WO2013055106A2 - Wlan(wireless local area network)-기반 p2p(peer to peer) 통신을 위한 방법 및 이를 위한 장치 - Google Patents

Wlan(wireless local area network)-기반 p2p(peer to peer) 통신을 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2013055106A2
WO2013055106A2 PCT/KR2012/008220 KR2012008220W WO2013055106A2 WO 2013055106 A2 WO2013055106 A2 WO 2013055106A2 KR 2012008220 W KR2012008220 W KR 2012008220W WO 2013055106 A2 WO2013055106 A2 WO 2013055106A2
Authority
WO
WIPO (PCT)
Prior art keywords
key
data signal
encrypted data
information
sta
Prior art date
Application number
PCT/KR2012/008220
Other languages
English (en)
French (fr)
Other versions
WO2013055106A3 (ko
Inventor
이윤정
임재원
이인선
김봉회
김서욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020147012494A priority Critical patent/KR101958786B1/ko
Priority to US14/351,123 priority patent/US9294278B2/en
Publication of WO2013055106A2 publication Critical patent/WO2013055106A2/ko
Publication of WO2013055106A3 publication Critical patent/WO2013055106A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/12Applying verification of the received information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/033Protecting confidentiality, e.g. by encryption of the user plane, e.g. user's traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0433Key management protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/069Authentication using certificates or pre-shared keys
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/24Key scheduling, i.e. generating round keys or sub-keys for block encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for P2P communication based on a wireless local area network (WLAN). More specifically, the present invention relates to a method for neighbor discovery, data communication, and the like for P2P communication based on WLAN, and an apparatus therefor.
  • WLAN refers to a local area network (LAN) based on wireless communication, such as a wireless fidelity (Wi-Fi), a ZigBee, a licensed band based on a small cell, and the like.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency Division Multiple Access
  • IEEE 802.11a and b use an unlicensed band at 2.4. GHz or 5 GHz, IEEE 802.11b provides a transmission rate of 11 Mbps, and IEEE 802.11a provides a transmission rate of 54 Mbps.
  • IEEE 802.11g applies Orthogonal Frequency Division Multiplexing (OFDM) at 2.4 GHz to provide a transmission rate of 54 Mbps.
  • IEEE 802.11n provides a transmission rate of 300 Mbps by applying multiple input multiple output OFDM (MIMO-OFDM). IEEE 802.11n supports a channel bandwidth of up to 40 MHz, in which case it provides a transmission rate of 600 Mbps.
  • OFDM Orthogonal Frequency Division Multiplexing
  • IEEE 802.11p is a standard for supporting WAVE (Wireless Access in Vehicular Environments). For example, 802.11p provides the improvements needed to support Intelligent Transportation Systems (ITS).
  • IEEE 802.11ai is a standard for supporting fast initial link setup of an IEEE 802.11 station (STA).
  • Wi-Fi P2P technology is installed in portable devices such as TVs, laptops, printers, cameras, and mobile devices, so that users can use contents and services between devices through direct communication between devices without additional equipment such as an access point or router. Provide the foundation. Wi-Fi P2P technology is expected to replace Bluetooth technology in some areas by providing fast transfer speeds.
  • the present invention provides a method and apparatus for efficiently performing P2P communication based on a WLAN. Another object of the present invention is to provide a method and apparatus for efficiently performing a process for authentication / encryption for P2P communication based on WLAN.
  • a method for performing wireless local area network (WLAN) -based P2P communication in a first peer to peer (P2P) device connected to a cellular network receiving one or more key information from a cellular base station, Each key information comprising a key value corresponding to the service identification information; Receiving an encrypted data signal from a second P2P device; Providing, among the one or more key information, the first P2P device performing a process for attempting to decrypt the encrypted data signal using one or more keys corresponding to one or more services of interest. do.
  • WLAN wireless local area network
  • P2P peer to peer
  • a first P2P device connected to a cellular network and configured to perform wireless local area network (WLAN) -based peer to peer (P2P) communication, comprising: a radio frequency (RF) unit; And a processor, wherein the processor receives one or more key information from a cellular base station, wherein each key information includes a key value corresponding to the service identification information, receives an encrypted data signal from a second P2P device, Among the one or more key information, the first P2P device is provided to perform a process for attempting to decrypt the encrypted data signal using one or more keys corresponding to one or more services of interest. do.
  • WLAN wireless local area network
  • P2P peer to peer
  • RF radio frequency
  • the encrypted data signal is received in a state in which there is no information about the second P2P device or information about a group to which the second P2P device belongs.
  • the plurality of key values included in the one or more key information are set equally to the P2P device interested in all or the same P2P service in the cell where the cellular base station provides the service.
  • the header of the encrypted data signal includes at least one of key identification information and service identification information.
  • the encrypted data signal is discarded and the header of the encrypted data signal is the first P2P.
  • a decryption process is performed on the encrypted data signal.
  • the encrypted data signal is discarded in the PHY layer, and the decryption process for the encrypted data signal is performed in a medium access control (MAC) layer.
  • MAC medium access control
  • said one or more key information is updated when a predetermined timer expires.
  • the method further comprises transmitting information requesting an update to said one or more key information to said cellular base station.
  • WLAN-based P2P communication can be efficiently performed in a wireless communication system. Specifically, a process for authentication / encryption for WLAN-based P2P communication can be efficiently performed.
  • FIG. 1A illustrates the structure of a Wireless Local Area Network (WLAN) (eg, IEEE 802.11) system to which the present invention may be applied.
  • WLAN Wireless Local Area Network
  • 1B is a block diagram illustrating exemplary operation of a communication system employing access devices and wireless user devices.
  • WLAN-based P2P eg, Wi-Fi Direct (WFD)
  • WLAN-based P2P eg, Wi-Fi Direct (WFD)
  • 5 through 6 illustrate a WLAN authentication / encryption process.
  • P2P Peer to Peer
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a radio technology such as IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • OFDM may be implemented by a radio technology such as IEEE 802.11.
  • IEEE 802.11 WLAN
  • the inventive concept is not limited thereto.
  • the following description may be supported by standard documents disclosed in at least one of wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents.
  • all terms disclosed in the present document can be described by the above standard document.
  • 1A is a diagram illustrating an exemplary structure of an IEEE 802.11 system to which the present invention can be applied.
  • the IEEE 802.11 architecture may consist of a plurality of components, and by their interaction, a WLAN may be provided that supports transparent STA mobility for higher layers.
  • the Basic Service Set (BSS) may correspond to a basic building block of an IEEE 802.11 LAN.
  • FIG. 1A illustrates the case where two BSSs (BSS1 and BSS2) exist and each BSS includes two STAs (STA1 and STA2 are included in BSS1 and STA3 and STA4 are included in BSS2).
  • the STA means a device that operates according to the Medium Access Control (MAC) / PHY (Physical) specification of IEEE 802.11.
  • the STA includes an access point (AP) STA (simply an AP) and a non-AP (non-AP) STA.
  • AP access point
  • AP access point
  • non-AP non-AP
  • the AP corresponds to a device that provides a network (eg, WLAN) connection to a non-AP STA through an air interface.
  • the AP may be configured in fixed or mobile form and includes portable wireless devices (eg, laptop computers, smartphones, etc.) that provide hot-spots.
  • AP is a base station (BS), Node-B, Evolved Node-B (eNB), Base Transceiver System (BTS), femto base station in other wireless communication fields (Femto BS) and the like.
  • Non-AP STAs generally correspond to devices that users directly handle, such as laptop computers, PDAs, wireless modems, and smartphones.
  • the non-AP STA may include a terminal, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile terminal, a mobile subscriber station. (Mobile Subscriber Station, MSS) and the like.
  • WTRU wireless transmit / receive unit
  • UE user equipment
  • MS mobile station
  • MS mobile terminal
  • MSS mobile subscriber Station
  • an ellipse representing a BSS may be understood to represent a coverage area where STAs included in the BSS maintain communication. This area may be referred to as a basic service area (BSA).
  • BSA basic service area
  • the most basic type of BSS in an IEEE 802.11 LAN is an independent BSS (IBS).
  • the IBSS may have a minimal form consisting of only two STAs.
  • the BSS (BSS1 or BSS2) of FIG. 1A which is the simplest form and other components are omitted, may correspond to a representative example of the IBSS. This configuration is possible when STAs can communicate directly.
  • this type of LAN may not be configured in advance, but may be configured when a LAN is required, which may be referred to as an ad-hoc network.
  • the membership of the STA in the BSS may be dynamically changed by turning on or off the STA, entering or exiting the BSS region, or the like.
  • the STA may join the BSS using a synchronization process.
  • the STA may be associated with the BSS.
  • FIG. 1B illustrates a communication system 100 employing access devices (eg AP STAs) 102A, 102B and 102C and wireless user devices (eg non-AP STAs).
  • access devices eg AP STAs
  • non-AP STAs wireless user devices
  • access devices 102A-C are connected to a switch 104 that provides a connection to a Wide Area Network (WAN) 106, such as the Internet.
  • WAN Wide Area Network
  • Each of the access devices 102A-C provides a wireless connection to wireless devices within a coverage area (not shown) of the access device via a time division multiplexed network.
  • access devices 102A-C jointly provide the entire WLAN coverage area of system 100.
  • the wireless device 108 may be in the coverage area of the access devices 102A and 102B at the location indicated by the box marked with a solid line.
  • wireless device 108 may receive beacons from each of access devices 102A and 102B, such as solid arrows 110A and 11OB.
  • wireless device 108 When the wireless device 108 roams from the solid line box to the dashed box, the wireless device 108 enters the coverage area of the access device 102C and exits the coverage area of the access device 102A. Thus, wireless device 108 may receive beacons from access devices 102B and 102C, such as dashed arrows 112A and 112B.
  • the wireless device 108 can determine which access device currently provides the best connection to the wireless device 108. .
  • wireless device 108 may repeatedly scan beacons of adjacent access devices and measure signal strength (eg, power) associated with each of the beacons.
  • the wireless device 108 can be associated with an access device that provides an optimal network connection based on the maximum beacon signal strength.
  • the wireless device 108 may use other criteria related to optimal connection. For example, an optimal connection may be associated with more desirable services (eg, content, data rate, etc.).
  • WLAN-based P2P eg Wi-Fi Direct, WFD
  • WLAN-based P2P networks can perform Device-to-Device (D2D) (or Peer to Peer, P2P) communication with each other, even if Wi-Fi devices do not participate in home, office, and hotspot networks.
  • D2D Device-to-Device
  • P2P Peer to Peer
  • WLAN-based P2P communication is referred to as WLAN P2P communication (simply P2P communication) or WLAN D2D communication (simply D2D communication).
  • a WLAN P2P performing device is referred to as a WLAN P2P device, or simply a P2P device.
  • the WLAN P2P network 200 may include at least one P2P device including a first P2P device 202 and a second P2P device 204.
  • P2P devices include devices that support WLANs (eg, Wi-Fi, ZigBee, licensed band-based LANs) such as display devices, printers, digital cameras, projectors, and smartphones.
  • the P2P device also includes a non-AP STA and an AP STA.
  • the first P2P device 202 is a smartphone and the second P2P device 204 is a display device.
  • P2P communication refers to a communication technology that is installed in a portable device and a mobile terminal to provide a basis for using contents and services between devices through direct communication between terminals without additional equipment such as an AP or a router. That is, P2P devices in the P2P network may be directly connected to each other.
  • P2P communication is a case in which a signal transmission path between two P2P devices is directly established between corresponding P2P devices without passing through a third device (for example, an AP) or an existing network (for example, accessing a WLAN through an AP). Can mean.
  • the signal transmission path directly set between the two P2P devices may be limited to the data transmission path.
  • P2P communication may refer to a case where a plurality of non-STAs transmit data (eg, voice / video / text information) without passing through the AP.
  • Signal transmission paths for control information e.g., resource allocation information for P2P configuration, wireless device identification information, etc.
  • P2P devices e.g., non-AP STA-to-non-AP STA, non-AP STA-to- Directly set between APs, or between two P2P devices (eg, non-AP STA-to-non-AP STA) via the AP, or AP and corresponding P2P device (eg, AP-to-non-AP STA).
  • # 1 AP-to-non-AP STA # 2.
  • P2P is mainly used for semi-static communication such as remote printing, photo sharing and the like.
  • WLAN devices due to the generalization of WLAN devices and location-based services, the utilization of P2P is getting wider.
  • social chat e.g., wireless devices subscribed to Social Network Service (NSS) recognizes and sends information to nearby wireless devices based on location-based services
  • location-based advertising e.g., location-based advertising
  • location-based news P2P e.g., location-based news P2P is expected to be actively used for broadcasting and game linkage between wireless devices.
  • P2P applications are referred to as novel P2P applications.
  • FIG. 3 illustrates a P2P network aspect when a new P2P application (eg, social chat, location-based service provision, game linkage, etc.) is applied.
  • a new P2P application eg, social chat, location-based service provision, game linkage, etc.
  • a new P2P application eg, social chat, location-based service provision, game linkage, etc.
  • a new P2P application eg, social chat, location-based service provision, game linkage, etc.
  • the WLAN P2P network configuration process can be largely divided into two processes.
  • the first process is the neighbor discovery process (Neighbor Discovery, ND, procedure), and the second process is the P2P link establishment and communication process.
  • ND Network Discovery
  • the second process is the P2P link establishment and communication process.
  • a P2P device eg, 202 of FIG. 2 finds another neighboring P2P device (eg, 204 of FIG. 2) within its (wireless) coverage and associates with the corresponding P2P device, for example.
  • information necessary for pre-association can be obtained.
  • pre-connection may mean a second layer pre-connection in a wireless protocol.
  • the information necessary for pre-connection may include, for example, identification information about the neighboring P2P device.
  • FIG. 4 illustrates a neighbor discovery process. This example illustrates the operation between P2P device 202 and P2P device 204 in FIG.
  • the neighbor discovery process may be initiated by an indication of a station management entity (SME) / application / user / vendor (S410), a scan phase (S412), and a find phase. It can be divided into (S414 ⁇ S416).
  • the scan step S412 includes an operation of scanning for all available wireless channels according to the 802.11 scheme. This allows the P2P device to identify the best operating channel.
  • the search steps S414 to S416 include a listen mode S414 and a search mode S416, and the P2P device alternately repeats the listen mode S414 and the search mode S416.
  • the P2P devices 202 and 204 perform active searching using a probe request frame in the discovery mode (S416), and the discovery range is set to channels 1, 6, and 11 (2412, 2437, 2462 MHz) for quick discovery. It may be limited to a social channel of). In addition, the P2P devices 202 and 204 select only one channel among the three social channels in the listening mode S414 and maintain the received state. At this time, when a probe request frame transmitted from another P2P device (eg, 202) in the discovery mode is received, the P2P device (eg, 204) responds with a probe response frame.
  • the listening mode (S414) time may be given randomly (eg, 100, 200, 300 Time Units (TU)).
  • the P2P device may repeat the discovery mode and the reception mode repeatedly to reach each other's common channel. After discovering another P2P device, the P2P device may discover / exchange the device type, manufacturer or friendly device name using the probe request frame and the probe response frame to selectively bind to the corresponding P2P device. If the neighbor P2P device is found through the neighbor discovery process and necessary information is obtained, the P2P device (eg, 202) may inform the SME / application / user / vendor of the P2P device discovery (S418).
  • an authentication / encryption process of the 802.11 WLAN will be described.
  • a first communication structure / mode eg, FIG. 1
  • an STA is associated with an AP, and communication is performed between the STA and the AP.
  • 802.11 WLANs support both authentication and encryption algorithms.
  • the authentication process refers to a process of determining whether to allow or block network access by distinguishing user information. If network access is allowed through the authentication process, data transmitted and received over the air interface is encrypted.
  • authentication is performed between the authentication server (AS) and the STA, and the AS generates a key and transmits it to the AP.
  • AS authentication server
  • the AS refers to an 802.1x component that performs an authentication service to a terminal for network access, and may be implemented through a RADIUS (Remote Authentication Dial In User Service) server, an AAA (Authentication, authorization, and accounting) server, and the like.
  • RADIUS Remote Authentication Dial In User Service
  • AAA Authentication, authorization, and accounting
  • IBSS independent BSS
  • the AS may send a shared key to a peer instead of an AP.
  • the key is used for encryption / decryption of all data transmitted over the air interface.
  • STAs may perform communication with each other in a peer-to-peer manner. In this case, authentication and encryption can be performed similarly as in the first communication structure / mode.
  • Wired Equivalent Privacy WEP performs authentication / encryption using the shared key.
  • the shared key authentication process is largely divided into four steps S502 to S508.
  • the STA transmits an authentication request message to the AP (S502).
  • the authentication request message includes a STA identity.
  • Second Step The AP transmits a challenge text to the STA (S504).
  • Step 3 The STA encrypts the challenge text of the second step by using the 64-bit or 128-bit key set in the STA, and then transmits the encrypted challenge text to the AP (S506).
  • Step 4 The AP decrypts the challenge text encrypted using the WEP key set for the corresponding STA.
  • the AP compares the decrypted text with the original text. If the two texts are the same, it means that the AP and the STA share the same WEP key, so the AP notifies the STA of the authentication success (S508). Thereafter, the STA and the AP perform an association process (S510), and data transmitted / received through the air interface is encrypted using a shared key. On the other hand, if the two texts are different, it means that the AP and the STA do not share the same WEP key, so the AP notifies the STA of the authentication failure (S508). In this case, the STA may not perform an association process with the AP.
  • RSN Robust Security Network
  • TKIP Temporal Key Integrity Protocol
  • CCMP Counter Mode with cipher block chaining message authentication code protocol
  • Security capabilities discovery (S602): The AP advertises network security capabilities to the STA. Targets capable of communicating can be determined through security capability discovery.
  • 802.1X authentication (S604): Centralize network admission policy decisions at the AS. Mutual authentication of STA and AS.
  • the master key is generated as a result of authentication.
  • the master key represents a positive connection decision.
  • a pairwise master key (PMK) is generated as a connection authentication token. PMK indicates approval for 802.11 media.
  • RADIUS-based key distribution (S606): The AS moves the PMK (without copying) to the STA's AP.
  • 802.1X management (S608): Bind the PMK to the STA and the AP. Confirm that both the AP and the STA own the PMK. Creates a fresh Pairwise Transient Key (PTK), synchronizes PTK usage, and distributes GTK (Group Transient Key).
  • PTK is a collection of Key Confirmation Key (KCK), Key Encryption Key (KEK), and Temporal Key (TK).
  • KCK is used to bind PMKs to APs and STAs, and is used to prove PMK ownership.
  • KEK is used for GTK distribution.
  • TK is used for data encryption. This procedure is performed by a 4-way handshake using PMK.
  • a high overhead occurs because a large number of packets are exchanged between the STA, AP and AS for authentication and key distribution.
  • This overhead may be no problem with existing static network architectures (eg, FIG. 1).
  • the existing high overhead may not be desirable because the terminals are constantly moving and the session between the terminals is maintained only for a very short time.
  • P2P applications such as social chat, online games, location-based advertising, location-based news, and the like (FIG. 3)
  • P2P communication between a large number of P2P devices in a dense network environment may occur dynamically / shortly. Can be done.
  • there may be a high number of sessions and users within the radio range of the STA and the overhead problem due to authentication / encryption may be more important.
  • the present invention proposes a method for managing / distributing a key for P2P communication using a cellular network.
  • the P2P device requires an authentication process every time when joining or creating a network, and may also go through several steps of key distribution every time. This is because the authentication status of the corresponding P2P device is not known when the network is first joined / created.
  • the corresponding P2P devices are connected to the cellular network (as long as they are connected to the cellular network). This means that the authentication is done within. Accordingly, when performing P2P communication (eg, social chat, etc.) between P2P devices distributed with a key from the cellular network, an additional authentication / key distribution process for P2P communication may be omitted.
  • P2P communication e.g, social chat, etc.
  • a P2P device that has received a P2P communication key from a cellular network e.g., a base station
  • the authentication process is performed. By omitting, it is possible to perform P2P communication more efficiently.
  • the P2P device includes both a cellular communication module and a WLAN communication module (eg, a Wi-Fi, ZigBee, and a licensed band communication module based on a small cell). Mixed with the terminal.
  • a WLAN communication module eg, a Wi-Fi, ZigBee, and a licensed band communication module based on a small cell.
  • the P2P device is connected to the cellular network.
  • the group key may be assigned for each service category for P2P.
  • the base station (cellular base station) of the cellular network transmits a ⁇ service category, key ⁇ list to the STA / terminal in the cell.
  • the ⁇ Service Category, Key ⁇ list is shared with one or more STAs / terminals in the cell, and these keys are used for P2P service discovery and communication.
  • the ⁇ service category, key ⁇ list may be transmitted in a STA / terminal-specific, STA / terminal group-specific, cell-specific manner (based on a service of interest to the STA / terminal).
  • the STA / terminals within a cell are informed about one or more services of interest (eg, services). List) can be transmitted to the cellular base station in advance.
  • services of interest eg, services
  • P2P communication is performed based on the service category. That is, P2P communication is performed between a plurality of STAs / terminals using the same service category (ie, the same key), and STAs / terminals performing P2P do not need to know each other. Accordingly, the STA / terminal is P2P with one or more other STA / terminals in the proxy without knowing information about other STAs / terminals in the proxy or the group to which the other STA / terminal belongs. It is possible to carry out communication.
  • the STA / terminal by transmitting the ⁇ service category, key ⁇ list from the base station to the STA / terminal in the cell, the STA / terminal not only obtains a key for P2P communication, but also belongs to the corresponding P2P service group even if the P2P service group does not go through the process. The operation of the case can be performed.
  • FIG. 7 illustrates a group key distribution / management process according to the present example.
  • a group key management / distribution process and P2P communication accordingly may be performed as follows.
  • the STA / terminal may request a list of P2P group keys (eg, social P2P keys) from the base station.
  • P2P group keys eg, social P2P keys
  • service categories, IDs (S1, S2, ..., Sn) (n: integers greater than or equal to 1) for the corresponding categories and service categories may be given as shown in Table 1.
  • Table 1 ID Service category Description 0
  • STA / UE talk to each other (unicast or multicast) (similar to Kakao talk)
  • One Socail advertisement STA / UE broadcasts advertisement information such as coupons, weekly ad, special deals, etc 2
  • STA / UE exchange data for location-dependent information such as local restaurant review, theater movie list, etc 3
  • On-line gaming STA / UE participate on-line multi-party gaming without accessing a centralized game server 4-255 Reserved
  • Step 2 After receiving the request for the P2P group key list, the base station transmits a list of (service category identification information (eg, ID), key) to the STA / terminal for the service category supported in the cell ( ⁇ S1 , K1), (S2, K2), ..., (Sn, Kn) ⁇ ).
  • service category identification information eg, ID
  • key service category supported in the cell
  • the STA / terminal may encrypt / decrypt a message belonging to a specific service category by using a group key.
  • the STA / terminal may encrypt the message with a key Ki corresponding to the service category Si.
  • the STA / terminal may attempt to decrypt the received message with the key Ki corresponding to the service category Si. That is, the STA / terminal may attempt to decrypt the received message using only the key corresponding to the service category of interest.
  • the STA / terminal may attempt to decrypt the received message by using a plurality of corresponding keys.
  • information about the group key (or service category, service category ID) may be included in the message header, whereby the counterpart STA / terminal is not desired.
  • HY physical
  • MAC medium access control
  • one STA / terminal when using P2P communication sharing a key assigned to a service group, can provide information of the target STA / terminal (eg STA / terminal ID) or information about the group to which the target STA / terminal belongs. You can send / receive data without knowing it.
  • information of the target STA / terminal eg STA / terminal ID
  • information about the group to which the target STA / terminal belongs You can send / receive data without knowing it.
  • the group key proposed in this example may be updated according to a predetermined condition.
  • the base station may provide a group key to the STA / terminal and set a “KEY EXPIRATION” timer.
  • the "KEY EXPIRATION” timer may expire after T time after sending the group key to the STA / terminal.
  • the base station can regenerate the group key and send a list of (service category ID, updated key) to the STA / terminal.
  • the STA / terminal requests the base station to update a group key (eg, a social P2P key), and the base station may update the group key in consideration of this.
  • the STA / terminal can request the base station to update the group key when the timer set in the terminal expires. In this case, the timer operates when the group key is provided and may expire after T1 time.
  • the group key mechanism of Option 1 is summarized as follows: (1) The group key can be encrypted so that any STA / terminal authenticated in the cellular network can encrypt / decrypt the messages of all services or groups supported in the cell. Providing, (2) data for an unwanted group (or service category) is filtered at the Physical (PHY) layer, and unfiltered data is decrypted at the Medium Access Control (MAC) layer, and (3) corresponding to the service category. Since P2P communication is performed based on the group key, data transmission line is possible without information on the partner STA / terminal.
  • PHY Physical
  • MAC Medium Access Control
  • the present invention describes a method for providing a secure P2P connection using a cellular network.
  • an STA / terminal in a cell knows existence and identification information (eg, STA / terminal ID) of another STA / terminal in a cell capable of P2P communication through an existing neighbor discovery process (eg, FIG. 4).
  • the individual key may mean a key shared by P2P peers (ie, two STAs / terminals) or a key shared only by a limited number or a limited group of STAs / terminals.
  • P2P peers ie, two STAs / terminals
  • a key shared only by a limited number or a limited group of STAs / terminals ie, two STAs / terminals.
  • an individual key management / distribution process and corresponding P2P communication may be performed as follows.
  • the STA / terminal may request a key for a P2P session with UE3 from the base station.
  • the key request message may include identification information (eg, STA / terminal ID) for the counterpart STA / terminal and information (eg, ID information of Table 1) about a desired service (eg, social chat).
  • identification information eg, STA / terminal ID
  • STA / terminal ID the opponent STA / terminal may be omitted or set to a predetermined value. Can be.
  • Second step After receiving a P2P key request from UE1, the base station provides a public key of each peer to UE1 and UE3.
  • a private key K_UE1 of UE1 is provided / disclosed to UE3
  • a private key K_UE3 of UE3 is provided / disclosed to UE1.
  • UE3 may be a STA / terminal requested by UE1 or a STA / terminal arbitrarily selected by a base station according to a service type.
  • Step 3 The STA / terminal encrypts the data using the public key, and the counterpart STA / terminal decrypts the received data using its private key.
  • UE1 encrypts the transmission data using the public key K_UE3, and UE3 decrypts the received data using the private key K_UE3.
  • UE3 encrypts the transmitted data using the public key K_UE1, and UE1 decrypts the received data using the private key K_UE1.
  • Providing the public key only when requested by the STA / terminal may be more efficient when the number of established P2P sessions is smaller than the number of STA / terminal peers.
  • FIG 9 illustrates a WLAN P2P device that can be applied to the present invention.
  • a WLAN-based P2P network includes a first P2P device 110 and a second P2P device 120.
  • the first P2P device 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the RF unit 116 includes both a cellular communication module and a WLAN communication module (eg, a communication module for a licensed band based on Wi-Fi, ZigBee, small cell).
  • the second P2P device 120 includes a processor 122, a memory 124, and an RF unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • the RF unit 126 includes both a cellular communication module and a WLAN communication module (eg, a communication module for a licensed band based on Wi-Fi, ZigBee, small cell).
  • the first P2P device 110 and / or the second P2P device 120 may have a single or multiple antennas.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the invention can be used in an apparatus for P2P communication, in particular WLAN-based P2P communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 셀룰러 네트워크에 연결된 상태에서 WLAN-기반 P2P 통신을 수행하는 방법 및 이를 위한 제1 P2P 장치에 있어서, 셀룰러 기지국으로부터 하나 이상의 키 정보를 수신하되, 각각의 키 정보는 서비스 식별 정보와 대응하는 키 값을 포함하는 단계; 제2 P2P 장치로부터 암호화된 데이터 신호를 수신하는 단계; 상기 하나 이상의 키 정보 중, 상기 제1 P2P 장치가 관심 있는 하나 이상의 서비스에 대응하는 하나 이상의 키를 이용하여 상기 암호화된 데이터 신호의 해독화를 시도하는 위한 과정을 수행하는 단계를 포함하는 방법 및 이를 위한 장치에 관한 것이다.

Description

WLAN(WIRELESS LOCAL AREA NETWORK)-기반 P2P(PEER TO PEER) 통신을 위한 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 WLAN(Wireless Local Area Network)에 기반한 P2P 통신을 위한 방법 및 장치에 관한 것이다. 보다 구체적으로, 본 발명은 WLAN에 기반한 P2P 통신을 위한 이웃 발견, 데이터 통신 등을 위한 방법 및 이를 위한 장치에 관한 것이다. WLAN은 Wi-Fi(Wireless Fidelity), ZigBee, 스몰 셀(small cell)에 기반한 면허 밴드(licensed band) 등 무선 통신에 기반한 LAN(Local Area Network)를 의미한다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(Code Division Multiple Access) 시스템, FDMA(Frequency Division Multiple Access) 시스템, TDMA(Time Division Multiple Access) 시스템, OFDMA(Orthogonal Frequency Division Multiple Access) 시스템, SC-FDMA(Single Carrier Frequency Division Multiple Access) 시스템 등이 있다.
무선랜(Wireless Local Area Network, WLAN) 기술에 대한 표준은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 그룹에서 개발되고 있다. IEEE 802.11a 및 b는 2.4.GHz 또는 5GHz에서 비면허 대역(unlicensed band)을 이용하고, IEEE 802.11b는 11Mbps의 전송 속도를 제공하고, IEEE 802.11a는 54 Mbps의 전송 속도를 제공한다. IEEE 802.11g는 2.4GHz에서 직교 주파수 분할 다중화(Orthogonal Frequency Division Multiplexing, OFDM)를 적용하여 54Mbps의 전송 속도를 제공한다. IEEE 802.11n은 다중입출력 OFDM(Multiple Input Multiple Output-OFDM, MIMO-OFDM)을 적용하여 300Mbps의 전송 속도를 제공한다. IEEE 802.11n은 채널 대역폭(channel bandwidth)을 40 MHz까지 지원하며, 이 경우 600Mbps의 전송 속도를 제공한다. IEEE 802.11p는 WAVE(Wireless Access in Vehicular Environments)를 지원하기 위한 표준이다. 예를 들어, 802.11p는 ITS(Intelligent Transportation Systems) 지원에 필요한 개선 사항을 제공한다. IEEE 802.11ai는 IEEE 802.11 스테이션(station, STA)의 고속 초기 링크 셋업(fast initial link setup)을 지원하기 위한 표준이다.
최근 Wi-Fi 연합(Wireless Fidelity alliance)은 Wi-Fi 기반 P2P(Peer-to-Peer) 기술(예, WFD(Wi-Fi Direct))의 발표와 함께 인증을 진행하고 있다. Wi-Fi P2P 기술은 TV, 노트북, 프린터, 카메라와 같은 휴대 기기 및 휴대 단말 등에 탑재되어 AP(Access Point) 또는 라우터와 같은 별도의 장비 없이도 단말 간 직접 통신을 통하여 기기간 컨텐츠 및 서비스를 사용할 수 있는 기반을 제공한다. Wi-Fi P2P 기술은 빠른 전송 속도를 제공함으로써 일부 영역에서 블루투스 기술을 대체할 수 있을 것으로 기대된다.
WLAN에 기반한 P2P 통신을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다. 본 발명의 다른 목적은 WLAN에 기반한 P2P 통신을 위한 인증/암호화를 위한 과정을 효율적으로 수행하는 방법 및 이를 위한 장치의 제공에 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 셀룰러 네트워크에 연결된 제1 P2P(Peer to Peer) 장치에서 WLAN(Wireless Local Area Network)-기반 P2P 통신을 수행하는 방법에 있어서, 셀룰러 기지국으로부터 하나 이상의 키 정보를 수신하되, 각각의 키 정보는 서비스 식별 정보와 대응하는 키 값을 포함하는 단계; 제2 P2P 장치로부터 암호화된 데이터 신호를 수신하는 단계; 상기 하나 이상의 키 정보 중, 상기 제1 P2P 장치가 관심 있는 하나 이상의 서비스에 대응하는 하나 이상의 키를 이용하여 상기 암호화된 데이터 신호의 해독화를 시도하는 위한 과정을 수행하는 단계를 포함하는 방법이 제공된다.
본 발명의 다른 양상으로, 셀룰러 네트워크에 연결되고, WLAN(Wireless Local Area Network)-기반 P2P(Peer to Peer) 통신을 수행하도록 구성된 제1 P2P 장치에 있어서, 무선 주파수(Radio Frequency, RF) 유닛; 및 프로세서를 포함하고, 상기 프로세서는 셀룰러 기지국으로부터 하나 이상의 키 정보를 수신하되, 각각의 키 정보는 서비스 식별 정보와 대응하는 키 값을 포함하고, 제2 P2P 장치로부터 암호화된 데이터 신호를 수신하며, 상기 하나 이상의 키 정보 중, 상기 제1 P2P 장치가 관심 있는 하나 이상의 서비스에 대응하는 하나 이상의 키를 이용하여 상기 암호화된 데이터 신호의 해독화를 시도하는 위한 과정을 수행하도록 구성된 제1 P2P 장치가 제공된다.
바람직하게, 상기 암호화된 데이터 신호의 수신은 상기 제2 P2P 장치에 대한 정보 또는 상기 제2 P2P 장치가 속하는 그룹에 대한 정보가 없는 상태에서 수신된다.
바람직하게, 상기 하나 이상의 키 정보에 포함된 복수의 키 값은 상기 셀룰러 기지국이 서비스를 제공하는 셀 내의 모든 혹은 같은 P2P 서비스에에 관심이 있는 P2P 장치에 동일하게 설정된다.
바람직하게, 상기 암호화된 데이터 신호의 헤더는 키 식별 정보, 서비스 식별 정보 중 적어도 하나를 포함한다.
바람직하게, 상기 암호화된 데이터 신호의 헤더가 상기 제1 P2P가 관심 있는 키 또는 서비스에 관한 정보를 갖지 않는 경우, 상기 암호화된 데이터 신호는 버려지고, 상기 암호화된 데이터 신호의 헤더가 상기 제1 P2P가 관심 있는 키 또는 서비스에 관한 정보를 갖는 경우, 상기 암호화된 데이터 신호에 대한 해독화 과정이 수행된다.
바람직하게, 상기 암호화된 데이터 신호는 PHY(Physical) 계층에서 버려지고, 상기 암호화된 데이터 신호에 대한 해독화 과정은 MAC(Medium Access Control) 계층에서 수행된다.
바람직하게, 상기 하나 이상의 키 정보는 소정의 타이머가 만료되는 경우 갱신된다.
바람직하게, 상기 하나 이상의 키 정보에 대해 갱신을 요청하는 정보를 상기 셀룰러 기지국에게 전송하는 것을 더 포함한다.
본 발명에 의하면, 무선 통신 시스템에서 WLAN-기반 P2P 통신을 효율적으로 수행할 수 있다. 구체적으로, WLAN-기반 P2P 통신을 위한 인증/암호화를 위한 과정을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1a은 본 발명이 적용될 수 있는 WLAN(Wireless Local Area Network)(예, IEEE 802.11) 시스템의 구조를 예시한다.
도 1b는 액세스 장치들 및 무선 사용자 장치들을 채용하는 통신 시스템의 예시적인 동작을 나타내는 블록도이다.
도 2는 WLAN-기반 P2P(예, WFD(Wi-Fi Direct)) 네트워크를 예시한다.
도 3은 WLAN-기반 P2P 양상을 예시한다
도 4는 이웃 발견 과정을 예시한다.
도 5~6에 WLAN 인증/암호화 과정을 예시한다.
도 7~8은 본 발명에 따른 인증/암호화 과정을 예시한다.
도 9는 본 발명에 적용될 수 있는 WLAN-기반 P2P(Peer to Peer) 장치를 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), OFDM(orthogonal frequency division multiplexing) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. OFDM은 IEEE 802.11등과 같은 무선 기술로 구현될 수 있다.
설명을 명확하기 위해, IEEE 802.11 (WLAN)를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 예를 들어, 이하의 설명은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어는 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다. 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시된다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다. 또한, 본 명세서에서 설명되는 동작들의 순서는 변경될 수 있다. 실시예의 일부 구성이나 특징은 다른 실시예에 포함되거나 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도 1a는 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 예시적인 구조를 나타내는 도면이다.
IEEE 802.11 구조는 복수의 구성요소들로 구성될 수 있고, 이들의 상호작용에 의해 상위계층에 대해 트랜스패런트한 STA 이동성을 지원하는 WLAN이 제공될 수 있다. 기본 서비스 세트(Basic Service Set, BSS)는 IEEE 802.11 LAN의 기본 구성 블록에 해당할 수 있다. 도 1a는 2개의 BSS(BSS1 및 BSS2)가 존재하고 각각의 BSS각 2개의 STA를 포함하는 경우(STA1 및 STA2 는 BSS1에 포함되고, STA3 및 STA4는 BSS2에 포함됨)를 예시한다. 여기서, STA는 IEEE 802.11 의 MAC(Medium Access Control)/PHY(Physical) 규정에 따라 동작하는 기기를 의미한다. STA는 AP(Access Point) STA(간단히, AP) 및 논-AP(논-AP) STA를 포함한다. AP는 무선 인터페이스를 통해 논-AP STA에게 네트워크(예, WLAN) 접속을 제공하는 기기에 해당한다. AP는 고정 형태 또는 이동 형태로 구성될 수 있으며, 핫-스팟(hot-spot)을 제공하는 휴대용 무선 기기(예, 랩탑 컴퓨터, 스마트 폰 등)를 포함한다. AP는 다른 무선 통신 분야에서 기지국(Base Station, BS), 노드-B(Node-B), 발전된 노드-B(Evolved Node-B; eNB), 기저 송수신 시스템(Base Transceiver System, BTS), 펨토 기지국(Femto BS) 등에 대응된다. 논-AP STA는 랩탑 컴퓨터, PDA, 무선 모뎀, 스마트 폰과 같이 일반적으로 사용자가 직접 다루는 기기에 해당한다. 논-AP STA는 단말(terminal), 무선 송수신 유닛(Wireless Transmit/Receive Unit, WTRU), 사용자 장치(User Equipment, UE), 이동국(Mobile Station, MS), 이동 단말(Mobile Terminal), 이동 가입자국(Mobile Subscriber Station, MSS) 등으로 지칭될 수 있다.
도 1a에서 BSS를 나타내는 타원은 해당 BSS에 포함된 STA들이 통신을 유지하는 커버리지 영역을 나타내는 것으로 이해될 수 있다. 이 영역을 BSA(Basic Service Area)라고 칭할 수 있다. IEEE 802.11 LAN에서 가장 기본적인 타입의 BSS는 독립적인 BSS(Independent BSS, IBSS)이다. 예를 들어, IBSS는 2개의 STA만으로 구성된 최소 형태를 가질 수 있다. 또한, 가장 단순한 형태이고 다른 구성요소들이 생략되어 있는 도 1a의 BSS(BSS1 또는 BSS2)가 IBSS의 대표적인 예시에 해당할 수 있다. 이러한 구성은 STA들이 직접 통신할 수 있는 경우에 가능하다. 또한, 이러한 형태의 LAN은 미리 계획되어서 구성되는 것이 아니라 LAN이 필요한 경우에 구성될 수 있으며, 이를 애드-혹(ad-hoc) 네트워크라고 칭할 수도 있다.
STA의 켜지거나 꺼짐, STA가 BSS 영역에 들어오거나 나감 등에 의해, BSS에서STA의 멤버쉽이 동적으로 변경될 수 있다. BSS의 멤버가 되기 위해 STA는 동기화 과정을 이용하여 BSS에 참여(join)할 수 있다. BSS 기반 구조의 모든 서비스에 접속하기 위해, STA는 BSS에 연결(associated)될 수 있다.
도 1b는 액세스 장치(예, AP STA들)(102A, 102B 및 102C)들 및 무선 사용자 장치들(예, 논-AP STA들)을 채용하는 통신 시스템(100)을 예시한다.
도 1b를 참조하면, 액세스 장치들(102A-C)은 인터넷과 같은 광역 네트워크(Wide Area Network, WAN)(106)로 접속을 제공하는 스위치(104)에 연결된다. 액세스 장치들(102A-C) 각각은 시분할 다중화된 네트워크를 통해 액세스 장치의 커버리지 영역(미도시) 내의 무선 장치들에 대한 무선 접속을 제공한다. 따라서, 액세스 장치들(102A-C)은 시스템(100)의 전체 WLAN 커버리지 영역을 공동으로 제공한다. 예를 들어, 실선으로 표기된 박스에 의해 나타낸 위치에서 무선 장치(108)는 액세스 장치들(102A 및 102B)의 커버리지 영역 내에 존재할 수 있다. 따라서, 무선 장치(108)는 실선 화살표(11OA 및 11OB)와 같이 액세스 장치들(102A 및 102B) 각각으로부터 비컨들을 수신할 수 있다. 무선 장치(108)가 실선 박스로부터 파선 박스로 로밍하면, 무선 장치(108)는 액세스 장치(102C)의 커버리지 영역에 진입하고, 액세스 장치(102A)의 커버리지 영역을 나간다. 따라서, 무선 장치(108)는 파선 화살표(112A 및 112B)와 같이 액세스 장치들(102B및 102C)로부터 비컨들을 수신할 수 있다.
무선 장치(108)가 시스템(100)이 제공하는 전체 WLAN 커버리지 영역 내에서 로밍할 때, 무선 장치(108)는 어느 액세스 장치가 현재 무선 장치(108)에 대한 가장 양호한 접속을 제공하는지 결정할 수 있다. 예를 들어, 무선 장치(108)는 근접한 액세스 장치들의 비컨들을 반복적으로 스캐닝하고, 상기 비컨들 각각과 연관된 신호 강도(예, 전력)를 측정할 수 있다. 따라서, 무선 장치(108)는 최대 비컨 신호 강도에 기초해 최적의 네트워크 접속을 제공하는 액세스 장치와 연결될 수 있다. 무선 장치(108)는 최적 접속과 관련된 다른 기준을 이용할 수 있다. 예를 들어, 최적 접속은 보다 많은 바람직한 서비스(예, 컨텐츠, 데이터 레이트 등)와 연관될수 있다.
도 2는 WLAN-기반 P2P(예, Wi-Fi Direct, WFD) 네트워크를 예시한다. WLAN-기반 P2P 네트워크는 Wi-Fi 장치들이 홈 네트워크, 오피스 네트워크 및 핫스팟 네트워크에 참여하지 않아도, 서로 장치-대-장치(Device to Device, D2D)(혹은, Peer to Peer, P2P) 통신을 수행할 수 있는 네트워크를 나타낸다. 이하, WLAN-기반 P2P 통신을 WLAN P2P 통신(간단히, P2P 통신) 혹은 WLAN D2D 통신(간단히, D2D 통신)이라고 지칭한다. 또한, WLAN P2P 수행 장치를 WLAN P2P 장치, 간단히 P2P 장치라고 지칭한다.
도 2를 참조하면, WLAN P2P 네트워크(200)는 제1 P2P 장치(202) 및 제2 P2P 장치(204)를 포함하는 적어도 하나의 P2P 장치를 포함할 수 있다. P2P 장치는 디스플레이 장치, 프린터, 디지털 카메라, 프로젝터 및 스마트 폰 등 WLAN (예, Wi-Fi, ZigBee , 면허 밴드에 기반한 LAN)를 지원하는 장치들을 포함한다. 또한, P2P 장치는 논-AP STA 및 AP STA를 포함한다. 도시된 예에서, 제1 P2P 장치(202)는 스마트 폰이고 제2 P2P 장치(204)는 디스플레이 장치이다. 여기서, P2P 통신은 휴대 기기 및 모바일 단말 등에 탑재되어 AP 또는 라우터와 같은 별도의 장비 없이도 단말간 직접 통신을 통하여 기기간 콘텐츠 및 서비스를 사용할 수 있는 기반을 제공하는 통신 기술을 나타낸다. 즉, P2P 네트워크 내의 P2P 장치들은 서로 직접 연결될 수 있다. 예를 들어, P2P 통신은 두 P2P 장치들간의 신호 전송 경로가 제3의 장치(예, AP) 또는 기존 네트워크(예, AP를 거쳐 WLAN에 접속)를 거치지 않고 해당 P2P 장치들간에 직접 설정된 경우를 의미할 수 있다. 여기서, 두 P2P 장치들간에 직접 설정된 신호 전송 경로는 데이터 전송 경로로 제한될 수 있다. 예를 들어, P2P 통신은 복수의 논-STA들이 AP를 거치지 않고 데이터(예, 음성/영상/문자 정보 등)를 전송하는 경우를 의미할 수 있다. 제어 정보(예, P2P 설정을 위한 자원 할당 정보, 무선 장치 식별 정보 등)를 위한 신호 전송 경로는 P2P 장치들(예, 논-AP STA-대-논-AP STA, 논-AP STA-대-AP)간에 직접 설정되거나, AP를 경유하여 두 P2P 장치들간(예, 논-AP STA-대-논-AP STA)에 설정되거나, AP와 해당 P2P 장치(예, AP-대-논-AP STA#1, AP-대-논-AP STA#2)간에 설정될 수 있다.
현재, P2P는 주로 원격 프린트, 사진 공유 등과 같은 반-정적(semi-static) 통신을 위해 사용되고 있다. 그러나, WLAN 장치의 보편화와 위치 기반 서비스 등으로 인해, P2P의 활용성은 점점 넓어지고 있다. 예를 들어, 쏘셜 채팅(예, SNS(Social Network Service)에 가입된 무선 장치들이 위치 기반 서비스에 기초해서 근접 지역의 무선 장치를 인식하고 정보를 송수신), 위치-기반 광고 제공, 위치-기반 뉴스 방송, 무선 장치간 게임 연동 등에 P2P가 활발히 사용될 것으로 예상된다. 편의상, 이러한 P2P 응용을 신규 P2P 응용이라고 지칭한다.
도 3에 신규 P2P 응용(예, 쏘셜 채팅, 위치-기반 서비스 제공, 게임 연동 등)이 적용되는 경우의 P2P 네트워크 양상을 예시하였다. 도 3을 참조하면, P2P 네트워크에서 다수의 P2P 장치들(302a~302d)이 P2P 통신(310)을 수행하며, P2P 장치의 이동에 의해 P2P 네트워크를 구성하는 P2P 장치(들)이 수시로 변경되거나, P2P 네트워크 자체가 동적/단시간적으로 새로 생성되거나 소멸될 수 있다. 이와 같이, 신규 P2P 응용 부분의 특징은 덴스(dense) 네트워크 환경에서 상당히 다수의 P2P 장치간에 동적/단시간적으로 P2P 통신이 이뤄지고 종료될 수 있다는 점이다.
WLAN P2P 네트워크 구성 과정은 크게 두 과정으로 구분될 수 있다. 첫 번째 과정은 이웃 발견 과정(Neighbor Discovery, ND, procedure)이고, 두 번째 과정은 P2P 링크 설정 및 통신 과정이다. 이웃 발견 과정을 통해, P2P 장치(예, 도 2의 202)는 (자신의 무선) 커버리지 내의 다른 이웃 P2P 장치(예, 도 2의 204)를 찾고 해당 P2P 장치와의 연결(association), 예를 들어 사전-연결(pre-association)에 필요한 정보를 획득할 수 있다. 여기서, 사전-연결은 무선 프로토콜에서 제2 계층 사전-연결을 의미할 수 있다. 사전-연결에 필요한 정보는 예를 들어 이웃 P2P 장치에 대한 식별 정보 등을 포함할 수 있다.
도 4에 이웃 발견 과정을 도시하였다. 본 예는 도 2에서 P2P 장치(202)와 P2P 장치(204) 사이의 동작을 예시한다.
도 4를 참조하면, 이웃 발견 과정은 SME(Station Management Entity)/어플리케이션/사용자/벤더의 지시에 의해 개시될 수 있고(S410), 스캔 단계(scan phase)(S412)와 찾기 단계(find phase)(S414~S416)로 나눠질 수 있다. 스캔 단계(S412)는 가용한 모든 무선 채널에 대해 802.11 방식에 따라 스캔하는 동작을 포함한다. 이를 통해, P2P 장치는 최상의 동작 채널을 확인할 수 있다. 찾기 단계(S414~S416)는 청취 모드(listen)(S414)와 탐색 모드(search)(S416)를 포함하며, P2P 장치는 청취 모드(S414)와 탐색 모드(S416)를 교대로 반복한다. P2P 장치(202, 204)는 탐색 모드(S416)에서 프로브 요청 프레임(Probe request frame)을 사용하여 능동 탐색을 실시하며, 빠른 탐색을 위하여 탐색 범위를 채널 1, 6, 11(2412, 2437, 2462MHz)의 쏘셜 채널(social channel)로 한정할 수 있다. 또한, P2P 장치(202, 204)는 청취 모드(S414)에서 3개의 쏘셜 채널 중 하나의 채널만을 선택하여 수신 상태로 유지한다. 이 때, 다른 P2P 장치(예, 202)가 탐색 모드에서 전송한 프로브 요청 프레임이 수신된 경우, P2P 장치(예, 204)는 프로브 응답 프레임(probe response frame)으로 응답한다. 청취 모드(S414) 시간은 랜덤하게 주어질 수 있다(예, 100, 200, 300 TU(Time Unit)). P2P 장치는 탐색 모드와 수신 모드를 계속 반복하다 서로의 공통 채널에 도달할 수 있다. P2P 장치는 다른 P2P 장치를 발견한 후 해당 P2P 장치에 선택적으로 결합하기 위해, 프로브 요청 프레임과 프로브 응답 프레임을 사용하여 장치 타입, 제작사 또는 친근한 장치 이름을 발견/교환할 수 있다. 이웃 발견 과정을 통해 주변 P2P 장치를 발견하고 필요한 정보를 얻은 경우, P2P 장치(예, 202)는 SME/어플리케이션/사용자/벤더에게 P2P 장치 발견을 알릴 수 있다(S418)
이하, 802.11 WLAN의 인증/암호화 과정에 대해 설명한다. 도 1~4를 참조하여 설명한 바와 같이, 802.11 WLAN 프로토콜에는 두 가지 타입의 통신 구조가 존재한다. 첫 번째 통신 구조/모드(예, 도 1)에서 STA는 AP에 연결되고(associated), STA와 AP간에 통신이 수행된다. 이를 위해, 802.11 WLAN은 인증(authentication) 및 암호화(encryption) 알고리즘을 모두 지원한다. 인증 과정은 사용자 정보를 구별하여 네트워크 접속 허용/차단을 결정하는 과정을 나타낸다. 인증 과정을 걸쳐 네트워크 접속이 허용되는 경우, 무선 인터페이스를 통해 송수신되는 데이터는 암호화된다. 이로 제한되는 것은 아니지만, 인증은 AS(Authentication Server)와 STA 사이에 수행되고, AS는 키(key)를 생성하고 이를 AP에 전송한다. AS는 네트워크 접속을 위해 단말에게 인증 서비스를 수행하는 802.1x 콤포넌트를 의미하며, RADIUS(Remote Authentication Dial In User Service) 서버, AAA(Authentication, authorization, and accounting) 서버 등을 통해 구현될 수 있다. IBSS(independent BSS) 모드의 경우, AS는 AP 대신 공유 키(shared key)를 상대(peer)에게 보낼 수 있다. 키는 무선 인터페이스를 통해 전송되는 모든 데이터의 암호화(encryption)/해독화(decryption)에 사용된다. 두 번째 통신 구조/모드(예, 도 2~4)에서 STA들은 서로 피어-투-피어 방식으로 통신을 수행할 수 있다. 이 경우, 인증 및 암호화는 첫 번째 통신 구조/모드에서와 유사하게 수행될 수 있다.
도 5는 802.11 WLAN이 WEP(Wired Equivalent Privacy)을 지원하는 경우의 인증/암호화 과정을 나타낸다. WEP은 공유 키를 이용하여 인증/암호화를 수행한다.
도 5를 참조하면, 공유 키 인증 과정은 크게 4 단계(S502~S508)로 구분된다.
제1 단계: STA는 인증 요청 메시지를 AP 에게 전송한다(S502). 인증 요청 메시지는 STA 식별자(identity)를 포함한다.
제2 단계: AP는 STA에게 챌린지 텍스트(challenge text)를 전송한다(S504).
제3 단계: STA는 자신에게 설정된 64-비트 또는 128-비트 키를 이용하여 제2 단계의 챌린지 텍스트를 암호화 한 뒤, 암호화된 챌린지 텍스트를 AP에게 전송한다(S506).
제4 단계: AP는 해당 STA의 키에 대응하여 자신에게 설정된 WEP 키를 이용하여 암호화된 챌린지 텍스트를 해독한다. AP는 해독된 텍스트와 원본 텍스트를 비교한다. 두 개의 텍스트가 동일하면, AP와 STA가 동일한 WEP 키를 공유하고 있다는 것을 의미하므로 AP는 STA에게 인증 성공을 알려준다(S508). 이후, STA와 AP는 연결(association) 과정을 수행하고(S510), 무선 인터페이스를 통해 송수신되는 데이터는 공유 키를 이용하여 암호화된다. 한편, 두 개의 텍스트가 다른 경우, AP와 STA가 동일한 WEP 키를 공유하지 않는다는 것을 의미하므로 AP는 STA에게 인증 실패를 알려준다(S508). 이 경우, STA는 AP와 연결(association) 과정을 수행할 수 없다.
도 6은 802.11 WLAN이 RSN(Robust Security Network)을 지원 시의 인증/암호화 과정을 나타낸다. RSN은 TKIP(Temporal Key Integrity Protocol)와 CCMP(Counter Mode with cipher block chaining message authentication code Protocol)을 지원한다.
도 6을 참조하면, 키 분배를 위해 4개 상태(phase)가 존재한다(S602~S608).
보안 능력 발견(security capabilities discovery)(S602): AP는 네트워크 보안 능력을 STA에게 광고(advertise)한다. 통신 수행 가능성이 있는 대상이 보안 능력 발견을 통해 결정될 수 있다.
802.1X 인증(authentication)(S604): AS에서 네트워크 허가 정책 결정(network admission policy decisions)을 집중화한다(centralize). STA와 AS를 상호 인증한다. 인증의 효과로 마스터 키가 생성된다. 마스터 키는 긍정 접속 결정을 나타낸다. 또한, 접속 인증 토큰(token)으로서 PMK(Pairwise Master Key)가 생성된다. PMK는 802.11 매체에 대한 승인을 나타낸다.
RADIUS-기반 키 분배(key distribution)(S606): AS는 PMK를 STA의 AP로 (복사하지 않고) 옮긴다.
802.1X 관리(management)(S608): PMK를 STA 및 AP에 바인드한다(bind). AP와 STA가 모두 PMK를 소유하고 있음을 확인한다. 프레쉬(fresh) PTK(Pairwise Transient Key)를 생성하고, PTK 사용을 동기화하며, GTK(Group Transient Key)를 분배한다. PTK는 KCK(Key Confirmation Key), KEK(Key Encryption Key), TK(Temporal Key)의 모음이다. KCK는 PMK를 AP, STA에 바인드하는데 사용되며, PMK 소유를 증명하는데 사용된다. KEK는 GTK 분배에 사용된다. TK는 데이터 암호화에 사용된다. 본 과정은 PMK를 이용한 4-way 핸드쉐이크에 의해 수행된다.
상기 과정에 의해 키 분배가 완료되면, AP와 STA 사이에 무선 인터페이스를 통해 전송되는 데이터는 암호화 키(예, TK)를 통해 암호화된다.
도 5 및 6을 참조하여 설명한 기존의 802.11 WLAN 보안 메카니즘에 따르면, 인증 및 키 분배(key distribution)를 위해 STA, AP 및 AS간에 수많은 패킷이 교환되므로 높은 오버헤드가 발생한다. 이러한 오버헤드는 기존의 정적 네트워크 구조(예, 도 1)에서는 문제가 없을 수 있다. 그러나, P2P 네트워크의 경우(예, 도 2~4), 단말들이 지속적으로 이동하고 단말간의 세션(session)이 매우 짧은 시간 동안만 유지되므로, 기존의 높은 오버헤드는 바람직하지 않을 수 있다. 특히, 쏘셜 채팅, 온라인 게임, 위치-기반 광고, 위치-기반 뉴스 등과 같은 신규 P2P 응용의 경우(도 3), 덴스(dense) 네트워크 환경에서 상당히 다수의 P2P 장치간에 동적/단시간적으로 P2P 통신이 이뤄질 수 있다. 이로 인해, STA의 무선 범위 내에 높은 수의 세션 및 사용자가 존재할 수 있고, 인증/암호화에 따른 오버헤드 문제는 보다 중요할 수 있다.
따라서, P2P 통신의 효율적 수행을 위해, 인증 및 연결(association)을 포함하는 데이터 세션 설정에 필요한 오버헤드를 극단적으로 최소화 하는 것이 바람직할 수 있다. 또한, P2P 통신에서는, 별도의 명시적 연결 과정이 일어나지 않을 수 있으므로, 패킷-기반 인증 및 암호화를 제공하는 것이 필요할 수 있다.
실시예: 셀룰러 네트워크를 이용한 키 분배
이하, 도면을 참조하여, 인증/암호화를 위해 효율적으로 키 관리/분배하는 과정에 대해 설명한다. 구체적으로, 본 발명은 셀룰러 네트워크를 이용하여 P2P 통신을 위한 키를 관리/분배하는 방법을 제안한다. 앞에서 언급한 바와 같이, 기존의 방식(도 5~6)에 따르면 P2P 장치는 네트워크에 참여하거나 네트워크를 생성하는 경우 매번 인증 과정을 요구하고, 또한 매번 여러 단계의 키 분배 과정을 거칠 수 있다. 이러한 이유는 네트워크 처음 참여/생성 시 해당 P2P 장치에 대한 인증 상태를 알 수 없기 때문이다. 그러나, 본 발명에서 제안하는 바와 같이, 셀룰러 네트워크(예, (셀룰러) 기지국)를 이용하여 P2P 통신용 키를 P2P 장치들에게 분배하는 경우, 해당 P2P 장치들은 (셀룰러 네트워크에 연결돼 있는 한) 셀룰러 네트워크 내에서 인증이 이뤄진 상태를 의미한다. 따라서, 셀룰러 네트워크로부터 키를 분배 받은 P2P 장치들 간에 P2P 통신(예, 쏘셜 채팅 등)을 수행할 경우, P2P 통신을 위한 추가적인 인증/키 분배 과정을 생략할 수 있다. 정리하면, 셀룰러 네트워크(예, 기지국)로부터 P2P 통신용 키를 분배 받은 P2P 장치는 셀룰러 네트워크에 의해 이미 인증된 상태이므로, 이후에 새롭게 P2P 네트워크에 참여하더라도 해당 P2P용 키를 사용하는 경우에는 인증 과정을 생략하여, 보다 효율적으로 P2P 통신을 수행하는 것이 가능하다.
이하, 셀룰러 네트워크를 통해 WLAN P2P용 키를 분배하는 2가지 방안에 대해 예시한다. 이하에서 P2P 장치는 셀룰러 통신 모듈과 WLAN 통신 모듈(예, Wi-Fi, ZigBee, 스몰 셀(small cell)에 기반한 면허 밴드(licensed band) 용 통신 모듈)을 모두 구비하고 있다고 가정하고, 편의상 STA/단말과 혼용한다. 또한, 이하의 설명에서 특별히 다른 언급이 없는 한, P2P 장치는 셀룰러 네트워크에 접속된 상태라고 가정한다.
방안 1: P2P 그룹 키 분배
본 예는 P2P를 위한 그룹 키 분배 과정에 대해 예시한다. 여기서, 그룹 키는 P2P를 위한 서비스 카테고리 별로 할당될 수 있다. 본 예에 따르면, 셀룰러 네트워크의 기지국(셀룰러 기지국)은 셀 내의 STA/단말에게 {서비스 카테고리, 키} 리스트를 전송한다. 따라서, {서비스 카테고리, 키} 리스트는 셀 내의 하나 혹은 복수의 STA/단말에게 공유되며, 이들 키는 P2P 서비스 발견 및 통신을 위해 사용된다. 여기서, {서비스 카테고리, 키} 리스트는 (STA/단말이 관심 있는 서비스에 기초하여) STA/단말-특정(specific), STA/단말 그룹-특정, 셀-특정 방식으로 전송될 수 있다. 기지국이 STA/단말-특정(specific), STA/단말 그룹-특정하게 {서비스 카테고리, 키} 리스트를 전송하기 위해, 셀 내의 STA/단말들은 자신이 관심 있는 하나 이상의 서비스에 대한 정보(예, 서비스 리스트)를 미리 셀룰러 기지국에게 전송할 수 있다.
본 예에 따르면, 서비스 카테고리에 대응하여 키가 할당되므로, P2P 통신은 서비스 카테고리에 기반하여 수행된다. 즉, 동일한 서비스 카테고리(즉, 동일한 키)를 사용하는 복수의 STA/단말들간에 P2P 통신이 수행되며, P2P를 수행하는 STA/단말들은 서로에 대해 알 필요가 없다. 따라서, STA/단말은 프락시머티(proximity)에 있는 다른 STA/단말에 대한 정보 또는 다른 STA/단말이 속하는 그룹에 대한 정보를 모르는 상태에서 프락시머티(proximity)에 있는 하나 이상의 다른 STA/단말과 P2P 통신을 수행하는 것이 가능하다. 이와 같이, P2P 통신을 수행하는 주체에 대한 익명성(anonymous)을 보장함으로써, 실제 P2P 그룹을 형성하는 과정을 거치지 않더라도 안전한(secure) P2P 서비스 그룹을 형성하는 것이 가능하다. 즉, 기지국에서 셀 내의 STA/단말에게 {서비스 카테고리, 키} 리스트를 전송함으로써, STA/단말은 P2P 통신용 키를 획득할 뿐만 아니라, 어떤 P2P 서비스 그룹에 속하는 과정을 거치지 않더라도 해당 P2P 서비스 그룹에 속한 경우의 동작을 수행할 수 있다.
도 7는 본 예에 따른 그룹 키 분배/관리 과정을 예시한다. 도 7을 참조하면, 그룹 키 관리/분배 과정 및 그에 따른 P2P 통신은 다음과 같이 수행될 수 있다.
제1 단계; STA/단말이 쏘셜 P2P 서비스 참여에 관심이 있는 경우, 상기 STA/단말은 기지국에게 P2P 그룹 키(예, 쏘셜 P2P 키)의 리스트를 요청할 수 있다. 이로 제한되는 것은 아니지만, 서비스 카테고리, 해당 카테고리에 대한 ID (S1, S2, ..., Sn)(n: 1 이상의 정수), 서비스 카테고리에 대한 설명은 표 1과 같이 주어질 수 있다.
표 1
ID Service Category Description
0 Social P2P chatting STA/UE talk to each other (unicast or multicast) (similar to Kakao talk)
1 Socail Advertisement STA/UE broadcasts advertisement information such as coupons, weekly ad, special deals, etc
2 Social map STA/UE exchange data for location-dependent information such as local restaurant review, theater movie list, etc
3 On-line gaming STA/UE participate on-line multi-party gaming without accessing a centralized game server
4-255 Reserved
제2 단계: P2P 그룹 키 리스트에 대한 요청을 수신 후, 기지국은 셀 내에서 지원되는 서비스 카테고리에 대해 (서비스 카테고리 식별 정보(예, ID), 키) 리스트를 STA/단말에게 전송한다({S1,K1),(S2,K2),...,(Sn,Kn)}).
제3 단계: STA/단말은 특정 서비스 카테고리에 속하는 메시지를 그룹 키를 이용하여 암호화/해독화를 수행할 수 있다. 구체적으로, STA/단말이 서비스 카테고리 Si를 위한 메시지를 전송하는 경우, STA/단말은 서비스 카테고리 Si에 대응하는 키 Ki로 해당 메시지를 암호화할 수 있다. 이와 대응하여, STA/단말이 서비스 카테고리 Si를 위한 메시지를 수신하거나 해당 서비스를 탐색하는 경우, STA/단말은 서비스 카테고리 Si에 대응하는 키 Ki로 수신 메시지의 해독을 시도할 수 있다. 즉, STA/단말은 관심이 있는 서비스 카테고리에 대응하는 키만을 이용하여 수신 메시지의 해독을 시도할 수 있다. 이 경우, STA/단말이 복수의 서비스 카테고리에 속하는 메시지를 수신하려는 경우, STA/단말은 해당하는 복수의 키를 이용하여 수신 메시지의 해독을 시도할 수 있다. 또한, 그룹 키를 이용한 서비스 탐색/메시지 검출을 보다 용이하게 하기 위하여, 그룹 키에 관한 정보(혹은, 서비스 카테고리, 서비스 카테고리 ID)가 메시지 헤더에 포함될 수 있고, 이를 통해 상대 STA/단말은 원치 않는 그룹(혹은 서비스 카테고리)에 대한 데이터를 용이하게 필터링 할 수 있다. 구체적으로, 원치 않는 그룹(혹은 서비스 카테고리)에 대한 데이터는 PHY(Physical) 계층에서 필터링 되고, 필터링 되지 않은 데이터는 MAC(Medium Access Control) 계층에서 해독화 될 수 있다. 본 예에 따라, 서비스 그룹에 할당된 키를 공유한 P2P 통신을 이용할 경우, 한 STA/단말은 대상 STA/단말의 정보(예 STA/단말 ID) 또는 대상 STA/단말이 속하는 그룹에 관한 정보를 알지 못하더라도 데이터를 전송/수신할 수 있다.
본 예에서 제안하는 그룹 키는 소정 조건에 따라 갱신될 수 있다. 예를 들어, 기지국은 STA/단말에게 그룹 키를 제공하고 "KEY EXPIRATION" 타이머를 세팅할 수 있다. "KEY EXPIRATION" 타이머는 STA/단말에게 그룹 키를 전송한 뒤 T 시간 이후에 만료될 수 있다. "KEY EXPIRATION" 타이머가 만료될 경우, 기지국은 그룹 키를 재생성하고 (서비스 카테고리 ID, 갱신된 키) 리스트를 STA/단말에게 전송할 수 있다. 또한, STA/단말은 기지에게 그룹 키(예, 쏘셜 P2P 키)의 갱신을 요청하고, 기지국은 이를 고려하여 그룹 키 갱신할 수 있다. STA/단말은 기지에게 그룹 키의 갱신을 요청하는 것은 단말 내에 설정된 타이머가 만료된 경우에 이뤄질 수 있다. 이 경우, 타이머는 그룹 키를 제공 받은 경우에 동작하여 T1 시간 이후에 만료될 수 있다.
방안 2: P2P를 위한 개별 키 분배
방안 1의 그룹 키 메카니즘을 정리하면 다음의 특징이 있다: (1) 셀룰러 네트워크에서 인증된 어떤 STA/단말도 셀 내에서 지원되는 모든 서비스 또는 그룹의 메시지를 암호화/해독화 할 수 있도록 그룹 키를 제공, (2) 원치 않는 그룹(혹은 서비스 카테고리)에 대한 데이터는 PHY(Physical) 계층에서 필터링 되고, 필터링 되지 않은 데이터는 MAC(Medium Access Control) 계층에서 해독화, (3) 서비스 카테고리에 대응하는 그룹 키에 기반하여 P2P 통신을 수행하므로 상대 STA/단말에 대한 정보 없이도 데이터 송수선이 가능하다.
그러나, 방안 1의 경우, 셀 내 모든 STA/단말에 의해 키가 공유되므로 P2P통신에서 프라이버시가 제공되지 못한다. 따라서, 본 방안에서는 셀룰러 네트워크를 이용하여 안전한(secure) P2P 연결을 제공하는 방법에 대해 설명한다. 본 방안에서는 셀 내 STA/단말은 기존 이웃 발견 과정(예, 도 4)을 통해 P2P 통신이 가능한 셀 내 다른 STA/단말의 존재 및 식별 정보(예, STA/단말 ID)를 알고 있다고 가정한다.
도 8에 본 예에 따른 개별 키 분배/관리 과정을 예시하였다. 여기서, 개별 키는 P2P 피어(peer)들(즉, 2개의 STA/단말)이 공유하는 키, 또는 제한된 수 또는 제한된 그룹의 STA/단말들만이 공유하는 키를 의미할 수 있다. 도 8을 참조하면, 개별 키 관리/분배 과정 및 그에 따른 P2P 통신은 다음과 같이 수행될 수 있다.
제1 단계; STA/단말(예, UE1)은 특정 STA/단말(예, UE3)과의 P2P 연결을 원하는 경우, 기지국에게 UE3과의 P2P 세션을 위한 키를 요청할 수 있다. 이를 위해, 키 요청 메시지는 상대 STA/단말에 대한 식별 정보(예, STA/단말 ID), 원하는 서비스(예, 쏘셜 채팅)에 대한 정보(예, 표 1의 ID 정보)를 포함할 수 있다. 서비스에 따라 불특정 STA/단말과 P2P 연결이 형성돼도 괜찮은 경우(예, 온라인 대전 게임), 상대 STA/단말에 대한 식별 정보(예, STA/단말 ID)는 생략되거나, 미리 정해진 특정 값으로 설정될 수 있다.
제2 단계: UE1으로부터 P2P 키를 요청 받은 후, 기지국은 UE1 및 UE3에게 각 피어의 공개(public) 키를 제공한다. 도면을 참조하면, UE1의 개인(private) 키 K_UE1이 UE3에게 제공/공개되고, UE3의 개인 키 K_UE3이 UE1에게 제공/공개된다. UE3은 UE1이 요청한 STA/단말일 수이거나, 서비스 종류에 따라 기지국이 임의로 선정한 STA/단말일 수 있다.
제3 단계: STA/단말은 공개 키를 이용해 데이터를 암호화하고, 상대 STA/단말은 자신의 개인 키를 이용해 수신 데이터를 해독화한다. 도면을 참조하면, UE1은 공개 키 K_UE3을 이용해 전송 데이터를 암호화하고, UE3은 개인 키 K_UE3을 이용해 수신 데이터를 해독화한다. 반대로, UE3은 공개 키 K_UE1을 이용해 전송 데이터를 암호화하고, UE1은 개인 키 K_UE1을 이용해 수신 데이터를 해독화한다.
공개 키를 STA/단말이 요청한 경우에만 제공하는 것은, STA/단말 피어의 개수에 비해 설정되는 P2P 세션의 개수가 적은 경우 보다 효율적일 수 있다.
도 9는 본 발명에 적용될 수 있는 WLAN P2P 장치를 예시한다.
도 9를 참조하면, WLAN-기반 P2P 네트워크는 제1 P2P 장치(110) 및 제2 P2P 장치(120)을 포함한다. 제1 P2P 장치(110)는 프로세서(112), 메모리(114) 및 무선 주파수(Radio Frequency, RF) 유닛(116)을 포함한다. 프로세서(112)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. RF 유닛(116)은 셀룰러 통신 모듈과 WLAN 통신 모듈(예, Wi-Fi, ZigBee, 스몰 셀(small cell)에 기반한 면허 밴드(licensed band) 용 통신 모듈)을 모두 포함한다. 제2 P2P 장치(120)는 프로세서(122), 메모리(124) 및 RF 유닛(126)을 포함한다. 프로세서(122)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다. RF 유닛(126)은 셀룰러 통신 모듈과 WLAN 통신 모듈(예, Wi-Fi, ZigBee, 스몰 셀(small cell)에 기반한 면허 밴드(licensed band) 용 통신 모듈)을 모두 포함한다. 제1 P2P 장치(110) 및/또는 제2 P2P 장치(120)는 단일 또는 다중 안테나를 가질 수 있다.
이상 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 P2P 통신, 구체적으로 WLAN-기반 P2P 통신을 위한 장치에 사용될 수 있다.

Claims (16)

  1. 셀룰러 네트워크에 연결된 제1 P2P(Peer to Peer) 장치에서 WLAN(Wireless Local Area Network)-기반 P2P 통신을 수행하는 방법에 있어서,
    셀룰러 기지국으로부터 하나 이상의 키 정보를 수신하되, 각각의 키 정보는 서비스 식별 정보와 대응하는 키 값을 포함하는 단계;
    제2 P2P 장치로부터 암호화된 데이터 신호를 수신하는 단계;
    상기 하나 이상의 키 정보 중, 상기 제1 P2P 장치가 관심 있는 하나 이상의 서비스에 대응하는 하나 이상의 키를 이용하여 상기 암호화된 데이터 신호의 해독화를 시도하는 위한 과정을 수행하는 단계를 포함하는 방법.
  2. 제1항에 있어서,
    상기 암호화된 데이터 신호의 수신은 상기 제2 P2P 장치에 대한 정보 또는 상기 제2 P2P 장치가 속하는 그룹에 대한 정보가 없는 상태에서 수신되는 방법.
  3. 제1항에 있어서,
    상기 하나 이상의 키 정보에 포함된 복수의 키 값은 상기 셀룰러 기지국이 서비스를 제공하는 셀 내의 모든 P2P 장치 또는 동일한 P2P 서비스에 관심이 있는 P2P 장치에 동일하게 설정되는 방법.
  4. 제1항에 있어서,
    상기 암호화된 데이터 신호의 헤더는 키 식별 정보, 서비스 식별 정보 중 적어도 하나를 포함하는 방법.
  5. 제4항에 있어서,
    상기 암호화된 데이터 신호의 헤더가 상기 제1 P2P가 관심 있는 키 또는 서비스에 관한 정보를 갖지 않는 경우, 상기 암호화된 데이터 신호는 버려지고,
    상기 암호화된 데이터 신호의 헤더가 상기 제1 P2P가 관심 있는 키 또는 서비스에 관한 정보를 갖는 경우, 상기 암호화된 데이터 신호에 대한 해독화 과정이 수행되는 방법.
  6. 제5항에 있어서,
    상기 암호화된 데이터 신호는 PHY(Physical) 계층에서 버려지고,
    상기 암호화된 데이터 신호에 대한 해독화 과정은 MAC(Medium Access Control) 계층에서 수행되는 방법.
  7. 제1항에 있어서,
    상기 하나 이상의 키 정보는 소정의 타이머가 만료되는 경우 갱신되는 방법.
  8. 제1항에 있어서,
    상기 하나 이상의 키 정보에 대해 갱신을 요청하는 정보를 상기 셀룰러 기지국에게 전송하는 단계를 더 포함하는 방법.
  9. 셀룰러 네트워크에 연결되고, WLAN(Wireless Local Area Network)-기반 P2P(Peer to Peer) 통신을 수행하도록 구성된 제1 P2P 장치에 있어서,
    무선 주파수(Radio Frequency, RF) 유닛; 및
    프로세서를 포함하고,
    상기 프로세서는 셀룰러 기지국으로부터 하나 이상의 키 정보를 수신하되, 각각의 키 정보는 서비스 식별 정보와 대응하는 키 값을 포함하고, 제2 P2P 장치로부터 암호화된 데이터 신호를 수신하며, 상기 하나 이상의 키 정보 중, 상기 제1 P2P 장치가 관심 있는 하나 이상의 서비스에 대응하는 하나 이상의 키를 이용하여 상기 암호화된 데이터 신호의 해독화를 시도하는 위한 과정을 수행하도록 구성된 제1 P2P 장치.
  10. 제9항에 있어서,
    상기 암호화된 데이터 신호의 수신은 상기 제2 P2P 장치에 대한 정보 또는 상기 제2 P2P 장치가 속하는 그룹에 대한 정보가 없는 상태에서 수신되는 제1 P2P 장치.
  11. 제9항에 있어서,
    상기 하나 이상의 키 정보에 포함된 복수의 키 값은 상기 셀룰러 기지국이 서비스를 제공하는 셀 내의 모든 P2P 장치 또는 동일한 P2P 서비스에 관심이 있는 P2P 장치에 동일하게 설정되는 제1 P2P 장치.
  12. 제9항에 있어서,
    상기 암호화된 데이터 신호의 헤더는 키 식별 정보, 서비스 식별 정보 중 적어도 하나를 포함하는 제1 P2P 장치.
  13. 제12항에 있어서,
    상기 암호화된 데이터 신호의 헤더가 관심 있는 키 또는 서비스에 관한 정보를 갖지 않는 경우, 상기 암호화된 데이터 신호는 버려지고,
    상기 암호화된 데이터 신호의 헤더가 관심 있는 키 또는 서비스에 관한 정보를 갖는 경우, 상기 암호화된 데이터 신호에 대한 해독화 과정이 수행되는 제1 P2P 장치.
  14. 제13항에 있어서,
    상기 암호화된 데이터 신호는 PHY(Physical) 계층에서 버려지고,
    상기 암호화된 데이터 신호에 대한 해독화 과정은 MAC(Medium Access Control) 계층에서 수행되는 제1 P2P 장치.
  15. 제9항에 있어서,
    상기 하나 이상의 키 정보는 소정의 타이머가 만료되는 경우 갱신되는 제1 P2P 장치.
  16. 제9항에 있어서,
    상기 프로세서는 또한 상기 하나 이상의 키 정보에 대해 갱신을 요청하는 정보를 상기 셀룰러 기지국에게 전송하도록 구성된 제1 P2P 장치.
PCT/KR2012/008220 2011-10-10 2012-10-10 Wlan(wireless local area network)-기반 p2p(peer to peer) 통신을 위한 방법 및 이를 위한 장치 WO2013055106A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147012494A KR101958786B1 (ko) 2011-10-10 2012-10-10 Wlan(wireless local area network)-기반 p2p(peer to peer) 통신을 위한 방법 및 이를 위한 장치
US14/351,123 US9294278B2 (en) 2011-10-10 2012-10-10 Method for wireless local area network (WLAN)-based peer to peer (P2P) communication and apparatus for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161545205P 2011-10-10 2011-10-10
US61/545,205 2011-10-10

Publications (2)

Publication Number Publication Date
WO2013055106A2 true WO2013055106A2 (ko) 2013-04-18
WO2013055106A3 WO2013055106A3 (ko) 2013-06-13

Family

ID=48082652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008220 WO2013055106A2 (ko) 2011-10-10 2012-10-10 Wlan(wireless local area network)-기반 p2p(peer to peer) 통신을 위한 방법 및 이를 위한 장치

Country Status (3)

Country Link
US (1) US9294278B2 (ko)
KR (1) KR101958786B1 (ko)
WO (1) WO2013055106A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015065063A1 (en) * 2013-10-30 2015-05-07 Samsung Electronics Co., Ltd. Method and apparatus to identity verification using asymmetric keys in wireless direct communication network
WO2015116413A1 (en) * 2014-01-30 2015-08-06 Intel IP Corporation Apparatus, system and method of securing communications of a user equipment (ue) in a wireless local area network
EP3100572A1 (en) * 2014-01-30 2016-12-07 Telefonaktiebolaget LM Ericsson (publ) Pre-configuration of devices supporting national security and public safety communications
US10045261B2 (en) 2014-12-10 2018-08-07 Intel Corporation Methods, systems, and devices for handover in multi-cell integrated networks

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101915314B1 (ko) * 2011-10-25 2018-11-07 삼성전자주식회사 휴대단말기에서 WPS(Wi-Fi Protecte d Setup)을 이용한 와이파이 연결 방법 및 장치
TWI528766B (zh) * 2012-02-05 2016-04-01 財團法人資訊工業策進會 直接通訊系統及其探索互動方法
KR20130109781A (ko) * 2012-03-28 2013-10-08 한국전자통신연구원 셀룰러 이동통신 시스템에서의 단말간 직접 통신을 위한 자원 할당 방법
CN104023375B (zh) * 2013-02-28 2017-06-23 株式会社理光 网络节点发现方法和装置
JP6838789B2 (ja) 2013-06-28 2021-03-03 日本電気株式会社 Ue及びその通信方法
KR102209289B1 (ko) * 2013-10-11 2021-01-29 삼성전자 주식회사 이동 통신 시스템 환경에서 프록시미티 기반 서비스를 위한 보안 및 정보 지원 방법 및 시스템
US9876767B2 (en) * 2014-05-09 2018-01-23 Alcatel Lucent Secure device-to-device (D2D) communication
US10154532B2 (en) * 2014-10-16 2018-12-11 Kyocera Corporation User terminal, relay apparatus, and processor
US10897706B2 (en) 2014-11-06 2021-01-19 Samsung Electronics Co., Ltd. Bootstrapping Wi-Fi direct communication by a trusted network entity
US9872234B2 (en) 2015-02-12 2018-01-16 Intel IP Corporation Apparatus, system and method of communicating in an awareness cluster
US10075447B2 (en) 2015-03-04 2018-09-11 Neone, Inc. Secure distributed device-to-device network
US20170181205A1 (en) * 2015-12-21 2017-06-22 Intel Corporation Direct connection network
US11012227B2 (en) 2016-07-01 2021-05-18 Lg Electronics Inc. Authentication method and system for device using Bluetooth technology
US10574445B2 (en) * 2016-12-21 2020-02-25 Intel IP Corporation Range constrained device configuration
US11025596B1 (en) * 2017-03-02 2021-06-01 Apple Inc. Cloud messaging system
US10839060B1 (en) * 2019-08-27 2020-11-17 Capital One Services, Llc Techniques for multi-voice speech recognition commands
CN117979285A (zh) * 2022-10-24 2024-05-03 华为技术有限公司 一种数据传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070110822A (ko) * 2007-10-29 2007-11-20 한국정보통신주식회사 통신 프로토콜 스택의 스위칭 기능을 이용한 이종의 무선통신망에 대한 종단간 보안 통신을 위한 단말장치
US20080069348A1 (en) * 2006-09-18 2008-03-20 Jesse Walker Techniques for key derivation for secure communication in wireless mesh networks
US20100299517A1 (en) * 2009-05-22 2010-11-25 Nuvon, Inc. Network System with a Plurality of Networked Devices with Various Connection Protocols
KR20110042711A (ko) * 2009-10-20 2011-04-27 삼성전자주식회사 개인 네트워크를 이용한 서비스 제공 방법 및 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020174335A1 (en) * 2001-03-30 2002-11-21 Junbiao Zhang IP-based AAA scheme for wireless LAN virtual operators
WO2003047160A1 (en) * 2001-11-30 2003-06-05 Thumbaccess Biometrics Corporation Pty Ltd An encryption system
WO2006000239A1 (en) * 2004-06-24 2006-01-05 Telecom Italia S.P.A. Method and system for controlling access to communication networks, related network and computer program therefor
US8401535B2 (en) * 2006-06-19 2013-03-19 Samsung Electronics Co., Ltd. System, a method, and an apparatus for sharing an updated content with peers
US7801098B2 (en) * 2007-01-23 2010-09-21 Broadcom Corporation Parallel MAC/PHY for enhanced transmission rate in a wireless network
KR100955573B1 (ko) * 2007-11-14 2010-04-30 에스케이 텔레콤주식회사 편의 서비스 인증 방법 및 시스템
US8196186B2 (en) * 2008-05-20 2012-06-05 Microsoft Corporation Security architecture for peer-to-peer storage system
KR101418570B1 (ko) * 2009-10-12 2014-07-10 한국전자통신연구원 P2p 제어 장치 및 전송 오버레이 제어 방법
US8855134B2 (en) * 2012-07-25 2014-10-07 Qualcomm Incorporated Network-assisted peer discovery
KR102064389B1 (ko) * 2013-08-30 2020-01-13 삼성전자 주식회사 무선 통신 시스템에서 액세스 포인트 탐색 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080069348A1 (en) * 2006-09-18 2008-03-20 Jesse Walker Techniques for key derivation for secure communication in wireless mesh networks
KR20070110822A (ko) * 2007-10-29 2007-11-20 한국정보통신주식회사 통신 프로토콜 스택의 스위칭 기능을 이용한 이종의 무선통신망에 대한 종단간 보안 통신을 위한 단말장치
US20100299517A1 (en) * 2009-05-22 2010-11-25 Nuvon, Inc. Network System with a Plurality of Networked Devices with Various Connection Protocols
KR20110042711A (ko) * 2009-10-20 2011-04-27 삼성전자주식회사 개인 네트워크를 이용한 서비스 제공 방법 및 장치

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015065063A1 (en) * 2013-10-30 2015-05-07 Samsung Electronics Co., Ltd. Method and apparatus to identity verification using asymmetric keys in wireless direct communication network
KR20160078426A (ko) * 2013-10-30 2016-07-04 삼성전자주식회사 무선 직접통신 네트워크에서 비대칭 키를 사용하여 아이덴티티를 검증하기 위한 방법 및 장치
US10631162B2 (en) 2013-10-30 2020-04-21 Samsung Electronics Co., Ltd. Method and apparatus to perform device to device communication in wireless communication network
KR102398221B1 (ko) * 2013-10-30 2022-05-16 삼성전자주식회사 무선 직접통신 네트워크에서 비대칭 키를 사용하여 아이덴티티를 검증하기 위한 방법 및 장치
WO2015116413A1 (en) * 2014-01-30 2015-08-06 Intel IP Corporation Apparatus, system and method of securing communications of a user equipment (ue) in a wireless local area network
CN105850169A (zh) * 2014-01-30 2016-08-10 英特尔Ip公司 无线局域网中用户设备(ue)的安全通信的装置、系统和方法
US9426649B2 (en) 2014-01-30 2016-08-23 Intel IP Corporation Apparatus, system and method of securing communications of a user equipment (UE) in a wireless local area network
EP3100572A1 (en) * 2014-01-30 2016-12-07 Telefonaktiebolaget LM Ericsson (publ) Pre-configuration of devices supporting national security and public safety communications
KR101836021B1 (ko) 2014-01-30 2018-04-19 인텔 아이피 코포레이션 무선 근거리 네트워크에서 사용자 장비(ue)의 통신을 보안하기 위한 장치, 시스템 및 방법
US10045261B2 (en) 2014-12-10 2018-08-07 Intel Corporation Methods, systems, and devices for handover in multi-cell integrated networks

Also Published As

Publication number Publication date
KR101958786B1 (ko) 2019-07-02
US9294278B2 (en) 2016-03-22
US20140301552A1 (en) 2014-10-09
WO2013055106A3 (ko) 2013-06-13
KR20140085504A (ko) 2014-07-07

Similar Documents

Publication Publication Date Title
WO2013055106A2 (ko) Wlan(wireless local area network)-기반 p2p(peer to peer) 통신을 위한 방법 및 이를 위한 장치
US10568152B2 (en) Access network query protocol method and apparatus
US10064211B2 (en) Accessing applications by devices in proximity in a communications network
US10362451B2 (en) Methods, devices, and computer program products for facilitating device-to-device communication among wireless communication devices
JP2023062112A (ja) Ieee802.11ネットワークにおける動的macアドレス配布のための方法および手順
WO2014109513A1 (ko) 무선 통신 시스템에서 디스커버리 방법 및 장치
WO2014088378A1 (ko) 무선 통신 시스템에서 세션 초기화 방법 및 장치
WO2014123383A1 (ko) 무선 통신 시스템에서 세션 수립 방법 및 장치
WO2013035999A1 (ko) WFD(Wireless Fidelity Direct) P2P(Peer to Peer) 통신을 위한 이웃 발견 방법 및 이를 위한 장치
WO2014158006A1 (ko) 장치 간 통신 방법 및 장치
WO2015065165A1 (ko) 이동 통신 시스템 환경에서 프락시미티 기반 서비스 단말 간 발견 및 통신을 지원하기 위한 보안 방안 및 시스템
KR101670753B1 (ko) 와이파이 다이렉트(Wi- Fi Direct) P2P(Peer to Peer) 통신을 위한 기기 발견 방법 및 이를 위한 장치
JP2016522639A (ja) 通信ネットワークにおけるデバイス−デバイス間通信に関するデバイス発見方法、ユーザ機器デバイスおよびコンピュータプログラム製品
CN114846841A (zh) 使用wtru到wtru中继的直接发现和通信的方法和设备
WO2017039376A1 (ko) 무선 통신 시스템에서 연결 능력 정보를 교환하는 방법 및 장치
WO2017014579A1 (ko) 무선 통신 시스템에서 디스커버리를 수행하는 방법 및 장치
WO2015119329A1 (ko) 무선 통신 시스템에서 디스커버리를 수행하는 방법 및 장치
JP2022524704A (ja) Pc5インターフェース上においてv2xユニキャスト通信を可能にする手順
WO2015167269A1 (ko) 무선 통신 시스템에서 서비스 디스커버리 방법 및 장치
WO2016068632A1 (ko) 무선 통신 시스템에서 와이파이 다이렉트를 지원하는 장치가 디스커버리를 수행하는 방법 및 장치
WO2016126138A1 (ko) 무선 통신 시스템에서 세션 수립 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839325

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14351123

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147012494

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12839325

Country of ref document: EP

Kind code of ref document: A2