的线性方向上所包含的像素量 ND 和 NH。 然后用第一成像单元对对应镜场进行调整, 确认所有的定日镜方位角和 视场角都正确时, 第一镜头离开吸热器所述中心位置, 例如退缩到吸热器的下 面。 在塔式太阳能热发电系统工作时第二成像单元担当起对镜场中的定日镜的 监控任务。 在每一设定的时间间隔第二成像单元进行一次拍摄, 形成当前图像。 第二成像单元中所有的第二镜头 F所拍摄的图像都只能拍摄到对应镜场中的定 日镜 M, 如图 7所示的图像, 而拍摄不到定日镜 M中的太阳的虚像, 一旦某面 定日镜的反射光刚好偏离了吸热器, 第二成像单元中的某个镜头 F就可以观察 到太阳的虚像, 所拍摄的图像中就有太阳的虚像, 如图 10中的第 k23、 k45定 曰镜, 此时电脑可以判断是哪一个定日镜出现偏离。 Initially, the first imaging unit and the second imaging unit respectively perform corresponding mirror image capturing, respectively forming corresponding initial images of the mirror field, and each of the heliostats corresponding to the first and second imaging units is respectively established by the initial image. The center pixel coordinate value, as the center coordinate of the heliostat, obtains the mirror field center coordinate set. And the pixel amounts N D and N H included in the linear direction of the mirror width D and the height Η are calculated. Then, the corresponding mirror field is adjusted by the first imaging unit to confirm that all the heliostat azimuths and the field of view are correct, the first lens leaves the center position of the heat sink, for example, retracts to the underside of the heat sink. The second imaging unit acts as a monitoring task for the heliostats in the mirror field while the tower solar thermal power system is operating. The second imaging unit performs a photographing at each set time interval to form a current image. All the images captured by the second lens F in the second imaging unit can only be captured in the corresponding mirror field. The mirror M, as shown in Fig. 7, does not capture the virtual image of the sun in the heliostat M. Once the reflected light of the heliostat is just off the heat sink, one of the second imaging units The lens F can observe the virtual image of the sun. In the captured image, there is a virtual image of the sun. As shown in Figure 10, the k23 and k45 are fixed mirrors. At this point, the computer can determine which heliostat is deviated.
一旦有云层遮挡住太阳, 可以通过太阳角公式和角度传感器自动跟踪, 如 果超过一定时间, 第一成像单元可重新移动到吸热器中心, 直到出现太阳并且 校正镜场中的所有定日镜。  Once the cloud blocks the sun, it can be automatically tracked by the sun angle formula and the angle sensor. If it exceeds a certain time, the first imaging unit can be moved back to the center of the heat sink until the sun appears and all heliostats in the mirror field are corrected.
图 10中 k34、 k45未必出现在同一个第二成像单元的同一个镜头上, 所以 需要对整个第二成像单元的所有拍摄的图像进行处理。图 10和图 9是同一时刻 第二成像单元中的对应镜头和第一成像单元拍摄的照片。 实施例 3  In Fig. 10, k34 and k45 do not necessarily appear on the same lens of the same second imaging unit, so all captured images of the entire second imaging unit need to be processed. 10 and 9 are photographs taken by the corresponding lens and the first imaging unit in the second imaging unit at the same time. Example 3
本实施例是针对上述实施例中的所述成像单元若相对镜场有移动时, 因移 动产生误差的校正方法。  The present embodiment is directed to a correction method for generating an error due to movement when the imaging unit in the above embodiment moves relative to the mirror field.
第一成像单元的移动会带来成像的偏差, 即两次移动后形成的影像有所差 别, 会直接影响到校正的精度; 大风或者机械原因, 也会造成第一、 第二成像 单元的影像误差。 解决这个问题可以用如下办法: 在镜场中某些没有定日镜的 固定位置安装不在一条直线上的不少于 3个可控激光发射器(或高亮度发光装 置), 其发射的光束能够覆盖第一、 第二成像单元, 且可控激光发射器或高亮度 发光装置的发光频率与拍摄时间间隔对应。 用第一成像单元和第二成像单元拍 摄包含可控激光发射器或高亮度发光装置的镜场校正图像, 计算机通过该校正 图像确立可控激光发射器或高亮度发光装置所在位置的像素坐标值。 以该像素 坐标值为基准, 建立标准坐标系, 并确定镜场中每一定日镜中心对应于标准坐 标系的基准像素坐标; 选择对应于所述时间间隔的时间点, 并通过所述第一镜 头形成的成像进行相对于所述坐标系的定日镜像素位置的计算, 确定当前对应 定日镜的像素坐标; 将当前对应定日镜的像素坐标与基准坐标比较: 如像素位 置无差值, 或差值在设定范围内, 对应定日镜不需调整, 如像素位置的差值超 过设定范围, 对应定日镜需调整, 调整按上述实施例 1、 2所述的步骤进行。 这 样可以消除因成像单元移动造成的偏差。 The movement of the first imaging unit causes the deviation of the imaging, that is, the image formed after the two movements is different, which directly affects the accuracy of the correction; the wind or the mechanical cause also causes the images of the first and second imaging units. error. To solve this problem, you can use the following methods: In the fixed field where there is no heliostat in the mirror field, no less than 3 controllable laser emitters (or high-brightness light-emitting devices) that are not in a straight line can be installed. The first and second imaging units are covered, and the illumination frequency of the controllable laser emitter or the high-intensity illumination device corresponds to the photographing time interval. A mirror correction image including a controllable laser emitter or a high-intensity illumination device is captured by the first imaging unit and the second imaging unit, and the computer establishes pixel coordinate values of the position of the controllable laser emitter or the high-intensity illumination device through the corrected image . Based on the pixel coordinate value, a standard coordinate system is established, and it is determined that each center of the mirror field corresponds to the standard sitting a reference pixel coordinate of the calibration system; selecting a time point corresponding to the time interval, and performing imaging calculation of the heliostat pixel position relative to the coordinate system by imaging formed by the first lens, determining the current corresponding heliostat Pixel coordinates; compare the pixel coordinates of the current heliostat with the reference coordinates: If there is no difference in the pixel position, or the difference is within the set range, the corresponding heliostat does not need to be adjusted, such as the difference in pixel position exceeds the setting The range is determined, and the heliostats need to be adjusted. The adjustment is performed according to the steps described in the above embodiments 1 and 2. This eliminates the deviation caused by the movement of the imaging unit.
实施例 1、 2中的平面定日镜完全可用抛物面镜代替。 实际上, 理想设计中 的定日镜 M不是平面镜, 而应是设计成抛物面镜。 如果制造一个焦点正好落在 成像单元的镜头上的理想抛物面镜, 在太阳、 抛物面镜和成像单元成一条直线 时, 阳光反射到成像单元位置的光斑是一个点。 成像单元中观察到或拍摄到的 图像中, 其整个抛物镜面上正好是均匀分布的阳光。 实际上, 抛物面镜在成像 单元所拍摄的图像上的光斑是一个比定日镜小的不规则的亮块, 成像单元中观 察到抛物面镜整个镜面上不均匀分布阳光。  The planar heliostats of Embodiments 1 and 2 can be completely replaced with parabolic mirrors. In fact, the heliostat M in an ideal design is not a plane mirror, but rather a parabolic mirror. If an ideal parabolic mirror is formed that is focused on the lens of the imaging unit, the spot reflected by the sunlight to the position of the imaging unit is a point when the sun, the parabolic mirror, and the imaging unit are in a straight line. In the image observed or captured in the imaging unit, the entire parabolic mirror surface is exactly the evenly distributed sunlight. In fact, the spot of the parabolic mirror on the image taken by the imaging unit is an irregular bright block smaller than the heliostat, and the imaging unit observes uneven distribution of sunlight on the entire mirror surface of the parabolic mirror.

Claims

权利要求书 Claim
1. 塔式太阳能热发电系统的定日镜角度偏差检测方法, 所述塔式太阳能热 发电系统包括固定于所述塔上的吸热器和能在对应固定位置转动的若干面定曰 镜, 所述若干面定日镜按设定方式排列, 形成镜场, 每一定日镜在正确位置时 将太阳光反射到吸热器上, 其特征在于在所述塔式太阳能热发电系统中设置第 一成像单元, 所述第一成像单元包括一个第一镜头 E和与第一镜头连接的相机 或摄像机以及与所述相机或摄像机连接的计算机, 所述第一镜头设置在吸热器 的中心区域, 与镜场中第 k面定日镜镜面中心 Qk的距离为定值 Lk, 形成第一中 心连线 EQk, 定日镜在水平面和垂直面转动的轴心线均通过镜面中心 Qk, 通过 所述镜面中心 Qk的镜面宽度为 Dk, 高度为 Hk, 所述第一成像单元能拍摄所对 应的整个镜场的图像, 通过该图像来确定定日镜镜面位置是否正确的步骤如下: A method for detecting a heliostat angle deviation of a tower solar thermal power generation system, the tower solar thermal power generation system comprising a heat absorber fixed to the tower and a plurality of surface-defending mirrors rotatable at corresponding fixed positions, The plurality of surface heliostats are arranged in a set manner to form a mirror field, and each of the heliostats reflects sunlight to the heat absorber at the correct position, and is characterized in that the tower solar thermal power generation system is provided with a An imaging unit, the first imaging unit including a first lens E and a camera or camera connected to the first lens and a computer connected to the camera or the camera, the first lens being disposed in a central area of the heat sink And the distance from the mirror center Q k of the k- th surface of the mirror field is a constant value L k , forming a first center line EQk, and the axis line of the heliostat rotating in the horizontal plane and the vertical plane passes through the mirror center Qk, The mirror image width Qk of the mirror center Qk is Dk, and the height is Hk . The first imaging unit can capture an image of the corresponding entire mirror field, and the image is used to determine whether the mirror position of the heliostat is positive. The exact steps are as follows:
1 ) 建立镜场中心坐标  1) Establish the coordinates of the mirror center
调节镜场中所有的定日镜, 使其镜面垂直于所述第一中心连线 EQk后, 用 第一成像单元对所对应的镜场拍摄, 形成镜场的初始图像, 通过该初始图像确 立每一面定日镜中心的像素坐标值作为该定日镜的中心坐标, 并计算所述镜面 宽度 1\和高度 Hk的线性方向上所包含的像素量 NDk和 Ν ; Adjusting all the heliostats in the mirror field so that the mirror surface is perpendicular to the first center line EQ k , and then photographing the corresponding mirror field with the first imaging unit to form an initial image of the mirror field, through the initial image Establishing pixel coordinate values of the center of each heliostat as the center coordinates of the heliostat, and calculating the pixel amounts N Dk and Ν contained in the linear direction of the mirror width 1\ and the height H k ;
2) 系统工作时找太阳虚像的中心坐标  2) Find the center coordinates of the sun virtual image when the system works
塔式太阳能热发电系统工作时, 在每一设定的时间间隔所述第一成像单元 对对应镜场进行一次拍摄, 形成镜场的当前图像, 所述计算机找出该当前图像 中的每一面定日镜所对应的太阳虚像中心 Q'的像素坐标值, 作为太阳虚像中心 坐标, 并计算每一面定日镜的太阳虚像中心 Q'至镜头 Ε的第二中心连线 EQ'与 第一中心连线 EQ所夹角在水平面上形成的方位角 Θ和垂直面上形成的仰角 Φ, 第 k面定日镜的太阳虚像中心为 Qk', 至镜头 E的第二中心连线 EQk'与所述第 一中心连线 EQk形成方位角 8k和仰角 t) k ; When the tower solar thermal power generation system is in operation, the first imaging unit performs a shooting on the corresponding mirror field at each set time interval to form a current image of the mirror field, and the computer finds each side of the current image. The pixel coordinate value of the center Q' of the solar virtual image corresponding to the heliostat, as the central coordinate of the solar virtual image, and calculate the center of the solar virtual image Q' of each heliostat to the second center line EQ' of the lens 与 and the first center The azimuth angle formed by the angle of the connecting EQ on the horizontal plane and the elevation angle Φ formed on the vertical plane, the center of the solar virtual image of the k-th surface heliostat is Q k ', and the second center line EQ k ' of the lens E With the said A central connection EQk forms an azimuth angle of 8 k and an elevation angle t) k;
3)判别定日镜镜面角度是否正确  3) Determine whether the mirror angle of the heliostat is correct
在所述时间间隔比较每一面定日镜的太阳虚像中心坐标与对应定日镜中心 坐标:  The center coordinates of the solar virtual image of each of the heliostats and the coordinates of the center of the corresponding heliostat are compared at the time interval:
如所述两中心的差距在设定的范围内, 对应定日镜镜面角度正确, 不需调 整, 如超过设定范围, 对应定日镜镜面角度不正确, 需调整。  If the difference between the two centers is within the set range, the mirror angle of the fixed heliostat is correct, and no adjustment is needed. If the setting range is exceeded, the mirror angle of the corresponding heliostat is incorrect and needs to be adjusted.
2. 塔式太阳能热发电系统的定日镜角度偏差检测方法, 所述塔式太阳能热 发电系统包括固定于所述塔上的吸热器和能在对应固定位置转动的若干面定日 镜, 所述若干面定日镜按设定方式排列, 形成定日镜场, 每一定日镜在正确位 置时将太阳光反射到吸热器上, 其特征在于在所述塔式太阳能热发电系统中设 置第一成像单元和第二成像单元, 所述第一成像单元包括一个第一镜头 E和与 第一镜头连接的相机或摄像机及与所述相机或摄像机连接的计算机; 所述第二 成像单元包括若干个第二镜头、 与对应第二镜头连接的若干相机或摄像机以及 与所述相机或摄像机连接的计算机, 所述第一镜头设置在吸热器的中心区域, 与镜场中的第 k面定日镜中心 Qk的距离为定值 Lk, 形成的第一中心连线 Ε¾, 定日镜在水平面和垂直面转动的轴心线均通过镜面中心 Qk, 所述第一成像单元 头能拍摄整个镜场的图像; 所述若干个第二镜头设置在吸热器外围一圈, 且相 邻的两第二镜头之间的距离小于最小反射光斑的宽度或高度, 通过第一、 第二 成像单元拍摄的图像来确定定日镜镜面位置是否正确的步骤如下- 1 )建立镜场中心坐标 2. A method for detecting a heliostat angular deviation of a tower solar thermal power generation system, the tower solar thermal power generation system comprising a heat absorber fixed to the tower and a plurality of surface heliostats rotatable at corresponding fixed positions, The plurality of heliostats are arranged in a set manner to form a heliostat field, and each of the heliostats reflects sunlight to the heat absorber at the correct position, characterized in that the tower solar thermal power generation system is Providing a first imaging unit including a first lens E and a camera or camera connected to the first lens and a computer connected to the camera or the camera; the second imaging unit a plurality of second lenses, a plurality of cameras or cameras connected to the corresponding second lens, and a computer connected to the camera or the camera, the first lens being disposed in a central region of the heat sink and the kth in the mirror field from the surface of the heliostat centers Q k is a constant value L k, the first center connection formed Ε¾, heliostats in the horizontal and vertical axis of rotation of each mirror by center Q k, The first imaging unit head can capture an image of the entire mirror field; the plurality of second lenses are disposed on the periphery of the heat absorber, and the distance between the adjacent two second lenses is smaller than the width or height of the minimum reflected spot The steps of determining whether the mirror position of the heliostat is correct by the images captured by the first and second imaging units are as follows - 1) establishing the center coordinates of the mirror field
调节镜场中所有的定日镜, 使其镜面垂直于所述第一中心连线 EQk后, 分 别用第一、 第二成像单元对对应镜场拍摄, 形成镜场对应的初始图像, 通过该 初始图像分别建立对应于第一、 第二成像单元的每一面定日镜中心的像素坐标 值作为该定日镜的中心坐标, 并计算所述镜面宽度 D和高度 H的线性方向上所 包含的像素量 ND和 NH; Adjusting all the heliostats in the mirror field so that the mirror surface is perpendicular to the first center line EQ k , respectively, using the first and second imaging units respectively to shoot the corresponding mirror field, forming an initial image corresponding to the mirror field, The initial image respectively establishes pixel coordinates corresponding to the center of each heliostat of the first and second imaging units The value is taken as the center coordinate of the heliostat, and the pixel quantities N D and N H included in the linear direction of the mirror width D and the height H are calculated ;
2)系统工作时找太阳虚像  2) Find the sun image when the system works
所述塔式太阳能热发电系统工作时, 在每一设定的时间间隔, 所述第二成 像单元对对应镜场进行一次拍摄, 形成镜场的当前图像, 所述计算机寻找该图 像中的每一面定日镜中有否太阳虚像;  When the tower solar thermal power generation system is in operation, the second imaging unit performs a shooting on the corresponding mirror field at each set time interval to form a current image of the mirror field, and the computer searches for each of the images. Whether there is a sun image in a heliostat;
3)判别定日镜镜面角度是否正确  3) Determine whether the mirror angle of the heliostat is correct
在所述时间间隔判别当前图像中的每一面定日镜中有否太阳虚像, 如无太阳虚 像, 镜场中全部定日镜镜面角度正确, 定日镜不需调整, 如有太阳虚像, 对应 的定日镜需调整, 并计算镜头 E至对应定日镜的太阳虚像中心 Q' 的第二中心 连线 EQ' 与第一中心连线 EQ所夹角在水平面上形成的方位角 Θ和垂直面上形 成的仰角 Φ,第 k面定日镜的太阳虚像中心为 Qk' , 至镜头 E的第二中心连线 EQk'与所述第一中心连线 EQk形成方位角 6K和仰角 (i) kAt the time interval, it is determined whether there is a solar virtual image in each of the heliostats in the current image. If there is no solar virtual image, the mirror angle of all the heliostats in the mirror field is correct, and the heliostat does not need to be adjusted, if there is a sun virtual image, corresponding The heliostat needs to be adjusted, and the azimuth angle and the vertical angle formed by the lens E to the second central line EQ of the center of the solar image of the corresponding heliostat and the first central line EQ are formed on the horizontal plane. The elevation angle Φ formed on the surface, the center of the solar virtual image of the k-th surface heliostat is Q k ', and the second center line EQ k ' to the lens E forms an azimuth angle of 6 K with the first center line EQ k and Elevation angle (i) k .
3. 根据权利要求 1或 2所述的塔式太阳能热发电系统的定日镜角度偏差检 测方法, 其特征在于所述第 k面定日镜在镜面的水平转动角度 3 k和垂直转动角 度6 11后太阳虚像的中心 Qk' 与镜子的中心 Qk重合, 设上述转动前的定日镜中 心 Qk至虚像中心 Qk' 在水平方向上的间距为 LDK个像素量、在垂直方向上的间 距为 个像素量, 则第 k面定日镜水平转动角度 3 k、 垂直转动角度 S k、 第一 镜头至第 k面定日镜中心的距离 Lk、 第 k面定日镜的方位角 8K、 第 k面定日镜 的宽度 1\、第 k面定日镜的高度 、第 k面定日镜宽度 D线性方向上所包含的 像素量 NDk、第 k面定日镜高度 H线性方向上所包含的像素量 Ν 、定日镜中心 Qk至虚像中心 Qk' 在水平方向上间距的像素量 LDK、定日镜中心 Qk至虚像中心 Qk' 在垂直方向上间距的像素量 LHR存在如下关系- 6k=Dk XnDk/NDk/Lk 或 *k=Hk XnHk/NHk/Lk The heliostat angle deviation detecting method of the tower type solar thermal power generation system according to claim 1 or 2, characterized in that the k-th surface heliostat has a horizontal rotation angle of 3 k and a vertical rotation angle of 6 at the mirror surface. After 11 , the center Q k ' of the solar virtual image coincides with the center Q k of the mirror, and the distance from the center of the heliostat Q k before the rotation to the center of the virtual image Q k ' in the horizontal direction is L DK pixels in the vertical direction. The upper pitch is a pixel amount, and the k-th surface heliostat horizontal rotation angle 3 k , the vertical rotation angle S k , the first lens to k-th surface heliostat center distance L k , the k-th surface heliostat Azimuth angle 8 K , width of k-th surface heliostat 1\, height of k-th surface heliostat, width of k-th surface heliostat width D in the linear direction N Dk , k-th surface heliostat The amount of pixels Ν in the linear direction of height H, the center of the mirror Q k to the center of the virtual image Q k 'the amount of pixels L DK in the horizontal direction, the center of the heliostat Q k to the center of the virtual image Q k ' in the vertical direction The pixel amount LHR of the upper interval has the following relationship - 6 k =D k Xn Dk /N Dk /L k or * k =H k XnHk/NHk/L k
Pk=6k/2 或 Sk=(J)k/2。 P k = 6 k /2 or S k = (J) k /2.
4. 根据权利要求 1或 2所述的塔式太阳能热发电系统的定日镜角度偏差检 测方法, 其特征在于, 所述第一镜头设置在吸热器的中心区域的一固定位置, 或设置在吸热器中心区域的 U个定位位置上,所述镜场划分为对应的 U个区域, 使第一镜头在每一定位位置上都有一镜场区域与之对应。  The method for detecting a heliostat angle deviation of a tower solar thermal power generation system according to claim 1 or 2, wherein the first lens is disposed at a fixed position in a central region of the heat absorber, or is set In the U positioning positions of the central region of the heat absorber, the mirror field is divided into corresponding U regions, so that the first lens has a mirror field corresponding to each of the positioning positions.
5. 根据权利要求 1或 2所述的塔式太阳能热发电系统的定日镜角度偏差检 测方法, 其特征在于所述定日镜为平面镜或抛物面镜。  The heliostat angle deviation detecting method of a tower solar thermal power generation system according to claim 1 or 2, wherein the heliostat is a plane mirror or a parabolic mirror.
6. 如权利要求 1或 2或 3或 4所述塔式太阳能热发电系统中的第一成像单 移动误差的检测方法,其特征在于在所述镜场中的无定日镜的位置处至少设置 3 个不在一条直线上的可控激光发射器或高亮度发光装置, 所述发射器或高亮度 发光装置发射的光束的能在第一、 第二成像单元上成像, 且可控激光发射器或 高亮度发光装置的发光频率与所述时间间隔对应, 对第一成像单元移动误差的 校正步骤如下:  6. The method for detecting a first imaging single movement error in a tower solar thermal power generation system according to claim 1 or 2 or 3 or 4, wherein at least the position of the amorphous heliostat in the mirror field is at least Providing 3 controllable laser emitters or high-intensity illumination devices not in a straight line, the light beams emitted by the emitters or high-intensity illumination devices can be imaged on the first and second imaging units, and the controllable laser emitters Or the illumination frequency of the high-intensity illumination device corresponds to the time interval, and the steps of correcting the movement error of the first imaging unit are as follows:
1) 建立定日镜像素的基准坐标  1) Establish the reference coordinates of the heliostat pixels
用第一成像单元或第二成像单元拍摄包含可控激光发射器或高亮度发光装 置的镜场校正图像, 通过该校正图像确定可控激光发射器或高亮度发光装置的 像素坐标值, 以该像素坐标值为基准建立标准坐标系, 并确定镜场中每一定日 镜的对应于标准坐标系的基准像素坐标;  A mirror correction image including a controllable laser emitter or a high-intensity illumination device is captured by the first imaging unit or the second imaging unit, and the pixel coordinate value of the controllable laser emitter or the high-intensity illumination device is determined by the correction image, A pixel coordinate value is used as a reference to establish a standard coordinate system, and a reference pixel coordinate corresponding to the standard coordinate system of each certain day mirror in the mirror field is determined;
2)确定当前对应定日镜的像素坐标  2) Determine the pixel coordinates of the current heliostat
选择对应于所述时间间隔的时间点, 用第一成像单元拍摄当前镜场图像, 对当前镜场图像进行相对于所标准述坐标系的当前定日镜像素位置的计算, 确 定对应定日镜的当前像素坐标; 3) 判别误差 Selecting a time point corresponding to the time interval, capturing a current mirror image with the first imaging unit, calculating a current mirror image with respect to a current heliostat pixel position of the standard coordinate system, and determining a corresponding heliostat Current pixel coordinates; 3) Discriminant error
将定日镜的当前像素坐标与对应基准像素坐标比较, 如两像素坐标误差在 设定范围内, 对应定日镜不需调整, 如超过设定范围, 对应定日镜需调整。  The current pixel coordinates of the heliostat are compared with the corresponding reference pixel coordinates. If the two-pixel coordinate error is within the set range, the corresponding heliostat does not need to be adjusted. If the setting range is exceeded, the corresponding heliostat needs to be adjusted.
PCT/CN2012/001049 2011-10-18 2012-08-06 Heliostat angle deviation detection method for solar tower thermal power system WO2013056507A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110315387.6A CN102506810B (en) 2011-10-18 2011-10-18 Heliostat angle deviation detection method for tower type solar thermal power generation system
CN201110315387.6 2011-10-18

Publications (1)

Publication Number Publication Date
WO2013056507A1 true WO2013056507A1 (en) 2013-04-25

Family

ID=46218918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001049 WO2013056507A1 (en) 2011-10-18 2012-08-06 Heliostat angle deviation detection method for solar tower thermal power system

Country Status (2)

Country Link
CN (1) CN102506810B (en)
WO (1) WO2013056507A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3311079A4 (en) * 2015-06-19 2019-01-16 Solarreserve Technology, LLC Heliostat characterization using starlight
CN110609575A (en) * 2019-09-24 2019-12-24 浙江中光新能源科技有限公司 Heliostat system for combining heliostat and photovoltaic panel of tower type photo-thermal power generation

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506810B (en) * 2011-10-18 2014-11-12 邵文远 Heliostat angle deviation detection method for tower type solar thermal power generation system
CN103019261B (en) * 2012-12-27 2015-06-24 东方电气集团东方锅炉股份有限公司 Method for calibrating and detecting azimuth angle of double-shaft tracking heliostat
CN103345261B (en) * 2013-06-18 2015-10-21 华北电力大学 Heliostat flare deviation correction method
CN104865975B (en) * 2015-04-30 2018-05-08 包头市艾派克自动化科技有限公司 The solar tracking control method in large solar power station
AU2016208290B2 (en) * 2015-08-05 2022-03-17 Commonwealth Scientific And Industrial Research Organisation Closed loop control system for heliostats
CN105202785B (en) * 2015-09-15 2018-03-30 深圳市爱能森科技有限公司 A kind of method and device for controlling heat collector hot spot
MA42559B1 (en) * 2015-10-16 2020-09-30 Abengoa Solar New Tech Calibration of heliostats of a thermoelectric solar power plant
CN105334873A (en) * 2015-11-30 2016-02-17 华东交通大学 Method for detecting solar heliostat rotation precision
CN106996648B (en) * 2017-04-12 2019-03-29 东南大学 A kind of method at determining each circle mirror of Fresnel heliostat inclination angle
CN106940571B (en) * 2017-04-14 2023-06-06 主力能源有限公司 Tower heliostat condensation deviation sensor
CN107238376B (en) * 2017-05-12 2019-06-14 罗耿 A kind of heliostat attitude transducer and heliostat to automatically follow method
CN109062269A (en) * 2018-08-23 2018-12-21 杨军峰 A kind of heliostat focuses method for correcting error, apparatus and system automatically
CN110118527B (en) * 2019-03-29 2020-07-14 浙江中控太阳能技术有限公司 BCS system precision detection method and device
CN110118642B (en) * 2019-05-09 2021-01-08 浙江中控太阳能技术有限公司 Heliostat precision detection method and system based on cylindrical heat absorption tower target
CN113375632B (en) * 2021-05-20 2022-09-16 浙江可胜技术股份有限公司 Device and method for testing initial installation deviation of heliostat
CN114640791A (en) * 2022-01-27 2022-06-17 浙江大华技术股份有限公司 Lens angle adjusting method and device, computer equipment and camera
CN117093022A (en) * 2023-10-20 2023-11-21 杭州华鼎新能源有限公司 Heliostat aiming system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303270A (en) * 2008-05-26 2008-11-12 中国科学院电工研究所 Surface shape calibrating method of spherical surface sun heliostat
US20110155119A1 (en) * 2007-03-30 2011-06-30 Kevin Hickerson Heliostat with integrated image-based tracking controller
CN102175066A (en) * 2011-02-14 2011-09-07 吴建华 Heliostat tracking control device for tower-type solar thermal power station
CN102506810A (en) * 2011-10-18 2012-06-20 邵文远 Heliostat angle deviation detection method for tower type solar thermal power generation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7207327B2 (en) * 2004-06-15 2007-04-24 United Technologies Corporation Feedback control method for a heliostat
US20110120448A1 (en) * 2009-11-25 2011-05-26 Google Inc. Heliostat control scheme using cameras
CN201983486U (en) * 2011-02-18 2011-09-21 南京科远自动化集团股份有限公司 Tower type heliostat tracking and controlling device of solar heat generating station

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110155119A1 (en) * 2007-03-30 2011-06-30 Kevin Hickerson Heliostat with integrated image-based tracking controller
CN101303270A (en) * 2008-05-26 2008-11-12 中国科学院电工研究所 Surface shape calibrating method of spherical surface sun heliostat
CN102175066A (en) * 2011-02-14 2011-09-07 吴建华 Heliostat tracking control device for tower-type solar thermal power station
CN102506810A (en) * 2011-10-18 2012-06-20 邵文远 Heliostat angle deviation detection method for tower type solar thermal power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3311079A4 (en) * 2015-06-19 2019-01-16 Solarreserve Technology, LLC Heliostat characterization using starlight
CN110609575A (en) * 2019-09-24 2019-12-24 浙江中光新能源科技有限公司 Heliostat system for combining heliostat and photovoltaic panel of tower type photo-thermal power generation
CN110609575B (en) * 2019-09-24 2022-06-14 浙江中光新能源科技有限公司 Heliostat system for combining heliostat and photovoltaic panel of tower-type photo-thermal power generation

Also Published As

Publication number Publication date
CN102506810B (en) 2014-11-12
CN102506810A (en) 2012-06-20

Similar Documents

Publication Publication Date Title
WO2013056507A1 (en) Heliostat angle deviation detection method for solar tower thermal power system
US20130021471A1 (en) Reflective Surface Orientating with Multiple View Ports
US20120174909A1 (en) Heliostat Control Scheme Using Cameras
WO2013083053A1 (en) Calibration method and calibration system for heliostat of solar power station
US7994459B2 (en) Camera-based heliostat calibration with artificial light sources
WO2013017097A1 (en) Calibrating device and calibrating method for heliostat
CN106249764B (en) Heliostat angle zero point automatic calibration device and method with sun as reference object
WO2013044850A1 (en) Calibration system and calibration method for heliostat in solar power station
CN102506811B (en) Image detection-based on-line detection and correction method of reflection angle of heliostat
US20120192917A1 (en) Solar tracker mechanism
CN108413987B (en) Heliostat calibration method, device and system
US20110317876A1 (en) Optical Control System for Heliostats
CN109508043B (en) Image-based heliostat secondary reflection pointing correction field system and method
CN106644399A (en) System and method of correcting heliostat deviation by using unmanned aerial vehicle
WO2013017099A1 (en) Calibration device and calibration method for heliostat
CN109557947A (en) A kind of two close cycles tracking and controlling method of tower heliostat
CN106705841B (en) The solar concentrator mirror surface of view-based access control model measurement quantifies focus adjustment method
CN105987671A (en) Portable solar concentrator surface type detection device and method
CN110793494B (en) Method and device for improving initial installation angle precision of heliostat
WO2013044849A1 (en) Heliostat calibration system and calibration method of solar power station
CN107339933B (en) A kind of installation detection method of groove type solar condenser mirror
CN110209205A (en) A kind of heliostat bearing calibration based on mirror surface label
JP2016056965A (en) Heliostat, sunlight collection system, and control method of sunlight collection system
WO2017133516A1 (en) Layout and structure of light condensing reflectors of tower-mounted light condensing system and tracking method therefor
CN205450422U (en) Solar energy condensing lens focusing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842053

Country of ref document: EP

Kind code of ref document: A1