WO2013051642A1 - System using solar energy - Google Patents

System using solar energy Download PDF

Info

Publication number
WO2013051642A1
WO2013051642A1 PCT/JP2012/075763 JP2012075763W WO2013051642A1 WO 2013051642 A1 WO2013051642 A1 WO 2013051642A1 JP 2012075763 W JP2012075763 W JP 2012075763W WO 2013051642 A1 WO2013051642 A1 WO 2013051642A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
flow rate
solar energy
heat medium
Prior art date
Application number
PCT/JP2012/075763
Other languages
French (fr)
Japanese (ja)
Inventor
菊池 宏成
隆成 水島
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Priority to CN201280048513.9A priority Critical patent/CN103890499A/en
Priority to IN2534CHN2014 priority patent/IN2014CN02534A/en
Priority to GBGB1314899.4D priority patent/GB201314899D0/en
Priority to SG11201401315TA priority patent/SG11201401315TA/en
Publication of WO2013051642A1 publication Critical patent/WO2013051642A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1078Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump and solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/17Arrangements of solar thermal modules combined with solar PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to a solar energy utilization system.
  • Patent Document 1 discloses a technique of utilizing sunlight by a water collector and a liquid heat medium conduit connected to a solar cell.
  • Patent Document 2 discloses a technique in which a solar cell is mounted on the surface of a direct expansion heat exchanger of a heat pump and sunlight is used as energy for heating / hot water heating.
  • the technique disclosed in the patent document has the following problems. Driving power is required to drive each means constituting the system. This power becomes large depending on the operating conditions of the system. For this reason, the power consumption increases depending on the operating conditions, and more power than the amount of power generated by the solar cell may be consumed. As a result, solar energy utilization efficiency may be reduced. Also, even if no more power than the generated power is consumed, the disclosed system is still insufficient in energy efficiency.
  • This invention is made in view of the said subject, The objective is to provide the solar energy utilization system which improved the utilization efficiency of solar energy rather than before.
  • the present inventors have at least a heat exchanger and a heat pump or another heat exchanger and a circulation pump, and can solve the above problems by controlling the circulation amount of the heat medium.
  • the headline and the present invention were completed.
  • FIG. 3 is a diagram showing the amount of heat recovered and the amount of power generated by the solar cell 1 with respect to the heat medium temperature supplied to the heat exchanger 2.
  • 3 is a flowchart showing control in the solar energy utilization system 100. It is a figure which shows the structure of the solar energy utilization system which concerns on 2nd Embodiment. It is a figure which shows the structure of the solar energy utilization system which concerns on 3rd Embodiment.
  • a solar energy utilization system 100 includes a solar cell 1, a heat exchanger 2 provided in close contact (close proximity) with the back surface of the solar cell (opposite side of the solar light irradiation surface), and a heat pump. 3 and a pump 4 controlled by an inverter (INV). And the heat exchanger 2 and the heat pump 3 are connected via piping, and a heat medium circulates between the heat exchanger 2 and the heat pump 3 through this piping.
  • the arrow in FIG. 1 has shown the flow direction of a refrigerant
  • the solar energy utilization system 100 includes an arithmetic control unit 5 that controls the circulation of the heat medium.
  • the calculation control unit 5 calculates the power consumption in the energy utilization system 100 and the power generation amount of the solar cell 1.
  • the arithmetic control part 5 controls the circulation flow rate of a heat medium by controlling the pump 4 based on this calculation result.
  • the solar energy utilization system 100 includes a current sensor 61 that measures the current of the solar cell 1, a voltage sensor 62 that measures the voltage, a temperature sensor 71 that measures the temperature of the heat medium discharged from the heat pump 3, and heat exchange.
  • a temperature sensor 72 for measuring the temperature of the heat medium discharged from the heat exchanger 2 a temperature sensor 79 for measuring the external temperature (outside air temperature), and a flow sensor for measuring the flow rate of the heat medium discharged from the heat exchanger 2. 91 is provided.
  • the solar energy utilization system 100 includes a system for supplying water heated by the heat pump 3 and storing the heated water.
  • the solar energy utilization system 100 includes an inverter-controlled pump 33, a flow rate sensor 93 that measures the flow rate of water supplied to the heat pump 3, and a temperature sensor 73 that measures the temperature of water supplied to the heat pump 3.
  • a temperature sensor 74 for measuring the temperature of water discharged from the heat pump 3 (ie, heated water) and a hot water supply tank 13 for storing the water discharged from the heat pump 3 are provided.
  • the solar cell 1 converts the energy of sunlight into electric power and supplies it as electric power to the outside.
  • the obtained electric power is supplied to an external load (not shown).
  • the obtained electric power is also used as electric power for driving each means (for example, the heat pump 3, the pump 4, etc.) constituting the solar energy utilization system 100.
  • the heat exchanger 2 cools the solar cell 1. Specifically, by passing a heat medium having a low temperature through the heat exchanger 1, the heat of the solar cell 1 is transmitted to the heat medium, and the temperature of the solar cell 1 is lowered. Note that the heat medium discharged from the heat exchanger 2 (heat medium to which heat from the solar cell 1 is transmitted) is supplied to a heat pump 3 to be described later.
  • the heat medium may be water (preferably providing a facility that does not freeze even at low temperatures), an antifreeze solution, or the like. Further, a gas such as carbon dioxide may be used.
  • the heat pump 3 is supplied with the heat medium discharged from the heat exchanger 2.
  • the heat pump 3 includes an evaporator 3a, a compressor 3b, a condenser 3c, and an expansion valve 3d.
  • the heat medium is supplied to the evaporator 3a.
  • the refrigerant flows through the heat pump 3 in the direction shown in FIG.
  • the water supplied to the heat pump 3 is supplied to the condenser 3c.
  • the refrigerant is compressed by the compressor 3b after receiving heat from the heating medium by the evaporator 3a. Thereby, a refrigerant
  • coolant will be in a high temperature / high pressure state.
  • the high-temperature and high-pressure refrigerant is cooled by the condenser 3c. That is, the heat of the high-temperature and high-pressure refrigerant is transmitted to the water supplied to the heat pump 3 (condenser 3c). Thereby, heated water (hot water) is obtained.
  • the obtained hot water is stored in the hot water supply tank 13.
  • the cooled refrigerant is expanded by the expansion valve 3d to be in a low temperature and low pressure state. Thereafter, the refrigerant is supplied again to the evaporator 3a.
  • the heat pump 3 in order to store hot water having a temperature suitable for use, the heat pump 3 is controlled so that the temperature measured by the temperature sensor 74 is 45 ° C.
  • the pump 4 circulates a heat medium between the heat exchanger 2 and the heat pump 3. Further, the circulation amount of the heat medium is changed by the pump 4.
  • the pump 4 is inverter-controlled and operates at a high rotational speed when the flow rate of the heat medium is large. On the other hand, when the flow rate of the heat medium is small, operation is performed at a low rotational speed. By using such an inverter-controlled pump, the rotation speed can be changed according to the flow rate. Thereby, when the heat medium flow rate is small, the rotational speed of the pump 4 can be suppressed, and the power consumption can be reduced.
  • the arithmetic control unit 5 is connected to each sensor (voltage sensor, voltage sensor, temperature sensor, flow rate sensor, etc.), each pump, and each means (heat exchanger 2 etc.) via an electric signal line (not shown). .
  • the calculation control unit 5 receives information (electrical signals) from each sensor, each pump, and the like, calculates (calculates), and controls the operation of each pump and each means based on the result of the calculation.
  • the calculation control unit 5 is one form as a flow rate control unit that controls the pump 4 to change the circulation amount of the heat medium. That is, the calculation control unit 5 is connected to each sensor, each pump, and each means, and communicates with the communication unit 5a that exchanges electrical signals, and an optimum output calculation unit that determines the amount of heat medium that flows through the heat exchanger 2. 5b, a simulation unit 5c that simulates (calculates) the amount of power generated by the solar cell 1 and the amount of power consumed by the solar energy utilization system 100, and a control unit 5d that controls the rotational speed (ie, inverter frequency) of each pump. It is equipped with. Specific control by the arithmetic control unit 5 will be described later.
  • the arithmetic control unit 5 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), and the like.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • any devices and means can be used as the temperature sensors 71, 72, 73, 74, 79, the flow sensors 91, 93, the current sensor 61, the voltage sensor 62, and the pumps 4, 33.
  • the arithmetic control unit 5 controls the flow rate of the heat medium supplied to the heat exchanger 2 so that the power consumption in the solar energy utilization system 100 is as small as possible and the power generation amount of the solar cell 1 is as large as possible. That is, the supply flow rate of the heat medium to the heat exchanger 2 is controlled so that the difference between the power generation amount and the power consumption in the solar energy utilization system 100 becomes the largest. This will be specifically described below.
  • position information such as the latitude and longitude of the place where the solar cell 1 is installed is input to the optimum output calculation unit 5b of the calculation control unit 5 (step S101).
  • position information such as the latitude and longitude of the place where the solar cell 1 is installed is input to the optimum output calculation unit 5b of the calculation control unit 5 (step S101).
  • an electronic file in which position information is recorded is created using an input device such as a keyboard (not shown), and the value recorded in the electronic file is input. Further, the simulation start time is input.
  • the optimal output calculating part 5b acquires a measured value from the current sensor 61, the voltage sensor 62, each temperature sensor, and each flow sensor.
  • the optimum output calculation unit 5b calculates the amount of power generated by the solar cell 1 from the measured current value and voltage value of the solar cell 1 (step S102).
  • the calculated power generation amount is an actual power generation amount.
  • the solar cell 1 is connected to a secondary battery (not shown). That is, the power generated by the solar cell 1 is charged in the secondary battery. Thereby, a current flows through the solar cell 1.
  • the optimum output calculation unit 5b calculates the temperature of the surface of the solar cell 1 based on the calculated power generation amount (step S103).
  • the surface temperature is calculated based on a predetermined formula (heat balance, heat transfer characteristics) regarding the power generation amount of the solar cell 1 and the temperature of the heat medium supplied to and discharged from the heat exchanger 2.
  • the optimum output calculation unit 5b uses the temperature sensors 71 and 72 and the flow rate sensor 91 to calculate the amount of heat received by the heat medium in the heat exchanger 2 (that is, the amount of heat exchange between the solar cell 1 and the heat exchanger 2). calculate.
  • the temperature sensor 71 measures the temperature of the heat medium at the inlet of the heat exchanger 2 (that is, the temperature of the heat medium discharged from the heat pump 3 (specifically, the evaporator 3a)).
  • the temperature sensor 72 measures the temperature of the heat medium at the outlet of the heat exchanger 2 (that is, the temperature of the heat medium supplied to the heat pump 3).
  • the surface temperature of the solar cell 1 is calculated in consideration of the amount of heat obtained by calculation, the outside air temperature measured by the temperature sensor 79, the heat transfer characteristics of the heat exchanger 2, the heat balance in the system, and the like.
  • the amount of heat released from the solar cell 1 to the outside air that is, outside the system
  • the amount of heat released from the heat exchanger 2 to the outside air and the like are also calculated.
  • the optimum output calculation unit 5b calculates the solar trajectory based on the latitude, longitude, time, etc., input in step S101, and calculates the solar altitude and azimuth.
  • the solar radiation amount to the solar cell 1 is calculated by the electric power generation amount calculated by step S102, and the surface temperature calculated by step S103 (step S104). This amount of solar radiation is calculated based on a predetermined formula that reflects the temperature-efficiency characteristics of the solar cell 1.
  • the optimum output calculation unit 5b sets the supply amount of the heat medium supplied to the heat exchanger 2 (step S105). That is, the flow value by the pump 4 is set.
  • the initial flow rate in this embodiment is the maximum flow rate that can be changed by the pump 4.
  • the simulation unit 5c performs the following control (step S106 to step S111).
  • the temperature of the heat medium is input to the simulation unit 5c.
  • the same method as the input method in step S101 is used.
  • the outside air temperature measured by the temperature sensor 79 is set as the heat medium temperature (the outlet temperature of the heat exchanger 2) (step S106).
  • step S107 the power consumption of the pump 4 is calculated based on the set heat medium temperature and the heat medium flow rate set in step S105 (step S107). Further, the power consumption of the pump 33 is calculated in the same manner based on the flow rate sensor 93 (step S107). These calculations are performed based on the relationship between the flow rate and power consumption in each pump, which is calculated in advance.
  • step S108 the simulation unit 5 c calculates the power consumption of the heat pump 3 and the outlet temperature of the heat medium in the evaporator 3 a in the heat pump 3 based on the preset characteristics of the heat pump 3.
  • the inlet temperature, outlet temperature and flow rate of the condenser 3c in the heat pump 3 and the inlet temperature and flow rate of the evaporator 3a are used as parameters.
  • the measured value by the temperature sensors 73 and 74 and the flow sensor 93 is used for the inlet temperature, the outlet temperature, and the flow rate of the condenser 3c in the heat pump 3, respectively.
  • the flow rate of the heat medium in the evaporator 3a is set in step S105 (the value set in step S113 after the second calculation), and the inlet temperature of the heat medium in the evaporator 3a is set in step S106. It is the value of the outlet temperature of the heat exchanger 2 (after the second calculation, the value of the outlet temperature of the heat exchanger 2 calculated in step S109).
  • the simulation unit 5c Based on the power consumption of the pumps 4 and 33 obtained in the above step S107 and the power consumption of the heat pump 3 obtained in step S108, the simulation unit 5c performs the power generation amount of the solar cell 1 and heat exchange with the solar cell 1.
  • the heat balance with the container 2 is calculated (step S109). First, the surface temperature of the solar cell 1 is calculated. A specific calculation method is the same as the method described in step S103. Then, by calculating the heat balance, the outlet temperature of the heat exchanger 2, that is, the inlet temperature of the heating medium of the evaporator 3a of the heat pump 3 is calculated. The calculated surface temperature is an estimated value at the heat medium flow rate set in step S105 (the heat medium flow rate set in step S113 after the second calculation). Furthermore, the power generation amount of the solar cell 1 is calculated from the surface temperature of the solar cell 1 based on a predetermined formula that reflects the temperature-efficiency characteristics of the solar cell 1.
  • the amount of solar radiation, the outside air temperature, the power generation amount of the solar cell 1, the inlet temperature of the heat medium, and the flow rate are used as parameters.
  • the solar radiation amount is the value calculated in step S104
  • the outside air temperature is the value measured by the temperature sensor 79.
  • the power generation amount of the solar cell 1 uses the value calculated in step S102 (after the second calculation, the value calculated in the previous step S109).
  • the inlet temperature of the heat exchanger 2 of the heat medium the outlet temperature of the heat medium of the evaporator 3a of the heat pump 3 calculated in step S108 is used, and the flow rate of the heat medium is the value set in step S105 ( For the second and subsequent times, the value set in step S113) is used.
  • the outlet temperature of the heat exchanger 2 of the heat medium calculated (estimated) in step S109 is stored in a storage unit (not shown).
  • the simulation unit 5c While the calculated outlet temperature of the heat exchanger 2 of the heat medium is stored, the simulation unit 5c stores the stored outlet temperature of the heat exchanger 2 of the heat medium at the time of the previous calculation and the value calculated this time. Are compared (determined) (step S110). In addition, since there is no comparison target at the time of the first calculation, the determination is not performed. Specifically, the simulation unit 5c determines whether or not the difference between the stored previous value and the currently calculated value is smaller than a predetermined value (for example, 0.1 ° C. or less) (whether or not it has converged). ).
  • a predetermined value for example, 0.1 ° C. or less
  • step S107 to step S110 are performed again, and the convergence determination is performed again. And when it is judged that it has converged (Yes direction of step S110), it progresses to step S111. Then, the difference between the calculated power generation amount and the power consumption calculated in steps S107 and S108 is calculated and stored in a storage unit (not shown) (step S111). This difference is stored together with the flow rate set in step S105. Incidentally, when the outlet temperature (estimated value) of the heat exchanger 2 of the heat medium converges, the inlet temperature (estimated value) of the heat exchanger 2 also converges.
  • the optimum output calculation unit 5b determines whether or not the flow rate set in step S105 is the lowest flow rate that can be set in the pump 4 (step S112). In this embodiment, in step S105, the maximum flow rate is set at the start of operation. Therefore, after the first calculation, the process proceeds in the No direction of step S112. Then, the flow rate of the heat medium is decreased by a predetermined increment (step S113), and the decreased flow rate is set again (step S105). Thereafter, steps S106 to S112 are repeated.
  • step S112 if the flow rate set in step S105 is the minimum flow rate, the process proceeds in the Yes direction in step S112. Then, the optimum calculation output unit 5b compares all the difference values stored by the simulation unit 5c (step S114). After the comparison, the optimum calculation output unit 5b extracts the flow when the difference is the smallest, that is, the power that can be taken out is the largest, and outputs it to the outside (step S115).
  • the output to the outside may be displayed on a display, for example, or may be directly transmitted to the control unit 5d to control the pump 4. In this embodiment, the output to the outside is directly transmitted to the control unit 5d and the pump 4 is controlled.
  • the suppliable power determined by complicated factors such as the amount of solar radiation, power consumption of the pump and heat pump, and heat radiation from the surface of the solar cell 1 to the outside is extracted to the maximum extent. be able to. Therefore, more efficient use of solar energy can be achieved.
  • the circulation of the heat medium has been mainly described.
  • the flow of water controlled by the pump 33 water supply to the heat pump 3 is not particularly limited. Therefore, the pump 33 and the like may be appropriately controlled so that the temperature and amount of water stored in the hot water supply tank 13 become desired.
  • the solar energy utilization system 200 includes a heat exchanger 3e instead of the heat pump 3.
  • a heat exchanger 3e instead of the heat pump 3.
  • the temperature of the heat medium supplied to the heat exchanger 2 is increased throughout the year. Therefore, water can be sufficiently heated by directly transmitting solar heat to the water with the heat exchanger 3e, and there is no need to provide a heat pump. Therefore, the power consumption in the solar energy utilization system 200 can be suppressed by using a heat exchanger that consumes less power than the heat pump.
  • the heat medium discharged from the heat exchanger 3e is cooled by a cooler (not shown), and the cooled heat medium is heat-exchanged. You may comprise so that it may be supplied to the container 2.
  • control can be performed in the same manner as the flow shown in FIG.
  • the configuration of the solar energy utilization system 300 will be described with reference to FIG. Components similar to those of the solar energy utilization system 100 of FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the hot water supply tank 13 has a horizontally long form for the sake of space, but actually has a vertically long form (long in the vertical direction).
  • the solar energy utilization system 300 includes temperature sensors 73 to 78 and 81 to 84 that measure the temperature at each position. Furthermore, inverter-controlled pumps 32 to 37 for controlling the flow rate of water or heat medium at each position are provided. Then, flow rate sensors 92 to 97 for measuring the flow rate at each position are provided. Since these all have the same functions as those described with reference to FIG.
  • the heat medium discharged from the heat exchanger 2 is temporarily stored in the high-temperature heat medium tank 11.
  • the stored heat medium branches and is supplied to the heat pumps 14 and 16 and the heat exchanger 15. And after supplying heat with respect to water with the heat pumps 14 and 16 and the heat exchanger 15, it is stored in the low-temperature heat-medium tank 12.
  • FIG. Thereafter, the heat medium stored in the low-temperature heat medium tank is supplied to the heat exchanger 2 again.
  • the heat pumps 14 and 16 have the same configuration as the heat pump 3 shown in FIG. Therefore, the description about the heat pumps 14 and 16 is omitted.
  • the temperature of the discharged water (temperature measured by the temperature sensors 74 and 76) is set to 45 ° C. Therefore, when the temperature of the heat medium in the high-temperature heat medium tank 11 is 46 ° C. or higher, the heat medium is supplied to the heat exchanger 15.
  • a case is, for example, a case where the outside air temperature measured by the temperature sensor 79 is high (for example, in summer, the installation location is a tropical area, etc.).
  • the temperature is lower than 46 ° C., the heat pump 14 is supplied.
  • the heat medium when the temperature of the heat medium is equal to or higher than a predetermined value (46 ° C. in the above example), it is not necessary to raise the temperature of the heat medium, so the heat medium may be supplied to the heat exchanger 15.
  • a predetermined value 46 ° C. in the above example
  • the heat medium is supplied to the heat pump 14.
  • the power consumption of the heat pump 14 can be reduced by supplying the heat medium to the heat pump 14 or the heat exchanger 15 according to the temperature of the heat medium discharged from the heat exchanger 2. . Therefore, a solar energy utilization system with better energy efficiency can be provided.
  • the PID controller 110 is connected to the temperature sensor 76 for measuring the temperature of the water discharged from the heat exchanger 15 and the pump 34 via an electric signal line.
  • the water can be heated to 45 ° C. by controlling the pump 34 while measuring the temperature of the discharged water by the temperature sensor 76. That is, when the temperature measured by the temperature sensor 76 is lower than 45 ° C., the pump 34 may be controlled to increase the flow rate of the heat medium, and when the temperature is higher than 45 ° C., the flow rate of the heat medium is decreased.
  • the control to be performed may be performed on the pump 34. Thereby, water can be reliably heated so that the temperature of water may be 45 degreeC.
  • the heat medium is also supplied to the heat pump 16. And fluids, such as water, are flowing in the direction opposite to the direction of flow of this heat carrier. Therefore, also in the heat pump 16, heat exchange is performed in the same manner as in the heat pump 14, and the heat medium transferred to the fan coil unit 17 is supplied. Thereby, warm air is discharged from the fan coil unit 17. That is, according to the solar energy utilization system 300, it is possible to simultaneously perform power supply, hot water supply, and heating to the outside using sunlight.
  • the temperature and flow rate of water supplied to the heat pump 14 and the heat exchanger 15 are not particularly limited, and may be set in the same manner as the solar energy utilization system 100 described above. Moreover, what is necessary is just to perform control of each pump, the heat exchangers 2 and 15, and the heat pumps 14 and 16 similarly to control of the solar energy utilization system 100 demonstrated with reference to FIG.
  • the PID controller 110 is used to control the heat exchanger 15, but may be used to control the heat pump 14 or the heat pump 16. Further, such a PID controller 110 may be similarly provided in the first embodiment shown in FIG. 1 or the second embodiment shown in FIG. Furthermore, you may control according to the temperature of the supplied water instead of the temperature of the discharged water. Even if it does in this way, there exists the same effect. That is, the supply amount (supply flow rate) of the heat medium may be controlled according to the temperature of the fluid to be heated such as water.
  • feedback control other than PID control or control such as feedforward control can be performed as appropriate.
  • the flow rate control by the pump 4 is performed by the rotation control by the inverter.
  • a normal pump, a damper and a flow rate adjustment valve are provided, and the opening degree of the damper and the flow rate adjustment valve are adjusted. You may make it change with an opening degree etc. Such a case also corresponds to “control of the flow rate (circulation amount) by the circulation pump”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Provided is a system using solar energy in which solar energy use efficiency is improved over the prior art. The system using solar energy is provided with a solar cell (1) and obtains power from the solar cell (1), wherein the system using solar energy is characterized by being provided with the following: a first heat exchanger (2) for cooling the solar cell (1); a heat pump (3) connected to the first heat exchanger (2); a circulation pump (4) for causing a heat medium to circulate between the first heat exchanger (2) and the heat pump (3); and a flow rate control unit (5) for changing the flow rate of the circulation pump (4). Or, the system using solar energy is characterized by being provided with the following: a first heat exchanger (2) for cooling the solar cell (1); a second heat exchanger (3e) connected to the first heat exchanger (2); a circulation pump (4) for causing a heat medium to circulate between the first heat exchanger (2) and the second heat exchanger (3e); and a flow rate control unit (5) for changing the flow rate of the circulation pump (4).

Description

太陽エネルギ利用システムSolar energy utilization system
 本発明は、太陽エネルギ利用システムに関する。 The present invention relates to a solar energy utilization system.
 化石燃料に依存しない自然エネルギの利用が注目されている。例えば、水の加熱に際し、太陽光を利用する技術がある。このような技術として、例えば特許文献1には、太陽電池に接続された水集熱器及び液体熱媒導管により、太陽光を利用する技術が開示されている。また、特許文献2には、ヒートポンプの直接膨張型熱交換器の表面に太陽電池に装着し、太陽光を暖房給湯加熱用エネルギとして利用する技術が開示されている。 The use of natural energy that does not depend on fossil fuels has attracted attention. For example, there is a technology that uses sunlight when heating water. As such a technique, for example, Patent Document 1 discloses a technique of utilizing sunlight by a water collector and a liquid heat medium conduit connected to a solar cell. Patent Document 2 discloses a technique in which a solar cell is mounted on the surface of a direct expansion heat exchanger of a heat pump and sunlight is used as energy for heating / hot water heating.
特開平5-66065号公報JP-A-5-66065 特開平7-253249号公報Japanese Patent Laid-Open No. 7-253249
 しかしながら、前記特許文献に開示された技術には次の課題がある。
 システムを構成する各手段を駆動させるため、駆動電力が必要となる。この電力は、システムの運転条件に拠っては、大きなものとなる。そのため、運転条件に拠っては電力消費量が増加し、太陽電池による発電量以上の電力が消費されることがある。その結果、太陽エネルギの利用効率が低下することがある。また、発電された電力以上の電力が消費されなくても、開示されたシステムではエネルギ効率が依然として不十分である。
However, the technique disclosed in the patent document has the following problems.
Driving power is required to drive each means constituting the system. This power becomes large depending on the operating conditions of the system. For this reason, the power consumption increases depending on the operating conditions, and more power than the amount of power generated by the solar cell may be consumed. As a result, solar energy utilization efficiency may be reduced. Also, even if no more power than the generated power is consumed, the disclosed system is still insufficient in energy efficiency.
 本発明は前記課題に鑑みて為されたものであり、その目的は、太陽エネルギの利用効率を従来よりも向上させた太陽エネルギ利用システムを提供することにある。 This invention is made in view of the said subject, The objective is to provide the solar energy utilization system which improved the utilization efficiency of solar energy rather than before.
 本発明者らは前記課題を解決するべく鋭意検討した結果、熱交換器とヒートポンプ若しくは別の熱交換器と循環ポンプとを少なくとも備え、熱媒循環量を制御することにより前記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have at least a heat exchanger and a heat pump or another heat exchanger and a circulation pump, and can solve the above problems by controlling the circulation amount of the heat medium. The headline and the present invention were completed.
 太陽エネルギの利用効率を従来よりも向上させた太陽エネルギ利用システムを提供することができる。 It is possible to provide a solar energy utilization system that improves the utilization efficiency of solar energy than before.
第1実施形態に係る太陽エネルギ利用システムの構成を示す図である。It is a figure which shows the structure of the solar energy utilization system which concerns on 1st Embodiment. 熱交換器2に供給される熱媒温度に対する回収熱量及び太陽電池1による発電量を示す図である。FIG. 3 is a diagram showing the amount of heat recovered and the amount of power generated by the solar cell 1 with respect to the heat medium temperature supplied to the heat exchanger 2. 太陽エネルギ利用システム100における制御を示すフローチャートである。3 is a flowchart showing control in the solar energy utilization system 100. 第2実施形態に係る太陽エネルギ利用システムの構成を示す図である。It is a figure which shows the structure of the solar energy utilization system which concerns on 2nd Embodiment. 第3実施形態に係る太陽エネルギ利用システムの構成を示す図である。It is a figure which shows the structure of the solar energy utilization system which concerns on 3rd Embodiment.
[1.第1実施形態]
<構成>
 図1に示すように、太陽エネルギ利用システム100は、太陽電池1と、太陽電池の裏面(太陽光照射面の逆側面)に密着(・近接)して設けられた熱交換器2と、ヒートポンプ3と、インバータ(INV)制御されるポンプ4と、を備える。そして、熱交換器2とヒートポンプ3とは配管を介して接続され、この配管を通じて熱交換器2とヒートポンプ3との間で熱媒が循環するようになっている。なお、図1中の矢印は、冷媒、熱媒及び水(被加熱媒体)の通流方向を示している。
[1. First Embodiment]
<Configuration>
As shown in FIG. 1, a solar energy utilization system 100 includes a solar cell 1, a heat exchanger 2 provided in close contact (close proximity) with the back surface of the solar cell (opposite side of the solar light irradiation surface), and a heat pump. 3 and a pump 4 controlled by an inverter (INV). And the heat exchanger 2 and the heat pump 3 are connected via piping, and a heat medium circulates between the heat exchanger 2 and the heat pump 3 through this piping. In addition, the arrow in FIG. 1 has shown the flow direction of a refrigerant | coolant, a heat medium, and water (to-be-heated medium).
 さらに、太陽エネルギ利用システム100は、熱媒の循環を制御する演算制御部5を備える。詳細は後記するが、具体的には、演算制御部5は、エネルギ利用システム100における消費電力と太陽電池1の発電量とを計算する。そして、演算制御部5は、この計算結果に基づいてポンプ4を制御することで、熱媒の循環流量を制御する。 Furthermore, the solar energy utilization system 100 includes an arithmetic control unit 5 that controls the circulation of the heat medium. Although details will be described later, specifically, the calculation control unit 5 calculates the power consumption in the energy utilization system 100 and the power generation amount of the solar cell 1. And the arithmetic control part 5 controls the circulation flow rate of a heat medium by controlling the pump 4 based on this calculation result.
 他にも、太陽エネルギ利用システム100は、太陽電池1の電流を測定する電流センサ61及び電圧を測定する電圧センサ62、ヒートポンプ3から排出される熱媒の温度を測定する温度センサ71、熱交換器2から排出される熱媒の温度を測定する温度センサ72、外部の温度(外気温)を測定する温度センサ79、並びに、熱交換器2から排出される熱媒の流量を測定する流量センサ91を備える。 In addition, the solar energy utilization system 100 includes a current sensor 61 that measures the current of the solar cell 1, a voltage sensor 62 that measures the voltage, a temperature sensor 71 that measures the temperature of the heat medium discharged from the heat pump 3, and heat exchange. A temperature sensor 72 for measuring the temperature of the heat medium discharged from the heat exchanger 2, a temperature sensor 79 for measuring the external temperature (outside air temperature), and a flow sensor for measuring the flow rate of the heat medium discharged from the heat exchanger 2. 91 is provided.
 また、太陽エネルギ利用システム100は、ヒートポンプ3で加熱される水を供給、並びに加熱された水を貯蔵する系を備える。具体的には、太陽エネルギ利用システム100は、インバータ制御されるポンプ33、ヒートポンプ3に供給される水の流量を測定する流量センサ93、ヒートポンプ3に供給される水の温度を測定する温度センサ73、ヒートポンプ3から排出される水(即ち、加熱された水)の温度を測定する温度センサ74、ヒートポンプ3から排出された水を貯蔵する給湯タンク13を備える。 The solar energy utilization system 100 includes a system for supplying water heated by the heat pump 3 and storing the heated water. Specifically, the solar energy utilization system 100 includes an inverter-controlled pump 33, a flow rate sensor 93 that measures the flow rate of water supplied to the heat pump 3, and a temperature sensor 73 that measures the temperature of water supplied to the heat pump 3. A temperature sensor 74 for measuring the temperature of water discharged from the heat pump 3 (ie, heated water) and a hot water supply tank 13 for storing the water discharged from the heat pump 3 are provided.
 以下、各手段を詳細に説明する。 Hereinafter, each means will be described in detail.
 太陽電池1は、太陽光が有するエネルギを電力に変換し、電力として外部へ供給するものである。本実施形態においては、得られた電力は図示しない外部負荷へ供給される。さらには、本実施形態において、得られた電力は、太陽エネルギ利用システム100を構成する各手段(例えばヒートポンプ3、ポンプ4等)を駆動する電力としても用いられる。 The solar cell 1 converts the energy of sunlight into electric power and supplies it as electric power to the outside. In the present embodiment, the obtained electric power is supplied to an external load (not shown). Furthermore, in the present embodiment, the obtained electric power is also used as electric power for driving each means (for example, the heat pump 3, the pump 4, etc.) constituting the solar energy utilization system 100.
 熱交換器2は、太陽電池1を冷却するものである。具体的には、熱交換器1に対して温度の低い熱媒を通流させることで、太陽電池1の有する熱を熱媒に伝達し、太陽電池1の温度が低下する。なお、熱交換器2から排出された熱媒(太陽電池1からの熱が伝達された熱媒)は、後記するヒートポンプ3に供給される。なお、熱媒は、水(低温下でも凍結しない設備を別途設けることが好ましい)、不凍液等であってもよい。また、二酸化炭素等のガスであってもよい。 The heat exchanger 2 cools the solar cell 1. Specifically, by passing a heat medium having a low temperature through the heat exchanger 1, the heat of the solar cell 1 is transmitted to the heat medium, and the temperature of the solar cell 1 is lowered. Note that the heat medium discharged from the heat exchanger 2 (heat medium to which heat from the solar cell 1 is transmitted) is supplied to a heat pump 3 to be described later. The heat medium may be water (preferably providing a facility that does not freeze even at low temperatures), an antifreeze solution, or the like. Further, a gas such as carbon dioxide may be used.
 ヒートポンプ3は、熱交換器2から排出された熱媒が供給されるものである。ヒートポンプ3は、図1に示すように、蒸発器3aと、圧縮器3bと、凝縮器3cと、膨張弁3dと、を備える。熱媒は、蒸発器3aに供給される。そして、ヒートポンプ3内を、冷媒が図1に示す方向で通流する。一方、ヒートポンプ3に供給される水は、凝縮器3cに供給される。 The heat pump 3 is supplied with the heat medium discharged from the heat exchanger 2. As shown in FIG. 1, the heat pump 3 includes an evaporator 3a, a compressor 3b, a condenser 3c, and an expansion valve 3d. The heat medium is supplied to the evaporator 3a. Then, the refrigerant flows through the heat pump 3 in the direction shown in FIG. On the other hand, the water supplied to the heat pump 3 is supplied to the condenser 3c.
 冷媒は、蒸発器3aで熱媒から熱を受け取った後、圧縮器3bで圧縮される。これにより、冷媒は高温高圧の状態になる。そして、高温高圧の冷媒は凝縮器3cで冷却される。即ち、高温高圧の冷媒が有する熱は、ヒートポンプ3(凝縮器3c)に供給される水に伝達される。これにより、加熱された水(湯)が得られる。得られた湯は給湯タンク13に貯蔵される。一方、冷却された冷媒は、膨張弁3dにより膨張し、低温低圧の状態になる。その後、冷媒は再び蒸発器3aに供給される。 The refrigerant is compressed by the compressor 3b after receiving heat from the heating medium by the evaporator 3a. Thereby, a refrigerant | coolant will be in a high temperature / high pressure state. The high-temperature and high-pressure refrigerant is cooled by the condenser 3c. That is, the heat of the high-temperature and high-pressure refrigerant is transmitted to the water supplied to the heat pump 3 (condenser 3c). Thereby, heated water (hot water) is obtained. The obtained hot water is stored in the hot water supply tank 13. On the other hand, the cooled refrigerant is expanded by the expansion valve 3d to be in a low temperature and low pressure state. Thereafter, the refrigerant is supplied again to the evaporator 3a.
 なお、本実施形態においては、使用に適した温度の湯を貯蔵するため、温度センサ74により測定される温度が45℃になるように、ヒートポンプ3が制御される。 In this embodiment, in order to store hot water having a temperature suitable for use, the heat pump 3 is controlled so that the temperature measured by the temperature sensor 74 is 45 ° C.
 ポンプ4は、熱交換器2とヒートポンプ3との間で熱媒を循環させるものである。また、ポンプ4により、熱媒の循環量が変更される。ポンプ4はインバータ制御されるものであり、熱媒流量の多いときには速い回転速度で運転する。一方、熱媒流量が少ないときには遅い回転速度で運転する。このようなインバータ制御されるポンプを用いることで、流量に応じて回転速度を変化させることができる。これにより、熱媒流量が少ないときにポンプ4の回転速度を抑え、消費電力を削減することができる。 The pump 4 circulates a heat medium between the heat exchanger 2 and the heat pump 3. Further, the circulation amount of the heat medium is changed by the pump 4. The pump 4 is inverter-controlled and operates at a high rotational speed when the flow rate of the heat medium is large. On the other hand, when the flow rate of the heat medium is small, operation is performed at a low rotational speed. By using such an inverter-controlled pump, the rotation speed can be changed according to the flow rate. Thereby, when the heat medium flow rate is small, the rotational speed of the pump 4 can be suppressed, and the power consumption can be reduced.
 演算制御部5は、各センサ(電圧センサ、電圧センサ、温度センサ、流量センサ等)、各ポンプ及び各手段(熱交換器2等)に対し、図示しない電気信号線を介して接続されている。そして、演算制御部5は、各センサや各ポンプ等からの情報(電気信号)を受け取って演算(計算)し、演算の結果に基づいて各ポンプや各手段の動作を制御する。 The arithmetic control unit 5 is connected to each sensor (voltage sensor, voltage sensor, temperature sensor, flow rate sensor, etc.), each pump, and each means (heat exchanger 2 etc.) via an electric signal line (not shown). . The calculation control unit 5 receives information (electrical signals) from each sensor, each pump, and the like, calculates (calculates), and controls the operation of each pump and each means based on the result of the calculation.
 演算制御部5は、ポンプ4を制御して熱媒の循環量を変更する流量制御部としての一形態である。即ち、演算制御部5は、各センサ、各ポンプ及び各手段とに接続され、電気信号を授受する通信部5aと、熱交換器2内を通流させる熱媒量を決定する最適出力演算部5bと、太陽電池1の発電量及び太陽エネルギ利用システム100での消費電力量をシミュレート(計算)するシミュレーション部5cと、各ポンプの回転速度(即ち、インバータ周波数)を制御する制御部5dと、を備えている。演算制御部5による具体的な制御は後記する。 The calculation control unit 5 is one form as a flow rate control unit that controls the pump 4 to change the circulation amount of the heat medium. That is, the calculation control unit 5 is connected to each sensor, each pump, and each means, and communicates with the communication unit 5a that exchanges electrical signals, and an optimum output calculation unit that determines the amount of heat medium that flows through the heat exchanger 2. 5b, a simulation unit 5c that simulates (calculates) the amount of power generated by the solar cell 1 and the amount of power consumed by the solar energy utilization system 100, and a control unit 5d that controls the rotational speed (ie, inverter frequency) of each pump. It is equipped with. Specific control by the arithmetic control unit 5 will be described later.
 演算制御部5は、具体的には、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)等を備えて構成される。 Specifically, the arithmetic control unit 5 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), and the like.
 また、温度センサ71,72,73,74,79、流量センサ91,93、電流センサ61、電圧センサ62及びポンプ4,33としてはいずれも、任意の装置や手段を用いることができる。 Also, any devices and means can be used as the temperature sensors 71, 72, 73, 74, 79, the flow sensors 91, 93, the current sensor 61, the voltage sensor 62, and the pumps 4, 33.
<制御>
 はじめに、太陽電池1の特性について説明する。
 図2に示すように、熱交換器2の入口での熱媒温度が上昇すると、太陽電池1の発電量及び熱媒への回収熱量が低下する。より具体的には、入口温度が上昇すると、太陽電池1が十分に冷却されず、太陽電池1の温度が高くなる。そのため、太陽電池1の効率が落ち、発電量が低下する。さらに、入口温度が上昇すると、太陽電池1の温度(表面温度)が高くなる。そのため、太陽電池1表面からの外気への放熱量が上昇するため、太陽電池1の背面に備えられる熱交換器2の回収熱量が低下する。
<Control>
First, the characteristics of the solar cell 1 will be described.
As shown in FIG. 2, when the temperature of the heat medium at the inlet of the heat exchanger 2 increases, the amount of power generated by the solar cell 1 and the amount of heat recovered to the heat medium decrease. More specifically, when the inlet temperature rises, the solar cell 1 is not sufficiently cooled, and the temperature of the solar cell 1 increases. Therefore, the efficiency of the solar cell 1 is reduced and the amount of power generation is reduced. Furthermore, when the inlet temperature rises, the temperature (surface temperature) of the solar cell 1 increases. For this reason, the amount of heat released from the surface of the solar cell 1 to the outside air increases, and the amount of heat recovered by the heat exchanger 2 provided on the back surface of the solar cell 1 decreases.
 次に、図3を参照しながら、太陽エネルギ利用システム100における演算制御部5による制御を説明する。演算制御部5は、太陽エネルギ利用システム100における消費電力ができるだけ小さく、しかも太陽電池1の発電量ができるだけ大きくなるように、熱交換器2に供給される熱媒の流量を制御する。即ち、太陽エネルギ利用システム100における、発電量と消費電力との差分が最も大きくなるように、熱交換器2への熱媒の供給流量を制御する。以下、具体的に説明する。 Next, control by the arithmetic control unit 5 in the solar energy utilization system 100 will be described with reference to FIG. The arithmetic control unit 5 controls the flow rate of the heat medium supplied to the heat exchanger 2 so that the power consumption in the solar energy utilization system 100 is as small as possible and the power generation amount of the solar cell 1 is as large as possible. That is, the supply flow rate of the heat medium to the heat exchanger 2 is controlled so that the difference between the power generation amount and the power consumption in the solar energy utilization system 100 becomes the largest. This will be specifically described below.
 まず、演算制御部5の最適出力演算部5bに、太陽電池1が設置される場所の緯度及び経度等の位置情報が入力される(ステップS101)。この位置情報として、図示しないキーボード等の入力装置等を用いて位置情報が記録された電子ファイルを作成し、その電子ファイルに記録した値が入力される。さらに、シミュレーション開始時刻が入力される。そして、最適出力演算部5bは、電流センサ61、電圧センサ62、各温度センサ及び各流量センサから測定値を取得する。 First, position information such as the latitude and longitude of the place where the solar cell 1 is installed is input to the optimum output calculation unit 5b of the calculation control unit 5 (step S101). As this position information, an electronic file in which position information is recorded is created using an input device such as a keyboard (not shown), and the value recorded in the electronic file is input. Further, the simulation start time is input. And the optimal output calculating part 5b acquires a measured value from the current sensor 61, the voltage sensor 62, each temperature sensor, and each flow sensor.
 そして、最適出力演算部5bは、測定された太陽電池1の電流値及び電圧値から、太陽電池1による発電量を計算する(ステップS102)。計算された発電量は現実の発電量である。なお、太陽電池1は、図示しない二次電池に接続されている。即ち、太陽電池1により発電された電力は二次電池に充電される。これにより、太陽電池1で電流が流れる。 Then, the optimum output calculation unit 5b calculates the amount of power generated by the solar cell 1 from the measured current value and voltage value of the solar cell 1 (step S102). The calculated power generation amount is an actual power generation amount. Note that the solar cell 1 is connected to a secondary battery (not shown). That is, the power generated by the solar cell 1 is charged in the secondary battery. Thereby, a current flows through the solar cell 1.
 そして、最適出力演算部5bは、計算された発電量に基づき、太陽電池1の表面の温度を計算する(ステップS103)。ここで、表面温度は、太陽電池1の発電量と熱交換器2に供給及び排出される熱媒の温度とに関する所定の式(熱バランス、伝熱特性)に基づき、計算される。 Then, the optimum output calculation unit 5b calculates the temperature of the surface of the solar cell 1 based on the calculated power generation amount (step S103). Here, the surface temperature is calculated based on a predetermined formula (heat balance, heat transfer characteristics) regarding the power generation amount of the solar cell 1 and the temperature of the heat medium supplied to and discharged from the heat exchanger 2.
 即ち、最適出力演算部5bは、温度センサ71,72及び流量センサ91により、熱交換器2で熱媒が受け取った熱量(即ち、太陽電池1及び熱交換器2間での熱交換量)を計算する。具体的には、温度センサ71により熱交換器2の入口での熱媒温度(即ち、ヒートポンプ3(具体的には前記の蒸発器3a)から排出された熱媒の温度)が測定される。また、温度センサ72により熱交換器2の出口での熱媒温度(即ち、ヒートポンプ3に供給される熱媒の温度)が測定される。そして、熱交換器2での入口及び出口の熱媒温度の差分を算出し、この差分と流量センサ91により測定される熱媒流量とにより、熱交換器2で熱媒が受け取った熱量が計算される。 That is, the optimum output calculation unit 5b uses the temperature sensors 71 and 72 and the flow rate sensor 91 to calculate the amount of heat received by the heat medium in the heat exchanger 2 (that is, the amount of heat exchange between the solar cell 1 and the heat exchanger 2). calculate. Specifically, the temperature sensor 71 measures the temperature of the heat medium at the inlet of the heat exchanger 2 (that is, the temperature of the heat medium discharged from the heat pump 3 (specifically, the evaporator 3a)). The temperature sensor 72 measures the temperature of the heat medium at the outlet of the heat exchanger 2 (that is, the temperature of the heat medium supplied to the heat pump 3). And the difference of the heat-medium temperature of the inlet_port | entrance and an exit in the heat exchanger 2 is calculated, and the calorie | heat amount which the heat-medium received in the heat exchanger 2 is calculated from this difference and the heat-medium flow volume measured by the flow sensor 91 Is done.
 そして、計算して得られた熱量、温度センサ79で測定された外気温、熱交換器2の伝熱特性、系内の熱バランス等を考慮し、太陽電池1の表面温度を計算する。なお、ステップS103においては表面温度以外にも、太陽電池1から外気(即ち系外)への放熱量、熱交換器2から外気への放熱量等も併せて計算される。 Then, the surface temperature of the solar cell 1 is calculated in consideration of the amount of heat obtained by calculation, the outside air temperature measured by the temperature sensor 79, the heat transfer characteristics of the heat exchanger 2, the heat balance in the system, and the like. In step S103, in addition to the surface temperature, the amount of heat released from the solar cell 1 to the outside air (that is, outside the system), the amount of heat released from the heat exchanger 2 to the outside air, and the like are also calculated.
 その後、最適出力演算部5bは、ステップS101において入力された緯度、経度、時刻等に基づき太陽の軌道を計算し、太陽の高度及び方位角を計算する。そして、ステップS102で計算された発電量とステップS103で計算された表面温度とにより、太陽電池1への日射量が計算される(ステップS104)。この日射量は、太陽電池1の温度-効率特性を反映する所定の式に基づき計算される。 Thereafter, the optimum output calculation unit 5b calculates the solar trajectory based on the latitude, longitude, time, etc., input in step S101, and calculates the solar altitude and azimuth. And the solar radiation amount to the solar cell 1 is calculated by the electric power generation amount calculated by step S102, and the surface temperature calculated by step S103 (step S104). This amount of solar radiation is calculated based on a predetermined formula that reflects the temperature-efficiency characteristics of the solar cell 1.
 以上の計算を行って発電量、表面温度及び日射量等を求めた後、最適出力演算部5bは、熱交換器2に供給される熱媒の供給量を設定する(ステップS105)。即ち、ポンプ4による流量値が設定される。なお、本実施形態における初期流量は、ポンプ4で変更可能な最大の流量とする。 After performing the above calculation and obtaining the power generation amount, the surface temperature, the amount of solar radiation, etc., the optimum output calculation unit 5b sets the supply amount of the heat medium supplied to the heat exchanger 2 (step S105). That is, the flow value by the pump 4 is set. The initial flow rate in this embodiment is the maximum flow rate that can be changed by the pump 4.
 次に、シミュレーション部5cが、以下の制御(ステップS106~ステップS111)を行う。 Next, the simulation unit 5c performs the following control (step S106 to step S111).
 はじめに、シミュレーション部5cに、熱媒の温度が入力される。この際の入力は、前記のステップS101の入力方法と同様の方法が用いられる。ただし、本実施形態においては、温度センサ79で測定される外気温が熱媒温度(熱交換器2の出口温度)として設定される(ステップS106)。 First, the temperature of the heat medium is input to the simulation unit 5c. For the input at this time, the same method as the input method in step S101 is used. However, in the present embodiment, the outside air temperature measured by the temperature sensor 79 is set as the heat medium temperature (the outlet temperature of the heat exchanger 2) (step S106).
 そして、設定された熱媒温度とステップS105で設定された熱媒流量とに基づき、ポンプ4の消費電力が計算される(ステップS107)。さらに、流量センサ93に基づいて同様にして、ポンプ33の消費電力も計算される(ステップS107)。なお、これらの計算に際しては、予め計算された、各ポンプにおける流量と消費電力との関係に基づいて行われる。 Then, the power consumption of the pump 4 is calculated based on the set heat medium temperature and the heat medium flow rate set in step S105 (step S107). Further, the power consumption of the pump 33 is calculated in the same manner based on the flow rate sensor 93 (step S107). These calculations are performed based on the relationship between the flow rate and power consumption in each pump, which is calculated in advance.
 そして、ヒートポンプ3の消費電力も計算される(ステップS108)。即ち、シミュレーション部5cは、予め設定されたヒートポンプ3の特性に基づき、ヒートポンプ3の消費電力及びヒートポンプ3内の蒸発器3aでの熱媒の出口温度を計算する。 And the power consumption of the heat pump 3 is also calculated (step S108). That is, the simulation unit 5 c calculates the power consumption of the heat pump 3 and the outlet temperature of the heat medium in the evaporator 3 a in the heat pump 3 based on the preset characteristics of the heat pump 3.
 また、この計算に際して、ヒートポンプ3内の凝縮器3cの入口温度、出口温度、流量、蒸発器3aの入口温度及び流量がパラメータとして用いられる。なお、ヒートポンプ3内の凝縮器3cの入口温度、出口温度及び流量は、それぞれ温度センサ73,74及び流量センサ93による測定値を用いる。さらに、蒸発器3aの熱媒の流量は、ステップS105で設定した値(2回目の計算以降は、ステップS113で設定した値)、蒸発器3aの熱媒の入口温度は、ステップS106により設定された熱交換器2の出口温度の値(2回目の計算以降は、ステップS109により計算された熱交換器2の出口温度の値)である。 In this calculation, the inlet temperature, outlet temperature and flow rate of the condenser 3c in the heat pump 3 and the inlet temperature and flow rate of the evaporator 3a are used as parameters. In addition, the measured value by the temperature sensors 73 and 74 and the flow sensor 93 is used for the inlet temperature, the outlet temperature, and the flow rate of the condenser 3c in the heat pump 3, respectively. Further, the flow rate of the heat medium in the evaporator 3a is set in step S105 (the value set in step S113 after the second calculation), and the inlet temperature of the heat medium in the evaporator 3a is set in step S106. It is the value of the outlet temperature of the heat exchanger 2 (after the second calculation, the value of the outlet temperature of the heat exchanger 2 calculated in step S109).
 以上のステップS107で求められたポンプ4,33の消費電力と、ステップS108で求められたヒートポンプ3の消費電力とに基づき、シミュレーション部5cは、太陽電池1の発電量並びに太陽電池1と熱交換器2との熱バランスを計算する(ステップS109)。まず、太陽電池1の表面温度が計算される。具体的な計算方法は、ステップS103において説明した方法と同様である。そして、熱バランスの計算により、熱交換器2の出口温度、つまりヒートポンプ3の蒸発器3aの熱媒の入口温度が計算される。なお、計算される表面温度は、ステップS105で設定された熱媒流量(2回目の計算以降は、ステップS113で設定した熱媒流量)における推算値である。さらに、太陽電池1の表面温度から、太陽電池1の温度-効率特性を反映する所定の式に基づき太陽電池1の発電量が計算される。 Based on the power consumption of the pumps 4 and 33 obtained in the above step S107 and the power consumption of the heat pump 3 obtained in step S108, the simulation unit 5c performs the power generation amount of the solar cell 1 and heat exchange with the solar cell 1. The heat balance with the container 2 is calculated (step S109). First, the surface temperature of the solar cell 1 is calculated. A specific calculation method is the same as the method described in step S103. Then, by calculating the heat balance, the outlet temperature of the heat exchanger 2, that is, the inlet temperature of the heating medium of the evaporator 3a of the heat pump 3 is calculated. The calculated surface temperature is an estimated value at the heat medium flow rate set in step S105 (the heat medium flow rate set in step S113 after the second calculation). Furthermore, the power generation amount of the solar cell 1 is calculated from the surface temperature of the solar cell 1 based on a predetermined formula that reflects the temperature-efficiency characteristics of the solar cell 1.
 また、この計算に際し、日射量、外気温度、太陽電池1の発電量、熱媒体の入口温度、流量がパラメータとして用いられる。日射量はステップS104で計算した値、外気温度は温度センサ79の計測値が用いられる。また、太陽電池1の発電量はステップS102で計算された値(2回目の計算以降は、前回このステップS109で計算された値)が用いられる。さらに、熱媒の熱交換器2の入口温度は、ステップS108で計算されたヒートポンプ3の蒸発器3aの熱媒の出口温度が用いられ、熱媒の流量は、ステップS105で設定された値(2回目以降はステップS113で設定された値)が用いられる。ステップS109で計算(推算)された熱媒の熱交換器2の出口温度は、図示しない記憶部に記憶される。 In this calculation, the amount of solar radiation, the outside air temperature, the power generation amount of the solar cell 1, the inlet temperature of the heat medium, and the flow rate are used as parameters. The solar radiation amount is the value calculated in step S104, and the outside air temperature is the value measured by the temperature sensor 79. The power generation amount of the solar cell 1 uses the value calculated in step S102 (after the second calculation, the value calculated in the previous step S109). Furthermore, as the inlet temperature of the heat exchanger 2 of the heat medium, the outlet temperature of the heat medium of the evaporator 3a of the heat pump 3 calculated in step S108 is used, and the flow rate of the heat medium is the value set in step S105 ( For the second and subsequent times, the value set in step S113) is used. The outlet temperature of the heat exchanger 2 of the heat medium calculated (estimated) in step S109 is stored in a storage unit (not shown).
 計算された熱媒の熱交換器2の出口温度が記憶される一方、シミュレーション部5cは、既に記憶されている前回の計算時の熱媒の熱交換器2の出口温度と今回計算された値とを比較(判定)する(ステップS110)。なお、初回計算時には比較対象が存在しないため、判定は行われない。具体的には、シミュレーション部5cは、記憶された前回の値と今回計算された値との差分が予め決めた値(例えば0.1℃以下)よりも小さいか否か(収束したか否か)を判定する。 While the calculated outlet temperature of the heat exchanger 2 of the heat medium is stored, the simulation unit 5c stores the stored outlet temperature of the heat exchanger 2 of the heat medium at the time of the previous calculation and the value calculated this time. Are compared (determined) (step S110). In addition, since there is no comparison target at the time of the first calculation, the determination is not performed. Specifically, the simulation unit 5c determines whether or not the difference between the stored previous value and the currently calculated value is smaller than a predetermined value (for example, 0.1 ° C. or less) (whether or not it has converged). ).
 この収束判定の結果、収束していないと判断した場合(ステップS110のNo方向)、ステップS107~ステップS110を再度行って、再び収束判定を行う。そして、収束したと判断した場合(ステップS110のYes方向)、ステップS111に進む。そして、計算された発電量とステップS107,S108で計算した消費電力との差分を計算し、図示しない記憶部に記憶する(ステップS111)。なお、この差分は、ステップS105で設定された流量とともに記憶される。ちなみに、熱媒の熱交換器2の出口温度(推算値)が収束すると、熱交換器2の入口温度(推算値)も収束する。 If, as a result of this convergence determination, it is determined that the convergence has not occurred (No direction of step S110), step S107 to step S110 are performed again, and the convergence determination is performed again. And when it is judged that it has converged (Yes direction of step S110), it progresses to step S111. Then, the difference between the calculated power generation amount and the power consumption calculated in steps S107 and S108 is calculated and stored in a storage unit (not shown) (step S111). This difference is stored together with the flow rate set in step S105. Incidentally, when the outlet temperature (estimated value) of the heat exchanger 2 of the heat medium converges, the inlet temperature (estimated value) of the heat exchanger 2 also converges.
 最適出力演算部5bは、ステップS105で設定された流量が、ポンプ4の設定可能な最低流量であるか否かを判定する(ステップS112)。本実施形態においては、ステップS105では、運転開始時には最大流量で設定している。従って、1回目の計算後にはステップS112のNo方向に進む。そして、熱媒の流量が所定の刻み幅分減少させて(ステップS113)、減少後の流量が改めて設定される(ステップS105)。その後、ステップS106~S112が繰り返される。 The optimum output calculation unit 5b determines whether or not the flow rate set in step S105 is the lowest flow rate that can be set in the pump 4 (step S112). In this embodiment, in step S105, the maximum flow rate is set at the start of operation. Therefore, after the first calculation, the process proceeds in the No direction of step S112. Then, the flow rate of the heat medium is decreased by a predetermined increment (step S113), and the decreased flow rate is set again (step S105). Thereafter, steps S106 to S112 are repeated.
 ステップS112において、ステップS105で設定された流量が最低流量である場合、ステップS112のYes方向に進む。そして、最適演算出力部5bは、シミュレーション部5cにより記憶された差分の値を全て比較する(ステップS114)。比較後、最適演算出力部5bは、差分が最も小さくなる、即ち、外部へ取り出し可能な電力が最も大きくなるときの流量を抽出し、外部へ出力する(ステップS115)。なお、この外部への出力は、例えばディスプレイに表示されるようにしてもよく、制御部5dに直接伝達されてポンプ4が制御されるようにしてもよい。この実施形態では、この外部への出力は、制御部5dに直接伝達されてポンプ4が制御される。 In step S112, if the flow rate set in step S105 is the minimum flow rate, the process proceeds in the Yes direction in step S112. Then, the optimum calculation output unit 5b compares all the difference values stored by the simulation unit 5c (step S114). After the comparison, the optimum calculation output unit 5b extracts the flow when the difference is the smallest, that is, the power that can be taken out is the largest, and outputs it to the outside (step S115). The output to the outside may be displayed on a display, for example, or may be directly transmitted to the control unit 5d to control the pump 4. In this embodiment, the output to the outside is directly transmitted to the control unit 5d and the pump 4 is controlled.
<効果>
 以上の太陽エネルギ利用システム100に拠れば、日射量、ポンプ及びヒートポンプの消費電力、太陽電池1表面から外部への放熱等の複雑な要素で決定される供給可能な電力を、最大限外部へ取り出すことができる。そのため、太陽エネルギのより効率のよい利用を図ることができる。
<Effect>
According to the solar energy utilization system 100 described above, the suppliable power determined by complicated factors such as the amount of solar radiation, power consumption of the pump and heat pump, and heat radiation from the surface of the solar cell 1 to the outside is extracted to the maximum extent. be able to. Therefore, more efficient use of solar energy can be achieved.
 なお、前記の説明においては、熱媒の循環を主に説明したが、ポンプ33により制御される水の流れ(ヒートポンプ3への給水)は特に制限されない。従って、給湯タンク13に貯蔵される水の温度や貯蔵量が所望のものになるように、ポンプ33等を適宜制御すればよい。 In the above description, the circulation of the heat medium has been mainly described. However, the flow of water controlled by the pump 33 (water supply to the heat pump 3) is not particularly limited. Therefore, the pump 33 and the like may be appropriately controlled so that the temperature and amount of water stored in the hot water supply tank 13 become desired.
[2.第2実施形態]
 次に、図4を参照して、太陽エネルギ利用システム200の構成を説明する。図1の太陽エネルギ利用システム100と同様のものを示すものは同様の符号を付すものとし、その詳細な説明は省略する。
[2. Second Embodiment]
Next, the configuration of the solar energy utilization system 200 will be described with reference to FIG. Components similar to those of the solar energy utilization system 100 of FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 太陽エネルギ利用システム200は、ヒートポンプ3に代えて熱交換器3eを備えている。太陽エネルギ利用システムの設置場所が、例えば熱帯地区等の1年を通じて暑い場所等の場合、熱交換器2に供給される熱媒の温度が1年を通じて高くなる。そのため、熱交換器3eで太陽熱を水に対して直接伝達することで水を十分に加熱することができ、ヒートポンプを設ける必要が無い。従って、ヒートポンプよりも消費電力の少ない熱交換器を用いることで、太陽エネルギ利用システム200での消費電力を抑えることができる。 The solar energy utilization system 200 includes a heat exchanger 3e instead of the heat pump 3. When the installation location of the solar energy utilization system is a hot place throughout the year such as a tropical area, for example, the temperature of the heat medium supplied to the heat exchanger 2 is increased throughout the year. Therefore, water can be sufficiently heated by directly transmitting solar heat to the water with the heat exchanger 3e, and there is no need to provide a heat pump. Therefore, the power consumption in the solar energy utilization system 200 can be suppressed by using a heat exchanger that consumes less power than the heat pump.
 また、太陽電池1の冷却を促し太陽電池1での発電効率を上昇させる観点から、熱交換器3eから排出された熱媒は図示しない冷却器により冷却され、この冷却された熱媒が熱交換器2に供給されるように構成してもよい。この際、冷却器による冷却ではなく、自然放熱による冷却(即ち放熱)としてもよい。 Further, from the viewpoint of promoting the cooling of the solar cell 1 and increasing the power generation efficiency of the solar cell 1, the heat medium discharged from the heat exchanger 3e is cooled by a cooler (not shown), and the cooled heat medium is heat-exchanged. You may comprise so that it may be supplied to the container 2. FIG. At this time, cooling by natural heat dissipation (that is, heat dissipation) may be used instead of cooling by the cooler.
 なお、太陽エネルギ利用システム200においても、図3に示すフローと同様にして制御を行うことができる。 In addition, also in the solar energy utilization system 200, control can be performed in the same manner as the flow shown in FIG.
[3.第3実施形態]
 次に、図5を参照して、太陽エネルギ利用システム300の構成を説明する。図1の太陽エネルギ利用システム100と同様のものを示すものは同様の符号を付すものとし、その詳細な説明は省略する。なお、図5において、給湯タンク13は紙面の都合上横長の形態となっているが、実際には縦長(鉛直方向に長い)形態となっている。
[3. Third Embodiment]
Next, the configuration of the solar energy utilization system 300 will be described with reference to FIG. Components similar to those of the solar energy utilization system 100 of FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. In FIG. 5, the hot water supply tank 13 has a horizontally long form for the sake of space, but actually has a vertically long form (long in the vertical direction).
 太陽エネルギ利用システム300においては、各位置の温度を測定する温度センサ73~78,81~84が備えられている。さらに、各位置の水又は熱媒の流量を制御する、インバータ制御のポンプ32~37が備えられている。そして、各位置の流量を測定する流量センサ92~97が備えられている。これらは全て図1で説明したものと同じ機能を有するものであるため、説明を省略する。 The solar energy utilization system 300 includes temperature sensors 73 to 78 and 81 to 84 that measure the temperature at each position. Furthermore, inverter-controlled pumps 32 to 37 for controlling the flow rate of water or heat medium at each position are provided. Then, flow rate sensors 92 to 97 for measuring the flow rate at each position are provided. Since these all have the same functions as those described with reference to FIG.
 太陽エネルギ利用システム300では、熱交換器2から排出された熱媒を高温熱媒タンク11にいったん貯蔵する。そして、貯蔵された熱媒は分岐して、ヒートポンプ14,16及び熱交換器15に供給される。そして、ヒートポンプ14,16及び熱交換器15で水に対して熱を供給した後、低温熱媒タンク12に貯蔵される。その後、低温熱媒タンクに貯蔵された熱媒は、再び熱交換器2に供給される。
 なお、ヒートポンプ14,16は、図1に示すヒートポンプ3と同様の構成を備える。従って、ヒートポンプ14,16についての説明は省略する。
In the solar energy utilization system 300, the heat medium discharged from the heat exchanger 2 is temporarily stored in the high-temperature heat medium tank 11. The stored heat medium branches and is supplied to the heat pumps 14 and 16 and the heat exchanger 15. And after supplying heat with respect to water with the heat pumps 14 and 16 and the heat exchanger 15, it is stored in the low-temperature heat-medium tank 12. FIG. Thereafter, the heat medium stored in the low-temperature heat medium tank is supplied to the heat exchanger 2 again.
The heat pumps 14 and 16 have the same configuration as the heat pump 3 shown in FIG. Therefore, the description about the heat pumps 14 and 16 is omitted.
 本実施形態でも、ヒートポンプ14及び熱交換器15のいずれにおいても、排出される水の温度(温度センサ74,76で測定される温度)が45℃となるように設定されている。従って、高温熱媒タンク11内の熱媒温度が46℃以上である場合、この熱媒は熱交換器15に供給される。このような場合とは、例えば温度センサ79により測定される外気温が高い場合(例えば夏季、設置場所が熱帯地区等)である。一方、46℃未満である場合には、ヒートポンプ14に供給される。このように、高温熱媒タンク11内の温度に応じてヒートポンプ14に供給されるか熱交換器15に供給されるかを選択することで、無駄なエネルギ消費を避けつつも、確実に水を加熱することができる。熱媒供給先の選択は、ポンプ32,34を制御することで行われる。 Also in this embodiment, in both the heat pump 14 and the heat exchanger 15, the temperature of the discharged water (temperature measured by the temperature sensors 74 and 76) is set to 45 ° C. Therefore, when the temperature of the heat medium in the high-temperature heat medium tank 11 is 46 ° C. or higher, the heat medium is supplied to the heat exchanger 15. Such a case is, for example, a case where the outside air temperature measured by the temperature sensor 79 is high (for example, in summer, the installation location is a tropical area, etc.). On the other hand, when the temperature is lower than 46 ° C., the heat pump 14 is supplied. Thus, by selecting whether to be supplied to the heat pump 14 or to the heat exchanger 15 according to the temperature in the high-temperature heat medium tank 11, water can be reliably supplied while avoiding unnecessary energy consumption. Can be heated. Selection of the heat medium supply destination is performed by controlling the pumps 32 and 34.
 即ち、熱媒の温度が所定値(前記の例では46℃)以上である場合には熱媒の温度を上昇させる必要が無いため、熱媒は熱交換器15に供給されればよい。一方、熱媒の温度が所定値未満であり、水を加熱する(前記の例では45℃まで)ための熱量が不足する場合には、熱媒はヒートポンプ14に供給される。このように、熱媒を熱交換器2から排出される熱媒の温度に応じてヒートポンプ14又は熱交換器15に供給されるようにすることで、ヒートポンプ14の消費電力を削減することができる。従って、エネルギ効率のより良い太陽エネルギ利用システムを提供することができる。 That is, when the temperature of the heat medium is equal to or higher than a predetermined value (46 ° C. in the above example), it is not necessary to raise the temperature of the heat medium, so the heat medium may be supplied to the heat exchanger 15. On the other hand, when the temperature of the heat medium is less than a predetermined value and the amount of heat for heating water (up to 45 ° C. in the above example) is insufficient, the heat medium is supplied to the heat pump 14. Thus, the power consumption of the heat pump 14 can be reduced by supplying the heat medium to the heat pump 14 or the heat exchanger 15 according to the temperature of the heat medium discharged from the heat exchanger 2. . Therefore, a solar energy utilization system with better energy efficiency can be provided.
 ただし、水の熱交換器15の出口の温度を45℃に制御するには、熱媒の流量を調整する必要がある。そこで、熱交換器15から排出される水の温度を測定する温度センサ76とポンプ34とに、PID制御器110が電気信号線を介して接続されている。 However, in order to control the temperature of the outlet of the water heat exchanger 15 to 45 ° C., it is necessary to adjust the flow rate of the heat medium. Therefore, the PID controller 110 is connected to the temperature sensor 76 for measuring the temperature of the water discharged from the heat exchanger 15 and the pump 34 via an electric signal line.
 このように、温度センサ76により排出水の温度を測定しながらポンプ34を制御することで、45℃に水を加熱することができる。即ち、温度センサ76により測定される温度が45℃よりも低い場合にはポンプ34を制御して熱媒流量を多くすればよいし、温度が45℃よりも高い場合には熱媒流量を少なくする制御をポンプ34に対して行えばよい。これにより、水の温度が45℃となるように確実に水を加熱することができる。 Thus, the water can be heated to 45 ° C. by controlling the pump 34 while measuring the temperature of the discharged water by the temperature sensor 76. That is, when the temperature measured by the temperature sensor 76 is lower than 45 ° C., the pump 34 may be controlled to increase the flow rate of the heat medium, and when the temperature is higher than 45 ° C., the flow rate of the heat medium is decreased. The control to be performed may be performed on the pump 34. Thereby, water can be reliably heated so that the temperature of water may be 45 degreeC.
 また、太陽エネルギ利用システム300においては、熱媒はヒートポンプ16にも供給される。そして、この熱媒の通流方向に対して対向する方向に、水等の流体が通流している。そのため、ヒートポンプ16においても、ヒートポンプ14と同様に熱交換が行われ、ファンコイルユニット17に伝熱された熱媒が供給される。これにより、ファンコイルユニット17から温風が排出される。即ち、太陽エネルギ利用システム300に拠れば、太陽光を利用した外部への電力供給、給湯及び暖房の3つを同時に行うことができる。 In the solar energy utilization system 300, the heat medium is also supplied to the heat pump 16. And fluids, such as water, are flowing in the direction opposite to the direction of flow of this heat carrier. Therefore, also in the heat pump 16, heat exchange is performed in the same manner as in the heat pump 14, and the heat medium transferred to the fan coil unit 17 is supplied. Thereby, warm air is discharged from the fan coil unit 17. That is, according to the solar energy utilization system 300, it is possible to simultaneously perform power supply, hot water supply, and heating to the outside using sunlight.
 なお、ヒートポンプ14及び熱交換器15に供給される水の温度や流量については特に制限されず、前記した太陽エネルギ利用システム100と同様に設定すればよい。また、各ポンプ、熱交換器2,15、及びヒートポンプ14,16等の制御は、図3を参照して説明した太陽エネルギ利用システム100の制御と同様にして行えばよい。 Note that the temperature and flow rate of water supplied to the heat pump 14 and the heat exchanger 15 are not particularly limited, and may be set in the same manner as the solar energy utilization system 100 described above. Moreover, what is necessary is just to perform control of each pump, the heat exchangers 2 and 15, and the heat pumps 14 and 16 similarly to control of the solar energy utilization system 100 demonstrated with reference to FIG.
[4.変更例]
 図5を示しながら説明した第3実施形態においては、PID制御器110を熱交換器15についての制御に用いたが、ヒートポンプ14或いはヒートポンプ16の制御に用いてもよい。また、このようなPID制御器110は、図1に示す第1実施形態や図4に示す第2実施形態であっても同様に設けてもよい。さらには、排出される水の温度ではなく、供給される水の温度に応じて制御してもよい。これらのようにしても同様の効果を奏する。即ち、水等の加熱対象の流体の温度に応じて、熱媒の供給量(供給流量)を制御するようにしてもよい。
[4. Example of change]
In the third embodiment described with reference to FIG. 5, the PID controller 110 is used to control the heat exchanger 15, but may be used to control the heat pump 14 or the heat pump 16. Further, such a PID controller 110 may be similarly provided in the first embodiment shown in FIG. 1 or the second embodiment shown in FIG. Furthermore, you may control according to the temperature of the supplied water instead of the temperature of the discharged water. Even if it does in this way, there exists the same effect. That is, the supply amount (supply flow rate) of the heat medium may be controlled according to the temperature of the fluid to be heated such as water.
 また、PID制御以外のフィードバック制御、或いは、フィードフォワード制御等の制御も適宜行うことができる。 Further, feedback control other than PID control or control such as feedforward control can be performed as appropriate.
 さらに、本実施形態において、ポンプ4による流量制御をインバータによる回転制御で行うこととしたが、インバータではなく、通常のポンプとダンパや流量調整弁とを設け、ダンパの開度や流量調整弁の開度等で変化させるようにしてもよい。このような場合も、「循環ポンプによる流量(循環量)の制御」に相当する。 Further, in this embodiment, the flow rate control by the pump 4 is performed by the rotation control by the inverter. However, instead of the inverter, a normal pump, a damper and a flow rate adjustment valve are provided, and the opening degree of the damper and the flow rate adjustment valve are adjusted. You may make it change with an opening degree etc. Such a case also corresponds to “control of the flow rate (circulation amount) by the circulation pump”.
1  太陽電池
2  熱交換器(第1熱交換器)
3  ヒートポンプ
3e 熱交換器(第2熱交換器)
4  ポンプ(インバータ制御されるポンプ;循環ポンプ)
5  演算制御部(流量制御部)
14 ヒートポンプ(一組のヒートポンプ及び熱交換器のうちの一方)
15 熱交換器(一組のヒートポンプ及び熱交換器のうちの一方)
16 ヒートポンプ
100 太陽エネルギ利用システム
200 太陽エネルギ利用システム
300 太陽エネルギ利用システム
1 solar cell 2 heat exchanger (first heat exchanger)
3 heat pump 3e heat exchanger (second heat exchanger)
4 Pump (inverter-controlled pump; circulation pump)
5 Calculation control unit (flow rate control unit)
14 Heat pump (one of a set of heat pump and heat exchanger)
15 heat exchanger (one of a set of heat pump and heat exchanger)
16 Heat pump 100 Solar energy utilization system 200 Solar energy utilization system 300 Solar energy utilization system

Claims (7)

  1.  太陽電池を備え、前記太陽電池により電力を得る太陽エネルギ利用システムにおいて、
     前記太陽電池を冷却する第1熱交換器と、
     前記第1熱交換器に接続されたヒートポンプと、
     前記第1熱交換器と前記ヒートポンプとの間で熱媒を循環させる循環ポンプと、
     前記循環ポンプを制御して熱媒の循環量を変更する流量制御部と、を備えている
    ことを特徴とする、太陽エネルギ利用システム。
    In a solar energy utilization system comprising a solar cell and obtaining electric power from the solar cell,
    A first heat exchanger for cooling the solar cell;
    A heat pump connected to the first heat exchanger;
    A circulation pump for circulating a heat medium between the first heat exchanger and the heat pump;
    A solar energy utilization system comprising: a flow rate control unit that controls the circulation pump to change a circulation amount of the heat medium.
  2.  前記流量制御部は、循環する熱媒の流量を算出し、算出された流量となるように前記循環ポンプを制御する演算制御部であり、
     前記演算制御部は、
     前記太陽エネルギ利用システムにおける消費電力と前記太陽電池による発電量とを計算し、
     計算された消費電力と発電量との差分が最も大きくなるように、前記循環ポンプによる熱媒の流量を制御することを特徴とする、請求の範囲第1項に記載の太陽エネルギ利用システム。
    The flow rate control unit is an arithmetic control unit that calculates the flow rate of the circulating heat medium and controls the circulation pump so as to be the calculated flow rate.
    The arithmetic control unit is
    Calculate the power consumption in the solar energy utilization system and the amount of power generated by the solar cell,
    2. The solar energy utilization system according to claim 1, wherein the flow rate of the heat medium by the circulation pump is controlled so that the difference between the calculated power consumption and the power generation amount becomes the largest.
  3.  太陽電池を備え、前記太陽電池により電力を得る太陽エネルギ利用システムにおいて、
     前記太陽電池を冷却する第1熱交換器と、
     前記第1熱交換器に接続された第2熱交換器と、
     前記第1熱交換器と前記第2熱交換器との間で熱媒を循環させる循環ポンプと、
     前記循環ポンプを制御して熱媒の循環量を変更する流量制御部と、を備えている
    ことを特徴とする、太陽エネルギ利用システム。
    In a solar energy utilization system comprising a solar cell and obtaining electric power from the solar cell,
    A first heat exchanger for cooling the solar cell;
    A second heat exchanger connected to the first heat exchanger;
    A circulation pump for circulating a heat medium between the first heat exchanger and the second heat exchanger;
    A solar energy utilization system comprising: a flow rate control unit that controls the circulation pump to change a circulation amount of the heat medium.
  4.  前記流量制御部は、循環する熱媒の流量を算出し、算出された流量となるように前記循環ポンプを制御する演算制御部であり、
     前記演算制御部は、
     前記太陽エネルギ利用システムにおける消費電力と前記太陽電池による発電量とを計算し、
     計算された消費電力と発電量との差分が最も大きくなるように、前記循環ポンプによる熱媒の流量を制御することを特徴とする、請求の範囲第3項に記載の太陽エネルギ利用システム。
    The flow rate control unit is an arithmetic control unit that calculates the flow rate of the circulating heat medium and controls the circulation pump so as to be the calculated flow rate.
    The arithmetic control unit is
    Calculate the power consumption in the solar energy utilization system and the amount of power generated by the solar cell,
    The solar energy utilization system according to claim 3, wherein the flow rate of the heat medium by the circulation pump is controlled so that the difference between the calculated power consumption and the power generation amount becomes the largest.
  5.  前記演算制御部は、前記太陽電池から外気への放熱量と、前記太陽電池及び前記第1熱交換器間での熱交換量と、を計算する
    ことを特徴とする、請求の範囲第2項又は第4項に記載の太陽エネルギ利用システム。
    The calculation control unit calculates a heat radiation amount from the solar cell to the outside air and a heat exchange amount between the solar cell and the first heat exchanger. Or the solar energy utilization system of Claim 4.
  6.  前記第1熱交換器に対して並列に接続される一組のヒートポンプ及び熱交換器を備え、
     前記第1熱交換器から排出される熱媒の温度に応じて、前記一組のヒートポンプ及び熱交換器のうちのいずれか一方に熱媒が供給される
    ことを特徴とする、請求の範囲第1項~第4項の何れか1項に記載の太陽エネルギ利用システム。
    A set of heat pumps and heat exchangers connected in parallel to the first heat exchanger;
    The heat medium is supplied to either one of the set of heat pumps and heat exchangers according to the temperature of the heat medium discharged from the first heat exchanger. 5. The solar energy utilization system according to any one of items 1 to 4.
  7.  熱媒による加熱対象の流体の温度に応じて、熱媒の流量が制御される
    ことを特徴とする、請求の範囲第1項~第4項の何れか1項に記載の太陽エネルギ利用システム。
    The solar energy utilization system according to any one of claims 1 to 4, wherein the flow rate of the heat medium is controlled according to the temperature of the fluid to be heated by the heat medium.
PCT/JP2012/075763 2011-10-07 2012-10-04 System using solar energy WO2013051642A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280048513.9A CN103890499A (en) 2011-10-07 2012-10-04 System using solar energy
IN2534CHN2014 IN2014CN02534A (en) 2011-10-07 2012-10-04
GBGB1314899.4D GB201314899D0 (en) 2011-10-07 2012-10-04 System using solar energy
SG11201401315TA SG11201401315TA (en) 2011-10-07 2012-10-04 Solar energy application system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011223365A JP5779070B2 (en) 2011-10-07 2011-10-07 Solar energy utilization system
JP2011-223365 2011-10-07

Publications (1)

Publication Number Publication Date
WO2013051642A1 true WO2013051642A1 (en) 2013-04-11

Family

ID=48043795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075763 WO2013051642A1 (en) 2011-10-07 2012-10-04 System using solar energy

Country Status (6)

Country Link
JP (1) JP5779070B2 (en)
CN (1) CN103890499A (en)
GB (1) GB201314899D0 (en)
IN (1) IN2014CN02534A (en)
SG (1) SG11201401315TA (en)
WO (1) WO2013051642A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045609A1 (en) * 2013-09-24 2015-04-02 株式会社日立製作所 Dehumidification system
US20210318700A1 (en) * 2020-03-31 2021-10-14 Lg Electronics Inc. Heat pump and method for operating heat pump

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197517A (en) * 2014-09-15 2014-12-10 江苏双志新能源有限公司 Multidirectional heat-absorbing light-energy heat pump
KR101707926B1 (en) * 2014-11-27 2017-02-28 한국건설생활환경시험연구원 Performance Meter for Measuring the Performance of a Photovoltaic Module or Photovoltaic Mock-up
CN105402798B (en) * 2015-12-31 2018-08-03 青海天地乐科技有限责任公司 Confession based on air energy heat pump and photovoltaic power generation technology is thermally integrated indoor heating device
CN105638326B (en) * 2015-12-31 2018-10-09 青海天地乐科技有限责任公司 Greenhouse special-purpose air energy heat pump
CN105811877A (en) * 2016-03-17 2016-07-27 苏州大美节能科技有限公司 Multi-stage heat-exchange type photovoltaic photo-thermal combined supply system
CN105978482A (en) * 2016-07-08 2016-09-28 河海大学常州校区 Novel air-cooled PV/T system based on improvement of solar photovoltaic thermal efficiency
CN106026911B (en) * 2016-07-25 2018-11-09 河海大学常州校区 A kind of temperature control type Phase cooling photovoltaic module and its system
CN106683555A (en) * 2016-12-30 2017-05-17 贵州大学 Real-time emulation model and device of solar photovoltaic photothermal comprehensive utilization system
KR102048257B1 (en) * 2018-04-06 2019-11-25 (주)동호엔지니어링 Energy saving control system and method for low-capacity solar system
KR102048256B1 (en) * 2018-04-06 2019-11-25 (주)동호엔지니어링 Variable-volume control system and method for low-capacity solar system
CN109286367B (en) * 2018-08-24 2020-06-05 广东南控电力有限公司 Temperature-controllable photovoltaic system
CN110286591A (en) * 2019-06-21 2019-09-27 西安交通大学 A kind of feed-forward and feedback composite control method and the investigating method based on this method
JP6851432B2 (en) * 2019-07-04 2021-03-31 株式会社大気社 Cooling system for PV system
CN110986388B (en) * 2019-12-18 2021-05-28 吴美君 Intelligent solar photovoltaic photo-thermal collector and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241148A (en) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd Heat pump system utilizing solar light and its operation controlling method
JP2006064284A (en) * 2004-08-26 2006-03-09 Matsushita Electric Ind Co Ltd Sunlight heat compound use system, operation control method therefor, program and recording medium
JP2008111650A (en) * 2006-10-05 2008-05-15 Matsushita Electric Ind Co Ltd Photovoltaic power generation/heat collection composite utilization device
JP2011012845A (en) * 2009-06-30 2011-01-20 Panasonic Corp Water heater
JP2011080724A (en) * 2009-10-09 2011-04-21 Panasonic Corp Solar energy utilization system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338942B (en) * 2008-08-07 2011-04-06 广东美的电器股份有限公司 Solar energy composite heat pump water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241148A (en) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd Heat pump system utilizing solar light and its operation controlling method
JP2006064284A (en) * 2004-08-26 2006-03-09 Matsushita Electric Ind Co Ltd Sunlight heat compound use system, operation control method therefor, program and recording medium
JP2008111650A (en) * 2006-10-05 2008-05-15 Matsushita Electric Ind Co Ltd Photovoltaic power generation/heat collection composite utilization device
JP2011012845A (en) * 2009-06-30 2011-01-20 Panasonic Corp Water heater
JP2011080724A (en) * 2009-10-09 2011-04-21 Panasonic Corp Solar energy utilization system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045609A1 (en) * 2013-09-24 2015-04-02 株式会社日立製作所 Dehumidification system
JP2015064121A (en) * 2013-09-24 2015-04-09 株式会社日立製作所 Dehumidifying system
US20210318700A1 (en) * 2020-03-31 2021-10-14 Lg Electronics Inc. Heat pump and method for operating heat pump

Also Published As

Publication number Publication date
GB201314899D0 (en) 2013-10-02
JP2013083397A (en) 2013-05-09
SG11201401315TA (en) 2014-09-26
CN103890499A (en) 2014-06-25
IN2014CN02534A (en) 2015-06-26
JP5779070B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5779070B2 (en) Solar energy utilization system
US11268726B2 (en) Air handling unit and rooftop unit with predictive control
US11346572B2 (en) Building equipment with predictive control
JP4981589B2 (en) Solar power generation / heat collection combined use device
JP5121747B2 (en) Geothermal heat pump device
KR101836360B1 (en) A hybrid heat exchanger system using geothermal and solar thermal and Control method for this
JP2006183933A (en) Photovoltaic system
CN105070974A (en) Battery pack temperature regulation system
JP6116097B2 (en) Thermal storage system and control method thereof
CN207303289U (en) A kind of battery liquid cooling system temperature-adjusting device
KR20170009580A (en) Solar generating zero house system
JP5579041B2 (en) Cooling system
EP2762802B1 (en) Chilled water system and method of operating chilled water system
JP2010190460A (en) Air conditioning system
CN106440599A (en) Liquid cooling temperature control system allowing wide temperature range natural cooling
JP6817908B2 (en) Compressed air storage power generation equipment and method
KR102513802B1 (en) Refrigeration system
CN110822598B (en) Refrigerating system and refrigerating method based on cross-season cold accumulation
KR20190064789A (en) Air cooling system for fuel cell
CN204810793U (en) A cooling system for automotive electronics equipment
JP6116093B2 (en) Heat source system
CN111649506A (en) Ground source heat pump heat balance and heat recovery system
CN203911666U (en) Internal-circulation cooling device of wind power motor
JP6089669B2 (en) Hot water system
KR101107142B1 (en) Control Device for Warm Water of Sun Heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838786

Country of ref document: EP

Kind code of ref document: A1