WO2013053704A2 - Optimierte speichenrotor- innengeometrie - Google Patents

Optimierte speichenrotor- innengeometrie Download PDF

Info

Publication number
WO2013053704A2
WO2013053704A2 PCT/EP2012/069961 EP2012069961W WO2013053704A2 WO 2013053704 A2 WO2013053704 A2 WO 2013053704A2 EP 2012069961 W EP2012069961 W EP 2012069961W WO 2013053704 A2 WO2013053704 A2 WO 2013053704A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor shaft
permanent magnets
webs
sectors
Prior art date
Application number
PCT/EP2012/069961
Other languages
English (en)
French (fr)
Other versions
WO2013053704A3 (de
Inventor
Norbert Kupke
Kevin Gutmann
Achim Neubauer
Bjoern Nommensen
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201280050112.7A priority Critical patent/CN104067482B/zh
Priority to EP12778679.6A priority patent/EP2766976B1/de
Publication of WO2013053704A2 publication Critical patent/WO2013053704A2/de
Publication of WO2013053704A3 publication Critical patent/WO2013053704A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets

Definitions

  • the present invention relates to a spoke rotor for an electric machine, having a rotor shaft rotatable about a rotor axis, a base body, which is arranged concentrically around the rotor shaft, and at least one permanent magnet which is arranged like a spoke in a recess of the base body.
  • the present invention further relates to an electric machine with a spoke rotor according to the invention and to a method for producing the spoke rotor according to the invention.
  • Electric machines are, for example, electric motors, starters, generators or auxiliary drives, for example adjusting drives for motor vehicles.
  • the rotor or the stator for generating an electromagnetic field with at least one permanent magnet.
  • the permanent magnets are often used, for example in permanent magnet servomotors, in recesses of a mostly iron-containing body.
  • FIG. 1 shows a detail of a sectional view of this spoke rotor 1.
  • the spoke rotor 1 is arranged on a rotor shaft 2 and has a main body 3 with a plurality of recesses in which the permanent magnets 4 are arranged like a spoke, so that they extend on the one hand in the axial direction and on the other in the radial direction of the spoke rotor 1.
  • the permanent magnets 4 are polarized alternately oppositely in the tangential direction, so that in the circumferential direction of the rotor 1 always a magnetic north pole N with a magnetic south pole S alternates.
  • a control current in the stator (not shown) is controlled so that a rotating magnetic field results, which entrains the spoke rotor 1.
  • the base body 3 On its side facing the rotor shaft 2, the base body 3 has a fastening ring 33. By means of the fastening ring 33, the base body 3 is usually fixed to the rotor shaft 2. On the mounting ring 33, a retaining lug 331 is provided for fastening each permanent magnet 4, which holds the permanent magnet 4 in the recess. In order to keep the stray flux on this side as low as possible, air gaps 5 are provided and the oppositely polarized areas of the base body 3 only connected via a narrow longitudinal web 32 with the mounting ring 33 and the retaining lug 331.
  • spoke rotors 1 have a high power density.
  • leakage fluxes reduce the deliverable power of the machine, since the leakage fluxes no Contribute to the output engine torque or delivered to the power of the electric machine and therefore reduce the efficiency of the electric machine.
  • the object of the invention is to provide a rotor for an electric machine in which permanent magnets, in particular sintered magnets, for example rare earth magnets such as NdFeB magnets, are arranged, wherein the iron content of the main body of the rotor is optimized with respect to its magnetic flux, so that the leakage losses are minimized in the rotor, and the rotor either a comparatively higher power density and improved efficiency or the magnetic volume is minimized, and wherein the spoke rotor is also inexpensive to produce.
  • permanent magnets in particular sintered magnets, for example rare earth magnets such as NdFeB magnets
  • a rotor for an electrical machine which comprises a rotor shaft which extends in an axial direction along a rotor axis, and which comprises a base body which is arranged concentrically around the rotor shaft and non-rotatably attached thereto.
  • Permanent magnets are embedded in the main body of the rotor. Furthermore, the main body on collecting webs, which adjoin the permanent magnets, and which are provided for collecting the magnetic Nutzhnes.
  • the rotor is characterized in that the permanent magnets protrude beyond the collecting webs on their side facing the rotor shaft.
  • the invented The rotor according to the invention can therefore be optimized with respect to its power density, and / or the size and weight of the permanent magnets and / or the size of the rotor can be reduced with the same power density.
  • the base body is preferably made of a paramagnetic material with a relative permeability ⁇ ⁇ which is considerably greater than 1 and therefore conducts the magnetic flux well, for example from an iron-containing and in particular of a soft magnetic material.
  • a paramagnetic material with a relative permeability ⁇ ⁇ which is considerably greater than 1 and therefore conducts the magnetic flux well, for example from an iron-containing and in particular of a soft magnetic material.
  • electrical sheet metal which is also referred to as transformer sheet metal.
  • the main body of a plurality of fins is further preferred to manufacture as a plate pack.
  • the lamellae are joined, for example, by stamped packetization to the disk pack, where they are connected to each other, for example by means of punching nubs or other forms.
  • Such a laminated core has the advantage that it does not necessarily have to be reworked with a chip-removing process, and that when using insulated electrical steel also eddy current is reduced.
  • the production of the base body from a plurality of fins is possible even without punched packetization, provided that the base body is fixed with a sleeve on the rotor shaft.
  • the sleeve may be prefabricated, or basic body,
  • Permanent magnets and rotor shaft are joined together by means of a curable medium, for example by means of a thermoplastic or a thermoset.
  • the base body is made of a solid material or at least partially of a solid material.
  • the permanent magnets are arranged like spokes in the base body. Spoke-like in the context of the invention, a permanent magnet is arranged, which extends parallel to a fictitious plane, which is spanned by a line extending radially from the rotor axis and a line extending parallel to the rotor axis.
  • the rotor comprises the rotor shaft, which extends in an axial direction, and the main body, which is arranged concentrically around the rotor shaft and non-rotatably attached thereto, wherein the main body has sectors which are spaced from the rotor shaft, and between each of which a permanent magnet is arranged like a spoke, and wherein the distance of the sectors from the rotor shaft is greater than the distance of the permanent magnets from the rotor shaft.
  • the permanent magnets protrude beyond the sectors. It has also been found here that less magnetic flux leakage to the rotor shaft flow away, so that the power density of an electric machine with a rotor of this embodiment is increased compared to a conventional electric machine.
  • this rotor also has collecting webs, which are furthermore preferably provided on the side of the sectors facing the rotor shaft. Preferably, they are each arranged on both sides of the permanent magnets.
  • the spacing of the collecting webs from the rotor shaft is preferably dimensioned such that the permanent magnets are enclosed by the main body or by the sectors in such a way that no demagnetization of the permanent magnets occurs during operation of the rotor, wherein the distance between the permanent magnets and the rotor shaft is smaller in each tolerance position, as the distance of the collecting webs from the rotor shaft.
  • the collecting webs are formed approximately V-shaped. It is conceivable both a pointed V-shape, as well as a flattened V-shape and a rounded V-shape or curved shape.
  • the base body has a fastening ring which is arranged on the side of the base body facing the rotor shaft.
  • the attachment is also possible alternatively or additionally by means of a sleeve.
  • the sectors of such a base body with a fastening ring are preferably at least partially connected by means of longitudinal webs with the fastening ring.
  • the longitudinal webs are therefore arranged on the rotor shaft side facing the sectors. Preferably, they are provided between the collecting webs.
  • the sectors or all sectors may also be connected to one another by means of connecting webs.
  • the connecting webs are preferably arranged on the side of the sectors facing away from the rotor shaft. Since the permanent magnets are arranged between the sectors, the connecting webs also fix the permanent magnets in a radial direction of the rotor. If no connecting web is provided between the sectors, it is preferable to arrange holding webs on the sectors for fixing the permanent magnets in the radial direction.
  • At least a portion of the leakage flux flows via the longitudinal webs to the rotor shaft. It is preferred to reduce the width of the longitudinal webs. to minimize the leakage fluxes that flow off the longitudinal webs.
  • the permanent magnets are arranged in recesses of the main body or between the sectors.
  • the recesses are preferably provided as large as possible. As a result, on the one hand, each permanent magnet is easier to insert into its recess.
  • the remaining space of the recess is preferably filled with a non-conductive material, in particular with air or a plastic. Since the remaining space is filled with a non-conductive material, the leakage flows over the free space are very low.
  • clamping means are preferably provided, which are particularly preferably arranged in each case in the remaining space.
  • the clamping means are preferably elastic and / or plastic, very particularly preferably as springs.
  • the clamping means are made of a non-conductive material, for example of a plastic material. Also preferably, they are made of spring steel.
  • the distance difference between the distance of the permanent magnets to the rotor shaft and the distance of the sectors or the collecting webs to the rotor shaft is the projection to which the permanent magnets project on their side facing the rotor shaft, the sectors or the collecting webs.
  • the ratio of the supernatant to the length of the longitudinal webs is:
  • HM height of the permanent magnets in the radial direction
  • Bsatsteg flux density in the longitudinal web, where the longitudinal web is saturated [T]
  • the object is further achieved with an electric machine with the rotor according to the invention.
  • the power density of the electric machine is very large, so that it has a very good efficiency and is relatively small and inexpensive to build.
  • the electric machine is an electric motor, preferably a synchronous machine, particularly preferably an electrically commutated synchronous machine. Due to the large power density of the Electric motor deliverable torque very large. Or alternatively, an inventive electric motor with the same deliverable torque with smaller permanent magnets and / or compact buildable in comparison to a conventional electric motor.
  • the rotor according to the invention can also be used for other electrical machines, for example for a generator, an adjustment drive or servo drive for a motor vehicle or for a starter.
  • the object is further achieved with a hand tool with such an electric machine, in particular with an electric motor.
  • the hand tool is preferably a drill, a jig saw or the like.
  • the rotor according to the invention is also suitable for household appliances, portable electric garden tools or the like.
  • the object is further achieved with an adjustment drive for a motor vehicle, in particular a steering drive, with such an electric motor.
  • FIGS. 2 (a) - (b) show respective sections of various embodiments of rotors according to the invention in which permanent magnets are arranged like a spoke
  • Fig. 3 shows in Fig. 3 (a) - (b) by way of example an achievable torque of an electric motor with rotor according to the invention in changing a supernatant of the permanent magnet
  • FIGS. 4 (a) - (b) shows in FIGS. 4 (a) - (b) in each case a section of a conventional as well as a section of a rotor according to the invention, the course of the magnetic flux being shown by way of example.
  • Fig. 1 shows a section of a spoked rotor according to the prior art, as already described above.
  • Fig. 2 shows in (a) a section of a first embodiment of a rotor according to the invention.
  • the rotor 1 has a main body 3 which comprises sectors 31 between which permanent magnets 4 are arranged.
  • the main body 3 additionally comprises a fastening ring 33, which is provided for the rotationally fixed attachment of the rotor 1 to a rotor shaft 2, which extends in the axial direction 20 of a rotor axis 23.
  • Each of the sectors 31 of the main body 3 is connected by means of a longitudinal web 32 with the mounting ring 33.
  • Sectors 31, mounting ring 33 and longitudinal webs 32 are integrally formed here in particular of electrical steel.
  • the longitudinal webs 32 are each arranged between the collecting webs 321.
  • the sectors 31 also have holding webs 35 on the side 42 facing away from the rotor shaft 2, by means of which the permanent magnets 4 are fixed in a radial direction 21 of the rotor 1.
  • the permanent magnets 4 are arranged like spokes in recesses 5 of the main body 3, so that they (not shown) parallel to a fictitious plane extending through a in the radial direction 21 to the rotor shaft 2 and extending in the axial direction 20 to the rotor shaft 2 line (not shown) is clamped.
  • the recess 5 is provided so as to surround the permanent magnets 4.
  • On the side facing the rotor shaft 2 side 41 it is provided so large that the permanent magnets 4 are inserted into the recess 5.
  • a free space 51 remains on the side 41 facing the rotor shaft 2.
  • clamping means (not shown) may be provided in the free space, which are formed, for example, elastic or resilient.
  • the permanent magnets 4 protrude beyond the sectors 31 and the collection webs 321 on the side 41 facing the rotor shaft 2.
  • the distance 40 of the permanent magnets 4 from the rotor shaft 2 is thus smaller than the distance 310 of the sectors or collecting webs 321 of the rotor shaft second
  • FIG. 2 (b) shows a section of a single lamella 1 1 of a main body 3 of a further embodiment of a rotor 1 according to the invention, wherein a permanent magnet 4 and rotor shaft 2 and rotor axis 23 are schematically indicated by dashed lines.
  • the base body 3 has the sectors 31 with collecting webs 321, but no fastening ring 33 and no longitudinal webs 32.
  • the sectors 31 are partially connected to one another by means of connecting webs 34 on the side 42 facing away from the rotor shaft 2.
  • the collection webs 321 are rounded here.
  • the base body 3 is preferably secured against rotation on the rotor shaft 2 by means of a sleeve (not shown).
  • a sleeve is preferably formed of an elastic and / or plastic material, in particular a plastic, preferably a thermoplastic.
  • form-fitting means 51 1 are provided here in the body 3 in the form of undercuts.
  • the free space 51 remaining on the side 41 facing the rotor shaft 2 after joining the permanent magnets 4 surrounds here the entire rotor shaft 2 and, in a preferred embodiment, is completely filled with the sleeve formed from non-conductive material.
  • the permanent magnets 4 are fixed on their side facing away from the rotor shaft 2 41 in each case by means of the sleeve against the radial direction 21 in its recess 5.
  • the distance 310 between the sectors 31 and the collecting webs 321 and the rotor shaft 2 is greater than the distance 40 of the permanent magnets 4 to the rotor shaft 2.
  • the rotors 1 according to the invention are preferably used in steering drives.
  • the invention is not limited to steering drives, but is generally suitable for spoke rotors, for example, also for drive motors of hand tool machines.
  • permanent magnets 4 are used, which proportionally contain a rare earth metal, for example neodymium. In principle, however, other permanent magnets can be used.
  • Typical flux densities of the permanent magnets 4 are 1, 4 - 1, 2T. With such a flux density, the axial rotor length or permanent magnet length is preferably in the range 10-100 mm, very particularly preferably in the range 15-65 mm, the preferred rotor diameter is 30-70 mm, particularly preferably 47-52 mm.
  • the permanent magnet height HM in the radial direction 21 is preferably in the range 2 to 20, more preferably in the range 4 - 10mm, and its width B M in the tangential direction 22 is preferably less than 15mm, more preferably less than 7mm.
  • the web length H L ST of the longitudinal web 32 can vary significantly. It is preferably about 2 - 30mm, more preferably 2 - 20mm.
  • the magnet supernatant ⁇ varies between a few fractions mm up to 2 mm, particularly preferably up to 1.5 mm.
  • FIG. 3 shows in Fig. 3 (a) - (b) by way of example an achievable torque of an electric motor (not shown) with a rotor 1 according to the invention of the embodiment of Fig. 2 (a) with change of the supernatant .DELTA. ⁇ of the permanent magnet 4.
  • FIG Fig. 3 (a) shows the measurement results in tabular form
  • Fig. 3 (b) graphically, with the projection of the permanent magnets on the Y-axis, and the achievable torque on the X-axis.
  • the supernatant ⁇ of the permanent magnet 4 and its height H M in the unit [mm] the torque in the unit [Nm].
  • the cross-sectional geometry of the rotor corresponds to that of FIG. 2 (a) and is chosen as an example for this measurement.
  • the height H M of the permanent magnet 4 and the length H L st of the longitudinal webs 32 are chosen to be constant.
  • the leakage flux is also dependent on a width B L st of the longitudinal webs 32.
  • a width B L st of the longitudinal webs 32 In the case of a rotor 1 with longitudinal webs 32, as selected here by way of example, these are therefore to be dimensioned just in such a way that they have sufficient mechanical strength and, on the other hand, are made as narrow as possible in order to minimize the scattering losses.
  • B L st of the longitudinal webs 32 from here about B L st a 0.7 mm shows that an optimum ratio of the supernatant .DELTA. ⁇ the permanent magnets 4 to the height H M of the permanent magnets of ⁇ / ⁇ ⁇ s 0.068 sets.
  • the ratio of the supernatant ⁇ to the length H L st of the longitudinal ridges 32 should be at least AH / H L st - £ 1, 1 * ⁇ / ⁇ , or even AH / H L st ⁇ AH / H M , In the present embodiment, the ratio is about AH / H L is st s 0.072 optimally selected.
  • FIGS. 4 (a) and (b) in each case a magnetic field calculation in a section of a rotor 1 is shown by way of example.
  • 4 (a) shows a detail of a conventional rotor 1, in which the permanent magnets 4 are completely embedded between the sectors 31, and
  • FIG. 4 (b) shows a section of a rotor 1 according to the invention, in which the permanent magnets 4 beyond the sectors 31 protrude.
  • the sectors 31 of the two embodiments differ here only by the collecting ribs 321, whose length L1 in the conventional rotor 1 is greater than the length L2 in the rotor 1 according to the invention.
  • the magnetic field lines which pass over the clearance 51 and the longitudinal webs 32 into the mounting ring 33 as scattering losses, are significantly lower than in the case of permanent magnets embedded completely between the sectors 31 4th Due to the lower stray flux losses, the magnetic field usable in an air gap (not shown) between a stator (not shown) of an electric machine (not shown) and its rotor 1 is greater, so that a higher torque can be transmitted with the electric machine. This allows alternatively to reduce the height H M of the permanent magnets 4 or their volume in order to achieve the same torque.
  • a magnetic flux in the air gap between the rotor 1 and the stator, and therefore a certain achievable torque, is approximately computable with:
  • B L st is the longitudinal ridge with the smallest possible width
  • a known ratio of the supernatant .DELTA. ⁇ of the permanent magnets 4 to the height H L st of the longitudinal webs 32 of the rotor 1 or a known ratio of the supernatant .DELTA. ⁇ to the volume H M * B M of the permanent magnets 4 can be with AH / H L st ⁇ ⁇ / ⁇ ⁇ and the above formula to determine an optimum supernatant ⁇ .
  • ⁇ -uftspalt ( ⁇ / (0.0216 * BM) * L * ax ial BMagnet) - (B
  • _ST Laxial * * Bsatsteg) ⁇ (0.0216 * * BM (air gap + (BLST * * Laxial Bsatsteg) ) Laxial * B

Abstract

Die vorliegende Erfindung betrifft einen Rotor für eine elektrische Maschine, mit einer Rotorwelle, die sich in eine axiale Richtung erstreckt, und einem Grundkörper, der konzentrisch um die Rotorwelle angeordnet und drehfest an dieser befestigt ist, wobei im Dauermagnete eingebettet sind, und wobei der Grundkörper Sammelstege aufweist, die an die Dauermagnete angrenzen, wobei die Dauermagnete an ihrer der Rotorwelle zugewandten Seite über die Sammelstege überstehen. Die vorliegende Erfindung betrifft weiterhin einen insbesondere erfindungsgemäßen Rotor für eine elektrische Maschine mit einer Rotorwelle, die sich in eine axiale Richtung erstreckt, und einem Grundkörper, der konzentrisch um die Rotorwelle angeordnet und drehfest an dieser befestigt ist, wobei der Grundkörper Sektoren aufweist, die von der Rotorwelle beabstandet sind, und zwischen denen jeweils ein Dauermagnet speichenartig angeordnet ist, wobei der Abstand der Sektoren von der Rotorwelle größer ist, als der Abstand der Dauermagnete von der Rotorwelle. Die vorliegende Erfindung betrifft weiterhin eine elektrische Maschine mit dem erfindungsgemäßen Rotor sowie einen Lenkantrieb mit der elektrischen Maschine.

Description

Beschreibung
Optimierte Speichenrotor- Innengeometrie
Stand der Technik
Die vorliegende Erfindung betrifft einen Speichenrotor für eine elektrische Maschine, mit einer um eine Rotorachse drehbaren Rotorwelle, einem Grundkörper, der konzentrisch um die Rotorwelle angeordnet ist, und zumindest einem Dauermagneten, der in einer Aussparung des Grundkör- pers speichenartig angeordnet ist. Die vorliegende Erfindung betrifft weiterhin eine elektrische Maschine mit einem erfindungsgemäßen Speichenrotor sowie ein Verfahren zur Herstellung des erfindungsgemäßen Speichenrotors. Elektrische Maschinen sind beispielsweise Elektromotoren, Starter, Generatoren oder Hilfsantriebe, beispielsweise Versteilantriebe für Kraftfahrzeuge.
Bei solchen elektrischen Maschinen ist es bekannt, den Rotor oder den Stator zur Erzeugung eines elektromagnetischen Feldes mit zumindest einem Dauermagneten auszustatten. Dabei werden die Dauermagnete häufig, beispielsweise in dauermagneterregten Servomotoren, in Aussparungen eines zumeist eisenhaltigen Grundkörpers eingesetzt.
Bekannt sind sogenannte Speichenrotoren, bei denen sich die Dauermagnete speichenartig, d. h. in radialer Richtung, im Rotor erstrecken. Ein solcher Speichenrotor ist beispielsweise aus der Druckschrift WO 2009/046549 A2 bekannt. Die Fig. 1 zeigt einen Ausschnitt aus einem Schnittbild dieses Speichenrotors 1 . Der Speichenrotor 1 ist an einer Rotorwelle 2 angeordnet und weist einen Grundkörper 3 mit einer Vielzahl von Aussparungen auf, in denen die Dauermagnete 4 speichenartig angeordnet sind, so dass sich diese zum Einen in axialer Richtung und zum Anderen in radialer Richtung des Speichenrotors 1 erstrecken. Die Dauermagnete 4 sind in tangentialer Richtung abwechselnd entgegengesetzt polarisiert, so dass sich in Umfangrichtung des Rotors 1 immer ein magnetischer Nordpol N mit einem magnetischen Südpol S abwechselt. Im Betrieb wird ein Regelstrom im Stator (nicht gezeigt) so gesteuert, dass sich ein rotierendes Magnetfeld ergibt, welches den Speichenrotor 1 mitnimmt.
An seiner der Rotorwelle 2 zugewandten Seite weist der Grundkörper 3 einen Befestigungsring 33 auf. Mittels des Befestigungsringes 33 wird der Grundkörper 3 zumeist an der Rotorwelle 2 fixiert. Am Befestigungsring 33 ist zur Befestigung jedes Dauermagneten 4 jeweils eine Haltenase 331 vorgesehen, die den Dauermagneten 4 in der Aussparung hält. Um den Streufluss an dieser Seite möglichst gering zu halten, sind Luftspalte 5 vorgesehen und die entgegen gesetzt polarisierten Bereiche des Grundkörpers 3 lediglich über einen schmalen Längssteg 32 mit dem Befestigungsring 33 und der Haltenase 331 verbunden. Außerdem ist auf der der Rotorwelle 2 abgewandten Seite bei solchen Speichenrotoren 1 häufig ebenfalls ein schmaler Verbindungssteg 34 vorgesehen, der den Dauermagneten 4 radial nach außen festhält und hier nur schematisch gezeigt ist. Durch die Querschnittsverengung wird versucht, den magnetischen Fluss in Sättigung zu bringen und in Richtung des Stators zu lenken.
Grundsätzlich weisen solche Speichenrotoren 1 zwar eine hohe Leistungsdichte auf. Jedoch verringern die an der der Rotorwelle 2 zugewandten sowie an der der Rotorwelle 2 abgewandten Seite auftretenden Streuflüsse die abgebbare Leistung der Maschine, da die Streuflüsse keinen Beitrag zum im Betrieb abgegebenen Motordrehmoment beziehungsweise zur abgegebenen Leistung der elektrischen Maschine leisten und den Wirkungsgrad der elektrischen Maschine daher verringern.
Offenbarung der Erfindung
Aufgabe der Erfindung ist es, einen Rotor für eine elektrische Maschine zu schaffen, in dem Dauermagnete, insbesondere gesinterte Magnete, beispielsweise Seltenerdmagnete wie NdFeB- Magnete, angeordnet sind, wobei der den Eisenanteil enthaltende Grundkörper des Rotors in Bezug auf seinen magnetischen Fluss optimiert ist, so dass die Streuverluste im Rotor minimiert sind, und der Rotor entweder eine vergleichsweise höhere Leistungsdichte sowie einen verbesserten Wirkungsgrad aufweist oder das Magnetvolumen minimiert ist, und wobei der Speichenrotor zudem kostengünstig herstellbar ist.
Die Aufgabe wird gelöst mit einem Rotor für eine elektrische Maschine, der eine Rotorwelle umfasst, die sich in eine axiale Richtung entlang einer Rotorachse erstreckt, und der einen Grundkörper umfasst, der konzentrisch um die Rotorwelle angeordnet und drehfest an dieser befestigt ist. Im Grundkörper des Rotors sind Dauermagnete eingebettet. Weiterhin weist der Grundkörper Sammelstege auf, die an die Dauermagnete angrenzen, und die zum Sammeln des magnetischen Nutzflusses vorgesehen sind. Der Rotor ist dadurch gekennzeichnet, dass die Dauermagnete an ihrer der Rotorwelle zugewandten Seite über die Sammelstege überstehen.
Es hat sich gezeigt, dass magnetische Streuflüsse, die zur Rotorwelle hin abfließen, bei über die Sammelstege hinausragenden Dauermagneten geringer sind, als bei Dauermagneten, die nicht über die Sammelstege hinausragen. Aufgrund der geringeren Streuflussverluste ist die Leistungsdichte einer elektrischen Maschine mit einem solchen Rotor größer, als die Leistungsdichte einer herkömmlichen elektrischen Maschine. Der erfin- dungsgemäße Rotor ist daher bezüglich seiner Leistungsdichte optimierbar, und/oder die Größe und das Gewicht der Dauermagnete und/oder die Größe des Rotors sind bei gleicher Leistungsdichte verringerbar.
Der Grundkörper ist bevorzugt aus einem paramagnetischen Werkstoff mit einer Permeabilitätszahl μΓ, die erheblich größer ist als 1 und daher den magnetischen Fluss gut leitet, gefertigt, beispielsweise aus einem eisenhaltigen und insbesondere aus einem weichmagnetischen Werkstoff. Be- vorzugt wird hierfür Elektroblech, dass auch als Trafo- Blech bezeichnet wird, verwendet.
Es ist weiterhin bevorzugt, den Grundkörper aus einer Vielzahl von Lamellen als Lamellenpaket zu fertigen. Die Lamellen werden beispielsweise durch Stanzpaketierung zu dem Lamellenpaket gefügt, wobei sie beispielsweise mittels Stanznoppen oder anderer Formen miteinander verbunden werden. Ein solches Blechpaket hat den Vorteil, dass es nicht zwingend mit einem spanabtragenden Verfahren nachbearbeitet werden muss, und dass bei Verwendung von isoliertem Elektroblech außerdem die Wirbelstrombildung reduziert ist.
In einer weiteren bevorzugten Ausführungsform ist die Herstellung des Grundkörpers aus einer Vielzahl von Lamellen auch ohne Stanzpaketierung möglich, sofern der Grundkörper mit einer Hülse an der Rotorwelle festgelegt ist. Dafür kann die Hülse vorgefertigt sein, oder Grundkörper,
Dauermagnete und Rotorwelle werden mittels eines aushärtbaren Mediums aneinander gefügt, beispielsweise mittels eines Thermoplasten oder eines Duroplasten. Weiterhin ist eine Ausführungsform bevorzugt, bei der der Grundkörper aus einem Vollmaterial oder zumindest teilweise aus einem Vollmaterial hergestellt ist. Bevorzugt sind die Dauermagnete speichenartig im Grundkörper angeordnet. Speichenartig im Sinne der Erfindung ist ein Dauermagnet angeordnet, der sich parallel einer fiktiven Ebene erstreckt, welche durch eine radial von der Rotorachse ausgehende Linie sowie eine sich parallel zur Rotorachse erstreckende Linie aufgespannt ist.
In einer weiteren bevorzugten Ausführungsform, die die Aufgabe ebenfalls löst, umfasst der Rotor die Rotorwelle, die sich in eine axiale Richtung erstreckt, und den Grundkörper, der konzentrisch um die Rotorwelle angeordnet und drehfest an dieser befestigt ist, wobei der Grundkörper Sektoren aufweist, die von der Rotorwelle beabstandet sind, und zwischen denen jeweils ein Dauermagnet speichenartig angeordnet ist, und wobei der Abstand der Sektoren von der Rotorwelle größer ist, als der Abstand der Dauermagnete von der Rotorwelle.
Auch in dieser Ausführungsform des Rotors ragen die Dauermagneten über die Sektoren hinaus. Es hat sich auch hier gezeigt, dass weniger magnetische Streuflüsse zur Rotorwelle hin abfließen, so dass auch die Leistungsdichte einer elektrischen Maschine mit einem Rotor dieser Ausführungsform im Vergleich zu einer herkömmlichen elektrischen Maschine vergrößert ist.
Es ist bevorzugt, dass auch dieser Rotor Sammelstege aufweist, die weiterhin bevorzugt an der der Rotorwelle zugewandten Seite der Sektoren vorgesehen sind. Vorzugsweise sind sie jeweils beidseitig der Dauermagnete angeordnet. Der Abstand der Sammelstege von der Rotorwelle ist bevorzugt so bemessen, dass die Dauermagnete vom Grundkörper beziehungsweise von den Sektoren so umschlossen sind, dass im Betrieb des Rotors keine Entmagnetisierung der Dauermagneten auftritt, wobei der Abstand der Dauermagneten zur Rotorwelle hin in jeder Toleranzlage kleiner ist, als der Abstand der Sammelstege von der Rotorwelle. In einer bevorzugten Ausführungsform sind die Sammelstege etwa V- förmig ausgebildet. Dabei ist sowohl eine spitze V- Form, als auch eine abgeflachte V- Form als auch eine abgerundete V- Form oder geschwungene Form denkbar.
Zur Befestigung des Grundkörpers beziehungsweise seiner Sektoren an der Rotorwelle ist eine Ausführungsform bevorzugt, in der der Grundkörper einen Befestigungsring aufweist, der an der der Rotorwelle zugewand- ten Seite des Grundkörpers angeordnet ist. Die Befestigung ist aber auch alternativ oder zusätzlich mittels einer Hülse möglich.
Die Sektoren eines solchen Grundkörpers mit Befestigungsring sind bevorzugt zumindest teilweise mittels Längsstegen mit dem Befestigungsring verbunden. Die Längsstege sind daher an der der Rotorwelle zugewandten Seite der Sektoren angeordnet. Bevorzugt sind sie zwischen den Sammelstegen vorgesehen.
Alternativ oder zusätzlich zu den Längsstegen können zumindest einige der Sektoren oder alle Sektoren auch mittels Verbindungsstegen miteinander verbunden sein. Die Verbindungsstege sind bevorzugt an der der Rotorwelle abgewandten Seite der Sektoren angeordnet. Da die Dauermagnete zwischen den Sektoren angeordnet sind, fixieren die Verbindungsstege die Dauermagnete zudem in eine radiale Richtung des Ro- tors. Sofern zwischen den Sektoren kein Verbindungssteg vorgesehen ist, ist es bevorzugt, an den Sektoren Haltestege zum Fixieren der Dauermagnete in die radiale Richtung anzuordnen.
Bei einer Ausführungsform des Grundkörpers mit Befestigungsring und Längsstegen fließt zumindest ein Teil der Streuflüsse über die Längsstege zur Rotorwelle hin ab. Es ist bevorzugt, die Breite der Längsstege zu mi- nimieren, um die über die Längsstege abfließenden Streuflüsse zu minimieren.
Die Dauermagnete sind in Aussparungen des Grundkörpers beziehungsweise zwischen den Sektoren angeordnet. Die Aussparungen sind bevorzugt möglichst groß vorgesehen. Dadurch ist einerseits jeder Dauermagnet leichter in seine Aussparung fügbar. Zudem ist es bevorzugt, dass nach dem Fügen der Dauermagnete in die Aussparungen zwischen den Sektoren und den Dauermagneten an ihrer der Rotorwelle zugewandten Seite, und der Rotorwelle beziehungsweise dem Befestigungsring ein Freiraum verbleibt. Der verbleibende Freiraum der Aussparung ist bevorzugt mit einem nichtleitenden Material, insbesondere mit Luft oder einem Kunststoff, gefüllt. Da der verbleibende Freiraum mit einem nichtleitenden Material gefüllt ist, sind die über den Freiraum abfließenden Streuflüsse sehr gering.
Zur Befestigung der Dauermagnete sind bevorzugt Klemmmittel vorgesehen, die besonders bevorzugt jeweils in dem verbleibenden Freiraum angeordnet sind. Die Klemmmittel sind bevorzugt elastisch und/oder plastisch ausgebildet, ganz besonders bevorzugt als Federn. In einer bevorzugten Ausführungsform sind die Klemmmittel aus einem nicht leitenden Material hergestellt, beispielsweise aus einem Kunststoff. Ebenfalls bevorzugt sind sie aus Federstahl gefertigt.
Die Abstandsdifferenz zwischen dem Abstand der Dauermagnete zur Rotorwelle und dem Abstand der Sektoren beziehungsweise der Sammelstege zur Rotorwelle ist der Überstand, um den die Dauermagnete an ihrer der Rotorwelle zugewandten Seite die Sektoren beziehungsweise die Sammelstege überragen.
Es ist bevorzugt, dass für das Verhältnis des Überstandes zur Länge der Längsstege gilt:
Figure imgf000010_0001
mit
ΔΗ : Überstand der Dauermagnete (314)
HLst : Länge der Längsstege
HM : Höhe der Dauermagnete in radialer Richtung
Ganz besonders bevorzugt ist AH/HLst ^ ΔΗ/ΗΜ.
Es hat sich gezeigt, dass eine Flussdichte in dem unterhalb des Dauermagneten verbleibenden Freiraum, und somit ein erreichbares Drehmoment, berechenbar ist mit:
Φΐ-uftspalt = ΦΜ39ΠΘ1 " Φ5ΐΓβυ8ΐβ9
Φΐ-uftspalt = (HM * Laxial * BMagnet)— (B|_ST * Laxial * Bsatsteg) mit
Laxiai = Länge des Dauermagneten in axialer Richtung [mm]
BLST = Breite des Dauermagneten [mm]
Φΐ-uftspait = magnetischer Fluss im Luftspalt zwischen Rotor und Stator [T] ΦΜ39ΠΘΙ = magnetischer Fluss im Dauermagneten
= magnetischer Fluss im Längssteg
BMagnet = Flussdichte im Dauermagneten [T]
Bsatsteg = Flussdichte im Längssteg, bei der der Längssteg gesättigt ist [T]
Die Aufgabe wird weiterhin gelöst mit einer elektrischen Maschine mit dem erfindungsgemäßen Rotor. Die Leistungsdichte der elektrischen Maschine ist sehr groß, so dass sie einen sehr guten Wirkungsgrad aufweist und vergleichsweise klein und kostengünstig baubar ist. In einer bevorzugten Ausführungsform ist die elektrische Maschine ein Elektromotor, bevorzugt eine Synchronmaschine, besonders bevorzugt eine elektrisch kommutierte Synchronmaschine. Aufgrund der großen Leistungsdichte ist das vom Elektromotor abgebbare Drehmoment sehr groß. Oder alternativ ist ein erfindungsgemäßer Elektromotor mit gleichem abgebbarem Drehmoment mit kleineren Dauermagneten und/oder kompakter baubar im Vergleich zu einem herkömmlichen Elektromotor. Der erfindungsgemäße Rotor ist aber auch für andere elektrische Maschinen nutzbar, beispielsweise für einen Generator, einen Versteilantrieb oder Servoantrieb für ein Kraftfahrzeug oder für einen Starter.
Die Aufgabe wird weiterhin gelöst mit einer Handwerkzeugmaschine mit einer solchen elektrischen Maschine, insbesondere mit einem Elektromotor. Die Handwerkzeugmaschine ist bevorzugt eine Bohrmaschine, eine Stichsäge oder ähnlich. Prinzipiell eignet sich der erfindungsgemäße Rotor aber auch für Haushaltsmaschinen, tragbare elektrische Gartengeräte oder ähnlich.
Die Aufgabe wird weiterhin gelöst mit einem Versteilantrieb für ein Kraftfahrzeug, insbesondere einem Lenkantrieb, mit einem solchen Elektromotor.
Im Folgenden wird die Erfindung anhand von Figuren beschrieben. Die Figuren sind lediglich beispielhaft und schränken den allgemeinen Erfindungsgedanken nicht ein.
Fig. 1 zeigt einen Ausschnitt aus einem Speichenrotor gemäß dem Stand der Technik, zeigt in den Fig. 2(a) - (b) jeweils Ausschnitte aus verschiedenen Ausführungsformen erfindungsgemäßer Rotoren, in denen Dauermagnete speichenartig angeordnet sind, Fig. 3 zeigt in Fig. 3(a) - (b) beispielhaft ein erreichbares Drehmoment eines Elektromotors mit erfindungsgemäßem Rotor bei Veränderung eines Überstandes des Dauermagneten, und
Fig. 4 zeigt in den Fig. 4(a) - (b) jeweils einen Ausschnitt aus einem herkömmlichen sowie einen Ausschnitt aus einem erfindungsgemäßen Rotor, wobei der Verlauf des magnetischen Flusses beispielhaft gezeigt ist.
Fig. 1 zeigt einen Ausschnitt aus einem Speichenrotor gemäß dem Stand der Technik, wie oben bereits beschrieben.
Fig. 2 zeigt in (a) einen Ausschnitt aus einer ersten Ausführungsform eines erfindungsgemäßen Rotors.
Der Rotor 1 weist einen Grundkörper 3 auf, der Sektoren 31 umfasst, zwischen denen Dauermagnete 4 angeordnet sind. Der Grundkörper 3 umfasst zudem einen Befestigungsring 33, der zur drehfesten Befestigung des Rotors 1 an einer Rotorwelle 2 vorgesehen ist, die sich in axialer Richtung 20 einer Rotorachse 23 erstreckt. Jeder der Sektoren 31 des Grundkörpers 3 ist mittels eines Längssteges 32 mit dem Befestigungsring 33 verbunden. Sektoren 31 , Befestigungsring 33 und Längsstege 32 sind hier einstückig insbesondere aus Elektroblech gebildet.
Angrenzend an die Dauermagnete 4 weisen die Sektoren 31 Sammelstege 321 auf, die etwa V-förmig ausgebildet sind, und hier eine abgeflachte Kontur aufweisen. Die Längsstege 32 sind jeweils zwischen den Sammelstegen 321 angeordnet. Die Sektoren 31 weisen an der der Rotorwelle 2 abgewandten Seite 42 außerdem Haltestege 35 auf, durch die die Dauermagnete 4 in einer radialen Richtung 21 des Rotors 1 fixiert sind. Die Dauermagnete 4 sind in Aussparungen 5 des Grundkörpers 3 speichenartig angeordnet, so dass sie sich parallel einer fiktiven Ebene (nicht gezeigt) erstrecken, die durch eine sich in radialer Richtung 21 zur Rotorwelle 2 und eine sich in axialer Richtung 20 zur Rotorwelle 2 erstreckende Linie (nicht gezeigt) aufgespannt ist.
Zwischen den Sektoren 31 ist die Aussparung 5 so vorgesehen, dass sie die Dauermagnete 4 umgibt. An der der Rotorwelle 2 zugewandten Seite 41 ist sie hingegen so groß vorgesehen, dass die Dauermagnete 4 in die Aussparung 5 einschiebbar sind. Zudem verbleibt bei eingeschobenen Dauermagneten 4 an der der Rotorwelle 2 zugewandten Seite 41 ein Freiraum 51 . Zum Fixieren der Dauermagnete 4 gegen die radiale Richtung 21 können in dem Freiraum 51 Klemmmittel (nicht gezeigt) vorgesehen sein, die beispielsweise elastisch oder federnd ausgebildet sind.
Sichtbar ist hier, dass die Dauermagnete 4 an der der Rotorwelle 2 zugewandten Seite 41 über die Sektoren 31 beziehungsweise die Sammelstege 321 hinausragen. Der Abstand 40 der Dauermagnete 4 von der Rotorwelle 2 ist somit kleiner, als der Abstand 310 der Sektoren beziehungsweise Sammelstege 321 von der Rotorwelle 2.
Die Fig. 2(b) zeigt einen Ausschnitt aus einer einzelnen Lamelle 1 1 eines Grundkörpers 3 einer weiteren Ausführungsform eines erfindungsgemäßen Rotors 1 , wobei ein Dauermagnet 4 sowie Rotorwelle 2 und Rotorachse 23 schematisch durch gestrichelte Linien angedeutet sind.
Bei diesem Rotor 1 weist der Grundkörper 3 die Sektoren 31 mit Sammelstegen 321 auf, jedoch keinen Befestigungsring 33 und keine Längsstege 32. Die Sektoren 31 sind an der der Rotorwelle 2 abgewandten Seite 42 teilweise mittels Verbindungsstegen 34 miteinander verbunden. Zudem sind die Sammelstege 321 hier abgerundet ausgebildet. Bei einem solchen Rotor 1 wird der Grundkörper 3 bevorzugt mittels einer Hülse (nicht gezeigt) drehfest an der Rotorwelle 2 befestigt. Eine solche Hülse ist bevorzugt aus einem elastischen und/oder plastischen Material, insbesondere einem Kunststoff, vorzugsweise einem Thermoplast, gebildet. Zum Fügen sind hier im Grundkörper 3 Formschlussmittel 51 1 vorgesehen in Form von Hinterschneidungen.
Der an der der Rotorwelle 2 zugewandten Seite 41 nach dem Fügen der Dauermagnete 4 verbleibende Freiraum 51 umgibt daher hier die gesamte Rotorwelle 2 und ist in einer bevorzugten Ausführungsform vollständig mit der aus nichtleitendem Material gebildeten Hülse ausgefüllt. In dieser Ausführungsform werden die Dauermagnete 4 an ihrer der Rotorwelle 2 abgewandten Seite 41 jeweils mittels der Hülse gegen die radiale Richtung 21 in ihrer Aussparung 5 fixiert.
Auch in dieser Ausführungsform ist der Abstand 310 zwischen den Sektoren 31 beziehungsweise den Sammelstegen 321 und der Rotorwelle 2 größer, als der Abstand 40 der Dauermagnete 4 zur Rotorwelle 2. Dadurch weisen die Dauermagnete 4 auch hier den Überstand 314 auf.
Die erfindungsgemäßen Rotoren 1 werden bevorzugt in Lenkantrieben verwendet. Die Erfindung ist aber nicht auf Lenkantriebe beschränkt, sondern eignet sich allgemein für Speichenrotoren, beispielsweise ebenfalls für Antriebsmotoren von Handwerkzeugmaschinen. Bevorzugt werden Dauermagnete 4 eingesetzt, die anteilig ein Seltenerdmetall, beispielsweise Neodym, enthalten. Prinzipiell sind aber auch andere Dauermagnete verwendbar. Typische Flussdichten der Dauermagnete 4 liegen bei 1 ,4 - 1 ,2T. Bei einer solchen Flussdichte liegt die axiale Rotorlänge beziehungsweise Dauermagnetlänge bevorzugt im Bereich 10 - 100mm, ganz besonders bevorzugt im Bereich 15 - 65mm, der bevorzugte Rotordurchmesser bei 30 - 70mm, besonders bevorzugt bei 47 - 52mm. Die Dauermagnethöhe HM in radialer Richtung 21 liegt bevorzugt im Bereich 2 - 20, besonders bevorzugt im Bereich 4 - 10mm, und seine Breite BM in tangentialer Richtung 22 ist bevorzugt kleiner als 15mm, besonders bevorzugt kleiner als 7mm. Die Steglänge HLST des Längssteges 32 kann deutlich variieren. Sie beträgt bevorzugt etwa 2 - 30mm, besonders bevorzugt 2 - 20mm. Der Magnetüberstand ΔΗ variiert dabei zwischen weinigen Bruchteilen mm bis zu 2mm, besonders bevorzugt bis zu 1 ,5mm.
Fig. 3 zeigt in Fig. 3(a) - (b) beispielhaft ein erreichbares Drehmoment eines Elektromotors (nicht gezeigt) mit einem erfindungsgemäßen Rotor 1 der Ausführungsform der Fig. 2(a) bei Veränderung des Überstandes ΔΗ der Dauermagneten 4. Die Fig. 3(a) zeigt die Messergebnisse tabellarisch, die Fig. 3(b) grafisch, wobei der Überstand der Dauermagneten auf der Y-Achse aufgetragen ist, und das erreichbare Drehmoment auf der X- Achse. Bei der Messung ist der Überstand ΔΗ der Dauermagneten 4 sowie ihre Höhe HM in der Einheit [mm] bemessen, das Drehmoment in der Einheit [Nm].
Die Querschnittsgeometrie des Rotors entspricht der der Fig. 2(a) und ist für diese Messung beispielhaft gewählt. Zudem sind die Höhe HM der Dauermagneten 4 und die Länge HLst der Längsstege 32 konstant gewählt. Die Länge HLs der Längsstege 32 beträgt HLst = 6,93mm.
Durch die Messung ist sichtbar, dass sich ein maximales Drehmoment bei einem Überstand 314 von ΔΗ = 0,5mm ergibt.
Der Streufluss ist zudem von einer Breite BLst der Längsstege 32 abhängig. Bei einem Rotor 1 mit Längsstegen 32, wie er hier beispielhaft gewählt ist, sind diese daher gerade so zu dimensionieren, dass sie eine ausreichende mechanische Festigkeit aufweisen, und andererseits so schmal wie möglich ausgebildet sind, um die Streuverluste zu minimieren. Bei kleinst möglicher Breite BLst der Längsstege 32 von hier etwa BLst a 0,7mm zeigt sich, dass sich ein optimales Verhältnis des Überstandes ΔΗ der Dauermagnete 4 zur Höhe HM der Dauermagnete von ΔΗ/ΗΜ s 0,068 einstellt.
Um minimale Streuverluste zu erzielen, sollte für das Verhältnis des Überstandes ΔΗ zur Länge HLst der Längsstege 32 zumindest AH/HLst -£ 1 ,1 * ΔΗ/ΗΜ gelten, oder sogar AH/HLst ^ AH/HM. Im vorliegenden Ausführungsbeispiel ist das Verhältnis bei etwa AH/HLst s 0,072 optimal gewählt.
Anstelle des größeren erzielbaren Drehmomentes ist auch die Höhe HM der Dauermagnete 4 optimierbar. Um dasselbe Drehmoment wie bei einem herkömmlichen Rotor zu erreichen, könnte die Höhe HM der Dauermagnete 4 in einem erfindungsgemäßen Rotor 1 auf etwa HM = 7,1 mm gekürzt werden.
In den Fig. 4(a) und (b) ist jeweils beispielhaft eine Magnetfeldberechnung in einem Ausschnitt eines Rotors 1 gezeigt. Dabei zeigt die Fig. 4(a) einen Ausschnitt aus einem herkömmlichen Rotor 1 , bei dem die Dauermagnete 4 vollständig zwischen den Sektoren 31 eingebettet sind, und die Fig. 4(b) einen Ausschnitt aus einem erfindungsgemäßen Rotor 1 , bei dem die Dauermagnete 4 über die Sektoren 31 hinaus ragen. Und zwar unterscheiden sich die Sektoren 31 der beiden Ausführungsformen hier lediglich durch die Sammelstege 321 , deren Länge L1 bei dem herkömmlichen Rotor 1 größer ist, als die Länge L2 bei dem erfindungsgemäßen Rotor 1 .
Bei dem erfindungsgemäßen Rotor 1 , bei dem die Dauermagnete 4 über die Sektoren 31 überstehen, sind die Magnetfeldlinien, die als Streuverluste über den Freiraum 51 und die Längsstege 32 in den Befestigungsring 33 übergehen, deutlich geringer, als bei vollständig zwischen den Sektoren 31 eingebetteten Dauermagneten 4. Aufgrund der geringeren Streuflussverluste ist das in einem Luftspalt (nicht gezeigt) zwischen einem Stator (nicht gezeigt) einer elektrischen Maschine (nicht gezeigt) und ihrem Rotor 1 nutzbare Magnetfeld größer, so dass mit der elektrischen Maschine ein höheres Drehmoment über- tragbar ist. Dies ermöglicht alternativ, die Höhe HM der Dauermagnete 4 beziehungsweise ihr Volumen zu verringern, um dasselbe Drehmoment zu erreichen.
Ein magnetischer Fluss im Luftspalt zwischen dem Rotor 1 und dem Stator, und daher ein bestimmtes erreichbares Drehmoment, ist näherungsweise berechenbar mit:
Φΐ-uftspalt
Figure imgf000017_0001
(B|_ST * Laxial * Bsatsteg) Im obigen Beispiel beträgt bei kleinst möglicher Breite BLst der Längsstege
32 von BLst s 0,7mm das optimale Verhältnis des Überstandes ΔΗ zur Höhe HM der Dauermagnete 4 ΔΗ/ΗΜ ~ 0,068.
Bei einem bekannten Verhältnis des Überstandes ΔΗ der Dauermagnete 4 zur Höhe HLst der Längsstege 32 des Rotors 1 , beziehungsweise einem bekannten Verhältnis des Überstandes ΔΗ zum Volumen HM * BM der Dauermagnete 4 lässt sich mit AH/HLst ^ ΔΗ/ΗΜ und der o. g. Formel ein optimaler Überstand ΔΗ bestimmen. Bei einem Rotor 1 mit einer Querschnittsgeometrie, bei der beispielsweise im Vergleich zum vorgenannten Ausführungsbeispiel das Volumen HM * BM der Dauermagneten 4 vergrößert ist, sowie ein Dauermagnetmaterial mit einer größeren magnetischen Flussdichte BMagnet verwendet wird, gilt beispielsweise:
ΔΗ / (HM * Bm) = 0,0216 Ein optimaler Überstand ΔΗ der Dauermagneten 4 in den verbleibenden Freiraum 51 ist für einen solchen Rotor 1 berechenbar mit:
Φΐ-uftspalt = (ΔΗ / (0,0216 * BM) * Laxial * BMagnet)— (B|_ST * Laxial * Bsatsteg) ΔΗ = (0,0216 * BM * ( Luftspalt + (BLST * Laxial * Bsatsteg)) Laxial * B|\/|agnet

Claims

Ansprüche
1 . Rotor (1 ) für eine elektrische Maschine, mit einer Rotorwelle (21 ), die sich in eine axiale Richtung (2) erstreckt, und einem Grundkörper (3), der konzentrisch um die Rotorwelle (2) angeordnet und drehfest an dieser befestigt ist, wobei im Grundkörper (3) Dauermagnete (4) eingebettet sind, und wobei der Grundkörper (3) Sammelstege (321 ) aufweist, die an die Dauermagnete (4) angrenzen,
dadurch gekennzeichnet, dass
die Dauermagnete (4) an ihrer der Rotorwelle (2) zugewandten Seite (41 ) über die Sammelstege (321 ) überstehen.
2. Rotor (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass die Dauermagnete (4) speichenartig im Grundkörper (3) angeordnet sind.
3. Rotor (1 ) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Sammelstege (321 ) beidseitig der Dauermagnete (4) vorgesehen und/oder die Sammelstege (321 ) V- förmig ausgebildet sind.
4. Rotor (1 ) für eine elektrische Maschine, insbesondere nach einem der vorherigen Ansprüche, mit einer Rotorwelle (21 ), die sich in eine axiale Richtung (2) erstreckt, und einem Grundkörper (3), der konzentrisch um die Rotorwelle (2) angeordnet und drehfest an dieser befestigt ist, wobei der Grundkörper (3) Sektoren (31 ) aufweist, die von der Rotorwelle (2) beabstandet sind, und zwischen denen jeweils ein Dauermagnet (4) speichenartig angeordnet ist,
dadurch gekennzeichnet, dass der Abstand (31 0) der Sektoren (31 ) von der Rotorwelle (2) größer ist, als der Abstand (40) der Dauermagnete (4) von der Rotorwelle (2).
5. Rotor (1 ) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Grundkörper (3) einen Befestigungsring (33) umfasst, der an der der Rotorwelle (2) zugewandten Seite (41 ) des Grundkörpers (3) angeordnet ist.
6. Rotor (1 ) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest einige der Sektoren (31 ) mittels Längsstegen (32) mit dem Befestigungsring (33) verbunden sind.
7. Rotor (1 ) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Längsstege (32) zwischen den Sammelstegen (321 ) angeordnet sind.
8. Rotor (1 ) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass an den Sektoren (31 ) Haltestege (35) zum Fixieren der Dauermagnete (4) in eine radiale Richtung (21 ) vorgesehen sind, und/oder zumindest einige der Sektoren (31 ) mittels Verbindungsstegen (34) miteinander verbunden sind.
9. Rotor (1 ) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zwischen den Sektoren (31 ) und Dauermagneten (4) an ihrer der Rotorwelle (2) zugewandten Seite (41 ), und der Rotorwelle (2) oder dem Befestigungsring (33) ein Freiraum (5) vorgesehen ist, der mit einem nichtleitenden Material, insbesondere mit Luft oder einem Kunststoff, gefüllt ist.
1 0. Rotor (1 ) nach einem der vorherigen Ansprüche dadurch gekennzeichnet, dass
AH/H|_st ^ 1 , 1 * ΔΗ/ΗΜ mit
ΔΗ : Überstand (314) der Dauermagnete (4)
HLst : Länge der Längsstege (32)
HM : Höhe der Dauermagnete (4) in radialer Richtung (21 )
1 1 . Elektrische Maschine, insbesondere Elektromotor, mit dem Rotor (1 ) nach einem der vorherigen Ansprüche, wobei der Elektromotor vorzugsweise Bestandteil eines Lenkantriebs im Kraftfahrzeug ist.
PCT/EP2012/069961 2011-10-11 2012-10-09 Optimierte speichenrotor- innengeometrie WO2013053704A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280050112.7A CN104067482B (zh) 2011-10-11 2012-10-09 优化的辐条式转子内部几何结构
EP12778679.6A EP2766976B1 (de) 2011-10-11 2012-10-09 Optimierte speichenrotor- innengeometrie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011084294.2 2011-10-11
DE102011084294 2011-10-11

Publications (2)

Publication Number Publication Date
WO2013053704A2 true WO2013053704A2 (de) 2013-04-18
WO2013053704A3 WO2013053704A3 (de) 2014-07-10

Family

ID=47080471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/069961 WO2013053704A2 (de) 2011-10-11 2012-10-09 Optimierte speichenrotor- innengeometrie

Country Status (4)

Country Link
EP (1) EP2766976B1 (de)
CN (2) CN104067482B (de)
DE (1) DE102012218351A1 (de)
WO (1) WO2013053704A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935139A (zh) * 2014-03-18 2015-09-23 日本电产株式会社 马达

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013020461A1 (de) * 2013-05-15 2014-11-20 Diehl Ako Stiftung & Co. Kg Rotor für elektromechanische Maschine
DE102013226379A1 (de) * 2013-12-18 2015-06-18 Robert Bosch Gmbh Elektrische Maschine mit jeweils zumindest zwei Klemmnasen zur Befestigung eines Dauermagneten
US20160141928A1 (en) * 2014-11-13 2016-05-19 Hiwin Mikrosystem Corp. Rotor structure of interior-permanent-magnet motor
JP6464822B2 (ja) 2015-02-27 2019-02-06 日本電産株式会社 モータ
JP6492962B2 (ja) * 2015-05-20 2019-04-03 トヨタ紡織株式会社 磁石埋込型ロータ及び磁石埋込型ロータの製造方法
DE102017218152A1 (de) 2017-10-11 2019-04-11 Baumüller Nürnberg GmbH Rotor einer elektrischen Maschine
DE102017130608A1 (de) * 2017-12-19 2019-06-19 Hiwin Mikrosystem Corp. Rotor eines Drehmotors
US11791679B2 (en) 2021-08-19 2023-10-17 Nidec Motor Corporation Spoked rotor having deflectable magnet-retaining spokes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009046549A2 (de) 2007-10-11 2009-04-16 Thyssenkrupp Presta Ag Rotor für elektromotor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2289991B (en) * 1994-05-23 1998-12-02 Ching Chuen Chan A permanent magnet brushless dc motor
DE102005033824A1 (de) * 2005-07-12 2007-01-25 Danfoss Compressors Gmbh Rotor für einen Line-Start-Permanent-Magnet-Elektromotor
DE102007024406A1 (de) * 2007-05-25 2008-11-27 Robert Bosch Gmbh Rotoranordnung für einen Elektromotor
US8138649B2 (en) * 2007-08-02 2012-03-20 Remy Technologies, L.L.C. Magnet support and retention system for hybrid rotors
DE102009026524A1 (de) * 2009-05-28 2010-12-02 Robert Bosch Gmbh Elektrische Maschine
DE102009045101A1 (de) * 2009-09-29 2011-04-14 Robert Bosch Gmbh Elektrische Maschine mit minimiertem Rastmoment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009046549A2 (de) 2007-10-11 2009-04-16 Thyssenkrupp Presta Ag Rotor für elektromotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935139A (zh) * 2014-03-18 2015-09-23 日本电产株式会社 马达
CN108809034A (zh) * 2014-03-18 2018-11-13 日本电产株式会社 马达

Also Published As

Publication number Publication date
EP2766976A2 (de) 2014-08-20
EP2766976B1 (de) 2016-07-06
CN103051081A (zh) 2013-04-17
CN104067482A (zh) 2014-09-24
WO2013053704A3 (de) 2014-07-10
CN103051081B (zh) 2017-12-19
DE102012218351A1 (de) 2013-04-11
CN104067482B (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
EP2766976B1 (de) Optimierte speichenrotor- innengeometrie
DE112013000314B4 (de) Drehende Elektromaschine mit Hybriderregung
EP3292613B1 (de) Reluktanzrotor mit zusätzlicher eigener magnetisierung
DE102010061778A1 (de) Elektrische Maschine mit optimiertem Wirkungsgrad
DE19933009A1 (de) Motor mit interne Permanentmagneten enthaltendem Rotor und einen solchen Motor verwendende Antriebseinheit
DE102015111480A1 (de) Rotor und elektrische Maschine
DE10215251A1 (de) Elektrische Maschine, insbesondere Permanentmagnet erregte Motore
DE102008057863A1 (de) Herstellung einer Elektromotorkomponente
DE10256523A1 (de) Elektrische Maschine, insbesondere bürstenloser Synchronmotor
DE102005047771A1 (de) Rotoranordnung für eine elektrische Maschine und Verfahren zum Herstellen der Rotoranordnung
DE102013211858A1 (de) Oberflächen- Magnete und vergrabene Magnete für einen Rotor oder Stator einer elektrischen Maschine, der eine Haltegeometrie aufweist
DE102010041015A1 (de) Maschinenkomponente für eine elektrische Maschine
EP2999087B1 (de) Elektrische Maschine mit geringer magnetischer Nutstreuung
DE102010061784A1 (de) Optimierter Speichenrotor
DE102012219003A1 (de) Läuferanordnung für eine rotatorische elektrische Maschine
DE102010054847A1 (de) Bürstenloser Elektromotor oder Generator in Schalenbauweise
DE102006053973B4 (de) Elektrischer Generator
AT522711A1 (de) Stator für eine Axialflussmaschine
DE102016212022A1 (de) Rotor
DE102012105992A1 (de) Element einer elektrischen Maschine mit einer Halterung und einem Permanentmagneten, Bauteil mit wenigstens einem Element sowie eine elektrische Maschine
WO2009003855A1 (de) Elektrische maschine
EP2722970A2 (de) Läuferanordnung für eine permanentmagneterregte elektrische Maschine
WO2011151138A2 (de) Elektrische maschine mit reduzierter geräuschentwicklung
DE102012218995A1 (de) Läuferanordnung für eine permanentmagneterregte elektrische Maschine
DE10037787B4 (de) Permanenterregte Synchronmaschine

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2012778679

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012778679

Country of ref document: EP