WO2013054932A1 - Porous polypropylene film, layered porous film, and electricity-storage device - Google Patents

Porous polypropylene film, layered porous film, and electricity-storage device Download PDF

Info

Publication number
WO2013054932A1
WO2013054932A1 PCT/JP2012/076549 JP2012076549W WO2013054932A1 WO 2013054932 A1 WO2013054932 A1 WO 2013054932A1 JP 2012076549 W JP2012076549 W JP 2012076549W WO 2013054932 A1 WO2013054932 A1 WO 2013054932A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polypropylene film
porous
porous polypropylene
mass
Prior art date
Application number
PCT/JP2012/076549
Other languages
French (fr)
Japanese (ja)
Inventor
啓 生駒
久万 琢也
大倉 正寿
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013503904A priority Critical patent/JP5354131B2/en
Priority to CN201280050029.XA priority patent/CN103890062B/en
Priority to KR1020147008268A priority patent/KR20140081808A/en
Publication of WO2013054932A1 publication Critical patent/WO2013054932A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a porous polypropylene film, a laminated porous film, and an electricity storage device using these.
  • Porous polypropylene films are being considered for use in a wide range of applications, including separators for batteries and electrolytic capacitors, various separation membranes, clothing, moisture-permeable waterproof membranes for medical applications, reflectors for flat panel displays, and thermal transfer recording sheets.
  • a porous film is suitable as a separator for lithium ion batteries widely used in mobile devices such as notebook personal computers, mobile phones, and digital cameras.
  • lithium-ion batteries have been used in electric vehicles and hybrid vehicles, and as the output of batteries increases and the capacity increases, studies on coating porous films with inorganic particle layers and heat-resistant resin layers are actively conducted. (For example, refer to Patent Documents 1 and 2). Further, since the size of the battery is increased and the area to be used is increased, cost reduction is also strongly desired.
  • a ⁇ -crystal method can be cited as a dry method and a method capable of forming a film with high productivity by biaxial stretching.
  • the ⁇ crystal method is a method in which voids are formed in a film by utilizing the difference in crystal density and crystal transition between ⁇ type crystal ( ⁇ crystal) and ⁇ type crystal ( ⁇ crystal), which are polymorphs of polypropylene.
  • Many proposals have been made (see, for example, Patent Documents 3 to 5).
  • many proposals have been made on a method of coating a functional layer such as a heat-resistant layer on the surface of a porous polypropylene film by the ⁇ crystal method (see, for example, Patent Documents 6 to 14).
  • the porous polypropylene film by the ⁇ crystal method may change the pore structure and change the thickness and air resistance when an organic solvent such as acetone is applied and dried.
  • the coating agent for coating is limited to an aqueous system, and it has been difficult to improve productivity by using an organic solvent having a high drying rate.
  • the present invention has been made in view of the above, and is suitably used as a separator for an electricity storage device, which has excellent organic solvent resistance and air permeability, and has little change in physical properties when coating a functional layer such as a heat-resistant layer.
  • An object of the present invention is to provide a porous polypropylene film, a laminated porous film, and an electricity storage device using these.
  • the porous polypropylene film according to the present invention is a porous polypropylene film containing a polypropylene resin having ⁇ -crystal forming ability, and has an air resistance of 1,000 seconds. / 100 ml or less, the thickness change rate before and after acetone immersion treatment is 20% or less.
  • the porous polypropylene film of the present invention is excellent in organic solvent resistance and air permeability, and can be suitably used as a separator for an electricity storage device because it has little change in physical properties when coating a functional layer such as a heat-resistant layer.
  • the porous polypropylene film according to the present embodiment includes a polypropylene resin having ⁇ -crystal forming ability as the first component.
  • the polypropylene resin is preferably the main component in the porous polypropylene film.
  • the “main component” means that the proportion of a specific component in all components is 50% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and most preferably Means 95% by mass or more.
  • the porous polypropylene film according to the present embodiment has pores that penetrate both surfaces of the film and have air permeability (hereinafter referred to as through-holes).
  • through-holes pores that penetrate both surfaces of the film and have air permeability
  • the ⁇ crystal forming ability of the porous polypropylene film is preferably 40% or more. If the ⁇ -crystal forming ability is less than 40%, the amount of ⁇ -crystals is small at the time of film production, so the number of voids formed in the film is reduced by utilizing the transition to ⁇ -crystal, and as a result, only a film with low permeability is obtained. It may not be possible.
  • the upper limit of ⁇ -crystal forming ability is not particularly limited, but it exceeds 99.9% by adding a large amount of the ⁇ -crystal nucleating agent described later or the stereoregulation of the polypropylene resin to be used. The industrial practical value is low, for example, the film forming stability is lowered. Industrially, the ⁇ -crystal forming ability is preferably 65 to 99.9%, particularly preferably 70 to 95%.
  • a polypropylene resin with a high isotactic index is used, or a ⁇ crystal is selectively formed by adding it to a polypropylene resin called a ⁇ crystal nucleating agent.
  • the crystallization nucleating agent to be used is preferably used as an additive.
  • ⁇ crystal nucleating agents include alkali or alkaline earth metal salts of carboxylic acids such as calcium 1,2-hydroxystearate and magnesium succinate, and N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide.
  • Amide compounds such as 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, benzenesulfonic acid
  • aromatic sulfonic acid compounds such as sodium and sodium naphthalene sulfonate, imide carboxylic acid derivatives, phthalocyanine pigments, and quinacridone pigments.
  • amides disclosed in JP-A-5-310665 are preferred.
  • the addition amount of the ⁇ crystal nucleating agent is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.3% by mass, based on the whole polypropylene resin. If it is less than 0.05% by mass, formation of ⁇ crystals becomes insufficient, and the air permeability of the porous polypropylene film may be lowered. If it exceeds 0.5% by mass, coarse voids are formed, and physical property changes during application of organic solvents and drying may increase.
  • the polypropylene resin constituting the porous polypropylene film according to the present embodiment has a melt flow rate (hereinafter referred to as MFR, measurement conditions are 230 ° C., 2.16 kg) in the range of 2 to 30 g / 10 minutes. It is preferable that it is an isotactic polypropylene resin.
  • MFR melt flow rate
  • measurement conditions are 230 ° C., 2.16 kg
  • it is an isotactic polypropylene resin.
  • the MFR is less than 2 g / 10 minutes, the melt viscosity of the resin becomes high and high-precision filtration becomes difficult, and the quality of the film may be lowered.
  • the MFR exceeds 30 g / 10 min, the molecular weight becomes too low, so that the film is easily broken during stretching, and the productivity may be lowered. More preferably, the MFR is 3 to 20 g / 10 minutes.
  • the isotactic index is preferably 90 to 99.9%, more preferably 95 to 99%. If the isotactic index is less than 90%, the crystallinity of the resin is low, and it may be difficult to achieve high air permeability.
  • a homopolypropylene resin can be used, as well as an ethylene component in polypropylene from the viewpoint of stability in film forming process, film forming property, and uniformity of physical properties. It is also possible to use a resin obtained by copolymerizing an ⁇ -olefin component such as, butene, hexene, octene or the like in an amount of 5% by mass or less, more preferably 2.5% by mass or less.
  • the form of introduction of the comonomer (copolymerization component) into polypropylene may be either random copolymerization or block copolymerization.
  • the above-mentioned polypropylene resin may contain high molecular weight polypropylene from the viewpoint of improving safety and improving film forming property.
  • the content is preferably in the range of 0.5 to 30% by mass.
  • the high molecular weight polypropylene is a polypropylene having an MFR of 0.1 to 1 g / 10 min.
  • polypropylene resin D101 manufactured by Sumitomo Chemical Co., Ltd. polypropylene resins E111G, B241, E105GM manufactured by Prime Polymer Co., etc. can be used.
  • the above-mentioned polypropylene resin may contain a low melting point polypropylene from the viewpoint of improving safety and improving film forming property.
  • the content is preferably in the range of 0.5 to 30% by mass.
  • the low melting point polypropylene is a polypropylene having a melting point Tm of 130 to 155 ° C., and for example, polypropylene resins S131 and FS3611 manufactured by Sumitomo Chemical Co., Ltd. can be used.
  • the polypropylene resin used in the present embodiment has a mass ratio of 80 to 99 parts by mass of polypropylene and 20 to 1 part by mass of the ethylene / ⁇ -olefin copolymer from the viewpoint of void formation efficiency during biaxial stretching.
  • a mixture is preferred.
  • examples of the ethylene / ⁇ -olefin copolymer include linear low-density polyethylene and ultra-low-density polyethylene, and among them, a copolymer polyethylene obtained by copolymerizing octene-1 and having a melting point of 60 to 90 ° C.
  • a resin (copolymerized PE resin) can be preferably used.
  • the copolymerized polyethylene include commercially available resins such as “Engage (registered trademark)” (type names: 8411, 8452, 8100, etc.) manufactured by Dow Chemical.
  • the copolymer polyethylene resin contains 10% by mass or less, and the porosity and average through-hole diameter described later are controlled within a preferable range. Since it becomes easy to do, it is preferable. From the viewpoint of the mechanical properties of the film, it is more preferably 1 to 7% by mass, still more preferably 1 to 2.5% by mass.
  • the polypropylene resin used in the present embodiment may be added with a dispersant in addition to the above-described ethylene / ⁇ -olefin copolymer from the viewpoint of uniformizing the pore structure and suppressing physical property changes after the acetone immersion treatment. preferable. Any dispersing agent may be used as long as it can increase the dispersibility of the ethylene / ⁇ -olefin copolymer in the polypropylene resin. As described in International Publication No. 2007/046225, the polypropylene resin and the ethylene ⁇ The compatibility of the ⁇ -olefin copolymer is good.
  • the ethylene / propylene random copolymer generally used as a compatibilizing agent for polypropylene resin and polyethylene resin is dispersed for uniform pore structure in this embodiment. Does not function as an agent.
  • a dispersant preferably used in the present embodiment blocks each having a highly compatible segment with polypropylene (for example, a polypropylene segment, an ethylene butylene copolymer segment) and a highly compatible segment with polyethylene (such as a polyethylene segment).
  • a copolymer is preferred.
  • a resin having such a structure a commercially available resin such as olefin crystal, ethylene butylene, olefin crystal block polymer (hereinafter referred to as CEBC) “DYNARON (registered trademark)” (type name) manufactured by JSR Corporation : Olefin block copolymer "INFUSE OBC (registered trademark)” manufactured by Dow Chemical Co., Ltd.
  • the addition amount of the dispersant is preferably 1 to 50 parts by mass, more preferably 5 to 33 parts by mass with respect to 100 parts by mass of the ethylene / ⁇ -olefin copolymer.
  • the melting point of the dispersant is higher than the melting point of the ethylene / ⁇ -olefin copolymer.
  • the temperature is preferably 0 to 60 ° C., more preferably 15 to 30 ° C.
  • the polypropylene resin forming the porous polypropylene film according to the present embodiment is composed of an antioxidant, a heat stabilizer, a neutralizing agent, an antistatic agent, and inorganic or organic particles as long as the effects of the present invention are not impaired.
  • Various additives such as a lubricant, an antiblocking agent, a filler, and an incompatible polymer may be contained.
  • an antioxidant for the purpose of suppressing the oxidative deterioration due to the thermal history of the polypropylene resin, but the amount of the antioxidant added is 2 parts by mass or less with respect to 100 parts by mass of the polypropylene composition.
  • the amount is preferably 1 part by mass or less, more preferably 0.5 part by mass or less.
  • the porous polypropylene film according to the present embodiment has a thickness change rate of 20% or less before and after the acetone immersion treatment.
  • the thickness change rate exceeds 20%, that is, when the thickness exceeds 20% and shrinks or swells, when the functional layer such as a heat-resistant layer is applied by coating, the thickness changes depending on the drying conditions, thereby controlling the product thickness. May become difficult, or air resistance may increase and output characteristics may deteriorate.
  • the thickness change rate before and after the acetone immersion treatment is preferably 14% or less, and more preferably 7% or less.
  • the rate of change in thickness before and after the acetone immersion treatment is determined by adjusting the amount of the ⁇ -crystal nucleating agent, ethylene / ⁇ -olefin copolymer and dispersant described above within the above range, the temperature of the cast drum, and the stretching ratio in the longitudinal direction. And the temperature, the transverse draw ratio, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below.
  • the porous polypropylene film according to the present embodiment is provided, for example, between a positive electrode and a negative electrode, and as a separator in an electricity storage device including a separator that transmits ions in an electrolytic solution while preventing contact between the two. Can be used.
  • the porous polypropylene film according to the present embodiment has an air resistance of 1,000 seconds / 100 ml or less. More preferably, it is 10 to 1,000 seconds / 100 ml, more preferably 50 to 500 seconds / 100 ml, and most preferably 80 to 350 seconds / 100 ml. If the air permeation resistance exceeds 1,000 seconds, the output characteristics may deteriorate when the porous polypropylene film is used as a separator for an electricity storage device. From the viewpoint of output characteristics, the air permeability resistance is preferably as low as possible. However, if it is less than 10 seconds, the mechanical strength of the film is lowered and the handling property is lowered, or the electric characteristics such as the cycle characteristics are lowered when the separator is used. There is a case. When controlling permeation resistance by the ⁇ crystal method, operating conditions such as longitudinal stretching conditions such as longitudinal stretching ratio and longitudinal stretching temperature, or transverse stretching conditions such as transverse stretching temperature, transverse stretching speed and transverse stretching ratio are changed. Thus, the air resistance can be controlled.
  • the air resistance when controlling the air resistance according to the operating conditions, if the air resistance is reduced, the porosity of the porous polypropylene film increases, and the change in physical properties and dimensions after the acetone immersion treatment may increase. It was. Therefore, in the present embodiment, in addition to using the above-mentioned raw materials, by setting the conditions after the heat treatment conditions after transverse stretching to specific conditions as described later, the air resistance is low and by acetone treatment. A porous polypropylene film with small changes in physical properties and dimensions was obtained, and both organic solvent resistance and output characteristics were compatible. The heat treatment conditions are described below.
  • pores are formed by transverse stretching with a tenter following longitudinal stretching, and a porous polypropylene film can be obtained.
  • the transverse stretching process in the tenter can be divided into three processes: a preheating process, a transverse stretching process, and a heat treatment process.
  • the film after stretching is thermally fixed and relaxed.
  • the relaxation rate of a general film is about 2 to 10%, and the temperature at that time is about (Tm-10) ° C to (Tm-5) ° C, where the melting point of the polypropylene resin is Tm.
  • the relaxation rate is set to a high value of 15 to 35%, and further, the air resistance is reduced by taking the heat treatment temperature condition of (Tm ⁇ 2) ° C. to (Tm + 5) ° C.
  • a porous polypropylene film having small changes in physical properties and dimensions after acetone treatment can be obtained.
  • the porous polypropylene film according to the present embodiment preferably has a film thickness of 5 to 50 ⁇ m. If the thickness is less than 5 ⁇ m, the film may break during use. If the thickness exceeds 50 ⁇ m, the volume ratio of the porous polypropylene film in the electricity storage device becomes too high, and it may not be possible to obtain a high energy density. .
  • the film thickness is more preferably 10 to 30 ⁇ m, and still more preferably 12 to 25 ⁇ m.
  • the porous polypropylene film according to this embodiment preferably has a porosity of 40 to 85%.
  • the porosity is less than 40%, the electrical resistance may increase particularly when used as a separator for a high-power battery.
  • the porosity exceeds 85%, there may be a large change in physical properties and dimensions after acetone treatment.
  • the film porosity is more preferably 42 to 75%, and particularly preferably 45 to 70%.
  • the porosity is determined by setting the addition amount of the above-mentioned ⁇ crystal nucleating agent, ethylene / ⁇ -olefin copolymer and dispersing agent within the above range, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, and the transverse stretching.
  • the magnification, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described later.
  • the porous polypropylene film according to the present embodiment preferably has a dimensional change rate in the width direction of 2% or less before and after the acetone immersion treatment.
  • the acetone immersion treatment is a method in which a porous polypropylene film is fixed by frame attachment only in the film forming direction, immersed in acetone for 1 minute, and then dried in a hot air oven at 80 ° C. for 1 minute to remove acetone. Shows the processing to be performed. If the dimension in the width direction after acetone treatment shrinks by more than 2% compared to that before acetone treatment, the air resistance increases or the width decreases when a functional layer such as a heat-resistant layer is applied by coating. As a result, the thickness may increase.
  • the resin constituting the porous polypropylene film swells when a functional layer such as a heat-resistant layer is applied by coating. Or it melt
  • the width direction dimensional change rate is more preferably 1.5% or less, more preferably the width direction dimensional shrinkage before and after the acetone immersion treatment is preferably 0 to 1.5%, and most preferably the acetone immersion treatment.
  • the front-rear width direction dimensional shrinkage is 0 to 1%.
  • the rate of dimensional change in the width direction before and after the acetone immersion treatment is determined by setting the amount of the ⁇ crystal nucleating agent, ethylene / ⁇ -olefin copolymer and dispersant described above within the above range, the temperature of the cast drum, and the longitudinal direction.
  • the draw ratio and temperature, the transverse draw ratio, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below, especially the temperature, time, and relaxation rate in the heat treatment step. Control is important.
  • the direction parallel to the film forming direction is referred to as the film forming direction, the longitudinal direction or the MD direction, and the direction perpendicular to the film forming direction in the film plane is the width direction, the lateral direction or the TD direction. Called.
  • the porous polypropylene film according to the present embodiment preferably has a change rate of air permeability resistance before and after the acetone immersion treatment of 15% or less.
  • the change rate of the air resistance exceeds 15%, that is, when the air resistance decreases or increases beyond 15%, when the functional layer such as a heat-resistant layer is applied by coating, the air resistance depends on the drying conditions. May change, making control difficult, increasing air resistance and reducing output characteristics, and increasing air resistance unevenness after drying, which may deteriorate battery characteristics.
  • the change rate of the air resistance before and after the acetone immersion treatment is preferably 10% or less, and more preferably 7% or less.
  • the rate of change in air resistance before and after the acetone immersion treatment is determined based on the addition amount of the ⁇ crystal nucleating agent, ethylene / ⁇ -olefin copolymer and dispersing agent described above, the temperature of the cast drum, and the longitudinal direction.
  • the stretching ratio and temperature, the transverse stretching ratio, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below.
  • the maximum value when the thickness change rate before and after the acetone immersion treatment was measured at intervals of 70 mm in the width direction was T max (%), and the minimum value was T min (%).
  • the value of (T max ⁇ T min ) is preferably 3% or less. More preferably, it is 2% or less.
  • T max -T min The value of (T max -T min ) depends on the amount of addition of the ⁇ crystal nucleating agent, ethylene / ⁇ -olefin copolymer and dispersant described above within the above range, the temperature of the cast drum, and the relaxation zone. It is possible to control the relaxation rate by setting the relaxation rate within the range described later.
  • the porous polypropylene film according to the present embodiment preferably has a laminated structure from the viewpoint of achieving both organic solvent resistance and air permeability.
  • the laminated structure it is preferable that any layer contains a polypropylene resin having a carboxyl group or a modified polyolefin by an unsaturated dicarboxylic acid, and more preferably a polypropylene resin having a carboxyl group in the surface layer or an unsaturated dicarboxylic acid. It preferably contains a modified polyolefin.
  • the polypropylene resin having a carboxyl group or the polyolefin modified with an unsaturated dicarboxylic acid is preferably contained in an included layer in an amount of 0.1 to 50%, more preferably 1 to 10%.
  • a method of introducing a carboxyl group into a polypropylene resin there is a method of graft copolymerizing a polar monomer having a carboxyl group.
  • the polar monomer having a carboxyl group include (meth) acrylic acid and acid derivatives thereof, and monoolefin dicarboxylic acid, anhydrides and monoesters thereof.
  • (meth) acrylic acid and ester derivatives thereof include, for example, (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, (meth) acrylic Isopropyl acid, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, etc.
  • monoolefin dicarboxylic acids examples include maleic acid, chloromaleic acid, citraconic acid , Itaconic acid, glutaconic acid, 3-methyl-2-pentene diacid, 2-methyl-2-pentene diacid, 2-hexene diacid, and the like.
  • these polypropylene resins also have ⁇ crystal forming ability, and ⁇ crystal forming ability is more preferably 40% or more.
  • the number of stacked layers may be a two-layer stack, a three-layer stack, or a larger number of stacks.
  • the lamination method may be either a feed block method by coextrusion or a method of laminating porous polypropylene films by lamination, but from the viewpoint of productivity, lamination by coextrusion is preferred.
  • porous polypropylene film of this invention a method for producing a porous polypropylene film according to the present embodiment will be described based on a specific example.
  • the manufacturing method of the porous polypropylene film of this invention is not limited to this.
  • a polypropylene resin 70 parts by mass of a commercially available homopolypropylene resin having an MFR of 8 g / 10 min, 30 parts by mass of a commercially available homopolypropylene having an MFR of 0.5 g / 10 min, and 0.2 parts by mass of an antioxidant
  • the raw material is supplied from the weighing hopper to the twin screw extruder so as to be mixed at this ratio, melt kneaded at 240 ° C., discharged from the die in a strand shape, cooled and solidified in a 25 ° C. water tank, and formed into chips. Cut to prepare a polypropylene raw material (c).
  • 73 parts by mass of the polypropylene raw material (a), 10 parts by mass of the polypropylene raw material (b), 16.7 parts by mass of the polypropylene raw material (c), and 0.3 parts by mass of the antioxidant are mixed by dry blending, Supplied to a single screw extruder of layer A, while dry blending 99 parts by weight of the polypropylene raw material (a) and 1 part by weight of a polypropylene resin having a carboxyl group or a modified polyolefin with unsaturated dicarboxylic acid, Supply to the extruder.
  • melt extrusion is performed at 200 to 230 ° C. from the single-axis extruder for the A layer and the single-screw extruder for the B layer.
  • the mixture is discharged onto a cast drum from a feed block type B / A / B composite T die to obtain an unstretched laminated cast sheet.
  • the surface temperature of the cast drum is preferably 105 to 130 ° C. from the viewpoint of controlling the ⁇ crystal fraction of the cast sheet to be high.
  • the forming of the end portion of the sheet affects the subsequent stretchability, and therefore it is preferable that the end portion is sprayed with spot air to be in close contact with the drum. Further, air may be blown over the entire surface using an air knife as necessary from the state in which the entire sheet is in close contact with the drum.
  • the cast sheet refers to an unstretched sheet obtained by molding a molten polypropylene resin into a sheet shape on a cast drum.
  • the biaxial orientation method includes stretching the cast sheet in the longitudinal direction and then stretching in the width direction, or the successive biaxial stretching method of stretching in the longitudinal direction after stretching in the width direction, or the longitudinal direction and width of the cast sheet.
  • a simultaneous biaxial stretching method in which the directions are stretched almost simultaneously can be used. From the viewpoint of air permeability and organic solvent resistance, it is preferable to employ a sequential biaxial stretching method, and in particular, stretching in the longitudinal direction and then stretching in the width direction are preferred.
  • the temperature of the cast sheet is controlled to a temperature for stretching in the longitudinal direction.
  • a temperature control method a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be employed.
  • the stretching temperature in the longitudinal direction is preferably 90 to 140 ° C. If it is less than 90 degreeC, a cast sheet may fracture
  • the stretching temperature in the longitudinal direction is more preferably 110 to 135 ° C, particularly preferably 125 to 130 ° C.
  • the draw ratio is preferably 3 to 7 times.
  • the draw ratio is more preferably 4.5 to 6 times.
  • the transverse stretching temperature is preferably 130 to 155 ° C. If the temperature is lower than 130 ° C, the sheet stretched in the longitudinal direction may break, or the physical properties and dimensional changes after the acetone treatment of the film after transverse stretching may increase. If the temperature exceeds 155 ° C, the air permeability decreases and the output characteristics. May decrease. From the viewpoint of achieving both air permeability and organic solvent resistance, a more preferred transverse stretching temperature is 140 to 155 ° C.
  • the draw ratio in the width direction is preferably 4 to 12 times. If it is less than 4 times, the air permeability may be lowered and the output characteristics may be lowered.
  • the draw ratio is more preferably 4 to 10 times, and still more preferably 4 to 7 times.
  • the transverse stretching speed at this time is preferably 500 to 6,000% / min, more preferably 1,000 to 5,000% / min.
  • the area ratio (longitudinal stretching ratio ⁇ lateral stretching ratio) is preferably 30 to 60 times.
  • the heat treatment step includes a heat setting zone (hereinafter referred to as HS1 zone) in which heat treatment is performed with the width after transverse stretching, and a relaxation zone (hereinafter referred to as Rx zone) in which heat treatment is performed while relaxing the film by narrowing the width of the tenter.
  • HS1 zone heat setting zone
  • Rx zone relaxation zone
  • HS2 zone heat setting zone
  • the temperature of the HS1 zone is preferably 140 to 165 ° C. If the temperature of the HS1 zone is lower than 140 ° C., the physical properties and dimensional changes after the acetone treatment may increase. On the other hand, when the temperature of the HS1 zone exceeds 165 ° C., the porous polypropylene film surface is melted and air permeability resistance is increased, and further, the porous polypropylene film contracts in the width direction and breaks in the HS1 zone, Productivity may be reduced. From the viewpoint of achieving both output characteristics and organic solvent resistance, the temperature of the HS1 zone is more preferably 150 to 160 ° C.
  • the heat treatment time in the HS1 zone is preferably 0.1 second or more and 10 seconds or less, more preferably 3 seconds or more and 8 seconds or less from the viewpoint of achieving both Young's modulus in the width direction and productivity.
  • the relaxation rate in the Rx zone is preferably 13 to 35%. If the relaxation rate is less than 13%, the thermal contraction rate in the width direction may increase. On the other hand, if the relaxation rate exceeds 35%, the air permeability may be lowered to deteriorate the output characteristics, or the thickness unevenness in the width direction and the heat shrinkage rate unevenness may be increased. From the viewpoint of achieving both output characteristics and a low heat shrinkage rate, the relaxation rate is more preferably 15 to 25%.
  • the temperature of the Rx zone is preferably 155 to 170 ° C.
  • the shrinkage stress for relaxation becomes low, and the above-described high relaxation rate may not be achieved, or physical properties and dimensional changes after acetone treatment may increase.
  • the temperature of the Rx zone exceeds 170 ° C., the polymer around the pores may melt due to the high temperature and the air permeability may be lowered.
  • the temperature of the Rx zone is more preferably 160 to 165 ° C.
  • the relaxation rate in the Rx zone is preferably 100 to 1,000% / min.
  • the relaxation rate is less than 100% / min, it is necessary to slow down the film forming rate or lengthen the tenter length, which may be inferior in productivity.
  • the relaxation rate exceeds 1,000% / min, the rate at which the film shrinks becomes slower than the rate at which the tenter rail width shrinks, the film flutters in the tenter and tears, or the rate of change in thickness after acetone treatment In some cases, the unevenness in the width direction increases or the flatness deteriorates.
  • the relaxation rate is more preferably 150 to 500% / min.
  • the temperature of the HS2 zone is preferably 155 to 165 ° C.
  • the tension of the film after thermal relaxation becomes insufficient, and unevenness in the width direction of the thickness change rate after the acetone treatment may increase, or flatness may be deteriorated.
  • the temperature of the HS2 zone exceeds 165 ° C., the polymer around the pores melts due to the high temperature, and the gas permeability may be reduced, resulting in a decrease in output characteristics.
  • the temperature of the HS2 zone is more preferably 160 to 165 ° C.
  • the film after the heat setting step is removed by slitting the ears gripped by the tenter clip, and wound around the core with a winder to obtain a product.
  • a coated layer may be provided on at least one surface of the porous polypropylene film to form a laminated porous film.
  • the porous polypropylene film according to the present embodiment is excellent in resistance to organic solvents, high air permeability can be maintained even when coating is performed using an organic solvent.
  • a coating method a known method can be used. For example, using at least one organic solvent selected from acetone, ethanol, tetrahydrofuran, N-methyl-2-pyrrolidone, etc. as a solvent, and adding a heat-resistant resin, inorganic particles, and additives such as a binder as necessary May be prepared and applied to at least one surface of the porous polypropylene film using a die coating method or a gravure coating method. Then, a laminated porous film can be obtained by drying the solvent using a drying oven.
  • the porous polypropylene film according to the present embodiment has excellent productivity, low air resistance, and small changes in physical properties and dimensions after acetone treatment, so that it is a packaging product, sanitary product, agricultural product, and building product. It can be used for medical supplies, separation membranes, light diffusing plates, and reflective sheets, but is particularly suitable when used as a separator for an electricity storage device because both output characteristics and organic solvent resistance can be achieved.
  • the electricity storage device include a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, and an electric double layer capacitor such as a lithium ion capacitor.
  • the electricity storage device using the separator using the porous polypropylene film according to the present embodiment is suitable as a porous film for a substrate for coating a surface layer with a functional layer such as a heat-resistant layer.
  • the laminated porous film provided with a heat resistant layer on the porous polypropylene film according to the present embodiment is excellent in output characteristics and safety, and therefore can be suitably used for a non-aqueous electrolyte secondary battery for an electric vehicle. .
  • Examples 1 to 5 of the present invention will be described in detail.
  • the characteristics of Examples 1 to 5 and Comparative Examples 1 to 4 were measured and evaluated by the following methods.
  • the present invention is not limited to these.
  • ⁇ -crystal forming ability 5 mg of a porous polypropylene film was taken as a sample in an aluminum pan and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220).
  • the temperature is raised from room temperature to 260 ° C. at 10 ° C./min (first run) in a nitrogen atmosphere, held for 10 minutes, and then cooled to 40 ° C. at 10 ° C./min.
  • the melting peak observed when the temperature is raised again (second run) at 10 ° C / min after holding for 5 minutes is the melting peak of 145 ° C to 157 ° C.
  • the melting of the ⁇ crystal is the melting peak of the ⁇ crystal
  • the melting peak of the ⁇ crystal is taken as the melting peak of the base
  • ⁇ crystal forming ability The heat of fusion was calibrated using indium.
  • ⁇ crystal forming ability (%) [ ⁇ H ⁇ / ( ⁇ H ⁇ + ⁇ H ⁇ )] ⁇ 100
  • the ⁇ crystal fraction in the state of the sample can be calculated by calculating the abundance ratio of the ⁇ crystal from the melting peak observed in the first run.
  • the measurement position 1 of the air permeation resistance was set at two locations centering on a point which passed through the center in the width direction and entered 30 mm inside from two sides parallel to the width direction.
  • the air resistance was measured at these measurement positions 1, and the average value was defined as the pre-treatment air resistance G1.
  • the sample 2 is folded back by 20 mm at the top and bottom in the longitudinal direction at the outer frame part of the metal frame.
  • BiTP-CL-104) 4 was clamped at two locations per side to fix only the longitudinal direction of sample 2.
  • set the sample 2 so that it does not wrinkle or sag.
  • Sample 2 fixed only in the longitudinal direction on a metal frame is immersed in acetone (special grade made by Kanto Chemical) for 1 minute, and then heated in an 80 ° C hot air oven (Espec Corp. (formerly TABAI) PHH-100, wind control set to 6) The sample 2 was removed from the metal frame after being dried for 1 minute, taken out of the oven and allowed to stand for 5 minutes, cooled to room temperature.
  • acetone special grade made by Kanto Chemical
  • 80 ° C hot air oven Espec Corp. (formerly TABAI) PHH-100, wind control set to 6
  • the place where the sample 2 contracted most in the width direction was measured, and the length was defined as a width direction length L TD2 (mm) after processing (see FIG. 3).
  • contracted most in the width direction was measured by the method according to following (8), and it was set as post-process thickness T2 (micrometer).
  • the air resistance is measured around the most contracted place (the air resistance measurement position 5) in the width direction of the sample 2, and the value is processed and the air resistance G2 after processing. (FIG. 3).
  • the change rate of each physical property was calculated based on the following formula.
  • Dimensional change rate in width direction (%)
  • Thickness change rate (%)
  • Change rate of Gurley air resistance (%)
  • MFR Melt flow rate
  • Air permeation resistance With respect to the porous polypropylene film, the permeation time of 100 ml of air was measured at 23 ° C. and relative humidity 65% using a B-type Gurley tester of JIS P 8117 (1998). In addition, it can confirm that the through-hole is formed in the film that this air permeability value is a finite value.
  • Porosity A porous polypropylene film was cut into a size of 30 mm ⁇ 40 mm and used as a sample. Using an electronic hydrometer (SD-120L manufactured by Mirage Trading Co., Ltd.), the specific gravity ( ⁇ ) was measured in an atmosphere having a room temperature of 23 ° C. and a relative humidity of 65%.
  • the measured film was hot-pressed at 280 ° C. and 5 MPa, and then rapidly cooled with water at 25 ° C. to prepare a sheet from which pores were completely erased.
  • the specific gravity of this sheet was measured in the same manner as described above, and the average value was defined as the specific gravity (d) of the resin.
  • naphthalene dicarboxyamide manufactured by Shin Nippon Rika Co., Ltd., NU-100
  • IRGANOX 1010 and IRGAFOS 168 made by Ciba Specialty Chemicals, which are antioxidants.
  • the raw materials were supplied from the weighing hopper to the twin screw extruder so as to be mixed at this ratio, and melt kneading was performed at 300 ° C. Then, the melt-kneaded material was discharged from the die in a strand shape, cooled and solidified in a water bath at 25 ° C., and cut into a chip shape to obtain a polypropylene composition (I).
  • the resulting polypropylene composition (I) 73.3 parts by mass, polypropylene composition (II) 10 parts by mass and polypropylene composition (III) 16.7 parts by mass were dry blended to melt uniaxially for the A layer.
  • 99 parts by mass of the polypropylene composition (I) and 1 part by mass of Admer QF500 manufactured by Mitsui Chemicals, which is a modified polyolefin with a polypropylene resin having a carboxyl group or an unsaturated dicarboxylic acid, are mixed with B The uniaxial melt extruder for the layer was fed. Then, melt extrusion is performed at 220 ° C.
  • a feed block type B / The A / B composite T die was laminated at a thickness ratio of 1/8/1 and discharged onto a cast drum whose surface temperature was controlled at 122 ° C. to obtain a cast sheet.
  • preheating was performed using a ceramic roll heated to 120 ° C., and the cast sheet was stretched 5 times in the longitudinal direction at a stretching temperature of 120 ° C.
  • the sheet stretched in the longitudinal direction was introduced into a tenter-type stretching machine by gripping the end with a clip, preheated at 155 ° C. for 3 seconds, then 8.0 times at 150 ° C., and a stretching speed of 1,800
  • the film was obtained by stretching at% / min.
  • the distance between the clips in the width direction at the entrance of the tenter was 150 mm.
  • the film was heat treated for 3 seconds at 150 ° C while maintaining the distance between the stretched clips (HS1 zone), and further relaxed at 164 ° C and a relaxation rate of 15% (Rx zone). Heat treatment was performed at 164 ° C. for 5 seconds while keeping the distance (HS2 zone).
  • the ears of the film held by the tenter clip were removed by slitting, and the porous polypropylene film having a width of 500 mm was wound around the core by a winder by 500 m to obtain a porous polypropylene film having a width of 500 mm and a thickness of 25 ⁇ m.
  • Example 2 59.8 parts by mass of homopolypropylene FLX80E4, 30 parts by mass of ethylene-octene-1 copolymer (engage 8411 manufactured by Dow Chemical, melt index: 18 g / 10 min) as a copolymer PE resin, and CEBC (JSR) as a dispersant DYNARON 6200P (manufactured by Co., Ltd.) and biaxial extrusion from a weighing hopper so that 0.1 parts by mass of IRGANOX 1010 and IRGAFOS 168 manufactured by Ciba Specialty Chemicals, which are antioxidants, are mixed at this ratio.
  • the raw material was supplied to the machine and melt kneaded at 240 ° C.
  • the melt-kneaded material was discharged from the die in the form of a strand, cooled and solidified in a water bath at 25 ° C., and cut into a chip to obtain a polypropylene raw material (IV).
  • polypropylene composition (I) 73.3 parts by mass, polypropylene composition (IV) 10 parts by mass and polypropylene composition (III) 16.7 parts by mass were dry blended and uniaxial melt extrusion for layer A
  • 99 parts by mass of the polypropylene composition (I) and 1 part by mass of Admer QF500 manufactured by Mitsui Chemicals, Ltd. which is a modified polyolefin with a polypropylene resin having a carboxyl group or an unsaturated dicarboxylic acid, are used for the B layer.
  • Admer QF500 manufactured by Mitsui Chemicals, Ltd.
  • a feed block type B / The A / B composite T die was laminated at a thickness ratio of 1/8/1 and discharged onto a cast drum whose surface temperature was controlled at 120 ° C. to obtain a cast sheet.
  • preheating was performed using a ceramic roll heated to 120 ° C., and the cast sheet was stretched 5 times in the longitudinal direction at a stretching temperature of 120 ° C.
  • the sheet stretched in the longitudinal direction was introduced into a tenter-type stretching machine by gripping the end with a clip, preheated at 155 ° C. for 3 seconds, then 8.4 times at 150 ° C., and a stretching speed of 1,800
  • the film was obtained by stretching at% / min.
  • the distance between the clips in the width direction at the entrance of the tenter was 150 mm.
  • the film was heat treated for 3 seconds at 150 ° C while maintaining the distance between the stretched clips (HS1 zone), and further relaxed at 164 ° C and a relaxation rate of 15% (Rx zone).
  • a porous polypropylene film having a width of 500 mm and a thickness of 25 ⁇ m was obtained under the same conditions as in Example 1 except that heat treatment was performed at 164 ° C. for 5 seconds (HS2 zone) while keeping the distance.
  • Example 3 In contrast to Example 2, relaxation was performed at 164 ° C. and a relaxation rate of 20% (Rx zone). Except this, under the same conditions as in Example 2, a porous polypropylene film having a width of 500 mm and a thickness of 25 ⁇ m was obtained.
  • Example 4 For Example 1, preheating was performed using a ceramic roll heated to 120 ° C., and the cast sheet was stretched 5 times in the longitudinal direction at a stretching temperature of 120 ° C. Next, the end of the sheet stretched in the longitudinal direction is introduced into a tenter-type stretching machine by holding it with a clip, preheated at 155 ° C. for 3 seconds, then 8.4 times at 150 ° C., stretching speed 1,100 Stretched at% / min. Except this, under the same conditions as in Example 1, a porous polypropylene film having a width of 500 mm and a thickness of 25 ⁇ m was obtained.
  • Example 5 Polypropylene composition (I) 72.3 parts by mass, polypropylene composition (IV) 10 parts by mass, polypropylene composition (III) 16.7 parts by mass and polypropylene having a carboxyl group, prepared in the same manner as in Example 1.
  • ADMER QF500 manufactured by Mitsui Chemicals, Inc., which is a modified polyolefin by resin or unsaturated dicarboxylic acid, was dry blended and supplied to a single screw melt extruder. Then, melt extrusion is performed at 220 ° C.
  • a feed block type B / The A / B composite T die was laminated at a thickness ratio of 1/8/1, discharged onto a cast drum whose surface temperature was controlled at 120 ° C., and cast onto the drum for 15 seconds to obtain a cast sheet.
  • preheating was performed using a ceramic roll heated to 120 ° C., and the cast sheet was stretched 5 times in the longitudinal direction at a stretching temperature of 120 ° C.
  • the sheet stretched in the longitudinal direction was introduced into a tenter-type stretching machine by gripping the end with a clip, preheated at 155 ° C. for 3 seconds, then 8.4 times at 150 ° C., and a stretching speed of 1,800
  • the film was obtained by stretching at% / min.
  • the distance between the clips in the width direction at the entrance of the tenter was 150 mm.
  • the film was heat treated at 150 ° C for 3 seconds while maintaining the distance between the stretched clips (HS1 zone), and further relaxed at 160 ° C and a relaxation rate of 10% (Rx zone). Heat treatment was performed at 160 ° C. for 5 seconds while keeping the distance (HS2 zone).
  • the ears of the film held by the tenter clip were removed by slitting, and the porous polypropylene film having a width of 500 mm was wound around the core by a winder by 500 m to obtain a porous polypropylene film having a width of 500 mm and a thickness of 25 ⁇ m.
  • Comparative Example 2 Preheating was performed using a ceramic roll heated to 127 ° C., and the cast sheet was stretched 5 times in the longitudinal direction at a stretching temperature of 127 ° C. Except for this, a porous polypropylene film having a width of 500 mm and a thickness of 25 ⁇ m was obtained under the same conditions as in Comparative Example 1.
  • Example 3 Film formation was performed according to the following method described as Example 1 in JP-A-2008-248231.
  • a polypropylene resin 94 parts by mass of homopolypropylene WF836DG3 (MFR: 7 g / 10 min, isotactic index: 97%) manufactured by Sumitomo Chemical Co., Ltd., high melt tension homopolypropylene Pro-fax PF814 (MFR: manufactured by Basell) 2.5 g / 10 min, isotactic index: 97%) 1 part by mass, and ethylene / ⁇ -olefin copolymer Engage 8411 (melt index: 18 g / 10 min) manufactured by Dow Chemical Co., Ltd.
  • N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide (Nu-100 manufactured by Shin Nippon Rika Co., Ltd.), which is a ⁇ crystal nucleating agent, was added to the mixture. It supplied to the screw extruder and melt-kneaded at 220 degreeC. The melt-kneaded material was extruded into a strand shape, cooled and solidified in a 25 ° C. water tank, and cut into a chip shape to obtain a polyolefin resin raw material.
  • This polyolefin resin is supplied to a single screw extruder, melt extruded at 220 ° C., foreign matter is removed by a sintered filter, and then discharged from a T-die onto a cast drum whose surface temperature is controlled at 120 ° C. Cast for 15 seconds to obtain a cast sheet.
  • the cast sheet was heated using a roll heated to 95 ° C., and stretched 4 times in the longitudinal direction at a stretching temperature of 95 ° C.
  • the sheet stretched in the longitudinal direction is once cooled, and then stretched 6 times in the width direction at 145 ° C. at a stretching speed of 1,500% / min with a stenter-type transverse stretching machine, and heat-fixed at 155 ° C. for 5 seconds.
  • relaxation was performed at 140 ° C. and a relaxation rate of 10% for 5 seconds to obtain a porous polypropylene film having a thickness of 28 ⁇ m.
  • Example 4 (Comparative Example 4) Compared to Example 1, in the relaxation of the heat treatment step, relaxation was performed at 160 ° C. and a relaxation rate of 10% (Rx zone), and heat treatment was performed at 160 ° C. for 5 seconds while maintaining the distance between the clips after relaxation (HS2 zone) ). Except for this, a porous polypropylene film having a width of 500 mm and a thickness of 25 ⁇ m was obtained under the same conditions as in Example 1.
  • the air permeability resistance is low, the porosity is high, and the solvent resistance is excellent. Therefore, the separator for an electricity storage device has little change in physical properties when coating a functional layer such as a heat-resistant layer. Can be suitably used.
  • a functional layer such as a heat-resistant layer.
  • both low air permeability resistance and solvent resistance were insufficient, it was insufficient as a power storage device separator for coating a functional layer such as a heat resistant layer.
  • porous polypropylene film of the present invention is excellent in organic solvent resistance and gas permeability, it can be suitably used as a separator for an electricity storage device because there is little change in physical properties when coating a functional layer such as a heat-resistant layer. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Provided are: a porous polypropylene film that exhibits excellent gas permeability and resistance to organic solvents, wherein when said film is coated with a functional layer such as a heat-resistance layer, the physical properties of said film do not change much; a layered porous film; and an electricity-storage device. Said porous polypropylene film, which contains a polypropylene resin that can form a beta crystal structure, is characterized by a gas permeation resistance of 1,000 sec/100 ml or less and further characterized in that an acetone-immersion treatment changes the thickness of the porous polypropylene film by no more than 20%.

Description

多孔性ポリプロピレンフィルム、積層多孔性フィルムおよび蓄電デバイスPorous polypropylene film, laminated porous film, and electricity storage device
 本発明は、多孔性ポリプロピレンフィルム、積層多孔性フィルムおよびこれらを用いた蓄電デバイスに関する。 The present invention relates to a porous polypropylene film, a laminated porous film, and an electricity storage device using these.
 多孔性ポリプロピレンフィルムは、電池や電解コンデンサーのセパレータや各種分離膜、衣料、医療用途における透湿防水膜、フラットパネルディスプレイの反射板や感熱転写記録シートなど多岐に亘る用途への展開が検討されている。中でも、ノート型パーソナルコンピュータや携帯電話、デジタルカメラなどのモバイル機器などに広く使用されているリチウムイオン電池用のセパレータとして、多孔性フィルムは好適である。特に近年、電気自動車やハイブリッド車にリチウムイオン電池が使用されるようになり、電池の高出力化、高容量化に伴い、多孔性フィルムに無機粒子層や耐熱樹脂層をコーティングする検討が盛んに行われている(たとえば、特許文献1、2参照)。また、電池のサイズが大きくなり使用する面積が増えることから、低コスト化も強く望まれている。 Porous polypropylene films are being considered for use in a wide range of applications, including separators for batteries and electrolytic capacitors, various separation membranes, clothing, moisture-permeable waterproof membranes for medical applications, reflectors for flat panel displays, and thermal transfer recording sheets. Yes. Among these, a porous film is suitable as a separator for lithium ion batteries widely used in mobile devices such as notebook personal computers, mobile phones, and digital cameras. In particular, in recent years, lithium-ion batteries have been used in electric vehicles and hybrid vehicles, and as the output of batteries increases and the capacity increases, studies on coating porous films with inorganic particle layers and heat-resistant resin layers are actively conducted. (For example, refer to Patent Documents 1 and 2). Further, since the size of the battery is increased and the area to be used is increased, cost reduction is also strongly desired.
 ポリプロピレンフィルムを多孔化する手法としては、様々な提案がなされているが、中でも乾式法であり、かつ二軸延伸により生産性よく製膜可能な方法として、β晶法が挙げられる。β晶法とは、ポリプロピレンの結晶多形であるα型結晶(α晶)とβ型結晶(β晶)の結晶密度の差および結晶転移を利用してフィルム中に空隙を形成させる方法であり、数多くの提案がなされている(たとえば、特許文献3~5参照)。さらに、β晶法による多孔性ポリプロピレンフィルムの表面に耐熱層などの機能層をコーティングする方法について数多くの提案がなされている(たとえば、特許文献6~14参照)。 Various proposals have been made as a method for making a polypropylene film porous. Among them, a β-crystal method can be cited as a dry method and a method capable of forming a film with high productivity by biaxial stretching. The β crystal method is a method in which voids are formed in a film by utilizing the difference in crystal density and crystal transition between α type crystal (α crystal) and β type crystal (β crystal), which are polymorphs of polypropylene. Many proposals have been made (see, for example, Patent Documents 3 to 5). Furthermore, many proposals have been made on a method of coating a functional layer such as a heat-resistant layer on the surface of a porous polypropylene film by the β crystal method (see, for example, Patent Documents 6 to 14).
 しかし、β晶法による多孔性ポリプロピレンフィルムは、アセトンなどの有機溶剤を塗布・乾燥させると孔構造が変化して、厚みや透気抵抗が変化してしまう場合があるため、特許文献6~14に記載のように、コーティング用の塗剤は水系に限定され、乾燥速度の速い有機溶剤を用いて生産性を向上させることは困難であった。 However, the porous polypropylene film by the β crystal method may change the pore structure and change the thickness and air resistance when an organic solvent such as acetone is applied and dried. As described above, the coating agent for coating is limited to an aqueous system, and it has been difficult to improve productivity by using an organic solvent having a high drying rate.
特開2007-273443号公報JP 2007-273443 A 特開2006-164873号公報JP 2006-164873 A 特開昭63-199742号公報Japanese Unexamined Patent Publication No. 63-199742 特開平6-100720号公報Japanese Patent Application Laid-Open No. 6-100720 特開平9-255804号公報Japanese Patent Laid-Open No. 9-255804 特開2009-19118号公報JP 2009-19118 A 特開2009-114434号公報JP 2009-114434 A 特開2009-226746号公報JP 2009-226746 A 特開2009-227819号公報JP 2009-227819 A 特開2010-65088号公報JP 2010-65088 A 特開2010-219037号公報JP 2010-219037 A 特開2011-110704号公報JP 2011-110704 A 特開2011-126275号公報JP 2011-126275 A 国際公開第2010/008003号International Publication No. 2010/008003
 本発明は、上記に鑑みてなされたものであって、耐有機溶剤性および透気性に優れ、耐熱層などの機能層をコーティングする際の物性変化が少ない、蓄電デバイス用セパレータとして好適に用いることができる多孔性ポリプロピレンフィルム、積層多孔性フィルムおよびこれらを用いた蓄電デバイスを提供することを目的とする。 The present invention has been made in view of the above, and is suitably used as a separator for an electricity storage device, which has excellent organic solvent resistance and air permeability, and has little change in physical properties when coating a functional layer such as a heat-resistant layer. An object of the present invention is to provide a porous polypropylene film, a laminated porous film, and an electricity storage device using these.
 上述した課題を解決し、目的を達成するために、本発明に係る多孔性ポリプロピレンフィルムは、β晶形成能を有するポリプロピレン樹脂を含む多孔性ポリプロピレンフィルムであって、透気抵抗が1,000秒/100ml以下、アセトン浸漬処理前後の厚み変化率が20%以下であることを特徴とする。 In order to solve the above-described problems and achieve the object, the porous polypropylene film according to the present invention is a porous polypropylene film containing a polypropylene resin having β-crystal forming ability, and has an air resistance of 1,000 seconds. / 100 ml or less, the thickness change rate before and after acetone immersion treatment is 20% or less.
 本発明の多孔性ポリプロピレンフィルムは、耐有機溶剤性および透気性に優れ、耐熱層などの機能層をコーティングする際に物性変化が少ないため蓄電デバイス用セパレータとして好適に使用することができる。 The porous polypropylene film of the present invention is excellent in organic solvent resistance and air permeability, and can be suitably used as a separator for an electricity storage device because it has little change in physical properties when coating a functional layer such as a heat-resistant layer.
アセトン浸漬および乾燥処理に伴う物性変化測定におけるアセトン浸漬処理前のサンプルの概略図である。It is the schematic of the sample before the acetone immersion process in the physical-property change measurement accompanying acetone immersion and a drying process. アセトン浸漬および乾燥処理に伴う物性変化測定における金属枠に固定後のサンプルの概略図である。It is the schematic of the sample after fixing to the metal frame in the physical-property change measurement accompanying acetone immersion and a drying process. アセトン浸漬および乾燥処理に伴う物性変化測定におけるアセトン浸漬乾燥処理後のサンプルの概略図である。It is the schematic of the sample after the acetone immersion drying process in the physical-property change measurement accompanying acetone immersion and a drying process.
 以下に、本発明に係る多孔性ポリプロピレンフィルム、積層多孔性フィルム、および蓄電デバイスの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a porous polypropylene film, a laminated porous film, and an electricity storage device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
 本実施の形態に係る多孔性ポリプロピレンフィルムは、第1成分としてβ晶形成能を有するポリプロピレン樹脂を含む。ここで、ポリプロピレン樹脂は多孔性ポリプロピレンフィルム中における主成分であることが好ましい。ここで、「主成分」とは、特定の成分が全成分中に占める割合が50質量%以上であることを意味し、より好ましくは80質量%以上、さらに好ましくは90質量%以上、最も好ましくは95質量%以上であることを意味する。 The porous polypropylene film according to the present embodiment includes a polypropylene resin having β-crystal forming ability as the first component. Here, the polypropylene resin is preferably the main component in the porous polypropylene film. Here, the “main component” means that the proportion of a specific component in all components is 50% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and most preferably Means 95% by mass or more.
 本実施の形態に係る多孔性ポリプロピレンフィルムは、フィルムの両表面を貫通し、透気性を有する孔(以下、貫通孔という)を有している。この貫通孔を有する多孔性ポリプロピレンフィルムを得る方法としては、二軸延伸により生産性良く製膜可能であることから、後述するβ晶法であることが好ましい。 The porous polypropylene film according to the present embodiment has pores that penetrate both surfaces of the film and have air permeability (hereinafter referred to as through-holes). As a method for obtaining a porous polypropylene film having this through-hole, it is preferable to use the β crystal method described later, since it can be formed with high productivity by biaxial stretching.
 β晶法を用いてフィルムに貫通孔を形成するためには、多孔性ポリプロピレンフィルムのβ晶形成能が40%以上であることが好ましい。β晶形成能が40%未満ではフィルム製造時にβ晶量が少ないためにα晶への転移を利用してフィルム中に形成される空隙数が少なくなり、その結果、透過性の低いフィルムしか得られない場合がある。一方、β晶形成能の上限は特に限定されるものではないが、99.9%を超えるようにするのは、後述するβ晶核剤を多量に添加したり、使用するポリプロピレン樹脂の立体規則性を極めて高くしたりする必要があり、製膜安定性が低下するなど工業的な実用価値が低い。工業的にはβ晶形成能は65~99.9%が好ましく、70~95%が特に好ましい。 In order to form through holes in the film using the β crystal method, the β crystal forming ability of the porous polypropylene film is preferably 40% or more. If the β-crystal forming ability is less than 40%, the amount of β-crystals is small at the time of film production, so the number of voids formed in the film is reduced by utilizing the transition to α-crystal, and as a result, only a film with low permeability is obtained. It may not be possible. On the other hand, the upper limit of β-crystal forming ability is not particularly limited, but it exceeds 99.9% by adding a large amount of the β-crystal nucleating agent described later or the stereoregulation of the polypropylene resin to be used. The industrial practical value is low, for example, the film forming stability is lowered. Industrially, the β-crystal forming ability is preferably 65 to 99.9%, particularly preferably 70 to 95%.
 β晶形成能を40%以上に制御するためには、アイソタクチックインデックスの高いポリプロピレン樹脂を使用したり、β晶核剤と呼ばれる、ポリプロピレン樹脂中に添加することでβ晶を選択的に形成させる結晶化核剤を添加剤として用いたりすることが好ましい。β晶核剤としては、たとえば、1,2-ヒドロキシステアリン酸カルシウム、コハク酸マグネシウムなどのカルボン酸のアルカリあるいはアルカリ土類金属塩、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミドに代表されるアミド系化合物、3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンなどのテトラオキサスピロ化合物、ベンゼンスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウムなどの芳香族スルホン酸化合物、イミドカルボン酸誘導体、フタロシアンニン系顔料、キナクリドン系顔料を好ましく挙げることができるが、特に特開平5-310665号公報に開示されているアミド系化合物を好ましく用いることができる。β晶核剤の添加量としては、ポリプロピレン樹脂全体を基準とした場合に、0.05~0.5質量%であることが好ましく、0.1~0.3質量%であればより好ましい。0.05質量%未満では、β晶の形成が不十分となり、多孔性ポリプロピレンフィルムの透気性が低下する場合がある。0.5質量%を超えると、粗大ボイドを形成し、有機溶媒塗布、乾燥時の物性変化が大きくなる場合がある。 In order to control the β-crystal forming ability to 40% or more, a polypropylene resin with a high isotactic index is used, or a β crystal is selectively formed by adding it to a polypropylene resin called a β crystal nucleating agent. The crystallization nucleating agent to be used is preferably used as an additive. Examples of β crystal nucleating agents include alkali or alkaline earth metal salts of carboxylic acids such as calcium 1,2-hydroxystearate and magnesium succinate, and N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide. Amide compounds, tetraoxaspiro compounds such as 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, benzenesulfonic acid Preferable examples include aromatic sulfonic acid compounds such as sodium and sodium naphthalene sulfonate, imide carboxylic acid derivatives, phthalocyanine pigments, and quinacridone pigments. Particularly, amides disclosed in JP-A-5-310665 are preferred. Compounds can be preferably usedThe addition amount of the β crystal nucleating agent is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.3% by mass, based on the whole polypropylene resin. If it is less than 0.05% by mass, formation of β crystals becomes insufficient, and the air permeability of the porous polypropylene film may be lowered. If it exceeds 0.5% by mass, coarse voids are formed, and physical property changes during application of organic solvents and drying may increase.
 本実施の形態に係る多孔性ポリプロピレンフィルムを構成するポリプロピレン樹脂は、メルトフローレート(以下、MFRと表記する、測定条件は230℃、2.16kg)が2~30g/10分の範囲であることが好ましく、さらにアイソタクチックポリプロピレン樹脂であることが好ましい。MFRが2g/10分未満であると、樹脂の溶融粘度が高くなり高精度濾過が困難となり、フィルムの品位が低下する場合がある。MFRが30g/10分を超えると、分子量が低くなりすぎるため、延伸時のフィルム破れが起こりやすくなり、生産性が低下する場合がある。より好ましくは、MFRは3~20g/10分である。 The polypropylene resin constituting the porous polypropylene film according to the present embodiment has a melt flow rate (hereinafter referred to as MFR, measurement conditions are 230 ° C., 2.16 kg) in the range of 2 to 30 g / 10 minutes. It is preferable that it is an isotactic polypropylene resin. When the MFR is less than 2 g / 10 minutes, the melt viscosity of the resin becomes high and high-precision filtration becomes difficult, and the quality of the film may be lowered. When the MFR exceeds 30 g / 10 min, the molecular weight becomes too low, so that the film is easily broken during stretching, and the productivity may be lowered. More preferably, the MFR is 3 to 20 g / 10 minutes.
 また、アイソタクチックポリプロピレン樹脂を用いる場合、アイソタクチックインデックスは90~99.9%であることが好ましく、95~99%がより好ましい。アイソタクチックインデックスが90%未満であると、樹脂の結晶性が低く、高い透気性を達成するのが困難な場合がある。 In the case of using an isotactic polypropylene resin, the isotactic index is preferably 90 to 99.9%, more preferably 95 to 99%. If the isotactic index is less than 90%, the crystallinity of the resin is low, and it may be difficult to achieve high air permeability.
 本実施の形態において用いられるポリプロピレン樹脂としては、ホモポリプロピレン樹脂を用いることができるのはもちろんのこと、製膜工程での安定性や造膜性、物性の均一性の観点から、ポリプロピレンにエチレン成分やブテン、ヘキセン、オクテンなどのα-オレフィン成分を5質量%以下、より好ましくは2.5質量%以下の範囲で共重合した樹脂を用いることもできる。なお、ポリプロピレンへのコモノマー(共重合成分)の導入形態としては、ランダム共重合でもブロック共重合でもいずれでも構わない。 As a polypropylene resin used in the present embodiment, a homopolypropylene resin can be used, as well as an ethylene component in polypropylene from the viewpoint of stability in film forming process, film forming property, and uniformity of physical properties. It is also possible to use a resin obtained by copolymerizing an α-olefin component such as, butene, hexene, octene or the like in an amount of 5% by mass or less, more preferably 2.5% by mass or less. The form of introduction of the comonomer (copolymerization component) into polypropylene may be either random copolymerization or block copolymerization.
 また、上記したポリプロピレン樹脂は高分子量ポリプロピレンを含有させることが安全性向上や製膜性向上の点で好ましい場合がある。含有量は0.5~30質量%の範囲が好ましい。高分子量ポリプロピレンとはMFRが0.1~1g/10分のポリプロピレンであり、たとえば、住友化学社製ポリプロピレン樹脂D101や、プライムポリマー社製ポリプロピレン樹脂E111G、B241、E105GMなどを用いることができる。 In addition, it may be preferable for the above-mentioned polypropylene resin to contain high molecular weight polypropylene from the viewpoint of improving safety and improving film forming property. The content is preferably in the range of 0.5 to 30% by mass. The high molecular weight polypropylene is a polypropylene having an MFR of 0.1 to 1 g / 10 min. For example, polypropylene resin D101 manufactured by Sumitomo Chemical Co., Ltd., polypropylene resins E111G, B241, E105GM manufactured by Prime Polymer Co., etc. can be used.
 また、上記したポリプロピレン樹脂は低融点ポリプロピレンを含有させることが安全性向上や製膜性向上の点で好ましい場合がある。含有量は0.5~30質量%の範囲が好ましい。低融点ポリプロピレンとは融点Tmが130~155℃のポリプロピレンであり、たとえば、住友化学社製ポリプロピレン樹脂S131やFS3611を用いることができる。 In addition, it may be preferable for the above-mentioned polypropylene resin to contain a low melting point polypropylene from the viewpoint of improving safety and improving film forming property. The content is preferably in the range of 0.5 to 30% by mass. The low melting point polypropylene is a polypropylene having a melting point Tm of 130 to 155 ° C., and for example, polypropylene resins S131 and FS3611 manufactured by Sumitomo Chemical Co., Ltd. can be used.
 本実施の形態において用いられるポリプロピレン樹脂は、二軸延伸時の空隙形成効率の観点から、ポリプロピレンを80~99質量部とエチレン・α-オレフィン共重合体を20~1質量部の質量比率とした混合物とすることが好ましい。ここで、エチレン・α-オレフィン共重合体としては直鎖状低密度ポリエチレンや超低密度ポリエチレンを挙げることができ、中でも、オクテン-1を共重合した、融点が60~90℃の共重合ポリエチレン樹脂(共重合PE樹脂)を好ましく用いることができる。この共重合ポリエチレンは市販されている樹脂、たとえば、ダウ・ケミカル製“Engage(エンゲージ)(登録商標)”(タイプ名:8411、8452、8100など)を挙げることができる。 The polypropylene resin used in the present embodiment has a mass ratio of 80 to 99 parts by mass of polypropylene and 20 to 1 part by mass of the ethylene / α-olefin copolymer from the viewpoint of void formation efficiency during biaxial stretching. A mixture is preferred. Here, examples of the ethylene / α-olefin copolymer include linear low-density polyethylene and ultra-low-density polyethylene, and among them, a copolymer polyethylene obtained by copolymerizing octene-1 and having a melting point of 60 to 90 ° C. A resin (copolymerized PE resin) can be preferably used. Examples of the copolymerized polyethylene include commercially available resins such as “Engage (registered trademark)” (type names: 8411, 8452, 8100, etc.) manufactured by Dow Chemical.
 上記共重合ポリエチレン樹脂は本実施の形態に係るフィルムを構成するポリプロピレン樹脂全体を100質量%としたときに、10質量%以下含有することが後述する空孔率や平均貫通孔径を好ましい範囲に制御することが容易となるので好ましい。フィルムの機械特性の観点からは1~7質量%であればより好ましく、さらに好ましくは1~2.5質量%である。 When the total amount of the polypropylene resin constituting the film according to the present embodiment is 100% by mass, the copolymer polyethylene resin contains 10% by mass or less, and the porosity and average through-hole diameter described later are controlled within a preferable range. Since it becomes easy to do, it is preferable. From the viewpoint of the mechanical properties of the film, it is more preferably 1 to 7% by mass, still more preferably 1 to 2.5% by mass.
 本実施の形態において用いられるポリプロピレン樹脂は、孔構造を均一化し、アセトン浸漬処理後の物性変化を抑制する観点から、上述したエチレン・α-オレフィン共重合体に加え、分散剤を添加することが好ましい。分散剤としては、エチレン・α-オレフィン系共重合体のポリプロピレン樹脂への分散性を高めることができるものであればよいが、国際公開第2007/046225号に記載の通り、ポリプロピレン樹脂とエチレン・α-オレフィン系共重合体の相溶性は良好であり、例えば一般にポリプロピレン樹脂とポリエチレン樹脂の相溶化剤として用いられるエチレン・プロピレンランダム共重合体は本実施の形態において孔構造均一化のための分散剤として機能しない。本実施の形態において好ましく用いられる分散剤としては、ポリプロピレンとの相溶性が高いセグメント(例えばポリプロピレンセグメント、エチレンブチレン共重合セグメント)とポリエチレンとの相溶性が高いセグメント(ポリエチレンセグメントなど)を各々有するブロック共重合体が好ましい。このような構造を有する樹脂として、市販されている樹脂、例えばJSR社製オレフィン結晶・エチレンブチレン・オレフィン結晶ブロックポリマー(以下、CEBCと表記する)“DYNARON(ダイナロン)(登録商標)”(タイプ名:6100P、6200Pなど)や、ダウ・ケミカル社製オレフィンブロック共重合体“INFUSE OBC(登録商標)”を挙げることができる。分散剤の添加量としてはエチレン・α-オレフィン系共重合体100質量部に対して1~50質量部であることが好ましく、5~33質量部であることがより好ましい。また、エチレン・α-オレフィン系共重合体のポリプロピレン樹脂への分散性向上の観点および孔形成の均一性向上の観点から、分散剤の融点は、エチレン・α-オレフィン系共重合体の融点より、0~60℃高いことが好ましく、15~30℃高いことがより好ましい。 The polypropylene resin used in the present embodiment may be added with a dispersant in addition to the above-described ethylene / α-olefin copolymer from the viewpoint of uniformizing the pore structure and suppressing physical property changes after the acetone immersion treatment. preferable. Any dispersing agent may be used as long as it can increase the dispersibility of the ethylene / α-olefin copolymer in the polypropylene resin. As described in International Publication No. 2007/046225, the polypropylene resin and the ethylene · The compatibility of the α-olefin copolymer is good. For example, the ethylene / propylene random copolymer generally used as a compatibilizing agent for polypropylene resin and polyethylene resin is dispersed for uniform pore structure in this embodiment. Does not function as an agent. As a dispersant preferably used in the present embodiment, blocks each having a highly compatible segment with polypropylene (for example, a polypropylene segment, an ethylene butylene copolymer segment) and a highly compatible segment with polyethylene (such as a polyethylene segment). A copolymer is preferred. As a resin having such a structure, a commercially available resin such as olefin crystal, ethylene butylene, olefin crystal block polymer (hereinafter referred to as CEBC) “DYNARON (registered trademark)” (type name) manufactured by JSR Corporation : Olefin block copolymer "INFUSE OBC (registered trademark)" manufactured by Dow Chemical Co., Ltd. The addition amount of the dispersant is preferably 1 to 50 parts by mass, more preferably 5 to 33 parts by mass with respect to 100 parts by mass of the ethylene / α-olefin copolymer. From the viewpoint of improving the dispersibility of the ethylene / α-olefin copolymer in polypropylene resin and improving the uniformity of pore formation, the melting point of the dispersant is higher than the melting point of the ethylene / α-olefin copolymer. The temperature is preferably 0 to 60 ° C., more preferably 15 to 30 ° C.
 本実施の形態に係る多孔性ポリプロピレンフィルムを形成するポリプロピレン樹脂には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、中和剤、帯電防止剤や無機あるいは有機粒子からなる滑剤、さらにはブロッキング防止剤や充填剤、非相溶性ポリマーなどの各種添加剤を含有させてもよい。特に、ポリプロピレン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましいが、ポリプロピレン組成物100質量部に対して酸化防止剤添加量は2質量部以下とすることが好ましく、より好ましくは1質量部以下、更に好ましくは0.5質量部以下である。 The polypropylene resin forming the porous polypropylene film according to the present embodiment is composed of an antioxidant, a heat stabilizer, a neutralizing agent, an antistatic agent, and inorganic or organic particles as long as the effects of the present invention are not impaired. Various additives such as a lubricant, an antiblocking agent, a filler, and an incompatible polymer may be contained. In particular, it is preferable to add an antioxidant for the purpose of suppressing the oxidative deterioration due to the thermal history of the polypropylene resin, but the amount of the antioxidant added is 2 parts by mass or less with respect to 100 parts by mass of the polypropylene composition. The amount is preferably 1 part by mass or less, more preferably 0.5 part by mass or less.
 本実施の形態に係る多孔性ポリプロピレンフィルムは、アセトン浸漬処理前後の厚み変化率が20%以下である。厚み変化率が20%を超えると、すなわち、厚みが20%を超えて収縮あるいは膨潤する場合、耐熱層などの機能層をコーティングにより付与する際に、乾燥条件によって厚みが変化し製品厚みの制御が困難となったり、透気抵抗が大きくなり出力特性が低下する場合がある。アセトン浸漬処理前後の厚み変化率は14%以下であることが好ましく、7%以下であることがさらに好ましい。アセトン浸漬処理前後の厚み変化率は、前述したβ晶核剤やエチレン・α-オレフィン系共重合体や分散剤の添加量を前記範囲とすることや、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸倍率、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能である。 The porous polypropylene film according to the present embodiment has a thickness change rate of 20% or less before and after the acetone immersion treatment. When the thickness change rate exceeds 20%, that is, when the thickness exceeds 20% and shrinks or swells, when the functional layer such as a heat-resistant layer is applied by coating, the thickness changes depending on the drying conditions, thereby controlling the product thickness. May become difficult, or air resistance may increase and output characteristics may deteriorate. The thickness change rate before and after the acetone immersion treatment is preferably 14% or less, and more preferably 7% or less. The rate of change in thickness before and after the acetone immersion treatment is determined by adjusting the amount of the β-crystal nucleating agent, ethylene / α-olefin copolymer and dispersant described above within the above range, the temperature of the cast drum, and the stretching ratio in the longitudinal direction. And the temperature, the transverse draw ratio, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below.
 本実施の形態に係る多孔性ポリプロピレンフィルムは、例えば、正極と負極との間に設けられ、両者の接触を防止しつつ、電解液中のイオンを透過させるセパレータを備えた蓄電デバイスにおいて、セパレータとして用いることができる。 The porous polypropylene film according to the present embodiment is provided, for example, between a positive electrode and a negative electrode, and as a separator in an electricity storage device including a separator that transmits ions in an electrolytic solution while preventing contact between the two. Can be used.
 本実施の形態に係る多孔性ポリプロピレンフィルムは、透気抵抗が1,000秒/100ml以下である。より好ましくは10~1,000秒/100ml、さらに好ましくは50~500秒/100ml、最も好ましくは80~350秒/100mlである。透気抵抗が1,000秒を超えると、当該多孔性ポリプロピレンフィルムを蓄電デバイスのセパレータに用いたとき出力特性が低下する場合がある。出力特性の観点からは透気抵抗は低いほど好ましいが、10秒未満であると、フィルムの機械強度が低下してハンドリング性が低下したり、セパレータに用いたときサイクル特性などの電気特性が低下する場合がある。β晶法で透気抵抗を制御する場合、縦延伸倍率や縦延伸温度のような縦延伸条件、または横延伸温度や横延伸速度や横延伸倍率のような横延伸条件などの運転条件を変更して透気抵抗の制御を行うことができる。 The porous polypropylene film according to the present embodiment has an air resistance of 1,000 seconds / 100 ml or less. More preferably, it is 10 to 1,000 seconds / 100 ml, more preferably 50 to 500 seconds / 100 ml, and most preferably 80 to 350 seconds / 100 ml. If the air permeation resistance exceeds 1,000 seconds, the output characteristics may deteriorate when the porous polypropylene film is used as a separator for an electricity storage device. From the viewpoint of output characteristics, the air permeability resistance is preferably as low as possible. However, if it is less than 10 seconds, the mechanical strength of the film is lowered and the handling property is lowered, or the electric characteristics such as the cycle characteristics are lowered when the separator is used. There is a case. When controlling permeation resistance by the β crystal method, operating conditions such as longitudinal stretching conditions such as longitudinal stretching ratio and longitudinal stretching temperature, or transverse stretching conditions such as transverse stretching temperature, transverse stretching speed and transverse stretching ratio are changed. Thus, the air resistance can be controlled.
 しかし運転条件による透気抵抗の制御を実施する場合、透気抵抗を低くしようとすると多孔性ポリプロピレンフィルムの空孔率が高くなり、アセトン浸漬処理後の物性や寸法の変化が大きくなる場合があった。そこで、本実施の形態においては、上述した原料を使用することに加え、横延伸後の熱処理条件以降の条件を後述するような特定の条件とすることにより、透気抵抗が低くかつアセトン処理による物性や寸法の変化が小さい多孔性ポリプロピレンフィルムを得、耐有機溶剤性と出力特性の両立を可能とした。以下に、熱処理条件について述べる。 However, when controlling the air resistance according to the operating conditions, if the air resistance is reduced, the porosity of the porous polypropylene film increases, and the change in physical properties and dimensions after the acetone immersion treatment may increase. It was. Therefore, in the present embodiment, in addition to using the above-mentioned raw materials, by setting the conditions after the heat treatment conditions after transverse stretching to specific conditions as described later, the air resistance is low and by acetone treatment. A porous polypropylene film with small changes in physical properties and dimensions was obtained, and both organic solvent resistance and output characteristics were compatible. The heat treatment conditions are described below.
 β晶法においては、縦延伸に続くテンターでの横延伸により孔が形成し、多孔性ポリプロピレンフィルムを得ることが可能である。テンターでの横延伸工程は、予熱工程、横延伸工程、熱処理工程の3つの工程に分けることができ、熱処理工程では、延伸後のフィルムの熱固定および弛緩(リラックス)を行う。一般的なフィルムの弛緩率は2~10%程度であり、そのときの温度はポリプロピレン樹脂の融点をTmとすると、(Tm-10)℃~(Tm-5)℃程度であるが、本実施の形態においては弛緩率を15~35%と高い値に設定し、さらに、そのときの温度を(Tm-2)℃~(Tm+5)℃の熱処理温度条件をとることにより、透気抵抗が低くかつアセトン処理後の物性や寸法の変化が小さい多孔性ポリプロピレンフィルムを得ることができる。 In the β crystal method, pores are formed by transverse stretching with a tenter following longitudinal stretching, and a porous polypropylene film can be obtained. The transverse stretching process in the tenter can be divided into three processes: a preheating process, a transverse stretching process, and a heat treatment process. In the heat treatment process, the film after stretching is thermally fixed and relaxed. The relaxation rate of a general film is about 2 to 10%, and the temperature at that time is about (Tm-10) ° C to (Tm-5) ° C, where the melting point of the polypropylene resin is Tm. In this embodiment, the relaxation rate is set to a high value of 15 to 35%, and further, the air resistance is reduced by taking the heat treatment temperature condition of (Tm−2) ° C. to (Tm + 5) ° C. In addition, a porous polypropylene film having small changes in physical properties and dimensions after acetone treatment can be obtained.
 本実施の形態に係る多孔性ポリプロピレンフィルムは、フィルム厚みが5~50μmであることが好ましい。厚みが5μm未満では使用時にフィルムが破断する場合があり、50μmを超えると蓄電デバイス内に占める多孔性ポリプロピレンフィルムの体積割合が高くなりすぎてしまい、高いエネルギー密度を得ることができなくなることがある。フィルム厚みは10~30μmであればより好ましく、12~25μmであればなお好ましい。 The porous polypropylene film according to the present embodiment preferably has a film thickness of 5 to 50 μm. If the thickness is less than 5 μm, the film may break during use. If the thickness exceeds 50 μm, the volume ratio of the porous polypropylene film in the electricity storage device becomes too high, and it may not be possible to obtain a high energy density. . The film thickness is more preferably 10 to 30 μm, and still more preferably 12 to 25 μm.
 本実施の形態に係る多孔性ポリプロピレンフィルムは空孔率が40~85%であることが好ましい。空孔率が40%未満では、特に高出力電池用のセパレータとして使用したときに電気抵抗が大きくなる場合がある。一方、空孔率が85%を超えると、アセトン処理後の物性や寸法の変化が大きくなる場合がある。優れた電池特性と耐有機溶剤性を両立させる観点からフィルムの空孔率は42~75%であればより好ましく、45~70%であれば特に好ましい。空孔率は、前述したβ晶核剤やエチレン・α-オレフィン系共重合体や分散剤の添加量を前記範囲とすることや、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸倍率、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能である。 The porous polypropylene film according to this embodiment preferably has a porosity of 40 to 85%. When the porosity is less than 40%, the electrical resistance may increase particularly when used as a separator for a high-power battery. On the other hand, if the porosity exceeds 85%, there may be a large change in physical properties and dimensions after acetone treatment. From the viewpoint of achieving both excellent battery characteristics and organic solvent resistance, the film porosity is more preferably 42 to 75%, and particularly preferably 45 to 70%. The porosity is determined by setting the addition amount of the above-mentioned β crystal nucleating agent, ethylene / α-olefin copolymer and dispersing agent within the above range, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, and the transverse stretching. The magnification, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described later.
 本実施の形態に係る多孔性ポリプロピレンフィルムは、アセトン浸漬処理前後の幅方向寸法変化率が2%以下であることが好ましい。ここで、アセトン浸漬処理とは、多孔性ポリプロピレンフィルムを、製膜方向のみ枠貼りにより固定して、アセトン中に1分間浸漬した後、80℃の熱風オーブン中で1分間乾燥してアセトンを除去する処理を示す。アセトン処理後の幅方向の寸法が、アセトン処理前に対して2%を超えて収縮すると、耐熱層などの機能層をコーティングにより付与する際に、透気抵抗が大きくなったり、幅が減少することにより厚みが増大してしまう場合がある。一方、アセトン処理後の幅方向の寸法が、アセトン処理前に対して2%を超えて膨張すると、耐熱層などの機能層をコーティングにより付与する際に、多孔性ポリプロピレンフィルムを構成する樹脂が膨潤または溶解して、多孔性ポリプロピレンフィルムの孔が粗大化してサイクル特性などの電気特性が低下する場合がある。幅方向寸法変化率は1.5%以下であることがより好ましく、さらに好ましくはアセトン浸漬処理前後の幅方向寸法収縮率が0~1.5%であることが好ましく、最も好ましくはアセトン浸漬処理前後の幅方向寸法収縮率が0~1%である。アセトン浸漬処理前後の幅方向寸法変化率は、前述したβ晶核剤やエチレン・α-オレフィン系共重合体や分散剤の添加量を前記範囲とすることや、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸倍率、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能であり、特に熱処理工程での温度や時間、リラックス率の制御が重要である。 The porous polypropylene film according to the present embodiment preferably has a dimensional change rate in the width direction of 2% or less before and after the acetone immersion treatment. Here, the acetone immersion treatment is a method in which a porous polypropylene film is fixed by frame attachment only in the film forming direction, immersed in acetone for 1 minute, and then dried in a hot air oven at 80 ° C. for 1 minute to remove acetone. Shows the processing to be performed. If the dimension in the width direction after acetone treatment shrinks by more than 2% compared to that before acetone treatment, the air resistance increases or the width decreases when a functional layer such as a heat-resistant layer is applied by coating. As a result, the thickness may increase. On the other hand, when the dimension in the width direction after the acetone treatment exceeds 2% with respect to that before the acetone treatment, the resin constituting the porous polypropylene film swells when a functional layer such as a heat-resistant layer is applied by coating. Or it melt | dissolves and the hole of a porous polypropylene film coarsens and electrical characteristics, such as cycling characteristics, may fall. The width direction dimensional change rate is more preferably 1.5% or less, more preferably the width direction dimensional shrinkage before and after the acetone immersion treatment is preferably 0 to 1.5%, and most preferably the acetone immersion treatment. The front-rear width direction dimensional shrinkage is 0 to 1%. The rate of dimensional change in the width direction before and after the acetone immersion treatment is determined by setting the amount of the β crystal nucleating agent, ethylene / α-olefin copolymer and dispersant described above within the above range, the temperature of the cast drum, and the longitudinal direction. The draw ratio and temperature, the transverse draw ratio, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below, especially the temperature, time, and relaxation rate in the heat treatment step. Control is important.
 尚、本願においては、フィルムの製膜する方向に平行な方向を、製膜方向あるいは長手方向あるいはMD方向と称し、フィルム面内で製膜方向に直交する方向を幅方向、横方向あるいはTD方向と称する。 In the present application, the direction parallel to the film forming direction is referred to as the film forming direction, the longitudinal direction or the MD direction, and the direction perpendicular to the film forming direction in the film plane is the width direction, the lateral direction or the TD direction. Called.
 本実施の形態に係る多孔性ポリプロピレンフィルムは、アセトン浸漬処理前後の透気抵抗の変化率が15%以下であることが好ましい。透気抵抗の変化率が15%を超えると、すなわち、透気抵抗が15%を超えて減少あるいは増加する場合、耐熱層などの機能層をコーティングにより付与する際に、乾燥条件によって透気抵抗が変化し制御が困難であったり、透気抵抗が大きくなり出力特性が低下したり、乾燥後の透気抵抗ムラが大きくなり、電池特性が低下する場合がある。アセトン浸漬処理前後の透気抵抗の変化率は10%以下であることが好ましく、7%以下であることがさらに好ましい。アセトン浸漬処理前後の透気抵抗の変化率は、前述したβ晶核剤やエチレン・α-オレフィン系共重合体や分散剤の添加量を前記範囲とすることや、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸倍率、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能である。 The porous polypropylene film according to the present embodiment preferably has a change rate of air permeability resistance before and after the acetone immersion treatment of 15% or less. When the change rate of the air resistance exceeds 15%, that is, when the air resistance decreases or increases beyond 15%, when the functional layer such as a heat-resistant layer is applied by coating, the air resistance depends on the drying conditions. May change, making control difficult, increasing air resistance and reducing output characteristics, and increasing air resistance unevenness after drying, which may deteriorate battery characteristics. The change rate of the air resistance before and after the acetone immersion treatment is preferably 10% or less, and more preferably 7% or less. The rate of change in air resistance before and after the acetone immersion treatment is determined based on the addition amount of the β crystal nucleating agent, ethylene / α-olefin copolymer and dispersing agent described above, the temperature of the cast drum, and the longitudinal direction. The stretching ratio and temperature, the transverse stretching ratio, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below.
 本実施の形態に係る多孔性ポリプロピレンフィルムは、アセトン浸漬処理前後の厚み変化率を幅方向に70mm間隔で測定したときの最大値をTmax(%)、最小値をTmin(%)としたとき、(Tmax-Tmin)の値が3%以下であることが好ましい。より好ましくは2%以下である。(Tmax-Tmin)の値が3%を超えると、幅方向の厚み変化率のムラが大きいため、有機溶剤を用いてコーティングをした際に、製品の幅方向の厚みムラが大きくなってしまう場合がある。(Tmax-Tmin)の値は、前述したβ晶核剤やエチレン・α-オレフィン系共重合体や分散剤の添加量を前記範囲とすることや、キャストドラムの温度、およびリラックスゾーンでの弛緩速度を後述する範囲内とすることにより制御可能である。 In the porous polypropylene film according to the present embodiment, the maximum value when the thickness change rate before and after the acetone immersion treatment was measured at intervals of 70 mm in the width direction was T max (%), and the minimum value was T min (%). In this case, the value of (T max −T min ) is preferably 3% or less. More preferably, it is 2% or less. When the value of (T max -T min ) exceeds 3%, the thickness variation rate variation in the width direction is large, and therefore, when coating with an organic solvent, the thickness variation in the width direction of the product becomes large. May end up. The value of (T max -T min ) depends on the amount of addition of the β crystal nucleating agent, ethylene / α-olefin copolymer and dispersant described above within the above range, the temperature of the cast drum, and the relaxation zone. It is possible to control the relaxation rate by setting the relaxation rate within the range described later.
 本実施の形態に係る多孔性ポリプロピレンフィルムは、耐有機溶剤性と透気性を両立する観点から積層構成とすることが好ましい。積層構成としては、いずれかの層にカルボキシル基を有するポリプロピレン樹脂または不飽和ジカルボン酸による変性ポリオレフィンを含んでいることが好ましく、さらに好ましくは表面層にカルボキシル基を有するポリプロピレン樹脂または不飽和ジカルボン酸による変性ポリオレフィンを含んでいることが好ましい。カルボキシル基を有するポリプロピレン樹脂または不飽和ジカルボン酸による変性ポリオレフィンは、含まれている層内に0.1~50%含まれていることが好ましく、より好ましくは、1~10%含まれていることが好ましい。ポリプロピレン樹脂にカルボキシル基を導入する方法としては、カルボキシル基を有する極性モノマーをグラフト共重合させる方法などがある。カルボキシル基を有する極性モノマーとしては、(メタ)アクリル酸およびその酸誘導体並びにモノオレフィンジカルボン酸、その無水物およびそのモノエステル類が挙げられる。(メタ)アクリル酸およびそのエステル誘導体の具体例としては、例えば、(メタ)アクリル酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチルなどが挙げられ、モノオレフィンジカルボン酸としては、例えば、マレイン酸、クロロマレイン酸、シトラコン酸、イタコン酸、グルタコン酸、3-メチル-2-ペンテン・二酸、2-メチル-2-ペンテン・二酸、2-ヘキセン・二酸等が挙げられる。なお、これらのポリプロピレン樹脂もβ晶形成能を有することが好ましく、β晶形成能が40%以上であることがより好ましい。 The porous polypropylene film according to the present embodiment preferably has a laminated structure from the viewpoint of achieving both organic solvent resistance and air permeability. As the laminated structure, it is preferable that any layer contains a polypropylene resin having a carboxyl group or a modified polyolefin by an unsaturated dicarboxylic acid, and more preferably a polypropylene resin having a carboxyl group in the surface layer or an unsaturated dicarboxylic acid. It preferably contains a modified polyolefin. The polypropylene resin having a carboxyl group or the polyolefin modified with an unsaturated dicarboxylic acid is preferably contained in an included layer in an amount of 0.1 to 50%, more preferably 1 to 10%. Is preferred. As a method of introducing a carboxyl group into a polypropylene resin, there is a method of graft copolymerizing a polar monomer having a carboxyl group. Examples of the polar monomer having a carboxyl group include (meth) acrylic acid and acid derivatives thereof, and monoolefin dicarboxylic acid, anhydrides and monoesters thereof. Specific examples of (meth) acrylic acid and ester derivatives thereof include, for example, (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, (meth) acrylic Isopropyl acid, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, etc. Examples of monoolefin dicarboxylic acids include maleic acid, chloromaleic acid, citraconic acid , Itaconic acid, glutaconic acid, 3-methyl-2-pentene diacid, 2-methyl-2-pentene diacid, 2-hexene diacid, and the like. In addition, it is preferable that these polypropylene resins also have β crystal forming ability, and β crystal forming ability is more preferably 40% or more.
 積層数としては、2層積層でも3層積層でも、また、それ以上の積層数でもいずれでも構わない。積層の方法としては、共押出によるフィードブロック方式でも、ラミネートによる多孔性ポリプロピレンフィルム同士を貼り合わせる方法でもいずれでも構わないが、生産性の観点から共押出による積層であることが好ましい。 The number of stacked layers may be a two-layer stack, a three-layer stack, or a larger number of stacks. The lamination method may be either a feed block method by coextrusion or a method of laminating porous polypropylene films by lamination, but from the viewpoint of productivity, lamination by coextrusion is preferred.
 以下に本実施の形態に係る多孔性ポリプロピレンフィルムの製造方法を具体的な一例をもとに説明する。なお、本発明の多孔性ポリプロピレンフィルムの製造方法はこれに限定されるものではない。 Hereinafter, a method for producing a porous polypropylene film according to the present embodiment will be described based on a specific example. In addition, the manufacturing method of the porous polypropylene film of this invention is not limited to this.
 ポリプロピレン樹脂として、MFR8g/10分の市販のホモポリプロピレン樹脂99.5質量部、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド0.3質量部、酸化防止剤0.2質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給して溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン原料(a)を準備する。この際、溶融温度は270~300℃とすることが好ましい。 99.5 parts by mass of a commercially available homopolypropylene resin with an MFR of 8 g / 10 min as a polypropylene resin, 0.3 parts by mass of N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide as a β-crystal nucleating agent, an antioxidant 0 The raw material is fed from the weighing hopper to the twin screw extruder so that 2 parts by mass are mixed at this ratio, melt kneaded, discharged from the die in the form of strands, cooled and solidified in a 25 ° C. water bath, and chips A polypropylene raw material (a) is prepared by cutting into a shape. At this time, the melting temperature is preferably 270 to 300 ° C.
 同様に、上記のホモポリプロピレン樹脂59.8質量部、エチレン・α-オレフィン系共重合体として市販のMFR18g/10分の超低密度ポリエチレン樹脂エチレン・オクテン-1共重合体を30質量部、分散剤として市販のCEBC10質量部、酸化防止剤0.2質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン原料(b)を準備する。 Similarly, 59.8 parts by mass of the above-mentioned homopolypropylene resin, 30 parts by mass of a commercially available MFR 18 g / 10 min ultra low density polyethylene resin ethylene / octene-1 copolymer as an ethylene / α-olefin copolymer, As raw materials, 10 parts by weight of commercially available CEBC and 0.2 parts by weight of antioxidant are mixed at this ratio, and the raw material is supplied from the weighing hopper to the twin screw extruder, melt kneaded at 240 ° C. Discharge, solidify by cooling in a water bath at 25 ° C., and cut into chips to prepare a polypropylene raw material (b).
 また、ポリプロピレン樹脂として、MFR8g/10分の市販のホモポリプロピレン樹脂を70質量部、MFR=0.5g/10分の市販のホモポリプロピレンを30質量部、および酸化防止剤を0.2質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン原料(c)を準備する。 Further, as a polypropylene resin, 70 parts by mass of a commercially available homopolypropylene resin having an MFR of 8 g / 10 min, 30 parts by mass of a commercially available homopolypropylene having an MFR of 0.5 g / 10 min, and 0.2 parts by mass of an antioxidant The raw material is supplied from the weighing hopper to the twin screw extruder so as to be mixed at this ratio, melt kneaded at 240 ° C., discharged from the die in a strand shape, cooled and solidified in a 25 ° C. water tank, and formed into chips. Cut to prepare a polypropylene raw material (c).
 次に、ポリプロピレン原料(a)73質量部、ポリプロピレン原料(b)10質量部、ポリプロピレン原料(c)16.7質量部、および酸化防止剤0.3質量部をドライブレンドにて混合して、A層の単軸押出機に供給し、一方、ポリプロピレン原料(a)99質量部、およびカルボキシル基を有するポリプロピレン樹脂または不飽和ジカルボン酸による変性ポリオレフィン1質量部をドライブレンドし、B層の単軸押出機に供給する。そして、A層の単軸押出機およびB層の単軸押出機から、200~230℃にて溶融押出を行う。さらに、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、フィードブロック型のB/A/B複合Tダイよりキャストドラム上に吐出し、未延伸の積層キャストシートを得る。キャストドラムは、表面温度が105~130℃であることが、キャストシートのβ晶分率を高く制御する観点から好ましい。この際、特にシートの端部の成形が、後の延伸性に影響するので、端部にスポットエアーを吹き付けてドラムに密着させることが好ましい。また、シート全体のドラム上への密着状態から、必要に応じて全面にエアナイフを用いて空気を吹き付けてもよい。尚、キャストシートとは、溶融したポリプロピレン樹脂をキャストドラム上でシート状に成型した、未延伸のシートを示す。 Next, 73 parts by mass of the polypropylene raw material (a), 10 parts by mass of the polypropylene raw material (b), 16.7 parts by mass of the polypropylene raw material (c), and 0.3 parts by mass of the antioxidant are mixed by dry blending, Supplied to a single screw extruder of layer A, while dry blending 99 parts by weight of the polypropylene raw material (a) and 1 part by weight of a polypropylene resin having a carboxyl group or a modified polyolefin with unsaturated dicarboxylic acid, Supply to the extruder. Then, melt extrusion is performed at 200 to 230 ° C. from the single-axis extruder for the A layer and the single-screw extruder for the B layer. Furthermore, after removing foreign substances and modified polymer with a filter installed in the middle of the polymer tube, the mixture is discharged onto a cast drum from a feed block type B / A / B composite T die to obtain an unstretched laminated cast sheet. . The surface temperature of the cast drum is preferably 105 to 130 ° C. from the viewpoint of controlling the β crystal fraction of the cast sheet to be high. At this time, particularly, the forming of the end portion of the sheet affects the subsequent stretchability, and therefore it is preferable that the end portion is sprayed with spot air to be in close contact with the drum. Further, air may be blown over the entire surface using an air knife as necessary from the state in which the entire sheet is in close contact with the drum. The cast sheet refers to an unstretched sheet obtained by molding a molten polypropylene resin into a sheet shape on a cast drum.
 次に、得られたキャストシートを二軸配向させ、該シート中に空孔を形成する。二軸配向させる方法としては、キャストシートを長手方向に延伸した後で幅方向に延伸、あるいは幅方向に延伸した後で長手方向に延伸する逐次二軸延伸法、またはキャストシートの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることができる。透気性と耐有機溶剤性の観点では逐次二軸延伸法を採用することが好ましく、特に、長手方向に延伸後、幅方向に延伸することが好ましい。 Next, the obtained cast sheet is biaxially oriented to form pores in the sheet. The biaxial orientation method includes stretching the cast sheet in the longitudinal direction and then stretching in the width direction, or the successive biaxial stretching method of stretching in the longitudinal direction after stretching in the width direction, or the longitudinal direction and width of the cast sheet. A simultaneous biaxial stretching method in which the directions are stretched almost simultaneously can be used. From the viewpoint of air permeability and organic solvent resistance, it is preferable to employ a sequential biaxial stretching method, and in particular, stretching in the longitudinal direction and then stretching in the width direction are preferred.
 具体的な延伸条件としては、まず、キャストシートの温度を長手方向に延伸する温度に制御する。温度制御の方法としては、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の延伸温度としては、90~140℃であることが好ましい。90℃未満では、キャストシートが破断したり、空孔率が高くなりすぎてアセトン処理後の物性や寸法の変化が大きくなる場合がある。一方、140℃を超えると、透気性が低下する場合がある。長手方向の延伸温度は、より好ましくは110~135℃、特に好ましくは125~130℃である。延伸倍率としては、3~7倍であることが好ましい。3倍未満では透気性が低く、出力特性が低下する場合がある。延伸倍率を高くするほど透気性は良化するが、7倍を超えて延伸すると、空孔率が高くなりすぎてアセトン処理後の物性や寸法の変化が大きくなる場合がある。高透気性と耐有機溶剤性の両立の観点から、延伸倍率はより好ましくは4.5~6倍である。 As specific stretching conditions, first, the temperature of the cast sheet is controlled to a temperature for stretching in the longitudinal direction. As a temperature control method, a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be employed. The stretching temperature in the longitudinal direction is preferably 90 to 140 ° C. If it is less than 90 degreeC, a cast sheet may fracture | rupture or a porosity will become high too much, and the change of the physical property and dimension after acetone processing may become large. On the other hand, if it exceeds 140 ° C., the air permeability may decrease. The stretching temperature in the longitudinal direction is more preferably 110 to 135 ° C, particularly preferably 125 to 130 ° C. The draw ratio is preferably 3 to 7 times. If it is less than 3 times, the air permeability is low, and the output characteristics may deteriorate. As the draw ratio is increased, the air permeability is improved. However, if the draw ratio is more than 7 times, the porosity becomes too high, and the physical properties and dimensional changes after the acetone treatment may increase. From the viewpoint of achieving both high air permeability and organic solvent resistance, the draw ratio is more preferably 4.5 to 6 times.
 次に、テンター式延伸機に、長手方向に延伸したシートの端部を把持させて導入する。横延伸温度は、好ましくは130~155℃である。130℃未満では長手方向に延伸したシートが破断したり、横延伸後のフィルムのアセトン処理後の物性や寸法の変化が大きくなる場合があり、155℃を超えると透気性が低下して出力特性が低下する場合がある。透気性と耐有機溶剤性の両立の観点から、より好ましい横延伸温度は140~155℃である。幅方向の延伸倍率は4~12倍であることが好ましい。4倍未満であると、透気性が低下して出力特性が低下する場合がある。12倍を超えると、アセトン処理後の物性や寸法の変化が大きくな場合がある。出力特性と耐有機溶剤性の両立の観点から、延伸倍率は、より好ましくは4~10倍、更に好ましくは4~7倍である。なお、このときの横延伸速度としては、500~6,000%/分で行うことが好ましく、1,000~5,000%/分であればより好ましい。面積倍率(縦延伸倍率×横延伸倍率)としては、好ましくは30~60倍である。このようにキャストシートを延伸させることにより、フィルム(多孔性ポリプロピレンフィルム)を得る。 Next, the end of the sheet stretched in the longitudinal direction is introduced into the tenter type stretching machine by gripping. The transverse stretching temperature is preferably 130 to 155 ° C. If the temperature is lower than 130 ° C, the sheet stretched in the longitudinal direction may break, or the physical properties and dimensional changes after the acetone treatment of the film after transverse stretching may increase. If the temperature exceeds 155 ° C, the air permeability decreases and the output characteristics. May decrease. From the viewpoint of achieving both air permeability and organic solvent resistance, a more preferred transverse stretching temperature is 140 to 155 ° C. The draw ratio in the width direction is preferably 4 to 12 times. If it is less than 4 times, the air permeability may be lowered and the output characteristics may be lowered. When it exceeds 12 times, the change in physical properties and dimensions after acetone treatment may be large. From the viewpoint of achieving both output characteristics and organic solvent resistance, the draw ratio is more preferably 4 to 10 times, and still more preferably 4 to 7 times. The transverse stretching speed at this time is preferably 500 to 6,000% / min, more preferably 1,000 to 5,000% / min. The area ratio (longitudinal stretching ratio × lateral stretching ratio) is preferably 30 to 60 times. Thus, a film (porous polypropylene film) is obtained by extending a cast sheet.
 横延伸に続いて、テンター内で熱処理工程を行う。ここで熱処理工程は、横延伸後の幅のまま熱処理を行う熱固定ゾーン(以後、HS1ゾーンと記す)、テンターの幅を狭めてフィルムを弛緩させながら熱処理を行うリラックスゾーン(以後、Rxゾーンと記す)、リラックス後の幅のまま熱処理を行う熱固定ゾーン(以後、HS2ゾーンと記す)の3ゾーンに分かれていることが、透気性と耐有機溶剤性の制御の観点から好ましい。 続 い Following transverse stretching, a heat treatment step is performed in the tenter. Here, the heat treatment step includes a heat setting zone (hereinafter referred to as HS1 zone) in which heat treatment is performed with the width after transverse stretching, and a relaxation zone (hereinafter referred to as Rx zone) in which heat treatment is performed while relaxing the film by narrowing the width of the tenter. It is preferable from the viewpoint of control of air permeability and organic solvent resistance that it is divided into three zones, a heat setting zone (hereinafter referred to as HS2 zone) in which heat treatment is performed with the width after relaxation.
 HS1ゾーンの温度は、140~165℃であることが好ましい。HS1ゾーンの温度が140℃未満であると、アセトン処理後の物性や寸法の変化が大きくなる場合がある。一方、HS1ゾーンの温度が165℃を超えると、多孔性ポリプロピレンフィルム表面が溶融し透気抵抗が高くなったり、さらに多孔性ポリプロピレンフィルムが幅方向に収縮し、HS1ゾーン内で破断してしまい、生産性が低下する場合がある。出力特性と耐有機溶剤性の両立の観点から、HS1ゾーンの温度は150~160℃であればより好ましい。 The temperature of the HS1 zone is preferably 140 to 165 ° C. If the temperature of the HS1 zone is lower than 140 ° C., the physical properties and dimensional changes after the acetone treatment may increase. On the other hand, when the temperature of the HS1 zone exceeds 165 ° C., the porous polypropylene film surface is melted and air permeability resistance is increased, and further, the porous polypropylene film contracts in the width direction and breaks in the HS1 zone, Productivity may be reduced. From the viewpoint of achieving both output characteristics and organic solvent resistance, the temperature of the HS1 zone is more preferably 150 to 160 ° C.
 HS1ゾーンでの熱処理時間は、幅方向のヤング率と生産性の両立の観点から0.1秒以上10秒以下であることが好ましく、3秒以上8秒以下であるとより好ましい。 The heat treatment time in the HS1 zone is preferably 0.1 second or more and 10 seconds or less, more preferably 3 seconds or more and 8 seconds or less from the viewpoint of achieving both Young's modulus in the width direction and productivity.
 本実施の形態におけるRxゾーンでの弛緩率は13~35%であることが好ましい。弛緩率が13%未満であると幅方向の熱収縮率が大きくなる場合がある。一方、弛緩率が35%を超えると透気性が低下して出力特性が低下したり、幅方向の厚みムラや熱収縮率のムラが大きくなる場合がある。出力特性と低熱収縮率の両立の観点から、弛緩率は15~25%であるとより好ましい。 In the present embodiment, the relaxation rate in the Rx zone is preferably 13 to 35%. If the relaxation rate is less than 13%, the thermal contraction rate in the width direction may increase. On the other hand, if the relaxation rate exceeds 35%, the air permeability may be lowered to deteriorate the output characteristics, or the thickness unevenness in the width direction and the heat shrinkage rate unevenness may be increased. From the viewpoint of achieving both output characteristics and a low heat shrinkage rate, the relaxation rate is more preferably 15 to 25%.
 Rxゾーンの温度は、155~170℃であることが好ましい。Rxゾーンの温度が155℃未満であると、弛緩の為の収縮応力が低くなり、上述した高い弛緩率を達成できなかったり、アセトン処理後の物性や寸法の変化が大きくなる場合がある。一方、Rxゾーンの温度が170℃を超えると、高温により孔周辺のポリマーが溶けて透気性が低下する場合がある。出力特性と耐有機溶剤性の観点から、Rxゾーンの温度は160~165℃であるとより好ましい。 The temperature of the Rx zone is preferably 155 to 170 ° C. When the temperature of the Rx zone is less than 155 ° C., the shrinkage stress for relaxation becomes low, and the above-described high relaxation rate may not be achieved, or physical properties and dimensional changes after acetone treatment may increase. On the other hand, if the temperature of the Rx zone exceeds 170 ° C., the polymer around the pores may melt due to the high temperature and the air permeability may be lowered. From the viewpoint of output characteristics and organic solvent resistance, the temperature of the Rx zone is more preferably 160 to 165 ° C.
 Rxゾーンでの弛緩速度は、100~1,000%/分であることが好ましい。弛緩速度が100%/分未満であると、製膜速度を遅くしたり、テンター長さを長くする必要があり、生産性に劣る場合がある。一方、弛緩速度が1,000%/分を超えると、テンターのレール幅が縮む速度よりフィルムが収縮する速度が遅くなり、テンター内でフィルムがばたついて破れたり、アセトン処理後の厚み変化率の幅方向のムラが大きくなったり平面性低下を生じる場合がある。弛緩速度は、150~500%/分であることがより好ましい。 The relaxation rate in the Rx zone is preferably 100 to 1,000% / min. When the relaxation rate is less than 100% / min, it is necessary to slow down the film forming rate or lengthen the tenter length, which may be inferior in productivity. On the other hand, when the relaxation rate exceeds 1,000% / min, the rate at which the film shrinks becomes slower than the rate at which the tenter rail width shrinks, the film flutters in the tenter and tears, or the rate of change in thickness after acetone treatment In some cases, the unevenness in the width direction increases or the flatness deteriorates. The relaxation rate is more preferably 150 to 500% / min.
 HS2ゾーンの温度は、155~165℃であることが好ましい。HS2ゾーンの温度が155℃未満であると、熱弛緩後のフィルムの緊張が不十分となり、アセトン処理後の厚み変化率の幅方向のムラが大きくなったり、平面性低下を生じる場合がある。一方、HS2ゾーンの温度が165℃を超えると、高温により孔周辺のポリマーが溶けて透気性が低下して出力特性が低下する場合がある。出力特性と耐有機溶剤性の両立の観点から、HS2ゾーンの温度は、160~165℃であることがより好ましい。熱固定工程後のフィルムは、テンターのクリップで把持した耳部をスリットして除去し、ワインダーでコアに巻き取って製品とする。 The temperature of the HS2 zone is preferably 155 to 165 ° C. When the temperature of the HS2 zone is less than 155 ° C., the tension of the film after thermal relaxation becomes insufficient, and unevenness in the width direction of the thickness change rate after the acetone treatment may increase, or flatness may be deteriorated. On the other hand, when the temperature of the HS2 zone exceeds 165 ° C., the polymer around the pores melts due to the high temperature, and the gas permeability may be reduced, resulting in a decrease in output characteristics. From the viewpoint of achieving both output characteristics and organic solvent resistance, the temperature of the HS2 zone is more preferably 160 to 165 ° C. The film after the heat setting step is removed by slitting the ears gripped by the tenter clip, and wound around the core with a winder to obtain a product.
 その後、多孔性ポリプロピレンフィルムの少なくとも片面にコート層を設けて、積層多孔性フィルムとしてもよい。本実施の形態に係る多孔性ポリプロピレンフィルムは耐有機溶剤性に優れるため、有機溶剤を用いてコーティングを実施しても高い透気性を保つことが可能である。コーティング方法としては公知の手法を用いることができる。例えば、溶剤にアセトン、エタノール、テトラヒドロフラン、Nメチル2ピロリドンなどから選ばれる少なくとも1種類の有機溶剤を使用し、耐熱樹脂や無機粒子と、必要に応じてバインダーなどの添加剤を添加して塗剤を調合し、ダイコート法やグラビアコート法を用いて、多孔性ポリプロピレンフィルムの少なくとも片面に塗工すればよい。その後、乾燥オーブンを用いて溶剤を乾燥させることにより積層多孔性フィルムを得ることができる。 Thereafter, a coated layer may be provided on at least one surface of the porous polypropylene film to form a laminated porous film. Since the porous polypropylene film according to the present embodiment is excellent in resistance to organic solvents, high air permeability can be maintained even when coating is performed using an organic solvent. As a coating method, a known method can be used. For example, using at least one organic solvent selected from acetone, ethanol, tetrahydrofuran, N-methyl-2-pyrrolidone, etc. as a solvent, and adding a heat-resistant resin, inorganic particles, and additives such as a binder as necessary May be prepared and applied to at least one surface of the porous polypropylene film using a die coating method or a gravure coating method. Then, a laminated porous film can be obtained by drying the solvent using a drying oven.
 本実施の形態に係る多孔性ポリプロピレンフィルムは、生産性に優れ、透気抵抗が低く、かつ、アセトン処理後の物性や寸法の変化が小さいことから、包装用品、衛生用品、農業用品、建築用品、医療用品、分離膜、光拡散板、反射シート用途で用いることができるが、特に蓄電デバイス用のセパレータとして用いたとき出力特性と耐有機溶剤性を両立できることから好適である。ここで、蓄電デバイスとしては、リチウムイオン二次電池に代表される非水電解液二次電池や、リチウムイオンキャパシタなどの電気二重層キャパシタなどを挙げることができる。このような蓄電デバイスは充放電することで繰り返し使用することができるので、産業装置や生活機器、電気自動車やハイブリッド電気自動車などの電源装置として使用することができる。特に本実施の形態に係る多孔性ポリプロピレンフィルムを用いたセパレータを使用した蓄電デバイスは、表層に耐熱層などの機能層をコーティングするための基材用多孔性フィルムとして好適である。さらに本実施の形態に係る多孔性ポリプロピレンフィルムに耐熱層を付与した積層多孔性フィルムは、出力特性と安全性に優れることから電気自動車用の非水電解液二次電池に好適に用いることができる。 The porous polypropylene film according to the present embodiment has excellent productivity, low air resistance, and small changes in physical properties and dimensions after acetone treatment, so that it is a packaging product, sanitary product, agricultural product, and building product. It can be used for medical supplies, separation membranes, light diffusing plates, and reflective sheets, but is particularly suitable when used as a separator for an electricity storage device because both output characteristics and organic solvent resistance can be achieved. Here, examples of the electricity storage device include a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, and an electric double layer capacitor such as a lithium ion capacitor. Since such an electricity storage device can be repeatedly used by charging and discharging, it can be used as a power supply device for industrial devices, household equipment, electric vehicles, hybrid electric vehicles, and the like. In particular, the electricity storage device using the separator using the porous polypropylene film according to the present embodiment is suitable as a porous film for a substrate for coating a surface layer with a functional layer such as a heat-resistant layer. Furthermore, the laminated porous film provided with a heat resistant layer on the porous polypropylene film according to the present embodiment is excellent in output characteristics and safety, and therefore can be suitably used for a non-aqueous electrolyte secondary battery for an electric vehicle. .
 以下、本発明の実施例1~5を詳細に説明する。各実施例1~5及び比較例1~4の特性は、以下の方法により測定し、評価を行った。もちろん、本発明はこれらに限定されるものではない。 Hereinafter, Examples 1 to 5 of the present invention will be described in detail. The characteristics of Examples 1 to 5 and Comparative Examples 1 to 4 were measured and evaluated by the following methods. Of course, the present invention is not limited to these.
 (1)β晶形成能
 多孔性ポリプロピレンフィルム5mgをサンプルとしてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から260℃まで10℃/分で昇温(ファーストラン)し、10分間保持した後、40℃まで10℃/分で冷却する。5分保持後、再度10℃/分で昇温(セカンドラン)した際に観測される融解ピークについて、145~157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、それぞれの融解熱量を求め、α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とする。なお、融解熱量の校正はインジウムを用いて行った。
 β晶形成能(%)=〔ΔHβ/(ΔHα+ΔHβ)〕×100
 なお、ファーストランで観察される融解ピークから同様にβ晶の存在比率を算出することで、そのサンプルの状態でのβ晶分率を算出することができる。
(1) β-crystal forming ability 5 mg of a porous polypropylene film was taken as a sample in an aluminum pan and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220). First, the temperature is raised from room temperature to 260 ° C. at 10 ° C./min (first run) in a nitrogen atmosphere, held for 10 minutes, and then cooled to 40 ° C. at 10 ° C./min. The melting peak observed when the temperature is raised again (second run) at 10 ° C / min after holding for 5 minutes is the melting peak of 145 ° C to 157 ° C. The melting of the α crystal is the melting peak of the α crystal, the melting peak of the α crystal is taken as the melting peak of the base, and the area of the region surrounded by the peak drawn from the flat portion on the high temperature side. When the heat of fusion of ΔHα and β crystals is ΔHβ, the value calculated by the following formula is β crystal forming ability. The heat of fusion was calibrated using indium.
β crystal forming ability (%) = [ΔHβ / (ΔHα + ΔHβ)] × 100
In addition, the β crystal fraction in the state of the sample can be calculated by calculating the abundance ratio of the β crystal from the melting peak observed in the first run.
 (2)融点(Tm)
 上記β晶形成能の測定方法と同様の方法でポリプロピレン樹脂を測定し、セカンドランのピーク温度(α晶)を融点(Tm)とした。
(2) Melting point (Tm)
The polypropylene resin was measured by the same method as the method for measuring the β crystal forming ability, and the peak temperature (α crystal) of the second run was taken as the melting point (Tm).
 (3)アセトン浸漬および乾燥処理に伴う物性変化
 多孔性ポリプロピレンフィルムを長手方向140mm×幅方向70mmの長方形に切取りサンプル2とした(図1参照)。切り出した多孔性ポリプロピレンフィルムの幅方向について長手方向中央部の寸法を測定し、処理前幅方向長さLTD1(mm)とした。また、下記(8)に準じた方法で、サンプル2の中央部におけるフィルム厚みを測定し処理前厚みT1(μm)とした。切り出したサンプル2の透気抵抗は、下記(6)に記載の方法に従って測定した。透気抵抗の測定位置1は、幅方向の中央を通り、幅方向に平行な2辺からそれぞれ30mm内側に入った点を中心とする2カ所とした。これらの測定位置1において透気抵抗を測定し、その平均値を処理前透気抵抗G1とした。
(3) Change in physical properties accompanying acetone immersion and drying treatment A porous polypropylene film was cut into a rectangle of 140 mm in the longitudinal direction and 70 mm in the width direction as Sample 2 (see FIG. 1). The dimension of the center part in the longitudinal direction was measured in the width direction of the cut-out porous polypropylene film, and it was defined as a width direction length L TD1 (mm) before processing. Moreover, the film thickness in the center part of the sample 2 was measured by the method according to following (8), and it was set as thickness T1 (micrometer) before a process. The air resistance of the sample 2 cut out was measured according to the method described in the following (6). The measurement position 1 of the air permeation resistance was set at two locations centering on a point which passed through the center in the width direction and entered 30 mm inside from two sides parallel to the width direction. The air resistance was measured at these measurement positions 1, and the average value was defined as the pre-treatment air resistance G1.
 内枠80mm×80mm、外枠100mm×100mmのステンレス製の金属枠3に対し(図2参照)、サンプル2の長手方向の上下それぞれ20mmずつを金属枠の外枠部で折り返し、ダブルクリップ(CビTP-CL-104)4で一辺当たり2カ所を挟むことにより、サンプル2の長手方向のみを固定した。固定する際、サンプル2にしわが入ったり、たるまないようにセットし、併せて、固定したサンプル2の中央に接触断面が0.785cmの円筒状の5gのおもりを乗せた時のサンプル2のたわみ量が1mm以下であることを確認した。金属枠に長手方向のみ固定したサンプル2をアセトン(関東化学製 特級)に1分間浸漬し、その後、80℃の熱風オーブン(エスペック社(旧TABAI)製PHH-100、wind controlを6に設定)にて1分間乾燥し、オーブンから取り出して5分間放置し、室温まで冷却後、金属枠からサンプル2を取り外した。 For the stainless steel metal frame 3 having an inner frame of 80 mm × 80 mm and an outer frame of 100 mm × 100 mm (see FIG. 2), the sample 2 is folded back by 20 mm at the top and bottom in the longitudinal direction at the outer frame part of the metal frame. BiTP-CL-104) 4 was clamped at two locations per side to fix only the longitudinal direction of sample 2. When fixing, set the sample 2 so that it does not wrinkle or sag. At the same time, place a cylindrical 5 g weight with a contact cross section of 0.785 cm 2 on the center of the fixed sample 2 It was confirmed that the amount of deflection was 1 mm or less. Sample 2 fixed only in the longitudinal direction on a metal frame is immersed in acetone (special grade made by Kanto Chemical) for 1 minute, and then heated in an 80 ° C hot air oven (Espec Corp. (formerly TABAI) PHH-100, wind control set to 6) The sample 2 was removed from the metal frame after being dried for 1 minute, taken out of the oven and allowed to stand for 5 minutes, cooled to room temperature.
 熱風オーブンから取り外したサンプル2について、サンプル2の幅方向について最も収縮した場所を測定し、その長さを処理後幅方向長さLTD2(mm)とした(図3参照)。また、下記(8)に準じた方法で、幅方向に最も収縮した場所の中央におけるフィルム厚みを測定し、処理後厚みT2(μm)とした。さらに、下記(6)に準じた方法で、サンプル2の幅方向に最も収縮した場所(透気抵抗の測定位置5)を中心として透気抵抗を測定し、その値を処理後透気抵抗G2とした(図3)。 About the sample 2 removed from the hot air oven, the place where the sample 2 contracted most in the width direction was measured, and the length was defined as a width direction length L TD2 (mm) after processing (see FIG. 3). Moreover, the film thickness in the center of the place shrink | contracted most in the width direction was measured by the method according to following (8), and it was set as post-process thickness T2 (micrometer). Further, by the method according to the following (6), the air resistance is measured around the most contracted place (the air resistance measurement position 5) in the width direction of the sample 2, and the value is processed and the air resistance G2 after processing. (FIG. 3).
 各物性の変化率は以下の式に基づいて算出した。
 幅方向寸法変化率(%)=|LTD1-LTD2|/LTD1×100
 厚み変化率(%)=|T1-T2|/T1×100
 ガーレー透気抵抗の変化率(%)=|G1-G2|/G1×100
The change rate of each physical property was calculated based on the following formula.
Dimensional change rate in width direction (%) = | L TD1 −L TD2 | / L TD1 × 100
Thickness change rate (%) = | T1-T2 | / T1 × 100
Change rate of Gurley air resistance (%) = | G1-G2 | / G1 × 100
 (4)アセトン浸漬処理前後の厚み変化率の幅方向ムラ
 測定用サンプルとして、多孔性ポリプロピレンフィルムの幅方向の一方の端から他方の端に向けて幅70mmのサンプルを、中心線間隔を70mmとして、多孔性ポリプロピレンフィルムの全幅にわたって切り出した。なお、他方の端で70mm未満の端数が生じた場合は、該他方の端に接する70mm四方のサンプルを、長手方向に隣接する部位から採取しサンプルとした。各サンプルについて上記(3)と同様の方法でアセトン浸漬前後の厚みを測定し、厚み変化率を求めた。各測定値の厚み変化率の最大をTmax、厚み変化率の最小をTminとし(Tmax-Tmin)の値を求めた。
(4) Unevenness in the width direction of the rate of change in thickness before and after acetone immersion treatment As a measurement sample, a sample having a width of 70 mm from one end to the other end in the width direction of the porous polypropylene film was set, and the center line interval was set to 70 mm. And cut out across the entire width of the porous polypropylene film. When a fraction of less than 70 mm was generated at the other end, a 70 mm square sample in contact with the other end was taken from a site adjacent in the longitudinal direction and used as a sample. About each sample, the thickness before and behind acetone immersion was measured by the method similar to said (3), and thickness change rate was calculated | required. The maximum thickness change rate of each measured value was T max , and the minimum thickness change rate was T min, and the value of (T max −T min ) was determined.
 (5)メルトフローレート(MFR)
 ポリプロピレン樹脂のMFRは、JIS K 7210(1995)の条件M(230℃、2.16kg)に準拠して測定した。ポリエチレン樹脂のMFRは、JIS K 7210(1995)の条件D(190℃、2.16kg)に準拠して測定した。
(5) Melt flow rate (MFR)
The MFR of the polypropylene resin was measured according to the condition M (230 ° C., 2.16 kg) of JIS K 7210 (1995). The MFR of the polyethylene resin was measured according to the condition D (190 ° C., 2.16 kg) of JIS K 7210 (1995).
 (6)透気抵抗
 多孔性ポリプロピレンフィルムについて、JIS P 8117(1998)のB形ガーレー試験器を用いて、23℃、相対湿度65%にて、100mlの空気の透過時間の測定を行った。なお、フィルムに貫通孔が形成されていることは、この透気性の値が有限値であることをもって確認できる。
(6) Air permeation resistance With respect to the porous polypropylene film, the permeation time of 100 ml of air was measured at 23 ° C. and relative humidity 65% using a B-type Gurley tester of JIS P 8117 (1998). In addition, it can confirm that the through-hole is formed in the film that this air permeability value is a finite value.
 (7)空孔率
 多孔性ポリプロピレンフィルムを30mm×40mmの大きさに切取り、サンプルとした。電子比重計(ミラージュ貿易(株)製SD-120L)を用いて、室温23℃、相対湿度65%の雰囲気にて比重(ρ)の測定を行った。
(7) Porosity A porous polypropylene film was cut into a size of 30 mm × 40 mm and used as a sample. Using an electronic hydrometer (SD-120L manufactured by Mirage Trading Co., Ltd.), the specific gravity (ρ) was measured in an atmosphere having a room temperature of 23 ° C. and a relative humidity of 65%.
 次に、測定したフィルムを280℃、5MPaで熱プレスを行い、その後、25℃の水で急冷して、空孔を完全に消去したシートを作成した。このシートの比重を上記した方法で同様に測定し、平均値を樹脂の比重(d)とした。なお、後述する実施例においては、いずれの場合も樹脂の比重dは0.91であった。フィルムの比重と樹脂の比重から、以下の式により空孔率を算出した。
 空孔率(%)=〔(d-ρ)/d〕×100
Next, the measured film was hot-pressed at 280 ° C. and 5 MPa, and then rapidly cooled with water at 25 ° C. to prepare a sheet from which pores were completely erased. The specific gravity of this sheet was measured in the same manner as described above, and the average value was defined as the specific gravity (d) of the resin. In the examples described later, the specific gravity d of the resin was 0.91 in any case. From the specific gravity of the film and the specific gravity of the resin, the porosity was calculated by the following formula.
Porosity (%) = [(d−ρ) / d] × 100
 (8)フィルム厚み
 ダイヤルゲージ式厚み計(JIS B-7503(1997)、PEACOCK製UPRIGHT DIAL GAUGE(0.001×2mm)、No.25、測定子10mmφ平型、50gf荷重)を用いて、厚みを測定した。
(8) Film thickness Using a dial gauge thickness gauge (JIS B-7503 (1997), PEACOCK UPRIGHT DIAL GAUGE (0.001 × 2 mm), No. 25, measuring element 10 mmφ flat, 50 gf load) Was measured.
 (実施例1)
 ポリプロピレン樹脂として、融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を99.7質量部と、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部と、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010およびIRGAFOS168を各々0.1質量部とがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、300℃で溶融混練を行った。そして、溶融混練された材料をストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(I)を得た。
Example 1
As the polypropylene resin, 99.7 parts by mass of homopolypropylene FLX80E4 manufactured by Sumitomo Chemical Co., Ltd. having a melting point of 165 ° C. and MFR = 7.5 g / 10 min, and N, N′-dicyclohexyl-2,6 which is a β crystal nucleating agent -0.3 parts by mass of naphthalene dicarboxyamide (manufactured by Shin Nippon Rika Co., Ltd., NU-100), and 0.1 parts by mass of IRGANOX 1010 and IRGAFOS 168 made by Ciba Specialty Chemicals, which are antioxidants. The raw materials were supplied from the weighing hopper to the twin screw extruder so as to be mixed at this ratio, and melt kneading was performed at 300 ° C. Then, the melt-kneaded material was discharged from the die in a strand shape, cooled and solidified in a water bath at 25 ° C., and cut into a chip shape to obtain a polypropylene composition (I).
 次に、融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を70質量部と、共重合PE樹脂としてエチレン-オクテン-1共重合体(ダウ・ケミカル製 Engage8411、メルトインデックス:18g/10分)を30質量部と、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010およびIRGAFOS168を各々0.1質量部とがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行った。そして、溶融混練された材料をストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン原料(II)を得た。 Next, 70 parts by mass of Sumitomo Chemical Co., Ltd. homopolypropylene FLX80E4 having a melting point of 165 ° C. and MFR = 7.5 g / 10 min, and an ethylene-octene-1 copolymer (engage 8411 manufactured by Dow Chemical Co., Ltd.) as a copolymer PE resin. , Melt index: 18 g / 10 min) from the weighing hopper so that 0.1 parts by mass of IRGANOX 1010 and IRGAFOS 168 manufactured by Ciba Specialty Chemicals, which are antioxidants, are mixed at this ratio. The raw material was supplied to a twin screw extruder and melt kneaded at 240 ° C. Then, the melt-kneaded material was discharged from the die in a strand shape, cooled and solidified in a water bath at 25 ° C., and cut into a chip shape to obtain a polypropylene raw material (II).
 ポリプロピレン樹脂として、ホモポリプロピレンFLX80E4を70質量部と、融点162℃、MFR=0.5g/10分の住友化学(株)製ホモポリプロピレンD101を30質量部と、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010およびIRGAFOS168を各々0.1質量部とがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行った。そして、溶融混練された材料をストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(III)を得た。 As polypropylene resin, 70 parts by mass of homopolypropylene FLX80E4, 30 parts by mass of homopolypropylene D101 made by Sumitomo Chemical Co., Ltd., melting point 162 ° C. and MFR = 0.5 g / 10 min, and Ciba Specialty which is an antioxidant -Chemicals IRGANOX 1010 and IRGAFOS 168 were each fed to the twin screw extruder from the weighing hopper so that 0.1 parts by mass of each were mixed at this ratio, and melt kneaded at 240 ° C. Then, the melt-kneaded material was discharged from the die in a strand shape, cooled and solidified in a water bath at 25 ° C., and cut into a chip shape to obtain a polypropylene composition (III).
 得られたポリプロピレン組成物(I)73.3質量部とポリプロピレン組成物(II)10質量部とポリプロピレン組成物(III)16.7質量部とをドライブレンドしてA層用の単軸の溶融押出機に供給し、一方、ポリプロピレン組成物(I)99質量部と、カルボキシル基を有するポリプロピレン樹脂または不飽和ジカルボン酸による変性ポリオレフィンである三井化学(株)製アドマーQF500を1質量部とをB層用の単軸の溶融押出機に供給した。そして、A層用の単軸の溶融押出機およびB層用の単軸の溶融押出機から220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のB/A/B複合Tダイにて1/8/1の厚み比で積層し、122℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、120℃に加熱したセラミックロールを用いて予熱を行い、キャストシートを長手方向に延伸温度120℃で5倍延伸した。次に、この長手方向に延伸したシートを、テンター式延伸機に端部をクリップで把持させて導入し、155℃で3秒間予熱後、150℃で8.0倍に、延伸速度1,800%/分で延伸して、フィルムを得た。なお、テンター入り口の幅方向クリップ間距離は150mmであった。 The resulting polypropylene composition (I) 73.3 parts by mass, polypropylene composition (II) 10 parts by mass and polypropylene composition (III) 16.7 parts by mass were dry blended to melt uniaxially for the A layer. On the other hand, 99 parts by mass of the polypropylene composition (I) and 1 part by mass of Admer QF500 manufactured by Mitsui Chemicals, which is a modified polyolefin with a polypropylene resin having a carboxyl group or an unsaturated dicarboxylic acid, are mixed with B The uniaxial melt extruder for the layer was fed. Then, melt extrusion is performed at 220 ° C. from a single-axis melt extruder for the A layer and a single-axis melt extruder for the B layer, and after removing foreign matters with a 60 μm cut sintered filter, a feed block type B / The A / B composite T die was laminated at a thickness ratio of 1/8/1 and discharged onto a cast drum whose surface temperature was controlled at 122 ° C. to obtain a cast sheet. Next, preheating was performed using a ceramic roll heated to 120 ° C., and the cast sheet was stretched 5 times in the longitudinal direction at a stretching temperature of 120 ° C. Next, the sheet stretched in the longitudinal direction was introduced into a tenter-type stretching machine by gripping the end with a clip, preheated at 155 ° C. for 3 seconds, then 8.0 times at 150 ° C., and a stretching speed of 1,800 The film was obtained by stretching at% / min. The distance between the clips in the width direction at the entrance of the tenter was 150 mm.
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃でフィルムを3秒間熱処理し(HS1ゾーン)、更に164℃、弛緩率15%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま164℃で5秒間熱処理を行った(HS2ゾーン)。 In the subsequent heat treatment step, the film was heat treated for 3 seconds at 150 ° C while maintaining the distance between the stretched clips (HS1 zone), and further relaxed at 164 ° C and a relaxation rate of 15% (Rx zone). Heat treatment was performed at 164 ° C. for 5 seconds while keeping the distance (HS2 zone).
 その後、テンタークリップで把持したフィルムの耳部をスリットして除去し、ワインダーで幅500mmの多孔性ポリプロピレンフィルムをコアに500m巻き取り、幅500mm、厚み25μmの多孔性ポリプロピレンフィルムを得た。 Thereafter, the ears of the film held by the tenter clip were removed by slitting, and the porous polypropylene film having a width of 500 mm was wound around the core by a winder by 500 m to obtain a porous polypropylene film having a width of 500 mm and a thickness of 25 μm.
 (実施例2)
 ホモポリプロピレンFLX80E4を59.8質量部、共重合PE樹脂としてエチレン-オクテン-1共重合体(ダウ・ケミカル製 Engage8411、メルトインデックス:18g/10分)を30質量部と、分散剤としてCEBC(JSR(株)製 DYNARON6200P)を10質量部と、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010およびIRGAFOS168を各々0.1質量部とがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行った。そして、溶融混練された材料をストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン原料(IV)を得た。
(Example 2)
59.8 parts by mass of homopolypropylene FLX80E4, 30 parts by mass of ethylene-octene-1 copolymer (engage 8411 manufactured by Dow Chemical, melt index: 18 g / 10 min) as a copolymer PE resin, and CEBC (JSR) as a dispersant DYNARON 6200P (manufactured by Co., Ltd.) and biaxial extrusion from a weighing hopper so that 0.1 parts by mass of IRGANOX 1010 and IRGAFOS 168 manufactured by Ciba Specialty Chemicals, which are antioxidants, are mixed at this ratio. The raw material was supplied to the machine and melt kneaded at 240 ° C. The melt-kneaded material was discharged from the die in the form of a strand, cooled and solidified in a water bath at 25 ° C., and cut into a chip to obtain a polypropylene raw material (IV).
 得られたポリプロピレン組成物(I)73.3質量部とポリプロピレン組成物(IV)10質量部とポリプロピレン組成物(III)16.7質量部をドライブレンドしてA層用の単軸の溶融押出機に供給し、一方、ポリプロピレン組成物(I)99質量部とカルボキシル基を有するポリプロピレン樹脂または不飽和ジカルボン酸による変性ポリオレフィンである三井化学(株)製アドマーQF500を1質量部とをB層用の単軸の溶融押出機に供給した。そして、A層用の単軸の溶融押出機およびB層用の単軸の溶融押出機から220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のB/A/B複合Tダイにて1/8/1の厚み比で積層し、120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、120℃に加熱したセラミックロールを用いて予熱を行い、キャストシートを長手方向に延伸温度120℃で5倍延伸した。次に、この長手方向に延伸したシートを、テンター式延伸機に端部をクリップで把持させて導入し、155℃で3秒間予熱後、150℃で8.4倍に、延伸速度1,800%/分で延伸してフィルムを得た。なお、テンター入り口の幅方向クリップ間距離は150mmであった。 The resulting polypropylene composition (I) 73.3 parts by mass, polypropylene composition (IV) 10 parts by mass and polypropylene composition (III) 16.7 parts by mass were dry blended and uniaxial melt extrusion for layer A On the other hand, 99 parts by mass of the polypropylene composition (I) and 1 part by mass of Admer QF500 manufactured by Mitsui Chemicals, Ltd., which is a modified polyolefin with a polypropylene resin having a carboxyl group or an unsaturated dicarboxylic acid, are used for the B layer. To a single screw melt extruder. Then, melt extrusion is performed at 220 ° C. from a single-axis melt extruder for the A layer and a single-axis melt extruder for the B layer, and after removing foreign matters with a 60 μm cut sintered filter, a feed block type B / The A / B composite T die was laminated at a thickness ratio of 1/8/1 and discharged onto a cast drum whose surface temperature was controlled at 120 ° C. to obtain a cast sheet. Next, preheating was performed using a ceramic roll heated to 120 ° C., and the cast sheet was stretched 5 times in the longitudinal direction at a stretching temperature of 120 ° C. Next, the sheet stretched in the longitudinal direction was introduced into a tenter-type stretching machine by gripping the end with a clip, preheated at 155 ° C. for 3 seconds, then 8.4 times at 150 ° C., and a stretching speed of 1,800 The film was obtained by stretching at% / min. The distance between the clips in the width direction at the entrance of the tenter was 150 mm.
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃でフィルムを3秒間熱処理し(HS1ゾーン)、更に164℃、弛緩率15%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま164℃で5秒間熱処理を行った(HS2ゾーン)以外は実施例1と同じ条件で幅500mm、厚み25μmの多孔性ポリプロピレンフィルムを得た。 In the subsequent heat treatment step, the film was heat treated for 3 seconds at 150 ° C while maintaining the distance between the stretched clips (HS1 zone), and further relaxed at 164 ° C and a relaxation rate of 15% (Rx zone). A porous polypropylene film having a width of 500 mm and a thickness of 25 μm was obtained under the same conditions as in Example 1 except that heat treatment was performed at 164 ° C. for 5 seconds (HS2 zone) while keeping the distance.
 (実施例3)
 実施例2に対し、164℃、弛緩率20%でリラックスを行った(Rxゾーン)。これ以外は実施例2と同じ条件で、幅500mm、厚み25μmの多孔性ポリプロピレンフィルムを得た。
(Example 3)
In contrast to Example 2, relaxation was performed at 164 ° C. and a relaxation rate of 20% (Rx zone). Except this, under the same conditions as in Example 2, a porous polypropylene film having a width of 500 mm and a thickness of 25 μm was obtained.
 (実施例4)
 実施例1に対し、120℃に加熱したセラミックロールを用いて予熱を行い、キャストシートを長手方向に延伸温度120℃で5倍延伸した。次に、テンター式延伸機に、該長手方向に延伸したシートの端部をクリップで把持させて導入し、155℃で3秒間予熱後、150℃で8.4倍に、延伸速度1,100%/分で延伸した。これ以外は実施例1と同じ条件で、幅500mm、厚み25μmの多孔性ポリプロピレンフィルムを得た。
(Example 4)
For Example 1, preheating was performed using a ceramic roll heated to 120 ° C., and the cast sheet was stretched 5 times in the longitudinal direction at a stretching temperature of 120 ° C. Next, the end of the sheet stretched in the longitudinal direction is introduced into a tenter-type stretching machine by holding it with a clip, preheated at 155 ° C. for 3 seconds, then 8.4 times at 150 ° C., stretching speed 1,100 Stretched at% / min. Except this, under the same conditions as in Example 1, a porous polypropylene film having a width of 500 mm and a thickness of 25 μm was obtained.
 (実施例5)
 実施例1と同様に作製したポリプロピレン組成物(I)72.3質量部と、ポリプロピレン組成物(IV)10質量部と、ポリプロピレン組成物(III)16.7質量部と、カルボキシル基を有するポリプロピレン樹脂または不飽和ジカルボン酸による変性ポリオレフィンである三井化学(株)製アドマーQF500を1質量部とをドライブレンドして単軸の溶融押出機に供給した。そして、該単軸の溶融押出機から220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後Tダイにて、120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。これ以外は実施例1と同じ条件で、幅500mm、厚み25μmの多孔性ポリプロピレンフィルムを得た。
(Example 5)
Polypropylene composition (I) 72.3 parts by mass, polypropylene composition (IV) 10 parts by mass, polypropylene composition (III) 16.7 parts by mass and polypropylene having a carboxyl group, prepared in the same manner as in Example 1. One part by mass of ADMER QF500 manufactured by Mitsui Chemicals, Inc., which is a modified polyolefin by resin or unsaturated dicarboxylic acid, was dry blended and supplied to a single screw melt extruder. Then, melt extrusion is performed at 220 ° C. from the single-screw melt extruder, foreign matter is removed with a 60 μm cut sintered filter, and then discharged onto a cast drum whose surface temperature is controlled at 120 ° C. with a T die. Got. Except this, under the same conditions as in Example 1, a porous polypropylene film having a width of 500 mm and a thickness of 25 μm was obtained.
 (比較例1)
 実施例1と同様に作製したポリプロピレン組成物(I)90質量部とポリプロピレン組成物(II)10質量部とをドライブレンドしてA層用の単軸の溶融押出機に供給し、一方、ポリプロピレン組成物(I)をB層用の単軸の溶融押出機に供給した。そして、A層用の単軸の溶融押出機およびB層用の単軸の溶融押出機から220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のB/A/B複合Tダイにて1/8/1の厚み比で積層し、120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15秒間接するようにキャストしてキャストシートを得た。ついで、120℃に加熱したセラミックロールを用いて予熱を行い、キャストシートを長手方向に延伸温度120℃で5倍延伸した。次に、この長手方向に延伸したシートを、テンター式延伸機に端部をクリップで把持させて導入し、155℃で3秒間予熱後、150℃で8.4倍に、延伸速度1,800%/分で延伸してフィルムを得た。なお、テンター入り口の幅方向クリップ間距離は150mmであった。
(Comparative Example 1)
90 parts by mass of the polypropylene composition (I) prepared in the same manner as in Example 1 and 10 parts by mass of the polypropylene composition (II) were dry-blended and supplied to a uniaxial melt extruder for layer A, while polypropylene The composition (I) was supplied to a uniaxial melt extruder for the B layer. Then, melt extrusion is performed at 220 ° C. from a single-axis melt extruder for the A layer and a single-axis melt extruder for the B layer, and after removing foreign matters with a 60 μm cut sintered filter, a feed block type B / The A / B composite T die was laminated at a thickness ratio of 1/8/1, discharged onto a cast drum whose surface temperature was controlled at 120 ° C., and cast onto the drum for 15 seconds to obtain a cast sheet. Next, preheating was performed using a ceramic roll heated to 120 ° C., and the cast sheet was stretched 5 times in the longitudinal direction at a stretching temperature of 120 ° C. Next, the sheet stretched in the longitudinal direction was introduced into a tenter-type stretching machine by gripping the end with a clip, preheated at 155 ° C. for 3 seconds, then 8.4 times at 150 ° C., and a stretching speed of 1,800 The film was obtained by stretching at% / min. The distance between the clips in the width direction at the entrance of the tenter was 150 mm.
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃でフィルムを3秒間熱処理し(HS1ゾーン)、更に160℃、弛緩率10%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま160℃で5秒間熱処理を行った(HS2ゾーン)。 In the subsequent heat treatment step, the film was heat treated at 150 ° C for 3 seconds while maintaining the distance between the stretched clips (HS1 zone), and further relaxed at 160 ° C and a relaxation rate of 10% (Rx zone). Heat treatment was performed at 160 ° C. for 5 seconds while keeping the distance (HS2 zone).
 その後、テンタークリップで把持したフィルムの耳部をスリットして除去し、ワインダーで幅500mmの多孔性ポリプロピレンフィルムをコアに500m巻き取り、幅500mm、厚み25μmの多孔性ポリプロピレンフィルムを得た。 Thereafter, the ears of the film held by the tenter clip were removed by slitting, and the porous polypropylene film having a width of 500 mm was wound around the core by a winder by 500 m to obtain a porous polypropylene film having a width of 500 mm and a thickness of 25 μm.
 (比較例2)
 127℃に加熱したセラミックロールを用いて予熱を行い、キャストシートを長手方向に延伸温度127℃で5倍延伸した。これ以外は、比較例1と同じ条件で、幅500mm、厚み25μmの多孔性ポリプロピレンフィルムを得た。
(Comparative Example 2)
Preheating was performed using a ceramic roll heated to 127 ° C., and the cast sheet was stretched 5 times in the longitudinal direction at a stretching temperature of 127 ° C. Except for this, a porous polypropylene film having a width of 500 mm and a thickness of 25 μm was obtained under the same conditions as in Comparative Example 1.
 (比較例3)
 特開2008-248231号公報に実施例1として記載された以下の方法に準じて製膜を行った。ポリプロピレン樹脂として、住友化学(株)製ホモポリプロピレン WF836DG3(MFR:7g/10分、アイソタクチックインデックス:97%)を94質量部と、Basell社製高溶融張力ホモポリプロピレン Pro-fax PF814(MFR:2.5g/10分、アイソタクチックインデックス:97%)を1質量部と、エチレン・α-オレフィン共重合体である、ダウ・ケミカル社製 Engage8411(メルトインデックス:18g/10分)を5質量部とを混合したところに、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製Nu-100)を0.2質量部加えて2軸押出機に供給し、220℃で溶融混練を行った。そして、溶融混練された材料をストランド状に押出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリオレフィン樹脂原料を得た。
(Comparative Example 3)
Film formation was performed according to the following method described as Example 1 in JP-A-2008-248231. As a polypropylene resin, 94 parts by mass of homopolypropylene WF836DG3 (MFR: 7 g / 10 min, isotactic index: 97%) manufactured by Sumitomo Chemical Co., Ltd., high melt tension homopolypropylene Pro-fax PF814 (MFR: manufactured by Basell) 2.5 g / 10 min, isotactic index: 97%) 1 part by mass, and ethylene / α-olefin copolymer Engage 8411 (melt index: 18 g / 10 min) manufactured by Dow Chemical Co., Ltd. 2 parts by mass of N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide (Nu-100 manufactured by Shin Nippon Rika Co., Ltd.), which is a β crystal nucleating agent, was added to the mixture. It supplied to the screw extruder and melt-kneaded at 220 degreeC. The melt-kneaded material was extruded into a strand shape, cooled and solidified in a 25 ° C. water tank, and cut into a chip shape to obtain a polyolefin resin raw material.
 このポリオレフィン樹脂を単軸押出機に供給して220℃にて溶融押出を行い、焼結フィルターにて異物を除去後、Tダイから120℃に表面温度を制御したキャストドラム上に吐出し、ドラムに15秒間接するようにキャストして、キャストシートを得た。ついで、95℃に加熱したロールを用いてキャストシートを加熱し、長手方向に延伸温度95℃で4倍延伸を行った。この長手方向に延伸したシートを一旦冷却した後、ステンター式横延伸機にて145℃で幅方向に延伸速度1,500%/分で6倍延伸を行い、そのまま155℃で5秒間熱固定を行い、ついで140℃、弛緩率10%で5秒間リラックスを行い、厚み28μmの多孔性ポリプロピレンフィルムを得た。 This polyolefin resin is supplied to a single screw extruder, melt extruded at 220 ° C., foreign matter is removed by a sintered filter, and then discharged from a T-die onto a cast drum whose surface temperature is controlled at 120 ° C. Cast for 15 seconds to obtain a cast sheet. Next, the cast sheet was heated using a roll heated to 95 ° C., and stretched 4 times in the longitudinal direction at a stretching temperature of 95 ° C. The sheet stretched in the longitudinal direction is once cooled, and then stretched 6 times in the width direction at 145 ° C. at a stretching speed of 1,500% / min with a stenter-type transverse stretching machine, and heat-fixed at 155 ° C. for 5 seconds. Then, relaxation was performed at 140 ° C. and a relaxation rate of 10% for 5 seconds to obtain a porous polypropylene film having a thickness of 28 μm.
 (比較例4)
 実施例1に対し、熱処理工程のリラックスにおいて、160℃、弛緩率10%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま160℃で5秒間熱処理を行った(HS2ゾーン)。これ以外は、実施例1と同じ条件で幅500mm、厚み25μmの多孔性ポリプロピレンフィルムを得た。
(Comparative Example 4)
Compared to Example 1, in the relaxation of the heat treatment step, relaxation was performed at 160 ° C. and a relaxation rate of 10% (Rx zone), and heat treatment was performed at 160 ° C. for 5 seconds while maintaining the distance between the clips after relaxation (HS2 zone) ). Except for this, a porous polypropylene film having a width of 500 mm and a thickness of 25 μm was obtained under the same conditions as in Example 1.
 実施例1~5及び比較例1~4の特性を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
The characteristics of Examples 1 to 5 and Comparative Examples 1 to 4 are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 本発明の要件を満足する実施例では透気抵抗が低く、空孔率が高く、更に耐溶剤性に優れることから、耐熱層などの機能層をコーティングする際の物性変化が少ない蓄電デバイス用セパレータとして好適に用いることが可能である。一方、比較例では、低透気抵抗と耐溶剤性の両立が不十分であったため、耐熱層などの機能層をコーティングする蓄電デバイス用セパレータとしては不十分であった。 In the examples satisfying the requirements of the present invention, the air permeability resistance is low, the porosity is high, and the solvent resistance is excellent. Therefore, the separator for an electricity storage device has little change in physical properties when coating a functional layer such as a heat-resistant layer. Can be suitably used. On the other hand, in the comparative example, since both low air permeability resistance and solvent resistance were insufficient, it was insufficient as a power storage device separator for coating a functional layer such as a heat resistant layer.
 本発明の多孔性ポリプロピレンフィルムは、耐有機溶剤性および透気性に優れることから、耐熱層などの機能層をコーティングする際の物性変化が少ないため、蓄電デバイス用セパレータとして好適に使用することができる。 Since the porous polypropylene film of the present invention is excellent in organic solvent resistance and gas permeability, it can be suitably used as a separator for an electricity storage device because there is little change in physical properties when coating a functional layer such as a heat-resistant layer. .
 1 透気抵抗の測定位置
 2 サンプル
 3 金属枠
 4 ダブルクリップ(CビTP-CL-104)
 5 透気抵抗の測定位置
1 Measurement position of air resistance 2 Sample 3 Metal frame 4 Double clip (C Bi TP-CL-104)
5 Measurement position of air resistance

Claims (8)

  1.  β晶形成能を有するポリプロピレン樹脂を含む多孔性ポリプロピレンフィルムであって、透気抵抗が1,000秒/100ml以下、アセトン浸漬処理前後の厚み変化率が20%以下であることを特徴とする多孔性ポリプロピレンフィルム。 A porous polypropylene film containing a polypropylene resin having β-crystal forming ability, wherein the air permeability resistance is 1,000 seconds / 100 ml or less, and the rate of change in thickness before and after the acetone immersion treatment is 20% or less. Polypropylene film.
  2.  アセトン浸漬処理前後の幅方向寸法変化率が2%以下であることを特徴とする請求項1に記載の多孔性ポリプロピレンフィルム。 The porous polypropylene film according to claim 1, wherein the dimensional change rate in the width direction before and after the acetone immersion treatment is 2% or less.
  3.  アセトン浸漬処理前後の透気抵抗の変化率が15%以下であることを特徴とする請求項1または2に記載の多孔性ポリプロピレンフィルム。 The porous polypropylene film according to claim 1 or 2, wherein the rate of change in air resistance before and after the acetone immersion treatment is 15% or less.
  4.  アセトン浸漬処理前後の厚み変化率を幅方向に70mm間隔で測定したときの最大値をTmax(%)、最小値をTmin(%)としたとき、(Tmax-Tmin)の値が3%以下であることを特徴とする請求項1~3のいずれかに記載の多孔性ポリプロピレンフィルム。 When the maximum value when the thickness change rate before and after the acetone immersion treatment is measured at intervals of 70 mm in the width direction is T max (%) and the minimum value is T min (%), the value of (T max −T min ) is The porous polypropylene film according to any one of claims 1 to 3, which is 3% or less.
  5.  多孔性ポリプロピレンフィルムのβ晶形成能が40%以上であることを特徴とする請求項1~4のいずれかに記載の多孔性ポリプロピレンフィルム。 5. The porous polypropylene film according to claim 1, wherein the β-crystal forming ability of the porous polypropylene film is 40% or more.
  6.  請求項1~5のいずれかに記載の多孔性ポリプロピレンフィルムにコート層を設けてなることを特徴とする積層多孔性フィルム。 A laminated porous film obtained by providing a coating layer on the porous polypropylene film according to any one of claims 1 to 5.
  7.  正極と負極との間に設けられ、両者の接触を防止しつつ、電解液中のイオンを透過させるセパレータを備えた蓄電デバイスにおいて、
     前記セパレータは、請求項1~5のいずれかに記載の多孔性ポリプロピレンフィルムを用いて形成されることを特徴とする蓄電デバイス。
    In an electricity storage device provided with a separator that is provided between a positive electrode and a negative electrode and transmits ions in an electrolyte while preventing contact between the two,
    The electricity storage device, wherein the separator is formed using the porous polypropylene film according to any one of claims 1 to 5.
  8.  正極と負極との間に設けられ、両者の接触を防止しつつ、電解液中のイオンを透過させるセパレータを備えた蓄電デバイスにおいて、
     前記セパレータは、請求項6に記載の積層多孔性フィルムを用いて形成されることを特徴とする蓄電デバイス。
    In an electricity storage device provided with a separator that is provided between a positive electrode and a negative electrode and transmits ions in an electrolyte while preventing contact between the two,
    The said separator is formed using the laminated porous film of Claim 6, The electrical storage device characterized by the above-mentioned.
PCT/JP2012/076549 2011-10-14 2012-10-12 Porous polypropylene film, layered porous film, and electricity-storage device WO2013054932A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013503904A JP5354131B2 (en) 2011-10-14 2012-10-12 Porous polypropylene film, laminated porous film, and electricity storage device
CN201280050029.XA CN103890062B (en) 2011-10-14 2012-10-12 Porous polypropylene film, lamination porous membrane and electrical storage device
KR1020147008268A KR20140081808A (en) 2011-10-14 2012-10-12 Porous polypropylene film, layered porous film, and electricity-storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011226459 2011-10-14
JP2011-226459 2011-10-14

Publications (1)

Publication Number Publication Date
WO2013054932A1 true WO2013054932A1 (en) 2013-04-18

Family

ID=48081976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076549 WO2013054932A1 (en) 2011-10-14 2012-10-12 Porous polypropylene film, layered porous film, and electricity-storage device

Country Status (4)

Country Link
JP (1) JP5354131B2 (en)
KR (1) KR20140081808A (en)
CN (1) CN103890062B (en)
WO (1) WO2013054932A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004017A (en) * 2013-06-21 2015-01-08 三菱樹脂株式会社 Porous film, separator for battery using the same and battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101686069B1 (en) * 2014-12-29 2016-12-13 율촌화학 주식회사 Colored polypropylene film, adhesive film including the same and method of manufacturing the same
CN114335882B (en) * 2021-12-09 2024-01-30 河北工程大学 Modified PE-based lithium ion battery diaphragm and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138245A (en) * 1987-11-24 1989-05-31 Toray Ind Inc Microporous polyolefin membrane
WO2011055596A1 (en) * 2009-11-09 2011-05-12 東レ株式会社 Porous film and electricity storage device
JP2011168048A (en) * 2010-01-21 2011-09-01 Toray Ind Inc Porous film and energy storage device
WO2012105661A1 (en) * 2011-02-03 2012-08-09 東レ株式会社 Porous polypropylene film, separator for electricity storage device, and electricity storage device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110311856A1 (en) * 2008-07-16 2011-12-22 Toray Industries, Inc. Power storage device separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138245A (en) * 1987-11-24 1989-05-31 Toray Ind Inc Microporous polyolefin membrane
WO2011055596A1 (en) * 2009-11-09 2011-05-12 東レ株式会社 Porous film and electricity storage device
JP2011168048A (en) * 2010-01-21 2011-09-01 Toray Ind Inc Porous film and energy storage device
WO2012105661A1 (en) * 2011-02-03 2012-08-09 東レ株式会社 Porous polypropylene film, separator for electricity storage device, and electricity storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004017A (en) * 2013-06-21 2015-01-08 三菱樹脂株式会社 Porous film, separator for battery using the same and battery

Also Published As

Publication number Publication date
CN103890062A (en) 2014-06-25
JPWO2013054932A1 (en) 2015-04-02
JP5354131B2 (en) 2013-11-27
KR20140081808A (en) 2014-07-01
CN103890062B (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5354132B2 (en) Porous polypropylene film and power storage device
JP5626486B2 (en) Porous polypropylene film, separator for electricity storage device, and electricity storage device
JP5807388B2 (en) Porous polypropylene film
JP5604898B2 (en) Porous polypropylene film roll
US9419266B2 (en) Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
JP2014141644A (en) Biaxially oriented porous polypropylene film, separator film for electricity storage device and electricity storage device
JP6273898B2 (en) Laminated porous film and power storage device
JP6089581B2 (en) Porous polyolefin film, laminated porous film, and electricity storage device
JP5251193B2 (en) Porous polyolefin film
JP5267754B1 (en) Porous polyolefin film and electricity storage device
JP5672015B2 (en) Biaxially oriented porous film and power storage device
JP5724329B2 (en) Porous polypropylene film roll
JP6361251B2 (en) Porous film, separator for electricity storage device, and electricity storage device
JP2013100487A (en) Porous film and electricity storage device
WO2012105660A1 (en) Porous film, separator for electricity-storing device, and electricity-storing device
JP5354131B2 (en) Porous polypropylene film, laminated porous film, and electricity storage device
WO2014103713A1 (en) Porous polyolefin film and method for producing same, and storage device separator formed using same
JP2014060146A (en) Porous polyolefin film, and electric power storage device
JP5924263B2 (en) Porous polypropylene film and method for producing the same
WO2013054931A1 (en) Porous polypropylene film and electricity-storage device
WO2013187326A1 (en) Porous polypropylene film, separator for electricity storage devices, and electricity storage device
JP2012022911A (en) Laminate separator and power storage device
JP2013199511A (en) Porous film, and electricity storage device
JP2013213193A (en) Separator film for electricity storage device
JP2013100458A (en) Porous polyolefin film and electric storage system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013503904

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147008268

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839275

Country of ref document: EP

Kind code of ref document: A1