JP2014213667A - Chiller - Google Patents

Chiller Download PDF

Info

Publication number
JP2014213667A
JP2014213667A JP2013091145A JP2013091145A JP2014213667A JP 2014213667 A JP2014213667 A JP 2014213667A JP 2013091145 A JP2013091145 A JP 2013091145A JP 2013091145 A JP2013091145 A JP 2013091145A JP 2014213667 A JP2014213667 A JP 2014213667A
Authority
JP
Japan
Prior art keywords
cooling
flow path
heating element
radiator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013091145A
Other languages
Japanese (ja)
Inventor
幸範 村上
Yukinori Murakami
幸範 村上
竜太 石田
Ryuta Ishida
竜太 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013091145A priority Critical patent/JP2014213667A/en
Publication of JP2014213667A publication Critical patent/JP2014213667A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling

Abstract

PROBLEM TO BE SOLVED: To provide a chiller capable of decreasing the frequency of heat exchange between cooling liquid and air-conditioning refrigerant while ensuring cooling performance of a heating element.SOLUTION: Each of flow path switching units 24 and 25 can switch over between a first cooling mode of connecting a heating element-side flow path 12 to a heat exchanger-side flow path 20 and connecting a radiator-side flow path 16 to a circulation flow path 22 and a second cooling mode of connecting the heating element-side flow path 12 to the radiator-side flow path 16. If a temperature T1 of a heating element 10 is equal to or higher than a set temperature, the flow path switching units 24 and 25 select the first cooling mode. If a temperature T2 of cooling water passing through a radiator 14 falls to be equal to or lower than a reference temperature Tref while the first cooling mode is selected, the flow path switching units 24 and 25 switch the first cooling mode to the second cooling mode.

Description

本発明は、冷却液により発熱体の冷却を行う冷却装置に関する。   The present invention relates to a cooling device that cools a heating element with a coolant.

下記特許文献1による冷却装置は、ラジエータと発熱部位が閉回路内に構成されている冷却液循環回路と、空調装置用エバポレータとコンプレッサを有する空調用冷媒循環回路と、冷却液循環回路と空調用冷媒循環回路との間で熱交換を行う熱交換器と、を備える。発熱部位の冷却要求が高い状況になった場合には、空調用冷媒循環回路の空調用冷媒の経路を熱交換器が存在する経路に切り替えることで、発熱部位の冷却性能の確保を図っている。   A cooling device according to Patent Document 1 below includes a radiator, a coolant circulation circuit in which a heat generating part is configured in a closed circuit, an air conditioning refrigerant circulation circuit having an evaporator for an air conditioner and a compressor, a coolant circulation circuit, and an air conditioner. A heat exchanger that exchanges heat with the refrigerant circuit. When the demand for cooling the heat generating part becomes high, the cooling performance of the heat generating part is secured by switching the air conditioning refrigerant path of the air conditioning refrigerant circulation circuit to the path where the heat exchanger exists. .

特開2002−352866号公報JP 2002-352866 A 特開2011−105150号公報JP 2011-105150 A

特許文献1において、発熱部位の冷却要求が高い場合には、常に空調用冷媒循環回路のコンプレッサを作動させて空調用冷媒と冷却液との熱交換を熱交換器で行う必要がある。その結果、空調用冷媒循環回路のコンプレッサの作動による消費電力が増大する。   In Patent Document 1, when the cooling requirement of the heat generating part is high, it is necessary to always operate the compressor of the air-conditioning refrigerant circulation circuit and perform heat exchange between the air-conditioning refrigerant and the coolant with the heat exchanger. As a result, the power consumption due to the operation of the compressor of the air conditioning refrigerant circulation circuit increases.

本発明は、発熱体の冷却を行う冷却液の熱をラジエータまたは空調用冷媒との熱交換によって放出する冷却装置において、発熱体の冷却性能を確保しつつ、冷却液と空調用冷媒との熱交換を行う頻度を減らすことを目的とする。   The present invention relates to a cooling device that releases heat of a cooling liquid for cooling a heating element by heat exchange with a radiator or an air conditioning refrigerant, while ensuring the cooling performance of the heating element, and the heat of the cooling liquid and the air conditioning refrigerant. The purpose is to reduce the frequency of exchanges.

本発明に係る冷却装置は、上述した目的を達成するために以下の手段を採った。   The cooling device according to the present invention employs the following means in order to achieve the above-described object.

本発明に係る冷却装置は、冷却液を流すことで発熱体の冷却を行うための発熱体側経路と、冷却液の熱を放出するためのラジエータと、前記ラジエータを通過させて冷却液を流すためのラジエータ側経路と、冷却液と空調用冷媒との熱交換を行うための熱交換器と、前記熱交換器を通過させて冷却液を流すための熱交換器側経路と、前記発熱体側経路及び前記熱交換器側経路を通過させずに前記ラジエータ側経路を流れる冷却液を循環させるための循環用経路と、前記発熱体側経路を前記熱交換器側経路に接続するとともに前記ラジエータ側経路を前記循環用経路に接続する第1状態と、前記発熱体側経路を前記ラジエータ側経路に接続する第2状態とに切り替え可能な経路切替手段と、を有し、前記経路切替手段は、前記発熱体または前記発熱体の冷却を行う冷却液の温度が設定温度以上である場合は、前記第1状態を選択し、前記第1状態を選択しているときに、前記ラジエータを通過する冷却液の温度が基準温度以下になった場合は、前記第2状態に切り替えることを要旨とする。   The cooling device according to the present invention is configured to flow the cooling liquid through the heating element side path for cooling the heating element by flowing the cooling liquid, the radiator for releasing the heat of the cooling liquid, and the radiator. Radiator side path, a heat exchanger for exchanging heat between the coolant and the air conditioning refrigerant, a heat exchanger side path for allowing the coolant to flow through the heat exchanger, and the heating element side path And a circulation path for circulating the coolant flowing through the radiator side path without passing through the heat exchanger side path, and the heating element side path connected to the heat exchanger side path and the radiator side path Path switching means capable of switching between a first state connected to the circulation path and a second state connecting the heating element side path to the radiator side path, and the path switching means includes the heating element Or said When the temperature of the coolant that cools the heat body is equal to or higher than the set temperature, the first state is selected, and the temperature of the coolant that passes through the radiator is the reference when the first state is selected. The gist is to switch to the second state when the temperature becomes lower than the temperature.

本発明によれば、第1状態の選択時に、ラジエータとラジエータ側経路と循環用経路による閉回路内を循環する冷却水の熱をラジエータで放出して温度低下を促進させることができる。そして、ラジエータを通過する冷却液の温度が基準温度以下になった場合は、第2状態に切り替えることで、発熱体の冷却性能を確保しつつ、冷却液と空調用冷媒との熱交換を行う頻度を減らすことができる。   According to the present invention, at the time of selecting the first state, the heat of the cooling water circulating in the closed circuit by the radiator, the radiator side path, and the circulation path can be released by the radiator to promote the temperature decrease. When the temperature of the coolant passing through the radiator becomes equal to or lower than the reference temperature, the heat is exchanged between the coolant and the air conditioning refrigerant while ensuring the cooling performance of the heating element by switching to the second state. The frequency can be reduced.

本発明の実施形態に係る冷却装置の概略構成を示す図である。It is a figure which shows schematic structure of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の第1冷却モードを示す図である。It is a figure which shows the 1st cooling mode of the cooling device which concerns on embodiment of this invention. 本発明の実施形態に係る冷却装置の第2冷却モードを示す図である。It is a figure which shows the 2nd cooling mode of the cooling device which concerns on embodiment of this invention. 電子制御装置が実行する処理の一例を説明するフローチャートである。It is a flowchart explaining an example of the process which an electronic controller performs. 電子制御装置が実行する処理の他の例を説明するフローチャートである。It is a flowchart explaining the other example of the process which an electronic controller performs.

以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1は、本発明の実施形態に係る冷却装置の概略構成を示す図である。発熱体側流路12にはウォーターポンプ11が設けられており、ウォーターポンプ11を駆動することで、発熱体側流路12に冷却水(冷却液)を流すことが可能である。発熱体側流路12を流れる冷却水によって、冷却対象である発熱体10の冷却を行うことができる。ここでの発熱体10の種類は特に限定されるものではないが、具体例としては、パワー素子を有するハイブリッド車両用パワーコントロールユニット(PCU)や、ハイブリッド車両用バッテリ等が挙げられる。   FIG. 1 is a diagram showing a schematic configuration of a cooling device according to an embodiment of the present invention. A water pump 11 is provided in the heating element side flow path 12, and by driving the water pump 11, it is possible to flow cooling water (cooling liquid) through the heating element side flow path 12. The cooling water flowing through the heating element side flow path 12 can cool the heating element 10 that is a cooling target. Although the kind of heat generating body 10 here is not specifically limited, As a specific example, the power control unit (PCU) for hybrid vehicles which has a power element, the battery for hybrid vehicles, etc. are mentioned.

熱交換器18は、内部を流れる冷却水と空調装置26の冷媒(空調用冷媒)との熱交換を行うことで、冷却水の熱を放出する。熱交換器側流路20は、熱交換器18に対し冷却水の供給及び排出を行い、熱交換器18を通過させて冷却液を流すための流路である。熱交換器18で冷却水と空調用冷媒との熱交換を行う場合は、空調装置26の圧縮機(コンプレッサ)を作動させて空調用冷媒を熱交換器18へ供給する。一方、熱交換器18で冷却水と空調用冷媒との熱交換を行わない場合は、空調装置26の圧縮機を停止させて空調用冷媒を熱交換器18へ供給しない。   The heat exchanger 18 releases heat of the cooling water by exchanging heat between the cooling water flowing inside and the refrigerant of the air conditioner 26 (air conditioning refrigerant). The heat exchanger side flow path 20 is a flow path for supplying and discharging cooling water to and from the heat exchanger 18 and allowing the coolant to flow through the heat exchanger 18. When heat exchange between the cooling water and the air conditioning refrigerant is performed by the heat exchanger 18, the compressor (compressor) of the air conditioner 26 is operated to supply the air conditioning refrigerant to the heat exchanger 18. On the other hand, when the heat exchanger 18 does not perform heat exchange between the cooling water and the air conditioning refrigerant, the compressor of the air conditioner 26 is stopped and the air conditioning refrigerant is not supplied to the heat exchanger 18.

ラジエータ14は、内部を流れる冷却水と外気との熱交換を行うことで、冷却水の熱を外部へ放出する。ラジエータ側流路16は、ラジエータ14に対し冷却水の供給及び排出を行い、ラジエータ14を通過させて冷却液を流すための流路である。ラジエータ側流路16には、冷却水を貯留する冷却水タンク17及びウォーターポンプ15が設けられており、ウォーターポンプ15を駆動することで、冷却水タンク17内の冷却水をラジエータ側流路16へ流すことが可能である。循環用流路22は、発熱体側流路12及び熱交換器側流路20を通過させずにラジエータ側流路16を流れる冷却水を循環させるための流路である。   The radiator 14 releases heat of the cooling water to the outside by performing heat exchange between the cooling water flowing inside and the outside air. The radiator side flow path 16 is a flow path for supplying and discharging cooling water to and from the radiator 14 and allowing the coolant to flow through the radiator 14. The radiator side flow path 16 is provided with a cooling water tank 17 and a water pump 15 for storing cooling water. By driving the water pump 15, the cooling water in the cooling water tank 17 is supplied to the radiator side flow path 16. It is possible to flow to. The circulation flow path 22 is a flow path for circulating the coolant flowing through the radiator side flow path 16 without passing through the heating element side flow path 12 and the heat exchanger side flow path 20.

流路切替装置24,25は、発熱体側流路12を熱交換器側流路20(熱交換器18)に接続するとともにラジエータ側流路16を循環用流路22に接続する第1冷却モード(第1状態)と、発熱体側流路12をラジエータ側流路16に接続する第2冷却モード(第2状態)とに切り替え可能である。流路切替装置24は開閉弁24a,24b,24cを含み、流路切替装置25は開閉弁25a,25b,25cを含む。開閉弁24a,24c,25a,25cを開けるとともに開閉弁24b,25bを閉じることで第1冷却モードが選択される。第1冷却モードにおいては、図2に示すように、発熱体側流路12と熱交換器18との間で冷却水を循環させるための冷却回路が形成されるとともに、ラジエータ14(ラジエータ側流路16)を流れる冷却水を発熱体側流路12及び熱交換器側流路20を通過させずに循環用流路22を通過させて循環させるための閉回路が形成される。一方、開閉弁24b,25bを開けるとともに開閉弁24a,24c,25a,25cを閉じることで第2冷却モードが選択される。第2冷却モードにおいては、図3に示すように、発熱体側流路12とラジエータ14との間で冷却水を循環させるための冷却回路が形成される。第2冷却モードにおいては、熱交換器側流路20と他の流路との接続は断たれ、循環用流路22と他の流路との接続も断たれる。   The flow path switching devices 24 and 25 connect the heating element side flow path 12 to the heat exchanger side flow path 20 (heat exchanger 18) and connect the radiator side flow path 16 to the circulation flow path 22 in the first cooling mode. (First state) and a second cooling mode (second state) in which the heating element side flow path 12 is connected to the radiator side flow path 16 can be switched. The flow path switching device 24 includes open / close valves 24a, 24b, and 24c, and the flow path switching device 25 includes open / close valves 25a, 25b, and 25c. The first cooling mode is selected by opening the on-off valves 24a, 24c, 25a, 25c and closing the on-off valves 24b, 25b. In the first cooling mode, as shown in FIG. 2, a cooling circuit for circulating the cooling water between the heating element side flow path 12 and the heat exchanger 18 is formed, and the radiator 14 (radiator side flow path) is formed. A closed circuit for circulating the cooling water flowing through 16) through the circulation channel 22 without passing through the heating element side channel 12 and the heat exchanger side channel 20 is formed. On the other hand, the second cooling mode is selected by opening the on-off valves 24b and 25b and closing the on-off valves 24a, 24c, 25a and 25c. In the second cooling mode, as shown in FIG. 3, a cooling circuit for circulating the cooling water between the heating element side flow path 12 and the radiator 14 is formed. In the second cooling mode, the connection between the heat exchanger side flow path 20 and the other flow paths is disconnected, and the connection between the circulation flow path 22 and the other flow paths is also disconnected.

流路切替装置24,25により第1冷却モードが選択されている場合は、ウォーターポンプ11を駆動して発熱体側流路12と熱交換器18との間で冷却水を循環させることで、発熱体10の冷却を行うことができる。その場合は、空調装置26の圧縮機を作動させて空調用冷媒を熱交換器18へ供給して冷却水との熱交換を行うことで、発熱体10の冷却を行う冷却水の熱を放出する。さらに、ウォーターポンプ15を駆動することで、冷却水を発熱体側流路12及び熱交換器側流路20を通過させずにラジエータ14と循環用流路22との間で循環させることができ、循環する冷却水の熱をラジエータ14で放出することができる。   When the first cooling mode is selected by the flow path switching devices 24 and 25, the water pump 11 is driven to circulate the cooling water between the heating element side flow path 12 and the heat exchanger 18, thereby generating heat. The body 10 can be cooled. In that case, the heat of the cooling water for cooling the heating element 10 is released by operating the compressor of the air conditioner 26 and supplying the air conditioning refrigerant to the heat exchanger 18 to exchange heat with the cooling water. To do. Furthermore, by driving the water pump 15, the cooling water can be circulated between the radiator 14 and the circulation passage 22 without passing through the heating element side passage 12 and the heat exchanger side passage 20, The heat of the circulating cooling water can be released by the radiator 14.

一方、流路切替装置24,25により第2冷却モードが選択されている場合は、ウォーターポンプ11またはウォーターポンプ15を駆動して発熱体側流路12とラジエータ14との間で冷却水を循環させることで、発熱体10の冷却を行うことができる。その場合は、発熱体10の冷却を行う冷却水の熱はラジエータ14で放出されるため、空調装置26の圧縮機を停止させて空調用冷媒を熱交換器18へ供給しない。   On the other hand, when the second cooling mode is selected by the flow path switching devices 24 and 25, the water pump 11 or the water pump 15 is driven to circulate the cooling water between the heating element side flow path 12 and the radiator 14. Thus, the heating element 10 can be cooled. In that case, since the heat of the cooling water for cooling the heating element 10 is released by the radiator 14, the compressor of the air conditioner 26 is stopped and the air conditioning refrigerant is not supplied to the heat exchanger 18.

温度センサ27は、発熱体10の温度T1を検出する。温度センサ28は、ラジエータ14を通過する冷却水の温度T2を検出する。温度センサ27,28で検出された温度T1,T2は、電子制御装置(ECU)30に入力される。電子制御装置30は、流路切替装置24,25による第1冷却モードと第2冷却モードの切り替え制御を行う。以下、電子制御装置30が実行する処理について、図4のフローチャートを用いて説明する。図4のフローチャートは、所定時間毎に繰り返し実行され、初期状態では、第2冷却モードが選択されているものとする。   The temperature sensor 27 detects the temperature T1 of the heating element 10. The temperature sensor 28 detects the temperature T2 of the cooling water that passes through the radiator 14. The temperatures T1 and T2 detected by the temperature sensors 27 and 28 are input to an electronic control unit (ECU) 30. The electronic control device 30 performs switching control between the first cooling mode and the second cooling mode by the flow path switching devices 24 and 25. Hereinafter, processing executed by the electronic control unit 30 will be described with reference to the flowchart of FIG. The flowchart of FIG. 4 is repeatedly executed every predetermined time, and the second cooling mode is selected in the initial state.

図4のフローチャートでは、ステップS101において、流路切替装置24,25により第2冷却モードが選択されているか否かが判定される。第1冷却モードが選択されている場合(ステップS101の判定結果がNOの場合)は、ステップS102に進み、第2冷却モードが選択されている場合(ステップS101の判定結果がYESの場合)は、ステップS104に進む。   In the flowchart of FIG. 4, in step S <b> 101, it is determined whether or not the second cooling mode is selected by the flow path switching devices 24 and 25. When the first cooling mode is selected (when the determination result of step S101 is NO), the process proceeds to step S102, and when the second cooling mode is selected (when the determination result of step S101 is YES). The process proceeds to step S104.

ステップS102では、温度センサ28で検出された冷却水の温度(ラジエータ14を通過する冷却水の温度)T2が基準温度Tref以下であるか否かが判定される。冷却水温度T2が基準温度Trefよりも高い場合(ステップS102の判定結果がNOの場合)は、ステップS103に進み、冷却水温度T2が基準温度Tref以下である場合(ステップS102の判定結果がYESの場合)は、ステップS106に進む。   In step S102, it is determined whether or not the temperature of the cooling water detected by the temperature sensor 28 (the temperature of the cooling water passing through the radiator 14) T2 is equal to or lower than the reference temperature Tref. When the cooling water temperature T2 is higher than the reference temperature Tref (when the determination result of step S102 is NO), the process proceeds to step S103, and when the cooling water temperature T2 is equal to or lower than the reference temperature Tref (the determination result of step S102 is YES). In the case of (), the process proceeds to step S106.

ステップS103では、温度センサ27で検出された発熱体10の温度T1が設定温度Tset1以上であるか否かが判定される。発熱体10の温度T1が設定温度Tset1以上である場合(ステップS103の判定結果がYESの場合)は、ステップS105に進み、発熱体10の温度T1が設定温度Tset1よりも低い場合(ステップS103の判定結果がNOの場合)は、ステップS106に進む。   In step S103, it is determined whether or not the temperature T1 of the heating element 10 detected by the temperature sensor 27 is equal to or higher than the set temperature Tset1. When the temperature T1 of the heating element 10 is equal to or higher than the set temperature Tset1 (when the determination result of step S103 is YES), the process proceeds to step S105, and when the temperature T1 of the heating element 10 is lower than the set temperature Tset1 (in step S103) If the determination result is NO), the process proceeds to step S106.

ステップS104では、温度センサ27で検出された発熱体10の温度T1が設定温度Tset2以上(Tset2>Tset1、Tset2>Tref)であるか否かが判定される。発熱体10の温度T1が設定温度Tset2以上である場合(ステップS104の判定結果がYESの場合)は、ステップS105に進み、発熱体10の温度T1が設定温度Tset2よりも低い場合(ステップS104の判定結果がNOの場合)は、ステップS106に進む。   In step S104, it is determined whether or not the temperature T1 of the heating element 10 detected by the temperature sensor 27 is equal to or higher than the set temperature Tset2 (Tset2> Tset1, Tset2> Tref). When the temperature T1 of the heating element 10 is equal to or higher than the set temperature Tset2 (when the determination result in step S104 is YES), the process proceeds to step S105, and when the temperature T1 of the heating element 10 is lower than the set temperature Tset2 (in step S104). If the determination result is NO), the process proceeds to step S106.

ステップS105では、流路切替装置24,25により第1冷却モードが選択される。既に第1冷却モードが選択されている場合は、第1冷却モードが維持され、第2冷却モードが選択されている場合は、流路切替装置24,25により第2冷却モードから第1冷却モードに切り替えられる。   In step S105, the first cooling mode is selected by the flow path switching devices 24 and 25. When the first cooling mode is already selected, the first cooling mode is maintained, and when the second cooling mode is selected, the first cooling mode is switched from the second cooling mode by the flow path switching devices 24 and 25. Can be switched to.

ステップS106では、流路切替装置24,25により第2冷却モードが選択される。既に第2冷却モードが選択されている場合は、第2冷却モードが維持され、第1冷却モードが選択されている場合は、流路切替装置24,25により第1冷却モードから第2冷却モードに切り替えられる。   In step S106, the second cooling mode is selected by the flow path switching devices 24, 25. When the second cooling mode is already selected, the second cooling mode is maintained. When the first cooling mode is selected, the flow path switching devices 24 and 25 change the first cooling mode to the second cooling mode. Can be switched to.

なお、ステップS102では、基準温度Trefとして、発熱体10の温度T1、あるいは熱交換器18を通過する冷却水の温度(例えば温度センサにより検出)を用いることも可能である。また、ステップS103,S104では、発熱体10の温度T1に代えて、発熱体10の冷却を行う冷却水の温度(例えば温度センサにより検出)を用いることも可能である。   In step S102, the temperature T1 of the heating element 10 or the temperature of the cooling water passing through the heat exchanger 18 (for example, detected by a temperature sensor) can be used as the reference temperature Tref. In steps S103 and S104, instead of the temperature T1 of the heating element 10, the temperature of the cooling water for cooling the heating element 10 (for example, detected by a temperature sensor) can be used.

図4のフローチャートの処理によれば、発熱体10の温度T1(または発熱体10の冷却を行う冷却水の温度)が設定温度以上である場合は、流路切替装置24,25により第1冷却モードが選択される。第1冷却モードが選択され、発熱体側流路12と熱交換器18間を循環する冷却水によって発熱体10の冷却を行っているときは、ラジエータ14とラジエータ側流路16と循環用流路22による閉回路内で所定量の冷却水を循環させることで、閉回路内の冷却水の熱をラジエータ14で放出して温度低下を促進させることができる。そして、ラジエータ14を通過する冷却水の温度(閉回路内の冷却水の温度)T2が基準温度Tref以下に低下した場合は、流路切替装置24,25により第1冷却モードから第2冷却モードに切り替えることで、発熱体10の冷却性能を確保しつつ、第1冷却モードの選択頻度を減らし、第2冷却モードの選択頻度を増やすことができる。第2冷却モードが選択され、発熱体側流路12とラジエータ14間を循環する冷却水によって発熱体10の冷却を行っているときは、空調装置26の圧縮機を作動させることなく発熱体10の冷却を行うことができる。したがって、空調装置26の圧縮機を停止させる頻度を増やす(熱交換器18で冷却水と空調用冷媒との熱交換を行う頻度を減らす)ことができ、空調装置26の圧縮機の作動による電気消費量を低下させることができる。   According to the process of the flowchart of FIG. 4, when the temperature T1 of the heating element 10 (or the temperature of the cooling water for cooling the heating element 10) is equal to or higher than the set temperature, the first cooling is performed by the flow path switching devices 24 and 25. A mode is selected. When the first cooling mode is selected and the heating element 10 is cooled by the cooling water circulating between the heating element side passage 12 and the heat exchanger 18, the radiator 14, the radiator side passage 16, and the circulation passage By circulating a predetermined amount of cooling water in the closed circuit 22, the heat of the cooling water in the closed circuit can be released by the radiator 14 to promote a temperature drop. And when the temperature of the cooling water passing through the radiator 14 (the temperature of the cooling water in the closed circuit) T2 falls below the reference temperature Tref, the flow path switching devices 24 and 25 change the first cooling mode to the second cooling mode. By switching to, it is possible to reduce the selection frequency of the first cooling mode and increase the selection frequency of the second cooling mode while ensuring the cooling performance of the heating element 10. When the second cooling mode is selected and the heating element 10 is cooled by the cooling water circulating between the heating element side flow path 12 and the radiator 14, the heating element 10 is operated without operating the compressor of the air conditioner 26. Cooling can be performed. Accordingly, the frequency of stopping the compressor of the air conditioner 26 can be increased (the frequency of heat exchange between the cooling water and the air conditioning refrigerant in the heat exchanger 18 can be reduced), and the electricity generated by the operation of the compressor of the air conditioner 26 can be reduced. Consumption can be reduced.

電子制御装置30は、図5のフローチャートの処理に従って、流路切替装置24,25による第1冷却モードと第2冷却モードの切り替え制御を行うことも可能である。図5のフローチャートでは、ステップS201において、ラジエータ14を通過する冷却水の温度T2が読み込まれ、ステップS202において、熱交換器18を通過する冷却水の温度T3(例えば温度センサにより検出)が読み込まれる。ステップS203では、ラジエータ14を通過する冷却水の温度T2が熱交換器18を通過する冷却水の温度T3よりも低いか否かが判定される。T2<T3の場合(ステップS203の判定結果がYESの場合)は、ラジエータ14を通過する冷却水の方が熱交換器18を通過する冷却水よりも冷却性能が高いため、ステップS204において、流路切替装置24,25により第2冷却モードが選択される。一方、T2≧T3の場合(ステップS203の判定結果がNOの場合)は、ステップS205において、第2冷却モード選択後の冷却水温度T2が試算され、ステップS206において、この冷却水温度T2が外気温度Tout(例えば温度センサにより検出)よりも低いか否かが判定される。T2<Toutの場合(ステップS206の判定結果がYESの場合)は、ラジエータ14を通過する冷却水が外気から吸熱して温度上昇するため、ステップS207において、流路切替装置24,25により第1冷却モードが選択される。一方、T2≧Toutの場合(ステップS206の判定結果がNOの場合)は、ステップS208において、第2冷却モード選択後の冷却水温度T2が試算され、ステップS209において、この冷却水温度T2が冷却可能水温Tpよりも低いか否かが判定される。発熱体10がバッテリの場合は、例えばセル温度から冷却可能水温Tpを設定し、発熱体10がパワーコントロールユニットの場合は、冷却可能水温Tpとして例えば絶対値を設定して判定する。T2≧Tpの場合(ステップS209の判定結果がNOの場合)は、第2冷却モードでの冷却性能の確保が困難なため、ステップS210において、流路切替装置24,25により第1冷却モードが選択される。一方、T2<Tp(ステップS209の判定結果がYESの場合)は、ステップS211において、流路切替装置24,25により第2冷却モードが選択される。   The electronic control device 30 can also perform switching control between the first cooling mode and the second cooling mode by the flow path switching devices 24 and 25 according to the processing of the flowchart of FIG. In the flowchart of FIG. 5, in step S201, the temperature T2 of the cooling water passing through the radiator 14 is read, and in step S202, the temperature T3 of the cooling water passing through the heat exchanger 18 (for example, detected by a temperature sensor) is read. . In step S203, it is determined whether or not the temperature T2 of the cooling water passing through the radiator 14 is lower than the temperature T3 of the cooling water passing through the heat exchanger 18. In the case of T2 <T3 (when the determination result in step S203 is YES), the cooling water passing through the radiator 14 has higher cooling performance than the cooling water passing through the heat exchanger 18; The second cooling mode is selected by the path switching devices 24 and 25. On the other hand, when T2 ≧ T3 (when the determination result in step S203 is NO), in step S205, the coolant temperature T2 after the second cooling mode is selected is estimated, and in step S206, the coolant temperature T2 is determined to be outside air. It is determined whether or not the temperature is lower than the temperature Tout (for example, detected by a temperature sensor). When T2 <Tout (when the determination result in step S206 is YES), the cooling water passing through the radiator 14 absorbs heat from the outside air and rises in temperature, so in step S207, the flow path switching devices 24 and 25 perform the first operation. A cooling mode is selected. On the other hand, when T2 ≧ Tout (when the determination result of step S206 is NO), in step S208, the coolant temperature T2 after the second cooling mode is selected is estimated, and in step S209, the coolant temperature T2 is cooled. It is determined whether or not it is lower than the possible water temperature Tp. When the heating element 10 is a battery, for example, the coolable water temperature Tp is set from the cell temperature, and when the heating element 10 is a power control unit, for example, an absolute value is set as the coolingable water temperature Tp for determination. When T2 ≧ Tp (when the determination result of step S209 is NO), it is difficult to ensure the cooling performance in the second cooling mode. Therefore, in step S210, the first cooling mode is set by the flow path switching devices 24 and 25. Selected. On the other hand, when T2 <Tp (when the determination result of step S209 is YES), the second cooling mode is selected by the flow path switching devices 24 and 25 in step S211.

図5のフローチャートの処理によっても、第1冷却モードの選択時に、ラジエータ14とラジエータ側流路16と循環用流路22による閉回路内で所定量の冷却水を循環させることで、閉回路内の冷却水の熱をラジエータ14で放出して温度低下を促進させることができ、第1冷却モードの選択頻度を減らすことができる。その結果、空調装置26の圧縮機を停止させる頻度を増やすことができる。   Even in the process of the flowchart of FIG. 5, when the first cooling mode is selected, a predetermined amount of cooling water is circulated in the closed circuit by the radiator 14, the radiator-side flow path 16, and the circulation flow path 22. The cooling water can be released by the radiator 14 to promote a temperature drop, and the frequency of selecting the first cooling mode can be reduced. As a result, the frequency of stopping the compressor of the air conditioner 26 can be increased.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

10 発熱体、11,15 ウォーターポンプ、12 発熱体側流路、14 ラジエータ、16 ラジエータ側流路、17 冷却水タンク、18 熱交換器、20 熱交換器側流路、22 循環用流路、24,25 流路切替装置、24a,24b,24c,25a,25b,25c 開閉弁、26 空調装置、27,28 温度センサ、30 電子制御装置。   DESCRIPTION OF SYMBOLS 10 Heating body, 11, 15 Water pump, 12 Heating body side flow path, 14 Radiator, 16 Radiator side flow path, 17 Cooling water tank, 18 Heat exchanger, 20 Heat exchanger side flow path, 22 Circulation flow path, 24 , 25 Channel switching device, 24a, 24b, 24c, 25a, 25b, 25c On-off valve, 26 Air conditioning device, 27, 28 Temperature sensor, 30 Electronic control device.

Claims (1)

冷却液を流すことで発熱体の冷却を行うための発熱体側経路と、
冷却液の熱を放出するためのラジエータと、
前記ラジエータを通過させて冷却液を流すためのラジエータ側経路と、
冷却液と空調用冷媒との熱交換を行うための熱交換器と、
前記熱交換器を通過させて冷却液を流すための熱交換器側経路と、
前記発熱体側経路及び前記熱交換器側経路を通過させずに前記ラジエータ側経路を流れる冷却液を循環させるための循環用経路と、
前記発熱体側経路を前記熱交換器側経路に接続するとともに前記ラジエータ側経路を前記循環用経路に接続する第1状態と、前記発熱体側経路を前記ラジエータ側経路に接続する第2状態とに切り替え可能な経路切替手段と、
を有し、
前記経路切替手段は、
前記発熱体または前記発熱体の冷却を行う冷却液の温度が設定温度以上である場合は、前記第1状態を選択し、
前記第1状態を選択しているときに、前記ラジエータを通過する冷却液の温度が基準温度以下になった場合は、前記第2状態に切り替える、冷却装置。
A heating element side path for cooling the heating element by flowing a cooling liquid;
A radiator for releasing the heat of the coolant,
A radiator side path for allowing the coolant to flow through the radiator;
A heat exchanger for performing heat exchange between the coolant and the air conditioning refrigerant;
A heat exchanger side path for flowing coolant through the heat exchanger;
A circulation path for circulating the coolant flowing through the radiator side path without passing through the heating element side path and the heat exchanger side path;
Switch between a first state in which the heating element side path is connected to the heat exchanger side path and the radiator side path is connected to the circulation path, and a second state in which the heating element side path is connected to the radiator side path. Possible route switching means;
Have
The route switching means is
When the temperature of the heating element or the cooling liquid for cooling the heating element is equal to or higher than a set temperature, the first state is selected,
A cooling device that switches to the second state when the temperature of the coolant that passes through the radiator becomes a reference temperature or lower when the first state is selected.
JP2013091145A 2013-04-24 2013-04-24 Chiller Withdrawn JP2014213667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013091145A JP2014213667A (en) 2013-04-24 2013-04-24 Chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013091145A JP2014213667A (en) 2013-04-24 2013-04-24 Chiller

Publications (1)

Publication Number Publication Date
JP2014213667A true JP2014213667A (en) 2014-11-17

Family

ID=51939870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013091145A Withdrawn JP2014213667A (en) 2013-04-24 2013-04-24 Chiller

Country Status (1)

Country Link
JP (1) JP2014213667A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170013700A (en) * 2015-07-28 2017-02-07 한온시스템 주식회사 device for cooling and heating of battery for a vehicle
WO2017043319A1 (en) * 2015-09-10 2017-03-16 株式会社デンソー Vehicular heat management system
JP2017052505A (en) * 2015-09-10 2017-03-16 株式会社デンソー Vehicle thermal management device
CN106553498A (en) * 2016-11-23 2017-04-05 成都雅骏新能源汽车科技股份有限公司 A kind of pure electric automobile heating system
CN109318700A (en) * 2017-08-01 2019-02-12 通用汽车环球科技运作有限责任公司 Joint active thermal management system and control logic for hybrid vehicle and electric vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170013700A (en) * 2015-07-28 2017-02-07 한온시스템 주식회사 device for cooling and heating of battery for a vehicle
KR102361189B1 (en) * 2015-07-28 2022-02-11 한온시스템 주식회사 device for cooling and heating of battery for a vehicle
WO2017043319A1 (en) * 2015-09-10 2017-03-16 株式会社デンソー Vehicular heat management system
JP2017052505A (en) * 2015-09-10 2017-03-16 株式会社デンソー Vehicle thermal management device
CN106553498A (en) * 2016-11-23 2017-04-05 成都雅骏新能源汽车科技股份有限公司 A kind of pure electric automobile heating system
CN106553498B (en) * 2016-11-23 2018-12-07 成都雅骏汽车制造有限公司 A kind of pure electric automobile heating system
CN109318700A (en) * 2017-08-01 2019-02-12 通用汽车环球科技运作有限责任公司 Joint active thermal management system and control logic for hybrid vehicle and electric vehicle
CN109318700B (en) * 2017-08-01 2021-08-31 通用汽车环球科技运作有限责任公司 Combined active thermal management system and control logic for hybrid and electric vehicles

Similar Documents

Publication Publication Date Title
JP6916600B2 (en) Vehicle battery cooling system
JP7262887B2 (en) VEHICLE HEAT MANAGEMENT SYSTEM AND CONTROL METHOD THEREOF, VEHICLE
JP7185469B2 (en) vehicle thermal management system
US8677772B2 (en) Air conditioning system for a vehicle
CN111315609A (en) Cooling system for a motor vehicle and motor vehicle having such a cooling system
JP4891584B2 (en) Automotive heat exchanger
JP4233529B2 (en) Vehicle cooling device
JP2019119437A (en) Vehicular cooling system
JP6271222B2 (en) Vehicle refrigerant circulation device and vehicle air conditioner
JP2008094207A5 (en)
JP6108322B2 (en) Air conditioner for vehicles
JP2014213667A (en) Chiller
WO2013137119A1 (en) Device for cooling hybrid electric automobile
JP6387532B2 (en) Air conditioner for vehicle and component unit thereof
CN109383221A (en) The HVAC system of vehicle
US11318814B2 (en) Cooling apparatus
WO2019058805A1 (en) Device temperature control device
JP2015161465A (en) CO2 water heater
JP2012081932A (en) Driving-battery temperature adjustment system
WO2015008463A1 (en) Vehicle air conditioner and constituent unit thereof
JP2012096589A (en) Vehicle thermal control system
CN109713333B (en) Fuel cell heat dissipation system and heat dissipation control method
JP5842525B2 (en) Inverter cooling system
KR20220166932A (en) A cooling system for vehicle
JP6117664B2 (en) Temperature control device and temperature control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150423

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20151102