WO2013056404A1 - Cipp拉入法内衬修复的热固化工艺 - Google Patents

Cipp拉入法内衬修复的热固化工艺 Download PDF

Info

Publication number
WO2013056404A1
WO2013056404A1 PCT/CN2011/001891 CN2011001891W WO2013056404A1 WO 2013056404 A1 WO2013056404 A1 WO 2013056404A1 CN 2011001891 W CN2011001891 W CN 2011001891W WO 2013056404 A1 WO2013056404 A1 WO 2013056404A1
Authority
WO
WIPO (PCT)
Prior art keywords
hose
heat
resin
heat source
heating
Prior art date
Application number
PCT/CN2011/001891
Other languages
English (en)
French (fr)
Inventor
宁克远
Original Assignee
Ning Keyuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ning Keyuan filed Critical Ning Keyuan
Publication of WO2013056404A1 publication Critical patent/WO2013056404A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/26Lining or sheathing of internal surfaces
    • B29C63/34Lining or sheathing of internal surfaces using tubular layers or sheathings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/162Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
    • F16L55/165Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/049Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using steam or damp

Definitions

  • the present invention relates to a non-excavation in-situ lining repair of a drainage pipe - a heating method for curing a resin in a CIPP pull-in lining repairing technique, specifically to install a heat source generating device inside a hose, directly or A method of indirectly heating a resin to cure the resin.
  • the CIPP technology for on-site solidification molding mainly includes two installation processes: hose reversal method and hose pull-in method.
  • the hose pull-in repair technology based on glass fiber impregnated resin is an organic-inorganic composite material, which has extremely high tensile strength, flexural strength and elastic modulus, and is made of organic synthetic fibers such as polyester fiber felt. Compared with the hose inversion method, the load can be much higher.
  • the elastic modulus of the hose inversion method specified in the ASTM F1216 standard is 1725 MPa, and the elastic modulus of the hose pull-in method can reach 12,000 MPa, the same pipeline.
  • the thickness of the inner liner of the hose pull-in method during repair is much lower than that of the hose flip method. Therefore, the hose pull-in repairing technology of glass fiber impregnated resin has been widely recognized in the market in recent years.
  • the method of curing the resin in the hose pull-in method for repairing the glass fiber impregnated resin is as follows: ultraviolet (UV) curing process and heat curing process.
  • UV ultraviolet
  • the main difference between the ultraviolet (UV) curing process and all other thermal curing processes is two aspects. One is to ensure the curing of the resin in the formulation of the material.
  • the ultraviolet initiator is added to the formulation, which absorbs the radiant energy and forms the active group. And initiating a chemical reaction (mainly various types of polymerization) containing unsaturated double bonds in the system to form a crosslinked three-dimensional Description
  • the polymer structure of the network structure which has the advantages of short curing time and low temperature curing and other heat curing technologies, is called a new generation green process.
  • the heat-cured resin formulation has an initiator, an accelerator, etc., and when the formulation system is heated to a certain extent, the radical generated by the decomposition of the initiator under the action of the promoter promotes the unsaturated polyester molecule and the crosslinked monomer benzene. Free radical copolymerization occurs between ethylene; another difference is that the curing equipment is an ultraviolet lamp, and the resin can be cured in a short time after absorbing ultraviolet rays. However, the application of photocuring technology is inferior to the heat curing technology.
  • the thickness of the inner liner is relatively thin, generally around 5iran.
  • the microhardness analysis of the photocured sample by Beijing University of Aeronautics and Astronautics shows that for thicker After the sample exceeds 5mm, the phenomenon of reflection, absorption and scattering occurs when the ultraviolet light passes through the resin layer.
  • the limited penetration force leads to a strong weakening of the light in the deep, especially for the glass fiber material itself, which is white and transparent, making the thick parts Not fully cured.
  • ASTM F1216 the wall thickness of the inner liner using the pull-in glass fiber impregnating resin process is more than 5 mm, and some should be more than 15 mm.
  • the inner liner thickness of the UV curing technology often cannot meet the repair requirements. That is, the application range of ultraviolet curing technology is limited. Therefore, the thermal curing process is more suitable for application in the CIPP pull-in lining repair technology.
  • the thermal curing process in domestic and international repair construction mainly includes hot steam curing process, mixed steam curing process, hot air curing process, etc.
  • the common feature is that the heat source is outside the hose, and all belong to the replacement heating process, such as the global implementation.
  • the present invention is directed to providing a method in which a heat source generating device is installed inside a hose to provide heat and to ensure curing of the resin. Except for a small amount of heat absorbed by the formation, there is no other energy loss, which inevitably increases the curing efficiency. And without the pressurized steam boiler, of course, safety will be guaranteed. Summary of the invention
  • the lining material may be a glass fiber-containing hose impregnated with various types of thermosetting resins, and the impregnating resin is heat-cured; the installation process is a pull-in method, and the hose is swelled in The inner wall of the old pipe is air.
  • the inverted lining method and the hydraulic expansion process are not in the scope of application of the present invention; the way of heating to cure the resin may be to directly heat the resin, or to heat the air environment in the hose. Heat the resin.
  • the main process includes the following steps: site survey; pipeline cleaning; pipeline endoscopy; local treatment of drainage pipe; composite fiber hose production; fiber hose impregnated resin mixture; impregnated resin lining hose pull-in positioning ; Inflate to make the hose expand and stick to the inner wall of the old pipe; heat and solidify under constant pressure, and handle the inner end of the liner;
  • Figure 1 is a schematic diagram of the present invention.
  • the first technical problem to be solved by the present invention is to find a suitable heat source generating device.
  • common heat source providers include light heat, electric heat, and chemical heat. Due to the limitation of the use environment, effective electric heating is our main direction, such as electro-optic heat, heating line heating, hot air heater heating, electric heating cable heating, etc.
  • electro-optic heat can include infrared light, ultraviolet light, halogen
  • the light, such as a lamp, can absorb the energy of the object and the temperature rises.
  • the volume of the heat source must be limited, not exceeding the inner diameter of the repaired pipe, and the length is moderate; to be able to operate inside the pipe, it can be automatic or manual control; the heat release is uniform; the heat source equipment must be able to ensure the heating temperature Long-term work; requires heat source heating efficiency, speed, ensure that Description
  • the resin is cured within 2-10 hours to meet operational requirements.
  • an electric heating heater is a device that emits warm air by consuming electric energy, sucks low-temperature air in the hose, and heats the high-temperature heat energy generated by the electric heating element along the specific heat exchange flow path inside the electric heating container to make the heated air The temperature gradually increases. In order to meet the heating requirements, the electric heater must be able to meet the temperature at which the resin is cured within 3-5 hours.
  • Suitable heat source devices as described above may be of the electric heating cable, electrothermal film type.
  • This kind of heating material heating element is mainly composed of carbon, not for heating the air inside the tube, but is attached to the inner membrane of the hose to directly heat the resin, and of course, the temperature of the air inside the tube is improved.
  • He was originally used for the crude oil pipeline.
  • the electric heating is heated, and since it is a sheet-like product (standard thickness: 1.5 mm), it has excellent flexibility and can be completely in close contact with the object to be heated. It is easier to get close to the heating body, and the shape can be changed with the heating design requirements, so that heat can be transferred to any desired place.
  • the applicable heat source device described above may be an electromagnetic induction heat type device, such as a radiation type electromagnetic heating plate which is commonly known as a radiation type. It utilizes the principle of electromagnetic heating magnetic induction and thermal radiation, and sets the panel of the electromagnetic heating device as a non-permeable panel.
  • the magnetic core and the magnetic induction coil disposed in the electromagnetic heating device under the panel form a strong alternating magnetic field.
  • the magnetic field lines inside generate a loop through the panel, and form a plurality of spiral-shaped induced currents in the panel.
  • the energy of the current is directly converted into heat energy through the resistance of the panel, so that the temperature of the panel rises rapidly, and then the panel passes the heat. Radiation heats the air medium.
  • the magnetic core in the electromagnetic heating device under the panel may adopt a magnetic core of a "mountain" type structure to increase the magnetic flux density per unit area.
  • Suitable heat source devices as described above may be microwave heating devices such as microwave ovens, microwave curing machines, and the like.
  • Microwave refers to an electromagnetic wave having a frequency of 0.3 to 300 GHz. The material will be produced under the action of microwave Description
  • microwave radiation curing is to use microwave radiation to generate heat, which directly raises the temperature of the resin to cause a curing reaction instead of heating the air inside the hose.
  • the microwave is an internal heating, which has the characteristics of fast heating speed, uniform temperature hooking, no hysteresis effect, and the like, so that the curing speed can be accelerated.
  • the mechanism by which microwaves act on chemical reactions is very complicated.
  • the reactant molecules absorb microwave energy, which increases the molecular motion speed, resulting in disordered molecular motion, resulting in an increase in entropy.
  • microwaves on polar molecules The effect, forcing it to move in accordance with the electromagnetic field action, leads to a decrease in entropy. Therefore, the effect of microwaves on chemical reactions cannot be described solely by microwave pyrogenic effects.
  • the organic reaction under microwaves changes the reaction kinetics and reduces the activation energy of the reaction.
  • Suitable heat source devices as described above may be of the type of light energy generation, such as infrared light, ultraviolet light, far infrared light, and the like. The wavelength of the infrared ray is 0.
  • the molecules of unsaturated polyesters can also change the rotational energy of molecules after they take infrared light energy.
  • the vibration spectrum has a function of widening vibration and rotation, and can expand the amplitude in the middle of the equilibrium position, thereby aggravating the vibration inside. Because the activity of electrons and the vibration of molecules are at extremely high speeds, this kind of activity keeps the vibration of the crystal lattice and the bond group from colliding with each other. This change in activity state is like two fast-moving objects that accelerate friction and heat up, so they heat up quickly.
  • the infrared radiation heats the article, it is based on the location where the infrared radiation can penetrate, and the temperature is higher than the appearance.
  • the heat transfer form of the infrared lamp is radiation heat transfer, which transfers energy by electromagnetic waves.
  • the infrared heater we choose can be a rod heater with the heating rod as the axis and the radiation direction is 360 degree omnidirectional radiation.
  • the infrared light, the ultraviolet light, the far infrared light and the like used in the invention play the dual role of heating the air in the hose and directly heating the resin.
  • a secondary technical problem to be solved by the present invention is how the heat source generating equipment is installed in the hose during construction.
  • the heat source equipment can be installed into the hose at any time before and after the hose is pulled into the old tube. It should be noted that the heat source equipment is already in place before the hose is pulled into the old tube. Make sure that the hose is not pulled into the operation and the connection part is controlled. When the hose is pulled into the old pipe and the heat source equipment is installed in place, it needs to be installed at the bottom of the well. The focus is on the blind plugging. Designed and processed to ensure quick installation of heat source equipment.
  • Figure 2 shows the part of the blind plug panel design that can be quickly assembled and disassembled.
  • a key technical problem to be solved by the present invention is how the heat source equipment operates in the hose for uniform heating.
  • the heat source unit should be installed on a trolley that can move the wheel (or can be in various forms such as track drive) to ensure that the heat source can move along the pipe; then give the car a power system, which can be done in the pipe when the hose is manufactured.
  • the traction rope is embedded, one end of the traction rope is connected with the trolley of the heat source device, and the other end is connected to the hoist of the shaft well through the tail blind blocking panel.
  • the hoist can be hand-cranked or electric stepless speed regulation.
  • the car with the heat source unit can also be fully automatic and can be operated remotely on the ground.
  • the vehicle heat source generating device is shown in Figure 3.
  • the key technical problem to be solved by the present invention is how to ensure that the pressure is substantially constant within the hose. Because the heat source device must have a control system and a power system, it must pass through the blind block to connect with the outside world, and because the heat source device car is moving, the interface part must leak, although we can easily ensure that the pipe air pressure is basically constant, but A large amount of air leakage is still not possible, because this will cause a temperature drop that is not good for curing.
  • the effect of the invention is the use of a method of heat-curing the resin directly or indirectly in the interior of the hose by the heat source, thereby improving the energy utilization rate, reducing the energy loss, and of course, greatly increasing the heating and curing speed;
  • Boiler pressure vessel at the construction site will be further protected by construction safety.
  • the impact on municipal traffic will be further reduced.
  • the invention improves on the CIPP hose pull-in curing method, and maintains all the technical advantages of the original glass fiber impregnated resin hose pulling process, that is, it can achieve 100% without digging the ground;
  • the characteristics of the hose can repair circular, arched, square and other special-shaped pipes;
  • the inner lining surface is smooth and does not affect the flow rate;
  • the tough cross-linked body formed after curing, as an organic-inorganic composite product, the chemical bond is quite stable, and the service life can be reached. More than 50 years and so on.
  • FIG 1 Schematic diagram of the process of the present invention
  • Figure 2 Schematic diagram of a blind plate that can be quickly disassembled
  • FIG. 3 Schematic diagram of the vehicle heat source generator
  • the pipeline is cleaned first, and after the cleaning quality is passed, the operation of pulling in the fiberglass hose material is carried out, and then the heating and resin curing steps to be carried out by the present invention are carried out.
  • This process is a curing process of a large number of resins. It is necessary to ensure that the glass fiber resin material can be closely adhered to the original pipe, and at the same time, it is ensured that the original pipe is not damaged.
  • the pressure is strictly controlled during the curing stage, and the diameter, thickness, length and environment of the material are required. Temperature and other factors directly affect the temperature and time control of the material during the curing process, and the temperature and time control scheme is established to complete the curing process smoothly.
  • the heat source generator trolley Before the hose is pulled in, the heat source generator trolley has been installed in the front blind plug. Care should be taken when pulling in the fiberglass hose material. Do not damage the heat source device. After the pull-in operation is completed, turn on the air compressor to make it soft. The tube is inflated until it swells against the inner wall of the old tube. After the pressure is constant, start operating the controller for heating. The pressure inside the tube and the temperature indication at both ends are detected at any time. After the heating is started, the resin begins to solidify. It can be found that there is a temperature rising rapidly. This is the process of the resin in the concentrated reaction exothermic, continue to heat, cut off the power supply and stop heating after one hour.
  • Example 2 After the operation of pulling in the glass fiber hose material was completed, the air compressor was turned on to inflate the hose until it swelled on the inner wall of the old pipe. After the pressure is constant, quickly open the front blind plug panel, push the heat source device into the hose, quickly connect the cable and control cable, re-close the front blind plug, continue to inflate the constant pressure, and start operating the controller for heating. The pressure inside the tube and the temperature indication at both ends are detected at any time. After the heating is started, the resin begins to solidify. It can be found that there is a temperature rising rapidly. This is the reaction of the resin in the concentrated reaction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

本发明涉及一种排水管道非开挖原位内衬修复---CIPP拉入法内衬修复技术中使树脂固化的加热方法,具体为把热源发生装置安装在软管内部,直接或间接给树脂加热使树脂固化的一类方法。国内外的CIPP修复施工中热固化工艺主要有循环水蒸汽固化工艺、循环混合蒸气固化工艺、循环热空气固化工艺等,其共同特点是热源都在软管外面,都属于循环加热工艺,如德国Saertex公司采用的是循环水蒸汽固化工艺,美国Inliner公司和天津振津工程集团公司采用的是循环"水蒸汽与空气"混合气的固化工艺,天津华赛管道技术有限公司新开发的循环热空气固化工艺等,热量发生装置如加热锅炉等都在地面上,在恒定压力下,热气体从一端进入软管,从另一端排出,靠顶替给软管加温最终使树脂固化,其最大的弱点是锅炉属于压力容器,施工中必须随时移动,这给施工安全造成很大隐患,有些城市根本就不允许锅炉上路;另一个弱点是能量或热量损失严重,加热时间长,热效率低,为此,本发明致力于提供一类把热源发生装置安装在软管内部,直接或间接给树脂升温并保证树脂固化的方法,除地层吸收的少量热量外,不再有其他的能量损失,因此必然会提高固化效率,而且施工中不再使用带压蒸汽锅炉,当然安全会得到进一步保障。

Description

说 明 书
CIPP拉入法内衬修复的热固化工艺
技术领域:本发明涉及一种排水管道非开挖原位内衬修复一- CIPP拉入法内衬修 复技术中使树脂固化的加热方法, 具体为把热源发生装置安装在软管内部, 直 接或间接给树脂加热使树脂固化的一类方法。
背景技术: 运营数十年的排水管道极易被腐蚀、 产生管身强度下降、 断裂、 错 位及污水渗漏, 待地层逐渐被淘空, 就会出现我们经常会遇到的地面塌陷等市 政事故, 造成巨大的生命、 财产损失。 近四十年来, 在英国 Eric wood工程师 命名的 CIPP (Cured in place pipe)技术的引领下, 全球各地都在采用类似的 非开挖内衬技术对旧管道进行有计划性的修复, 在我国这类修复技术的开发应 用也在蓬勃开展。
现场原位固化成型的 CIPP技术主要有软管翻转法和软管拉入法两种安装工 艺。 由于以玻璃纤维浸渍树脂为主体材料的软管拉入法修复技术属有机无机复 合材料, 具有极高的抗拉、 抗弯强度和弹性模量, 与聚酯纤维毡等有机合成纤 维制成的软管翻转法技术相比较, 所能承受的负载要高很多, 如 ASTMF1216标 准中规定软管翻转法的弹性模量为 1725MPa, 而软管拉入法的弹性模量可达 12000MPa, 同一条管线修复时软管拉入法的内衬层设计厚度要比软管翻转法低 很多。 所以, 近年来玻璃纤维浸渍树脂的软管拉入法修复技术得到了市场广泛 认同。
在玻璃纤维浸渍树脂的软管拉入法修复施工中的树脂固化采用的工法有: 紫外线 (UV) 固化工艺、 加热固化工艺两大类。 其中紫外线 (UV) 固化工艺与 其他所有的热固化工艺的主要区别在于两个方面, 一是材料配方上, 要确保树 脂固化, 配方中要加入紫外线引发剂, 它吸收辐射能后形成活性基团, 进而引 发体系中含不饱和双键发生化学反应 (主要是各类聚合反应), 形成交联的立体 说 明 书
网络结构的高分子聚合物, 它具固化时间短, 可低温固化等加热固化技术不可 比拟的优点, 称为新一代绿色工艺。 而加热固化的树脂配方中有引发剂、 促进 剂等, 当配方体系被加热到一定程度时, 在促进剂的作用下引发剂分解产生的 游离基促使不饱和聚酯分子与交联单体苯乙烯之间所发生游离基型共聚反应; 另一个不同是固化设备为紫外光灯, 树脂吸收了紫外线后就可以短时间固化。 但光固化技术的应用对比加热固化技术的劣势是内衬层厚度比较薄,一般在 5iran 左右, 北京航空航天大学黄达教授等通过测定光固化试样的显微硬度分析表明, 对于较厚的试样, 超过 5mm后因为紫外线通过树脂层时会发生反射、 吸收和散 射等现象, 穿透力有限导致深处的光强大大削弱, 特别对于玻璃纤维材料本身 是白色透明的, 使得厚制件不能充分固化。 而按照 ASTM F1216设计计算采用拉 入法玻璃纤维浸渍树脂工艺的内衬层壁厚很多要超过 5毫米, 有些要达到 15毫 米以上, 紫外光固化技术应用的内衬层壁厚往往不能满足修复要求, 即紫外光 固化技术的应用范围受到限制。所以热固化工艺更适合在 CIPP拉入法内衬修复 技术中应用。
目前, 国内外修复施工中热固化工艺主要有热蒸汽固化工艺、 混合蒸气固 化工艺、 热空气固化工艺等, 其共同特点是热源都在软管外面, 都属于顶替加 热工艺, 如全球都在执行的美国 ASTM F2019-03 规定的蒸汽固化工艺, 德国 Saertex公司采用的是水蒸汽固化工艺,美国 Inliner公司和中国天津振津工程 集团公司采用的是 "水蒸汽与空气"混合气的固化工艺, 天津华赛管道技术有 限公司新开发的热空气固化工艺等, 热量发生装置如加热锅炉等都在地面上, 在恒定压力下, 热气体从一端进入软管, 从另一端排出, 靠顶替给软管加温最 终使树脂固化, 其最大的弱点在于: 锅炉属于压力容器, 施工中必须随时移动, 这对施工安全造成很大隐患, 有些城市根本就不允许锅炉上路施工; 另一个弱 说 明 书
点在于: 软管靠热量顶替逐渐加热内部气体进而加热树脂, 没有形成循环加热 模式, 造成能量或热量损失严重, 加热时间长, 热效率低, 碳排放对环境的破 坏也会很大。 为此, 本发明致力于提供一类热源发生装置安装在软管内部来提 供热量并保证树脂固化的方法, 除地层吸收的少量热量外, 不再有其他的能量 损失, 必然会提高固化效率, 而且没有了带压蒸汽锅炉当然安全会得到保障。 发明内容
首先, 我们要描述的是本发明的使用环境: 内衬材料可以是浸渍各类热固 性树脂的含有玻璃纤维的软管, 浸渍树脂采用热固化配方; 安装工艺是拉入法, 软管胀贴在旧管内壁使用的是空气, 换言之翻转内衬法和水压膨胀工艺不在本 发明的应用范围; 加热使树脂固化的途径可以是给树脂直接加热, 也可以是给 软管里的空气环境加热间接给树脂升温。
主要工艺过程包括有以下步骤: 现场勘测; 管道清理; 管道内窥镜检测; 排水管道管内局部处理; 复合纤维软管制作; 纤维软管浸渍树脂混合物; 已浸 渍树脂的内衬软管拉入定位; 充气使软管膨胀贴在旧管内壁; 恒压下加热固化, 内衬端头处理; 验收通水运行。 图 1是本发明的原理图。
本发明首先要解决的技术问题是找到适用的热源发生设备。 我们知道, 常 用的热源提供者有光变热、 电变热、 化学反应热等。 因为使用环境的限制, 有 效的电变热是我们的主攻方向, 如电光热、 电热线加温、 热风炉加温、 电伴热 带加温等, 其中电光热可以包括红外线灯、 紫外线灯、 卤素灯等靠光照射能使 物体吸收光的能量, 温度升高。
热源的体积要有一定限制, 不能超过所修复管道的内径, 长度适中; 要能 够在管道内运行, 可以是自动的, 也可以是人工控制的; 放热均匀; 热源设备 要能够保证在加热温度下长期工作; 要求热源的加热效率高, 速度快, 确保在 说 明 书
2-10个小时以内使树脂固化达到运行要求。
综合分析, 上文所述之适用的热源设备可以是电热暖风系列。 如电热暖风 机是一种通过消耗电能发出暖风的设备,在软管内吸入低温空气,沿着电加 热容器内部特定换热流道,带走电热元件所产生的高温热能,使被加热空气 温度逐渐升高。为达到升温需要, 电热暖风机功率要能够满足在 3-5小时内 使树脂固化的温度。
上文所述之适用的热源设备可以是电伴热带、 电热膜类型。 这类加热材料 发热体以碳为主要成份, 不是用于加热管内空气, 而是附着在软管内膜上直接 加热树脂, 当然也会对管内空气温度有所提高, 他最初是用于原油管道的电伴 加热, 由于它为薄片状产品 (标准厚度为 1.5mm), 具有很好的柔软性, 可以与 被加热物体完全紧密接触。 更容易贴近加热体, 且形状可随加热的设计要求变 化, 这样, 就能够让热传递到任何所需的地方。 这里我们利用它给树脂加热时 可以通过计算给出排列密度和电功率。 .
上文所述之适用的热源设备可以是电磁感应热类装置, 如可以是我们俗 称的辐射式电磁加热板。 它利用电磁加热磁感应及热辐射的原理, 将电磁加热 装置的面板设置为非透磁的面板, 通过设置在面板下电磁加热装置内的磁芯和 磁感应线圈, 形成强烈的交变磁场, 该磁场内的磁力线, 通过面板产生回路, 并在面板内形成无数个涡旋状感应电流, 该电流的能量直接通过面板的电阻转 化成热能, 使面板的温度迅速升高, 然后, 再由面板通过热辐射对空气介质加 热。 而且, 为了提高热效率, 面板下电磁加热装置内的磁芯可以采用 "山"字 型结构的磁芯, 以提高单位面积的磁通密度。 上文所述之适用的热源设备可以是微波加热类装置, 如我们俗称的微波炉、 微波固化机等。 微波是指频率为 0. 3- 300GHz的电磁波。 材料在微波作用下会产 说 明 书
生升温发生化学反应。 微波辐射能使化学反应在相同的温度升甚至更低的温度 下,产生比常规方法高几倍甚至几十倍的效率。微波辐射可以使用材料温度升 高, 因此, 直观来看, 微波辐射固化的原理就是利用微波辐射产生热量, 直 接使树脂温度升高而发生固化反应,而不是加热软管内的空气。相对于常规 的加热方式, 微波是一种内加热, 具有加热速度快、温度均勾、无滞后效应 等特点, 因此能加快固化速度。 当然, 微波对化学反应发生作用的机理非常 复杂, 一方面使是反应物分子吸收了微波能量, 提高了分子运动速度, 致使 分子运动杂乱无章, 导致熵的增加; 另一方面微波对极性分子的作用, 迫使 其按照电磁场作用方式运动, 导致了熵的减少。 因此, 微波对化学反应的作 用不能仅用微波致热效应来描述的。 总之, 微波作用下的有机反应, 改变了 反应动力学, 减低了反应活化能。 上文所述之适用的热源设备可以是光能生热类型, 如红外光灯、 紫外光灯、 远红外灯等。红外线的波长为 0. 75 u m-1000 u m, 红外线的重要作用是热作用。 不饱和聚酯的分子在汲取红外光能后, 也可使分子的转动能量产生变革。 并且, 振动光谱有一种加宽振动、 转动的作用, 能扩大以平衡位置为中间的振幅, 加 剧其内部的振动。 因为电子的活动和分子的振动是处在极高的速度下, 这种活 动不停地使晶格、 键团的振动在其相互间孕育产生碰撞。 这种活动状态的变革, 犹如两种快速运转的物体加快了摩擦而发热升温, 因此, 其升温速度快。 同时, 红外辐射加热物品时, 是根据红外辐射能穿透的部位, 其温度每每比外貌来得 高一些。 红外线灯的传热形式是辐射传热, 由电磁波传递能量。 在远红外线照射到 被加热的物体时, 一部分射线被反射回来, 一部分被穿透过去。 当发射的远红 说 明 书
外线波长和被加热物体的吸收波长一致时, 被加热的物体吸收远红外线, 这时, 物体内部分子和原子发生 "共振"——产生强烈的振动、 旋转, 而振动和旋转 使物体温度升高, 达到加热目的。 我们选用的红外线加热器可以是棒状加热器, 是以加热棒为轴心, 其辐射方向是 360度全向辐射。 本发明所用之红外光灯、 紫外光灯、 远红外灯等起到加热软管内空气和直接加热树脂的双重作用。
本发明其次要解决的技术问题是热源发生装备怎样在施工时安装在软管 内。 一般来说, 热源装备可以在软管拉入到旧管内就位前后任何时间内安装到 软管内的, 需要注意的是在软管拉入到旧管内就位前热源装备已经就位的要确 保在软管拉入操作时不要损坏设备及控制连接部分; 而软管拉入到旧管内就位 后热源装备再安装到位的, 需要在井底进行安装操作, 那么重点是在捆扎盲堵 的设计和加工, 以确保热源设备的快速安装。 如图 2所示是能满足快速拆装的 盲堵面板设计的部分。
本发明再次要解决的关键技术问题是热源装备怎样在软管内运行以便均勾 加热。 首先, 要把热源装置安装在可以运动带车轮 (或可以是履带传动等多种 形式) 的小车上, 确保热源可以沿管道移动; 然后给小车一个动力系统, 方法 可以是软管制造时在管内预埋牵引绳, 牵引绳的一端与热源装置的小车连接, 另一端穿过尾盲堵面板与窨井口的卷扬机连接, 这个卷扬机可以是手摇的, 也 可以是电动无极调速的。 当然, 这个安装了热源装置的小车也可以是全自动的, 在地面上可以遥控操作的。 车载热源发生装置见图 3示意。
本发明还要解决的关键技术问题是软管内如何保证压力基本恒定。 因为热 源装置必须得有控制系统和动力系统, 一定需要穿过盲堵与外界连接, 而且因 为热源装置小车是运动的, 接口部位一定会漏气, 虽然我们可以很容易保证管 内气压基本恒定, 但大量漏气还是不可以的, 因为这会产生温降对固化不利。 说 明 书
我们的解决方法是采用动密封, 既可允许电缆线的移动, 又可把气体泄漏量降 低到最小。
本发明的效果是通过热源在软管内部直接或间接给树脂加热固化的一类方 法的使用, 提高了能源的利用率, 降低了能量的损耗, 当然会大大提高加热和 固化速度; 而且没有了锅炉这种压力容器在施工现场, 施工安全会得到进一步 保障; 同时现场地面没有了锅炉, 也就少了油箱、 水箱等, 自然对市政交通的 影响也会进一步减低。
本发明是在 CIPP软管拉入固化工法上做了改进,保持了原有玻璃纤维浸渍 树脂软管拉入工艺的所有技术优势, 即可以做到 1 0 0 %不开挖地面; 利用内 衬软管的特性, 可以修复圆形、 拱形、 方形等异形管道; 内衬表面光滑, 不影 响流量; 固化后形成的韧性交联体, 作为有机无机复合产品, 化学键相当稳定, 使用寿命可达到 5 0年以上等。
附图说明:
图 1 : 为本发明工艺原理图
图 2: 可快速拆装的盲板平面示意图
图 3: 车载热源发生装置示意图
图 1〜3中:
1一车载控制系统; 2—控制线缆和电源线;
3—前盲堵; 4一车载热源发生装置;
5—内衬软管; 6—尾盲堵;
7—电动调速卷扬机; 8—堵水气囊;
9一压力计接口; 10—温度计接口;
11一气源接口; 12—控制线和电源线接口; 说 明 书
13—控制线缆; 14一牵引绳;
15—车轮。
具体实施方式
承包方在进入工地开始作业前, 要根据内衬修复工艺要求对待修管道及道 路环境进行现场考察, 需要了解管道所在道路交通状况, 在每日交通流量小的 时间段施工, 以达到对道路交通影响最小; 精确测量各管道相关参数, 确保施 工工艺的顺利实施;根据管道流量变化合理制定堵水和调水方案;进行管道 CCTV 内窥检测, 掌握管道内部的现场资料, 为内衬修复提供参考。
施工中先进行管道清洗, 清洗质量检测合格后进行拉入玻璃纤维软管材料 的作业, 然后进行本发明所要实施的加热、 树脂固化步骤。 此过程是大量树脂 的固化过程, 要保证玻璃纤维树脂材料能够紧密的和原管道贴紧, 同时还要保 证不破坏原管道, 在固化阶段需严格控制压力, 材料的直径、 厚度、 长度、 环 境温度等都直接影响材料在固化过程中的温度和时间的控制, 制定温度和时间 的控制方案, 使固化过程顺利的完成。
实施例 1
在软管拉入前, 热源产生装置小车已经安装在前盲堵内, 在拉入玻璃纤维 软管材料时要精心操作, 不要破坏热源装置, 待拉入作业完成后, 开启空压机 使软管充气膨胀, 直至胀贴在旧管内壁。 压力恒定后, 开始操作控制器进行加 热。 随时检测管内压力和两端温度指示, 在加热后半程树脂开始固化, 可以发 现有一个温度快速上升的区间, 这是树脂在集中反应放热的过程, 继续加热, 一个小时以后切断电源停止加热, 通入冷空气, 打开尾堵放气阀, 使管内空气 以每分钟 1- 3°C的速度降温, 待管内温度降低到 38°C以下后, 进行端口切除等 后续施工作业。 实施例 2 拉入玻璃纤维软管材料的作业完成后, 开启空压机使软管充气膨胀, 直至 胀贴在旧管内壁。 压力恒定后, 快速开启前盲堵面板, 把热源装置小车推入软 管内, 迅速接好电缆和控制线缆, 重新闭合前盲堵, 继续充气恒压后, 开始操 作控制器进行加热。 随时检测管内压力和两端温度指示, 在加热后半程树脂开 始固化, 可以发现有一个温度快速上升的区间, 这是树脂在集中反应放热的过
程, 继续加热, 一个小时以后切断电源停止加热, 通入冷空气, 打开尾堵放气 阀, 使管内空气以每分钟 1- 3°C的速度降温, 待管内温度降低到 38'C以下后,
进行端口切除等后续施工作业。

Claims

权 利 要 求 书
1、一种排水管道非开挖原位内衬修复 -一 CIPP拉入法内衬修复的加热固化方法, 其特征在于这类方法把热源发生装置安装在软管内部, 直接或间接给树脂加热 使树脂固化。
2、 根据权利要求 1所述之加热固化方法, 其特征是: 热固化方法的使用环境为 内衬材料可以是浸渍各类热固性树脂的含有玻璃纤维的软管, 浸渍树脂采用热 固化配方; 安装工艺是拉入法; 软管胀贴在旧管内壁使用的是空气。
3、 根据权利要求 1所述之加热固化方法, 其特征是: 主要工艺过程包括有现场 勘测; 管道清理; 管道内窥镜检测; 排水管道管内局部处理; 复合纤维软管制 作; 纤维软管浸渍树脂混合物; 已浸渍树脂的内衬软管拉入定位; 充气使软管 膨胀贴在旧管内壁; 恒压下加热固化, 内衬端头处理; 验收通水运行。
4、根据权利要求 1所述之热源发生装置,可以是电热暖风系列。如电热暖风机、 电热炉、 电热毯等
5、 根据权利要求 1所述之热源发生装置, 可以是电伴热带、 电热膜类型。
6、 根据权利要求 1所述之热源发生装置, 可以是电磁感应热类装置, 如可以 是我们俗称的辐射式电磁加热板等。
7、 根据权利要求 1所述之热源发生装置, 可以是微波加热类装置, 如我们俗称 的微波炉、 微波固化机等。
8、 根据权利要求 1所述之热源发生装置, 可以是光能生热类型, 如红外光灯、 紫外光灯、 远红外灯等。
9、 根据权利要求 1所述之热源发生装置, 其特征在于: 热源发生装备可以在软 管拉入到旧管内就位前后任何时间内安装到软管内的。
10、 根据权利要求 1 所述之热源发生装置, 其特征在于: 热源发生装备在软管 内是可以前后移动的, 移动方式可以是手动的也可以是自动的。
PCT/CN2011/001891 2011-10-21 2011-11-11 Cipp拉入法内衬修复的热固化工艺 WO2013056404A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110321854 CN102649317A (zh) 2011-10-21 2011-10-21 Cipp拉入法内衬修复的热固化工艺
CN201110321854.6 2011-10-21

Publications (1)

Publication Number Publication Date
WO2013056404A1 true WO2013056404A1 (zh) 2013-04-25

Family

ID=46691509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001891 WO2013056404A1 (zh) 2011-10-21 2011-11-11 Cipp拉入法内衬修复的热固化工艺

Country Status (2)

Country Link
CN (1) CN102649317A (zh)
WO (1) WO2013056404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111906973A (zh) * 2019-05-10 2020-11-10 云南建投安装股份有限公司 大口径衬胶管道整体硫化施工方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106065981A (zh) * 2015-07-31 2016-11-02 舟山市智海技术开发有限公司 市政下水道分叉管修复装置及其施工方法
CN106088293A (zh) * 2016-06-23 2016-11-09 厦门市安越非开挖工程技术有限公司 一种小口径污水管道修复方法
CN107676569B (zh) * 2017-11-13 2019-05-21 张振海 热力管道原位内衬修复的施工方法
CN108423586A (zh) * 2018-03-26 2018-08-21 成都龙之泉科技股份有限公司 一种应用于cipp原位修复技术的下料方法
CN108662349A (zh) * 2018-03-27 2018-10-16 上海潜业市政工程有限公司 一种紫外线光固化修复装置及修复方法
CN108644529B (zh) * 2018-03-27 2021-08-27 上海潜业市政工程有限公司 一种cipp现场固化修复装置及修复方法
CN109332120A (zh) * 2018-10-16 2019-02-15 光山县博正树脂有限公司 管道专用胶烘干装置
CN109680782A (zh) * 2018-12-21 2019-04-26 云南大红山管道有限公司 城市地下水排水管网修复方法
CN109810430B (zh) * 2019-01-28 2021-04-09 江苏爱索新材料科技有限公司 一种利用聚氯乙烯生产热塑成型法管道修复的管材配方
CN109822799B (zh) * 2019-03-21 2024-02-23 天津市水利科学研究院 一种紫外光复合热固化管道修复结构
CN110513564B (zh) * 2019-09-04 2021-08-24 重庆建工第二建设有限公司 一种紫外光固化内衬修复施工方法
CN110735992A (zh) * 2019-10-31 2020-01-31 中铁十八局集团建筑安装工程有限公司 Cipp紫外光固化修复施工方法
CN111536363B (zh) * 2020-05-12 2022-04-01 天津市艺智汇科技发展有限公司 排水管道快速热熔接管内衬修复工艺
CN111677974A (zh) * 2020-05-15 2020-09-18 河南兴兴管道工程技术有限公司 管道非开挖修复方法及修复系统
CN111720657A (zh) * 2020-05-26 2020-09-29 中国地质大学(武汉) 一种fipp管道结构性修复方法
CN113389966B (zh) * 2021-05-26 2022-04-22 中杭水环境治理(浙江)有限公司 一种紫外光固化管道修复工艺
CN114688382A (zh) * 2022-03-31 2022-07-01 中国地质大学(武汉) 一种软衬材料固化进行管道修复的实验装置及方法
CN114658953B (zh) * 2022-03-31 2022-12-13 广州易探科技有限公司 一种紫外光固化管道非开挖修复系统及施工方法
CN114857402B (zh) * 2022-05-28 2024-01-26 浙江景迈环境科技有限公司 一种非开挖式uv固化管道修复设备及其修复工艺
CN115199856A (zh) * 2022-07-22 2022-10-18 安徽嘉业建设集团有限公司 Cipp紫外光固化修复施工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212751A (zh) * 1996-01-11 1999-03-31 尤波诺尔股份有限公司 对地下管道加衬的方法
CN1886617A (zh) * 2003-11-07 2006-12-27 伊纳埃克威生公司 具有内部非渗透层的现场固化内衬的安装及设备
CN101907213A (zh) * 2010-07-23 2010-12-08 管丽环境技术(上海)有限公司 一种内衬管牵拉式地下管道非开挖修复方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212751A (zh) * 1996-01-11 1999-03-31 尤波诺尔股份有限公司 对地下管道加衬的方法
CN1886617A (zh) * 2003-11-07 2006-12-27 伊纳埃克威生公司 具有内部非渗透层的现场固化内衬的安装及设备
CN101907213A (zh) * 2010-07-23 2010-12-08 管丽环境技术(上海)有限公司 一种内衬管牵拉式地下管道非开挖修复方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111906973A (zh) * 2019-05-10 2020-11-10 云南建投安装股份有限公司 大口径衬胶管道整体硫化施工方法

Also Published As

Publication number Publication date
CN102649317A (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
WO2013056404A1 (zh) Cipp拉入法内衬修复的热固化工艺
CA2586577C (en) Installation of cured in place liners with air and flow-through steam to cure
KR101166247B1 (ko) 하이브리드 원단을 이용한 상하수관거 보강보수 튜브 및 이를 이용한 상하수관거 보강보수 공법
CN104633378A (zh) 一种紫外线固化软管内衬修复旧管道的工艺
MXPA06010493A (es) Composiciones de curado dual, metodos para curar las mismas y articulos a partir de ellos.
CN105257947B (zh) 一种大直径管道翻转内衬施工方法
KR100949956B1 (ko) 에어튜브를 이용한 상하수도 노후관 속경화 갱생공법.
KR101699502B1 (ko) 상온 경화성 상하수도 관거 보수보강 튜브 및 이를 이용한 관거 보수보강 방법
CN110512709A (zh) 地下管道非开挖修复方法
EP4045559A1 (en) A resin-composition and method for curing a liner
WO1992020504A1 (en) Ultrasonically cured replacement pipe and method of installation
JP2013223939A (ja) 既設管補修方法
CN205146607U (zh) 一种非开挖管道修复内衬材料的修复设备
KR102067106B1 (ko) 고온 증기 주입용 열경화장치를 이용한 맨홀 보수보강 공법
CN106583167A (zh) 一种非开挖管道修复内衬材料的修复设备及其修复方法
EP2660500A1 (en) Tubular liner for renovating a district heating pipe and a corresponding method of renovating a district heating pipe
JP2024508679A (ja) 中空積層体用移動照射プラットフォームおよび中空積層体の硬化方法
JP2010179525A (ja) 管更生材及び該管更生材を用いた既設管更生工法
JP2003039553A (ja) 光重合性樹脂組成物を含む管ライニング材の管ライニング工法
KR100950056B1 (ko) 배관 보수용 라이너 및 이를 위한 저온 경화성 수지
RU192354U1 (ru) Рукав для ремонта трубопровода
WO2023041156A1 (en) Method for cured-in-pipe rehabilitation of a sewer line or pipe line
JP2002225135A (ja) 管路の更生方法及びそれに用いる更生材、その製造方法
CN217030438U (zh) 一种横向循环蒸汽的供水管道修复装置
EP0707531A1 (en) APPLICATION OF A COATING TO DUCTS AND PASSAGES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/09/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11874448

Country of ref document: EP

Kind code of ref document: A1