WO2013051700A1 - Method for recycling abrasive agent from used cerium oxide glass abrasive agent containing flocculating agent - Google Patents

Method for recycling abrasive agent from used cerium oxide glass abrasive agent containing flocculating agent Download PDF

Info

Publication number
WO2013051700A1
WO2013051700A1 PCT/JP2012/075970 JP2012075970W WO2013051700A1 WO 2013051700 A1 WO2013051700 A1 WO 2013051700A1 JP 2012075970 W JP2012075970 W JP 2012075970W WO 2013051700 A1 WO2013051700 A1 WO 2013051700A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive
cerium oxide
glass
recycling
polishing
Prior art date
Application number
PCT/JP2012/075970
Other languages
French (fr)
Japanese (ja)
Inventor
善弘 本間
藤田 浩示
上原 大志
Original Assignee
Dowaエコシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエコシステム株式会社 filed Critical Dowaエコシステム株式会社
Priority to SG11201401334VA priority Critical patent/SG11201401334VA/en
Priority to JP2013537573A priority patent/JP5976659B2/en
Publication of WO2013051700A1 publication Critical patent/WO2013051700A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/12Nature of the water, waste water, sewage or sludge to be treated from the silicate or ceramic industries, e.g. waste waters from cement or glass factories

Definitions

  • the present invention relates to a method for recycling an abrasive from a used cerium oxide glass abrasive containing a flocculant.
  • Cerium oxide glass abrasives have been widely used industrially in various glass polishing processes because of their chemical polishing action due to their composition.
  • the used slurry containing glass polishing waste after being used for glass polishing has been generally discarded through a process such as solid-liquid separation.
  • the amount of abrasives used in the glass polishing process has been reduced, recycled from used abrasives, new abrasives
  • the development of new supply sources is a major issue.
  • Patent Document 1 As a method of regenerating used abrasives, a method is known in which the precipitate of used abrasive slurry is separated and removed from the object to be polished using the density difference (Patent Document 1).
  • Patent Document 2 A method using a flocculant has been proposed to promote the agglomeration of the abrasive (Patent Document 2).
  • Patent Document 3 a technique has been proposed in which the used abrasive slurry is adjusted to be alkaline, the zeta potential is changed, and the abrasive is recovered by centrifugation.
  • Patent Document 4 Furthermore, a method of treating a used abrasive slurry with an acid has been proposed (Patent Document 4).
  • Patent Document 1 it takes a long time to precipitate the abrasive, and it is considered that the equipment investment increases.
  • the glass component, the flocculant, and the abrasive are cross-linked by the flocculant and cannot be separated. Therefore, it is considered that this method cannot be recycled.
  • the recycled abrasive does not exhibit the same polishing effect as a new abrasive before use unless it is fired.
  • the flocculant of Patent Document 2 is for aggregating and discarding the suspension during the treatment of the polishing waste water, and both the abrasive component and the abrasive component are aggregated in the aggregate.
  • the present invention improves the removal rate of both the silicon component glass polishing waste component (silicon component) and the flocculant component in the recycling of used abrasives as compared with the case where only the acid treatment is performed, and the recycled abrasive obtained is
  • An object of the present invention is to provide a polishing agent recycling method having polishing performance equivalent to that of a new polishing agent.
  • the present inventors control the pH of the used cerium oxide glass abrasive slurry containing a flocculant within a predetermined two-stage range, so that the glass component and the flocculant are hardly contained, and a new polishing before use is performed.
  • the present invention was completed by finding that an abrasive having a polishing effect equivalent to that of the abrasive can be easily recovered.
  • the pH is adjusted to be alkaline.
  • the polishing particles such as chemically polished molecular glass (SiO 2 ) on the surface of the abrasive particles used in the glass polishing step, the components of the flocculant, and the dispersion of each component of the abrasive It is thought that the property improves.
  • the pH is adjusted to be acidic.
  • the abrasive component can be quickly settled to separate the abrasive and the glass abrasive waste / flocculant. Neither the flocculant nor the glass polishing waste can be removed by simply adjusting the pH to alkali. Further, simply lowering the pH is less effective than adjusting the pH in two stages.
  • the present invention is as follows.
  • a method for recycling an abrasive from a used cerium oxide-based glass abrasive containing a flocculant wherein the pH of the slurry of the used cerium oxide-based glass abrasive containing a flocculant is in the range of 10.0 to 14.0.
  • a method for recycling an abrasive comprising a step of adjusting, and then a step of adjusting the pH of the slurry to a range of 1.0 to 3.0.
  • a polishing agent having a high removal rate of a silicon component and a flocculant component from a used cerium oxide-based glass abrasive containing a flocculant and having polishing performance equivalent to a new abrasive before use can be easily obtained. Can provide a way to recycle.
  • the present invention relates to a method for recycling an abrasive from a used cerium oxide glass abrasive containing a flocculant component.
  • the cerium oxide-based glass abrasive is discarded at a certain point because the polishing performance decreases with use.
  • a flocculant is added to the slurry of the used cerium oxide glass abrasive to agglomerate the abrasive components, and this is performed in the form of a dehydrated cake.
  • the present invention relates to a method for recycling abrasives from spent cerium oxide based glass abrasives containing flocculant, conventionally discarded in the form of a slurry or cake.
  • the used cerium oxide-based glass abrasive containing a flocculant is not particularly limited as long as it is generated in the process of using the cerium oxide-based glass abrasive for polishing glass and contains a flocculant.
  • Examples of the flocculant contained in the used glass abrasive include polyaluminum chloride, iron chloride, aluminum sulfate, silica and the like, particularly polyaluminum chloride, aluminum sulfate and silica.
  • the cerium oxide-based abrasive is not particularly limited as to the material, shape, size, and structure, and can be appropriately selected according to the purpose.
  • the material of the cerium oxide-based abrasive is not particularly limited and can be appropriately selected according to the purpose.
  • the oxide contains at least cerium oxide, and further contains lanthanum oxide, praseodymium oxide, or the like as necessary.
  • polishing agent is mentioned.
  • the average particle diameter of the cerium oxide-based abrasive is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 0.5 ⁇ m to 10 ⁇ m.
  • the average particle diameter can be measured by, for example, a laser diffraction type particle size distribution measuring apparatus (for example, SALD2000A manufactured by Shimadzu Corporation).
  • Rare earth elements such as cerium, lanthanum, and praseodymium contained in the cerium oxide-based abrasive are valuable resources and elements that are desired to be reused by recovery.
  • the abrasive waste contains at least a cerium oxide abrasive and glass polishing waste, and further contains other components such as an aggregating agent as necessary.
  • the abrasive waste is typically in the form of a cake.
  • Cake-like abrasive waste is, for example, solid-liquid separated after adding a flocculant to a mixture slurry in which used cerium oxide abrasive and glass polishing scraps are mixed to agglomerate the cerium oxide abrasive. It is obtained by reducing or removing moisture by means or the like, and drying the wet cake (dehydrated cake).
  • the water content of the abrasive waste is usually about 30% by mass to 60% by mass.
  • cake means that the solid content is in a solid state containing water and is solidified by squeezing with a filtration device, etc.
  • slurry is a solid content dispersed in a liquid such as water. Means liquid or mud.
  • the state (size) of the abrasive waste is not particularly limited, and may be a size (generally about several cm or less) that can be supplied to the granulator.
  • Glass polishing waste is polishing waste generated when a glass material such as a glass disk, a crystal wafer, or a liquid crystal panel is polished using a cerium oxide abrasive.
  • Polishing of the glass material using a cerium oxide-based abrasive is not a method of physically or mechanically scraping the object to be polished, as in the case of polishing using an ordinary abrasive (for example, aluminum oxide). It is believed that when the cerium abrasive comes into contact with the glass material, the silicon component reacts chemically, is stripped off at atomic level, and adheres to cerium oxide. Therefore, the size of the glass polishing waste is much smaller than that of the cerium oxide-based abrasive. And in the abrasive
  • the recycling method of the present invention includes a step of adding water to form a slurry when the used abrasive is in the form of a cake. At this time, it is preferable to carry out a pulverization treatment with a ball mill or the like.
  • the granulation treatment is not particularly limited as long as it is a step of mixing cake-like abrasive waste containing cerium oxide abrasive and glass abrasive scraps with water and the like and pulverizing with a granulator. It can be appropriately selected depending on the case. Preferably, it is good to mix with either acid aqueous solution or alkali aqueous solution.
  • pulverization means to release the aggregation state of the cerium oxide-based abrasive in the abrasive waste.
  • the granulator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a media type mill, a roll mill, a strong stirring type stirrer, a line mixer, and a colloid mill.
  • the media type mill is not particularly limited as long as it is a device in which balls or beads (hereinafter sometimes referred to as media) are placed in a container and stirred together with a solid or liquid, and can be appropriately selected according to the purpose. it can.
  • Examples of the media type mill include, for example, a paint shaker that mechanically shakes a sealed container to stir the medium strongly, a ball mill that mechanically rotates the sealed container to stir the medium, and a stirrer (rotating shaft) in a container with a lid.
  • a paint shaker that mechanically shakes a sealed container to stir the medium strongly
  • a ball mill that mechanically rotates the sealed container to stir the medium
  • a stirrer rotating shaft
  • a bead mill that has a rotating shaft with a large number of disks (referred to as agitator disks) mounted in a container, and rotates the medium to vigorously stir the media can be used.
  • the name of the media-type mill device is often different depending on the manufacturer, but any device is characterized in that it can be crushed strongly by the collision force between the media stirred together with the solid or liquid.
  • these apparatuses those widely used for pulverizing, dispersing, mixing and the like of inorganic substances, and for grinding and dispersing paint pigments can be used.
  • the material of the media is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include soda glass, alumina, zirconia, and Teflon (registered trademark).
  • the size of the medium is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the diameter is preferably 5 mm to 30 mm, more preferably 10 mm to 20 mm.
  • Examples of the roll mill include a two-roll mill and a three-roll mill. Among these, a three-roll mill is preferable from the viewpoint of pulverization ability.
  • the operating conditions of the three-roll mill are not particularly limited and may be appropriately selected according to the purpose. However, the rotation ratio of the front roll: 50 rpm to 200 rpm, the front roll: middle roll: rear roll is 1.0. : 1.5: 5.0 to 1.0: 3.0: 8.0 is preferable.
  • the colloid mill is a mill that is crushed by bringing a fixed disk or stationary ring extremely close to a disk or rotor that rotates at high speed and throwing an object into the narrow gap.
  • the operation time of the pulverizer is not particularly limited and can be appropriately selected according to the purpose.
  • the pulverization time is not particularly limited and can be appropriately selected according to the purpose.
  • the cake strength is high due to high flocculant content in the abrasive waste or low moisture content
  • the effect of pulverization can be enhanced by increasing the pulverization time.
  • the appropriate conditions for pulverization vary depending on the composition of the abrasive waste and the properties of the cake.
  • the pulverization time is short, sufficient pulverization is not performed and the aggregation state is maintained.
  • the effect of acid and alkali treatment does not reach the inside of the solid material, and the composition and particle size of the intended recycled product (collected material) may not be obtained.
  • the primary particles may be excessively pulverized, and the particle size of the recycled product (recovered material) may not be suitable for the purpose of recycling such as abrasives.
  • the pulverization time is in a preferred range, the abrasive is uniformly pulverized to the primary particles, so that the solids to be recovered and the components to be removed can be effectively separated, and at the same time, the abrasive particles This is advantageous in that a particle size suitable for abrasives and other applications can be obtained without excessively crushing.
  • the average particle size of the pulverized product obtained by the pulverization treatment is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 0.5 ⁇ m to 10 ⁇ m.
  • the average particle diameter can be measured by, for example, a laser diffraction type particle size distribution measuring apparatus (for example, SALD2000A manufactured by Shimadzu Corporation).
  • the pH in the step of adjusting the pH to the range of 10.0 to 14.0 is preferably 10.0 to 13.5, more preferably 12.0 to 13.5.
  • the pH of the slurry is adjusted by adding an alkali.
  • the alkali include hydroxides and carbonates of alkali metals or alkaline earth metals such as sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate.
  • Sodium hydroxide is preferred as the alkali.
  • the pH in the step of adjusting the pH of the slurry to the range of 1.0 to 3.0 is preferably 1.0 to 2.5, more preferably 1.0 to 2.0.
  • the pH is adjusted by adding an inorganic or organic acid, but it is preferable to use an inorganic acid.
  • the inorganic acid include hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid and the like, and hydrochloric acid is particularly preferable.
  • the organic acid include formic acid and acetic acid. Two or more acids may be used in combination.
  • a combination of 10.0 to 14.0 and 1.0 to 3.0 preferably a combination of 10.0 to 14.0 and 1.0 to 3.0, particularly preferably 10.0 to 13.5 and 1.0 to 2.5.
  • a combination most preferably a combination of 12.0 to 13.5 and 1.0 to 2.0.
  • the recycling method of the present invention can further include a step of recovering the abrasive from the two-stage pH-adjusted slurry, and a step of washing, drying and crushing the recovered abrasive.
  • the step of recovering the abrasive from the slurry is a step of separating the abrasive from the two-stage pH adjusted slurry.
  • a separation method a sedimentation separation method, a centrifugation method, a filtration method, or the like can be employed.
  • the acid component such as hydrochloric acid adhering to the recovered abrasive is washed away with water, and the washed abrasive is dried with a normal dryer, This is a step of crushing by a normal crushing method.
  • the above-described pulverization process may be performed.
  • the recycled glass abrasive obtained by the method of the present invention has a high removal rate of silicon components and aluminum components and has a polishing performance equivalent to a new abrasive before use.
  • the properties of the recycled glass abrasive are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include dry powder, water-containing cake, and slurry.
  • a cerium oxide abrasive if it is good that it is a dry powder, in the recovery method, dehydrated and dried to obtain a recovered product as a dry powder, and supply the recovered product as a dry powder If the state dispersed in water is good as used in the polishing process, it is possible to omit the dehydration and drying process by obtaining the recovered material in a slurry state with an appropriate pulp concentration. Collected materials can be obtained at a low cost.
  • Example 1 Used cerium oxide glass abrasive containing flocculant (dehydrated cake using flocculant (polyaluminum chloride) to reduce the volume of the used slurry discharged from the glass polishing process mainly composed of cerium oxide) The following tests were conducted using the waste collected as a raw material.
  • the contents in the magnetic pot were passed through a sieve having an opening of 5 mm to separate the zirconia balls and the crushed abrasive, and a used cerium oxide glass abrasive slurry containing an aggregating agent was obtained.
  • the 500 ml abrasive slurry was collected in a 1 L glass beaker and stirred at 250 rpm using a stirrer. As the first pH adjustment, 25% sodium hydroxide was added to adjust the pH to 13.5. The mixture was stirred for 5 minutes in this state.
  • the washing operation was performed by discarding the supernatant after centrifugation, adding 400 ml of water to the settled solid material to dissolve it, centrifuging again, and discarding the supernatant, and this was repeated twice.
  • the collected solid was dried at a temperature of 105 ° C. for 12 hours, and the composition analysis result of the obtained collected (recycled product of used abrasive) is shown in Table 1 together with the test materials.
  • Example 2 to Example 8 A recovered product was obtained by performing the same operation as in Example 1 except that the pH adjusted at the first time and the second time was performed as shown in Table 1. Table 1 shows the composition analysis results of the collected product.
  • Example 1 The same treatment as in Test 1 of Example 1 was performed except that the first pH adjustment with sodium hydroxide was not performed, and the composition of the obtained recovered material is shown in Table 1. In addition, a composition is the description at the time of converting into an oxide.
  • the polishing object was white plate glass having a diameter of 30 mm and a thickness of 5 mm.
  • the test method is as follows.
  • 10 L of a slurry having a recycled abrasive concentration of 10 g / L was prepared.
  • 10 L of this slurry was put into a glass polishing machine (Oscar type polishing apparatus), and polishing was performed for 3 minutes per 6 sheets of the above-mentioned 6 sheets of glass under a pressure of 2 kgf / cm 2 .
  • the glass polishing was performed continuously for 6 sheets without replacing the slurry, and the polishing rate ( ⁇ m / min) was measured from the polishing amount for each glass, and the average value of 6 executions was obtained.
  • the results are shown in Table 2.
  • the polishing rate (average value) of the recycled product was 1.5 ⁇ m / min, and the polishing rate (average value) when the same glass was polished with (virgin product) was 1.5 ⁇ m / min. From the results, it was confirmed that the recycled product had the same glass polishing performance as the virgin product.
  • Table 3 shows the results of F-test with the result of implementing the polishing rate 6 times for recycled products and virgin products with a significance level of 5%. From the result, it can be said that a significant difference is not recognized because the dispersion ratio is smaller than the F boundary value. Further, the appearance, burnt state, and surface state of the glass surface after polishing were not different from the case of using a virgin product.
  • the removal rate of the silicon component and the flocculant component is high by a simple method from the used cerium oxide glass abrasive containing the flocculant, and the polishing performance equivalent to a new abrasive before use is obtained. Since the abrasive

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided is a method that easily recycles an abrasive agent having an abrasive performance equivalent to a pre-use new abrasive agent, and that has a high rate of elimination of silicon components and aluminum components from a used cerium oxide glass abrasive agent containing a flocculating agent. The method for recycling the abrasive agent from a used cerium oxide glass abrasive agent containing a flocculating agent includes a step for adjusting the pH of a slurry of the used cerium oxide glass abrasive agent containing a flocculating agent into the range of 10.0-14.0, and then adjusting the pH of the slurry into the range of 1.0-3.0.

Description

凝集剤を含む使用済み酸化セリウム系ガラス研磨剤からの研磨剤のリサイクル方法Abrasive recycling method from spent cerium oxide glass abrasive containing flocculant
 本発明は、凝集剤を含む使用済み酸化セリウム系ガラス研磨剤からの研磨剤のリサイクル方法に関するものである。 The present invention relates to a method for recycling an abrasive from a used cerium oxide glass abrasive containing a flocculant.
 酸化セリウム系ガラス研磨剤は、その組成に起因する化学的研磨作用から、各種ガラス研磨工程において広く工業的に使用されてきた。従来は、その価格及び供給状態から、ガラス研磨に用いられた後のガラス研磨屑を含む使用済みスラリーは固液分離などのプロセスを経て廃棄されることが一般的であった。しかし、近年の社会状況の変化を背景とした供給の不安定化、価格高騰などの状況から、ガラス研磨プロセスにおける研磨剤の使用量の低減、使用済みの研磨剤からのリサイクル、研磨剤の新たな供給源の開発などが大きな課題となっている。 Cerium oxide glass abrasives have been widely used industrially in various glass polishing processes because of their chemical polishing action due to their composition. Conventionally, due to its price and supply state, the used slurry containing glass polishing waste after being used for glass polishing has been generally discarded through a process such as solid-liquid separation. However, due to unstable supply and rising prices due to changes in social conditions in recent years, the amount of abrasives used in the glass polishing process has been reduced, recycled from used abrasives, new abrasives The development of new supply sources is a major issue.
 使用済み研磨剤の再生方法としては、使用済み研磨剤スラリーの沈殿物を密度差を利用して被研磨物と分離除去する方法が知られている(特許文献1)。 As a method of regenerating used abrasives, a method is known in which the precipitate of used abrasive slurry is separated and removed from the object to be polished using the density difference (Patent Document 1).
 研磨剤の凝集を促進するために凝集剤を用いる方法が提案されている(特許文献2)。 A method using a flocculant has been proposed to promote the agglomeration of the abrasive (Patent Document 2).
 また、分散状態を良好とするために、使用済み研磨剤スラリーをアルカリ性に調整しゼータ電位を変化させて、遠心分離により研磨剤を回収する技術が提案されている(特許文献3)。 Also, in order to improve the dispersion state, a technique has been proposed in which the used abrasive slurry is adjusted to be alkaline, the zeta potential is changed, and the abrasive is recovered by centrifugation (Patent Document 3).
 さらに、使用済み研磨剤スラリーを酸で処理する方法が提案されている(特許文献4)。 Furthermore, a method of treating a used abrasive slurry with an acid has been proposed (Patent Document 4).
特開2005-14187号公報Japanese Patent Laid-Open No. 2005-14187 特開平9-327603号公報JP 9-327603 A 特開2002-28662号公報JP 2002-28662 A 特開2007-276055号公報JP 2007-276055 A
 しかし、特許文献1の方法では、研磨剤を沈殿させるのに長時間を要し、設備投資が大きくなると考えられる。また、凝集剤を含む研磨剤廃棄物の場合、ガラス成分と凝集剤と研磨剤とが凝集剤により架橋されており分離することができなくなるため、この方法ではリサイクルは実施できないと考えられる。更に、リサイクルした研磨剤は、焼成を行わなければ、使用前の新品の研磨剤と同等の研磨効果を奏していないことも開示されている。
 また、特許文献2の凝集剤は、研磨用廃水の処理時に懸濁物を凝集させて廃棄するためのものであり、凝集物には研磨剤成分と被研磨剤成分が共に凝集されてしまうことから、研磨剤のリサイクルには適していない。
 更に、本発明者らが、特許文献3に記載のアルカリを使用する方法で、研磨剤のリサイクルを試みたところ、得られたリサイクル研磨剤中には、ガラスの研磨屑成分であるSiOや凝集剤成分であるアルミニウム成分が十分に除去されておらず、使用前の新品の研磨剤と同等の研磨効果が得られないことがわかった。
 更にまた、特許文献4の酸処理による方法では、焼成を行わなければ、使用前の新品の研磨剤と同等の研磨効果を奏するリサイクル品が得られていない(特許文献4の実施例1)。また、本発明者らが、特許文献4に記載の酸処理による方法で、研磨剤のリサイクルを試みたところ、酸処理溶液がpH1の場合には理由は不明であるが研磨レートが低下し、pH2の場合はガラス成分の残存量が多いことから研磨レートが不十分となり、pH3の場合はガラス成分と凝集剤成分が多く残存することから研磨レートが悪化することがわかった。一方、本発明者らが所定のアルカリ濃度まで調整した後にpH1~3に調整したところ、上記酸処理のみを行う場合に対して研磨レートが向上することを知見した。
However, in the method of Patent Document 1, it takes a long time to precipitate the abrasive, and it is considered that the equipment investment increases. In the case of abrasive waste containing a flocculant, the glass component, the flocculant, and the abrasive are cross-linked by the flocculant and cannot be separated. Therefore, it is considered that this method cannot be recycled. Furthermore, it is also disclosed that the recycled abrasive does not exhibit the same polishing effect as a new abrasive before use unless it is fired.
Further, the flocculant of Patent Document 2 is for aggregating and discarding the suspension during the treatment of the polishing waste water, and both the abrasive component and the abrasive component are aggregated in the aggregate. Therefore, it is not suitable for recycling of abrasives.
Furthermore, when the present inventors tried to recycle the abrasive by a method using an alkali described in Patent Document 3, in the obtained recycled abrasive, SiO 2 which is a polishing scrap component of glass and It was found that the aluminum component, which is a flocculant component, was not sufficiently removed, and a polishing effect equivalent to that of a new abrasive before use could not be obtained.
Furthermore, in the method using the acid treatment of Patent Document 4, a recycled product that exhibits the same polishing effect as a new abrasive before use cannot be obtained unless firing is performed (Example 1 of Patent Document 4). Moreover, when the present inventors tried recycling of the polishing agent by the method by acid treatment described in Patent Document 4, when the acid treatment solution has a pH of 1, the reason is unknown, but the polishing rate decreases, It was found that the polishing rate was insufficient because the residual amount of glass component was large at pH 2, and the polishing rate deteriorated because a large amount of glass component and flocculant component remained at pH 3. On the other hand, when the inventors adjusted the pH to 1 to 3 after adjusting to a predetermined alkali concentration, they found that the polishing rate was improved as compared with the case where only the acid treatment was performed.
 本発明は、使用済み研磨剤のリサイクルにおいて、単に酸処理のみを行う場合に比べて珪素成分ガラス研磨屑成分(珪素成分)と凝集剤成分の双方の除去率を高め、得られるリサイクル研磨剤が新品の研磨剤と同等の研磨性能を有する、研磨剤のリサイクル方法を提供することを目的とする。 The present invention improves the removal rate of both the silicon component glass polishing waste component (silicon component) and the flocculant component in the recycling of used abrasives as compared with the case where only the acid treatment is performed, and the recycled abrasive obtained is An object of the present invention is to provide a polishing agent recycling method having polishing performance equivalent to that of a new polishing agent.
 本発明者らは、凝集剤を含む使用済み酸化セリウム系ガラス研磨剤スラリーのpHを所定の2段階の範囲に制御することにより、ガラス成分や凝集剤が殆ど含まれず、使用前の新品の研磨剤と同等の研磨効果を有する研磨剤を容易に回収できることを知見し、本発明を完成させた。 The present inventors control the pH of the used cerium oxide glass abrasive slurry containing a flocculant within a predetermined two-stage range, so that the glass component and the flocculant are hardly contained, and a new polishing before use is performed. The present invention was completed by finding that an abrasive having a polishing effect equivalent to that of the abrasive can be easily recovered.
 すなわち、最初のpH調整では、pHをアルカリ性に調整する。この工程では、ガラス研磨工程で使用済み研磨剤粒子の表面の化学的に研磨された分子状のガラス(SiO)等の研磨屑と、凝集剤の成分と、研磨剤のそれぞれの成分の分散性が向上すると考えられる。その後二回目のpH調整では、pHを酸性に調整する。この工程では、研磨剤成分を速やかに沈降させて、研磨剤とガラス研摩屑・凝集剤を分離できると考えられる。単にpHをアルカリへ調整するだけでは、凝集剤、ガラス研摩屑ともに除去できない。また、単にpHを低下させるだけでは、pHを2段階に調整する場合と比較して効果が小さい。 That is, in the first pH adjustment, the pH is adjusted to be alkaline. In this step, the polishing particles such as chemically polished molecular glass (SiO 2 ) on the surface of the abrasive particles used in the glass polishing step, the components of the flocculant, and the dispersion of each component of the abrasive It is thought that the property improves. Thereafter, in the second pH adjustment, the pH is adjusted to be acidic. In this step, it is considered that the abrasive component can be quickly settled to separate the abrasive and the glass abrasive waste / flocculant. Neither the flocculant nor the glass polishing waste can be removed by simply adjusting the pH to alkali. Further, simply lowering the pH is less effective than adjusting the pH in two stages.
 本発明は、以下の通りである。 The present invention is as follows.
1.凝集剤を含む使用済み酸化セリウム系ガラス研磨剤からの研磨剤のリサイクル方法であって、凝集剤を含む使用済み酸化セリウム系ガラス研磨剤のスラリーのpHを10.0~14.0の範囲に調整する工程、その後当該スラリーのpHを1.0~3.0の範囲に調整する工程を含むことを特徴とする研磨剤のリサイクル方法。 1. A method for recycling an abrasive from a used cerium oxide-based glass abrasive containing a flocculant, wherein the pH of the slurry of the used cerium oxide-based glass abrasive containing a flocculant is in the range of 10.0 to 14.0. A method for recycling an abrasive, comprising a step of adjusting, and then a step of adjusting the pH of the slurry to a range of 1.0 to 3.0.
2.pHを10~14の範囲にするpH調整剤として、アルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩を用いることを特徴とする上記1に記載の研磨剤のリサイクル方法。 2. 2. The method for recycling an abrasive according to 1 above, wherein a hydroxide or carbonate of an alkali metal or alkaline earth metal is used as a pH adjuster for adjusting the pH to a range of 10 to 14.
3.pHを1.0~3.0の範囲にするpH調整剤として、塩酸、硝酸、リン酸又は硫酸を用いることを特徴とする上記1又は2に記載の研磨剤のリサイクル方法。 3. 3. The method for recycling an abrasive according to 1 or 2 above, wherein hydrochloric acid, nitric acid, phosphoric acid or sulfuric acid is used as a pH adjusting agent for adjusting the pH to a range of 1.0 to 3.0.
4.pHを10~14の範囲にするpH調整剤として、水酸化ナトリウムを用いることを特徴とする上記1~3のいずれか1項に記載の研磨剤のリサイクル方法。 4). 4. The method for recycling an abrasive according to any one of 1 to 3 above, wherein sodium hydroxide is used as a pH adjuster for adjusting the pH to a range of 10 to 14.
5.pHを1.0~3.0の範囲にするpH調整剤として、塩酸を用いることを特徴とする上記1~4のいずれか1項に記載の研磨剤のリサイクル方法。 5. 5. The method for recycling an abrasive according to any one of 1 to 4 above, wherein hydrochloric acid is used as a pH adjuster for adjusting the pH to a range of 1.0 to 3.0.
6.上記1~5のいずれか1項に記載の研磨剤のリサイクル方法で得られたことを特徴とするリサイクルガラス研磨剤。 6). 6. A recycled glass abrasive obtained by the method for recycling an abrasive according to any one of 1 to 5 above.
 本発明によれば、凝集剤を含む使用済み酸化セリウム系ガラス研磨剤から、珪素成分や凝集剤成分の除去率が高く、使用前の新品の研磨剤と同等の研磨性能を有する研磨剤を簡便にリサイクルする方法を提供できる。 According to the present invention, a polishing agent having a high removal rate of a silicon component and a flocculant component from a used cerium oxide-based glass abrasive containing a flocculant and having polishing performance equivalent to a new abrasive before use can be easily obtained. Can provide a way to recycle.
 本発明は、凝集剤成分を含む使用済み酸化セリウム系ガラス研磨剤から研磨剤をリサイクルする方法に関する。酸化セリウム系ガラス研磨剤は、使用に伴い研磨性能が低下してくるので、ある時点で廃棄されている。廃棄に際しては、使用済み酸化セリウム系ガラス研磨剤のスラリーに凝集剤を加えて、研磨剤成分を凝集して、これを脱水したケーキの形態で行われる。本発明は、スラリー又はケーキの形態で従来は廃棄されていた、凝集剤を含む使用済みの酸化セリウム系ガラス研磨剤から研磨剤をリサイクルする方法に関する。 The present invention relates to a method for recycling an abrasive from a used cerium oxide glass abrasive containing a flocculant component. The cerium oxide-based glass abrasive is discarded at a certain point because the polishing performance decreases with use. At the time of disposal, a flocculant is added to the slurry of the used cerium oxide glass abrasive to agglomerate the abrasive components, and this is performed in the form of a dehydrated cake. The present invention relates to a method for recycling abrasives from spent cerium oxide based glass abrasives containing flocculant, conventionally discarded in the form of a slurry or cake.
 凝集剤を含む使用済み酸化セリウム系ガラス研磨剤は、酸化セリウム系ガラス研磨剤をガラスの研磨に用いる過程で発生し、かつ凝集剤を含むものであれば特に限定されない。 The used cerium oxide-based glass abrasive containing a flocculant is not particularly limited as long as it is generated in the process of using the cerium oxide-based glass abrasive for polishing glass and contains a flocculant.
 使用済みガラス研磨剤に含まれる凝集剤は、ポリ塩化アルミニウム、塩化鉄、硫酸アルミニウム、シリカ等が挙げられ、特にポリ塩化アルミニウム、硫酸アルミニウム、シリカである。 Examples of the flocculant contained in the used glass abrasive include polyaluminum chloride, iron chloride, aluminum sulfate, silica and the like, particularly polyaluminum chloride, aluminum sulfate and silica.
 酸化セリウム系研磨剤は、材質、形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。 The cerium oxide-based abrasive is not particularly limited as to the material, shape, size, and structure, and can be appropriately selected according to the purpose.
 酸化セリウム系研磨剤の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸化セリウムを少なくとも含有し、更に必要に応じて酸化ランタン、酸化プラセオジムなどを含有する酸化セリウム系研磨剤が挙げられる。 The material of the cerium oxide-based abrasive is not particularly limited and can be appropriately selected according to the purpose. For example, the oxide contains at least cerium oxide, and further contains lanthanum oxide, praseodymium oxide, or the like as necessary. A cerium type abrasive | polishing agent is mentioned.
 酸化セリウム系研磨剤の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.5μm~10μmが挙げられる。ここで、平均粒子径は、例えば、レーザー回折式粒度分布測定装置(一例として、島津製作所製、SALD2000A)により測定することができる。 The average particle diameter of the cerium oxide-based abrasive is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 0.5 μm to 10 μm. Here, the average particle diameter can be measured by, for example, a laser diffraction type particle size distribution measuring apparatus (for example, SALD2000A manufactured by Shimadzu Corporation).
 酸化セリウム系研磨剤に含有されるセリウム、ランタン、プラセオジムなどの希土類元素(レアアース)は、貴重な資源であり、回収による再利用が望まれている元素である。 Rare earth elements (rare earth) such as cerium, lanthanum, and praseodymium contained in the cerium oxide-based abrasive are valuable resources and elements that are desired to be reused by recovery.
 研磨剤廃棄物は、酸化セリウム系研磨剤と、ガラス研磨屑とを少なくとも含有し、更に必要に応じて、凝集剤などのその他の成分を含有する。研磨剤廃棄物は、代表的にはケーキ状である。 The abrasive waste contains at least a cerium oxide abrasive and glass polishing waste, and further contains other components such as an aggregating agent as necessary. The abrasive waste is typically in the form of a cake.
 ケーキ状の研磨剤廃棄物は、例えば、使用済みの酸化セリウム系研磨剤とガラス研磨屑とが混在した混合物スラリーに凝集剤を添加して酸化セリウム系研磨剤を凝集させた後に、固液分離手段などにより水分を減少又は除去して湿ケーキ状(脱水ケーキ状)又はそれを乾燥することにより得られる。研磨剤廃棄物の水分量は、通常、30質量%~60質量%程度である。 Cake-like abrasive waste is, for example, solid-liquid separated after adding a flocculant to a mixture slurry in which used cerium oxide abrasive and glass polishing scraps are mixed to agglomerate the cerium oxide abrasive. It is obtained by reducing or removing moisture by means or the like, and drying the wet cake (dehydrated cake). The water content of the abrasive waste is usually about 30% by mass to 60% by mass.
 ここで、「ケーキ」とは、固形分が水分を含有した状態でろ過装置による圧搾などで固まり状になったもののことをいい、「スラリー」とは、固形分が水などの液中に分散され、液状または泥状になったもののことをいう。 Here, “cake” means that the solid content is in a solid state containing water and is solidified by squeezing with a filtration device, etc., and “slurry” is a solid content dispersed in a liquid such as water. Means liquid or mud.
 研磨剤廃棄物の状態(大きさ)としては、特に制限はなく、解粒機に供給可能な大きさ(一般的には数cm程度以下)になっていればよい。 The state (size) of the abrasive waste is not particularly limited, and may be a size (generally about several cm or less) that can be supplied to the granulator.
 ガラス研磨屑は、酸化セリウム系研磨剤を用いて、ガラスディスク、水晶ウエーハ、液晶パネルなどのガラス材料を研磨した際に発生する研磨屑である。 Glass polishing waste is polishing waste generated when a glass material such as a glass disk, a crystal wafer, or a liquid crystal panel is polished using a cerium oxide abrasive.
 酸化セリウム系研磨剤を用いた前記ガラス材料の研磨は、通常の研磨剤(例えば酸化アルミニウム)を用いた研磨のように、物理的又は機械的に被研磨物を削るようなものではなく、酸化セリウム研磨剤がガラス材料と接触したとき、珪素成分が化学的に反応を起こし、原子レベルの大きさで剥ぎ取られ、酸化セリウムに付着することによって行われると考えられている。そのため、前記ガラス研磨屑の大きさは、前記酸化セリウム系研磨剤よりも非常に小さい。そして、研磨剤廃棄物において前記ガラス研磨屑は、主に前記酸化セリウム系研磨剤に付着している。 Polishing of the glass material using a cerium oxide-based abrasive is not a method of physically or mechanically scraping the object to be polished, as in the case of polishing using an ordinary abrasive (for example, aluminum oxide). It is believed that when the cerium abrasive comes into contact with the glass material, the silicon component reacts chemically, is stripped off at atomic level, and adheres to cerium oxide. Therefore, the size of the glass polishing waste is much smaller than that of the cerium oxide-based abrasive. And in the abrasive | polishing agent waste, the said glass grinding | polishing waste has mainly adhered to the said cerium oxide type abrasive | polishing agent.
 本発明のリサイクル方法は、使用済み研磨剤がケーキの形態の場合は、水を加えてスラリーとする工程を含む。この際に、ボールミル等により解粒処理するのが好ましい。 The recycling method of the present invention includes a step of adding water to form a slurry when the used abrasive is in the form of a cake. At this time, it is preferable to carry out a pulverization treatment with a ball mill or the like.
 解粒処理は、酸化セリウム系研磨剤及びガラス研磨屑を含有するケーキ状の研磨剤廃棄物を水などと混合し、解粒機により解粒する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。好ましくは、酸水溶液及びアルカリ水溶液のいずれかと混合することがよい。ここで、「解粒」とは、研磨剤廃棄物中の酸化セリウム系研磨剤の凝集状態を解きほぐすことを意味する。 The granulation treatment is not particularly limited as long as it is a step of mixing cake-like abrasive waste containing cerium oxide abrasive and glass abrasive scraps with water and the like and pulverizing with a granulator. It can be appropriately selected depending on the case. Preferably, it is good to mix with either acid aqueous solution or alkali aqueous solution. Here, “pulverization” means to release the aggregation state of the cerium oxide-based abrasive in the abrasive waste.
 解粒機としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メディア型ミル、ロールミル、強撹拌型の撹拌機、ラインミキサー、コロイドミルなどが挙げられる。 The granulator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a media type mill, a roll mill, a strong stirring type stirrer, a line mixer, and a colloid mill.
 メディア型ミルとしては、容器内にボール又はビーズ(以下、メディアと称することがある)を入れ、固体や液体と共に攪拌する装置であれば、特に制限はなく、目的に応じて適宜選択することができる。 The media type mill is not particularly limited as long as it is a device in which balls or beads (hereinafter sometimes referred to as media) are placed in a container and stirred together with a solid or liquid, and can be appropriately selected according to the purpose. it can.
 前記メディア型ミルとしては、例えば、密閉容器を機械的に振盪しメディアを強力に攪拌するペイントシェイカー、密閉容器を機械的に回転させメディアを攪拌するボールミル、蓋付き容器内に攪拌子(回転軸に多数の棒を取り付けた攪拌子や回転軸に多段の円盤を取り付けた攪拌子等、機器メーカーにより様々な形状を有する)を入れて回転させ、メディアを強力に攪拌するアトライターやサンドミル、密閉容器内に多数の円盤(アジテーターディスクと称される)が取り付けられた回転軸を有し、これを回転させ、メディアを強力に攪拌するビーズミルなどが挙げられる。 Examples of the media type mill include, for example, a paint shaker that mechanically shakes a sealed container to stir the medium strongly, a ball mill that mechanically rotates the sealed container to stir the medium, and a stirrer (rotating shaft) in a container with a lid. (A variety of shapes, such as a stirrer with a large number of rods attached to it, or a stirrer with a multi-stage disk attached to the rotating shaft, etc.) A bead mill that has a rotating shaft with a large number of disks (referred to as agitator disks) mounted in a container, and rotates the medium to vigorously stir the media can be used.
 メディア型ミルの装置の呼称は製造メーカーによって異なる場合も多々あるが、何れの装置においても、固体や液体と一緒に攪拌されるメディア同士の衝突力により、強力に解粒できることが特徴である。これらの装置は、無機物の粉砕、分散、混合等や、塗料顔料の練肉、分散等に広く用いられているものが使用できる。 The name of the media-type mill device is often different depending on the manufacturer, but any device is characterized in that it can be crushed strongly by the collision force between the media stirred together with the solid or liquid. As these apparatuses, those widely used for pulverizing, dispersing, mixing and the like of inorganic substances, and for grinding and dispersing paint pigments can be used.
 メディアの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ソーダガラス、アルミナ、ジルコニア、テフロン(登録商標)などが挙げられる。 The material of the media is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include soda glass, alumina, zirconia, and Teflon (registered trademark).
 メディアの大きさとしては、特に制限はなく、目的に応じて適宜選択することができるが、直径が、5mm~30mmが好ましく、10mm~20mmがより好ましい。 The size of the medium is not particularly limited and may be appropriately selected depending on the intended purpose. The diameter is preferably 5 mm to 30 mm, more preferably 10 mm to 20 mm.
 ロールミルとしては、例えば、2本ロールミル、3本ロールミルなどが挙げられる。これらの中でも、解粒能力の点から3本ロールミルが好ましい。3本ロールミルの運転条件としては、特に制限はなく、目的に応じて適宜選択することができるが、前ロール回転数50rpm~200rpm、前ロール:中ロール:後ロールの各回転比が1.0:1.5:5.0~1.0:3.0:8.0であることが好ましい。 Examples of the roll mill include a two-roll mill and a three-roll mill. Among these, a three-roll mill is preferable from the viewpoint of pulverization ability. The operating conditions of the three-roll mill are not particularly limited and may be appropriately selected according to the purpose. However, the rotation ratio of the front roll: 50 rpm to 200 rpm, the front roll: middle roll: rear roll is 1.0. : 1.5: 5.0 to 1.0: 3.0: 8.0 is preferable.
 前記コロイドミルは、高速回転するディスクやローターに固定ディスクや固定環を極端に接近させ、その狭い隙間に対象物を投入することで、破砕するミルである。 The colloid mill is a mill that is crushed by bringing a fixed disk or stationary ring extremely close to a disk or rotor that rotates at high speed and throwing an object into the narrow gap.
 解粒機の運転時間、即ち解粒時間としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、研磨剤廃棄物中の凝集剤含有量が多い、又は含水率が低いなどの理由によりケーキの強度が高いときには、解粒の時間を長くすることで、解粒の効果を高めることができる。研磨剤廃棄物の成分組成や、ケーキの性状によって解粒の適正条件は変化するが、前記解粒の時間が短い場合には、充分な解粒が行われないことで、凝集状態を保った固形物の内部に酸およびアルカリ処理の効果が及ばず、目的とする再生品(回収物)の組成や粒度が得られないことがあり、前記解粒の時間が長い場合には、解粒後の一次粒子の粉砕が過剰に進行し、再生品(回収物)の粒度が研磨剤などのリサイクル用途の目的とそぐわないことがある。前記解粒の時間が、好ましい範囲であると、研磨剤を一次粒子まで均一に解粒することで、回収したい固形分と除去したい成分を効果的に分離することができると同時に、研磨剤粒子を過剰に粉砕することなく、研磨剤や他の用途に適した粒度を得られるという点で有利である。 The operation time of the pulverizer, that is, the pulverization time is not particularly limited and can be appropriately selected according to the purpose. For example, when the cake strength is high due to high flocculant content in the abrasive waste or low moisture content, the effect of pulverization can be enhanced by increasing the pulverization time. . The appropriate conditions for pulverization vary depending on the composition of the abrasive waste and the properties of the cake. However, when the pulverization time is short, sufficient pulverization is not performed and the aggregation state is maintained. The effect of acid and alkali treatment does not reach the inside of the solid material, and the composition and particle size of the intended recycled product (collected material) may not be obtained. The primary particles may be excessively pulverized, and the particle size of the recycled product (recovered material) may not be suitable for the purpose of recycling such as abrasives. When the pulverization time is in a preferred range, the abrasive is uniformly pulverized to the primary particles, so that the solids to be recovered and the components to be removed can be effectively separated, and at the same time, the abrasive particles This is advantageous in that a particle size suitable for abrasives and other applications can be obtained without excessively crushing.
 解粒処理により得られる解粒物の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.5μm~10μmが挙げられる。ここで、平均粒子径は、例えば、レーザー回折式粒度分布測定装置(一例として、島津製作所製、SALD2000A)により測定することができる。 The average particle size of the pulverized product obtained by the pulverization treatment is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 0.5 μm to 10 μm. Here, the average particle diameter can be measured by, for example, a laser diffraction type particle size distribution measuring apparatus (for example, SALD2000A manufactured by Shimadzu Corporation).
 本発明のリサイクル方法は、凝集剤を含有する使用済み酸化セリウム系ガラス研磨剤のスラリーのpHを10.0~14.0の範囲に調整する工程、その後当該スラリーのpHを1.0~3.0に調整する工程を含む。 In the recycling method of the present invention, the step of adjusting the pH of the slurry of the used cerium oxide glass abrasive containing the flocculant to the range of 10.0 to 14.0, and then the pH of the slurry is 1.0 to 3 Adjusting to 0.0.
 pHを10.0~14.0の範囲に調整する工程におけるpHは、好ましくは10.0~13.5、より好ましくは12.0~13.5である。スラリーのpH調整は、アルカリの添加により行う。アルカリとしては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属又はアルカリ土類金属の水酸化物や炭酸塩が挙げられる。アルカリとして、水酸化ナトリウムが好ましい。 The pH in the step of adjusting the pH to the range of 10.0 to 14.0 is preferably 10.0 to 13.5, more preferably 12.0 to 13.5. The pH of the slurry is adjusted by adding an alkali. Examples of the alkali include hydroxides and carbonates of alkali metals or alkaline earth metals such as sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate. Sodium hydroxide is preferred as the alkali.
 スラリーのpHを1.0~3.0の範囲に調整する工程におけるpHは、好ましくは1.0~2.5、より好ましくは1.0~2.0である。pH調整は、無機又は有機の酸の添加により行うが、無機酸によるのが好ましい。無機酸としては、塩酸、硝酸、リン酸、硫酸等が挙げられ、塩酸が特に好ましい。有機酸としては、蟻酸、酢酸が挙げられる。酸は、2種以上の酸を併用してもよい。 The pH in the step of adjusting the pH of the slurry to the range of 1.0 to 3.0 is preferably 1.0 to 2.5, more preferably 1.0 to 2.0. The pH is adjusted by adding an inorganic or organic acid, but it is preferable to use an inorganic acid. Examples of the inorganic acid include hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid and the like, and hydrochloric acid is particularly preferable. Examples of the organic acid include formic acid and acetic acid. Two or more acids may be used in combination.
 2段階のpH調整におけるpHの組合せに関して、好ましくは10.0~14.0と1.0~3.0の組合せ、特に好ましくは10.0~13.5と1.0~2.5の組合せ、最も好ましくは12.0~13.5と1.0~2.0の組合せである。 Regarding the combination of pH in the two-stage pH adjustment, preferably a combination of 10.0 to 14.0 and 1.0 to 3.0, particularly preferably 10.0 to 13.5 and 1.0 to 2.5. A combination, most preferably a combination of 12.0 to 13.5 and 1.0 to 2.0.
 本発明のリサイクル方法は、さらに、2段階のpH調整されたスラリーから研磨剤を回収する工程、回収した研磨剤を洗浄、乾燥、解砕する工程を含むことができる。 The recycling method of the present invention can further include a step of recovering the abrasive from the two-stage pH-adjusted slurry, and a step of washing, drying and crushing the recovered abrasive.
 スラリーから研磨剤を回収する工程は、2段階のpH調整されたスラリーから研磨剤を分離する工程である。分離方法として、沈降分離する方法、遠心分離する方法、濾過による方法などが採用できる。 The step of recovering the abrasive from the slurry is a step of separating the abrasive from the two-stage pH adjusted slurry. As a separation method, a sedimentation separation method, a centrifugation method, a filtration method, or the like can be employed.
 回収した研磨剤を洗浄、乾燥、解砕する工程は、回収した研磨剤に付着する塩酸などの酸成分を水等で洗浄除去し、洗浄した研磨剤を通常の乾燥機で乾燥し、次いで、通常の解砕法により解砕する工程である。例えば、上述した解粒処理を行えばよい。 In the process of washing, drying and crushing the recovered abrasive, the acid component such as hydrochloric acid adhering to the recovered abrasive is washed away with water, and the washed abrasive is dried with a normal dryer, This is a step of crushing by a normal crushing method. For example, the above-described pulverization process may be performed.
 本発明の方法で得られるリサイクルされたガラス研磨剤は、珪素成分やアルミニウム成分の除去率が高く、使用前の新品の研磨剤と同等の研磨性能を有する。 The recycled glass abrasive obtained by the method of the present invention has a high removal rate of silicon components and aluminum components and has a polishing performance equivalent to a new abrasive before use.
 リサイクルガラス研磨剤の性状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、乾燥粉体、含水ケーキ、スラリーなどが挙げられる。酸化セリウム系研磨剤を使用する工程や企業において、乾燥粉体であることがよければ、回収方法において、脱水・乾燥を行い乾燥粉体として回収物を得て、回収物を乾燥粉体として供給することも可能であるし、研磨工程で用いられるように水に分散された状態がよければ、適切なパルプ濃度のスラリー状態で回収物を得ることで、脱水・乾燥工程の実施を省略でき低コストで回収物を得ることできる。 The properties of the recycled glass abrasive are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include dry powder, water-containing cake, and slurry. In a process or company that uses a cerium oxide abrasive, if it is good that it is a dry powder, in the recovery method, dehydrated and dried to obtain a recovered product as a dry powder, and supply the recovered product as a dry powder If the state dispersed in water is good as used in the polishing process, it is possible to omit the dehydration and drying process by obtaining the recovered material in a slurry state with an appropriate pulp concentration. Collected materials can be obtained at a low cost.
 本発明を以下の実施例で説明する。 The invention is illustrated in the following examples.
(実施例1)
 凝集剤を含む使用済み酸化セリウム系ガラス研磨剤(酸化セリウムを主成分とするガラス研磨工程から排出される使用済みスラリーを、減容化するために凝集剤(ポリ塩化アルミニウム)を用いて脱水ケーキとして回収した廃棄物)を原料として、以下の試験を実施した。
Example 1
Used cerium oxide glass abrasive containing flocculant (dehydrated cake using flocculant (polyaluminum chloride) to reduce the volume of the used slurry discharged from the glass polishing process mainly composed of cerium oxide) The following tests were conducted using the waste collected as a raw material.
 凝集剤を含む使用済み酸化セリウム系ガラス研磨剤の脱水ケーキ200g(乾燥重量)を磁性ポット(ボールミル、アズワン社製、容量2000ml)に入れ、水1000ml、直径10mmのジルコニアボール5kgをポットに投入した。この磁性ポットを回転数50rpmで10分間回転させ、脱水ケーキの解砕を行った。 200 g (dry weight) of a dehydrated cake of used cerium oxide glass abrasive containing a flocculant was placed in a magnetic pot (ball mill, manufactured by ASONE, capacity 2000 ml), and 1000 ml of water and 5 kg of zirconia balls having a diameter of 10 mm were placed in the pot. . The magnetic pot was rotated at a rotation speed of 50 rpm for 10 minutes to break up the dehydrated cake.
 次に、磁性ポット内の内容物を目開き5mmの篩を通過させ、ジルコニアボールと解砕された研磨剤を分離し、凝集剤を含む使用済み酸化セリウム系ガラス研磨剤スラリーを得た。 Next, the contents in the magnetic pot were passed through a sieve having an opening of 5 mm to separate the zirconia balls and the crushed abrasive, and a used cerium oxide glass abrasive slurry containing an aggregating agent was obtained.
 この研磨剤スラリー500mlを容量1Lのガラスビーカーに採取し、攪拌機を用いて250rpmで攪拌した。ここに一回目のpH調整として、25%水酸化ナトリウムを添加し、pH13.5となるように調整した。この状態で5分間攪拌した。 The 500 ml abrasive slurry was collected in a 1 L glass beaker and stirred at 250 rpm using a stirrer. As the first pH adjustment, 25% sodium hydroxide was added to adjust the pH to 13.5. The mixture was stirred for 5 minutes in this state.
 次に二回目のpH調整として、35%の塩酸を添加して、pH1となるように調整し、10分間攪拌した。その後、遠心分離機(ベックマン社製)を用いて3000rpmで上澄みと固形物に分離した。この際、不純物である凝集剤成分やガラスの研磨屑は粒子が細かいか、または溶解しているために上澄み液側へ回収され、研磨剤は固形物として回収される。 Next, as the second pH adjustment, 35% hydrochloric acid was added to adjust to pH 1, and the mixture was stirred for 10 minutes. Then, it isolate | separated into the supernatant liquid and the solid substance at 3000 rpm using the centrifuge (made by Beckman). At this time, the flocculant component, which is an impurity, and polishing scraps of glass are collected to the supernatant liquid side because the particles are fine or dissolved, and the abrasive is collected as a solid.
 次に、遠心分離によって回収された固形物の水洗操作を行った。水洗操作は、遠心後の上澄みを捨て、沈降した固形物に水を400ml加えて解き解し、再度遠心して上澄みを捨てる操作とし、これを2回繰返した。 Next, the solids collected by centrifugation were washed with water. The washing operation was performed by discarding the supernatant after centrifugation, adding 400 ml of water to the settled solid material to dissolve it, centrifuging again, and discarding the supernatant, and this was repeated twice.
 回収された固形物を105℃の温度で12時間乾燥させ、得られた回収物(使用済み研磨剤のリサイクル品)の組成分析結果を試験原料と合わせて表1に示した。 The collected solid was dried at a temperature of 105 ° C. for 12 hours, and the composition analysis result of the obtained collected (recycled product of used abrasive) is shown in Table 1 together with the test materials.
(実施例2から実施例8)
 一回目、二回目の調整したpHを表1に示した通り行った以外は実施例1と同様の操作を行って回収物を得た。得られた回収物の組成分析結果を表1に示した。
(Example 2 to Example 8)
A recovered product was obtained by performing the same operation as in Example 1 except that the pH adjusted at the first time and the second time was performed as shown in Table 1. Table 1 shows the composition analysis results of the collected product.
(分析例1)
 得られたリサイクル研磨剤について、蛍光X線分析装置(株式会社リガク製、Super mini)を用いて組成分析を行った。その結果を表1に示す。尚、組成は酸化物に換算した場合の表記である。
(Analysis example 1)
About the obtained recycling abrasive | polishing agent, the composition analysis was performed using the fluorescent-X-ray-analysis apparatus (The Rigaku Co., Ltd. make, Super mini). The results are shown in Table 1. In addition, a composition is the description at the time of converting into an oxide.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 水酸化ナトリウムによる一回目のpH調整を行わなかった以外は実施例1の試験1と同様の処理を行い、得られた回収物の組成を表1に示した。尚、組成は酸化物に換算した場合の表記である。
(Comparative Example 1)
The same treatment as in Test 1 of Example 1 was performed except that the first pH adjustment with sodium hydroxide was not performed, and the composition of the obtained recovered material is shown in Table 1. In addition, a composition is the description at the time of converting into an oxide.
 これらの結果から、pHを所定の2段階の範囲に制御することにより、よりガラスの研磨屑成分であるSiOや凝集剤成分であるアルミニウム成分が除去できることが確認された。ガラス研磨屑成分や凝集剤成分を除去する効果としては、最終的な(調整二回目)pHが1、2、3のそれぞれの場合において、一旦pHを上げた場合の方が、上げない場合よりもSi量、Al量が低減していた。 From these results, it was confirmed that by controlling the pH within a predetermined two-stage range, it is possible to remove SiO 2 that is a polishing scrap component of glass and an aluminum component that is a flocculant component. As an effect of removing the glass polishing waste component and the flocculant component, in the case where the final (second adjustment) pH is 1, 2, and 3, the case where the pH is once increased is higher than the case where the pH is not increased. In addition, the amount of Si and the amount of Al were reduced.
(比較例2から比較例5)
 一回目のpH調整を行わず、二回目のpH調整を表1に示した通り行った以外は比較例1と同様の操作を行って回収物を得た。得られた回収物の組成分析結果を表1に示した。
(Comparative Example 2 to Comparative Example 5)
A recovered product was obtained by performing the same operation as in Comparative Example 1 except that the first pH adjustment was not performed and the second pH adjustment was performed as shown in Table 1. Table 1 shows the composition analysis results of the collected product.
(分析例2)
 また、実施例2の方法を用いて作製したリサイクル研磨剤を用いてガラス研磨性能評価試験を行った。
(Analysis example 2)
Moreover, the glass polishing performance evaluation test was done using the recycling abrasive | polishing agent produced using the method of Example 2. FIG.
 研磨対象は直径30mm、厚さ5mmの白板ガラスを用いた。試験方法は以下の通りである。 The polishing object was white plate glass having a diameter of 30 mm and a thickness of 5 mm. The test method is as follows.
 まずリサイクル研磨剤濃度が10g/Lであるスラリーを10L調整した。このスラリー10Lをガラス研磨機(オスカー式研磨装置)に投入し、2kgf/cmの加圧条件下で、前述のガラス6枚について1枚あたり3分の研磨を行った。ガラス研磨はスラリーの入れ替えを行わずに6枚分連続して行い、各ガラス毎の研磨量から研磨レート(μm/min)を計測し、6回施行の平均値を求めた。 First, 10 L of a slurry having a recycled abrasive concentration of 10 g / L was prepared. 10 L of this slurry was put into a glass polishing machine (Oscar type polishing apparatus), and polishing was performed for 3 minutes per 6 sheets of the above-mentioned 6 sheets of glass under a pressure of 2 kgf / cm 2 . The glass polishing was performed continuously for 6 sheets without replacing the slurry, and the polishing rate (μm / min) was measured from the polishing amount for each glass, and the average value of 6 executions was obtained.
 また、未使用製品(ヴァージン品)を用いて同様の研磨試験を行い、ヴァージン品と実施例で得られたリサイクル品の性能を比較した。 Also, a similar polishing test was performed using an unused product (virgin product), and the performance of the virgin product and the recycled product obtained in the example was compared.
 その結果を表2に示す。リサイクル品の研磨レート(平均値)は1.5μm/minであり、同じガラスを(ヴァージン品)にて研磨した際の研磨レート(平均値)は1.5μm/minであった。結果より、リサイクル品がヴァージン品と同等のガラス研磨性能を有することが確認できた。また、リサイクル品とヴァージン品の研磨レート6回施行の結果を有意水準5%としてF検定した結果を表3に示す。その結果から、分散比がF境界値よりも小さいことから、有意な差が認められないと言える。また、研磨後のガラス表面の外観、ヤケの状態、表面の状態は、ヴァージン品を用いた場合と差がなかった。 The results are shown in Table 2. The polishing rate (average value) of the recycled product was 1.5 μm / min, and the polishing rate (average value) when the same glass was polished with (virgin product) was 1.5 μm / min. From the results, it was confirmed that the recycled product had the same glass polishing performance as the virgin product. In addition, Table 3 shows the results of F-test with the result of implementing the polishing rate 6 times for recycled products and virgin products with a significance level of 5%. From the result, it can be said that a significant difference is not recognized because the dispersion ratio is smaller than the F boundary value. Further, the appearance, burnt state, and surface state of the glass surface after polishing were not different from the case of using a virgin product.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、凝集剤を含有する使用済み酸化セリウム系ガラス研磨剤から簡便な方法で、珪素成分や凝集剤成分の除去率が高く、使用前の新品の研磨剤と同等の研磨性能を有する研磨剤がリサイクルできるので、経済的観点や環境保護の観点からも、産業上有用である。 According to the present invention, the removal rate of the silicon component and the flocculant component is high by a simple method from the used cerium oxide glass abrasive containing the flocculant, and the polishing performance equivalent to a new abrasive before use is obtained. Since the abrasive | polishing agent which it has can be recycled, it is industrially useful also from an economical viewpoint and a viewpoint of environmental protection.

Claims (6)

  1.  凝集剤を含む使用済み酸化セリウム系ガラス研磨剤からの研磨剤のリサイクル方法であって、凝集剤を含む使用済み酸化セリウム系ガラス研磨剤のスラリーのpHを10.0~14.0の範囲に調整する工程、その後当該スラリーのpHを1.0~3.0の範囲に調整する工程を含むことを特徴とする研磨剤のリサイクル方法。 A method for recycling an abrasive from a used cerium oxide-based glass abrasive containing a flocculant, wherein the pH of the slurry of the used cerium oxide-based glass abrasive containing a flocculant is in the range of 10.0 to 14.0. A method for recycling an abrasive, comprising a step of adjusting, and then a step of adjusting the pH of the slurry to a range of 1.0 to 3.0.
  2.  pHを10~14の範囲にするpH調整剤として、アルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩を用いることを特徴とする請求項1に記載の研磨剤のリサイクル方法。 2. The method for recycling an abrasive according to claim 1, wherein a hydroxide or carbonate of an alkali metal or alkaline earth metal is used as a pH adjuster for adjusting the pH to a range of 10 to 14.
  3.  pHを1.0~3.0の範囲にするpH調整剤として、塩酸、硝酸、リン酸又は硫酸を用いることを特徴とする請求項1又は2に記載の研磨剤のリサイクル方法。 The method for recycling an abrasive according to claim 1 or 2, wherein hydrochloric acid, nitric acid, phosphoric acid or sulfuric acid is used as a pH adjuster for adjusting the pH to a range of 1.0 to 3.0.
  4.  pHを10~14の範囲にするpH調整剤として、水酸化ナトリウムを用いることを特徴とする請求項1~3のいずれか1項に記載の研磨剤のリサイクル方法。 The method for recycling an abrasive according to any one of claims 1 to 3, wherein sodium hydroxide is used as a pH adjuster for adjusting the pH to a range of 10 to 14.
  5.  pHを1.0~3.0の範囲にするpH調整剤として、塩酸を用いることを特徴とする請求項1~4のいずれか1項に記載の研磨剤のリサイクル方法。 The method for recycling an abrasive according to any one of claims 1 to 4, wherein hydrochloric acid is used as a pH adjuster for adjusting the pH to a range of 1.0 to 3.0.
  6.  請求項1~5のいずれか1項に記載の研磨剤のリサイクル方法で得られることを特徴とするリサイクルガラス研磨剤。 A recycled glass abrasive obtained by the abrasive recycling method according to any one of claims 1 to 5.
PCT/JP2012/075970 2011-10-07 2012-10-05 Method for recycling abrasive agent from used cerium oxide glass abrasive agent containing flocculating agent WO2013051700A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201401334VA SG11201401334VA (en) 2011-10-07 2012-10-05 Method for recycling abrasive from used cerium oxide based abrasive for glass containing flocculant
JP2013537573A JP5976659B2 (en) 2011-10-07 2012-10-05 Abrasive recycling method from spent cerium oxide glass abrasive containing flocculant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011222942 2011-10-07
JP2011-222942 2011-10-07

Publications (1)

Publication Number Publication Date
WO2013051700A1 true WO2013051700A1 (en) 2013-04-11

Family

ID=48043853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075970 WO2013051700A1 (en) 2011-10-07 2012-10-05 Method for recycling abrasive agent from used cerium oxide glass abrasive agent containing flocculating agent

Country Status (3)

Country Link
JP (1) JP5976659B2 (en)
SG (2) SG10201602755SA (en)
WO (1) WO2013051700A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168113A1 (en) * 2013-04-09 2014-10-16 Dowaエコシステム株式会社 Method for manufacturing regenerated cerium oxide-based abrasive particles, and regenerated particles
JP2015039727A (en) * 2013-08-20 2015-03-02 日本電気硝子株式会社 Method for regenerating cerium oxide-based polishing material
CN115305056A (en) * 2021-05-06 2022-11-08 柯尼卡美能达株式会社 Method for preparing regenerated abrasive slurry and abrasive slurry

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280060A (en) * 1997-04-10 1998-10-20 Mitsui Mining & Smelting Co Ltd Method for recovering raw material for polishing material from waste cerium polishing material
JP2007276055A (en) * 2006-04-07 2007-10-25 Agc Seimi Chemical Co Ltd Method for regenerating cerium-based abrasive
JP2011189503A (en) * 2010-03-12 2011-09-29 Lg Chem Ltd Recycling method of cerium oxide abrasive

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126754A (en) * 2000-10-27 2002-05-08 Hitachi Zosen Tomioka Machinery Co Ltd Treating method for slurry waste liquid
JP2003205460A (en) * 2002-01-15 2003-07-22 Speedfam Co Ltd Cerium oxide-based abrasive regeneration method
JP2007296485A (en) * 2006-05-01 2007-11-15 Nippon Rensui Co Ltd Flocculation apparatus, flocculation method, and controller for flocculation apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280060A (en) * 1997-04-10 1998-10-20 Mitsui Mining & Smelting Co Ltd Method for recovering raw material for polishing material from waste cerium polishing material
JP2007276055A (en) * 2006-04-07 2007-10-25 Agc Seimi Chemical Co Ltd Method for regenerating cerium-based abrasive
JP2011189503A (en) * 2010-03-12 2011-09-29 Lg Chem Ltd Recycling method of cerium oxide abrasive

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168113A1 (en) * 2013-04-09 2014-10-16 Dowaエコシステム株式会社 Method for manufacturing regenerated cerium oxide-based abrasive particles, and regenerated particles
JP2015039727A (en) * 2013-08-20 2015-03-02 日本電気硝子株式会社 Method for regenerating cerium oxide-based polishing material
CN115305056A (en) * 2021-05-06 2022-11-08 柯尼卡美能达株式会社 Method for preparing regenerated abrasive slurry and abrasive slurry

Also Published As

Publication number Publication date
SG10201602755SA (en) 2016-05-30
JPWO2013051700A1 (en) 2015-03-30
JP5976659B2 (en) 2016-08-24
SG11201401334VA (en) 2014-09-26

Similar Documents

Publication Publication Date Title
TWI401307B (en) Preparation of cerium - based abrasive
JP5872836B2 (en) Method for recovering cerium oxide-based abrasive and recovered material containing cerium oxide-based abrasive
KR101225746B1 (en) Method of recycling cerium oxide abrasive material
EP2796243B1 (en) Abrasive material regeneration method and regenerated abrasive material
JP5722601B2 (en) Silicon cutting waste treatment method
CN101659393A (en) Method for preparing nanometer silica micropowder
KR101450865B1 (en) Reproduction method of spent abrasives for polishing a glass panel for display
JP5976659B2 (en) Abrasive recycling method from spent cerium oxide glass abrasive containing flocculant
CN102275930B (en) Recycling method for silicon powder
CN104203497B (en) Grinding-material renovation process
WO2013069720A1 (en) Recycling method for polishing agent
WO2003097761A1 (en) Method for producing cerium-based polishing material and cerium-based polishing material produced by said method
CN104023915B (en) Grinding-material separation method and regeneration grinding-material
US3398008A (en) Grinding method
CN104703759A (en) Polishing-material reclamation method
KR101554901B1 (en) Method of manufacturing recycling waste sludge of nonorganic abrasive for grinding glass panel
JP3560121B2 (en) Method for producing rare earth-based abrasive raw materials from waste abrasive
CN105504884B (en) One kind prepares TiO2The method of/opal composite granule
WO2014168113A1 (en) Method for manufacturing regenerated cerium oxide-based abrasive particles, and regenerated particles
JP5943529B2 (en) Recycling method of waste abrasive containing ceria
JPH04500060A (en) Method for removing coarse particles from aqueous aluminosilicate suspensions by wet milling
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
JPH0648732A (en) Production of dispersion of calcium carbonate fine particle
JP2001335318A (en) High purity holmium oxide and its production method
JP2023156281A (en) Production method of nanodiamond and nanodiamond

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537573

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837674

Country of ref document: EP

Kind code of ref document: A1