WO2013054699A1 - Inverter cooling device - Google Patents

Inverter cooling device Download PDF

Info

Publication number
WO2013054699A1
WO2013054699A1 PCT/JP2012/075537 JP2012075537W WO2013054699A1 WO 2013054699 A1 WO2013054699 A1 WO 2013054699A1 JP 2012075537 W JP2012075537 W JP 2012075537W WO 2013054699 A1 WO2013054699 A1 WO 2013054699A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
cooling
cooling water
air
air conditioner
Prior art date
Application number
PCT/JP2012/075537
Other languages
French (fr)
Japanese (ja)
Inventor
山室 毅
晋吾 伊藤
久保 賢明
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013054699A1 publication Critical patent/WO2013054699A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • B60L1/04Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line
    • B60L1/06Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line using only one supply
    • B60L1/08Methods and devices for control or regulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20936Liquid coolant with phase change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an inverter cooling device that cools a plurality of inverter elements included in an inverter that exchanges DC power and AC power with each other.
  • the temperature of the cooling water which is a cooling refrigerant is lowered by air cooling using outside air.
  • the inverter element cannot be sufficiently cooled when the cooling performance is influenced by the outside air temperature and the outside air temperature is high and the cooling effect by the cooling water is small. That is, when the temperature of the cooling water that has cooled the inverter is lowered using an air-cooled radiator or the like, it is difficult to sufficiently lower the cooling water temperature if the outside air temperature is high. Therefore, the cooling water temperature rises and the cooling effect of the inverter is reduced. That is, the cooling performance varies depending on the outside air temperature.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide an inverter cooling device capable of ensuring a sufficient inverter cooling effect regardless of the outside air temperature.
  • the inverter cooling apparatus of the present invention includes an inverter, an air conditioning system, and inverter cooling means.
  • the inverter has a plurality of inverter elements and exchanges DC power and AC power with each other.
  • the air conditioning system performs indoor air conditioning by circulating an air conditioning refrigerant.
  • the inverter cooling means includes an air conditioning refrigerant path through which the air conditioning refrigerant circulates and a cooling water path through which cooling water to be air-cooled circulates in the inverter, and each circulates the air conditioning refrigerant and the cooling water.
  • the inverter element is cooled.
  • an air conditioning refrigerant path through which the air conditioning refrigerant circulates in the inverter and a cooling water path through which the cooling water to be air-cooled circulates are provided. That is, for cooling the inverter element, an air-conditioning refrigerant and air-cooled cooling water are used. Therefore, even if the outside air temperature is high and the temperature of the cooling water cannot be sufficiently lowered by air cooling, the inverter element can be cooled by the cooling effect of the air conditioning refrigerant even when the cooling effect of the cooling water is small. As a result, a sufficient inverter cooling effect can be ensured regardless of the outside air temperature.
  • FIG. 1 It is a system block diagram which shows the inverter cooling device of Example 1.
  • FIG. 1 It is a schematic diagram which shows the electric vehicle to which the inverter cooling device of Example 1 was applied. It is a disassembled perspective view which shows the inverter with which the inverter cooling device of Example 1 was applied. It is a perspective view which shows the inverter with which the inverter cooling device of Example 1 was applied. It is a top view which shows the inverter with which the inverter cooling device of Example 1 was applied.
  • It is a flowchart which shows the flow of the inverter cooling process by the inverter cooling device of Example 1.
  • Example 1 shown in drawing.
  • the configuration of the inverter cooling apparatus according to the first embodiment will be described by dividing it into “entire system configuration”, “inverter configuration”, and “inverter cooling process”.
  • FIG. 1 is a system block diagram illustrating the inverter cooling device according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating an electric vehicle to which the inverter cooling device according to the first embodiment is applied.
  • FIG.1 and FIG.2 the whole system configuration
  • An inverter cooling device (inverter cooling means) 1 shown in FIG. 1 is mounted on an electric vehicle (an example of an electric vehicle) 2 that uses an electric motor 3 as a travel drive source, and outputs a three-phase AC voltage to the electric motor 3.
  • the inverter element 41 (see FIG. 3A) included in the inverter 4 that is an inverter for cooling is cooled.
  • the electric vehicle 2 is equipped with an electric motor 3, an inverter 4, a battery 5, and an air conditioning system 6.
  • the electric motor 3 is a three-phase AC synchronous motor in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator, and is controlled by applying a three-phase AC generated by an inverter 4.
  • the battery 5 is a direct current power source, and is formed of a secondary battery such as nickel hydride or lithium ion.
  • the electric power from the battery 5 is output to the inverter 4, converted into a three-phase alternating current, and output to the electric motor 3.
  • the air conditioning system 6 includes an air conditioner refrigerant circuit 20 and is a vehicle air conditioning system that performs air conditioning in the passenger compartment R of the electric vehicle.
  • the inverter cooling device (inverter cooling means) 1 includes a high-power system cooling circuit 10, an air conditioner refrigerant circuit 20, and a cooling controller (cooling control means) 30.
  • the strong electric system cooling circuit 10 is a cooling circuit that cools the electric motor 3 mounted on the electric vehicle 2.
  • the strong electric system cooling circuit 10 includes a cooling water path 12 through which cooling water 11 as a refrigerant circulates, an electric water pump 13 that circulates the cooling water 11 in the cooling water path 12, and a radiator that cools the cooling water 11 by air cooling. 14.
  • the cooling water 11 is an antifreeze liquid called LLC (Long Life Coolant).
  • the cooling water path 12 has a first cooling water path 12A and a second cooling water path 12B.
  • the cooling water 11 discharged from the electric water pump 13 and flowing into the radiator 14 flows through the first cooling water path 12A.
  • the cooling water 11 that flows out of the radiator 14 and is sucked into the electric water pump 13 flows through the second cooling water path 12B.
  • a first heat exchanging portion 15A and a second heat exchanging portion 15B are formed at an intermediate portion of the first cooling water passage 12A.
  • the first heat exchange unit 15 ⁇ / b> A is located upstream of the second heat exchange unit 15 ⁇ / b> B in the flow of the cooling water 11 and is disposed inside the inverter 4.
  • the second heat exchange unit 15 ⁇ / b> B is disposed inside the electric motor 3.
  • the cooling water 11 discharged from the electric water pump 13 passes through the first cooling water path 12A, and exchanges heat with the inverter 4 in the first heat exchanging portion 15A. Cool down. Thereafter, the second heat exchange unit 15B exchanges heat with the electric motor 3 to cool the electric motor 3. And after being air-cooled in the radiator 14, it passes along the 2nd cooling water path 12B, is suck
  • the radiator 14 is disposed on the front side of the motor room MR (see FIG. 2) in which the electric motor 3 is disposed, and cools the cooling water by exchanging heat with the outside air by exposing the cooling water 11 to traveling wind. .
  • the air conditioner refrigerant circuit 20 is a cooling circuit for cooling the indoor air of the passenger compartment R.
  • the air conditioner refrigerant circuit 20 cools the air conditioner refrigerant 21 by air cooling, an air conditioner refrigerant path (air conditioner refrigerant path) 22 through which the air conditioner refrigerant (air conditioner refrigerant) 21 circulates, an electric compressor 23 that compresses and discharges the air conditioner refrigerant 21. And a condenser 24 for cooling the air in the passenger compartment R.
  • the air conditioner refrigerant 21 is an alternative chlorofluorocarbon gas such as hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs).
  • HCFCs hydrochlorofluorocarbons
  • HFCs hydrofluorocarbons
  • the air conditioner refrigerant path 22 includes a first air conditioner refrigerant path 22A, a second air conditioner refrigerant path 22B, and a third air conditioner refrigerant path 22C.
  • first air conditioner refrigerant path 22A the air conditioner refrigerant 21 which is pumped from the electric compressor 23 and flows into the condenser 24 flows.
  • second air conditioner refrigerant path 22B the air conditioner refrigerant 21 flowing out of the condenser 24 and flowing into the evaporator 25 flows.
  • the air conditioner refrigerant 21 that flows out of the evaporator 25 and flows into the electric compressor 23 flows through the third air conditioner refrigerant path 22C.
  • a heat exchanging portion 26 is formed in the middle portion of the third air conditioner refrigerant path 22C.
  • the heat exchange unit 26 is arranged inside the inverter 4.
  • the air conditioner refrigerant 21 pumped from the electric compressor 23 flows to the condenser 24 through the first air conditioner refrigerant path 22 ⁇ / b> A, and is air-cooled in the condenser 24.
  • the heat exchange unit 26 exchanges heat with the inverter 4 to cool the inverter 4 and flows into the electric compressor 23 for circulation.
  • the condenser 24 is disposed on the front side of the motor room MR and behind the radiator 14, and exposes the air conditioner refrigerant 21 to traveling wind to release heat of the air conditioner refrigerant 21 by heat exchange with the outside air.
  • the evaporator 25 exchanges heat between the air conditioner refrigerant 21 and the air in the passenger compartment R, and causes the air conditioner refrigerant 21 to absorb heat.
  • the cooling controller 30 includes an electric water pump 13 and an electric compressor according to a detected temperature from an inverter temperature sensor (element temperature detecting means) 31 that detects the temperature of an inverter element 41 (see FIG. 3A) of the inverter 4. Inverter cooling processing for controlling 23 is executed. That is, the detected temperature signal is input to the cooling controller 30 from the inverter temperature sensor 31. Further, an ON / OFF signal is appropriately output to the electric water pump 13 and the electric compressor 23.
  • an inverter temperature sensor element temperature detecting means
  • FIG. 3A is an exploded perspective view illustrating an inverter to which the inverter cooling device according to the first embodiment is applied.
  • FIG. 3B is a perspective view illustrating an inverter to which the inverter cooling apparatus according to the first embodiment is applied.
  • FIG. 3C is a plan view illustrating an inverter to which the inverter cooling device according to the first embodiment is applied.
  • the inverter 4 includes a plurality of inverter elements 41 and exchanges DC power and AC power with each other.
  • the inverter element 41 is a so-called switching element, and includes a pair of power transistors such as IGBTs (Insulated Gate Bipolar Transistors) for each of the U phase, the V phase, and the W phase, and from the emitter side to the collector side in the power transistor. And a diode for passing a current to.
  • the inverter element 41 is modularized for each phase, and here has a total of 12 thin rectangular housing shapes. Furthermore, the case-shaped inverter elements 41 are arranged in two rows along the width direction and are stacked along the thickness direction.
  • the first heat exchanging portion 15 ⁇ / b> A has a plurality of rectangular thin plate portions 16 that cover the side surfaces of the inverter element 41.
  • the thin plate portion 16 contacts the side surface of the inverter element 41, and heat exchange is performed between the cooling water 11 flowing in the thin plate portion 16 and the inverter element 41.
  • the first heat exchanging portion 15A is also located outside the inverter elements 41A and 41B located at both ends of the plurality of inverter elements 41 arranged in the thickness direction.
  • the heat exchanging portion 26 has a plurality of rectangular thin plate portions 27 that cover the side surfaces of the inverter element 41.
  • the thin plate portion 27 comes into contact with the side surface of the inverter element 41, and heat exchange is performed between the air conditioner refrigerant 21 flowing in the thin plate portion 27 and the inverter element 41.
  • the thin plate portion 27 of the heat exchanging portion 26 is inserted inside a plurality of inverter elements 41 arranged along the thickness direction.
  • the first cooling water path 12Aa on the inflow side of the cooling water 11 is connected to the side surface upper part 16a of the thin plate part 16, and the first cooling water path 12Ab on the outflow side of the cooling water 11 is The thin plate portion 16 is connected to the lower side surface 16b.
  • the third air conditioner refrigerant path 22Ca on the inflow side of the air conditioner refrigerant 21 is connected to the lower side surface 27a of the thin plate part 27, and the third air conditioner refrigerant path 22Cb on the outflow side of the air conditioner refrigerant 21 is connected to the thin plate part 27. Is connected to the side surface upper portion 27b.
  • FIG. 4 is a flowchart illustrating the flow of the inverter cooling process performed by the inverter cooling device according to the first embodiment.
  • step S1 it is determined whether or not there is an air conditioning request (air conditioner request) in the passenger compartment R. If YES (requested), the process proceeds to step S2, and if NO (no request), the process proceeds to step S3. To do.
  • air conditioning request air conditioner request
  • step S2 following the determination that there is an air conditioner request in step S1, the electric compressor 23 is ON-controlled, and the process proceeds to step S13.
  • the air conditioner refrigerant 21 circulates in the air conditioner refrigerant path 22.
  • step S3 following the determination that there is no air conditioner request in step S1, the inverter temperature sensor 31 detects the temperature of the inverter element 41 (hereinafter referred to as element temperature T_INV), and the process proceeds to step S4.
  • element temperature T_INV the temperature of the inverter element 41
  • step S4 it is determined whether or not the element temperature T_INV detected in step S3 exceeds the water cooling start criteria Cr1 (first threshold). If YES (Cr1> T_INV), the process proceeds to step S6, and NO (Cr1 If ⁇ T_INV), the process proceeds to step S5.
  • the water cooling start criterion Cr1 is a temperature lower than the heat-resistant upper limit temperature that the inverter element 41 can withstand, and is set to an arbitrary temperature.
  • step S5 following the determination of Cr1 ⁇ T_INV in step S4, the electric water pump 13 is turned off, and the process returns to step S3.
  • the circulation of the cooling water 11 in the cooling water passage 12 is stopped by the OFF control of the electric water pump 13.
  • step S6 following the determination of Cr1> T_INV in step S4, the electric water pump 13 is turned on, and the process proceeds to step S7.
  • the cooling water 11 circulates in the cooling water passage 12.
  • step S7 following the ON control of the electric water pump 13 in step S6, the element temperature T_INV is detected by the inverter temperature sensor 31, and the process proceeds to step S8.
  • step S8 it is determined whether or not the element temperature T_INV detected in step S7 exceeds the air conditioner cooling start criterion Cr2 (second threshold). If YES (Cr2> T_INV), the process proceeds to step S9, and NO (Cr2 If ⁇ T_INV), the process returns to step S3.
  • the air conditioner cooling start criterion Cr2 is set to an arbitrary temperature within a temperature range lower than the heat resistant upper limit temperature that the inverter element 41 can withstand and higher than the water cooling start criterion Cr1.
  • step S9 following the determination of Cr2> T_INV in step S8, the electric compressor 23 is turned on, and the process proceeds to step S10.
  • the air conditioner refrigerant 21 circulates in the air conditioner refrigerant path 22.
  • step S10 following the ON control of the electric compressor 23 in step S9, the element temperature T_INV is detected by the inverter temperature sensor 31, and the process proceeds to step S11.
  • step S11 it is determined whether or not the element temperature T_INV detected in step S10 exceeds the air conditioner cooling start criteria Cr2. If YES (Cr2> T_INV), the process proceeds to step S13, and if NO (Cr2 ⁇ T_INV) Moves to step S12.
  • step S12 following the determination of Cr2 ⁇ T_INV in step S11, the electric compressor 23 is controlled to be OFF, and the process returns to step S3.
  • the electric compressor 23 is OFF-controlled, the circulation of the air-conditioner refrigerant 21 in the air-conditioner refrigerant path 22 is stopped.
  • step S13 following the determination of Cr2> T_INV in step S11, it is determined whether or not the ignition key is OFF-controlled. If YES (ignition OFF), the process proceeds to step S14, and NO (ignition ON) is set. If so, the process returns to step S1.
  • step S14 following the determination that the ignition is turned off in step S13, the electric water pump 13 and the electric compressor 23 are both turned off, and the process proceeds to the end to end the inverter cooling process.
  • FIG. 5 is a time chart showing the inverter cooling operation in the inverter cooling apparatus of the first embodiment.
  • DC power output from the battery 5 is converted into three-phase AC by the inverter 4.
  • the electric power converted into three-phase alternating current from the inverter 4 is output to the electric motor 3, and the electric motor 3 is driven.
  • the temperature of the inverter element 41 of the inverter 4 gradually increases, and if the element temperature T_INV exceeds the heat-resistant upper limit temperature, a problem may occur in the inverter 4. Therefore, it is necessary to cool the inverter element 41 by the inverter cooling device 1 according to the first embodiment and suppress the increase in the element temperature T_INV.
  • step S1 in the flowchart shown in FIG. 4 to determine whether or not there is an air conditioning request (air conditioner request) in the passenger compartment R. If there is no air conditioning request, the process proceeds to step S2 to detect the element temperature T_INV. If the element temperature T_INV is equal to or lower than the water cooling start criteria Cr1, the process proceeds from step S3 to step S5, and the electric water pump 13 remains in the OFF control.
  • air conditioning request air conditioner request
  • step S3 when the element temperature T_INV exceeds the water cooling start criteria Cr1 at time t1, the process proceeds from step S3 to step S4 to step S6, and the electric water pump 13 is ON-controlled. Thereby, the electric water pump 13 is switched from the OFF control to the ON control, and the cooling water 11 starts to circulate in the cooling water path 12. Due to the circulation of the cooling water 11, the cooling water 11 is air-cooled in the radiator 14 to be a low temperature, and heat exchange is performed between the air-cooled cooling water 11 and the inverter 4 in the first heat exchange unit 15A. The heat of the inverter 4 moves to the cooling water 11 and the inverter 4 is cooled.
  • cooling water 11 heat-exchanged with the inverter 4 in the 1st heat exchange part 15A passes 1st cooling water path
  • the electric motor 3 is cooled by replacement.
  • step S6 the process proceeds from step S6 to step S7 to step S8 to step S3, and cooling of the inverter 4 by the high-power system cooling circuit 10 is executed.
  • step S7 When the element temperature T_INV exceeds the air conditioner cooling start criteria Cr2 at time t2, the process proceeds from step S7 to step S8 to step S9, and the electric compressor 23 is ON-controlled. Thereby, the electric compressor 23 is switched from the OFF control to the ON control, and the air conditioner refrigerant 21 starts to circulate in the air conditioner refrigerant path 22 in addition to the circulation of the cooling water 11 in the cooling water path 12. Due to the circulation of the air conditioner refrigerant 21, heat exchange is performed between the air conditioner refrigerant 21 that has passed through the evaporator 25 and the inverter 4 in the heat exchanging unit 26, and the heat of the inverter 4 moves to the air conditioner refrigerant 21. To be cooled. That is, in the inverter 4, heat exchange with the cooling water 11 and the air conditioner refrigerant 21 is performed.
  • step S10 When the element temperature T_INV becomes equal to or lower than the air conditioner cooling start criterion Cr2 at time t3, the process proceeds to step S10 ⁇ step S11 ⁇ step S12 ⁇ step S3, and the electric compressor 23 is controlled to be OFF. As a result, the electric compressor 23 is switched from ON control to OFF control, and the circulation of the air conditioner refrigerant 21 in the air conditioner refrigerant path 22 is stopped. At this time, since the electric water pump 13 remains ON-controlled, the cooling of the inverter 4 by heat exchange with the cooling water 11 continues to be executed.
  • step S3 when the element temperature T_INV becomes equal to or lower than the water cooling start criterion Cr1 at time t4, the process proceeds from step S3 to step S4 to step S5, and the electric water pump 13 is controlled to be OFF. Thereby, the electric water pump 13 is switched from ON control to OFF control, and the circulation of the cooling water 11 in the cooling water path 12 is stopped.
  • both the cooling water 11 and the air conditioner refrigerant 21 are used for cooling the inverter 4.
  • the cooling effect by the air conditioner refrigerant 21 causes the inverter 4.
  • the temperature rise of the inverter element 41 can be suppressed and the output of the electric motor 3 can be improved.
  • the electric water pump 13 when the element temperature T_INV exceeds the water cooling start criteria Cr1, the electric water pump 13 is turned on to circulate the cooling water 11 through the cooling water path 12.
  • the electric compressor 23 When the element temperature T_INV exceeds the air conditioner cooling start criterion Cr2 set to a value higher than the water cooling start criterion Cr1, the electric compressor 23 is turned on to circulate the air conditioner refrigerant 21 in the air conditioner refrigerant path 22.
  • the operating condition of the electric compressor 23 is limited, and the electric compressor 23 is ON-controlled only when the element temperature T_INV becomes higher, and the inverter cooling by the air conditioner refrigerant 21 is performed. Therefore, power consumption can be suppressed.
  • FIG. 6A is an explanatory diagram illustrating a circulation direction in the inverter of the cooling water.
  • FIG. 6B is an explanatory diagram showing a circulation direction of the air-conditioner refrigerant in the inverter.
  • FIG. 7 is an explanatory diagram showing the flow direction of the cooling water in the first heat exchanger provided in the cooling water path.
  • a plurality of inverter elements 41 are arranged along the thickness direction. And between the several inverter elements 41 arranged along this thickness direction, the 1st heat exchange part 15A of 12 A of 1st cooling water paths, and the heat exchange part 26 of 22 C of 3rd air-conditioner refrigerant
  • coolant paths are alternately carried out. It is arranged.
  • the cooling effect of the inverter 4 by the cooling water 11 and the cooling effect of the inverter 4 by the air conditioner refrigerant 21 can be made uniform, and the occurrence of uneven cooling can be suppressed. That is, as shown in FIG. 6A, among the side surfaces of the plurality of inverter elements 41 arranged along the thickness direction, the surface in contact with the thin plate portion 16 of the first heat exchange unit 15 ⁇ / b> A is cooled by the cooling water 11. Is done. On the other hand, as shown in FIG. 6B, among the side surfaces of the plurality of inverter elements 41 arranged along the thickness direction, the surface in contact with the thin plate portion 27 of the heat exchange unit 23 is cooled by the air conditioner refrigerant 21. . Therefore, the cooling of the inverter 4 can be performed by dispersing the whole of the plurality of inverter elements 41, and the whole of the plurality of inverter elements 41 can be uniformly cooled.
  • the cooling water path 12 is interposed between the plurality of inverter elements 41 arranged along the thickness direction, and the inverter elements 41A located at both ends of the plurality of inverter elements 41. , 41B (see FIG. 3A). Therefore, the cooling area by the cooling water 11 can be increased, and the cooling capacity by the cooling water 11 can be increased.
  • the 1st cooling water path 12Aa of the inflow side of the cooling water 11 is connected to the side surface upper part 16a of the thin plate part 16, and the outflow of the cooling water 11
  • the first cooling water passage 12 ⁇ / b> Ab on the side is connected to the lower side surface 16 b of the thin plate portion 16.
  • the third air conditioner refrigerant path 22Ca on the inflow side of the air conditioner refrigerant 21 is connected to the lower side surface 27a of the thin plate portion 27, and the third air conditioner refrigerant path 22Cb on the outflow side of the air conditioner refrigerant 21 is connected to the upper side surface 27b of the thin plate portion 27. Therefore, the flow of the air conditioner refrigerant 21 is dispersed in the thin plate portion 27.
  • an inverter 4 having a plurality of inverter elements 41 for exchanging DC power and AC power;
  • An air conditioning system 6 that circulates an air conditioning refrigerant (air conditioner refrigerant) 21 to perform air conditioning in the passenger compartment R;
  • element temperature detecting means inverter temperature sensor
  • inverter temperature sensor for detecting the temperature of the inverter element 41
  • first threshold value water cooling start criteria
  • the inverter cooling means 1 circulates the cooling water 11 through the inverter cooling means 1, and the element temperature detecting means
  • second threshold value air conditioner cooling start criteria
  • a cooling control means for circulating the air conditioning refrigerant 21 in the inverter cooling means 1 The cooling controller 30 is used. For this reason, the operating conditions of the electric compressor 23 that circulates the air-conditioning refrigerant 21 are limited, and power consumption can be suppressed.
  • the inverter cooling means 1 is configured such that the cooling water passage 12 and the air conditioning refrigerant passage 22 are alternately arranged between the plurality of inverter elements 41 arranged along a predetermined direction. For this reason, the cooling of the inverter 4 can be performed by dispersing the whole of the plurality of inverter elements 41, and the whole of the plurality of inverter elements 41 can be uniformly cooled.
  • the inverter cooling means 1 includes the plurality of inverters arranged in the cooling water path 12 between the plurality of inverter elements 41 arranged along a predetermined direction and along the predetermined direction.
  • the element 41 is disposed outside each of the inverter elements 41A and 41B located at both ends,
  • the air conditioning refrigerant path 22 is configured to be disposed between the plurality of inverter elements 41 arranged along a predetermined direction. For this reason, the cooling area by the cooling water 11 can be increased, and the cooling capacity by the cooling water 11 can be increased.
  • Example 1 As mentioned above, although the inverter cooling device of this invention has been demonstrated based on Example 1, about a concrete structure, it is not restricted to this Example, The summary of the invention which concerns on each claim of a claim Unless it deviates, design changes and additions are allowed.
  • a plurality of inverter elements 41 are arranged in two rows along the width direction and are arranged so as to be stacked along the thickness direction.
  • the arrangement state of the plurality of inverter elements 41 is not limited to this.
  • a plurality of inverter elements 41 may be arranged in two rows along the width direction, and may be arranged in a flat state on the same plane.
  • the upper side surface of each inverter element 41 is covered with the first heat exchange unit 15 ⁇ / b> A provided in the cooling water path 12.
  • the lower surface of each inverter element 41 is covered with a heat exchanging portion 26 provided in the air conditioner refrigerant path 22.
  • the flow direction of the cooling water 11 (shown by a solid line in FIG. 8B) flowing through the first heat exchanging portion 15 ⁇ / b> A of the cooling water passage 12 and the heat exchanging portion 26 of the air conditioning refrigerant passage 22.
  • the flow direction of the air conditioner refrigerant 21 (indicated by a broken line in FIG. 8B) is set in the opposite direction. Thereby, the whole several inverter element 41 can be cooled equally.
  • the cooling water 11 that has flowed into the first heat exchanging section 15A exchanges heat with the inverter 4 while flowing from the first cooling water path 12Aa on the inflow side to the first cooling water path 12Ab on the outflow side. For this reason, the temperature of the cooling water 11 gradually rises from the first cooling water path 12Aa on the inflow side toward the first cooling water path 12Ab on the outflow side. Accordingly, the cooling effect is lower on the downstream side (first cooling water passage 12Ab side) than the upstream side (first cooling water passage 12Aa side), and the temperature in the first heat exchange section 15A is lower. The distribution is uneven.
  • the heat exchange unit 26 moves from the inlet side toward the outlet side, the temperature of the air conditioner refrigerant 21 gradually increases, and the temperature distribution in the heat exchange unit 26 becomes uneven.
  • the cooling water 11 is set.
  • the upstream side of the cooling water 11 faces the downstream side of the air conditioner refrigerant 21, and the downstream side of the cooling water 11 faces the upstream side of the air conditioner refrigerant 21. Therefore, the cooling effect can be made uniform regardless of the flow direction of the refrigerant, so that uneven temperature distribution in the first heat exchanging portion 15A and the heat exchanging portion 26 can be suppressed, and the entire plurality of inverter elements 41 can be uniformly cooled. can do.
  • the flow direction of the cooling water 11 and the flow direction of the air conditioner refrigerant 21 in the inverter 4 may be set in opposite directions.
  • the inverter cooling device 1 of Example 1 cools the vehicle-mounted inverter which outputs a voltage to the electric motor 3 for drive mounted in the electric vehicle 2, it is not restricted to this. You may cool the inverter which outputs a voltage to high frequency generators, such as an uninterruptible power supply and an electromagnetic cooker.
  • the air conditioning system 6 is not limited to the vehicle air conditioning system as shown in the first embodiment, and any air conditioning system having a so-called refrigeration cycle that circulates an air conditioning refrigerant to perform indoor air conditioning can be applied to the present invention. Can do.
  • the substance used for the cooling water 11 and the air-conditioner refrigerant 21 is not limited to the above-mentioned substances, and an optimum material can be adopted as appropriate.

Abstract

Provided is an inverter cooling device capable of ensuring sufficient cooling of the inverter regardless of the outside air temperature. An inverter cooling device according to the present invention has a plurality of inverter elements (41) and is provided with an inverter (4) for alternately switching between DC power and AC power, and an air conditioner system (6) for air conditioning inside a vehicle interior (R) by circulating air conditioning refrigerant (21). An air conditioning refrigerant passage (22) through which the air conditioning refrigerant (21) circulates and a cooling water passage (12) through which cooling water (11) cooled by air circulates are provided inside the inverter (4), and thus the inverter elements (41) are cooled by the circulation of the air conditioning refrigerant (21) and the cooling water (11).

Description

インバータ冷却装置Inverter cooling system
 本発明は、直流電力と交流電力を相互に交換するインバータが有する複数のインバータ素子を冷却するインバータ冷却装置に関するものである。 The present invention relates to an inverter cooling device that cools a plurality of inverter elements included in an inverter that exchanges DC power and AC power with each other.
 従来、所定の方向に沿って積層した複数のインバータ素子の間に冷却水が循環する冷却水経路を設け、冷却水を冷却水経路内に循環させてインバータ素子を冷却するインバータ冷却装置が知られている(例えば、特許文献1参照)。 Conventionally, there has been known an inverter cooling device in which a cooling water path through which cooling water circulates is provided between a plurality of inverter elements stacked in a predetermined direction, and the cooling water is circulated in the cooling water path to cool the inverter elements. (For example, refer to Patent Document 1).
特開2006-203138号公報JP 2006-203138 A
 しかしながら、従来のインバータ冷却装置では、外気を利用した空冷によって冷却冷媒である冷却水の温度を下げている。このため、冷却性能が外気温によって左右されてしまい、外気温が高く冷却水による冷却効果が小さいときには、インバータ素子の冷却を十分に行うことができないという問題があった。
すなわち、空冷式のラジエータ等を用いてインバータを冷却した冷却水の温度を下げる場合では、外気温が高いと冷却水温度を十分に低下させることが難しい。そのため、冷却水温度が上昇し、インバータの冷却効果が小さくなってしまう。つまり、外気温によって冷却性能が異なることとなる。
However, in the conventional inverter cooling apparatus, the temperature of the cooling water which is a cooling refrigerant is lowered by air cooling using outside air. For this reason, there has been a problem that the inverter element cannot be sufficiently cooled when the cooling performance is influenced by the outside air temperature and the outside air temperature is high and the cooling effect by the cooling water is small.
That is, when the temperature of the cooling water that has cooled the inverter is lowered using an air-cooled radiator or the like, it is difficult to sufficiently lower the cooling water temperature if the outside air temperature is high. Therefore, the cooling water temperature rises and the cooling effect of the inverter is reduced. That is, the cooling performance varies depending on the outside air temperature.
 本発明は、上記問題に着目してなされたもので、外気温に拘らず十分なインバータの冷却効果を確保することができるインバータ冷却装置を提供することを目的とする。 The present invention has been made paying attention to the above problem, and an object of the present invention is to provide an inverter cooling device capable of ensuring a sufficient inverter cooling effect regardless of the outside air temperature.
 上記目的を達成するため、本発明のインバータ冷却装置では、インバータと、空調システムと、インバータ冷却手段と、を備えている。
前記インバータは、複数のインバータ素子を有し、直流電力と交流電力を相互に交換する。
前記空調システムは、空調用冷媒を循環させて室内空調を行う。
前記インバータ冷却手段は、前記空調用冷媒が循環する空調冷媒経路と、空冷される冷却水が循環する冷却水経路と、を前記インバータ内に設け、前記空調用冷媒と前記冷却水を各々循環させることで前記インバータ素子を冷却する。
In order to achieve the above object, the inverter cooling apparatus of the present invention includes an inverter, an air conditioning system, and inverter cooling means.
The inverter has a plurality of inverter elements and exchanges DC power and AC power with each other.
The air conditioning system performs indoor air conditioning by circulating an air conditioning refrigerant.
The inverter cooling means includes an air conditioning refrigerant path through which the air conditioning refrigerant circulates and a cooling water path through which cooling water to be air-cooled circulates in the inverter, and each circulates the air conditioning refrigerant and the cooling water. Thus, the inverter element is cooled.
 本発明のインバータ冷却装置にあっては、インバータ内に空調用冷媒が循環する空調冷媒経路と、空冷される冷却水が循環する冷却水経路とが設けられている。
すなわち、インバータ素子の冷却には、空調用冷媒と空冷される冷却水とが用いられる。
そのため、外気温が高く空冷によって冷却水の温度を十分に下げることができず、冷却水による冷却効果が小さい場合であっても、空調用冷媒による冷却効果でインバータ素子を冷却することができる。
この結果、外気温に拘らず十分なインバータの冷却効果を確保することができる。
In the inverter cooling device of the present invention, an air conditioning refrigerant path through which the air conditioning refrigerant circulates in the inverter and a cooling water path through which the cooling water to be air-cooled circulates are provided.
That is, for cooling the inverter element, an air-conditioning refrigerant and air-cooled cooling water are used.
Therefore, even if the outside air temperature is high and the temperature of the cooling water cannot be sufficiently lowered by air cooling, the inverter element can be cooled by the cooling effect of the air conditioning refrigerant even when the cooling effect of the cooling water is small.
As a result, a sufficient inverter cooling effect can be ensured regardless of the outside air temperature.
実施例1のインバータ冷却装置を示すシステムブロック図である。It is a system block diagram which shows the inverter cooling device of Example 1. FIG. 実施例1のインバータ冷却装置が適用された電気自動車を示す模式図である。It is a schematic diagram which shows the electric vehicle to which the inverter cooling device of Example 1 was applied. 実施例1のインバータ冷却装置が適用されたインバータを示す分解斜視図である。It is a disassembled perspective view which shows the inverter with which the inverter cooling device of Example 1 was applied. 実施例1のインバータ冷却装置が適用されたインバータを示す斜視図である。It is a perspective view which shows the inverter with which the inverter cooling device of Example 1 was applied. 実施例1のインバータ冷却装置が適用されたインバータを示す平面図である。It is a top view which shows the inverter with which the inverter cooling device of Example 1 was applied. 実施例1のインバータ冷却装置によるインバータ冷却処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the inverter cooling process by the inverter cooling device of Example 1. FIG. 実施例1のインバータ冷却装置おけるインバータ冷却作用を示すタイムチャートである。It is a time chart which shows the inverter cooling effect | action in the inverter cooling device of Example 1. FIG. 冷却水のインバータ内での循環方向を示す説明図である。It is explanatory drawing which shows the circulation direction in the inverter of a cooling water. エアコン冷媒のインバータ内での循環方向を示す説明図である。It is explanatory drawing which shows the circulation direction in the inverter of an air-conditioner refrigerant | coolant. 冷却水経路に設けた第1熱交換器における冷却水の流れ方向を示す説明図である。It is explanatory drawing which shows the flow direction of the cooling water in the 1st heat exchanger provided in the cooling water path | route. 本発明のインバータ冷却装置が適用されたインバータの他の例を示す概略外観図における斜視図を示す。The perspective view in the general | schematic external view which shows the other example of the inverter to which the inverter cooling device of this invention was applied is shown. 本発明のインバータ冷却装置が適用されたインバータの他の例を示す概略外観図における平面図を示す。The top view in the schematic external view which shows the other example of the inverter to which the inverter cooling device of this invention was applied is shown.
 以下、本発明のインバータ冷却装置を実施するための形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, the form for implementing the inverter cooling device of this invention is demonstrated based on Example 1 shown in drawing.
 まず、実施例1のインバータ冷却装置における構成を、「全体システム構成」、「インバータの構成」、「インバータ冷却処理」に分けて説明する。 First, the configuration of the inverter cooling apparatus according to the first embodiment will be described by dividing it into “entire system configuration”, “inverter configuration”, and “inverter cooling process”.
 [全体システム構成] 
図1は、実施例1のインバータ冷却装置を示すシステムブロック図である。図2は、実施例1のインバータ冷却装置が適用された電気自動車を示す模式図である。以下、図1及び図2に基づいて、実施例1のインバータ冷却装置の全体システム構成を説明する。
[Overall system configuration]
FIG. 1 is a system block diagram illustrating the inverter cooling device according to the first embodiment. FIG. 2 is a schematic diagram illustrating an electric vehicle to which the inverter cooling device according to the first embodiment is applied. Hereinafter, based on FIG.1 and FIG.2, the whole system configuration | structure of the inverter cooling device of Example 1 is demonstrated.
 図1に示すインバータ冷却装置(インバータ冷却手段)1は、電動モータ3を走行駆動源とする電気自動車(電動車の一例)2に搭載され、この電動モータ3に三相交流電圧を出力する車載用インバータであるインバータ4が有するインバータ素子41(図3A参照)の冷却を行う。 An inverter cooling device (inverter cooling means) 1 shown in FIG. 1 is mounted on an electric vehicle (an example of an electric vehicle) 2 that uses an electric motor 3 as a travel drive source, and outputs a three-phase AC voltage to the electric motor 3. The inverter element 41 (see FIG. 3A) included in the inverter 4 that is an inverter for cooling is cooled.
 ここで、電気自動車2には、図2に示すように、電動モータ3、インバータ4、バッテリ5、空調システム6が搭載されている。前記電動モータ3は、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた三相交流同期型モータであり、インバータ4により作り出された三相交流を印加することにより制御される。また、前記バッテリ5は、直流電源であって、例えばニッケル水素やリチウムイオン等の二次電池からなる。このバッテリ5からの電力は、インバータ4へ出力され、三相交流に変換されて電動モータ3へと出力される。そして、前記空調システム6は、エアコン冷媒サーキット20を有し、電気自動車の車室R内の空調を行う車両用空調システムである。 Here, as shown in FIG. 2, the electric vehicle 2 is equipped with an electric motor 3, an inverter 4, a battery 5, and an air conditioning system 6. The electric motor 3 is a three-phase AC synchronous motor in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator, and is controlled by applying a three-phase AC generated by an inverter 4. The battery 5 is a direct current power source, and is formed of a secondary battery such as nickel hydride or lithium ion. The electric power from the battery 5 is output to the inverter 4, converted into a three-phase alternating current, and output to the electric motor 3. The air conditioning system 6 includes an air conditioner refrigerant circuit 20 and is a vehicle air conditioning system that performs air conditioning in the passenger compartment R of the electric vehicle.
 前記インバータ冷却装置(インバータ冷却手段)1は、強電系冷却サーキット10と、エアコン冷媒サーキット20と、冷却コントローラ(冷却制御手段)30と、を備えている。 The inverter cooling device (inverter cooling means) 1 includes a high-power system cooling circuit 10, an air conditioner refrigerant circuit 20, and a cooling controller (cooling control means) 30.
 前記強電系冷却サーキット10は、電気自動車2に搭載された電動モータ3の冷却を行う冷却回路である。前記強電系冷却サーキット10は、冷媒である冷却水11が循環する冷却水経路12と、冷却水11を冷却水経路12内で循環させる電動ウォーターポンプ13と、空冷により冷却水11を冷却するラジエータ14と、を備えている。 The strong electric system cooling circuit 10 is a cooling circuit that cools the electric motor 3 mounted on the electric vehicle 2. The strong electric system cooling circuit 10 includes a cooling water path 12 through which cooling water 11 as a refrigerant circulates, an electric water pump 13 that circulates the cooling water 11 in the cooling water path 12, and a radiator that cools the cooling water 11 by air cooling. 14.
 前記冷却水11は、ここでは、LLC(Long Life Coolant)と呼ばれる不凍液である。 Here, the cooling water 11 is an antifreeze liquid called LLC (Long Life Coolant).
 前記冷却水経路12は、第1冷却水経路12Aと、第2冷却水経路12Bと、を有している。前記第1冷却水経路12Aは、電動ウォーターポンプ13から吐出され、ラジエータ14へと流れ込む冷却水11が流れる。前記第2冷却水経路12Bは、ラジエータ14から流れ出し、電動ウォーターポンプ13へと吸い込まれる冷却水11が流れる。そして、前記第1冷却水経路12Aの中間部には、第1熱交換部15Aと第2熱交換部15Bが形成されている。第1熱交換部15Aは、第2熱交換部15Bよりも冷却水11の流れの上流側に位置し、インバータ4の内部に配置される。第2熱交換部15Bは、電動モータ3の内部に配置される。
これにより、この強電系冷却サーキット10では、電動ウォーターポンプ13から吐出された冷却水11は、第1冷却水経路12Aを通り、第1熱交換部15Aにてインバータ4と熱交換してインバータ4を冷却する。その後、第2熱交換部15Bにて電動モータ3と熱交換して電動モータ3を冷却する。そして、ラジエータ14において空冷された後、第2冷却水経路12Bを通り、電動ウォーターポンプ13に吸い込まれて循環する。
ここで、前記ラジエータ14は、電動モータ3が配置されたモータルームMR(図2参照)の前側に配置され、冷却水11を走行風にさらすことで外気との熱交換により冷却水を冷却する。
The cooling water path 12 has a first cooling water path 12A and a second cooling water path 12B. The cooling water 11 discharged from the electric water pump 13 and flowing into the radiator 14 flows through the first cooling water path 12A. The cooling water 11 that flows out of the radiator 14 and is sucked into the electric water pump 13 flows through the second cooling water path 12B. A first heat exchanging portion 15A and a second heat exchanging portion 15B are formed at an intermediate portion of the first cooling water passage 12A. The first heat exchange unit 15 </ b> A is located upstream of the second heat exchange unit 15 </ b> B in the flow of the cooling water 11 and is disposed inside the inverter 4. The second heat exchange unit 15 </ b> B is disposed inside the electric motor 3.
Thereby, in this strong electric system cooling circuit 10, the cooling water 11 discharged from the electric water pump 13 passes through the first cooling water path 12A, and exchanges heat with the inverter 4 in the first heat exchanging portion 15A. Cool down. Thereafter, the second heat exchange unit 15B exchanges heat with the electric motor 3 to cool the electric motor 3. And after being air-cooled in the radiator 14, it passes along the 2nd cooling water path 12B, is suck | inhaled by the electric water pump 13, and circulates.
Here, the radiator 14 is disposed on the front side of the motor room MR (see FIG. 2) in which the electric motor 3 is disposed, and cools the cooling water by exchanging heat with the outside air by exposing the cooling water 11 to traveling wind. .
 前記エアコン冷媒サーキット20は、車室Rの室内空気を冷却する冷却回路である。前記エアコン冷媒サーキット20は、エアコン冷媒(空調用冷媒)21が循環するエアコン冷媒経路(空調冷媒経路)22と、エアコン冷媒21を圧縮して吐出する電動コンプレッサ23と、空冷によりエアコン冷媒21を冷却するコンデンサ24と、車室R内の空気を冷却するエバポレータ25と、を備えている。 The air conditioner refrigerant circuit 20 is a cooling circuit for cooling the indoor air of the passenger compartment R. The air conditioner refrigerant circuit 20 cools the air conditioner refrigerant 21 by air cooling, an air conditioner refrigerant path (air conditioner refrigerant path) 22 through which the air conditioner refrigerant (air conditioner refrigerant) 21 circulates, an electric compressor 23 that compresses and discharges the air conditioner refrigerant 21. And a condenser 24 for cooling the air in the passenger compartment R.
 前記エアコン冷媒21は、ここでは、ハイドロクロロフルオロカーボン(HCFC)類やハイドロフルオロカーボン(HFC)類等の代替フロンガスである。 Here, the air conditioner refrigerant 21 is an alternative chlorofluorocarbon gas such as hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs).
 前記エアコン冷媒経路22は、第1エアコン冷媒経路22Aと、第2エアコン冷媒経路22Bと、第3エアコン冷媒経路22Cと、を有している。前記第1エアコン冷媒経路22Aは、電動コンプレッサ23から圧送され、コンデンサ24へと流れ込むエアコン冷媒21が流れる。前記第2エアコン冷媒経路22Bは、コンデンサ24から流れ出し、エバポレータ25へと流れ込むエアコン冷媒21が流れる。前記第3エアコン冷媒経路22Cは、エバポレータ25から流れ出し、電動コンプレッサ23へと流れ込むエアコン冷媒21が流れる。そして、前記第3エアコン冷媒経路22Cの中間部には、熱交換部26が形成されている。この熱交換部26は、インバータ4の内部に配置される。
これにより、このエアコン冷媒サーキット20では、電動コンプレッサ23から圧送されたエアコン冷媒21は、第1エアコン冷媒経路22Aを通ってコンデンサ24へと流れ、このコンデンサ24において空冷される。その後、第2エアコン冷媒経路22Bを通ってエバポレータ25へと流れ、車室R内の空気と熱交換して室内空気を冷却する。さらに、その後第3エアコン冷媒経路22Cを通り、熱交換部26にてインバータ4と熱交換してインバータ4を冷却し、電動コンプレッサ23へ流れ込んで循環する。
ここで、前記コンデンサ24は、モータルームMRの前側であってラジエータ14の後方に配置され、エアコン冷媒21を走行風にさらすことで外気との熱交換によりエアコン冷媒21の熱を放出させる。また、前記エバポレータ25は、エアコン冷媒21と車室R内の空気との間で熱交換させ、エアコン冷媒21に熱を吸収させる。
The air conditioner refrigerant path 22 includes a first air conditioner refrigerant path 22A, a second air conditioner refrigerant path 22B, and a third air conditioner refrigerant path 22C. In the first air conditioner refrigerant path 22A, the air conditioner refrigerant 21 which is pumped from the electric compressor 23 and flows into the condenser 24 flows. In the second air conditioner refrigerant path 22B, the air conditioner refrigerant 21 flowing out of the condenser 24 and flowing into the evaporator 25 flows. The air conditioner refrigerant 21 that flows out of the evaporator 25 and flows into the electric compressor 23 flows through the third air conditioner refrigerant path 22C. A heat exchanging portion 26 is formed in the middle portion of the third air conditioner refrigerant path 22C. The heat exchange unit 26 is arranged inside the inverter 4.
As a result, in the air conditioner refrigerant circuit 20, the air conditioner refrigerant 21 pumped from the electric compressor 23 flows to the condenser 24 through the first air conditioner refrigerant path 22 </ b> A, and is air-cooled in the condenser 24. Then, it flows to the evaporator 25 through the 2nd air-conditioner refrigerant path 22B, heat-exchanges with the air in the vehicle interior R, and cools indoor air. Further, after passing through the third air conditioner refrigerant path 22C, the heat exchange unit 26 exchanges heat with the inverter 4 to cool the inverter 4 and flows into the electric compressor 23 for circulation.
Here, the condenser 24 is disposed on the front side of the motor room MR and behind the radiator 14, and exposes the air conditioner refrigerant 21 to traveling wind to release heat of the air conditioner refrigerant 21 by heat exchange with the outside air. The evaporator 25 exchanges heat between the air conditioner refrigerant 21 and the air in the passenger compartment R, and causes the air conditioner refrigerant 21 to absorb heat.
 前記冷却コントローラ30は、インバータ4が有するインバータ素子41(図3A参照)の温度を検出するインバータ温度センサ(素子温度検出手段)31からの検出温度に応じて、電動ウォーターポンプ13、及び、電動コンプレッサ23を制御するインバータ冷却処理を実行する。
すなわち、この冷却コントローラ30には、インバータ温度センサ31から検出温度信号が入力される。また、電動ウォーターポンプ13及び電動コンプレッサ23に適宜ON/OFF信号を出力する。
The cooling controller 30 includes an electric water pump 13 and an electric compressor according to a detected temperature from an inverter temperature sensor (element temperature detecting means) 31 that detects the temperature of an inverter element 41 (see FIG. 3A) of the inverter 4. Inverter cooling processing for controlling 23 is executed.
That is, the detected temperature signal is input to the cooling controller 30 from the inverter temperature sensor 31. Further, an ON / OFF signal is appropriately output to the electric water pump 13 and the electric compressor 23.
 [インバータの構成]
図3Aは、実施例1のインバータ冷却装置が適用されたインバータを示す分解斜視図である。図3Bは、実施例1のインバータ冷却装置が適用されたインバータを示す斜視図である。図3Cは、実施例1のインバータ冷却装置が適用されたインバータを示す平面図である。
[Inverter configuration]
FIG. 3A is an exploded perspective view illustrating an inverter to which the inverter cooling device according to the first embodiment is applied. FIG. 3B is a perspective view illustrating an inverter to which the inverter cooling apparatus according to the first embodiment is applied. FIG. 3C is a plan view illustrating an inverter to which the inverter cooling device according to the first embodiment is applied.
 前記インバータ4は、複数のインバータ素子41を有し、直流電力と交流電力を相互に交換する。
前記インバータ素子41は、いわゆるスイッチング素子であり、U相、V相、W相の各相ごとに、それぞれ一対のIGBT(Insulated Gate Bipolar Transistor)等のパワートランジスタと、パワートランジスタにおいてエミッタ側からコレクタ側へ電流を流すダイオードと、を有している。そして、前記インバータ素子41は、相ごとにモジュール化され、ここでは合計12個の薄型の矩形筐体形状を呈している。さらに、筐体形状のインバータ素子41は、ここでは、幅方向に沿って二列に並べられると共に、厚み方向に沿って積層するように配列されている。
The inverter 4 includes a plurality of inverter elements 41 and exchanges DC power and AC power with each other.
The inverter element 41 is a so-called switching element, and includes a pair of power transistors such as IGBTs (Insulated Gate Bipolar Transistors) for each of the U phase, the V phase, and the W phase, and from the emitter side to the collector side in the power transistor. And a diode for passing a current to. The inverter element 41 is modularized for each phase, and here has a total of 12 thin rectangular housing shapes. Furthermore, the case-shaped inverter elements 41 are arranged in two rows along the width direction and are stacked along the thickness direction.
 そして、厚み方向に沿って配列された複数のインバータ素子41間には、第1冷却水経路12Aの第1熱交換部15Aと、第3エアコン冷媒経路22Cの熱交換部26とが、交互に配設される。 And between the some inverter elements 41 arranged along the thickness direction, the 1st heat exchange part 15A of 12 A of 1st cooling water paths, and the heat exchange part 26 of 22 C of 3rd air-conditioner refrigerant | coolant paths are alternately carried out. Arranged.
 ここで、前記第1熱交換部15Aは、インバータ素子41の側面を覆う複数の矩形状の薄板部16を有している。この薄板部16がインバータ素子41の側面に接触し、この薄板部16内を流れる冷却水11とインバータ素子41との間で熱交換を行う。また、この第1熱交換部15Aは、厚み方向に沿って配列された複数のインバータ素子41のうち、両端に位置するインバータ素子41A,41Bのそれぞれの外側にも位置する。 Here, the first heat exchanging portion 15 </ b> A has a plurality of rectangular thin plate portions 16 that cover the side surfaces of the inverter element 41. The thin plate portion 16 contacts the side surface of the inverter element 41, and heat exchange is performed between the cooling water 11 flowing in the thin plate portion 16 and the inverter element 41. The first heat exchanging portion 15A is also located outside the inverter elements 41A and 41B located at both ends of the plurality of inverter elements 41 arranged in the thickness direction.
 一方、前記熱交換部26は、インバータ素子41の側面を覆う複数の矩形状の薄板部27を有している。この薄板部27がインバータ素子41の側面に接触し、この薄板部27内を流れるエアコン冷媒21とインバータ素子41との間で熱交換を行う。ここで、この熱交換部26の薄板部27は、厚み方向に沿って配列された複数のインバータ素子41の内側に挿入される。 On the other hand, the heat exchanging portion 26 has a plurality of rectangular thin plate portions 27 that cover the side surfaces of the inverter element 41. The thin plate portion 27 comes into contact with the side surface of the inverter element 41, and heat exchange is performed between the air conditioner refrigerant 21 flowing in the thin plate portion 27 and the inverter element 41. Here, the thin plate portion 27 of the heat exchanging portion 26 is inserted inside a plurality of inverter elements 41 arranged along the thickness direction.
 さらに、第1熱交換部15Aにおいて、冷却水11の流入側の第1冷却水経路12Aaは薄板部16の側面上部16aに接続され、冷却水11の流出側の第1冷却水経路12Abは、薄板部16の側面下部16bに接続されている。また、熱交換部26において、エアコン冷媒21の流入側の第3エアコン冷媒経路22Caは薄板部27の側面下部27aに接続され、エアコン冷媒21の流出側の第3エアコン冷媒経路22Cbは薄板部27の側面上部27bに接続されている。 Further, in the first heat exchanging part 15A, the first cooling water path 12Aa on the inflow side of the cooling water 11 is connected to the side surface upper part 16a of the thin plate part 16, and the first cooling water path 12Ab on the outflow side of the cooling water 11 is The thin plate portion 16 is connected to the lower side surface 16b. In the heat exchanging unit 26, the third air conditioner refrigerant path 22Ca on the inflow side of the air conditioner refrigerant 21 is connected to the lower side surface 27a of the thin plate part 27, and the third air conditioner refrigerant path 22Cb on the outflow side of the air conditioner refrigerant 21 is connected to the thin plate part 27. Is connected to the side surface upper portion 27b.
 [インバータ冷却処理]
図4は、実施例1のインバータ冷却装置によるインバータ冷却処理の流れを示すフローチャートである。
[Inverter cooling]
FIG. 4 is a flowchart illustrating the flow of the inverter cooling process performed by the inverter cooling device according to the first embodiment.
 次に、図4に示すフローチャートで、実施例1の冷却コントローラ30にて実行されるインバータ冷却処理の流れを説明する。 Next, the flow of the inverter cooling process executed by the cooling controller 30 according to the first embodiment will be described with reference to the flowchart shown in FIG.
 ステップS1では、車室R内の空調要求(エアコン要求)があるか否かを判断し、YES(要求あり)の場合はステップS2へ移行し、NO(要求なし)の場合はステップS3へ移行する。 In step S1, it is determined whether or not there is an air conditioning request (air conditioner request) in the passenger compartment R. If YES (requested), the process proceeds to step S2, and if NO (no request), the process proceeds to step S3. To do.
 ステップS2では、ステップS1でのエアコン要求ありとの判断に続き、電動コンプレッサ23をON制御し、ステップS13へ移行する。
ここで、電動コンプレッサ23がON制御されることで、エアコン冷媒経路22内をエアコン冷媒21が循環する。
In step S2, following the determination that there is an air conditioner request in step S1, the electric compressor 23 is ON-controlled, and the process proceeds to step S13.
Here, when the electric compressor 23 is ON-controlled, the air conditioner refrigerant 21 circulates in the air conditioner refrigerant path 22.
 ステップS3では、ステップS1でのエアコン要求なしとの判断に続き、インバータ温度センサ31によりインバータ素子41の温度(以下、素子温度T_INVという)を検出し、ステップS4へ移行する。 In step S3, following the determination that there is no air conditioner request in step S1, the inverter temperature sensor 31 detects the temperature of the inverter element 41 (hereinafter referred to as element temperature T_INV), and the process proceeds to step S4.
 ステップS4では、ステップS3で検出した素子温度T_INVが水冷却開始クライテリアCr1(第1閾値)を上回ったか否かを判断し、YES(Cr1>T_INV)の場合はステップS6へ移行し、NO(Cr1≦T_INV)の場合はステップS5へ移行する。
ここで、水冷却開始クライテリアCr1は、インバータ素子41が耐えられる耐熱上限温度よりも低い温度であって、任意の温度に設定される。
In step S4, it is determined whether or not the element temperature T_INV detected in step S3 exceeds the water cooling start criteria Cr1 (first threshold). If YES (Cr1> T_INV), the process proceeds to step S6, and NO (Cr1 If ≦ T_INV), the process proceeds to step S5.
Here, the water cooling start criterion Cr1 is a temperature lower than the heat-resistant upper limit temperature that the inverter element 41 can withstand, and is set to an arbitrary temperature.
 ステップS5では、ステップS4でのCr1≦T_INVとの判断に続き、電動ウォーターポンプ13をOFF制御し、ステップS3へ戻る。
ここで、電動ウォーターポンプ13がOFF制御されることで、冷却水経路12内の冷却水11の循環が停止する。
In step S5, following the determination of Cr1 ≦ T_INV in step S4, the electric water pump 13 is turned off, and the process returns to step S3.
Here, the circulation of the cooling water 11 in the cooling water passage 12 is stopped by the OFF control of the electric water pump 13.
 ステップS6では、ステップS4でのCr1>T_INVとの判断に続き、電動ウォーターポンプ13をON制御し、ステップS7へ移行する。
ここで、電動ウォーターポンプ13がON制御されることで、冷却水経路12内を冷却水11が循環する。
In step S6, following the determination of Cr1> T_INV in step S4, the electric water pump 13 is turned on, and the process proceeds to step S7.
Here, when the electric water pump 13 is ON-controlled, the cooling water 11 circulates in the cooling water passage 12.
 ステップS7では、ステップS6での電動ウォーターポンプ13のON制御に続き、インバータ温度センサ31により素子温度T_INVを検出し、ステップS8へ移行する。 In step S7, following the ON control of the electric water pump 13 in step S6, the element temperature T_INV is detected by the inverter temperature sensor 31, and the process proceeds to step S8.
 ステップS8では、ステップS7で検出した素子温度T_INVがエアコン冷却開始クライテリアCr2(第2閾値)を上回ったか否かを判断し、YES(Cr2>T_INV)の場合はステップS9へ移行し、NO(Cr2≦T_INV)の場合はステップS3へ戻る。
ここで、エアコン冷却開始クライテリアCr2は、インバータ素子41が耐えられる耐熱上限温度よりも低い温度であって、水冷却開始クライテリアCr1よりも高い温度の範囲で、任意の温度に設定される。
In step S8, it is determined whether or not the element temperature T_INV detected in step S7 exceeds the air conditioner cooling start criterion Cr2 (second threshold). If YES (Cr2> T_INV), the process proceeds to step S9, and NO (Cr2 If ≦ T_INV), the process returns to step S3.
Here, the air conditioner cooling start criterion Cr2 is set to an arbitrary temperature within a temperature range lower than the heat resistant upper limit temperature that the inverter element 41 can withstand and higher than the water cooling start criterion Cr1.
 ステップS9では、ステップS8でのCr2>T_INVとの判断に続き、電動コンプレッサ23をON制御し、ステップS10へ移行する。
ここで、電動コンプレッサ23がON制御されることで、エアコン冷媒経路22内をエアコン冷媒21が循環する。
In step S9, following the determination of Cr2> T_INV in step S8, the electric compressor 23 is turned on, and the process proceeds to step S10.
Here, when the electric compressor 23 is ON-controlled, the air conditioner refrigerant 21 circulates in the air conditioner refrigerant path 22.
 ステップS10では、ステップS9での電動コンプレッサ23のON制御に続き、インバータ温度センサ31により素子温度T_INVを検出し、ステップS11へ移行する。 In step S10, following the ON control of the electric compressor 23 in step S9, the element temperature T_INV is detected by the inverter temperature sensor 31, and the process proceeds to step S11.
 ステップS11では、ステップS10で検出した素子温度T_INVがエアコン冷却開始クライテリアCr2を上回ったか否かを判断し、YES(Cr2>T_INV)の場合はステップS13へ移行し、NO(Cr2≦T_INV)の場合はステップS12へ移行する。 In step S11, it is determined whether or not the element temperature T_INV detected in step S10 exceeds the air conditioner cooling start criteria Cr2. If YES (Cr2> T_INV), the process proceeds to step S13, and if NO (Cr2 ≦ T_INV) Moves to step S12.
 ステップS12では、ステップS11でのCr2≦T_INVとの判断に続き、電動コンプレッサ23をOFF制御し、ステップS3へ戻る。
ここで、電動コンプレッサ23がOFF制御されることで、エアコン冷媒経路22内のエアコン冷媒21の循環が停止する。
In step S12, following the determination of Cr2 ≦ T_INV in step S11, the electric compressor 23 is controlled to be OFF, and the process returns to step S3.
Here, when the electric compressor 23 is OFF-controlled, the circulation of the air-conditioner refrigerant 21 in the air-conditioner refrigerant path 22 is stopped.
 ステップS13では、ステップS11でのCr2>T_INVとの判断に続き、イグニッションキーがOFF制御されたか否かを判断し、YES(イグニションOFF)の場合はステップS14へ移行し、NO(イグニッションON)の場合はステップS1へ戻る。 In step S13, following the determination of Cr2> T_INV in step S11, it is determined whether or not the ignition key is OFF-controlled. If YES (ignition OFF), the process proceeds to step S14, and NO (ignition ON) is set. If so, the process returns to step S1.
 ステップS14では、ステップS13でのイグニッションOFFとの判断に続き、電動ウォーターポンプ13及び電動コンプレッサ23を共にOFF制御し、エンドへ移行してインバータ冷却処理を終了する。 In step S14, following the determination that the ignition is turned off in step S13, the electric water pump 13 and the electric compressor 23 are both turned off, and the process proceeds to the end to end the inverter cooling process.
 次に、実施例1のインバータ冷却装置における作用を、[インバータ冷却作用]、[均等冷却作用]に分けて説明する。 Next, the operation of the inverter cooling device of the first embodiment will be described by dividing it into [inverter cooling operation] and [uniform cooling operation].
 [インバータ冷却作用]
図5は、実施例1のインバータ冷却装置おけるインバータ冷却作用を示すタイムチャートである。
実施例1の電気自動車2において電動モータ3を駆動して走行するには、バッテリ5から出力される直流電力をインバータ4により三相交流に変換する。そして、インバータ4から三相交流に変換された電力を電動モータ3へと出力し、電動モータ3を駆動する。
[Inverter cooling]
FIG. 5 is a time chart showing the inverter cooling operation in the inverter cooling apparatus of the first embodiment.
To drive the electric motor 3 in the electric vehicle 2 according to the first embodiment, DC power output from the battery 5 is converted into three-phase AC by the inverter 4. And the electric power converted into three-phase alternating current from the inverter 4 is output to the electric motor 3, and the electric motor 3 is driven.
 このとき、インバータ4のインバータ素子41の温度(素子温度T_INV)は次第に上昇し、この素子温度T_INVが耐熱上限温度を超えてしまうと、インバータ4に不具合が発生することがある。そこで、実施例1のインバータ冷却装置1によりインバータ素子41を冷却し、素子温度T_INVの上昇を抑制する必要がある。 At this time, the temperature of the inverter element 41 of the inverter 4 (element temperature T_INV) gradually increases, and if the element temperature T_INV exceeds the heat-resistant upper limit temperature, a problem may occur in the inverter 4. Therefore, it is necessary to cool the inverter element 41 by the inverter cooling device 1 according to the first embodiment and suppress the increase in the element temperature T_INV.
 実施例1のインバータ冷却装置1においてインバータ4を冷却するには、まず、図4に示すフローチャートでステップS1へと進み、車室R内の空調要求(エアコン要求)があるか否かを判断し、空調要求がなければステップS2へと進んで素子温度T_INVを検出する。そして、この素子温度T_INVが水冷却開始クライテリアCr1以下であれば、ステップS3→ステップS5へと進んで電動ウォーターポンプ13をOFF制御のままとする。 In order to cool the inverter 4 in the inverter cooling device 1 according to the first embodiment, first, the process proceeds to step S1 in the flowchart shown in FIG. 4 to determine whether or not there is an air conditioning request (air conditioner request) in the passenger compartment R. If there is no air conditioning request, the process proceeds to step S2 to detect the element temperature T_INV. If the element temperature T_INV is equal to or lower than the water cooling start criteria Cr1, the process proceeds from step S3 to step S5, and the electric water pump 13 remains in the OFF control.
 図5のタイムチャートに示すように、時刻t1において、素子温度T_INVが水冷却開始クライテリアCr1を上回ると、ステップS3→ステップS4→ステップS6へと進み、電動ウォーターポンプ13をON制御する。これにより、電動ウォーターポンプ13がOFF制御からON制御へと切り替わり、冷却水経路12内で冷却水11が循環を開始する。
この冷却水11の循環により、冷却水11はラジエータ14において空冷されて低温になり、第1熱交換部15Aにおいて、この空冷された冷却水11とインバータ4との間で熱交換が行われ、冷却水11にインバータ4の熱が移動してインバータ4が冷却される。
なお、第1熱交換部15Aにおいてインバータ4と熱交換された冷却水11は、冷却水11の流出側の第1冷却水経路12Abを通り、第2熱交換部15Bにて電動モータ3と熱交換して電動モータ3を冷却する。
As shown in the time chart of FIG. 5, when the element temperature T_INV exceeds the water cooling start criteria Cr1 at time t1, the process proceeds from step S3 to step S4 to step S6, and the electric water pump 13 is ON-controlled. Thereby, the electric water pump 13 is switched from the OFF control to the ON control, and the cooling water 11 starts to circulate in the cooling water path 12.
Due to the circulation of the cooling water 11, the cooling water 11 is air-cooled in the radiator 14 to be a low temperature, and heat exchange is performed between the air-cooled cooling water 11 and the inverter 4 in the first heat exchange unit 15A. The heat of the inverter 4 moves to the cooling water 11 and the inverter 4 is cooled.
In addition, the cooling water 11 heat-exchanged with the inverter 4 in the 1st heat exchange part 15A passes 1st cooling water path | route 12Ab of the outflow side of the cooling water 11, and heats with the electric motor 3 in the 2nd heat exchange part 15B. The electric motor 3 is cooled by replacement.
 その後、素子温度T_INVがエアコン冷却開始クライテリアCr2を上回るまでは、ステップS6→ステップS7→ステップS8→ステップS3へと進み、強電系冷却サーキット10によるインバータ4の冷却が実行される。 Thereafter, until the element temperature T_INV exceeds the air conditioner cooling start criterion Cr2, the process proceeds from step S6 to step S7 to step S8 to step S3, and cooling of the inverter 4 by the high-power system cooling circuit 10 is executed.
 そして、時刻t2において、素子温度T_INVがエアコン冷却開始クライテリアCr2を上回ると、ステップS7→ステップS8→ステップS9へと進み、電動コンプレッサ23をON制御する。これにより、電動コンプレッサ23がOFF制御からON制御へと切り替わり、冷却水経路12内での冷却水11の循環に加え、エアコン冷媒経路22内でエアコン冷媒21が循環を開始する。
このエアコン冷媒21の循環により、熱交換部26において、エバポレータ25を通過したエアコン冷媒21とインバータ4との間で熱交換が行われ、エアコン冷媒21にインバータ4の熱が移動してインバータ4が冷却される。
すなわち、インバータ4では、冷却水11及びエアコン冷媒21と熱交換が行われることとなる。
When the element temperature T_INV exceeds the air conditioner cooling start criteria Cr2 at time t2, the process proceeds from step S7 to step S8 to step S9, and the electric compressor 23 is ON-controlled. Thereby, the electric compressor 23 is switched from the OFF control to the ON control, and the air conditioner refrigerant 21 starts to circulate in the air conditioner refrigerant path 22 in addition to the circulation of the cooling water 11 in the cooling water path 12.
Due to the circulation of the air conditioner refrigerant 21, heat exchange is performed between the air conditioner refrigerant 21 that has passed through the evaporator 25 and the inverter 4 in the heat exchanging unit 26, and the heat of the inverter 4 moves to the air conditioner refrigerant 21. To be cooled.
That is, in the inverter 4, heat exchange with the cooling water 11 and the air conditioner refrigerant 21 is performed.
 そして、時刻t3において、素子温度T_INVがエアコン冷却開始クライテリアCr2以下になると、ステップS10→ステップS11→ステップS12→ステップS3へと進み、電動コンプレッサ23をOFF制御する。これにより、電動コンプレッサ23がON制御からOFF制御へと切り替わり、エアコン冷媒経路22内でのエアコン冷媒21の循環が停止する。なお、このとき、電動ウォーターポンプ13はON制御されたままなので、冷却水11との間の熱交換によるインバータ4の冷却は実行され続ける。 When the element temperature T_INV becomes equal to or lower than the air conditioner cooling start criterion Cr2 at time t3, the process proceeds to step S10 → step S11 → step S12 → step S3, and the electric compressor 23 is controlled to be OFF. As a result, the electric compressor 23 is switched from ON control to OFF control, and the circulation of the air conditioner refrigerant 21 in the air conditioner refrigerant path 22 is stopped. At this time, since the electric water pump 13 remains ON-controlled, the cooling of the inverter 4 by heat exchange with the cooling water 11 continues to be executed.
 さらに、時刻t4において、素子温度T_INVが水冷却開始クライテリアCr1以下になると、ステップS3→ステップS4→ステップS5へと進み、電動ウォーターポンプ13をOFF制御する。これにより、電動ウォーターポンプ13がON制御からOFF制御へと切り替わり、冷却水経路12内での冷却水11の循環が停止する。 Furthermore, when the element temperature T_INV becomes equal to or lower than the water cooling start criterion Cr1 at time t4, the process proceeds from step S3 to step S4 to step S5, and the electric water pump 13 is controlled to be OFF. Thereby, the electric water pump 13 is switched from ON control to OFF control, and the circulation of the cooling water 11 in the cooling water path 12 is stopped.
 このように、実施例1のインバータ冷却装置1では、インバータ4の冷却に冷却水11とエアコン冷媒21の両方を用いる。これにより、外気温が高く、ラジエータ14における空冷によって冷却水11の温度を十分に下げることができず、冷却水11による冷却効果が小さいときであっても、エアコン冷媒21による冷却効果でインバータ4の冷却を十分に行うことができる。すなわち、外気温に拘らず十分なインバータ4の冷却効果を確保することができる。そして、耐熱条件化においてもインバータ素子41の温度上昇が抑えられ、電動モータ3の出力を向上することができる。 Thus, in the inverter cooling device 1 of the first embodiment, both the cooling water 11 and the air conditioner refrigerant 21 are used for cooling the inverter 4. Thereby, even when the outside air temperature is high and the temperature of the cooling water 11 cannot be sufficiently lowered by the air cooling in the radiator 14, and the cooling effect by the cooling water 11 is small, the cooling effect by the air conditioner refrigerant 21 causes the inverter 4. Can be sufficiently cooled. That is, a sufficient cooling effect of the inverter 4 can be ensured regardless of the outside temperature. And even in heat-resistant conditions, the temperature rise of the inverter element 41 can be suppressed and the output of the electric motor 3 can be improved.
 また、実施例1のインバータ制御装置1では、素子温度T_INVが水冷却開始クライテリアCr1を超えると、電動ウォーターポンプ13をON制御して冷却水経路12に冷却水11を循環させる。そして、素子温度T_INVが水冷却開始クライテリアCr1よりも高い値に設定されたエアコン冷却開始クライテリアCr2を超えると、電動コンプレッサ23をON制御してエアコン冷媒経路22にエアコン冷媒21を循環させる。
これにより、電動コンプレッサ23の稼働条件が制限され、素子温度T_INVがより高くなったときにのみ電動コンプレッサ23をON制御して、エアコン冷媒21によるインバータ冷却を行う。そのため、消費電力の抑制を図ることができる。
Further, in the inverter control device 1 according to the first embodiment, when the element temperature T_INV exceeds the water cooling start criteria Cr1, the electric water pump 13 is turned on to circulate the cooling water 11 through the cooling water path 12. When the element temperature T_INV exceeds the air conditioner cooling start criterion Cr2 set to a value higher than the water cooling start criterion Cr1, the electric compressor 23 is turned on to circulate the air conditioner refrigerant 21 in the air conditioner refrigerant path 22.
Thereby, the operating condition of the electric compressor 23 is limited, and the electric compressor 23 is ON-controlled only when the element temperature T_INV becomes higher, and the inverter cooling by the air conditioner refrigerant 21 is performed. Therefore, power consumption can be suppressed.
 [均等冷却作用]
図6Aは、冷却水のインバータ内での循環方向を示す説明図である。図6Bは、エアコン冷媒のインバータ内での循環方向を示す説明図である。図7は、冷却水経路に設けた第1熱交換器における冷却水の流れ方向を示す説明図である。
[Uniform cooling]
FIG. 6A is an explanatory diagram illustrating a circulation direction in the inverter of the cooling water. FIG. 6B is an explanatory diagram showing a circulation direction of the air-conditioner refrigerant in the inverter. FIG. 7 is an explanatory diagram showing the flow direction of the cooling water in the first heat exchanger provided in the cooling water path.
 実施例1のインバータ冷却装置1では、複数のインバータ素子41が厚み方向に沿って配列されている。そして、この厚み方向に沿って配列された複数のインバータ素子41間に、第1冷却水経路12Aの第1熱交換部15Aと、第3エアコン冷媒経路22Cの熱交換部26とが、交互に配設されている。 In the inverter cooling device 1 of the first embodiment, a plurality of inverter elements 41 are arranged along the thickness direction. And between the several inverter elements 41 arranged along this thickness direction, the 1st heat exchange part 15A of 12 A of 1st cooling water paths, and the heat exchange part 26 of 22 C of 3rd air-conditioner refrigerant | coolant paths are alternately carried out. It is arranged.
 これにより、冷却水11によるインバータ4の冷却効果と、エアコン冷媒21によるインバータ4の冷却効果を均一にさせることができ、冷却むらの発生を抑制することができる。
つまり、図6(a)に示すように、厚み方向に沿って配列された複数のインバータ素子41の側面のうち、第1熱交換部15Aの薄板部16に接した面が冷却水11によって冷却される。一方、図6(b)に示すように、厚み方向に沿って配列された複数のインバータ素子41の側面のうち、熱交換部23の薄板部27に接した面がエアコン冷媒21によって冷却される。
そのため、インバータ4の冷却は、複数のインバータ素子41の全体を分散して行うことができ、複数のインバータ素子41の全体を均等に冷却することができる。
Thereby, the cooling effect of the inverter 4 by the cooling water 11 and the cooling effect of the inverter 4 by the air conditioner refrigerant 21 can be made uniform, and the occurrence of uneven cooling can be suppressed.
That is, as shown in FIG. 6A, among the side surfaces of the plurality of inverter elements 41 arranged along the thickness direction, the surface in contact with the thin plate portion 16 of the first heat exchange unit 15 </ b> A is cooled by the cooling water 11. Is done. On the other hand, as shown in FIG. 6B, among the side surfaces of the plurality of inverter elements 41 arranged along the thickness direction, the surface in contact with the thin plate portion 27 of the heat exchange unit 23 is cooled by the air conditioner refrigerant 21. .
Therefore, the cooling of the inverter 4 can be performed by dispersing the whole of the plurality of inverter elements 41, and the whole of the plurality of inverter elements 41 can be uniformly cooled.
 さらに、実施例1のインバータ冷却装置1では、冷却水経路12が、厚み方向に沿って配列された複数のインバータ素子41の間に加え、複数のインバータ素子41のうち両端に位置するインバータ素子41A,41B(図3A参照)のそれぞれの外側に配設されている。
そのため、冷却水11による冷却面積の拡大を図ることができ、冷却水11による冷却能力を増大させることができる。
Furthermore, in the inverter cooling device 1 of the first embodiment, the cooling water path 12 is interposed between the plurality of inverter elements 41 arranged along the thickness direction, and the inverter elements 41A located at both ends of the plurality of inverter elements 41. , 41B (see FIG. 3A).
Therefore, the cooling area by the cooling water 11 can be increased, and the cooling capacity by the cooling water 11 can be increased.
 そして、実施例1のインバータ冷却装置1では、第1熱交換部15Aにおいて、冷却水11の流入側の第1冷却水経路12Aaは薄板部16の側面上部16aに接続され、冷却水11の流出側の第1冷却水経路12Abは、薄板部16の側面下部16bに接続されている。 And in the inverter cooling device 1 of Example 1, in the 1st heat exchange part 15A, the 1st cooling water path 12Aa of the inflow side of the cooling water 11 is connected to the side surface upper part 16a of the thin plate part 16, and the outflow of the cooling water 11 The first cooling water passage 12 </ b> Ab on the side is connected to the lower side surface 16 b of the thin plate portion 16.
 これにより、図7に示すように、薄板部16内において冷却水11の流れが分散し、薄板部16の全体の温度が均等になる。このため、この薄板部16に接触するインバータ素子41の側面全体で均等に熱交換が行われ、インバータ素子41の全体を均等に冷却することができる。 Thereby, as shown in FIG. 7, the flow of the cooling water 11 is dispersed in the thin plate portion 16, and the entire temperature of the thin plate portion 16 becomes uniform. For this reason, heat exchange is performed uniformly over the entire side surface of the inverter element 41 in contact with the thin plate portion 16, and the entire inverter element 41 can be cooled uniformly.
 なお、図7には第1熱交換部15Aのみ示しているが、エアコン冷媒経路22に設けた熱交換部26においても同様である。エアコン冷媒21の流入側の第3エアコン冷媒経路22Caが薄板部27の側面下部27aに接続され、エアコン冷媒21の流出側の第3エアコン冷媒経路22Cbが薄板部27の側面上部27bに接続されているため、薄板部27内においてエアコン冷媒21の流れが分散される。 7 shows only the first heat exchanging portion 15A, the same applies to the heat exchanging portion 26 provided in the air conditioner refrigerant path 22. The third air conditioner refrigerant path 22Ca on the inflow side of the air conditioner refrigerant 21 is connected to the lower side surface 27a of the thin plate portion 27, and the third air conditioner refrigerant path 22Cb on the outflow side of the air conditioner refrigerant 21 is connected to the upper side surface 27b of the thin plate portion 27. Therefore, the flow of the air conditioner refrigerant 21 is dispersed in the thin plate portion 27.
 次に、効果を説明する。
実施例1のインバータ冷却装置にあっては、下記に挙げる効果を得ることができる。
Next, the effect will be described.
In the inverter cooling device of Embodiment 1, the following effects can be obtained.
 (1) 複数のインバータ素子41を有し、直流電力と交流電力を相互に交換するインバータ4と、
 空調用冷媒(エアコン冷媒)21を循環させて車室R内空調を行う空調システム6と、
 前記空調用冷媒21が循環する空調冷媒経路(エアコン冷媒経路)22と、空冷される冷却水11が循環する冷却水経路12と、を前記インバータ4内に設け、前記空調用冷媒21と前記冷却水11を各々循環させることで前記インバータ素子41を冷却するインバータ冷却手段(インバータ冷却装置)1と、
 を備えた構成とした。
 このため、外気温に拘らず十分なインバータの冷却効果を確保することができる。
(1) an inverter 4 having a plurality of inverter elements 41 for exchanging DC power and AC power;
An air conditioning system 6 that circulates an air conditioning refrigerant (air conditioner refrigerant) 21 to perform air conditioning in the passenger compartment R;
An air-conditioning refrigerant path (air-conditioner refrigerant path) 22 through which the air-conditioning refrigerant 21 circulates and a cooling water path 12 through which air-cooled cooling water 11 circulates are provided in the inverter 4, and the air-conditioning refrigerant 21 and the cooling Inverter cooling means (inverter cooling device) 1 for cooling the inverter element 41 by circulating water 11 respectively;
It was set as the structure provided with.
Therefore, a sufficient inverter cooling effect can be ensured regardless of the outside air temperature.
 (2) 前記インバータ素子41の温度を検出する素子温度検出手段(インバータ温度センサ)31を備え、
 前記インバータ冷却手段1は、前記素子温度検出手段31の検出温度が第1閾値(水冷却開始クライテリア)Cr1を超えると、前記インバータ冷却手段1に前記冷却水11を循環させ、前記素子温度検出手段31の検出温度が前記第1閾値Cr1よりも高い値に設定された第2閾値(エアコン冷却開始クライテリア)Cr2を超えると、前記インバータ冷却手段1に前記空調用冷媒21を循環させる冷却制御手段(冷却コントローラ)30を有する構成とした。
 このため、空調用冷媒21を循環させる電動コンプレッサ23の稼働条件が制限され、消費電力の抑制を図ることができる。
(2) comprising element temperature detecting means (inverter temperature sensor) 31 for detecting the temperature of the inverter element 41;
When the temperature detected by the element temperature detecting means 31 exceeds a first threshold value (water cooling start criteria) Cr1, the inverter cooling means 1 circulates the cooling water 11 through the inverter cooling means 1, and the element temperature detecting means When the detected temperature of 31 exceeds a second threshold value (air conditioner cooling start criteria) Cr2 set to a value higher than the first threshold value Cr1, a cooling control means for circulating the air conditioning refrigerant 21 in the inverter cooling means 1 ( The cooling controller 30 is used.
For this reason, the operating conditions of the electric compressor 23 that circulates the air-conditioning refrigerant 21 are limited, and power consumption can be suppressed.
 (3) 複数の前記インバータ素子41は、所定の方向(厚み方向)に沿って配列され、
 前記インバータ冷却手段1は、前記冷却水経路12と前記空調冷媒経路22を、所定の方向に沿って配列された複数の前記インバータ素子41間に交互に配設する構成とした。
 このため、インバータ4の冷却は、複数のインバータ素子41の全体を分散して行うことができ、複数のインバータ素子41の全体を均等に冷却することができる。
(3) The plurality of inverter elements 41 are arranged along a predetermined direction (thickness direction),
The inverter cooling means 1 is configured such that the cooling water passage 12 and the air conditioning refrigerant passage 22 are alternately arranged between the plurality of inverter elements 41 arranged along a predetermined direction.
For this reason, the cooling of the inverter 4 can be performed by dispersing the whole of the plurality of inverter elements 41, and the whole of the plurality of inverter elements 41 can be uniformly cooled.
 (4) 前記インバータ冷却手段1は、前記冷却水経路12を、所定の方向に沿って配列された複数の前記インバータ素子41の間、及び、所定の方向に沿って配列された複数の前記インバータ素子41のうち両端に位置するインバータ素子41A,41Bのそれぞれの外側に配設し、
 前記空調冷媒経路22を、所定の方向に沿って配列された複数の前記インバータ素子41の間に配設する構成とした。
 このため、冷却水11による冷却面積の拡大を図ることができ、冷却水11による冷却能力を増大させることができる。
(4) The inverter cooling means 1 includes the plurality of inverters arranged in the cooling water path 12 between the plurality of inverter elements 41 arranged along a predetermined direction and along the predetermined direction. The element 41 is disposed outside each of the inverter elements 41A and 41B located at both ends,
The air conditioning refrigerant path 22 is configured to be disposed between the plurality of inverter elements 41 arranged along a predetermined direction.
For this reason, the cooling area by the cooling water 11 can be increased, and the cooling capacity by the cooling water 11 can be increased.
 以上、本発明のインバータ冷却装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 As mentioned above, although the inverter cooling device of this invention has been demonstrated based on Example 1, about a concrete structure, it is not restricted to this Example, The summary of the invention which concerns on each claim of a claim Unless it deviates, design changes and additions are allowed.
 実施例1のインバータ4では、複数のインバータ素子41を幅方向に沿って二列に並べると共に、厚み方向に沿って積層するように配列している。しかしながら、複数のインバータ素子41の配列状態はこれに限らない。
例えば、図8A及び図8Bに示すように、複数のインバータ素子41を幅方向に沿って二列に並べると共に、同一平面状に平置きした状態に並べてもよい。この場合、各インバータ素子41の上側面を冷却水経路12に設けた第1熱交換部15Aで覆う。また、各インバータ素子41の下側面をエアコン冷媒経路22に設けた熱交換部26で覆う。
In the inverter 4 of the first embodiment, a plurality of inverter elements 41 are arranged in two rows along the width direction and are arranged so as to be stacked along the thickness direction. However, the arrangement state of the plurality of inverter elements 41 is not limited to this.
For example, as shown in FIGS. 8A and 8B, a plurality of inverter elements 41 may be arranged in two rows along the width direction, and may be arranged in a flat state on the same plane. In this case, the upper side surface of each inverter element 41 is covered with the first heat exchange unit 15 </ b> A provided in the cooling water path 12. Further, the lower surface of each inverter element 41 is covered with a heat exchanging portion 26 provided in the air conditioner refrigerant path 22.
 また、このとき、インバータ4内において、冷却水経路12の第1熱交換部15Aを流れる冷却水11の流れ方向(図8Bにおいて実線で示す)と、空調冷媒経路22の熱交換部26を流れるエアコン冷媒21の流れ方向(図8Bにおいて破線で示す)とを、逆方向に設定する。これにより、複数のインバータ素子41の全体を均等に冷却することができる。 Further, at this time, in the inverter 4, the flow direction of the cooling water 11 (shown by a solid line in FIG. 8B) flowing through the first heat exchanging portion 15 </ b> A of the cooling water passage 12 and the heat exchanging portion 26 of the air conditioning refrigerant passage 22. The flow direction of the air conditioner refrigerant 21 (indicated by a broken line in FIG. 8B) is set in the opposite direction. Thereby, the whole several inverter element 41 can be cooled equally.
 すなわち、第1熱交換部15Aに流れ込んだ冷却水11は、流入側の第1冷却水経路12Aaから流出側の第1冷却水経路12Abに流れる間にインバータ4と熱交換を行う。
このため、流入側の第1冷却水経路12Aaから流出側の第1冷却水経路12Ab向かうにつれ、次第に冷却水11の温度は上昇する。これにより、上流側(流入側の第1冷却水経路12Aa側)よりも下流側(流出側の第1冷却水経路12Ab側)の方が冷却効果が低く、第1熱交換部15A内で温度分布にむらができてしまう。
That is, the cooling water 11 that has flowed into the first heat exchanging section 15A exchanges heat with the inverter 4 while flowing from the first cooling water path 12Aa on the inflow side to the first cooling water path 12Ab on the outflow side.
For this reason, the temperature of the cooling water 11 gradually rises from the first cooling water path 12Aa on the inflow side toward the first cooling water path 12Ab on the outflow side. Accordingly, the cooling effect is lower on the downstream side (first cooling water passage 12Ab side) than the upstream side (first cooling water passage 12Aa side), and the temperature in the first heat exchange section 15A is lower. The distribution is uneven.
 一方、熱交換部26に流れ込んだエアコン冷媒21においても同様である。熱交換部26の入口側から出口側に向かうにつれ、エアコン冷媒21の温度が次第に上昇し、熱交換部26内で温度分布にむらができてしまう。 On the other hand, the same applies to the air conditioner refrigerant 21 that has flowed into the heat exchange section 26. As the heat exchange unit 26 moves from the inlet side toward the outlet side, the temperature of the air conditioner refrigerant 21 gradually increases, and the temperature distribution in the heat exchange unit 26 becomes uneven.
 ここで、第1熱交換部15Aを流れる冷却水11の流れ方向と、空調冷媒経路22の熱交換部26を流れるエアコン冷媒21の流れ方向とを、逆方向に設定することで、冷却水11の上流側がエアコン冷媒21の下流側に対向し、冷却水11の下流側がエアコン冷媒21の上流側に対向する。そのため、冷却効果を冷媒の流れ方向に拘らず均一に近づけることができるので、第1熱交換部15A及び熱交換部26における温度分布のむらが抑制でき、複数のインバータ素子41の全体を均等に冷却することができる。 Here, by setting the flow direction of the cooling water 11 flowing through the first heat exchange unit 15A and the flow direction of the air conditioner refrigerant 21 flowing through the heat exchange unit 26 of the air conditioning refrigerant path 22 to the opposite directions, the cooling water 11 is set. The upstream side of the cooling water 11 faces the downstream side of the air conditioner refrigerant 21, and the downstream side of the cooling water 11 faces the upstream side of the air conditioner refrigerant 21. Therefore, the cooling effect can be made uniform regardless of the flow direction of the refrigerant, so that uneven temperature distribution in the first heat exchanging portion 15A and the heat exchanging portion 26 can be suppressed, and the entire plurality of inverter elements 41 can be uniformly cooled. can do.
 なお、図3に示す実施例1のインバータ冷却装置1においても、インバータ4内での冷却水11の流れ方向とエアコン冷媒21の流れ方向を、逆方向に設定してもよい。 In the inverter cooling apparatus 1 according to the first embodiment shown in FIG. 3, the flow direction of the cooling water 11 and the flow direction of the air conditioner refrigerant 21 in the inverter 4 may be set in opposite directions.
 また、実施例1のインバータ冷却装置1は、電気自動車2に搭載された駆動用の電動モータ3に電圧を出力する車載用インバータを冷却するものであるが、これに限らない。無停電電源装置や電磁調理機等の高周波発生装置に電圧を出力するインバータを冷却するものであってもよい。
さらに、空調システム6は、実施例1に示すような車両用空調システムに限らず、空調用冷媒を循環させて室内空調を行う、いわゆる冷凍サイクルを有する空調システムであれば本発明に適用することができる。
Moreover, although the inverter cooling device 1 of Example 1 cools the vehicle-mounted inverter which outputs a voltage to the electric motor 3 for drive mounted in the electric vehicle 2, it is not restricted to this. You may cool the inverter which outputs a voltage to high frequency generators, such as an uninterruptible power supply and an electromagnetic cooker.
Furthermore, the air conditioning system 6 is not limited to the vehicle air conditioning system as shown in the first embodiment, and any air conditioning system having a so-called refrigeration cycle that circulates an air conditioning refrigerant to perform indoor air conditioning can be applied to the present invention. Can do.
 そして、冷却水11及びエアコン冷媒21に使用される物質は、上述のものに限らず、適宜最適なものを採用することができる。 And the substance used for the cooling water 11 and the air-conditioner refrigerant 21 is not limited to the above-mentioned substances, and an optimum material can be adopted as appropriate.
関連出願の相互参照Cross-reference of related applications
 本出願は、2011年10月12日に日本国特許庁に出願された特願2011-224627に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2011-224627 filed with the Japan Patent Office on October 12, 2011, the entire disclosure of which is fully incorporated herein by reference.

Claims (5)

  1.  複数のインバータ素子を有し、直流電力と交流電力を相互に交換するインバータと、
     空調用冷媒を循環させて室内空調を行う空調システムと、
     前記空調用冷媒が循環する空調冷媒経路と、空冷される冷却水が循環する冷却水経路と、を前記インバータ内に設け、前記空調用冷媒と前記冷却水を各々循環させることで前記インバータ素子を冷却するインバータ冷却手段と、
     を備えたことを特徴とするインバータ冷却装置。
    An inverter having a plurality of inverter elements and exchanging DC power and AC power with each other;
    An air conditioning system that circulates an air conditioning refrigerant to perform indoor air conditioning;
    An air conditioning refrigerant path through which the air-conditioning refrigerant circulates and a cooling water path through which air-cooled cooling water circulates are provided in the inverter, and the air-conditioning refrigerant and the cooling water are circulated, thereby the inverter element being circulated. Inverter cooling means for cooling;
    An inverter cooling device comprising:
  2.  請求項1に記載されたインバータ冷却装置において、
     前記インバータ素子の温度を検出する素子温度検出手段を備え、
     前記インバータ冷却手段は、前記素子温度検出手段の検出温度が第1閾値を超えると、前記インバータ冷却手段に前記冷却水を循環させ、前記素子温度検出手段の検出温度が前記第1閾値よりも高い値に設定された第2閾値を超えると、前記インバータ冷却手段に前記空調用冷媒を循環させる冷却制御手段を有することを特徴とするインバータ冷却装置。
    In the inverter cooling device according to claim 1,
    Comprising element temperature detecting means for detecting the temperature of the inverter element;
    The inverter cooling means circulates the cooling water to the inverter cooling means when the detected temperature of the element temperature detecting means exceeds a first threshold value, and the detected temperature of the element temperature detecting means is higher than the first threshold value. An inverter cooling device comprising cooling control means for circulating the air-conditioning refrigerant in the inverter cooling means when a second threshold value set in the value is exceeded.
  3.  請求項1又は請求項2に記載されたインバータ冷却装置において、
     複数の前記インバータ素子は、所定の方向に沿って配列され、
     前記インバータ冷却手段は、前記冷却水経路と前記空調冷媒経路を、所定の方向に沿って配列された複数の前記インバータ素子間に交互に配設することを特徴とするインバータ冷却装置。
    In the inverter cooling device according to claim 1 or 2,
    The plurality of inverter elements are arranged along a predetermined direction,
    The inverter cooling device is characterized in that the cooling water path and the air conditioning refrigerant path are alternately arranged between the plurality of inverter elements arranged along a predetermined direction.
  4.  請求項3に記載されたインバータ冷却装置において、
     前記インバータ冷却手段は、前記冷却水経路を、所定の方向に沿って配列された複数の前記インバータ素子の間、及び、所定の方向に沿って配列された複数の前記インバータ素子のうち両端に位置するインバータ素子のそれぞれの外側に配設し、
     前記空調冷媒経路を、所定の方向に沿って配列された複数の前記インバータ素子の間に配設することを特徴とするインバータ冷却装置。
    In the inverter cooling device according to claim 3,
    The inverter cooling means is configured to position the cooling water path between the plurality of inverter elements arranged along a predetermined direction and at both ends of the plurality of inverter elements arranged along a predetermined direction. Arranged on the outside of each inverter element to be
    The inverter cooling apparatus, wherein the air conditioning refrigerant path is disposed between the plurality of inverter elements arranged along a predetermined direction.
  5.  請求項1から請求項4のいずれか一項に記載されたインバータ冷却装置において、
     前記インバータ冷却手段は、前記インバータ内において、前記冷却水経路を流れる前記冷却水の流れ方向と、前記空調冷媒経路を流れる前記空調用冷媒の流れ方向とを、逆方向に設定することを特徴とするインバータ冷却装置。
    In the inverter cooling device according to any one of claims 1 to 4,
    The inverter cooling means sets, in the inverter, a flow direction of the cooling water flowing through the cooling water passage and a flow direction of the air-conditioning refrigerant flowing through the air-conditioning refrigerant passage in opposite directions. Inverter cooling device.
PCT/JP2012/075537 2011-10-12 2012-10-02 Inverter cooling device WO2013054699A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-224627 2011-10-12
JP2011224627A JP5842525B2 (en) 2011-10-12 2011-10-12 Inverter cooling system

Publications (1)

Publication Number Publication Date
WO2013054699A1 true WO2013054699A1 (en) 2013-04-18

Family

ID=48081756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075537 WO2013054699A1 (en) 2011-10-12 2012-10-02 Inverter cooling device

Country Status (2)

Country Link
JP (1) JP5842525B2 (en)
WO (1) WO2013054699A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2778576A3 (en) * 2013-03-13 2014-12-03 Christie Digital Systems Canada, Inc. System for cooling electronic components
EP3190282A1 (en) * 2016-01-11 2017-07-12 Liebherr-Aerospace Toulouse SAS Electrical architecture of an aircraft comprising a cooling plate
US10928080B2 (en) 2015-11-09 2021-02-23 Carrier Corporation Climate control outdoor unit with inverter cooling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167886A (en) * 2009-01-22 2010-08-05 Mitsubishi Motors Corp Cooling system of electric vehicle
JP2011093424A (en) * 2009-10-29 2011-05-12 Hitachi Ltd Cooling system of electric vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161794A (en) * 1998-11-27 2000-06-16 Calsonic Corp Air conditioner for vehicle
JP2009264699A (en) * 2008-04-28 2009-11-12 Daikin Ind Ltd Heat pump device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167886A (en) * 2009-01-22 2010-08-05 Mitsubishi Motors Corp Cooling system of electric vehicle
JP2011093424A (en) * 2009-10-29 2011-05-12 Hitachi Ltd Cooling system of electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2778576A3 (en) * 2013-03-13 2014-12-03 Christie Digital Systems Canada, Inc. System for cooling electronic components
US10928080B2 (en) 2015-11-09 2021-02-23 Carrier Corporation Climate control outdoor unit with inverter cooling
EP3190282A1 (en) * 2016-01-11 2017-07-12 Liebherr-Aerospace Toulouse SAS Electrical architecture of an aircraft comprising a cooling plate
FR3046598A1 (en) * 2016-01-11 2017-07-14 Liebherr-Aerospace Toulouse Sas ELECTRICAL ARCHITECTURE OF AN AIRCRAFT WITH A COOLING PLATE

Also Published As

Publication number Publication date
JP5842525B2 (en) 2016-01-13
JP2013085415A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
US8703311B2 (en) Vehicle battery cooling device
JP5197713B2 (en) Cooling system
JP7232638B2 (en) Temperature control system for electric vehicles
JP5912689B2 (en) Hybrid electric vehicle cooling system
KR20130107354A (en) Battery module, battery temperature managing system and vehicle comprising the same
JP5817824B2 (en) Vehicle air conditioner
JP7103116B2 (en) Fuel cell system
WO2013111367A1 (en) Fuel cell vehicle
US20190140327A1 (en) Power storage device
JP2015072819A (en) Battery temperature adjustment device
JP2020001609A (en) Vehicle air conditioner
JP5842525B2 (en) Inverter cooling system
WO2013111529A1 (en) Battery temperature adjustment device
WO2019058805A1 (en) Device temperature control device
US20220371402A1 (en) Thermal management system for battery electric vehicle
WO2013005492A1 (en) Air conditioning device for fuel cell vehicle
WO2020059712A1 (en) Vehicular heat exchange system and motor unit used in same
JP2014213667A (en) Chiller
JP2010173445A (en) Cooling system for hybrid vehicle
KR101865947B1 (en) Method and system for integrated hvac of a battery powered vehicle
JP2015116877A (en) Fuel cell vehicle
JP6137452B2 (en) Electric vehicle cooling system
JP2014172432A (en) Compressor
JP2014036530A (en) Refrigerant flow rate control system and air conditioner
JP2012250639A (en) Vehicular air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839240

Country of ref document: EP

Kind code of ref document: A1