WO2013051804A1 - 라이너가 구성된 에어베인모터 - Google Patents

라이너가 구성된 에어베인모터 Download PDF

Info

Publication number
WO2013051804A1
WO2013051804A1 PCT/KR2012/007646 KR2012007646W WO2013051804A1 WO 2013051804 A1 WO2013051804 A1 WO 2013051804A1 KR 2012007646 W KR2012007646 W KR 2012007646W WO 2013051804 A1 WO2013051804 A1 WO 2013051804A1
Authority
WO
WIPO (PCT)
Prior art keywords
liner
air
rotor
casing
vane motor
Prior art date
Application number
PCT/KR2012/007646
Other languages
English (en)
French (fr)
Inventor
이병록
Original Assignee
Lee Byeong Rok
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Byeong Rok filed Critical Lee Byeong Rok
Publication of WO2013051804A1 publication Critical patent/WO2013051804A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3441Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3445Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the vanes having the form of rollers, slippers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings

Definitions

  • the present invention relates to an air vane motor configured with a liner, and more particularly, a liner configured to convert the expansion force of air into the maximum rotational force by attaching the liner to the end of the wing so as to contact the inner side of the casing. It relates to a configured air vane motor.
  • FIG. 1 is a cross-sectional view showing an air vane motor according to the prior art, and FIG. 2 will be described together as an enlarged view showing an enlarged part of FIG. 1.
  • the air vane motor (1) is a device configured to obtain a rotational force by injecting a high-pressure air (A) using the expansion force of the air (A).
  • a casing 10 having an inlet 11 through which air A is injected and an outlet 13 through which the injected air A exits is formed.
  • the cylindrical rotor 20 which is supported by the inside of the said casing 10, and rotates is comprised.
  • the rotor 20 is configured to be supported so that the central shaft 30 penetrates to the casing 10.
  • a groove 25 is formed in the circumferential surface 23 of the rotor 20 along the longitudinal direction of the central axis 30 and arranged in the circumferential direction.
  • a plate-shaped wing 40 inserted into the groove 25 and reciprocating along the groove 25 is configured.
  • the center of the rotor 20 is configured to be eccentric from the center of the inner surface (15).
  • the suction port 11 is formed in the casing 10 so as to be disposed in a portion which is gradually enlarged in a state where the peripheral surface 23 of the rotor 20 and the inner surface 15 of the casing 10 are closest to each other,
  • the outlet 13 is formed at or near the point where the circumferential surface 23 and the inner side surface 15 are as far away as possible.
  • the high-pressure air (A) is injected into the suction port (11), so that the air (A) between the wing 40 on both sides, the inner surface 15 of the casing 10 and the circumferential surface 23 of the rotor 20 Is charged. Therefore, the trapped air (A) is expanded to rotate the rotor (20). Then, the wing 40 is protruding gradually along the inner surface 15 in a state protruding to the outside by the centrifugal force. Therefore, the volume of the injected air (A) is to become larger and to work.
  • the area of the inner side surface K on the rotational direction side of the inner side surfaces L and K of the corresponding two wings 40 is wider than the counterpart side. This is a phenomenon that occurs naturally because the rotor 20 is mounted eccentrically in the casing 10.
  • the expansion force of the air exerts a lateral thrust F toward the inner side surface K in the rotational direction.
  • the lateral thrust F becomes a difference value of the lateral thrust acting on both side inner surfaces L and K.
  • the expansion force of the air (A) is also acting on the inner surface 15 and the circumferential surface 23, the inner surface between the two blades 40, rather than the circumferential surface 23 between the two blades (40)
  • the area of (15) is of course wide.
  • the upper thrust P acts toward the casing 10.
  • the upper thrust P is to push the inner surface 15, because the casing 10 is fixed without rotation, it is used as a rotational force for rotating the rotor 20 together with the lateral thrust (F). I can't.
  • the rotor 20 is rotated only by the lateral thrust F.
  • the high-pressure air A is filled between the plurality of wings 40, the force for rotating the rotor 20 becomes a multiple of the lateral thrust F.
  • Air A sufficiently expanded in this way is pushed by the rotating blade 40 to be exhausted through the outlet 13.
  • the blade 40 is inserted into the groove 25 of the rotor 20 while being transported along the inner surface 15 of the casing 10 by the rotation of the rotor 20.
  • the upper thrust since the upper thrust is exhausted to push the inner surface of the casing, the upper thrust does not act as a rotational force, but only the lateral thrust acts as a rotational force, thereby degrading efficiency.
  • An air vane motor including a liner includes a casing having an inlet port through which air is injected, a discharge port through which the injected air exits, a rotor supported and rotating inside the casing, and a plurality of rotors inserted into the rotor.
  • the vane motor consisting of a blade; It is configured to include a liner interposed between the end of the blade and the inner surface of the casing and connected to the blade and the inner surface.
  • the liner is configured to be connected to rotate the end of the blade.
  • it comprises a groove formed in the end portion of the wing, and a projection inserted into the groove and protruded on the lower surface of the liner.
  • the liner is individually mounted to each wing, and the optional liner is configured to overlap the front and rear liners.
  • the air vane motor configured with the liner according to the present invention has the following effects.
  • FIG. 1 is a cross-sectional view showing an air vane motor according to the prior art.
  • FIG. 2 is an enlarged view of a portion of FIG. 1 in an enlarged manner
  • Figure 3 is a perspective view showing an air vane motor is configured as a liner according to the technique of the present invention as an example.
  • FIG. 4 is a cross-sectional view showing an air vane motor configured with a liner according to the present invention.
  • FIG. 5 is an enlarged view of a portion of FIG. 4 in an enlarged manner
  • Figure 6 is an exemplary view showing the sum of the lateral thrust acting on the wing and the upper thrust acting on the liner due to the high pressure air in Figure 5;
  • FIG. 7 is a cross-sectional view showing a state in which the liners constituted in the air vane motor including the liner according to the technique of the present invention are separated from each other.
  • FIG. 8 is a cross-sectional view showing a state in which liners constituted in an air vane motor including a liner according to the technique of the present invention are in a state where they overlap each other.
  • Figure 9 is a perspective view showing a liner constituted in the air vane motor is configured liner according to the technique of the present invention.
  • FIG. 10 is a perspective view illustrating a state in which liners constituted in an air vane motor including a liner according to the technique of the present invention overlap each other.
  • the vane motor 100 is a device configured to inject a high-pressure air (A) to obtain a rotational force by using the upper thrust of the air (A), the inlet 111 to which the air (A) is injected,
  • the casing 110 is formed with a discharge port 113 through which the injected air A exits.
  • a circumferential rotor 120 that is supported and rotated inside the casing 110 is configured.
  • the rotor 120 is configured to be supported so that the central axis 121 penetrates to the casing 110.
  • a circumferential surface 123 of the rotor 20 is formed along the longitudinal direction of the central axis 121, is arranged in a circumferential direction, and a groove 125 is formed toward the center of the rotor 120. do.
  • a plate-shaped wing 130 inserted into the groove 125 and reciprocating along the groove 125 is configured.
  • the inner surface 115 of the casing 110 forms a circumferential surface (surface formed along the circumferential direction).
  • the center of the rotor 120 is configured to be eccentric from the center of the inner surface (115).
  • the suction port 111 is formed in the casing 110 to be disposed in a portion that is gradually enlarged in a state where the circumferential surface 123 of the rotor 120 and the inner surface 115 of the casing 110 are closest to each other,
  • the discharge port 113 is formed at a point in which the circumferential surface 123 and the inner surface 115 are as far away or as close to the point.
  • the present invention is characterized in that it is configured to efficiently convert the expansion force of the air injected into the casing 110 of the vane motor 100 to the rotational force of the rotor 120.
  • the plate-shaped liner 140 is interposed between the end portion 131 of the wing 130 and the inner surface 115 of the casing 110.
  • the liner 140 is configured to be rotated to the end portion 131 of the blade 130 so that it can rotate at various angles according to the entrance length of the rotating blade 130.
  • the groove 133 is formed in the end portion 131 of the blade 130, the groove 133 And a protrusion 145 inserted into and protruding from the bottom surface 143 of the liner 140.
  • the groove 133 is formed as an inner spherical surface as an example, and the protrusion 145 is formed in a spherical shape inserted into the groove 133. Accordingly, the liner 140 may be rotated at various angles according to the rotational position and the length of the wing 130. In addition, the groove 133 is formed to accommodate the protrusion 145 and the inlet is closed so that the protrusion 145 is not separated from the groove 133.
  • the liner 140 is individually mounted to each wing 130, and the optional liner 140 is configured to overlap the front and rear liner 140. Therefore, as shown in FIG. 7, the overlapping liner 140 opens as the wing 130 protrudes from the groove 125 of the rotor 120, and as shown in FIG. 8, the wing 130 of the rotor 120 125. The overlapping liner 140 is configured to be retracted as it is inserted into.
  • the liner 140 is formed by extending the first plate a laterally from the upper end of one side in the central portion a of the plate shape, and from the central portion a of the first plate a.
  • a second plate (b) extending in a direction corresponding to the first plate (b) is formed at the lower end of the opposite side. Accordingly, as shown in FIG. 10, when the two liners 140 overlap, the plurality of liners 140 overlap in such a manner that the first plate a overlaps the second plate b.
  • the inlet 111 and the outlet 113 are formed on the side of the casing 110, as shown in Figure 3 so as not to correspond to the liner 140, so that the air (a) can be easily intake and exhaust.
  • the compressed air A is injected through the suction port 111. Then, the air A is located between the inner surface (K, L) of the corresponding wing 130 and the circumferential surface 123 of the liner 140 and the rotor 120.
  • the size of the inner side surface K located in the rotational direction of the inner side surfaces K and L is wider than the inner side surface L of the mating side.
  • the lower surface of the liner 140 is wider than the circumferential surface 123. This is because the wing 125 formed in the rotor 120 is directed toward the center of the rotor 120, the wings 130 are naturally disposed radially. Accordingly, since the lower surface of the liner 140 has a larger area than the circumferential surface 123, upward thrust force P acts toward the liner 140. For this reason, as shown in FIG.
  • the combined force W of the lateral thrust F and the upward thrust P acts toward the rotation direction of the rotor 120. Therefore, since the upper thrust force P acts as the component force of the combined force W which is the rotational force of the rotor 120, it can output a larger rotational force compared with the general vane motor which only acts as the side thrust force F. As shown in FIG. If there is no liner 140, the upward thrust P will act on the inner surface 115 of the casing 110, in which case only the lateral thrust F becomes the rotational force of the rotor 120. However, in the present invention, since the liner 140 rotates, the upward thrust force P acts as the rotational force of the rotor 120. For example, as shown in FIGS. 5 and 6, the upper thrust force P and the lateral thrust force F may be interpreted as a force pulling the liner 140 laterally and pulling upward. If the liner 140 is pulled in both directions, the force W must act in the direction of rotation.
  • the expansion force of the compressed air A is converted into rotational force to generate power.
  • the rotor 120 is rotated by the air (A) to expand between the two wings 130, the liner 140 as well as the centrifugal force rises outward by the air pressure wing 130 also sticks out and rises. Therefore, it is possible to solve the problem that the wing 130 does not protrude properly like the existing vane motor.
  • the liner 140 since the liner 140 is in contact with the inner surface 115 of the casing 110, the load of the liner 140 is linearly contacted with the inner surface 115 of the terminal 131 of the blade 130 in the existing vane motor. This is not concentrated. This is because the load is distributed due to the large contact area. Therefore, wear of the inner surface 115 can be reduced, and wear of the wing 130 does not occur. In addition, since the liner 140 also contacts a large contact area, the damage rate due to abrasion may be reduced. That is, according to the present invention, there is an advantage of excellent durability and long life as compared to the existing vane motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

본 발명에 의한 라이너가 구성된 에어베인모터(100)는, 공기(A)가 주입되는 흡입구(111)와, 상기 주입된 공기(A)가 빠져나가는 배출구(113)가 형성된 케이싱(110)과, 상기 케이싱(110)의 내부에 지지되어 회전하는 로터(120)와, 상기 로터(120)에 삽입된 다수의 날개(130)로 구성된 베인 모터(100)에 있어서; 상기 날개(130)의 종단부와 상기 케이싱(110)의 내측면(115) 사이에 개재되고 상기 날개(130)와 상기 내측면(115)에 연결되어 구성된 라이너(140)를 포함하므로, 공급된 공기(A)의 누기 현상을 방지할 수 있고, 라이너(140) 쪽으로 작용하는 상방 추력(P)을 회전력으로 변환한 수 있으므로 기존의 베인 모터에 비해 효율이 우수한 특징이 있다.

Description

라이너가 구성된 에어베인모터
본 발명은 라이너가 구성된 에어베인모터에 관한 것으로서, 더욱 상세히는 날개의 종단부에 라이너를 회동하도록 장착하여 케이싱의 내측면에 접하도록 함으로써, 공기의 팽창력을 최대한 회전력으로 변환할 수 있도록 구성한 라이너가 구성된 에어베인모터에 관한 것이다.
도 1은 종래의 기술에 의한 에어베인모터를 도시한 단면도, 도 2는 도 1의 일부를 확대하여 도시한 확대도로서 함께 설명한다.
일반적으로 에어베인모터(1)는 고압의 공기(A)를 주입하여 상기 공기(A)의 팽창력을 이용하여 회전력을 얻을 수 있도록 구성한 장치이다.
이러한 에어베인모터(1)를 도 1을 통해서 살펴보면, 공기(A)가 주입되는 흡입구(11)와, 상기 주입된 공기(A)가 빠져나가는 배출구(13)가 형성된 케이싱(10)이 구성된다.
그리고, 상기 케이싱(10)의 내부에 지지되어 회전하는 원주(圓柱)형의 로터(20)가 구성된다. 상기 로터(20)는 관통하는 중심축(30)이 상기 케이싱(10)에 회전하도록 지지되어 구성된다. 그리고, 상기 로터(20)의 둘레면(23)에는 상기 중심축(30)의 길이 방향을 따라 형성되고, 원주방향으로 배열되어 형성된 홈(25)이 형성된다.
그리고, 상기 홈(25)에 삽입되어 홈(25)을 따라 왕복하는 판 형상의 날개(40)가 구성된다. 또한, 상기 날개(40)에서 외측방을 향하는 종단부(41)가 접하는 케이싱(10)의 내측면(15)은 원주면(원주 방향을 따라 형성된 면)을 형성한다. 또한, 상기 로터(20)의 중심은 상기 내측면(15)의 중심으로부터 편심되어 구성된다.
또한, 상기 흡입구(11)는 상기 로터(20)의 둘레면(23)과 케이싱(10)의 내측면(15)이 가장 근접한 상태에서 점점 확대되는 부분에 배치하도록 케이싱(10)에 형성되고, 상기 배출구(13)는 상기 둘레면(23)과 내측면(15)이 최대한 멀어진 지점 또는 상기 지점에 근접한 부분에 형성된다.
상기 에어베인모터(1)의 작동례를 살펴보면 다음과 같다.
먼저, 상기 흡입구(11)에 고압의 공기(A)를 주입하므로 양측의 날개(40)와 케이싱(10)의 내측면(15) 및 로터(20)의 둘레면(23) 사이로 공기(A)가 충전된다. 따라서, 갇힌 공기(A)는 팽창하게 되어 상기 로터(20)를 회전시키게 된다. 그러면, 상기 날개(40)는 원심력에 의해 외부로 돌출된 상태에서 상기 내측면(15)을 따라 점점 길게 튀어나오게 된다. 따라서, 상기 주입된 공기(A)의 부피는 점점 커지게 되어 일을 하게 되는 것이다.
상기에서 주입된 공기(A)가 로터(20)를 회전시키는 원리를 도 2를 통해 살펴보면 다음과 같다.
대응하는 두 날개(40)의 내측면(L, K) 중 회전 방향 쪽의 내측면(K)의 면적이 상대측 보다 넓다. 이것은 로터(20)가 케이싱(10) 내에서 편심되어 장착되기 때문에 자연히 일어나는 현상이다.
따라서, 공기의 팽창력은 회전방향의 내측면(K) 쪽으로 측방 추력(F)를 가하게 된다. 엄밀히 말하면 상기 측방 추력(F)은 양측 내측면(L, K)에 작용하는 측방 추력의 차이값이 된다.
그리고, 공기(A)의 팽창력은 상기 내측면(15)과 둘레면(23)에도 작용하게 되는 데, 두 날개(40) 사이의 둘레면(23) 보다, 두 날개(40) 사이의 내측면(15)의 넓이가 당연히 넓다. 따라서, 케이싱(10) 쪽으로 상부 추력(P)이 작용한다.
이때, 상기 상부 추력(P)은 내측면(15)을 밀어내게 되는데, 상기 케이싱(10)이 회전하지 않고 고정된 것이므로, 상기 측방 추력(F)과 함께 로터(20)를 회전시키는 회전력으로서는 사용되지 못한다.
따라서, 상기 측방 추력(F)만으로 로터(20)를 회전시키게 된다. 물론, 다수의 날개(40) 사이에 고압의 공기(A)가 충전된 상태이므로 로터(20)를 회전시키는 힘은 측방 추력(F)의 배수가 된다.
이렇게 해서 충분히 팽창한 공기(A)는 회전하는 날개(40)에 밀려서 상기 배출구(13)를 통해서 배기된다. 그리고, 상기 날개(40)는 로터(20)의 회전에 의해 케이싱(10)의 내측면(15)을 따라 이송하면서 로터(20)의 홈(25) 속으로 삽입되어 들어가게 된다.
이러한 사이클이 각 날개(40) 사이에 공기(A)가 충전되므로 반복되어 이루어지므로 로터(20)의 지속적인 회전이 가능하고, 이러한 회전력을 동력으로 사용하게 된다.
상기 배경기술에 의하면 다음과 같은 문제점이 있었다.
첫째, 상기 날개의 종단부가 상기 케이싱의 내측면에 선접촉하기 때문에 응력 집중으로 인해서, 케이싱 내측면 및 날개의 종단부가 마모되어, 빈번한 유지보수를 필요로 하는 문제점이 있었다.
둘째, 상기 로터의 저속 회전 시에 원심력의 부족으로 상기 날개가 제대로 돌출되지 않아 날개의 종단부와 케이싱의 내측면 사이로 공기가 누기되는 문제점이 있었다.
세째, 상기 날개의 종단부가 상기 케이싱의 내측면에 선접촉하기 때문에 접촉면적이 적을 수 밖에 없고 이로 인해서 상기 종단부와 내측면 사이로 고압이 누설되기 쉬운 문제점이 있었다.
네째, 상기 상부 추력이 케이싱의 내측면을 밀어내는 데 소진되므로 회전력으로 작용하지 못하고 측방 추력만 회전력으로 작용하게 되어 효율이 떨어지는 문제점이 있었다.
본 발명에 의한 라이너가 구성된 에어베인모터는, 공기가 주입되는 흡입구와, 상기 주입된 공기가 빠져나가는 배출구가 형성된 케이싱과, 상기 케이싱의 내부에 지지되어 회전하는 로터와, 상기 로터에 삽입된 다수의 날개로 구성된 베인 모터에 있어서;상기 날개의 종단부와 상기 케이싱의 내측면 사이에 개재되고 상기 날개와 상기 내측면에 연결되어 구성된 라이너를 포함하여 구성된다.
또한, 상기 라이너는 상기 날개의 종단부에 회동하도록 연결되어 구성된다.
또한, 상기 날개의 종단부에 형성된 홈과, 상기 홈에 삽입되고 상기 라이너의 하면에 돌출되어 형성된 돌기를 포함하여 구성된다.
또한, 상기 라이너는 상기 날개마다 낱개로 장착되고, 상기 임의의 라이너는 전후방의 라이너에 겹쳐지도록 구성된다.
본 발명에 의한 라이너가 구성된 에어베인모터는 다음과 같은 효과가 있다.
첫째, 날개의 종단부가 케이싱의 내측면에 접하지 않고 라이너가 접하기 때문에 종래처럼 날개의 종단부와 케이싱의 내측면에 선접촉으로 인한 응력 집중 현상이 발생하지 않는다. 따라서, 케이싱 내측면 및 날개의 종단부가 마모되어 손상을 유발하는 문제점을 해결할 수 있고, 잦은 유지보수를 필요로 하지 않는 효과가 있다.
둘째, 공기의 팽창력과 원심력에 의해 라이너가 상승하므로, 로터가 저속으로 회전하여 원심력이 부족할 때에도 상기 팽창력에 의해서 라이너의 상승을 충실하게 수행할 수 있는 효과가 있다.
세째, 공기가 라이너와 양측 날개 및 로터의 둘레면에 수용되므로 누기될 염려가 없다. 따라서, 공기의 팽창력을 고스란히 회전력으로 변환할 수 있는 효과가 있다.
네째, 라이너가 날개를 따라 회전하므로 상방 추력을 측방 추력과 함께 회전력으로 추가할 수 있다. 따라서, 효율이 우수한 효과가 있다.
도 1은 종래의 기술에 의한 에어베인모터를 도시한 단면도.
도 2는 도 1의 일부를 확대하여 도시한 확대도.
도 3은 본 발명의 기술에 의한 라이너가 구성된 에어베인모터를 일례로 도시한 사시도.
도 4는 본 발명의 기술에 의한 라이너가 구성된 에어베인모터를 도시한 단면도.
도 5는 도 4의 일부를 확대하여 도시한 확대도.
도 6은 도 5에서 고압 공기로 인해서 날개에 작용하는 측방 추력과 라이너에 작용하는 상부 추력의 합력을 도시한 예시도.
도 7은 본 발명의 기술에 의한 라이너가 구성된 에어베인모터에 구성되는 라이너가 상호 겹친 상태에서 멀어지는 상태를 도시한 단면도.
도 8은 본 발명의 기술에 의한 라이너가 구성된 에어베인모터에 구성되는 라이너가 상호 겹친 상태에서 근접하는 상태를 도시한 단면도.
도 9는 본 발명의 기술에 의한 라이너가 구성된 에어베인모터에 구성되는 라이너를 도시한 사시도.
도 10은 본 발명의 기술에 의한 라이너가 구성된 에어베인모터에 구성되는 라이너가 상호 겹쳐진 상태를 도시한 사시도.
일반적으로 베인 모터(100)는 고압의 공기(A)를 주입하여 상기 공기(A)의 상부 추력을 이용하여 회전력을 얻을 수 있도록 구성한 장치로서, 공기(A)가 주입되는 흡입구(111)와, 상기 주입된 공기(A)가 빠져나가는 배출구(113)가 형성된 케이싱(110)이 구성된다.
그리고, 상기 케이싱(110)의 내부에 지지되어 회전하는 원주(圓柱)형의 로터(120)가 구성된다. 상기 로터(120)는 관통하는 중심축(121)이 상기 케이싱(110)에 회전하도록 지지되어 구성된다. 그리고, 상기 로터(20)의 둘레면(123)에는 상기 중심축(121)의 길이 방향을 따라 형성되고, 원주방향으로 배열되어 형성되며, 로터(120)의 중심을 향하는 홈(125)이 형성된다.
그리고, 상기 홈(125)에 삽입되어 홈(125)을 따라 왕복하는 판 형상의 날개(130)가 구성된다.
또한, 상기 케이싱(110)의 내측면(115)은 원주면(원주 방향을 따라 형성된 면)을 형성한다. 또한, 상기 로터(120)의 중심은 상기 내측면(115)의 중심으로부터 편심되어 구성된다.
또한, 상기 흡입구(111)는 상기 로터(120)의 둘레면(123)과 케이싱(110)의 내측면(115)이 가장 근접한 상태에서 점점 확대되는 부분에 배치하도록 케이싱(110)에 형성되고, 상기 배출구(113)는 상기 둘레면(123)과 내측면(115)이 최대한 멀어진 지점 또는 상기 지점에 근접한 부분에 형성된다.
본 발명에서는 상기 베인 모터(100)의 케이싱(110)에 주입되는 공기의 팽창력을 효율적으로 로터(120)의 회전력으로 변환시킬 수 있도록 구성한 것을 특징으로 한다.
이를 위하여 본 발명에서는 상기 날개(130)의 종단부(131)와 상기 케이싱(110)의 내측면(115) 사이에 판 형상의 라이너(140)가 개재되도록 구성한다.
또한, 상기 라이너(140)는 회전하는 날개(130)의 출입 길이에 따라서 다양한 각도로 회전할 수 있도록 상기 날개(130)의 종단부(131)에 회동하도록 연결되어 구성된다.
상기 날개(130)의 종단부(131)에 상기 라이너(140)가 회동하도록 연결되는 일례를 살펴보면, 상기 날개(130)의 종단부(131)에 홈(133)이 형성되고, 상기 홈(133)에 삽입되고 상기 라이너(140)의 하면(143)에 돌출되어 형성된 돌기(145)를 포함한다.
상기 홈(133)은 일례로서 내측구면으로 형성되고, 상기 돌기(145)는 상기 홈(133)에 삽입되는 구 모양으로 형성된다. 따라서, 라이너(140)는 날개(130)의 회전 위치와 출입길이에 따라서 다양한 각도로 회동이 가능하다. 또한, 상기 돌기(145)가 홈(133)에서 이탈되지 않도록 상기 홈(133)은 돌기(145)를 수용하고 입구가 오므라지도록 형성된다.
또한, 상기 라이너(140)는 상기 날개(130)마다 낱개로 장착되고, 상기 임의의 라이너(140)는 전후방의 라이너(140)에 겹쳐지도록 구성된다. 따라서, 도 7에서처럼, 날개(130)가 로터(120)의 홈(125)에서 튀어나올수록 겹쳐진 라이너(140)가 벌어지고, 도 8에서처럼, 날개(130)가 로터(120)의 홈(125)에 삽입될수록 겹쳐진 라이너(140)가 오므려지도록 구성된다.
상기 라이너(140)는 도 9에서처럼, 판 형상의 중앙부(a)에서 일측의 상단에서 측방으로 제1플레이트(a)가 연장되어 형성되고, 상기 중앙부(a)에서 상기 제1플레이트(a)의 맞은편의 하단에서 제1플레이트(b)와 대응되는 방향으로 연장되는 제2플레이트(b)가 형성된다. 따라서, 도 10에서처럼, 2개의 라이너(140)가 중첩될 때, 제2플레이트(b) 위에 제1플레이트(a)가 겹쳐지는 방식으로 다수의 라이너(140)가 겹쳐진다.
상기 흡입구(111)와 상기 배출구(113)는 라이너(140)에 대응되지 않도록 도 3에서처럼, 케이싱(110)의 측방에 형성됨으로써, 용이하게 공기(a)가 흡배기될 수 있도록 구성된다.
상기 구성에 의한 본 발명의 작동례를 살펴보면 다음과 같다.
먼저, 상기 흡입구(111)를 통해서 압축된 공기(A)가 주입된다. 그러면, 공기(A)는 대응되는 날개(130)의 내측면(K, L)과 라이너(140)와 로터(120)의 둘레면(123) 사이에 위치하게 된다.
이때, 상기 내측면(K, L) 중 회전 방향 쪽에 위치한 내측면(K)의 크기가 상대측의 내측면(L)보다 넓다. 이것은, 로터(120)의 중심이 케이싱(110)의 내측면(115)의 중심에서 편심되어 있기 때문에 자연히 일어나는 현상이다. 즉, 회전 방향 쪽에 위치한 내측면(K)의 날개(130)가 상대측의 내측면(L)의 날개(130)보다 더 많이 튀어나왔기 때문에 이러한 현상이 발생한다.
따라서, 팽창력 중 일부는 상기 회전 방향 쪽의 내측면(K)으로 측방 추력(F)이 작용한다. 또한, 상기 라이너(140)의 하면과 상기 대응하는 날개(130) 사이에 위치하는 로터(120)의 둘레면(123) 중, 라이너(140)의 하면이 둘레면(123)보다 넓다. 이것은 상기 로터(120)에 형성된 홈(125)이 로터(120)의 중심을 향하기 때문에 날개(130)는 자연히 방사상으로 배치된다. 따라서, 상기 라이너(140)의 하면이 상기 둘레면(123)보다 면적이 넓기 때문에 라이너(140) 쪽으로 상방 추력(P)이 작용한다. 이러한 이유로 인해서, 도 6에서처럼, 측방 추력(F)과 상방 추력(P)의 합력(W)이 로터(120)의 회전방향 쪽으로 작용하게 된다. 따라서, 상방 추력(P)이 로터(120)의 회전력인 합력(W)의 분력으로서 작용하기 때문에 측방 추력(F)만 작용하는 일반적인 베인 모터에 비해서 큰 회전력을 출력할 수 있다. 만약, 라이너(140)가 없다면, 상기 상방 추력(P)은 케이싱(110)의 내측면(115)에 작용할 것이고, 이 경우에는 측방 추력(F)만이 로터(120)의 회전력이 된다. 그러나, 본 발명에서는 상기 라이너(140)가 회전하기 때문에 상방 추력(P)이 로터(120)의 회전력으로 작용하게 된다. 일례로 도 5 및 도 6에서처럼, 상기 상방 추력(P)과 측방 추력(F)은 각각 라이너(140)를 측방으로 당기고 상방으로 당기는 힘으로 해석할 수 있다. 이렇게 라이너(140)를 양 방향에서 당긴다면 합력(W)은 회전 방향으로 작용할 수밖에 없다.
이렇게 해서, 도 4에서처럼, 로터(120)가 회전하여 공기(A)가 배출구(113)에 다다르면 상기 배출구(113)를 통해서 배기된다. 그리고, 라이너(140)는 케이싱(110)의 내측면(115)을 따라 회전하게 되어 날개(130)는 로터(120)의 홈(125) 속으로 수용되어 다시 흡입구(111)를 지나게 되면 공기(A)를 충전 받아서 팽창하게 된다. 이때, 상기 라이너(140)는 다른 라이너(140)와 겹쳐진 상태이므로 날개(130)가 돌출될 때에는 도 7에서처럼, 벌어지고, 상기 날개(130)가 로터(120) 속으로 수용될 때에는 도 8에서처럼, 오므려지게 된다.
상기 사이클의 반복을 통해서 압축된 공기(A)의 팽창력을 회전력으로 변환하여 동력을 발생시키게 된다.
이러한 상기 본 발명에 의하면, 양측 날개(130) 사이에서 팽창하는 공기(A)에 의해서 로터(120)는 회전하게 되고, 상기 라이너(140)가 원심력뿐만 아니라, 공기압에 의해서 외측방으로 상승하므로 날개(130)도 따라서 튀어나와 상승하게 된다. 따라서, 기존의 베인 모터처럼 날개(130)가 제대로 튀어나오지 않는 문제점을 해결할 수 있다.
또한, 공기(A)는 라이너(140)와 날개(130) 그리고 로터(120)의 둘레면(123)에 수용된 상태이므로 공기(A)가 누기되어 팽창력이 소실되는 문제점을 해결할 수 있으므로 기존의 베인 모터에 비해서 효율이 우수하다.
또한, 라이너(140)가 케이싱(110)의 내측면(115)에 접촉하고 있으므로 기존의 베인 모터에서 날개(130)의 종단부(131)가 상기 내측면(115)에 선접촉하는 것에 비해서 하중이 집중되지 않는다. 이것은 넓은 접촉면적으로 인해서 하중이 분산되기 때문이다. 따라서, 상기 내측면(115)의 마모를 감소시킬 수 있고, 날개(130)의 마모는 발생하지 않는다. 또한, 라이너(140) 역시, 넓은 접촉면적에 접하고 있으므로 마모로 인한 손상률을 줄일 수 있음은 물론이다. 즉, 본 발명에 의하면 기존의 베인 모터에 비해서 내구성이 우수하고 수명이 긴 이점이 있다.

Claims (4)

  1. 공기(A)가 주입되는 흡입구(111)와, 상기 주입된 공기(A)가 빠져나가는 배출구(113)가 형성된 케이싱(110)과,
    상기 케이싱(110)의 내부에 지지되어 회전하는 로터(120)와,
    상기 로터(120)에 삽입된 다수의 날개(130)로 구성된 베인 모터(100)에 있어서;
    상기 날개(130)의 종단부와 상기 케이싱(110)의 내측면(115) 사이에 개재되고 상기 날개(130)와 상기 내측면(115)에 연결되어 구성된 라이너(140)를 포함하는 것을 특징으로 하는 라이너가 구성된 에어베인모터.
  2. 제 1 항에 있어서,
    상기 라이너(140)는 상기 날개(130)의 종단부(131)에 회동하도록 연결되는 것을 특징으로 하는 라이너가 구성된 에어베인모터.
  3. 제 2 항에 있어서,
    상기 날개(130)의 종단부(131)에 형성된 홈(133)과,
    상기 홈(133)에 삽입되고 상기 라이너(140)의 하면에 돌출되어 형성된 돌기(145)를 포함하는 것을 특징으로 하는 라이너가 구성된 에어베인모터.
  4. 제 1 항에서 제 3 항까지의 어느 한 항에 있어서,
    상기 라이너(140)는 상기 날개(130)마다 낱개로 장착되고,
    상기 임의의 라이너(140)는 전후방의 라이너(140)에 겹쳐지도록 구성되는 것을 특징으로 하는 라이너가 구성된 에어베인모터.
PCT/KR2012/007646 2011-10-05 2012-09-24 라이너가 구성된 에어베인모터 WO2013051804A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110101428A KR101116511B1 (ko) 2011-10-05 2011-10-05 라이너가 구성된 에어베인모터
KR10-2011-0101428 2011-10-05

Publications (1)

Publication Number Publication Date
WO2013051804A1 true WO2013051804A1 (ko) 2013-04-11

Family

ID=45840500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007646 WO2013051804A1 (ko) 2011-10-05 2012-09-24 라이너가 구성된 에어베인모터

Country Status (2)

Country Link
KR (1) KR101116511B1 (ko)
WO (1) WO2013051804A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122152B1 (ko) * 2018-12-13 2020-06-11 박정훈 베인 및 로터의 조립체가 개선된 터빈
KR102227744B1 (ko) 2019-12-19 2021-03-15 이엑스디엘 주식회사 베인 모터
EP3839207A1 (en) 2019-12-20 2021-06-23 EXDL Co., Ltd. Vane motor
KR20220076007A (ko) 2020-11-30 2022-06-08 이엑스디엘 주식회사 베인 모터
KR102428799B1 (ko) 2020-11-30 2022-08-04 이엑스디엘 주식회사 베인 모터
KR102491034B1 (ko) 2021-02-19 2023-01-26 이엑스디엘 주식회사 베인 모터
KR102491036B1 (ko) 2021-03-15 2023-01-26 이엑스디엘 주식회사 베인 모터 시스템
KR20220128871A (ko) 2021-03-15 2022-09-22 이엑스디엘 주식회사 베인 모터
KR102491035B1 (ko) 2021-03-15 2023-01-26 이엑스디엘 주식회사 베인 모터
KR102617006B1 (ko) * 2021-10-14 2023-12-27 이엑스디엘 주식회사 공심형 공압모터

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185687A (ja) * 1989-01-11 1990-07-20 Tokyo Buhin Kogyo Kk エヤーポンプ
JPH0821373A (ja) * 1994-07-07 1996-01-23 Isao Suzuki ポンプ室のブレードを固定した構造のポンプ
KR200279797Y1 (ko) * 2002-03-16 2002-06-26 오인숙 베인 펌프
JP2003343461A (ja) * 2002-05-27 2003-12-03 Denso Corp 可変容量型流体圧送機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20020075A1 (it) 2002-02-15 2003-08-18 Pierburg Spa Pompa rotativa a palette a portata variabile , particolarmente per olio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185687A (ja) * 1989-01-11 1990-07-20 Tokyo Buhin Kogyo Kk エヤーポンプ
JPH0821373A (ja) * 1994-07-07 1996-01-23 Isao Suzuki ポンプ室のブレードを固定した構造のポンプ
KR200279797Y1 (ko) * 2002-03-16 2002-06-26 오인숙 베인 펌프
JP2003343461A (ja) * 2002-05-27 2003-12-03 Denso Corp 可変容量型流体圧送機

Also Published As

Publication number Publication date
KR101116511B1 (ko) 2012-02-28

Similar Documents

Publication Publication Date Title
WO2013051804A1 (ko) 라이너가 구성된 에어베인모터
WO2017222347A1 (ko) 베인 타입 에어모터
WO2017048015A1 (ko) 로터리 피스톤 펌프
CN105370389A (zh) 锥形离心拉伸机构
CN103382888B (zh) 两轴同步式排气管喉口面积控制机构
CN103382887A (zh) 带有双圆弧结构的链条传动系统
WO2015152510A1 (en) Turbo charger having nvh-reducing device
EP3194780A1 (en) Compressor
WO2017007195A1 (ko) 자유 회전식 유체 기계
WO2018194224A1 (ko) 단흡입 양토출 전동 베인 펌프
CN103573394B (zh) 多部件同步旋转机构
WO2014175474A1 (ko) 3중 트로코이달 로터를 갖는 2단 터빈 유니트
WO2011065737A2 (ko) 자흡식 펌프
CN211449176U (zh) 一种高压比压气机动叶片与轮盘连接结构
CN103573390B (zh) 压差式两旋转轴同步旋转系统
CN110131160A (zh) 一种变排量叶片泵
BR0113534A (pt) Bomba de vácuo
CN207647770U (zh) 无油涡旋压缩机
WO2021080086A1 (ko) 밀봉수단 보호 및 누수된 유체를 재공급시키는 펌프
CN217539003U (zh) 一种多吸排气口滑片旋转压缩机
CN205526841U (zh) 一种无轴卷取气动卡盘
CN103470363A (zh) 旋转式排气总管喉口面积可变的增压系统
CN103573393B (zh) 压力不平衡式旋转控制机构
CN103470367A (zh) 带有贯穿通道的机械调节装置
WO2021125463A1 (ko) 베인 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838544

Country of ref document: EP

Kind code of ref document: A1