WO2013054417A1 - 無線通信システム、基地局、及び無線通信方法 - Google Patents

無線通信システム、基地局、及び無線通信方法 Download PDF

Info

Publication number
WO2013054417A1
WO2013054417A1 PCT/JP2011/073567 JP2011073567W WO2013054417A1 WO 2013054417 A1 WO2013054417 A1 WO 2013054417A1 JP 2011073567 W JP2011073567 W JP 2011073567W WO 2013054417 A1 WO2013054417 A1 WO 2013054417A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
resource
mobile station
unit
station
Prior art date
Application number
PCT/JP2011/073567
Other languages
English (en)
French (fr)
Inventor
孝斗 江崎
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013538372A priority Critical patent/JP5994786B2/ja
Priority to EP11873830.1A priority patent/EP2768268A4/en
Priority to PCT/JP2011/073567 priority patent/WO2013054417A1/ja
Publication of WO2013054417A1 publication Critical patent/WO2013054417A1/ja
Priority to US14/249,986 priority patent/US20140220997A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • the present invention relates to a wireless communication system, a base station, and a wireless communication method.
  • LTE Long Time Evolution
  • TTI Bundling realizes a coverage equivalent to W-CDMA by considering a plurality of continuous TTIs used for transmitting audio data as one TTI and increasing the energy density.
  • the TTI Bundling described above has the following problems. That is, when TTI Bundling is used, the base station increases the voice data transmission opportunities of the mobile station located at the end of its own cell. In addition, the transmission power of the mobile station becomes an interference source to other adjacent cells, but this interference is usually significant at the end of the cell where the transmission power of the mobile station is large. As a result, interference in a wireless communication system to which TTI Bundling is applied increases compared to a case where TTI Bundling is not applied, particularly at the cell edge. As a result, the accommodation efficiency of the entire system decreases, and the throughput between the base station and the mobile station decreases.
  • the disclosed technology has been made in view of the above, and an object thereof is to provide a wireless communication system, a base station, and a wireless communication method capable of reducing interference while expanding coverage.
  • a wireless communication system disclosed in the present application includes, in one aspect, a first base station and a second base station that communicate with a mobile station.
  • the first base station has a transmission unit.
  • the transmission unit transmits a resource allocation result for the mobile station to the second base station.
  • the second base station has a receiving unit and a control unit.
  • the reception unit receives the resource allocation result transmitted from the transmission unit by the first base station.
  • the control unit identifies a resource that receives interference from the mobile station among resources that can be allocated by the second base station based on the result of the resource allocation, and stops the allocation of the resource to the mobile station.
  • FIG. 1 is a diagram illustrating a configuration of a wireless communication system.
  • FIG. 2 is a diagram illustrating a functional configuration of the base stations 10 and 20 according to the first and second embodiments.
  • FIG. 3 is a diagram illustrating a hardware configuration of the base stations 10 and 20.
  • FIG. 4 is a flowchart for explaining cell edge determination processing executed by the base station 10.
  • FIG. 5 is a flowchart for explaining the operation of the base station 10.
  • FIG. 6 is a diagram illustrating how radio resources are secured by voice scheduling processing.
  • FIG. 7 is a flowchart for explaining voice scheduling processing executed by the base station 10 according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of the execution result of the voice scheduling process.
  • FIG. 1 is a diagram illustrating a configuration of a wireless communication system.
  • FIG. 2 is a diagram illustrating a functional configuration of the base stations 10 and 20 according to the first and second embodiments.
  • FIG. 3 is a diagram illustrating a hardware
  • FIG. 9 is a flowchart for explaining the radio resource securing process executed by the base station 20 according to the first embodiment.
  • FIG. 10 is a flowchart for explaining interference reduction base station determination processing executed by the base station 10 according to the first modification.
  • FIG. 11 is a flowchart for explaining an interference reduction availability determination process performed by the base station 20 according to the second modification.
  • FIG. 12 is a flowchart for explaining the interference reduction target resource marking process performed by the base station 20 according to the second embodiment.
  • FIG. 13 is a flowchart for explaining the process of allocating the interference reduction target resource to the mobile station performed by the base station 20 according to the second embodiment.
  • FIG. 14 is a diagram illustrating a functional configuration of the base station 10 according to the third embodiment.
  • FIG. 15 is a diagram illustrating the configuration of the decoding unit of the base station 10 according to the third embodiment.
  • FIG. 16 is a diagram illustrating a state in which a delay occurs in the reception timing of the demodulated signal by the base station 10 according to the third embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a wireless communication system 1.
  • the wireless communication system 1 is a system to which LTE is applied as a wireless communication method, and includes a base station 10, a base station 20, and a mobile station 30, which will be described later.
  • the base station 10 and the base station 20 form a cell C1 and a cell C2, respectively, and perform time-division communication of uplink voice data with the mobile station.
  • the base station 10 and the base station 20 are connected by wire directly or indirectly via the upper network N so that signals and data can be transmitted and received mutually.
  • the mobile station 30 is a mobile phone located at the end of the cell C1 and in the vicinity of the boundary between the cells C1 and C2.
  • the mobile station 30 can wirelessly communicate with each of the base stations 10 and 20 and transmits voice data to the base station 10 among these base stations.
  • FIG. 2 is a diagram illustrating a functional configuration of the base station 10.
  • the base station 10 includes a reception RF (Radio Frequency) unit 11, a reception unit 12, a network termination unit 13, a scheduling unit 14, a transmission unit 15, and a transmission RF unit 16. .
  • Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • the reception RF unit 11 performs carrier wave removal and AD (Analog to Digital) conversion on the upstream signal received from the antenna A1, and generates a reception baseband signal.
  • the receiving unit 12 demodulates and decodes the received baseband signal input from the receiving RF unit 11 based on scheduling information to generate received data.
  • the reception unit 12 outputs the generated reception data to the network termination unit 13 and the scheduling unit 14.
  • the receiving unit 12 determines whether or not each mobile station including the mobile station 30 is located at the end of the cell C1 based on the estimated value of the propagation loss.
  • the network termination unit 13 connects the base station 10 and an upper network N such as a core network.
  • the network termination unit 13 outputs the downlink data received from the upper network N to the transmission unit 15 and transmits the uplink data input from the reception unit 12 to the upper network N.
  • the scheduling unit 14 assigns radio resources based on information such as channel quality input from the reception unit 12 and the transmission unit 15 described later, and then performs scheduling on the reception unit 12 and the transmission unit 15. Notify information. Further, the scheduling unit 14 collectively reserves resources for the mobile station 30 by executing voice scheduling for a predetermined time for the mobile station 30 determined to be located at the cell edge by the receiving unit 12. Thereafter, the scheduling unit 14 instructs the transmission unit 15 described later to transmit an interference reduction request including the result of the voice scheduling.
  • the transmission unit 15 generates a downlink baseband signal by encoding and modulating downlink data based on the scheduling information input from the scheduling unit 14.
  • the transmission RF unit 16 generates a transmission signal by performing DA (Digital to Analog) conversion and carrier wave modulation on the downlink baseband signal input from the transmission unit 15, and transmits the signal to the mobile station 30 via the antenna A1. Send.
  • DA Digital to Analog
  • the functional configuration of the base station 10 has been described above, the functional configuration of the other base stations 20 is the same as that of the base station 10, and thus the same reference numerals are used for common components, and the details thereof are used. Detailed explanation is omitted.
  • FIG. 3 is a diagram illustrating a hardware configuration of the base station 10.
  • the base station 10 includes an upper network termination NPU (Network Processing Unit) 10a, a CPU (Central Processing Unit) 10b, a baseband processing DSP (Digital Signal Processor) 10c, an RF circuit 10d,
  • the memory 10e is connected via a bus so that various signals and data can be input and output.
  • the RF circuit 10d has an antenna A1.
  • the memory 10e includes, for example, a RAM such as SDRAM (Synchronous Dynamic Random Access Memory), a ROM (Read Only Memory), a flash memory, and the like.
  • the reception RF unit 11 and transmission RF unit 16 of the base station 10 shown in FIG. 2 are realized by an RF circuit 10d as hardware.
  • the receiving unit 12, the scheduling unit 14, and the transmitting unit 15 are realized by a baseband processing DSP 10c as hardware, and the network termination unit 13 is realized by an upper network termination NPU 10a.
  • the base station 20 also has the same configuration as that of the base station 10 physically. While being used, detailed description thereof is omitted.
  • the mobile station 30 is located near the boundary between the cells C ⁇ b> 1 and C ⁇ b> 2 formed by the base stations 10 and 20. Therefore, every time the mobile station 30 transmits voice data to the base station 10, the base station 20 receives interference from the mobile station 30. In order to solve such a problem, the wireless communication system 1 executes processing described below.
  • the base station 10 determines whether or not the mobile station 30 is located at the end of the cell C1 in order to determine whether or not to perform interference reduction.
  • FIG. 4 is a flowchart for explaining cell edge determination processing executed by the base station 10.
  • “No” is set as the cell edge determination result (S1).
  • the baseband processing DSP 10c (hereinafter simply referred to as “DSP 10c”) calculates a propagation loss.
  • the DSP 10c calculates the propagation loss in the base station 10 from the difference (unit: dB) between the transmission power reported from the mobile station 30 to the base station 10 and the actual reception power in the base station 10. (S2).
  • DSP10c compares the magnitude relation between the value and the predetermined threshold value T 1 of the propagation loss calculated in S2, when in the propagation loss> relationship thresholds T 1; the (S3 Yes) is, S4 of Transition to processing.
  • the DSP 10c determines that the mobile station 30 is present at a position away from the base station 10 (that is, the end of the cell C1) because the propagation loss of the mobile station 30 is large.
  • the result of the determination in S3 if the relationship of propagation loss ⁇ threshold T 1; the (S3 No), the DSP10c omits the processing in S4, and ends the series of cell edge determination process.
  • FIG. 5 is a flowchart for explaining the operation of the base station 10.
  • the DSP 10c determines whether or not the mobile station 30 is located at the end of the cell C1 by the cell edge determination process described above. If the mobile station 30 is located at the end of the cell C1 as a result of the determination (S11; Yes), the DSP 10c determines whether or not the mobile station 30 is performing communication by voice call (S12). As a result of the determination, if the mobile station 30 is performing voice communication (S12; Yes), the DSP 10c executes voice scheduling for a scheduling period T SCD that is predetermined for the mobile station 30 (S13).
  • the DSP 10c instructs the upper network termination NPU 10a to transmit an interference reduction request to the base station 20 forming the adjacent cell C2, and the upper network termination NPU 10a transmits the request to the base station 20 (S14).
  • This interference reduction request includes an identification number unique to the requesting base station 10 in addition to the result of the voice scheduling process in S13.
  • FIG. 6 is a diagram illustrating a state in which radio resources are secured by the voice scheduling process described above.
  • a time t (ms) is defined on the x-axis, and a frequency m is defined on the y-axis.
  • the voice scheduling process is executed by ensuring free resources at a cycle of 20 ms that is an interval between voice frames. For example, as shown in FIG. 6, at the timing of 0 ms, three free resources r0 are secured at predetermined positions as interference reduction resources (shaded portions) at the time of audio data reception, and at the timing after 20 ms, three A free resource r21 is secured. Further, at the timing 40 ms after 20 ms, three free resources r40 are secured for interference reduction. Note that the period in which resources are secured does not always need to be 20 ms, and a delay of about 2 to 5 ms is allowed. However, the period is never less than 20 ms.
  • FIG. 7 is a flowchart for explaining voice scheduling processing executed by the base station 10.
  • the DSP 10c initializes the allocated resource. As a result, the initial value of null (invalid value) is set as the value of the radio resource [n] and the allocation timing [n] using n as a parameter.
  • the DSP 10c checks the usage status of the resource in the resource [t] [m], and when it is “unused” (S26; Yes), the process proceeds to S27.
  • the DSP 10c reserves the frequency resource [m] as the n-th audio resource, sets “m” for the radio resource [n], and “t” for the allocation timing [n], so that the resource [ Update the usage status of t] [m] to “in use”.
  • the DSP 10c secures audio resources in ascending order of the value of m in the frequency resource, but the allocation order of audio resources does not necessarily have to be ascending m.
  • the DSP 10c may change the position of the frequency resource to which the audio resource is allocated based on a predetermined criterion or arbitrarily at each allocation. Thereby, the base station 10 can obtain the frequency diversity effect.
  • FIG. 8 is a diagram illustrating an example of an execution result of the voice scheduling process described above.
  • n 2
  • “null” is set in both the allocation timing and radio resources, indicating that radio resources could not be allocated. ing.
  • the DSP 10c instructs the RF circuit 10d to transmit a control signal by PDCCH (Physical Dedicated Control CHannel) at the corresponding allocation timing.
  • PDCCH Physical Dedicated Control CHannel
  • the baseband processing DSP 20c (hereinafter simply referred to as “DSP 20c”) executes a radio resource securing process.
  • FIG. 9 is a flowchart for explaining the radio resource securing process executed by the base station 20 according to the first embodiment.
  • the DSP 20c confirms the setting state of the resource in the radio resource [n].
  • the process proceeds to S33.
  • the DSP 20c secures the allocation timing [n] and the radio resource [n], sets “m” for the radio resource [n], and sets “t” for the allocation timing [n], so that the resource [ Update the usage status of t] [m] to “in use”.
  • Update (S34) the above-described radio resource securing process ends.
  • the base station 20 does not allocate to the mobile station 30 and the resource usage status remains “unused”. Thereby, the interference which the base station 20 receives from the mobile station 30 is reduced. Therefore, the reception quality of the voice data received by the base station 10 from the mobile station 30 is maintained well. As a result, improvement in coverage of the cell C1 and improvement in throughput of the entire wireless communication system 1 are achieved.
  • the base station 10 receives, from the mobile station 30 located at the end of the cell C1, information on a cell adjacent to the cell C1 or information capable of recognizing the adjacent cell. Based on the information, the base station 10 The base station to be determined is determined.
  • FIG. 10 is a flowchart for explaining interference reduction base station determination processing executed by the base station 10 according to the first modification.
  • the DSP 10c initializes parameters for the cell n.
  • “Negative” is set as the initial value of the adjacent situation [n]
  • “0” is set as the initial value of m.
  • DSP10c calculates the difference between the RSRP [n] in the cell n initialized with RSRP 0 and S72 in the own cell C1, compares the magnitude relation between the value and the threshold T 2.
  • the DSP 10 c records the current cell n in the memory 10 e as a cell of the adjacent base station. Specifically, the DSP 10c updates the adjacency status [n] from “Negation”, which is the initial value, to “affirmation”, and sets the value n to the adjoining base station [m]. Then, the value of m is incremented by 1 to m + 1.
  • the base station 10 collects RSRP indicating reception levels from a plurality of base stations including the base station 20 via the mobile station 30 located in the cell C1 formed by the own station.
  • a base station having a small difference from the RSRP of the base station 10 has a high reception level at the mobile station 30 located in the vicinity of the base station 10, so it can be estimated that the base station receives high interference from the mobile station 30.
  • the base station 10 selects a base station having a small RSRP difference from the base station 10 and makes the base station that requests interference reduction generate a lot of interference by selecting the base station as a base station to request interference reduction. Limited to base stations. As a result, it is possible to reduce interference more efficiently, focusing on base stations that are susceptible to interference.
  • a plurality of base stations may be selected as interference reduction request destinations by the interference reduction base station determination process. Further, the base station is not necessarily adjacent to the base station 10.
  • Base station 20 the amount of resources reserved in accordance interference reduction request from a base station 10, if exceeded a threshold value T 3, which is set in advance, perform interference reduction (providing a new free resource) that without the The base station 10 is notified of this.
  • FIG. 11 is a flowchart for explaining an interference reduction availability determination process performed by the base station 20 according to the second modification.
  • DSP20c compares the interference reduction resource number r is a number of resources that are reserved for interference reduction at present, the magnitude relation between the threshold value T 3 that is configured for permission determination. Result of the comparison, if the interference reduction resource number r ⁇ threshold T 3 is established; The (S81 Yes), the base station 20, it can be determined that the still securable resources exist. Therefore, the DSP 20c increments r to 1 (S82), and secures a resource requested to reduce interference (S83).
  • the DSP 20c notifies the base station 10 through the higher network termination NPU 20a that interference reduction is impossible, that is, the resource requested to reduce interference cannot be secured (S84). Thereby, the interference reduction request from the base station 10 is rejected.
  • the base station 10 notified of the rejection of the interference reduction request stops the interference reduction request for the base station 20 for a predetermined time.
  • the base station 20 It is desirable for the base station 20 to secure as many interference reduction resources as possible in order to eliminate the influence of interference from the mobile station 30 as much as possible.
  • securing interference reduction resources involves an increase in unused resources. Therefore, when the base station 20 accepts an unlimited request for interference reduction from the base station 10, the amount of free resources increases, and resource utilization efficiency increases. There is a risk of significant reduction. Therefore, the base station 20 sets an upper limit value for the number of interference reduction resources, and when the number of unused resources exceeds the value, the base station 20 does not newly secure interference reduction resources, Resource allocation to Thereby, the base station 20 can suppress the influence on the other mobile stations due to the increase of the interference reduction resource, and thus the decrease in the utilization efficiency of the radio resource, while maintaining the predetermined interference reduction function. As a result, limited resources can be effectively used.
  • the wireless communication system 1 includes the base station 10 and the base station 20 that communicate with the mobile station 30.
  • the base station 10 has a network termination unit 13.
  • the network termination unit 13 transmits the resource allocation result for the mobile station 30 to the base station 20.
  • the base station 10 notifies the base station 20 of the result of the above-described voice scheduling that can specify the resource that the base station 10 uses to receive voice data from the mobile station 30 as an interference reduction request.
  • the base station 20 includes a network termination unit 23 and a scheduling unit 24.
  • the network termination unit 23 receives the result of the resource allocation by the base station 10 transmitted by the network termination unit 13.
  • the scheduling unit 24 identifies a resource that receives interference from the mobile station 30 among resources that can be allocated by the base station 20 based on the resource allocation result, and stops the allocation of the resource to the mobile station 30.
  • the base station 10 when the base station 10 receives voice data from the mobile station 30, the base station 20 does not allocate resources that cause interference to the mobile station 30. Therefore, interference from the mobile station 30 to the base stations 10 and 20 is easily and reliably reduced. As a result, it is possible to reduce inter-cell interference while expanding the coverage.
  • Example 2 The configuration of the wireless communication system according to the second embodiment is the same as the configuration of the wireless communication system according to the first embodiment illustrated in FIG. Further, the configurations of the two base stations in the second embodiment are the same as the configurations of the two base stations 10 and 20 according to the first embodiment shown in FIG. Therefore, in the second embodiment, the same reference numerals are used for the same components as in the first embodiment, and detailed description thereof is omitted.
  • the second embodiment is different from the first embodiment in that the base station 20 allocates the resource determined not to be allocated to the mobile station 30 to another mobile station located near the center of the cell C2.
  • operations of the base stations 10 and 20 in the second embodiment will be described with a focus on differences from the first embodiment with reference to FIGS. 12 and 13.
  • FIG. 12 is a flowchart for explaining the interference reduction target resource marking process executed by the base station 20 according to the second embodiment.
  • the process shown in FIG. 12 is the same as the process shown in FIG. 9 referred to in the description of the operation according to the first embodiment, except for the process of S43. Therefore, common steps are denoted by the same reference numerals at the end and detailed description thereof is omitted. Specifically, steps S41, S42, and S44 in FIG. 12 correspond to steps S31, S32, and S34 shown in FIG. 9, respectively.
  • the DSP 20c secures the allocation timing [n] and the radio resource [n], and sets “m” for the radio resource [n] and “t” for the allocation timing [n]. Then, the usage status of the resource [t] [m] is updated to “interference reduction”. Thereby, the base station 20 performs the process (marking process) which shows that it is the object of interference reduction with respect to the resource made into the object of interference reduction with reception of the interference reduction request
  • FIG. 13 is a flowchart for explaining an allocation process of interference reduction target resources to other mobile stations to which the method is applied.
  • the DSP 20c initializes parameters (selected resource, maximum SIR value). As a result, a null (invalid value) value is set as the selected resource as the scheduling result, and “ ⁇ ” is set as the initial value as the maximum SIR value SIR max .
  • SIR max is a variable, and an initial value is set to a minimum value ( ⁇ ) that cannot take any radio resource.
  • the DSP 20c checks the resource usage status in the resource [m] to determine whether or not the resource has already been used.
  • the DSP 20c determines whether or not the mobile station that is a resource allocation target candidate is located at the end of the cell C2, and the resource [m] is set as a resource for “interference reduction”. Do. When at least one of these conditions is missing (S54; No), the DSP 20c compares the magnitude relationship between the value of SIR [m], which is the SIR of the resource [m], and the current SIR max value. (S55). As a result of the comparison, when SIR [m] value> SIR max value is satisfied (S55; Yes), the DSP 20c selects a resource (corresponding resource) satisfying the above conditions in S53 to S55 as a selected resource in the memory 20e. Recording is performed (S56).
  • the base station 20 “m” is set as the selection resource allocated to the mobile station located near the center of the cell C2, and SIR [m] is set as the SIR max .
  • the value of SIR max is updated with the SIR value of the corresponding resource.
  • the resource finally selected in S56 is scheduled as the resource having the maximum SIR among the resources that can be scheduled by the base station 20. Note that the process of S56 only causes the selected resource to be recorded as an interference reduction target resource, and is not secured as a radio resource at this point.
  • the DSP 20c can also be used when the above-described conditions are all affirmative in S54 (S54; Yes), or when the result of determination in S55 is SIR [m] value ⁇ SIR max value (S55; No).
  • S54; Yes the result of determination in S55 is SIR [m] value ⁇ SIR max value (S55; No).
  • S56 is omitted and the process of S57 is executed. That is, the DSP 20c proceeds to determination of the next resource by incrementing the value of m by 1 without setting the radio resource [m] as a scheduling target (S57).
  • the base station 20 includes the receiving unit 22 and the scheduling unit 24.
  • the receiving unit 22 determines whether a mobile station other than the mobile station 30 is located at the end of the cell C2 formed by the base station 20.
  • the scheduling unit 24 allocates the specified resource to the mobile station when the receiving unit 22 determines that the mobile station is located at a position other than the end of the cell C2.
  • the base station 20 reduces the interference from the mobile station 30 by not using the resource requested to reduce the interference from the base station 10.
  • the first embodiment can reduce interference most easily and surely, but has a problem that there are many resources that are not used and resource utilization efficiency is low.
  • the base station 20 uses a mobile station that does not interfere with the base station 10 for a corresponding unused resource (for example, a mobile station located outside the end of the cell C2). ) Will be allocated. Thereby, the base station 20 can effectively utilize radio resources. Therefore, the radio communication system 1 can simultaneously realize reduction of inter-cell interference and improvement of use efficiency of radio resources.
  • the base station 20 uses the cell edge determination result for each mobile station and allocates the interference reduction target resource to the mobile station located at the cell edge.
  • the resource is allocated to a mobile station that is not located at the cell edge.
  • the base station 20 has been described on the assumption that a mobile station that has performed transmission has been selected and a high SIR resource is preferentially allocated to the mobile station.
  • the method by which the base station 20 executes the scheduling process is not limited to such a method.
  • the base station 20 compares the scheduling metrics of each resource for all mobile stations located in the cell C2 and allocates resources to the mobile station that gives the maximum scheduling metric.
  • the base station 20 selects a plurality of mobile stations that perform transmission at a predetermined timing, and compares scheduling metrics between the selected mobile stations.
  • Example 3 The configuration of the wireless communication system according to the third embodiment is the same as the configuration of the wireless communication system 1 according to the first embodiment illustrated in FIG. Further, the configuration of the base station in the third embodiment is the same as the configuration of the base station according to the first embodiment shown in FIG. 2 except for the receiving unit 12 of the base station 10. Therefore, in the third embodiment, the same reference numerals are used for the same components as in the first embodiment, and detailed description thereof is omitted.
  • the third embodiment is different from the first embodiment in that the base stations 10 and 20 perform cooperative reception of voice data transmitted from the mobile station 30.
  • FIG. 14 to 16 the configuration and operation of the base station 10 according to the third embodiment will be described with a focus on differences from the first embodiment with reference to FIGS. 14 to 16.
  • the decoding unit 122 includes a pre-decoding processing unit 122a, a HARQ (Hybrid Automatic Repeat reQuest) combining unit 122b, a HARQ buffer 122d, and a data decoding unit 122c. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • HARQ Hybrid Automatic Repeat reQuest
  • the pre-decoding processing unit 122a receives the demodulated signal received by the network termination unit 13, confirms the reception completion state of the corresponding user process, and executes the pre-decoding processing when reception has already been completed. The received data is discarded. If reception is not completed as a result of the confirmation, the pre-decoding processing unit 122a decodes the demodulated signal by executing appropriate pre-decoding processing such as derate matching on the input demodulated signal. Convert to previous data.
  • the HARQ synthesizing unit 122b synthesizes the pre-decoding data input from the pre-decoding processing unit 122a and the past (previous) pre-decoding data corresponding to the data.
  • the data decoding unit 122c When the data decoding unit 122c receives the pre-decoding data after combining from the HARQ combining unit 122b, the data decoding unit 122c decodes the data. Further, when normal decoding is confirmed by CRC (Cyclic Redundancy Check) determination for the decoded data, the data decoding unit 122c outputs the data to the network termination unit 13 as received data. Thereafter, the network termination unit 13 transmits the received data to the upper network N. If the CRC determination result is NG, the data decoding unit 122c stores the pre-decoding data that has been once input to the data decoding unit 122c in the HARQ buffer 122d in order to use it for subsequent retransmissions. .
  • CRC Cyclic Redundancy Check
  • the base station 20 receives data in the same manner as the base station 10 using the resource requested to reduce interference from the base station 10, and the base station 10 combines the received data with the received data by the own station. As a result, the reception characteristics of the mobile station 30 located at the cell edge are further improved. That is, when the DSP 10c of the base station 10 transmits an interference reduction request addressed to the base station 20, the DSP 10c adds parameters necessary for data reception such as a pilot sequence number and a modulation scheme. Transmit to the NPU 10a. The DSP 20c of the base station 20 receives data from the corresponding resource using the parameters specified by the interference reduction request. The DSP 20c transmits the demodulated signal obtained from the received data to the base station 10 via the higher network termination NPU 20a.
  • the DSP 20c records the timing for executing interference reduction and the radio resource to be the target in the memory 20e by executing the above-described marking processing of the interference reduction target resource (see FIG. 12). To do.
  • the DSP 20c sets data reception by the resource together with the parameter specified by the interference reduction request. .
  • the RF circuit 20d performs data reception using the corresponding resource in the same manner as data reception by a normal resource, but transfers the demodulated signal before decoding to the base station 10 without decoding this data.
  • the DSP 10c of the base station 10 performs a decoding process after synthesizing the demodulated signal with the data before decoding received by the base station 10 corresponding thereto.
  • the DSP 10c performs the above CRC determination on the decoded data, and then outputs the data as received data to the upper network termination NPU 10a. Then, the upper network termination NPU 10 a transmits the input received data to the upper network N.
  • FIG. 16 is a diagram illustrating a state in which a delay occurs in the reception timing of the demodulated signal by the base station 10 according to the third embodiment.
  • the network delay accompanying the transfer of the demodulated signal from the base station 20 to the base station 10 is between the demodulated signal reception timing at the base station 10 and the demodulated signal reception timing at the base station 20. d occurs intermittently.
  • the DSP 10c of the base station 10 asynchronously executes a series of processes from reception of the demodulated signal to synthesis and decoding in response to reception of the demodulated signal from the base station 20. Therefore, the base station 10 can complete the reception of the voice data transmitted by the mobile station 30 with almost no influence of the network delay d.
  • the network termination unit 13 of the base station 10 transmits information (pilot sequence number, parameters such as a modulation scheme) used when the base station 20 receives data using resources to the base station 20.
  • the reception unit 22 of the base station 20 receives the data transmitted from the mobile station 30 using the resource, using the information transmitted from the network termination unit 13 of the base station 10.
  • the base station 20 further includes a network termination unit 23 that transmits the data to the base station 10.
  • the base station 10 further includes a receiving unit 12 that synthesizes and receives the data transmitted from the mobile station 30 and the data transmitted by the network termination unit 23 of the base station 20.
  • the base station 10 can receive data in a coordinated manner with the base station 20 by causing the base station 20 to receive the voice data that the base station should originally receive instead of the base station 20. Become.
  • the base station 20 can also use resources that are not originally used to reduce interference from the mobile station 30 for receiving voice data from the mobile station 30. For this reason, free resources can be effectively used. As a result, further improvement in accommodation efficiency by cooperative reception is realized.
  • the propagation loss is used as a method for the base station 10 to determine the presence / absence of the mobile station 30 at the end of the cell C1.
  • the DSP 10c of the base station 10 uses a timing information such as TA (Timing Advance) to determine a mobile station with a large delay amount as a mobile station located at the cell edge. The presence or absence may be determined based on the size.
  • DSP10c of the base station 10 the RSRP reported from the mobile station 30, as compared with the base station 20 adjacent to the base station 10, when the difference is smaller than a predetermined threshold value T 4, the mobile It may be determined that the station 30 is located at the end of the cell C1. That is, the DSP 10c may determine the presence / absence based on the difference in RSRP difference between the base stations 10 and 20.
  • the wireless communication system 1 to which LTE is applied has been illustrated, but the applied wireless communication method is not limited to this, for example, HSDPA (High Speed Downlink Packet Access), etc. Any device that performs time-division resource allocation may be used.
  • HSDPA High Speed Downlink Packet Access
  • the wireless communication system 1 according to each embodiment may include components unique to other embodiments and modifications.
  • the combinations for each of the embodiments and the modified examples are not limited to two, and can take any form such as a combination of three or more.
  • the base station 10 according to the second and third embodiments may execute the above-described interference reduction base station determination process as in the first modification.
  • the base station 20 according to the first modification may have an interference reduction availability determination function unique to the second modification.
  • one wireless communication system may include all the components described in the first to third embodiments and the first and second modifications.
  • a mobile phone, a smart phone, and a PDA Personal Digital Assistant
  • a PDA Personal Digital Assistant
  • the present invention is not limited to a mobile station, and various communication is performed with a base station. Applicable to communication equipment.
  • the constituent elements of the base stations 10 and 20 do not necessarily have to be physically configured as illustrated. That is, the specific mode of distribution / integration of each device is not limited to the illustrated one, and all or a part thereof is functionally or physically distributed in an arbitrary unit according to various loads or usage conditions. -It can also be integrated and configured.
  • the transmission unit 15 and the transmission RF unit 16 of the base station 10 or the reception unit 12 and the transmission unit 15 of the base station 10 may be integrated as one component.
  • the receiving unit 12 and the transmitting unit 15 that control wireless communication and the network termination unit 13 that controls wired communication may be a single communication unit.
  • the scheduling unit 14 may be divided into a part that executes voice scheduling processing and a part that determines whether or not a mobile station exists at the cell edge.
  • the reception units 12 and 22 may be distributed to a data reception function and a cell edge determination function.
  • the memories 10e and 20e may be connected as external devices of the base stations 10 and 20 via a network or a cable.
  • Wireless communication system 10 20 Base station 10a, 20a Upper network termination NPU 10b, 20b CPU 10c, 20c baseband processing DSP 10d, 20d RF circuit 10e, 20e Memory 11, 21 Reception RF unit 12, 22 Reception unit 121 Demodulation unit 122 Decoding unit 122a Decoding preprocessing unit 122b HARQ synthesis unit 122c Data decoding unit 122d HARQ buffer 13, 23 Network termination unit 14, 24 Scheduling unit 15, 25 Transmitting unit 16, 26 Transmitting RF unit 30 Mobile station A1 Antenna C1, C2 Cell d Network delay m Frequency M Number of frequency resources N Upper network r Number of interference reduction resources r0, r21, r40 Free resources R Radio resources T allocation timing T 1 , T 2 , T 3 , T 4 threshold T SCD scheduling period T AMR voice frame interval T ON allowable delay

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線通信システム(1)は、移動局(30)と通信する基地局(10)と基地局(20)とを有する。基地局(10)は、移動局(30)に対するリソース割当ての結果を、基地局(20)に送信するネットワーク終端部を有する。基地局(20)は、ネットワーク終端部とスケジューリング部とを有する。上記ネットワーク終端部は、上記ネットワーク終端部により送信された、基地局(10)による上記リソース割当ての結果を受信する。スケジューリング部は、上記リソース割当ての結果に基づき、基地局(20)が割当て可能なリソースの内、移動局(30)から干渉を受けるリソースを特定し、当該リソースの移動局(30)に対する割当てを停止する。

Description

無線通信システム、基地局、及び無線通信方法
 本発明は、無線通信システム、基地局、及び無線通信方法に関する。
 従来、無線通信技術の発達に伴い、より通信速度の高い無線通信ネットワークへの切替えが進められている。例えば近年では、3G(Generation)ネットワークから、LTE(Long Time Evolution)ネットワークへの移行が急速に進められている。LTEは、時分割でのリソース割当てを行うことから、例えばW-CDMA(Wideband Code Division Multiple Access)の様に、リソースが時間方向に一様に割り当てられる方式と比較して、音声呼のカバレッジ(通信可能範囲)が狭くなることがある。かかる問題点を解決する手法として、LTEでは、TTI(Transmission Time Interval) Bundlingが採用されている。TTI Bundlingは、音声データの送信に用いられる連続した複数のTTIを、1つのTTIとみなして、エネルギー密度を高めることにより、W-CDMAと同等のカバレッジを実現するものである。
特開2007-151146号公報 特開2011-49987号公報 国際公開第2006/085359号 特表2010-534997号公報
R1-074990, On the Need for VoIP Coverage Enhancement for the E-UTRA UL, Alcatel-Lucent TS36.213, Evolved Universal Terrestrial Radio Access (EUTRA);"Physical layer procedures", 3GPP TS36.321, Evolved Universal Terrestrial Radio Access (EUTRA);"Medium Access Control (MAC) protocol specification", 3GPP
 しかしながら、上述のTTI Bundlingには、以下に示す様な問題点があった。すなわち、TTI Bundlingを用いると、基地局は、自局のセルの端部に位置する移動局に対して、該移動局による音声データの送信機会を増加させることとなる。また、移動局の送信電力は、隣接する他セルへの干渉源となるが、この干渉は、通常、移動局の送信電力が大きいセルの端部において、顕著となる。その結果、TTI Bundlingの適用された無線通信システムにおける干渉は、特にセル端部において、TTI Bundlingを適用しない場合と比較して、増大する。これにより、システム全体の収容効率が減少すると共に、基地局と移動局間のスループットが低下する。
 開示の技術は、上記に鑑みてなされたものであって、カバレッジを拡大しつつ、干渉を低減することのできる無線通信システム、基地局、及び無線通信方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本願の開示する無線通信システムは、一つの態様において、移動局と通信する第1基地局と、第2基地局とを有する。前記第1基地局は、送信部を有する。前記送信部は、前記移動局に対するリソース割当ての結果を、前記第2基地局に送信する。前記第2基地局は、受信部と制御部とを有する。前記受信部は、前記送信部により送信された、前記第1基地局による前記リソース割当ての結果を受信する。前記制御部は、前記リソース割当ての結果に基づき、前記第2基地局が割当て可能なリソースの内、前記移動局から干渉を受けるリソースを特定し、当該リソースの前記移動局に対する割当てを停止する。
 本願の開示する無線通信システムの一つの態様によれば、カバレッジを拡大しつつ、干渉を低減することができるという効果を奏する。
図1は、無線通信システムの構成を示す図である。 図2は、実施例1、2に係る基地局10、20の機能的構成を示す図である。 図3は、基地局10、20のハードウェア構成を示す図である。 図4は、基地局10の実行するセル端判定処理を説明するためのフローチャートである。 図5は、基地局10の動作を説明するためのフローチャートである。 図6は、音声スケジューリング処理により無線リソースが確保される様子を示す図である。 図7は、実施例1に係る基地局10の実行する音声スケジューリング処理を説明するためのフローチャートである。 図8は、音声スケジューリング処理の実行結果の一例を示す図である。 図9は、実施例1に係る基地局20の実行する無線リソース確保処理を説明するためのフローチャートである。 図10は、変形例1に係る基地局10の実行する干渉低減基地局決定処理を説明するためのフローチャートである。 図11は、変形例2に係る基地局20の実行する干渉低減可否判定処理を説明するためのフローチャートである。 図12は、実施例2に係る基地局20の実行する干渉低減対象リソースのマーキング処理を説明するためのフローチャートである。 図13は、実施例2に係る基地局20の実行する干渉低減対象リソースの他移動局への割当て処理を説明するためのフローチャートである。 図14は、実施例3に係る基地局10の機能的構成を示す図である。 図15は、実施例3に係る基地局10の復号部の構成を示す図である。 図16は、実施例3に係る基地局10による、復調信号の受信タイミングに遅延が発生する様子を示す図である。
 以下に、本願の開示する無線通信システム、基地局、及び無線通信方法の実施例について、図面を参照しながら詳細に説明する。なお、この実施例により、本願の開示する無線通信システム、基地局、及び無線通信方法が限定されるものではない。
 まず、本願の開示する実施例1に係る無線通信システムの構成を説明する。図1は、無線通信システム1の構成を示す図である。図1に示すように、無線通信システム1は、無線通信方式としてLTEが適用されたシステムであり、後述する基地局10と基地局20と移動局30とを有する。基地局10及び基地局20は、それぞれセルC1及びセルC2を形成し、移動局との間で、上り方向の音声データの時分割通信を行う。また、基地局10と基地局20とは、相互に信号及びデータの送受信が可能なように、直接的または上位ネットワークNを介して間接的に有線接続されている。移動局30は、セルC1の端部、かつセルC1、C2の境界付近に位置する携帯電話である。移動局30は、基地局10、20の各基地局と無線通信が可能であり、これらの基地局の内、基地局10宛に音声データを送信する。
 図2は、基地局10の機能的構成を示す図である。図2に示すように、基地局10は、受信RF(Radio Frequency)部11と、受信部12と、ネットワーク終端部13と、スケジューリング部14と、送信部15と、送信RF部16とを有する。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。
 受信RF部11は、アンテナA1から受信された上り方向の信号に対して、搬送波除去及びAD(Analog to Digital)変換を行い、受信ベースバンド信号を生成する。受信部12は、受信RF部11から入力された上記受信ベースバンド信号に対し、スケジューリング情報に基づく復調及び復号を行い、受信データを生成する。また、受信部12は、生成された受信データを、ネットワーク終端部13とスケジューリング部14とに対して出力する。更に、受信部12は、伝搬損失の推定値に基づき、移動局30を含む各移動局がセルC1の端部に位置しているか否かの判定を行う。ネットワーク終端部13は、基地局10とコアネットワーク等の上位ネットワークNとの接続を行う。ネットワーク終端部13は、上位ネットワークNから受信された下り方向のデータを送信部15に出力すると共に、受信部12から入力された上り方向のデータを上位ネットワークNへ送信する。
 スケジューリング部14は、前述した受信部12と後述する送信部15から入力されたチャネル品質等の情報を基に、無線リソースの割当てを行った後、受信部12及び送信部15に対して、スケジューリング情報を通知する。また、スケジューリング部14は、受信部12によりセル端部に位置すると判定された移動局30につき、所定時間分の音声スケジューリングを実行することにより、移動局30用のリソースを一括して確保する。その後、スケジューリング部14は、上記音声スケジューリングの結果を含む干渉低減要求の送信を、後述する送信部15に指示する。送信部15は、スケジューリング部14から入力されたスケジューリング情報に基づき、下り方向のデータを符号化及び変調することにより、下りベースバンド信号を生成する。送信RF部16は、送信部15から入力された上記下りベースバンド信号をDA(Digital to Analog)変換及び搬送波変調して送信信号を生成し、当該信号を、アンテナA1を介して移動局30に送信する。
 以上、基地局10の機能的構成を説明したが、他の基地局20の機能的構成は、基地局10と同様であるので、共通する構成部分には同一の参照符号を用いると共に、その詳細な説明は省略する。
 図3は、基地局10のハードウェア構成を示す図である。図3に示すように、基地局10は、上位ネットワーク終端NPU(Network Processing Unit)10aと、CPU(Central Processing Unit)10bと、ベースバンド処理DSP(Digital Signal Processor)10cと、RF回路10dと、メモリ10eとが、バスを介して各種信号やデータの入出力が可能なように接続されている。RF回路10dは、アンテナA1を有する。メモリ10eは、例えば、SDRAM(Synchronous Dynamic Random Access Memory)等のRAM、ROM(Read Only Memory)、フラッシュメモリ等により構成される。
 図2に示した基地局10の受信RF部11と送信RF部16とは、ハードウェアとしてのRF回路10dにより実現される。また、受信部12とスケジューリング部14と送信部15とは、ハードウェアとしてのベースバンド処理DSP10cにより実現され、ネットワーク終端部13は上位ネットワーク終端NPU10aにより実現される。以上、基地局10のハードウェア構成を説明したが、基地局20についても、物理的には、基地局10と同様の構成を有するので、共通する構成部分には、末尾が同一の参照符号を用いると共に、その詳細な説明は省略する。
 次に、無線通信システム1の動作を説明する。図1に示したように、無線通信システム1では、移動局30は、基地局10、20の形成するセルC1、C2の境界付近に位置している。したがって、移動局30が基地局10宛に音声データを送信する度に、基地局20は、移動局30から干渉を受けることとなる。このような問題点を解決するために、無線通信システム1は、以下に説明する処理を実行する。
 基地局10は、干渉低減を実行するか否かを判定するため、移動局30がセルC1の端部に位置するか否かの判定を行う。図4は、基地局10の実行するセル端判定処理を説明するためのフローチャートである。初期状態では、セル端判定結果として「否定」が設定されている(S1)が、この状態で、ベースバンド処理DSP10c(以下、単に「DSP10c」と記す。)は、伝搬損失を算出する。DSP10cは、移動局30から報告される、移動局30から基地局10への送信電力と、基地局10における実際の受信電力との差(単位はdB)から、基地局10における伝搬損失を算出する(S2)。S3では、DSP10cは、S2で算出された伝搬損失の値と所定の閾値Tとの大小関係を比較し、伝搬損失>閾値Tの関係にある場合(S3;Yes)には、S4の処理に移行する。S4では、DSP10cは、移動局30の伝搬損失が大きいことから、移動局30は基地局10から離れた位置(すなわちセルC1端部)に存在するものと判定する。一方、S3における判定の結果、伝搬損失≦閾値Tの関係にある場合(S3;No)には、DSP10cは、S4の処理を省略し、一連のセル端判定処理を終了する。
 次に、図5を参照しながら、基地局10の動作について説明する。図5は、基地局10の動作を説明するためのフローチャートである。S11では、DSP10cは、上述したセル端判定処理により、移動局30がセルC1の端部に位置するか否かを判定する。当該判定の結果、移動局30がセルC1端部に位置する場合(S11;Yes)、DSP10cは、移動局30が音声呼による通信を行っているか否かの判定を行う(S12)。当該判定の結果、移動局30が音声通信中である場合(S12;Yes)、DSP10cは、移動局30につき事前に定められたスケジューリング期間TSCD分の音声スケジューリングを実行する(S13)。そして、DSP10cは、隣接セルC2を形成する基地局20に対する干渉低減要求の送信を、上位ネットワーク終端NPU10aに指示し、上位ネットワーク終端NPU10aは、上記要求を基地局20に送信する(S14)。この干渉低減要求には、S13における音声スケジューリング処理の結果の他、要求元である基地局10に固有の識別番号が含まれる。
 なお、S11、S12における判定結果が否定の場合(S11;No,S12;No)には、DSP10cは、S13及びS14の各処理を省略して、一連の動作を終了する。
 図6は、上述の音声スケジューリング処理により無線リソースが確保される様子を示す図である。図6では、x軸に時間t(ms)、y軸に周波数mが規定されている。音声スケジューリング処理は、各音声フレームの間隔である20ms周期で、空きリソースが確保されることによって実行される。例えば、図6に示すように、0msのタイミングでは、音声データ受信時の干渉低減用リソース(網掛け部分)として3つの空きリソースr0が所定の位置に確保され、20ms後のタイミングでは、3つの空きリソースr21が確保される。そして、更に20ms後のタイミング40msでは、3つの空きリソースr40が干渉低減用に確保される。なお、リソースが確保される周期は、必ずしも常に20msである必要はなく、2~5ms程度の遅延は許容される。但し、周期が20ms未満となることはない。
 続いて、図7を参照しながら、基地局10の実行する音声スケジューリング処理について説明する。図7は、基地局10の実行する音声スケジューリング処理を説明するためのフローチャートである。まずS21では、DSP10cは、スケジューリング期間TSCDを各音声フレームの間隔TAMRで除算することにより、ループ回数nの値を設定する。例えば、TSCD=100msであり、TAMR=20msである場合、TSCD/TAMR=100ms/20ms=5であることから、5回分(n=0~4)のループが設定される。S22では、DSP10cは、割当てリソースの初期化を行う。これにより、上記nをパラメータとする無線リソース[n]と割当てタイミング[n]との値に、初期値であるヌル(無効値)が設定される。
 S23では、DSP10cは、音声割当て許容遅延(回数)TON分のループ回数τの値を設定する。例えば、上記スケジューリング期間TSCD内に音声割当て許容遅延が3回発生した場合には、3回分(τ=0~2)のループが設定される。S24では、DSP10cは、無線リソースの割当て対象となるタイミングを割当てタイミングtとして算出する。tは、t=n×TAMR+τにより算出される。同様に、S25では、DSP10cは、周波数リソース分のループ回数mの値を設定する。例えば、上記スケジューリング期間TSCD内に100の周波数リソースが存在する場合には、100回分(m=0~99)のループが設定される。
 S26では、DSP10cは、リソース[t][m]におけるリソースの使用状況を確認し、“未使用”である場合(S26;Yes)には、S27の処理に移行する。S27では、DSP10cは、n番目の音声リソースとして周波数リソース[m]を確保すると共に、無線リソース[n]に“m”を、割当てタイミング[n]に“t”を設定することで、リソース[t][m]の使用状況を“使用中”に更新する。
 なお、S27では、DSP10cは、周波数リソースにおけるmの値が小さい順に、音声リソースを確保するものとしたが、音声リソースの割当て順は、必ずしもmの昇順とする必要はない。例えば、DSP10cは、音声リソースを割り当てる周波数リソースの位置を、所定の基準に基づき又は任意に、割当ての都度、変更するものとしてもよい。これにより、基地局10は、周波数ダイバーシティ効果を得ることができる。
 一方、S26において、リソース[t][m]におけるリソースの使用状況が既に“使用中”である場合(S26;No)には、DSP10cは、現時点で設定されているmの値を1インクリメントし、m=m+1とする(S28)。τの値についても同様に、DSP10cは、現時点で設定されているτの値を1インクリメントし、τ=τ+1とする(S29)。更に、S27あるいはS29の処理終了後、DSP10cは、現時点で設定されているnの値を1インクリメントし、n=n+1とする(S30)。その結果、S25~S28の一連の処理は、m回分繰り返し実行され、S23~S29の一連の処理は、τ回分繰り返し実行される。そして、S21~S30の一連の処理がn回分繰り返し実行された時点で、上述した音声スケジューリング処理は終了する。
 図8は、上述の音声スケジューリング処理の実行結果の一例を示す図である。図8に示すように、基地局10は、音声スケジューリング処理を実行することにより、スケジューリング期間TSCD分の音声スケジューリング結果として、n(=TSCD/TAMR)個の割当てタイミングT(0、21、…)とn個の無線リソースR(m、m、…)とのペアを得る。なお、図8において、無線リソースの確保ができないタイミング(n=2)では、割当てタイミング及び無線リソースの双方において“ヌル”が設定されることで、無線リソースを割当て不能であったことが示されている。
 一方、割当て可能な無線リソースについては、DSP10cは、対応する割当てタイミングでのPDCCH(Physical Dedicated Control CHannel)による制御信号の送信を、RF回路10dに指示する。
 次に、基地局10に隣接する基地局20の動作を説明する。基地局20は、図5のS14で基地局10から送信された干渉低減要求を受信すると、ベースバンド処理DSP20c(以下、単に「DSP20c」と記す。)は、無線リソース確保処理を実行する。図9は、実施例1に係る基地局20の実行する無線リソース確保処理を説明するためのフローチャートである。S31では、DSP20cは、スケジューリング結果の回数を、ループ回数Nに設定する。これにより、n=0~N-1のループが設定される。S32では、DSP20cは、無線リソース[n]におけるリソースの設定状態を確認し、“ヌル”である場合(S32;Yes)には、S33の処理に移行する。S33では、DSP20cは、割当てタイミング[n]及び無線リソース[n]を確保すると共に、無線リソース[n]に“m”を、割当てタイミング[n]に“t”を設定することで、リソース[t][m]の使用状況を“使用中”に更新する。
 S33の処理終了後、あるいは、S32において無線リソース[n]=“ヌル”でない場合(S32;No)には、DSP20cは、現時点で設定されているnの値を1インクリメントし、n=n+1に更新する(S34)。そして、S31~S34の一連の処理がn回分繰り返し実行された時点で、上述した無線リソース確保処理は終了する。基地局20が無線リソース確保処理の実行により確保したリソースに関しては、基地局20は、移動局30に対する割当てを行わず、リソース使用状況は“未使用”のままとする。これにより、基地局20が移動局30から受ける干渉が低減される。したがって、基地局10が移動局30から受信する音声データの受信品質は良好に維持される。その結果、セルC1のカバレッジの向上と無線通信システム1全体のスループットの向上とが達成される。
 ここで、実施例1の変形態様である変形例1について説明する。基地局10は、セルC1端部に位置する移動局30から、セルC1に隣接するセルの情報あるいは隣接するセルを認識可能な情報を受信し、当該情報に基づき、干渉低減要求の通知先となる基地局を決定する。
 図10は、変形例1に係る基地局10の実行する干渉低減基地局決定処理を説明するためのフローチャートである。まずS71では、DSP10cは、移動局にRSRP(Reference Signal Received Power)を報告させるセルの数分のループ回数n(=0~N-1)を設定する。S72では、DSP10cは、セルnについてのパラメータを初期化する。これにより、隣接状況[n]の初期値として“否定”が、mの初期値として“0”がそれぞれ設定される。S73では、DSP10cは、自セルC1におけるRSRPとS72で初期化されたセルnにおけるRSRP[n]との差分を算出し、その値と閾値Tとの大小関係を比較する。当該比較の結果、RSRP-RSRP[n]<閾値Tが成立する場合(S73;Yes)には、DSP10cは、現時点でのセルnを隣接基地局のセルとしてメモリ10eに記録させる。具体的には、DSP10cは、隣接状況[n]を初期値である“否定”から“肯定”に更新し、隣接基地局[m]に値nを設定する。そして、mの値を1インクリメントし、m+1とする。S74の処理終了後、あるいは、S73においてRSRP-RSRP[n]≧閾値Tが成立する場合(S73;No)には、DSP10cは、現時点で設定されているnの値を1インクリメントし、n=n+1に更新する(S75)。そして、S71~S75の一連の処理がn回分繰り返し実行された時点で、上述した干渉低減基地局決定処理は終了する。
 上述したように、基地局10は、自局の形成するセルC1に在圏する移動局30を介して、基地局20を含む複数の基地局からの受信レベルを示すRSRPを収集する。基地局10のRSRPとの差が小さい基地局は、基地局10の近傍に位置する移動局30における受信レベルが高いことから、移動局30から高い干渉を受けるとの推測が可能である。したがって、基地局10は、自局とのRSRPの差が小さい基地局を選定し、当該基地局を干渉低減の要求先基地局とすることで、干渉低減を要求する基地局を干渉の多く発生する基地局に限定する。その結果、干渉の影響を受け易い基地局に絞った、より効率的な干渉低減が可能となる。また、各基地局が割当て可能なリソースの内、干渉低減のために未使用とする必要性の高いリソースだけが、空きリソースとして確保されこととなる。その結果、リソースの利用効率の低減が抑制される。なお、干渉低減基地局決定処理により干渉低減の要求先として選定される基地局は、複数であってもよい。また、必ずしも基地局10に隣接する基地局である必要はない。
 次に、実施例1の更なる変形態様である変形例2について説明する。基地局20は、基地局10からの干渉低減要求に従って確保されたリソース量が、事前に設定された閾値Tを超過した場合、干渉低減を行う(新たな空きリソースを設ける)ことなく、その旨を基地局10に通知する。
 図11は、変形例2に係る基地局20の実行する干渉低減可否判定処理を説明するためのフローチャートである。S81では、DSP20cは、現時点で干渉低減のために確保されているリソース数である干渉低減リソース数rと、許否判定用に設定された閾値Tとの大小関係を比較する。当該比較の結果、干渉低減リソース数r<閾値Tが成立する場合(S81;Yes)には、基地局20に、依然として確保可能なリソースが存在するものと判断することができる。したがって、DSP20cは、rに1をインクリメントした上で(S82)、干渉低減を要求されたリソースを確保する(S83)。これに対して、上記比較の結果、干渉低減リソース数r≧閾値Tが成立する場合(S81;No)には、基地局20に、これ以上空きリソースを確保する余裕がないと判断することができる。したがって、DSP20cは、上位ネットワーク終端NPU20aを介して、干渉低減が不可である旨、すなわち、干渉低減を要求されたリソースを確保することができないこと、を基地局10に通知する(S84)。これにより、基地局10からの干渉低減要求は、拒否される。干渉低減要求の拒否を通知された基地局10は、基地局20に対する再度の干渉低減要求を所定時間停止する。
 基地局20は、移動局30からの干渉の影響を極力排除するためには、できる限り多くの干渉低減リソースを確保することが望ましい。しかしながら、干渉低減リソースの確保は、未使用リソースの増加を伴うことから、基地局20が、基地局10からの干渉低減要求を無制限に受け入れると、空きリソース量が増大し、リソースの利用効率が著しく低下する恐れがある。そこで、基地局20は、干渉低減リソース数に上限値を設定し、未使用リソース数が当該値を超えた場合には、新たに干渉低減リソースを確保することなく、通常通り、他の移動局へのリソース割当てを行うものとする。これにより、基地局20は、所定の干渉低減機能を維持しつつ、干渉低減リソースの増加による他の移動局への影響、ひいては無線リソースの利用効率の低下を抑えることができる。その結果、限りあるリソースの有効活用が可能となる。
 以上説明したように、本実施例に係る無線通信システム1は、移動局30と通信する基地局10と基地局20とを有する。基地局10は、ネットワーク終端部13を有する。ネットワーク終端部13は、移動局30に対するリソース割当ての結果を、基地局20に送信する。換言すれば、基地局10は、基地局10が移動局30からの音声データの受信に使用するリソースを特定可能な上記音声スケジューリングの結果を、干渉低減要求として基地局20に通知する。基地局20は、ネットワーク終端部23とスケジューリング部24とを有する。ネットワーク終端部23は、ネットワーク終端部13により送信された、基地局10による上記リソース割当ての結果を受信する。スケジューリング部24は、当該リソース割当ての結果に基づき、基地局20が割当て可能なリソースの内、移動局30から干渉を受けるリソースを特定し、当該リソースの移動局30に対する割当てを停止する。
 これにより、基地局20は、基地局10が移動局30から音声データを受信する際、干渉を発生させる原因となるリソースを移動局30に割り当てないようにする。したがって、移動局30から基地局10、20への干渉は、容易かつ確実に減少する。その結果、カバレッジを拡大しつつ、セル間干渉を低減することが可能となる。
 次に、実施例2について説明する。実施例2に係る無線通信システムの構成は、図1に示した実施例1における無線通信システムの構成と同様である。また、実施例2における2つの基地局の構成は、図2に示した実施例1に係る2つ基地局10、20の構成と同様である。したがって、実施例2では、実施例1と共通する構成要素には、同一の参照符号を用いると共に、その詳細な説明は省略する。実施例2が実施例1と異なる点は、基地局20が、移動局30に対して割り当てないことを決定したリソースを、セルC2の中央付近に位置する別の移動局に割り当てる点である。以下においては、このような実施例2における基地局10、20の動作を、図12、図13を参照しながら、実施例1との相違点を中心として説明する。
 図12は、実施例2に係る基地局20の実行する干渉低減対象リソースのマーキング処理を説明するためのフローチャートである。図12に示す処理は、実施例1に係る動作の説明において参照した図9に示す処理と、S43の処理を除き同様である。したがって、共通するステップには、末尾が同一の参照符号を付すと共に、その詳細な説明は省略する。具体的には、図12のステップS41、S42、S44は、図9に示したステップS31、S32、S34にそれぞれ対応する。
 図12のS43では、DSP20cは、割当てタイミング[n]及び無線リソース[n]を確保すると共に、無線リソース[n]に“m”を、割当てタイミング[n]に“t”を設定することで、リソース[t][m]の使用状況を“干渉低減”に更新する。これにより、基地局20は、基地局10からの干渉低減要求の受信に伴い、干渉低減の対象とするリソースに対して、干渉低減の対象であることを示す処理(マーキング処理)を実行する。
 基地局20は、移動局30以外の移動局に対するリソースのスケジューリングを行う際、より効果的な干渉低減を実現するために、例えば、SIR(Signal to Interference Ratio)の高いリソースを優先的に割り当てる手法を採ることができる。図13は、当該手法が適用された、干渉低減対象リソースの他移動局への割当て処理を説明するためのフローチャートである。
 まずS51では、DSP20cは、パラメータ(選択リソース、SIRの最大値)の初期化を行う。これにより、スケジューリング結果である選択リソースとしてヌル(無効値)の値が、SIRの最大値SIRmaxとして“-∞”が、それぞれ初期値として設定される。SIRmaxは変数であり、初期値としては、如何なる無線リソースもとり得ない最小の値(-∞)が設定される。S52では、DSP20cは、周波数リソースの数を、ループ回数Mに設定する。これにより、m=0~M-1のループが設定される。S53では、DSP20cは、既にリソースが使用されているか否かを判定するため、リソース[m]におけるリソースの使用状況を確認し、“未使用”である場合(S53;No)には、S54の処理に移行する。一方、S53における判定の結果、リソース[m]が“使用済”である場合(S53;Yes)には、DSP20cは、当該リソース[m]をスケジューリングの対象から除外し、mの値を1インクリメントすることで、次のリソースの判定に移行する(S57)。
 S54では、DSP20cは、リソースの割当て対象候補である移動局がセルC2の端部に位置し、かつ、上記リソース[m]が“干渉低減”対象のリソースに設定されているか否かの判定を行う。これらの条件の内、少なくとも一方を欠く場合(S54;No)には、DSP20cは、リソース[m]におけるSIRであるSIR[m]の値と、現時点のSIRmax値との大小関係を比較する(S55)。当該比較の結果、SIR[m]値>SIRmax値を満たす場合(S55;Yes)には、DSP20cは、S53~S55に上記した条件を満たすリソース(該当リソース)を、選択リソースとしてメモリ20eに記録する(S56)。これにより、基地局20において、セルC2中央付近に位置する移動局に割り当てられる選択リソースとして“m”が、SIRmaxとしてSIR[m]が、それぞれ設定される。その結果、SIRmaxの値は、上記該当リソースのSIR値により更新される。S56にて最終的に選択されたリソースが、基地局20によるスケジューリングの可能なリソースの内、SIRが最大のリソースとして、スケジューリングされる。なお、S56の処理により、選択リソースは、干渉低減対象のリソースとして記録されるに留まり、この時点では、無線リソースとして確保されない。
 S56の処理終了後、DSP20cは、現時点で設定されているmの値を1インクリメントし、m=m+1とする(S57)。そして、S52~S57の一連の処理がm回分繰り返し実行された時点で、上述したマーキング処理は終了する。
 なお、S54に上述した条件が何れも肯定の場合(S54;Yes)、あるいは、S55における判定の結果、SIR[m]値≦SIRmax値である場合(S55;No)にも、DSP20cは、S56の処理を省略して、S57の処理を実行する。すなわち、DSP20cは、無線リソース[m]をスケジューリングの対象とすることなく、mの値を1インクリメントすることで、次のリソースの判定に移行する(S57)。
 上述したように、基地局20は、受信部22とスケジューリング部24とを有する。受信部22は、移動局30以外の移動局が、基地局20の形成するセルC2の端部に位置するか否かを判定する。スケジューリング部24は、受信部22により上記移動局がセルC2の端部以外に位置すると判定された場合、特定された上記リソースを上記移動局に割り当てる。実施例1では、基地局20は、基地局10から干渉低減を要求されたリソースについては、使用しないことにより、移動局30からの干渉を低減するものとした。実施例1は、最も容易かつ確実に干渉を低減することができる反面、使用されないリソースが多く、リソースの利用効率が低いという問題点がある。すなわち、基地局20が特定のリソースを不使用とすると、本来別の移動局に割当て可能であるにも拘らず、空白のリソースが生じることとなり、利用効率の観点から好ましくない。そこで、実施例2に係る無線通信システム1では、基地局20は、不使用とした該当リソースにつき、基地局10への干渉を与えない移動局(例えば、セルC2端部以外に位置する移動局)に充当する割当てを行う。これにより、基地局20は、無線リソースを有効的に活用することができる。したがって、無線通信システム1は、セル間干渉の低減と無線リソースの利用効率の向上とを同時に実現することが可能となる。
 すなわち、基地局20は、各タイミングにおけるスケジューリング処理を実行する際、移動局毎のセル端判定結果を利用して、セル端部に位置する移動局に対しては、干渉低減対象のリソースを割り当てず、セル端部に位置しない移動局に対して当該リソースの割当てを行う。本実施例では、基地局20は、送信を行う移動局が選択済であり、かつ、当該移動局に対して高SIRのリソースを優先的に割り当てる手法を採ることを想定して説明した。しかしながら、基地局20が上記スケジューリング処理を実行する手法は、かかる手法に限定されない。例えば、基地局20が、セルC2に在圏する全ての移動局につき、各リソースのスケジューリングメトリックを比較し、最大のスケジューリングメトリックを与える移動局に対して、リソースを割り当てる手法がある。また、例えば、基地局20が、所定のタイミングで送信を行う移動局を複数選択し、選択された移動局間においてスケジューリングメトリックの比較を行う手法がある。
 次に、実施例3について説明する。実施例3に係る無線通信システムの構成は、図1に示した実施例1における無線通信システム1の構成と同様である。また、実施例3における基地局の構成は、基地局10の受信部12を除き、図2に示した実施例1に係る基地局の構成と同様である。したがって、実施例3では、実施例1と共通する構成要素には、同一の参照符号を用いると共に、その詳細な説明は省略する。実施例3が実施例1と異なる点は、基地局10、20が、移動局30から送信される音声データの協調受信を行う点である。以下においては、このような実施例3に係る基地局10の構成及び動作を、図14~図16を参照しながら、実施例1との相違点を中心として説明する。
 図14は、実施例3に係る基地局10の機能的構成を示す図である。図14に示すように、実施例3に係る基地局10の受信部12は、復調部121と復号部122とを有する。復調部121は、受信RF部11から受信ベースバンド信号を入力し、復号部122に復調信号を出力する。図15は、実施例3に係る基地局10の復号部122の構成を示す図である。図15に示すように、復号部122は、復号前処理部122aと、HARQ(Hybrid Automatic Repeat reQuest)合成部122bと、HARQバッファ122dと、データ復号部122cとを有する。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。
 復号前処理部122aは、ネットワーク終端部13により受信された復調信号を入力し、対応するユーザプロセスの受信完了状態を確認すると共に、既に受信が完了している場合、復号前処理を実行することなく、受信データを破棄する。復号前処理部122aは、上記確認の結果、受信が完了していない場合には、入力された復調信号に対し、デレートマッチング等の適切な復号前処理を実行することで、復調信号を復号前データに変換する。HARQ合成部122bは、復号前処理部122aから入力された復号前データと、当該データに対応する過去の(前回迄の)復号前データとを合成する。データ復号部122cは、HARQ合成部122bから合成後の復号前データを入力すると、当該データを復号する。また、データ復号部122cは、復号後のデータに対するCRC(Cyclic Redundancy Check)判定により正常な復号が確認されると、当該データを受信データとしてネットワーク終端部13に出力する。その後、ネットワーク終端部13は、受信データを上位ネットワークNへ送信する。なお、CRC判定の結果がNGであった場合、データ復号部122cは、一旦データ復号部122cに入力された合成後の復号前データを、次回以降の再送に用いるため、HARQバッファ122dに格納させる。
 基地局20は、基地局10から干渉低減を要求されたリソースを用いて、基地局10と同様にデータの受信を行い、基地局10は、この受信データを、自局による受信データと合成することで、セル端部に位置する移動局30の更なる受信特性の向上を図る。すなわち、基地局10のDSP10cは、基地局20宛に干渉低減要求を送信する際、パイロット系列番号や変調方式等、データの受信に必要となるパラメータを付与し、上記要求と併せて上位ネットワーク終端NPU10aに送信させる。基地局20のDSP20cは、上記干渉低減要求により指定されたパラメータを用いて、該当リソースからデータを受信する。DSP20cは、当該受信データから得られた復調信号を、上位ネットワーク終端NPU20aを介して、基地局10に送信する。
 より具体的には、まず、DSP20cは、上述した干渉低減対象リソースのマーキング処理(図12参照)を実行することにより、干渉低減を実行するタイミングとその対象となる無線リソースとをメモリ20eに記録する。次に、DSP20cは、スケジューリング処理を実行する各タイミングにおいて、干渉低減が必要となる無線リソースが存在する場合には、該当リソースによるデータの受信を、上記干渉低減要求により指定されたパラメータと共に設定する。RF回路20dは、通常のリソースによるデータ受信と同様に、上記該当リソースを用いたデータ受信を行うが、このデータを復号することなく、復号前の復調信号を基地局10に転送する。基地局10のDSP10cは、復調信号の受信に伴い、これと対応する、自局が受信した復号前のデータとの合成を行った後、復号処理を実行する。DSP10cは、復号されたデータに上述のCRC判定を施した後、当該データを受信データとして上位ネットワーク終端NPU10aに出力する。そして、上位ネットワーク終端NPU10aは、入力された受信データを上位ネットワークNへ送信する。
 ここで、実施例3に係る無線通信システム1は、基地局間通信を伴うことから、基地局10が、上位ネットワーク終端NPU10a経由で基地局20から復調信号を受信するタイミングには、遅延の発生が想定される。図16は、実施例3に係る基地局10による、復調信号の受信タイミングに遅延が発生する様子を示す図である。図16に示すように、基地局10における復調信号の受信タイミングと、基地局20における復調信号の受信タイミングとの間には、基地局20から基地局10への復調信号の転送に伴うネットワーク遅延dが断続的に発生する。しかしながら、基地局10のDSP10cは、復調信号の受信から、合成、復号に至る一連の処理を、基地局20からの復調信号の受信を契機として非同期に実行する。したがって、基地局10は、ネットワーク遅延dの影響を殆ど受けることなく、移動局30の送信する音声データの受信を完了することができる。
 上述したように、基地局10のネットワーク終端部13は、基地局20がリソースによりデータを受信する際に用いる情報(パイロット系列番号、変調方式等のパラメータ)を、基地局20に送信する。基地局20の受信部22は、基地局10のネットワーク終端部13により送信された上記情報を用いて、移動局30から上記リソースにより送信されたデータを受信する。基地局20は、上記データを基地局10に送信するネットワーク終端部23を更に有する。基地局10は、移動局30から送信されたデータと、基地局20のネットワーク終端部23により送信された上記データとを合成して受信する受信部12を更に有する。
 すなわち、実施例3に係る無線通信システム1によれば、基地局10は、セルC1端部に位置する移動局30からの音声データを受信する。同時に、基地局10は、基地局20に対して、音声スケジューリング結果を干渉低減要求として通知する。これに併せて、基地局10は、基地局20が移動局30からの音声データを受信するのに必要なパラメータを、事前に基地局20に送信する。干渉低減要求を受けた基地局20は、上記パラメータを用いて、上記該当リソースの割り当てられた、移動局30からの音声データを受信した後、当該受信結果を基地局10に送信(フィードバック)する。これにより、基地局10は、移動局30から直接的に受信した音声データと、移動局30から基地局20を経由して間接的に受信した音声データとを合成受信する。したがって、基地局10は、本来自局が受信すべき音声データを、基地局20を代用して基地局20に受信させることにより、基地局20との間で、協調的なデータ受信が可能となる。また、基地局20においても、移動局30からの干渉を低減するために本来使用しないリソースを、移動局30からの音声データ受信のために使用することができる。このため、空きリソースの有効活用が可能となる。その結果、協調受信による更なる収容効率の向上が実現される。
 なお、上記各実施例及び変形例では、基地局10がセルC1端部における移動局30の存否を判定する手法として、伝搬損失を用いるものとした。しかしながら、これに限らず、基地局10のDSP10cは、TA(Timing Advance)等のタイミング情報を用いて、遅延量の大きい移動局をセル端部に位置する移動局と判定する等、遅延量の大小に基づき、上記存否を判定するものとしてもよい。また、基地局10のDSP10cは、移動局30から報告されるRSRPを、基地局10と隣接する基地局20との間で比較し、その差が所定の閾値Tよりも小さい場合に、移動局30がセルC1端部に位置すると判定するものとしてもよい。すなわち、DSP10cは、各基地局10、20のRSRPの差分の大小に基づき、上記存否を判定するものとしてもよい。
 また、上記各実施例及び変形例では、LTEが適用された無線通信システム1を例示したが、適用される無線通信方式は、これに限らず、例えば、HSDPA(High Speed Downlink Packet Access)等、時分割のリソース割当てを行うものであればよい。
 また、上記説明では、個々の実施例毎に個別の構成、及び動作を説明した。しかしながら、各実施例に係る無線通信システム1は、他の実施例や変形例に特有の構成要素を併せて有するものとしてもよい。また、実施例、変形例毎の組合せについても、2つに限らず、3つ以上の組合せ等、任意の形態を採ることが可能である。例えば、実施例2、3に係る基地局10が、変形例1のように、上述の干渉低減基地局決定処理を実行するものとしてもよい。また、変形例1に係る基地局20が、変形例2に特有の干渉低減可否判定機能をもつものとしてもよい。更に、1つの無線通信システムが、実施例1~3及び変形例1、2において説明した全ての構成要素を併有するものとしてもよい。
 上記各実施例では、移動局として、携帯電話、スマートフォン、PDA(Personal Digital Assistant)を想定して説明したが、本発明は、移動局に限らず、基地局との間で通信を行う様々な通信機器に対して適用可能である。
 また、基地局10、20の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的態様は、図示のものに限らず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することもできる。例えば、基地局10の送信部15と送信RF部16、あるいは、基地局10の受信部12と送信部15をそれぞれ1つの構成要素として統合してもよい。また、無線通信を制御する受信部12、送信部15と、有線通信を制御するネットワーク終端部13とを1つの通信部としてもよい。反対に、スケジューリング部14に関し、音声スケジューリング処理を実行する部分と、セル端部における移動局の存否を判定する部分とに分散してもよい。また、受信部12、22につき、データ受信機能とセル端判定機能とに分散してもよい。更に、メモリ10e、20eを、基地局10、20の外部装置としてネットワークやケーブル経由で接続するようにしてもよい。
 1 無線通信システム
 10、20 基地局
 10a、20a 上位ネットワーク終端NPU
 10b、20b CPU
 10c、20c ベースバンド処理DSP
 10d、20d RF回路
 10e、20e メモリ
 11、21 受信RF部
 12、22 受信部
 121 復調部
 122 復号部
 122a 復号前処理部
 122b HARQ合成部
 122c データ復号部
 122d HARQバッファ
 13、23 ネットワーク終端部
 14、24 スケジューリング部
 15、25 送信部
 16、26 送信RF部
 30 移動局
 A1 アンテナ
 C1、C2 セル
 d ネットワーク遅延
 m 周波数
 M 周波数リソース数
 N 上位ネットワーク
 r 干渉低減リソース数
 r0、r21、r40 空きリソース
 R 無線リソース
 T 割当てタイミング
 T、T、T、T 閾値
 TSCD スケジューリング期間
 TAMR 音声フレーム間隔
 TON 許容遅延

Claims (5)

  1.  移動局と通信する第1基地局と、第2基地局とを有する無線通信システムであって、
     前記第1基地局は、
     前記移動局に対するリソース割当ての結果を、前記第2基地局に送信する送信部を有し、
     前記第2基地局は、
     前記送信部により送信された、前記第1基地局による前記リソース割当ての結果を受信する受信部と、
     前記リソース割当ての結果に基づき、前記第2基地局が割当て可能なリソースの内、前記移動局から干渉を受けるリソースを特定し、当該リソースの前記移動局に対する割当てを停止する制御部と
     を有することを特徴とする無線通信システム。
  2.  前記第2基地局は、
     移動局が、前記第2基地局の形成するセルの端部に位置するか否かを判定する判定部を更に有し、
     前記制御部は、前記判定部により前記移動局が前記セルの端部以外に位置すると判定された場合、特定された前記リソースを前記移動局に割り当てることを特徴とする請求項1に記載の無線通信システム。
  3.  前記第1基地局の送信部は、前記第2基地局が前記リソースによりデータを受信する際に用いる情報を、前記第2基地局に送信し、
     前記第2基地局の受信部は、前記第1基地局の送信部により送信された前記情報を用いて、前記移動局から前記リソースにより送信されたデータを受信し、
     前記第2基地局は、
     前記データを前記第1基地局に送信する送信部を更に有し、
     前記第1基地局は、
     前記移動局から送信されたデータと、前記第2基地局の送信部により送信された前記データとを合成して受信する受信部を更に有することを特徴とする請求項1に記載の無線通信システム。
  4.  移動局と通信する第1基地局との間で通信する基地局であって、
     前記第1基地局による前記移動局に対するリソース割当ての結果を前記第1基地局から受信する受信部と、
     前記リソース割当ての結果に基づき、基地局が割当て可能なリソースの内、前記移動局から干渉を受けるリソースを特定し、当該リソースの前記移動局に対する割当てを停止する制御部と
     を有することを特徴とする基地局。
  5.  移動局と通信する第1基地局と、第2基地局とを有する無線通信システムにおける無線通信方法であって、
     前記第1基地局は、
     前記移動局に対するリソース割当ての結果を、前記第2基地局に送信し、
     前記第2基地局は、
     前記第1基地局による前記リソース割当ての結果を前記第1基地局から受信し、
     前記リソース割当ての結果に基づき、前記第2基地局が割当て可能なリソースの内、前記移動局から干渉を受けるリソースを特定し、当該リソースの前記移動局に対する割当てを停止する
     ことを特徴とする無線通信方法。
PCT/JP2011/073567 2011-10-13 2011-10-13 無線通信システム、基地局、及び無線通信方法 WO2013054417A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013538372A JP5994786B2 (ja) 2011-10-13 2011-10-13 無線通信システム、基地局、及び無線通信方法
EP11873830.1A EP2768268A4 (en) 2011-10-13 2011-10-13 WIRELESS COMMUNICATION SYSTEM, BASE STATION, AND WIRELESS COMMUNICATION METHOD
PCT/JP2011/073567 WO2013054417A1 (ja) 2011-10-13 2011-10-13 無線通信システム、基地局、及び無線通信方法
US14/249,986 US20140220997A1 (en) 2011-10-13 2014-04-10 Radio communication system, base station, and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073567 WO2013054417A1 (ja) 2011-10-13 2011-10-13 無線通信システム、基地局、及び無線通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/249,986 Continuation US20140220997A1 (en) 2011-10-13 2014-04-10 Radio communication system, base station, and radio communication method

Publications (1)

Publication Number Publication Date
WO2013054417A1 true WO2013054417A1 (ja) 2013-04-18

Family

ID=48081494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073567 WO2013054417A1 (ja) 2011-10-13 2011-10-13 無線通信システム、基地局、及び無線通信方法

Country Status (4)

Country Link
US (1) US20140220997A1 (ja)
EP (1) EP2768268A4 (ja)
JP (1) JP5994786B2 (ja)
WO (1) WO2013054417A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015126782A1 (en) * 2014-02-24 2015-08-27 Qualcomm Incorporated Techniques for enabling asynchronous transmissions in an unlicensed radio frequency spectrum band

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9357505B2 (en) 2011-12-26 2016-05-31 Kt Corporation Processing digital signal
US9485737B2 (en) * 2011-12-26 2016-11-01 Kt Corporation Controlling radio units to transmitting signal with different transmission power
US10136396B2 (en) * 2014-09-30 2018-11-20 At&T Mobility Ii Llc Method and system for network assisted interference coordination and mitigation
US10499416B2 (en) * 2017-01-10 2019-12-03 Qualcomm Incorporated Downlink channel rate matching of synchronization signal block transmissions in a new radio wireless communication system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085359A1 (ja) 2005-02-09 2006-08-17 Fujitsu Limited 無線通信システム
WO2006087797A1 (ja) * 2005-02-18 2006-08-24 Fujitsu Limited 基地局及び該基地局における干渉低減方法
JP2007151146A (ja) 2004-08-31 2007-06-14 Matsushita Electric Ind Co Ltd アップリンクデータ送信のスケジューリングに関連する情報を通信する方法、移動通信システム、基地局、無線ネットワークコントローラ、および移動端末
WO2008136219A1 (ja) * 2007-04-26 2008-11-13 Kyocera Corporation 移動通信システム、基地局装置およびその制御方法
JP2010534997A (ja) 2007-08-13 2010-11-11 エルジー エレクトロニクス インコーポレイティド VoIPパケットを伝送する方法
JP2011049987A (ja) 2009-08-28 2011-03-10 Fujitsu Ltd 基地局装置及び通信方法
WO2011052067A1 (ja) * 2009-10-30 2011-05-05 富士通株式会社 基地局、通信方法および移動局

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231436B2 (ja) * 2006-11-13 2013-07-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線通信システム
US8705506B2 (en) * 2007-11-16 2014-04-22 Qualcomm Incorporated Time reservation for a dominant interference scenario in a wireless communication network
US20110205929A1 (en) * 2008-10-28 2011-08-25 Agency For Science, Technology And Research method of optimising bandwidth allocation in a wireless communication network
KR101591848B1 (ko) * 2009-03-26 2016-02-04 삼성전자주식회사 이동통신 시스템에서 자원 할당을 위한 장치 및 방법
KR101633495B1 (ko) * 2009-09-22 2016-06-24 삼성전자주식회사 무선 통신 시스템에서 지연을 고려한 다중노드 협력 방법
JP5512793B2 (ja) * 2010-03-12 2014-06-04 京セラ株式会社 基地局
CN102792734B (zh) * 2010-03-17 2015-11-25 富士通株式会社 无线通信系统、通信控制方法基站及移动终端
WO2011119750A1 (en) * 2010-03-23 2011-09-29 Interdigital Patent Holdings, Inc. Method, apparatus and system for enabling resource coordination in cellular networks

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151146A (ja) 2004-08-31 2007-06-14 Matsushita Electric Ind Co Ltd アップリンクデータ送信のスケジューリングに関連する情報を通信する方法、移動通信システム、基地局、無線ネットワークコントローラ、および移動端末
WO2006085359A1 (ja) 2005-02-09 2006-08-17 Fujitsu Limited 無線通信システム
WO2006087797A1 (ja) * 2005-02-18 2006-08-24 Fujitsu Limited 基地局及び該基地局における干渉低減方法
WO2008136219A1 (ja) * 2007-04-26 2008-11-13 Kyocera Corporation 移動通信システム、基地局装置およびその制御方法
JP2010534997A (ja) 2007-08-13 2010-11-11 エルジー エレクトロニクス インコーポレイティド VoIPパケットを伝送する方法
JP2011049987A (ja) 2009-08-28 2011-03-10 Fujitsu Ltd 基地局装置及び通信方法
WO2011052067A1 (ja) * 2009-10-30 2011-05-05 富士通株式会社 基地局、通信方法および移動局

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Medium Access Control (MAC) protocol specification", TS36.321, EVOLVED UNIVERSAL TERRESTRIAL RADIO ACCESS (EUTRA
"Physical layer procedures", TS36.213, EVOLVED UNIVERSAL TERRESTRIAL RADIO ACCESS (EUTRA
RL-074990, ON THE NEED FOR VOIP COVERAGE ENHANCEMENT FOR THE E-UTRA UL
See also references of EP2768268A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015126782A1 (en) * 2014-02-24 2015-08-27 Qualcomm Incorporated Techniques for enabling asynchronous transmissions in an unlicensed radio frequency spectrum band
KR20160126013A (ko) * 2014-02-24 2016-11-01 퀄컴 인코포레이티드 비허가된 라디오 주파수 스펙트럼 대역에서 비동기식 송신들을 가능하게 하기 위한 기술들
US9949315B2 (en) 2014-02-24 2018-04-17 Qualcomm Incorporated Techniques for enabling asynchronous transmissions in an unlicensed radio frequency spectrum band
KR101948194B1 (ko) 2014-02-24 2019-02-14 퀄컴 인코포레이티드 비허가된 라디오 주파수 스펙트럼 대역에서 비동기식 송신들을 가능하게 하기 위한 기술들

Also Published As

Publication number Publication date
JP5994786B2 (ja) 2016-09-21
EP2768268A1 (en) 2014-08-20
JPWO2013054417A1 (ja) 2015-03-30
US20140220997A1 (en) 2014-08-07
EP2768268A4 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP6621934B2 (ja) 遅延トレラント・セッション及び遅延センシティブ・セッションの改善した共存
US9215043B2 (en) Systems and methods for scheduling and MU-MIMO in uplink Vo-IP for OFDMA/SCFDMA networks
JP7533667B2 (ja) 通信システム
US10264592B2 (en) Method and radio network node for scheduling of wireless devices in a cellular network
MX2014006518A (es) Utilizacion eficiente del espectro con subtramas casi en blanco.
JP7543393B2 (ja) 多数の構成されたグラントリソースによるharqプロセスの共有
CN106793047B (zh) 一种上行功率控制方法及基站
US9042280B2 (en) Methods and apparatus for half duplex scheduling
JP5994786B2 (ja) 無線通信システム、基地局、及び無線通信方法
KR20210040169A (ko) 동적 전력 공유 기능을 지원하지 않는 mr-dc 장치에 대한 동적 전력 관리 시스템 및 방법
US11824661B2 (en) HARQ-ack handling with multiple PUCCH in multi-TRP transmission in NR
CN116349334A (zh) 用于侧链路传输的资源分配技术,以及基于侧链路通信可靠性的资源分配技术之间的动态选择
JP5486090B2 (ja) 無線基地局及び通信制御方法
WO2020097775A1 (en) Communications with preconfigured uplink resources
CN105515718A (zh) 一种多业务控制信道发送的方法和装置
JP4656310B2 (ja) スケジューリング方法及び移動通信システム
WO2018036601A1 (en) Enabling efficient uplink (re) transmissions in an interfere-cancellation based system using network assistance
US11895688B2 (en) Hybrid macro diversity and cooperative relaying method of ultra-reliable and real-time multi-user communication
EP3949628A1 (en) Assigning of resources based on grouping of wireless devices
JP5969124B2 (ja) ユーザ装置の半永続スケジューリングのためのアップリンク制御チャネルリソース割り当て
WO2024031712A1 (en) Resource allocation for different frame structures in sidelink communication
CN117500052A (zh) 传输处理方法、装置及设备
CN117413483A (zh) 反馈信息的传输

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538372

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011873830

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011873830

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE