WO2013053341A1 - Hybride dekodierung von bch kodes für nichtflüchtige speicher - Google Patents
Hybride dekodierung von bch kodes für nichtflüchtige speicher Download PDFInfo
- Publication number
- WO2013053341A1 WO2013053341A1 PCT/DE2011/075251 DE2011075251W WO2013053341A1 WO 2013053341 A1 WO2013053341 A1 WO 2013053341A1 DE 2011075251 W DE2011075251 W DE 2011075251W WO 2013053341 A1 WO2013053341 A1 WO 2013053341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- corrector
- correction
- error
- quick
- data
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
- H03M13/15—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
- H03M13/151—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
- H03M13/152—Bose-Chaudhuri-Hocquenghem [BCH] codes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
- G06F11/1008—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
- G06F11/1048—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices using arrangements adapted for a specific error detection or correction feature
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
- H03M13/15—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
- H03M13/151—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
- H03M13/1525—Determination and particular use of error location polynomials
- H03M13/153—Determination and particular use of error location polynomials using the Berlekamp-Massey algorithm
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/3707—Adaptive decoding and hybrid decoding, e.g. decoding methods or techniques providing more than one decoding algorithm for one code
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6508—Flexibility, adaptability, parametrability and configurability of the implementation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6561—Parallelized implementations
Definitions
- the invention relates to a method and a device for the correction of
- a halved version, SiBM-2 results in a halved circuit requirement and twice the correction time of 2t clocks compared to the fully parallel version, SiBM, with a simplified inversion-free Berlekamp-Massey method, SiBM, respectively.
- corrective error number t is arranged and this is connected as needed used serially operating correction circuit.
- An optimization of the average time requirement is done by a suitable choice of the size of the correctable error number t and the error sub-number t 1; taking into account the total length n of the data block to be processed and the probability of the occurrence of t 2 errors (t> t 2 > t for which correction of the error underscore would be insufficient.
- the overall circuit comprises the two correction devices, which are connected on the one hand to the SLC / MLC data memory via a first interface circuit and on the other hand connected via a further interface circuit to a consumer, also called a host.
- the data blocks which have been passed through for the purpose of storage are used in a known manner, for example according to the BCH algorithm, with the backup data supplemented stored in the data storage and delivered in each case after a later readout by the testing and correction devices error-free to the consumer.
- an error code also called a syndrome
- a syndrome is calculated and used to determine the position of incorrect bits in the data block and to correct the bits thus determined.
- the invention is based on the finding that only a relatively small number of errors occurs in a plurality of the read data blocks, so that their correction requires a correspondingly small, correspondingly fast, parallel operation. Only in the smaller number of cases where errors still occur is an extremely simple serial correction circuit used for this larger number of errors, but the time required increases quadratically with the number of correctable errors.
- both correction circuits can be started simultaneously and, if necessary, after a successful correction completion of the parallel correction circuit, the process can be terminated altogether or the serial circuit can only be activated if the result of the parallel correction circuit is insufficient, whereby a small additional time delay occurs.
- the serial circuit can only be activated if the result of the parallel correction circuit is insufficient, whereby a small additional time delay occurs.
- the BCH code yields for t Root syndromes zero, if there is no error, otherwise occur
- Nquer ati + bpt 2 .
- ati is the number of iterations for the parallel BMA
- bt 2 is the number of iterations for the serial BMA.
- conditional probability p depends on ti and a raw bit error rate ⁇ , which can be approximated for a binary-symmetric channel
- n is the total number of bits in a saved data block and the counter indicates the probability that an error number greater than ti will occur, and the denominator indicates the probability that at least one error in the n bits of one
- Nquer In order to optimally design t 1 with respect to the shortest possible average correction time Nquer, Nquer must be less than or equal to 2 times the time requirement of a fully parallel correction. In the combination device according to the invention results on average under the above conditions, a time advantage over a fully parallel correction device of 2t- (2t 1 + p2t 2 ).
- time optimization can also be analogously applied to other parallel correction units and other series correction units and for other error frequencies and block lengths.
- a further optimization can also be fitted for mixed
- Such memory combinations are frequently used, in which a heavily used portion of the memory blocks consists of simple elements and the remainder consists of multiple-use memory elements with a higher error rate.
- the circuit diagram is similar to the representation in Wei Liu et al. a.a.O., Fig. 12 ajar. It illustrates the splitting of the overall device into three areas, the pre-checker VP, the quick-correction SK and the post-corrector NK.
- the input data coming from a memory MLC, coming from the input INP go through the first für sch vigorousier ENC1 and parallel to a first
- Delay register DL1 for bridging the test time. If the test result is 0, ie correct, then the test state flag PI controls the output of the first one Delay DLl via a first AND gate Gl in a wired OR circuit to the output OUTP.
- the output from the first delay element DL1 is supplied to the quick corrector SK, which consists of the parallel correction device SiBM-2 designed for t ⁇ error corrections.
- the quick corrector SK which consists of the parallel correction device SiBM-2 designed for t ⁇ error corrections. This works according to a simplified inversion-free Berlekamp-Massey- method, as shown for example in Fig. 8 of the document Wei Liu et al. aaO, and operates the error corrector COR-ti whose corrected output is checked by a second checker ENC2 which drives the check flag P2.
- Control device CT1, CT2, CT3 controlled.
- the first control device CT1 is driven by a suitable start signal St, which is derived from the memory MLC.
- the further control devices CT2, CT3 are each started depending on the associated test state flag PI, P2 in the event of an error.
- Circuit areas VP, SK, NK can also, as described above, realize a parallel connection of two or all three circuit areas. With the release of one of the output gates Gl, G2, G3 then the still working circuit parts are turned off.
- n Total number of bits of a saved data block
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- General Physics & Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Algebra (AREA)
- Quality & Reliability (AREA)
- General Engineering & Computer Science (AREA)
- Detection And Correction Of Errors (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
- Error Detection And Correction (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/115,022 US20140068390A1 (en) | 2011-10-13 | 2011-10-13 | Hybrid decoding of bch codes for nonvolatile memories |
PCT/DE2011/075251 WO2013053341A1 (de) | 2011-10-13 | 2011-10-13 | Hybride dekodierung von bch kodes für nichtflüchtige speicher |
DE112011102474.6T DE112011102474B4 (de) | 2011-10-13 | 2011-10-13 | Hybride Dekodierung von BCH-Kodes für nichtflüchtige Speicher |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/DE2011/075251 WO2013053341A1 (de) | 2011-10-13 | 2011-10-13 | Hybride dekodierung von bch kodes für nichtflüchtige speicher |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013053341A1 true WO2013053341A1 (de) | 2013-04-18 |
Family
ID=45929366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2011/075251 WO2013053341A1 (de) | 2011-10-13 | 2011-10-13 | Hybride dekodierung von bch kodes für nichtflüchtige speicher |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140068390A1 (de) |
DE (1) | DE112011102474B4 (de) |
WO (1) | WO2013053341A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10765009B2 (en) * | 2016-12-21 | 2020-09-01 | Lumileds Llc | Method for addressing misalignment of LEDs on a printed circuit board |
CN108683426B (zh) * | 2018-05-18 | 2022-08-26 | 中国科学院微电子研究所 | 一种基于bch码的ecc系统及存储器 |
US12061793B1 (en) | 2020-11-25 | 2024-08-13 | Astera Labs, Inc. | Capacity-expanding memory control component |
US11722152B1 (en) * | 2020-11-25 | 2023-08-08 | Astera Labs, Inc. | Capacity-expanding memory control component |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5446743A (en) | 1993-11-04 | 1995-08-29 | Cirrus Logic, Inc. | Coefficient updating method and apparatus for Reed-Solomon decoder |
US20030172339A1 (en) * | 2002-03-08 | 2003-09-11 | Davis James Andrew | Method for error correction decoding in a magnetoresistive solid-state storage device |
US20090319843A1 (en) * | 2008-06-22 | 2009-12-24 | Sandisk Il Ltd. | Method and apparatus for error correction |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1131893B1 (de) * | 1998-11-09 | 2004-08-04 | Broadcom Corporation | Vorwärtsfehlerkorrektur |
US20030101406A1 (en) | 2001-10-12 | 2003-05-29 | Leilei Song | Low complexity and low power FEC supporting high speed parallel decoding of syndrome-based FEC codes |
US7865809B1 (en) * | 2004-03-11 | 2011-01-04 | Super Talent Electronics, Inc. | Data error detection and correction in non-volatile memory devices |
KR100891332B1 (ko) * | 2007-03-30 | 2009-03-31 | 삼성전자주식회사 | 에러 정정 부호화기를 이용하여 에러를 체크하는 bch에러 정정 방법 및 회로 |
US8413023B2 (en) * | 2008-12-31 | 2013-04-02 | Stmicroelectronics, Inc. | Error-locator-polynomial generation with erasure support |
US8453038B2 (en) * | 2009-06-30 | 2013-05-28 | Apple Inc. | Chien search using multiple basis representation |
JP2011165026A (ja) * | 2010-02-12 | 2011-08-25 | Toshiba Corp | エラー検出訂正システム |
US8433985B2 (en) * | 2010-03-29 | 2013-04-30 | Intel Corporation | Error correction mechanisms for flash memories |
RU2010135817A (ru) * | 2010-08-30 | 2012-03-10 | ЭлЭсАй Корпорейшн (US) | Реконфигурируемый декодер кодов бчх |
US8601351B2 (en) * | 2011-03-16 | 2013-12-03 | Intel Corporation | BCH decoding with multiple sigma polynomial calculation algorithms |
-
2011
- 2011-10-13 DE DE112011102474.6T patent/DE112011102474B4/de active Active
- 2011-10-13 WO PCT/DE2011/075251 patent/WO2013053341A1/de active Application Filing
- 2011-10-13 US US14/115,022 patent/US20140068390A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5446743A (en) | 1993-11-04 | 1995-08-29 | Cirrus Logic, Inc. | Coefficient updating method and apparatus for Reed-Solomon decoder |
US20030172339A1 (en) * | 2002-03-08 | 2003-09-11 | Davis James Andrew | Method for error correction decoding in a magnetoresistive solid-state storage device |
US20090319843A1 (en) * | 2008-06-22 | 2009-12-24 | Sandisk Il Ltd. | Method and apparatus for error correction |
Non-Patent Citations (4)
Title |
---|
"ERROR CORRECTION DECODING BY TRIAL AND ERROR", IP.COM JOURNAL, IP.COM INC., WEST HENRIETTA, NY, US, 15 October 2006 (2006-10-15), XP013116304, ISSN: 1533-0001 * |
HSIE-CHIA CHANG; SHUNG, C.B.: "New serial architecture for the Berlekamp-Massey algorithm'', Communications", IEEE TRANSACTIONS ON, vol. 47, no. 4, 4 April 1999 (1999-04-04), pages 481 - 483, XP011009380 |
JUNRYE RHO; WONYONG SUNG: "Low-Power High-Throughput BCH Error Correction VLSI Design for Multi-Level Cell NAND Flash Memories", SIGNAL PROCESSING SYSTEMS DESIGN AND IMPLEMENTATION, 2006, October 2006 (2006-10-01), pages 303 - 308, XP031080559 |
WEI LIU ET AL: "Low-Power High-Throughput BCH Error Correction VLSI Design for Multi-Level Cell NAND Flash Memories", PROC. IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS, DESIGN AND IMPLEMENTATION, BANFF, CANADA, 1 October 2006 (2006-10-01), pages 303 - 308, XP031080559, ISBN: 978-1-4244-0382-0 * |
Also Published As
Publication number | Publication date |
---|---|
DE112011102474A5 (de) | 2013-06-06 |
DE112011102474B4 (de) | 2021-08-12 |
US20140068390A1 (en) | 2014-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE602004001869T2 (de) | Fehlererkennung und fehlerbehebung für systematische und zufällige fehler innerhalb einer verarbeitungsstufe einer integrierten schaltung | |
DE112011100371B4 (de) | Verfahren, Vorrichtung und Computerprogrammprodukt zum Decodieren eines Codeworts | |
DE102015201384B4 (de) | Vorrichtung und Verfahren zum Verbessern der Datenspeicherung durch Dateninvertierung | |
DE112012006153B4 (de) | Rekonstruktion von Codewörtern unter Verwendung eines Seitenkanals | |
DE3784459T2 (de) | Arithmetische und logische einheit fuer elemente von galois-feldern. | |
DE4242810C2 (de) | EEPROM mit einem Fehlerprüf- und Korrektur-Schaltkreis | |
DE102009044555B4 (de) | Verfahren und Vorrichtung zum Durchführen einer CRC-Prüfung | |
WO2013053341A1 (de) | Hybride dekodierung von bch kodes für nichtflüchtige speicher | |
DE4220196C2 (de) | Halbleiterspeichervorrichtung und Verfahren zum Korrigieren eines Datenfehlers in einer Halbleiterspeichervorrichtung entsprechend einer vorbestimmten Hamming-Matrix | |
DE112014005810B4 (de) | anagement der Datenspeicherung in analogen Speicherzellen unter Verwendung einer nicht ganzzahligen Anzahl von Bits pro Zelle | |
DE102011085602A1 (de) | Vorrichtung und Verfahren zum Korrigieren zumindest eines Bitfehlers in einer codierten Bitsequenz | |
DE102018122826A1 (de) | Vorrichtung zum Unterstützen eines Fehlerkorrekturcodes und Testverfahren dafür | |
DE2106314B2 (de) | Anordnung zur Fehlererkennung und -korrektur in einem aus b Bits bestehenden Byte eines K Datenbytes enthaltenden Datenblocks | |
DE112011101852B4 (de) | Decodieren von LDPC-Code | |
DE112020003489T5 (de) | Speichersteuerung und verfahren zum decodieren von speichervorrichtungen mit vorzeitigem hartdecodierabbruch | |
DE102016102590B4 (de) | Datenverarbeitungseinrichtungen und verfahren zum rekonstruieren eines puf-werts | |
DE102017110389A1 (de) | Verfahren und Decoder zur Softinput Decodierung von verallgemeinerten verketteten Codes | |
DE102005022107B9 (de) | Vorrichtung und Verfahren zum Bestimmen einer Position eines Bitfehlers in einer Bitfolge | |
DE102018131613A1 (de) | Fehlererkennung mittels Gruppenfehler | |
DE10238841A1 (de) | Parallelverarbeitung der Decodierung und der zyklischen Redundanzüberprüfung beim Empfang von Mobilfunksignalen | |
DE102013109315B4 (de) | Verfahren und Datenverarbeitungseinrichtung zum Rekonstruieren eines Vektors | |
DE102011087634A1 (de) | Vorrichtung und verfahren zum erfassen eines fehlers in einem codierten binärwort | |
DE102006007326A1 (de) | Fehlerkorrekturschaltung und -Verfahren | |
DE102011087457A1 (de) | Vorrichtung und verfahren zum erfassen eines fehlers in einer mehrzahl von codierten binärwörtern, die durch einen fehlerkorrekturcode codiert sind | |
DE102016104012A1 (de) | Verarbeitung eines Datenworts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 1120111024746 Country of ref document: DE Ref document number: 112011102474 Country of ref document: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11831785 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: R225 Ref document number: 112011102474 Country of ref document: DE Effective date: 20130606 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14115022 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11831785 Country of ref document: EP Kind code of ref document: A1 |