JP4233529B2 - Vehicle cooling device - Google Patents

Vehicle cooling device Download PDF

Info

Publication number
JP4233529B2
JP4233529B2 JP2005014661A JP2005014661A JP4233529B2 JP 4233529 B2 JP4233529 B2 JP 4233529B2 JP 2005014661 A JP2005014661 A JP 2005014661A JP 2005014661 A JP2005014661 A JP 2005014661A JP 4233529 B2 JP4233529 B2 JP 4233529B2
Authority
JP
Japan
Prior art keywords
cooling
cooler
air
water
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005014661A
Other languages
Japanese (ja)
Other versions
JP2006199206A (en
Inventor
一博 出居
一恵 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2005014661A priority Critical patent/JP4233529B2/en
Publication of JP2006199206A publication Critical patent/JP2006199206A/en
Application granted granted Critical
Publication of JP4233529B2 publication Critical patent/JP4233529B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0452Combination of units extending one behind the other with units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0234Header boxes; End plates having a second heat exchanger disposed there within, e.g. oil cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、車両の冷却装置に関し、詳しくは、駆動源としてエンジンと電動機とを搭載したハイブリッド自動車の冷却装置に関する。   The present invention relates to a vehicle cooling device, and more particularly to a hybrid vehicle cooling device in which an engine and an electric motor are mounted as drive sources.

従来、駆動源としてエンジンと電動機とを搭載したハイブリッド自動車には、エンジン用の冷却水(以下、エンジン冷却水)を冷却するためのエンジン冷却器や、エアコンなどの空調用の冷媒(空調用冷媒)を冷却するための凝縮器、さらには電動機などの電気部品用の冷却水(電気系冷却水)を冷却するための電気系冷却器が搭載されている。   Conventionally, a hybrid vehicle equipped with an engine and an electric motor as a drive source includes an engine cooler for cooling engine cooling water (hereinafter referred to as engine cooling water) and a refrigerant for air conditioning such as an air conditioner (air conditioning refrigerant). ), And further, an electric system cooler for cooling cooling water for electric parts such as an electric motor (electric system cooling water).

このようなハイブリッド車の冷却系に関する従来技術としては、エンジン冷却系とモータ冷却系のそれぞれの冷却水経路を形成し、これらの経路を使用条件などによりバイパス経路で連通させるようにしたものが知られている(特許文献1参照)。
特許第3292080号公報
As a conventional technology related to such a hybrid vehicle cooling system, there is known a cooling water path for each of an engine cooling system and a motor cooling system, and these paths communicate with each other by a bypass path depending on use conditions. (See Patent Document 1).
Japanese Patent No. 3292080

上記のようなハイブリッド車においては、熱交換器であるエンジン冷却器、凝縮器および電気系冷却器を、冷却風の流れ方向に対して順に配置する構造が用いられている。しかしながら、エンジン冷却器、凝縮器および電気系冷却器を冷却風に対して一列に並べた構造では、エンジンルーム内における熱交換器の容積(集合配置した状態での容積)が大きくなってしまう。このように、エンジンルーム内における熱交換器の容積が大きくなると、車両の前方部分を短くしたいというようなデザイン的な要求に応えることが難しく、またエンジンルーム内に乗員や歩行者保護のためのクラッシャブルゾーンを確保することが難しくなり、さらには車両の小型化や軽量化も難しくなる。   In the hybrid vehicle as described above, a structure in which an engine cooler, a condenser, and an electric system cooler, which are heat exchangers, are arranged in order with respect to the flow direction of the cooling air is used. However, in the structure in which the engine cooler, the condenser, and the electric system cooler are arranged in a line with respect to the cooling air, the volume of the heat exchanger in the engine room (the volume in a collective arrangement state) becomes large. As described above, when the volume of the heat exchanger in the engine room increases, it is difficult to meet the design requirements such as shortening the front portion of the vehicle, and for protecting passengers and pedestrians in the engine room. It becomes difficult to secure a crushable zone, and it is also difficult to reduce the size and weight of the vehicle.

一方、通常(運転)状態では、電気系冷却器を流れる電気系冷却水の温度は約60℃であり、凝縮器を流れる空調用冷媒の温度は約80℃であるため、電気系冷却器を通過した冷却風により凝縮器の空調用冷媒を冷却することができる。しかしながら、空調用の冷媒サイクルが低負荷のときには両者の温度差がほとんどなく、本来の熱交換能力は発揮できなくなるにもかかわらず、この状態でも空調用冷媒を循環させるコンプレッサは通常状態と同じ仕事量で駆動されるため、動力損失が大きなものとなっていた。   On the other hand, in the normal (driving) state, the temperature of the electric system cooling water flowing through the electric system cooler is about 60 ° C., and the temperature of the air-conditioning refrigerant flowing through the condenser is about 80 ° C. The air conditioning refrigerant of the condenser can be cooled by the passing cooling air. However, when the refrigerant cycle for air conditioning has a low load, there is almost no temperature difference between them, and even though the original heat exchange capability cannot be achieved, the compressor that circulates the air conditioning refrigerant in this state does the same job as the normal state. Since it is driven by the amount, the power loss is large.

この発明の目的は、エンジンルーム内における熱交換器の容積を小さくすることができる車両の冷却装置を提供することにある。   An object of the present invention is to provide a vehicle cooling device capable of reducing the volume of a heat exchanger in an engine room.

また、上記目的に加えて、低負荷時の動力損失を低減することができる車両の冷却装置を提供することにある。   Moreover, in addition to the said objective, it is providing the cooling device of the vehicle which can reduce the power loss at the time of low load.

上記目的を達成するため、請求項1の発明は、走行用の駆動源として、少なくともエンジンと電動機とを備えた車両の冷却装置であって、前記エンジン用のエンジン冷却水と冷却風との間で熱交換させるエンジン冷却器と、前記電動機用の電気系冷却水と冷却風との間で熱交換させる電気系冷却器と、前記エンジン冷却器の前面に配置されて空調用の冷却媒体と冷却風との間で熱交換させる空冷冷却器および前記冷却媒体と低温流体との間で熱交換させる水冷冷却器からなる空調系冷却器とを備え、前記電気系冷却器で冷却風と熱交換した電気系冷却水を、前記空調用の冷却媒体との間で熱交換させる低温流体として前記水冷冷却器に供給することを特徴とする。   In order to achieve the above object, a first aspect of the present invention is a vehicle cooling apparatus including at least an engine and an electric motor as a driving source for traveling, and is provided between the engine cooling water and the cooling air for the engine. An engine cooler for exchanging heat, an electric cooler for exchanging heat between the electric cooling water and cooling air for the electric motor, and a cooling medium and cooling for air conditioning disposed in front of the engine cooler An air-cooled cooler that exchanges heat with the wind, and an air-conditioning system cooler that consists of a water-cooled cooler that exchanges heat between the cooling medium and the low-temperature fluid. The electrical cooling water is supplied to the water-cooled cooler as a low-temperature fluid that exchanges heat with the cooling medium for air conditioning.

請求項2の発明は、請求項1において、前記電気系冷却器の内部に前記水冷冷却器を設け、前記電気系冷却器で冷却風と熱交換した電気系冷却水を、前記空調用の冷却媒体との間で熱交換させる低温流体として前記水冷冷却器に供給することを特徴とする。   The invention of claim 2 provides the cooling for air conditioning according to claim 1, wherein the water cooling cooler is provided inside the electric system cooler, and the electric cooling water heat-exchanged with the cooling air by the electric system cooler is used. The water-cooled cooler is supplied as a low-temperature fluid to exchange heat with the medium.

請求項3の発明は、請求項1または2のいずれか一項において、前記電気系冷却器は、前記電気系冷却水と冷却風との間で熱交換するラジエータ部と、このラジエータ部の冷却水入口側と冷却水出口側にそれぞれ配置されたタンク部とを備え、前記冷却水出口側に配置されたタンク部内に前記水冷冷却器を設け、前記電気系冷却器で冷却風と熱交換した電気系冷却水を前記空調用の冷却媒体との間で熱交換させる低温流体として前記水冷冷却器に供給することを特徴とする。   A third aspect of the present invention provides the electronic system cooler according to any one of the first and second aspects, wherein the electric system cooler includes a radiator section that exchanges heat between the electric system cooling water and cooling air, and cooling of the radiator section. A tank unit disposed on each of the water inlet side and the cooling water outlet side, the water cooling cooler is provided in the tank unit disposed on the cooling water outlet side, and heat is exchanged with the cooling air by the electric system cooler. Electric cooling water is supplied to the water-cooled cooler as a low-temperature fluid that exchanges heat with the cooling medium for air conditioning.

請求項4の発明は、請求項1ないし3のいずれか一項において、前記エンジン冷却器と前記空冷冷却器器とを一体化したことを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the engine cooler and the air-cooled cooler are integrated.

請求項5の発明は、請求項1ないし3のいずれか一項において、前記エンジン冷却器と前記電気系冷却器とを一体化したことを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to third aspects, the engine cooler and the electric system cooler are integrated.

請求項6の発明は、請求項1ないし5のいずれか一項において、前記冷却媒体を前記水冷冷却器から前記空冷冷却器に流通させる流路と、前記冷却媒体を前記水冷冷却器をバイパスして前記空冷冷却器に流通させる流路と、前記冷却媒体の流路をいずれか一方に切り換える流路切り換え手段と、前記電気系冷却水の温度が所定値未満、且つ前記空調用の冷却媒体の温度未満のときは、前記流路切り換え手段により前記冷却媒体を前記水冷冷却器から前記空冷冷却器に流通させる流路に切り換え、前記電気系冷却水の温度が所定値以上、または前記空調用の冷却媒体の温度以上のときには、前記流路切り換え手段により前記冷却媒体を前記水冷冷却器をバイパスして前記空冷冷却器に流通させる流路に切り換える制御手段とを備えることを特徴とする。   A sixth aspect of the present invention relates to any one of the first to fifth aspects, wherein the cooling medium flows from the water-cooled cooler to the air-cooled cooler, and the cooling medium bypasses the water-cooled cooler. And a flow path switching means for switching the flow path of the cooling medium to one of the flow path of the cooling medium, the temperature of the electric cooling water is less than a predetermined value, and the cooling medium for the air conditioning. When the temperature is lower than the temperature, the flow switching means switches the flow of the cooling medium from the water-cooled cooler to the air-cooled cooler, and the temperature of the electric cooling water is equal to or higher than a predetermined value, or for the air conditioning. Control means for switching the cooling medium to a flow path that bypasses the water-cooled cooler and flows to the air-cooled cooler when the temperature is equal to or higher than the temperature of the cooling medium. To.

請求項1の発明では、空調用冷却器の一部を水冷冷却器で構成し、電気系冷却器で冷却風と熱交換した電気系冷却水を水冷凝縮器へ供給するようにしたので、空冷冷却器の大きさを水冷冷却器の熱交換能力を補う程度の大きさにすることができ、通常状態において必要とされる熱交換能力を低下させることなしに空冷冷却器の容積を小型化することができる。これに加えて、水冷冷却器をエンジン冷却器や電気系冷却器とともに冷却風の流れ方向に重ねて配置する必要がないため、エンジンルーム内における熱交換器の容積を小さくすることができる。   In the first aspect of the invention, a part of the air conditioner cooler is constituted by a water-cooled cooler, and the electric cooling water exchanged with the cooling air by the electric cooler is supplied to the water-cooled condenser. The size of the cooler can be made large enough to supplement the heat exchange capacity of the water-cooled cooler, reducing the volume of the air-cooled cooler without reducing the heat exchange capacity required in normal conditions be able to. In addition, it is not necessary to arrange the water-cooled cooler together with the engine cooler and the electric system cooler in the flow direction of the cooling air, so that the volume of the heat exchanger in the engine room can be reduced.

このように、エンジンルーム内における熱交換器の容積を小さくすることができるため、車両のデザイン的な要求や歩行者保護対策にも容易に対応することが可能となる。しかも、空冷冷却器のサイズ、重量を従来構成よりも小さくすることができるため、これに水冷冷却器を加えた構成としても、車両の小型化や軽量化を図ることができる。   Thus, since the volume of the heat exchanger in the engine room can be reduced, it is possible to easily meet vehicle design requirements and pedestrian protection measures. In addition, since the size and weight of the air-cooled cooler can be made smaller than those of the conventional configuration, the vehicle can be reduced in size and weight even with a configuration in which a water-cooled cooler is added thereto.

請求項2の発明によれば、電気系冷却器の内部に水冷冷却器を配置し、電気系冷却器で冷却風と熱交換した低温の電気系冷却水を水冷冷却器に供給するようにしたので、エンジン冷却水に比べて低温な電気系冷却水により空調用冷媒を効率良く冷却することができる。   According to the second aspect of the present invention, a water-cooled cooler is arranged inside the electric system cooler, and low-temperature electric system cooling water heat-exchanged with the cooling air by the electric system cooler is supplied to the water-cooled cooler. Therefore, the air-conditioning refrigerant can be efficiently cooled by the electric cooling water having a temperature lower than that of the engine cooling water.

請求項3の発明によれば、エンジンルーム内に水冷冷却器の設置場所を確保したり、電気系冷却器と水冷冷却器との間を接続する配管や継ぎ手などが不要となるため、エンジンルーム内のスペースをより有効に利用することができる。加えて、エンジンルーム内のレイアウトが異なる車種にも設計変更なしに適用可能となり、さらには、外部からの加重や衝撃に対して水冷冷却器を保護することができる。   According to the invention of claim 3, the installation space for the water-cooled cooler is secured in the engine room, and pipes and joints for connecting between the electric system cooler and the water-cooled cooler become unnecessary. The space inside can be used more effectively. In addition, it can be applied to a vehicle type having a different layout in the engine room without any design change, and further, the water-cooled cooler can be protected against external load and impact.

請求項4の発明によれば、エンジン冷却器と空冷冷却器とを一体化したことにより、エンジン冷却器と空冷冷却器とを別体構造としたものと比べて熱交換器の容積を小さくすることができ、各熱交換器の冷却性能を向上させることができる。また、車両への組み付け工数を削減することができる。   According to the invention of claim 4, by integrating the engine cooler and the air-cooled cooler, the volume of the heat exchanger is reduced as compared with a structure in which the engine cooler and the air-cooled cooler are separated. The cooling performance of each heat exchanger can be improved. Further, the number of assembling steps for the vehicle can be reduced.

請求項5の発明によれば、エンジン冷却器と電気系冷却器とを一体化したことにより、エンジン冷却器と電気系冷却器とを別体構造としたものと比べて熱交換器の容積を小さくすることができ、また車両への組み付け工数を削減することができる。   According to the invention of claim 5, by integrating the engine cooler and the electric system cooler, the volume of the heat exchanger can be reduced as compared with the engine cooler and the electric system cooler separated from each other. It can be made smaller and the number of assembly steps to the vehicle can be reduced.

請求項6の発明によれば、空調用の冷媒サイクルが低負荷のときには、空調用冷媒と電気系冷却水との温度差がないため、水冷冷却器をバイパスすることによってコンプレッサの無駄な動力損失を低減させることができる。また、負荷の増大などにより電気系冷却水の温度が上昇したときには、水冷冷却器をバイパスすることによって電気系冷却水が水冷冷却器で吸熱するのを抑えることができる。この場合、エアコンの冷却性能は低下するが、電動機などの電気部品用を優先して冷却することができるため、走行時に必要な車両の走行性能を維持することができる。   According to the sixth aspect of the present invention, when the refrigerant cycle for air conditioning has a low load, there is no temperature difference between the air conditioning refrigerant and the electric cooling water, so that the wasteful power loss of the compressor is avoided by bypassing the water cooling cooler. Can be reduced. Further, when the temperature of the electric cooling water rises due to an increase in load or the like, the electric cooling water can be prevented from absorbing heat by the water cooling cooler by bypassing the water cooling cooler. In this case, although the cooling performance of the air conditioner is reduced, it is possible to preferentially cool an electric component such as an electric motor, so that the traveling performance of the vehicle necessary for traveling can be maintained.

以下、本発明に係わる車両の冷却装置の実施例について説明する。なお、本実施例に示す冷却装置は、走行用の駆動源としてエンジンと電動機とを備えたハイブリッド自動車に搭載されるものである。また、各図に示す矢印(実線、破線など)は、冷却水や冷媒を流通させるための配管と、その流れ方向を模式的に示したものである。   Embodiments of a vehicle cooling apparatus according to the present invention will be described below. The cooling device shown in the present embodiment is mounted on a hybrid vehicle including an engine and an electric motor as a driving source for traveling. Moreover, the arrows (solid line, broken line, etc.) shown in each figure schematically show piping for circulating cooling water and refrigerant and the flow direction thereof.

図1は実施例1に係わる冷却装置の全体構成を示す斜視図、図2は制御系のシステム構成を示すブロック図である。   FIG. 1 is a perspective view showing the overall configuration of the cooling device according to the first embodiment, and FIG. 2 is a block diagram showing the system configuration of the control system.

本実施例に係わる冷却装置10は、図1に示すように、エンジン冷却器11と、電気系冷却器12と、空冷凝縮器13および水冷凝縮器14とを備えて構成されている。   As shown in FIG. 1, the cooling device 10 according to the present embodiment includes an engine cooler 11, an electric system cooler 12, an air-cooled condenser 13, and a water-cooled condenser 14.

エンジン冷却器11は、エンジン冷却水101と冷却風100との間で熱交換させてエンジン冷却水101を冷却する熱交換器である。このエンジン冷却器11は、エンジン冷却水101と冷却風100との間で熱交換させるラジエータ部と、このラジエータ部の冷却水入口側と冷却水出口側にそれぞれ配置されたタンク部とを備えている(符号を省略)。   The engine cooler 11 is a heat exchanger that cools the engine cooling water 101 by exchanging heat between the engine cooling water 101 and the cooling air 100. The engine cooler 11 includes a radiator section that exchanges heat between the engine cooling water 101 and the cooling air 100, and tank sections respectively disposed on the cooling water inlet side and the cooling water outlet side of the radiator section. (The symbol is omitted).

電気系冷却器12は、図示しない電動機、インバータ、コンバータなどの電気部品を冷却する電気系冷却水102と冷却風100との間で熱交換させて電気系冷却水102を冷却する熱交換器である。この電気系冷却器12は、電気系冷却水102と冷却風100との間で熱交換させるラジエータ部12aと、このラジエータ部12aの冷却水入口側と冷却水出口側にそれぞれ配置されたタンク部12b,12cとを備えている。   The electric system cooler 12 is a heat exchanger that cools the electric system cooling water 102 by exchanging heat between the electric system cooling water 102 that cools electric components such as an electric motor, an inverter, and a converter (not shown) and the cooling air 100. is there. The electric system cooler 12 includes a radiator section 12a that exchanges heat between the electric system cooling water 102 and the cooling air 100, and tank sections that are arranged on the cooling water inlet side and the cooling water outlet side of the radiator section 12a, respectively. 12b, 12c.

本実施例において、電気系冷却器12とエンジン冷却器11は鉛直方向に積層配置されており、それぞれ別系統の流路からエンジン冷却水101、電気系冷却水102が供給されている。   In this embodiment, the electric system cooler 12 and the engine cooler 11 are stacked in the vertical direction, and the engine cooling water 101 and the electric system cooling water 102 are supplied from the flow paths of different systems, respectively.

空冷凝縮器(空冷冷却器)13および水冷凝縮器(水冷冷却器)14は、図示しないエアコンの空調用冷媒103を冷却するための空調用冷却器である。   An air-cooled condenser (air-cooled cooler) 13 and a water-cooled condenser (water-cooled cooler) 14 are air conditioner coolers for cooling an air conditioner refrigerant 103 of an air conditioner (not shown).

空冷凝縮器13は、空調用冷媒103と冷却風100との間で熱交換させる熱交換器コア部13aと、この熱交換器コア部13aの冷媒入口側と冷媒出口側にそれぞれ配置されたタンク部13b,13cとを備えている。この空冷凝縮器13は、冷却風100の流れ方向から見てエンジン冷却器11の前面に配置されている。   The air-cooled condenser 13 includes a heat exchanger core portion 13a that exchanges heat between the air-conditioning refrigerant 103 and the cooling air 100, and tanks disposed on the refrigerant inlet side and the refrigerant outlet side of the heat exchanger core portion 13a, respectively. Parts 13b and 13c. The air-cooled condenser 13 is disposed in front of the engine cooler 11 when viewed from the flow direction of the cooling air 100.

水冷凝縮器14は、内部に形成された複数の異なる流路に空調用冷媒103と電気系冷却水102とをそれぞれ流通させて熱交換させることにより、空調用冷媒103を冷却する積層型の熱交換器である。   The water-cooled condenser 14 circulates the air-conditioning refrigerant 103 and the electric cooling water 102 through a plurality of different flow paths formed therein to perform heat exchange, thereby cooling the air-conditioning refrigerant 103. It is an exchanger.

上記空冷凝縮器13と水冷凝縮器14とを結ぶ流路には、制御バルブ(流路切り換え手段)15が接続されている。この制御バルブ15は、図2に示すように、コントローラ16からの切り換え信号によって、空調用冷媒103を水冷凝縮器14から空冷凝縮器13に流通させる流路、または空調用冷媒103を水冷凝縮器14をバイパスして空冷凝縮器13に流通させる流路のいずれか一方に切り換えている。   A control valve (flow path switching means) 15 is connected to the flow path connecting the air-cooled condenser 13 and the water-cooled condenser 14. As shown in FIG. 2, this control valve 15 is a flow path for circulating the air-conditioning refrigerant 103 from the water-cooled condenser 14 to the air-cooled condenser 13 in accordance with a switching signal from the controller 16. 14 is switched to either one of the flow paths that bypass the air-cooled condenser 13 and bypass it.

コントローラ(制御手段)16は、冷却系システムの制御に必要な各種演算処理を実行するマイクロコンピュータ(図示しないCPU、メモリ、タイマ、入出力インターフェースなど)で構成されている。そして、図2に示すように、電気系冷却器12に設けられた温度センサ17で検出された冷却水温度、および空冷凝縮器13に設けられた温度センサ18で検出された冷媒温度を入力するとともに、これらの検出値をもとにしてマイクロコンピュータが制御プログラムに従って演算処理を実行し、空調用冷媒103の流路を切り換えるための切り換え信号を制御バルブ15に出力している。   The controller (control means) 16 is constituted by a microcomputer (a CPU, a memory, a timer, an input / output interface, etc., not shown) that executes various arithmetic processes necessary for controlling the cooling system. Then, as shown in FIG. 2, the coolant temperature detected by the temperature sensor 17 provided in the electric system cooler 12 and the refrigerant temperature detected by the temperature sensor 18 provided in the air-cooled condenser 13 are input. At the same time, the microcomputer executes arithmetic processing according to the control program based on these detected values, and outputs a switching signal for switching the flow path of the air-conditioning refrigerant 103 to the control valve 15.

本実施例におけるコントローラ16では、温度センサ17で検出された電気系冷却水102の温度が65℃未満で、且つ空調用冷媒103の温度未満のときは、空調用冷媒103を水冷凝縮器14から空冷凝縮器13に流通させる流路(以下、適宜に流路A)に切り換えるための切り換え信号を制御バルブ15に出力する処理を実行し、また電気系冷却水102の温度が65℃以上、または空調用冷媒103の温度以上のときには、空調用冷媒103を水冷凝縮器14をバイパスして空冷凝縮器13に流通させる流路(以下、適宜に流路B)に切り換えるための切り換え信号を制御バルブ15に出力する処理を実行している。   In the controller 16 in the present embodiment, when the temperature of the electric cooling water 102 detected by the temperature sensor 17 is less than 65 ° C. and less than the temperature of the air-conditioning refrigerant 103, the air-conditioning refrigerant 103 is removed from the water-cooled condenser 14. A process of outputting a switching signal for switching to a flow path (hereinafter referred to as flow path A as appropriate) to flow through the air-cooled condenser 13 to the control valve 15 is performed, and the temperature of the electric cooling water 102 is 65 ° C. or higher, or When the temperature of the air-conditioning refrigerant 103 is equal to or higher than the temperature, the control signal is switched to a switching signal for switching the air-conditioning refrigerant 103 to a flow path (hereinafter referred to as flow path B as appropriate) that bypasses the water-cooled condenser 14 and flows to the air-cooled condenser 13. 15 is executed.

なお、流路の切り換えを判断する際の基準となる電気系冷却水102の温度、空調用冷媒103の温度は本実施例の数値例に限らず適宜に設定可能であり、所定の温度範囲をもたせるようにしてもよい。   Note that the temperature of the electric cooling water 102 and the temperature of the air conditioning refrigerant 103, which serve as a reference when determining the switching of the flow path, are not limited to the numerical examples of the present embodiment, and can be set as appropriate. You may make it give.

次に、コントローラ16による流路切り換えの制御手順を図3のフローチャートを参照しながら説明する。   Next, the flow path switching control procedure by the controller 16 will be described with reference to the flowchart of FIG.

コントローラ16は、電気系冷却器12の温度センサ17で検出された電気系冷却水102の温度Trが65℃未満かどうかを判断する(ステップS101)。ここで電気系冷却水102の温度Trが65℃以下であれば(ステップS101:NO)、続いて電気系冷却水102の温度Trが空調用冷媒103の温度Tc未満かどうかを判断する(ステップS102)。ここで、電気系冷却水102の温度Trが空調用冷媒103の温度Tc未満であれば通常状態と判断し(ステップS102:NO)、空調用冷媒103を水冷凝縮器14から空冷凝縮器13に流通させる流路Aに切り換えるための切り換え信号を制御バルブ15に出力する(ステップS103)。   The controller 16 determines whether or not the temperature Tr of the electrical cooling water 102 detected by the temperature sensor 17 of the electrical cooler 12 is less than 65 ° C. (Step S101). If the temperature Tr of the electric cooling water 102 is 65 ° C. or lower (step S101: NO), it is subsequently determined whether or not the temperature Tr of the electric cooling water 102 is lower than the temperature Tc of the air-conditioning refrigerant 103 (step S101). S102). Here, if the temperature Tr of the electric cooling water 102 is lower than the temperature Tc of the air-conditioning refrigerant 103, it is determined as a normal state (step S102: NO), and the air-conditioning refrigerant 103 is changed from the water-cooled condenser 14 to the air-cooled condenser 13. A switching signal for switching to the flow path A to be circulated is output to the control valve 15 (step S103).

一方、ステップS101において、電気系冷却水102の温度Trが65℃以上のときは(ステップS101:YES)、負荷の増大などにより電気系冷却水102の温度が上昇したものと判断して、空調用冷媒103を水冷凝縮器14をバイパスして空冷凝縮器13に流通させる流路Bに切り換えるための切り換え信号を制御バルブ15に出力する(ステップS104)。   On the other hand, when the temperature Tr of the electric cooling water 102 is 65 ° C. or higher in step S101 (step S101: YES), it is determined that the temperature of the electric cooling water 102 has increased due to an increase in load or the like. A switching signal for switching the refrigerant 103 to the flow path B that bypasses the water-cooled condenser 14 and flows to the air-cooled condenser 13 is output to the control valve 15 (step S104).

また、ステップS102において、電気系冷却水102の温度Trが空調用冷媒103の温度Tc以上のときは(ステップS102:YES)、空調用の冷媒サイクルが低負荷であると判断して、空調用冷媒103を水冷凝縮器14をバイパスして空冷凝縮器13に流通させる流路Bに切り換えるための切り換え信号を制御バルブ15に出力する(ステップS104)。   In step S102, when the temperature Tr of the electric cooling water 102 is equal to or higher than the temperature Tc of the air conditioning refrigerant 103 (step S102: YES), it is determined that the air conditioning refrigerant cycle has a low load, A switching signal for switching the refrigerant 103 to the flow path B that flows through the air-cooled condenser 13 by bypassing the water-cooled condenser 14 is output to the control valve 15 (step S104).

本実施例に係わる冷却装置10では、空調用冷却器として空冷凝縮器13と水冷凝縮器14とを備え、空冷凝縮器13で空調用冷媒103と冷却風100との間で熱交換させるとともに、電気系冷却器12で冷却風100と熱交換した電気系冷却水102を水冷凝縮器14へ供給して空調用冷媒103を冷却するようにしたので、空冷凝縮器13の大きさを水冷凝縮器14の熱交換能力を補う程度の大きさにすることができ、通常状態において必要とされる熱交換能力を低下させることなしに空冷凝縮器13の容積を小型化することができる。   In the cooling device 10 according to the present embodiment, an air-cooled condenser 13 and a water-cooled condenser 14 are provided as air-conditioning coolers, and the air-cooled condenser 13 performs heat exchange between the air-conditioning refrigerant 103 and the cooling air 100, Since the electric cooling water 102 heat-exchanged with the cooling air 100 by the electric cooler 12 is supplied to the water-cooled condenser 14 to cool the air-conditioning refrigerant 103, the size of the air-cooled condenser 13 is changed to the size of the water-cooled condenser. Therefore, the capacity of the air-cooled condenser 13 can be reduced without reducing the heat exchange capacity required in the normal state.

ここで、本実施例における熱交換器の容積を従来構成と比較しながら説明する。図4は、各熱交換器を冷却風の流れ方向に沿って順に配置した場合(現行の冷却装置に相当)の全体構成を示す斜視図である。図4に示すように、冷却風100の流れ方向に向かって電気系冷却器22、空冷凝縮器23、エンジン冷却器21を順に並べて配置した構造では、エンジンルーム内における熱交換器の容積が大きくなる。   Here, the volume of the heat exchanger in the present embodiment will be described in comparison with the conventional configuration. FIG. 4 is a perspective view showing the entire configuration when the heat exchangers are sequentially arranged along the flow direction of the cooling air (corresponding to the current cooling device). As shown in FIG. 4, in the structure in which the electric system cooler 22, the air-cooled condenser 23, and the engine cooler 21 are arranged in this order in the flow direction of the cooling air 100, the volume of the heat exchanger in the engine room is large. Become.

しかしながら、本実施例では、空調用冷却器の一部を水冷凝縮器14としているため、この水冷凝縮器14をエンジン冷却器11や電気系冷却器12とともに冷却風100の流れ方向に重ねて配置する必要がなく、また上述したように空冷凝縮器13を小型化することができるため、エンジンルーム内における熱交換器の容積を小さくすることができる。例えば、図1に示すように、水冷凝縮器14をエンジン冷却器11や電気系冷却器12の後方で且つ下側に配置することにより、エンジンルーム内において熱交換器の占める割合を小さくすることができる。   However, in this embodiment, since a part of the air-conditioning cooler is the water-cooled condenser 14, the water-cooled condenser 14 is placed in the flow direction of the cooling air 100 together with the engine cooler 11 and the electric system cooler 12. In addition, since the air-cooled condenser 13 can be reduced in size as described above, the volume of the heat exchanger in the engine room can be reduced. For example, as shown in FIG. 1, by arranging the water-cooled condenser 14 behind and below the engine cooler 11 and the electric system cooler 12, the proportion of the heat exchanger in the engine room is reduced. Can do.

このように、エンジンルーム内における熱交換器の容積を小さくすることができるため、車両のデザイン的な要求や歩行者保護対策にも容易に対応することが可能となる。しかも、空冷凝縮器13のサイズ、重量を図4に示す従来構成よりも小さくすることができるため、これに水冷凝縮器14を加えた構成としても、車両の小型化や軽量化を図ることができる(請求項1の効果)。   Thus, since the volume of the heat exchanger in the engine room can be reduced, it is possible to easily meet vehicle design requirements and pedestrian protection measures. In addition, since the size and weight of the air-cooled condenser 13 can be made smaller than that of the conventional configuration shown in FIG. 4, even when the water-cooled condenser 14 is added thereto, the vehicle can be reduced in size and weight. (Effect of claim 1)

また、本実施例では、空調用の冷媒サイクルが低負荷のとき、あるいは負荷の増大などにより電気系冷却水102の温度が上昇したときには、空調用冷媒103を水冷凝縮器14をバイパスして空冷凝縮器13に流通させる流路に切り換えるようにしている。これにより、空調用の冷媒サイクルが低負荷のときには、空調用冷媒103と電気系冷却水102との温度差がなくなるため、水冷凝縮器14をバイパスすることによってコンプレッサの無駄な動力損失を低減させることができる。また、負荷の増大などにより電気系冷却水102の温度が上昇したときには、水冷凝縮器14をバイパスすることによって電気系冷却水102が水冷凝縮器14で吸熱するのを抑えることができる。この場合は、エアコンの冷却性能は低下するものの、電動機などの電気部品用を優先して冷却することができるため、走行時に必要な車両の走行性能を維持することができる(請求項6の効果)。   Further, in this embodiment, when the refrigerant cycle for air conditioning has a low load or when the temperature of the electric cooling water 102 rises due to an increase in load or the like, the air conditioning refrigerant 103 is air-cooled by bypassing the water-cooled condenser 14. The flow path is switched to the flow path for the condenser 13. As a result, when the refrigerant cycle for air conditioning has a low load, the temperature difference between the air conditioning refrigerant 103 and the electric cooling water 102 is eliminated, so that the wasteful power loss of the compressor is reduced by bypassing the water-cooled condenser 14. be able to. Further, when the temperature of the electric cooling water 102 rises due to an increase in load or the like, the electric cooling water 102 can be prevented from absorbing heat by the water cooling condenser 14 by bypassing the water cooling condenser 14. In this case, although the cooling performance of the air conditioner is reduced, it is possible to preferentially cool an electric component such as an electric motor, so that the running performance of the vehicle required during running can be maintained. ).

また、実施例1において、エンジン冷却器11と電気系冷却器12とを一体化した構造の熱交換器を用いてもよい。このような一体型の熱交換器を用いた場合は、エンジン冷却器11と電気系冷却器12とを別体構造としたものと比べて熱交換器の容積を小さくすることができ、また車両への組み付け工数を削減することができる(請求項5の効果)。   In the first embodiment, a heat exchanger having a structure in which the engine cooler 11 and the electric system cooler 12 are integrated may be used. When such an integrated heat exchanger is used, the volume of the heat exchanger can be reduced as compared with a structure in which the engine cooler 11 and the electric system cooler 12 are separated. Assembling man-hours can be reduced (effect of claim 5).

さらに、実施例1において、エンジン冷却器11と空冷凝縮器13とを一体化した熱交換器を用いてもよい。このような一体型の熱交換器を用いた場合は、エンジン冷却器11と空冷凝縮器13とを別体構造としたものと比べて熱交換器の容積を小さくすることができ、各熱交換器の冷却性能を向上させることができる。さらに、車両への組み付け工数を削減することができる(請求項4の効果)。   Further, in the first embodiment, a heat exchanger in which the engine cooler 11 and the air-cooled condenser 13 are integrated may be used. When such an integrated heat exchanger is used, the volume of the heat exchanger can be reduced as compared with a structure in which the engine cooler 11 and the air-cooled condenser 13 are separated from each other. The cooling performance of the vessel can be improved. Furthermore, the number of assembling steps to the vehicle can be reduced (effect of claim 4).

図5は実施例2に係わる冷却装置の全体構成を示す斜視図であり、図1と同等部分を同一符号で表している。   FIG. 5 is a perspective view showing the overall configuration of the cooling apparatus according to the second embodiment, and the same parts as those in FIG. 1 are denoted by the same reference numerals.

実施例2に係わる冷却装置20では、電気系冷却器12のタンク部12c内に水冷凝縮器14を配置している。本実施例における水冷凝縮器14は、実施例1と同じく内部で空調用冷媒103と電気系冷却水102とを熱交換させる積層型の熱交換器でもよいし、内部に空調用冷媒103を流通させ、本体表面とタンク部12c内を流通する電気系冷却水102との間で熱交換させる方式の熱交換器であってもよい(図5では後者の構造を示す)。この水冷凝縮器14は、温度の低い電気系冷却水102で冷却するために、冷媒出口側となるタンク部12c内に配置している。   In the cooling device 20 according to the second embodiment, the water-cooled condenser 14 is disposed in the tank portion 12 c of the electric system cooler 12. The water-cooled condenser 14 in the present embodiment may be a stacked heat exchanger that internally exchanges heat between the air-conditioning refrigerant 103 and the electric cooling water 102 as in the first embodiment, or the air-conditioning refrigerant 103 is circulated therein. It is also possible to use a heat exchanger that exchanges heat between the main body surface and the electric cooling water 102 flowing through the tank 12c (the latter structure is shown in FIG. 5). The water-cooled condenser 14 is disposed in the tank portion 12c on the refrigerant outlet side in order to cool with the electric cooling water 102 having a low temperature.

本実施例に係わる冷却装置20は、実施例1の効果に加えてさらに以下の効果を有する。   The cooling device 20 according to the present embodiment has the following effects in addition to the effects of the first embodiment.

本実施例では、電気系冷却器12の内部に水冷凝縮器14を配置し、電気系冷却器12で冷却風100と熱交換した低温の電気系冷却水102を水冷凝縮器14の全体に供給するように構成したので、エンジン冷却水101に比べて低温な電気系冷却水102により空調用冷媒103を効率良く冷却することができる(請求項2の効果)。   In the present embodiment, a water-cooled condenser 14 is disposed inside the electric system cooler 12, and low-temperature electric system cooling water 102 heat-exchanged with the cooling air 100 by the electric system cooler 12 is supplied to the entire water-cooled condenser 14. Thus, the air-conditioning refrigerant 103 can be efficiently cooled by the electric cooling water 102 that is lower in temperature than the engine cooling water 101 (the effect of claim 2).

また、水冷凝縮器14を電気系冷却器12のタンク部12c内に配置したのでエンジンルーム内に水冷凝縮器14の設置場所を確保したり、電気系冷却器12と水冷凝縮器14との間を接続する配管や継ぎ手などが不要となるため、エンジンルーム内のスペースをより有効に利用することができる。加えて、エンジンルーム内のレイアウトが異なる車種にも設計変更なしに適用可能となり、さらには、外部からの加重や衝撃に対して水冷凝縮器14を保護することができる(請求項3の効果)。   Further, since the water-cooled condenser 14 is disposed in the tank portion 12 c of the electric system cooler 12, an installation place of the water-cooled condenser 14 is secured in the engine room, or between the electric system cooler 12 and the water-cooled condenser 14. Since piping and joints for connecting the engine are not necessary, the space in the engine room can be used more effectively. In addition, the present invention can be applied to a vehicle model having a different layout in the engine room without changing the design, and further, the water-cooled condenser 14 can be protected from external load and impact (effect of claim 3). .

なお、実施例2において、エンジン冷却器11と電気系冷却器12とを一体化した構造の熱交換器を用いてもよい。このような一体型の熱交換器を用いた場合は、エンジン冷却器11と電気系冷却器12とを別体構造としたものと比べて熱交換器の容積を小さくすることができ、また車両への組み付け工数を削減することができる(請求項5の効果)。   In the second embodiment, a heat exchanger having a structure in which the engine cooler 11 and the electric cooler 12 are integrated may be used. When such an integrated heat exchanger is used, the volume of the heat exchanger can be reduced as compared with a structure in which the engine cooler 11 and the electric system cooler 12 are separated. Assembling man-hours can be reduced (effect of claim 5).

図6は実施例3に係わる冷却装置の全体構成を示す斜視図であり、図5と同等部分を同一符号で表している。   FIG. 6 is a perspective view showing the entire configuration of the cooling device according to the third embodiment, and the same parts as those in FIG. 5 are denoted by the same reference numerals.

実施例3に係わる冷却装置30では、電気系冷却器12のタンク部12c内に水冷凝縮器14を配置するとともに、エンジン冷却器11と空冷凝縮器13とを一体化した一体型熱交換器19を備えて構成されている。図6に示す一体型熱交換器19では、手前側が空冷凝縮器(13)、奥側はエンジン冷却器(11)となる。   In the cooling device 30 according to the third embodiment, the water-cooled condenser 14 is disposed in the tank portion 12 c of the electric system cooler 12, and the integrated heat exchanger 19 in which the engine cooler 11 and the air-cooled condenser 13 are integrated. It is configured with. In the integrated heat exchanger 19 shown in FIG. 6, the near side is an air-cooled condenser (13), and the far side is an engine cooler (11).

本実施例に係わる冷却装置30は、実施例1および2の効果に加えてさらに以下の効果を有する。   The cooling device 30 according to the present embodiment has the following effects in addition to the effects of the first and second embodiments.

本実施例では一体型熱交換器19を備えているため、空冷凝縮器13とエンジン冷却器11とを別体構造としたものと比べて熱交換器の容積を小さくすることができ、各熱交換器の冷却性能を向上させることができる。さらに、車両への組み付け工数を削減することができる(請求項4の効果)。   In the present embodiment, since the integrated heat exchanger 19 is provided, the volume of the heat exchanger can be reduced as compared with the structure in which the air-cooled condenser 13 and the engine cooler 11 are separated. The cooling performance of the exchanger can be improved. Furthermore, the number of assembling steps to the vehicle can be reduced (effect of claim 4).

実施例1に係わる冷却装置の全体構成を示す斜視図。1 is a perspective view showing an overall configuration of a cooling device according to Embodiment 1. FIG. 制御系のシステム構成を示すブロック図。The block diagram which shows the system configuration | structure of a control system. コントローラによる流路切り換えの制御手順を示すフローチャート。The flowchart which shows the control procedure of the flow-path switching by a controller. 各熱交換器を冷却風の流れ方向に沿って順に配置した場合(現行の冷却装置に相当)の全体構成を示す斜視図。The perspective view which shows the whole structure when each heat exchanger is arrange | positioned in order along the flow direction of cooling air (equivalent to the present cooling device). 実施例2に係わる冷却装置の全体構成を示す斜視図。FIG. 6 is a perspective view showing an overall configuration of a cooling device according to a second embodiment. 実施例3に係わる冷却装置の全体構成を示す斜視図。FIG. 9 is a perspective view illustrating the overall configuration of a cooling device according to a third embodiment.

符号の説明Explanation of symbols

10,20,30…冷却装置
11…エンジン冷却器
12…電気系冷却器
12a…ラジエータ部
12b,12c…タンク部
13…空冷凝縮器
13a…熱交換器コア部
13b,13c…タンク部
14…水冷凝縮器
15…制御バルブ
16…コントローラ
17,18…温度センサ
19…一体型熱交換器
100…冷却風
101…エンジン冷却水
102…電気系冷却水
103…空調用冷媒
DESCRIPTION OF SYMBOLS 10,20,30 ... Cooling device 11 ... Engine cooler 12 ... Electric system cooler 12a ... Radiator part 12b, 12c ... Tank part 13 ... Air cooling condenser 13a ... Heat exchanger core part 13b, 13c ... Tank part 14 ... Water cooling Condenser 15 ... Control valve 16 ... Controller 17,18 ... Temperature sensor 19 ... Integrated heat exchanger 100 ... Cooling air 101 ... Engine cooling water 102 ... Electric cooling water 103 ... Air conditioning refrigerant

Claims (6)

走行用の駆動源として、少なくともエンジンと電動機とを備えた車両の冷却装置であって、前記エンジン用のエンジン冷却水(101)と冷却風(100)との間で熱交換させるエンジン冷却器(11)と、前記電動機用の電気系冷却水(102)と冷却風(100)との間で熱交換させる電気系冷却器(12)と、前記エンジン冷却器(11)の前面に配置されて空調用の冷却媒体(103)と冷却風(100)との間で熱交換させる空冷冷却器(13)および前記冷却媒体(103)と低温流体との間で熱交換させる水冷冷却器(14)からなる空調系冷却器とを備え、
前記電気系冷却器(12)で冷却風(100)と熱交換した電気系冷却水(102)を、前記空調用の冷却媒体(103)との間で熱交換させる低温流体として前記水冷冷却器(14)に供給することを特徴とする車両の冷却装置。
A cooling device for a vehicle including at least an engine and an electric motor as a driving source for traveling, and an engine cooler that exchanges heat between engine cooling water (101) for the engine and cooling air (100) 11), an electric system cooler (12) for exchanging heat between the electric system cooling water (102) for the electric motor and the cooling air (100), and a front surface of the engine cooler (11). An air-cooled cooler (13) for exchanging heat between the cooling medium (103) for air conditioning and the cooling air (100) and a water-cooled cooler (14) for exchanging heat between the cooling medium (103) and the low-temperature fluid. An air conditioning system cooler consisting of
The water-cooled cooler as a low-temperature fluid for exchanging heat between the electric cooling water (102) heat-exchanged with the cooling air (100) in the electric cooler (12) with the cooling medium (103) for air conditioning. (14) A cooling device for a vehicle, characterized by being supplied to (14).
前記電気系冷却器(12)の内部に前記水冷冷却器(14)を設け、前記電気系冷却器(12)で冷却風(100)と熱交換した電気系冷却水(102)を、前記空調用の冷却媒体(103)との間で熱交換させる低温流体として前記水冷冷却器(14)に供給することを特徴とする請求項1に記載の車両の冷却装置。   The water cooling cooler (14) is provided inside the electric system cooler (12), and the electric cooling water (102) heat-exchanged with the cooling air (100) by the electric system cooler (12) is supplied to the air conditioner. 2. The vehicle cooling device according to claim 1, wherein the water cooling cooler is supplied as a low-temperature fluid that exchanges heat with a cooling medium for cooling. 前記電気系冷却器(12)は、前記電気系冷却水(102)と冷却風(100)との間で熱交換するラジエータ部(12a)と、このラジエータ部(12a)の冷却水入口側と冷却水出口側にそれぞれ配置されたタンク部(12b,12c)とを備え、
前記冷却水出口側に配置されたタンク部(12c)内に前記水冷冷却器(14)を設け、前記電気系冷却器(12)で冷却風(100)と熱交換した電気系冷却水(102)を前記空調用の冷却媒体(103)との間で熱交換させる低温流体として前記水冷冷却器(14)に供給することを特徴とする請求項1または2のいずれか一項に記載の車両の冷却装置。
The electric system cooler (12) includes a radiator section (12a) for exchanging heat between the electric system cooling water (102) and the cooling air (100), and a cooling water inlet side of the radiator section (12a). Tank portions (12b, 12c) arranged on the cooling water outlet side,
The water cooling cooler (14) is provided in the tank part (12c) arranged on the cooling water outlet side, and the electric system cooling water (102) exchanged heat with the cooling air (100) by the electric system cooler (12). ) Is supplied to the water-cooled cooler (14) as a low-temperature fluid that exchanges heat with the air-conditioning cooling medium (103). Cooling system.
前記エンジン冷却器(11)と前記空冷冷却器(13)とを一体化したことを特徴とする請求項1ないし3のいずれか一項に記載の車両の冷却装置。   The vehicle cooling device according to any one of claims 1 to 3, wherein the engine cooler (11) and the air-cooled cooler (13) are integrated. 前記エンジン冷却器(11)と前記電気系冷却器(12)とを一体化したことを特徴とする請求項1ないし3のいずれか一項に記載の車両の冷却装置。   The vehicle cooling device according to any one of claims 1 to 3, wherein the engine cooler (11) and the electric system cooler (12) are integrated. 前記冷却媒体(103)を前記水冷冷却器(14)から前記空冷冷却器(13)に流通させる流路と、
前記冷却媒体(103)を前記水冷冷却器(14)をバイパスして前記空冷冷却器(13)に流通させる流路と、
前記冷却媒体(103)の流路をいずれか一方に切り換える流路切り換え手段(15)と、
前記電気系冷却水(102)の温度が所定値未満、且つ前記空調用の冷却媒体(103)の温度未満のときは、前記流路切り換え手段(15)により前記冷却媒体(103)を前記水冷冷却器(14)から前記空冷冷却器(13)に流通させる流路に切り換え、前記電気系冷却水(102)の温度が所定値以上、または前記空調用の冷却媒体(103)の温度以上のときには、前記流路切り換え手段(15)により前記冷却媒体(103)を前記水冷冷却器(14)をバイパスして前記空冷冷却器(13)に流通させる流路に切り換える制御手段(16)と、
を備えることを特徴とする請求項1ないし5のいずれか一項に記載の車両の冷却装置。
A flow path for circulating the cooling medium (103) from the water-cooled cooler (14) to the air-cooled cooler (13);
A flow path through which the cooling medium (103) flows to the air-cooled cooler (13), bypassing the water-cooled cooler (14),
A flow path switching means (15) for switching the flow path of the cooling medium (103) to one of the two;
When the temperature of the electric cooling water (102) is lower than a predetermined value and lower than the temperature of the cooling medium (103) for air conditioning, the cooling medium (103) is cooled by the flow path switching means (15). Switching from a cooler (14) to a flow path that circulates to the air-cooled cooler (13), the temperature of the electric cooling water (102) is not less than a predetermined value or not less than the temperature of the cooling medium (103) for air conditioning. Sometimes, the control means (16) for switching the cooling medium (103) to the flow path for bypassing the water-cooled cooler (14) and flowing to the air-cooled cooler (13) by the flow path switching means (15),
The vehicle cooling device according to any one of claims 1 to 5, further comprising:
JP2005014661A 2005-01-21 2005-01-21 Vehicle cooling device Expired - Fee Related JP4233529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014661A JP4233529B2 (en) 2005-01-21 2005-01-21 Vehicle cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005014661A JP4233529B2 (en) 2005-01-21 2005-01-21 Vehicle cooling device

Publications (2)

Publication Number Publication Date
JP2006199206A JP2006199206A (en) 2006-08-03
JP4233529B2 true JP4233529B2 (en) 2009-03-04

Family

ID=36957571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014661A Expired - Fee Related JP4233529B2 (en) 2005-01-21 2005-01-21 Vehicle cooling device

Country Status (1)

Country Link
JP (1) JP4233529B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360636B1 (en) 2009-12-03 2014-02-10 기아자동차주식회사 Cooling System for Eco-friendly Vehicle
KR101173157B1 (en) 2010-02-01 2012-08-16 한라공조주식회사 Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
JP2011240777A (en) * 2010-05-17 2011-12-01 Denso Corp Cooler
JP5531901B2 (en) * 2010-10-08 2014-06-25 カルソニックカンセイ株式会社 Combined heat exchanger
JP2012245866A (en) * 2011-05-27 2012-12-13 Calsonic Kansei Corp Combined heat exchanger system
EP2530271A3 (en) 2011-05-27 2014-05-07 Calsonic Kansei Corporation Combined heat exchanger system
JP5730237B2 (en) * 2012-03-30 2015-06-03 カルソニックカンセイ株式会社 Integrated cooling system
JP5730236B2 (en) * 2012-03-30 2015-06-03 カルソニックカンセイ株式会社 Integrated cooling system
JP5730238B2 (en) * 2012-03-30 2015-06-03 カルソニックカンセイ株式会社 Integrated cooling system
JP6111809B2 (en) * 2013-04-15 2017-04-12 スズキ株式会社 Electric water pump mounting structure
DE102013114872B4 (en) 2013-06-07 2023-09-21 Halla Visteon Climate Control Corp. Radiator for vehicle
KR20140143650A (en) 2013-06-07 2014-12-17 현대자동차주식회사 Cooling module for vehicle
KR101448790B1 (en) * 2013-09-27 2014-10-08 현대자동차 주식회사 Heat pump system for vehicle
JP2015116877A (en) * 2013-12-17 2015-06-25 トヨタ自動車株式会社 Fuel cell vehicle
KR102205848B1 (en) 2013-12-31 2021-01-21 한온시스템 주식회사 Cooling module and Cooling System for Vehicles
KR101713715B1 (en) * 2015-07-20 2017-03-08 현대자동차 주식회사 Cooling system
US20170058485A1 (en) * 2015-08-24 2017-03-02 Komatsu Ltd. Hybrid work vehicle
KR102439432B1 (en) * 2016-04-01 2022-09-05 한온시스템 주식회사 Cooling module for hybrid vehicle
JP2019081509A (en) * 2017-10-31 2019-05-30 本田技研工業株式会社 Vehicle cooling structure
JP2019203625A (en) * 2018-05-22 2019-11-28 株式会社デンソー Heat exchanger and arrangement structure of heat exchanger

Also Published As

Publication number Publication date
JP2006199206A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4233529B2 (en) Vehicle cooling device
CN111315609B (en) Cooling system for a motor vehicle and motor vehicle having such a cooling system
JP6916600B2 (en) Vehicle battery cooling system
JP5336467B2 (en) Battery cooling device for vehicle
JP7427771B2 (en) Automotive thermal management system and thermal management method based on automotive thermal management system
JP4384066B2 (en) Vehicle cooling system
US8677772B2 (en) Air conditioning system for a vehicle
JP3659213B2 (en) Vehicle cooling system
CN111845250B (en) Air conditioner for vehicle
JP2006216303A (en) Cooling structure of heat radiating unit
CN107719136A (en) Pure electric automobile cooling system and automobile
JP2010284045A (en) Heat supply device
JP2005343221A (en) Cooling device structure of vehicle
JP2010121604A (en) Cooling system
US11318814B2 (en) Cooling apparatus
KR20120112186A (en) Vehicle air conditioner
JP5348063B2 (en) Hybrid vehicle cooling system
JP4323307B2 (en) Vehicle heat exchanger system
EP2495118A2 (en) Vehicle air conditioner
JP7042362B2 (en) Temperature control circuit
JP2020010543A (en) Cooling equipment, on-vehicle cooling device and cooling system
JP5796664B1 (en) Cooling system
CN211663026U (en) Electric motor car heat pump system and electric automobile
JP5730237B2 (en) Integrated cooling system
JP2016151235A (en) Cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4233529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees