WO2013051611A1 - レーザー掘削装置 - Google Patents

レーザー掘削装置 Download PDF

Info

Publication number
WO2013051611A1
WO2013051611A1 PCT/JP2012/075661 JP2012075661W WO2013051611A1 WO 2013051611 A1 WO2013051611 A1 WO 2013051611A1 JP 2012075661 W JP2012075661 W JP 2012075661W WO 2013051611 A1 WO2013051611 A1 WO 2013051611A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical fiber
tube
fiber cable
eccentric ring
Prior art date
Application number
PCT/JP2012/075661
Other languages
English (en)
French (fr)
Inventor
孝男 乗岡
浩明 西尾
Original Assignee
独立行政法人石油天然ガス・金属鉱物資源機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人石油天然ガス・金属鉱物資源機構 filed Critical 独立行政法人石油天然ガス・金属鉱物資源機構
Publication of WO2013051611A1 publication Critical patent/WO2013051611A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • E21B7/15Drilling by use of heat, e.g. flame drilling of electrically generated heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • E21B47/135Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency using light waves, e.g. infrared or ultraviolet waves

Definitions

  • the present invention relates to a laser excavator.
  • rotary drilling In oil drilling, natural gas drilling, metal mine drilling, hot spring drilling, and civil engineering-related drilling, rotary drilling is generally used in which the drill bed rocks down by high-speed rotation of the drill bit. In rotary drilling, wear of the drill bit is inevitable, so it is necessary to periodically lift the drill string consisting of a drill pipe or coiled tubing from the bottom of the borehole or on the sea where the drilling rig is installed to replace the drill bit. appear.
  • excavation stop time during which excavation cannot be performed is reached. Since the drilling stop time becomes longer as the well becomes deeper, the drilling stop time becomes one of the dominant factors in the drilling schedule in deep drilling and deep water drilling. Therefore, shortening the excavation stop time is one of the important themes.
  • Laser drilling is known as a technology based on a principle different from rotary drilling.
  • Laser excavation is an excavation technique for non-contact excavation of a rock mass by irradiating the rock surface of the bottom of the rock with a laser beam.
  • One advantage of laser drilling is that rotary drilling eliminates the inevitable drill bit replacement. Therefore, laser drilling may be an epoch-making technique in deep drilling and deep water drilling. However, it has not yet been put to practical use.
  • drilling fluid is sent into the mine. Its main objectives are (1) removing the debris from the bottom of the well and transporting it to the surface, (2) forming a mud layer on the inner surface of the well, and pressurizing it with mud containing clay minerals, (3) Suppress oil, gas, water, etc. existing underground from jetting into the mine from the pit wall, and (4) Discharge so that heat generated during excavation does not accumulate at the bottom of the mine. Therefore, the drilling fluid is indispensable for smoothly performing the drilling operation.
  • Drilling fluid is supplied from the drilling rig on the ground or the sea through the drill string, discharged at the bottom of the drill hole, rises the annulus between the drill string and the wall, and returns to the drilling rig. Pumped to form a circulatory system.
  • the drilling fluid forms a liquid column connected from the drilling rig to the bottom of the drill string inside and outside the drill string, and the pressure of the liquid column is applied to the bottom of the drill string.
  • the pressure applied to the bottom of the well increases as the well is deepened. For example, in a well having a vertical depth of 7000 m, the hydraulic pressure applied to the bottom of the well usually exceeds 700 atm.
  • the underground temperature also increases due to the influence of geothermal heat. For example, at a vertical depth of 7000 m, the underground temperature is about 200 ° C. In this way, the bottom of the pit where excavation is performed is in a severe environment of pressurization by the excavation fluid and heating by geothermal heat.
  • Fluids used as drilling fluid can be classified into mud, brine, emulsion, gas, etc.
  • Muddy water is a slurry-like fluid having water or oil as a continuous phase, and is often prepared by adding bentonite of a clay mineral as a dispersed phase to fresh water or seawater.
  • bentonite reflects the laser beam or absorbs its energy, hindering laser beam irradiation. Therefore, in laser excavation, it is important to transmit as much energy as possible to the rock mass while minimizing the energy loss taken by the muddy water during the laser beam transmission process.
  • brine is a clear salt solution that does not contain solids, and is characterized in that it can be adjusted to any specific gravity up to 2.2.
  • Patent Document 1 discloses a lens assembly for high-power laser excavation installed just above the bottom of a well.
  • a condensing element including a condensing lens is provided at the end of an optical fiber so as to cover the excavation hole using at least 100 optical fibers according to the size of the excavation hole. Arranged.
  • This lens assembly is used by being installed toward the rock surface at the bottom of the well.
  • a cooling conduit is incorporated into the lens assembly for cooling the lens assembly and removing debris generated from the rock surface. That is, the cooling water flowing through the cooling conduit plays a role of removing the debris generated by laser irradiation after being injected into the well bottom after cooling the lens assembly.
  • the lens assembly and cooling conduit are housed in a protective container.
  • Patent Document 2 a laser beam is irradiated to the rock surface at the bottom of the borehole to generate thermal stress and to perform a steam explosion.
  • An apparatus and a method are disclosed in which the site is peeled off and the generated debris is removed by a cleaning system.
  • a laser beam rock mass is generated by an electro-optic laser beam switch so that each of the single laser beams constituting the group is irradiated to a corresponding position on the rock mass surface.
  • Excavation is performed by sequentially selecting the irradiation position, peeling the rock surface by beam irradiation, generating multiple overlapping pieces and removing them.
  • the apparatus disclosed in Patent Document 2 that is, a laser head, is (1) a beam forming optical package for condensing and adjusting the direction of a laser beam, and (2) a removal flow for removing strips and forming a laser beam passage. It consists of a package and (3) an electro-optic laser beam switcher, all of which are housed in a protective container.
  • Patent Document 3 discloses an apparatus for drilling rocks by moving a laser beam in water.
  • the apparatus disclosed in Patent Document 3 is an apparatus in which a laser oscillator, a laser transmission mechanism, a laser focusing diameter adjustment mechanism, a laser beam operation mechanism, and a monitoring mechanism are housed in a protective container.
  • the apparatus disclosed in Patent Document 3 is characterized in that the energy required for rock drilling is supplied not by laser but by electric power. That is, it is supplied from a drilling rig on the ground or the sea to the laser oscillator in the protective container with a power cable and oscillates the laser beam there.
  • the laser beam is adjusted to focus on the bottom of the rock to be drilled and provides energy to the rock.
  • the laser beam operating mechanism has a function of moving the laser beam on the rock, but the structure is specifically described in Patent Document 3. There is no.
  • Patent Document 4 the shape of the beam is adjusted so that the energy supplied by the laser beam has a predetermined profile on the rock surface.
  • Systems, apparatus, and methods are disclosed, and in particular, various embodiments are disclosed for laser bottom hole assemblies that deliver high power lasers to rock surfaces.
  • the laser well bottom assembly in Patent Document 4 includes a lens assembly and a moving mechanism thereof.
  • the laser beam has a Gaussian beam pattern.
  • this beam pattern is converted into a desired pattern through a lens assembly.
  • the beam pattern is converted into a plurality of spots.
  • the moving mechanism imparts rotation driven by a motor to the beam pattern. That is, in the system disclosed in Patent Document 4, the shape of a laser beam is adjusted by a lens assembly, the shape is rotated by a motor drive, and a laser beam pattern is drawn on the rock surface at the bottom of the well.
  • This laser well bottom assembly ie, the laser head
  • This laser well bottom assembly ie, the laser head
  • the cleaning fluid partially flows out from the side of the laser head and is used to transport the debris to the ground, while it flows out from the tip so as to wrap the laser beam and removes the debris from the rock surface at the bottom.
  • the laser beam is emitted from the exit window provided in the protective container toward the rock surface. Diggs scatter from the rock surface to the exit window, but the collision and adhesion of the digs are prevented by jetting the clean fluid.
  • the conventional laser drilling apparatus described above is summarized as follows.
  • a drilling rig installed on the ground or the sea and the bottom of the shaft are connected by an optical fiber, and a laser head is installed at the tip.
  • the laser beam supplied from the drilling rig through the optical fiber is emitted from the laser head toward the rock surface.
  • all of the prior art uses lens assemblies, where the laser beam pattern and illumination direction are adjusted.
  • the laser head disclosed in Patent Document 1 covers an excavation hole with 100 or more optical fibers, a lens assembly is individually installed at each end of the optical fiber, and the lens assembly is opposed to the entire rock surface at the bottom of the well. .
  • the laser head disclosed in Patent Document 2 condenses one laser beam in a lens assembly, adjusts the irradiation direction, and sequentially selects the irradiation position by an electro-optic laser beam switch, and applies laser energy to the rock surface.
  • the electro-optic laser beam switch faces the rock surface at the bottom.
  • the laser head disclosed in Patent Document 3 adjusts the focusing distance in a lens assembly (laser focusing diameter adjusting mechanism) and distributes the laser energy to the rock surface at the bottom of the well by a laser beam operating mechanism.
  • Patent Document 3 does not disclose an embodiment of the laser beam operation mechanism.
  • Patent Document 4 refers to motor drive.
  • the laser head disclosed in Japanese Patent Application Laid-Open No. 2004-228561 draws a laser beam pattern on the rock surface at the bottom of a well by adjusting the shape of a laser beam in a lens assembly and then rotating the shape by driving a motor.
  • Patent Documents 1 to 4 all include a lens assembly in the laser head.
  • the lens assembly functions in a clean atmosphere at room temperature, and does not function in a bottom-hole environment heated by geothermal heat in a high-pressure drilling fluid. For this reason, the laser head must be stored in a protective container and kept at room temperature by cooling with water.
  • a fresh water circulation line connecting the ground or the sea and the inside of the mine is required. Since it is difficult to produce low-temperature fresh water on the ground or the sea and supply it to the bottom of the well while maintaining a low temperature, it is inevitable to install a cooler for producing cooling water in the well.
  • the bottom of the pit where excavation takes place is in a harsh environment of pressurization with drilling fluid and heating with geothermal heat.
  • the pressure of the drilling fluid applied to the bottom of the well usually exceeds 700 atm, and the temperature exceeds 200 ° C. due to the influence of geothermal heat.
  • electrical or optical devices such as lens assemblies and electro-optic laser beam switchers in such a harsh underground environment
  • these devices are housed in protective containers and isolated in a clean atmosphere.
  • a dedicated control power cable and a fresh water circulation line are required.
  • the present invention has been made in view of the above technical problems. According to some embodiments of the present invention, it is possible to provide a laser excavation apparatus that can draw a desired laser beam pattern on a rock surface in a severe downhole environment.
  • the laser excavator according to the present invention is With fiber optic cable, A tube containing the optical fiber cable; A first eccentric ring that penetrates the tube and rotatably supports the tube via a bearing; A second eccentric ring including the first eccentric ring and rotatably supporting the first eccentric ring via a bearing; A fixing ring that includes the second eccentric ring and rotatably supports the second eccentric ring via a bearing; Including The central axis of the tube is moved by the rotation of the first eccentric ring and the second eccentric ring, and the position of the beam radiation end of the optical fiber cable contained in the tube is moved.
  • the central axis of the tube is moved by the rotation of the first eccentric ring and the second eccentric ring, and the position of the beam radiating end of the optical fiber cable contained in the tube is moved.
  • the first eccentric ring and the second eccentric ring can be rotated in a mechanical configuration.
  • the mechanical configuration has high reliability in a harsh underground environment as compared with electrical equipment and optical equipment. Therefore, it is possible to realize a laser excavation apparatus that can draw a desired laser beam pattern on the rock surface in a severe underground environment.
  • a first wave gear device that penetrates the tube A second wave gear device penetrating the tube; Further including Connecting the pipe to an input portion of the first wave gear device via a joint, and connecting the first eccentric ring to an output portion of the first wave gear device; Connecting the pipe to an input portion of the second wave gear device via a joint, and connecting the second eccentric ring to an output portion of the second wave gear device; Rotating the first eccentric ring by decelerating the rotation of the tube with the first wave gear device; The second eccentric ring may be rotated by decelerating the rotation of the tube with the second wave gear device.
  • the rotation of the tube is decelerated by the first wave gear device to rotate the first eccentric ring
  • the rotation of the tube is decelerated by the second wave gear device to rotate the second eccentric ring.
  • the first eccentric ring and the second eccentric ring can be rotated by utilizing the rotation of. Therefore, it is possible to realize a highly reliable laser drilling apparatus even in a harsh underground environment compared to electrical equipment and optical equipment.
  • a jacket that covers the optical fiber cable with a gap may be further included.
  • a fluid for example, fresh water
  • a fluid that is highly transparent to the laser beam
  • It may further include a nozzle provided in communication with the gap between the optical fiber cable and the jacket and surrounding the beam radiation end of the optical fiber cable.
  • a highly transparent fluid for example, fresh water
  • a highly transparent fluid for example, fresh water
  • the optical fiber cable includes a plurality of optical fibers, It may further include a nozzle that communicates with the gap between the optical fiber cable and the jacket and that surrounds the beam emitting ends of the plurality of optical fibers.
  • a highly transparent fluid for example, fresh water
  • a highly transparent fluid for example, fresh water
  • the tube includes the optical fiber cable with a gap, It may further include a nozzle provided so as to communicate with the gap between the optical fiber cable and the tube and to surround the beam emitting end of the optical fiber cable.
  • drilling fluid such as muddy water can be discharged from a nozzle that is in communication with the gap between the optical fiber cable and the pipe and that surrounds the beam radiation end of the optical fiber cable. Therefore, it is possible to easily remove the melted material such as the rock mass melted by the laser beam.
  • the tube may include an outer tube and an inner tube that are slidable relative to each other.
  • the pipe is configured to include the outer pipe and the inner pipe that are provided so as to be able to swing relative to each other, the length can be adjusted autonomously.
  • the length of the tube is determined using the outflow resistance of the drilling fluid. You can change it autonomously. Therefore, it can suppress that a pipe
  • It may further include a protective shell provided outside the movable range of the optical fiber cable and covering at least a part of the movable range of the optical fiber cable.
  • the protective shell is provided outside the movable range of the optical fiber cable and covers at least a part of the movable range of the optical fiber cable. Can be suppressed.
  • the beam emission end of the optical fiber cable may protrude outward from the end of the tube.
  • the optical fiber cable can be brought close to the rock mass, the energy of the laser can be efficiently supplied to the rock mass.
  • FIG. 1 is a schematic diagram for explaining an outline of functions of a laser excavator 1 according to the first embodiment.
  • FIG. 2 is a horizontal sectional view schematically showing a main part of the laser excavation apparatus 1 according to the first embodiment.
  • FIG. 3 is a vertical sectional view schematically showing the main configuration of the laser excavator 1 according to the first embodiment.
  • FIG. 4 is a cross-sectional view schematically showing another configuration example of the optical fiber cable 11.
  • FIG. 5 is a cross-sectional view schematically showing another configuration example of the optical fiber cable 11.
  • FIG. 6 is a cross-sectional view of the optical fiber cable 11 and the vicinity thereof, schematically showing another configuration example of the laser excavator 1 according to the first embodiment.
  • FIG. 1 is a schematic diagram for explaining an outline of functions of a laser excavator 1 according to the first embodiment.
  • FIG. 2 is a horizontal sectional view schematically showing a main part of the laser excavation apparatus 1 according to the first embodiment.
  • FIG. 3 is
  • FIG. 7 is a diagram schematically illustrating a configuration example of the beam radiating end 37 of the optical fiber cable 11 and the vicinity thereof as viewed from the direction along the central axis of the optical fiber cable 11.
  • FIG. 8 is a diagram schematically illustrating another configuration example of the beam radiating end 37 of the optical fiber cable 11 and the vicinity thereof as viewed from the direction along the central axis of the optical fiber cable 11.
  • FIG. 9A is a cross-sectional view of the optical fiber cable 11 and the vicinity thereof, schematically showing another configuration example of the laser excavator 1 according to the first embodiment.
  • 9B is a cross-sectional view of the vicinity of the beam emission end 37 taken along the line AA in FIG. 9A.
  • FIG. 10 is a vertical sectional view schematically showing a configuration example of the beam radiation end 37 of the optical fiber cable 11 and the vicinity thereof.
  • FIG. 11 is a vertical sectional view schematically showing a configuration example of the beam radiation end 37 of the optical fiber cable 11 and the vicinity thereof.
  • FIG. 12 is a vertical sectional view schematically showing the main configuration of the laser excavator 2 according to the second embodiment.
  • FIG. 13A is a horizontal sectional view of the optical fiber cable 11 of the laser excavator according to the third embodiment.
  • FIG. 13B is a vertical cross-sectional view (cross-sectional view taken along the line AA in FIG.
  • FIG. 13A schematically showing a configuration example of the beam radiating end 37 of the optical fiber cable 11 and the vicinity thereof in the laser excavator according to the third embodiment.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of the holding mechanism 150.
  • FIG. 15 is a vertical cross-sectional view schematically showing the main configuration of the laser excavator 3 according to the fourth embodiment.
  • FIG. 16A is a diagram showing an example of the laser beam pattern 205.
  • FIG. 16B is a diagram showing an example of the laser beam pattern 205.
  • FIG. 16C is a diagram illustrating an example of the laser beam pattern 205.
  • FIG. 16D is a diagram showing an example of the laser beam pattern 205.
  • FIG. 16E is a diagram showing an example of the laser beam pattern 205.
  • FIG. 16F is a diagram illustrating an example of the laser beam pattern 205.
  • FIG. 1 is a schematic diagram for explaining an outline of functions of a laser excavation device 1 according to the first embodiment.
  • the function of the laser excavation apparatus 1 according to the first embodiment is such that the beam radiation surface 201, which is a surface on which the beam radiation end moves, is opposed to the rock surface 202, and on the beam radiation surface 201,
  • the moving pattern 203 is formed by moving the beam emission end of the optical fiber, and the laser beam 204 is irradiated onto the rock surface 202 to project the moving pattern 203 onto the rock surface 202 to draw the laser beam pattern 205.
  • the laser beam 204 includes a plurality of laser beams.
  • FIG. 2 is a horizontal sectional view schematically showing the main part of the laser excavation apparatus 1 according to the first embodiment.
  • FIG. 3 is a vertical sectional view schematically showing the main configuration of the laser excavator 1 according to the first embodiment.
  • the laser excavation apparatus 1 includes an optical fiber cable 11, a pipe 12 containing the optical fiber cable 11, a first eccentric ring that penetrates the pipe 12 and rotatably supports the pipe 12 via a bearing 14. 13, a first eccentric ring 13, a second eccentric ring 15 that rotatably supports the first eccentric ring 13 via a bearing 16, a second eccentric ring 15, and a bearing 18. And a fixed ring 17 that rotatably supports the eccentric ring 15, and the central axis of the tube 12 is moved by the rotation of the first eccentric ring 13 and the second eccentric ring 15, and the optical fiber cable enclosed in the tube 12 11 beam radiation ends 37 are moved.
  • the laser excavation apparatus 1 accommodates the optical fiber cable 11 in the pipe 12 and applies a mechanism having a double eccentric ring to the pipe 12 and the pipe 12.
  • the included optical fiber cable 11 is freely moved in the plane.
  • the outer shape of the cross section of the tube 12 is circular.
  • the inner shape of the cross section of the tube 12 may be any shape as long as the optical fiber cable 11 can be included.
  • the pipe 12 may function as a drilling fluid supply pipe for supplying a drilling fluid 38 such as mud water into the mine.
  • the first eccentric ring 13 is a ring having an eccentric circular inner peripheral surface.
  • the tube 12 passes through the inside of the circular inner peripheral surface of the first eccentric ring 13 via the bearing 14.
  • the first eccentric ring 13 is configured to support the tube 12 via a bearing 14 and to allow the tube 12 to freely rotate with respect to the first eccentric ring 13.
  • the second eccentric ring 15 is a ring having an eccentric circular inner peripheral surface.
  • the first eccentric ring 13 is fitted inside the circular inner peripheral surface of the second eccentric ring 15 via a bearing 16. That is, the second eccentric ring 15 is configured to include the first eccentric ring 13.
  • the second eccentric ring 15 supports the first eccentric ring 13 via the bearing 16 and is configured so that the first eccentric ring 13 can freely rotate with respect to the second eccentric ring 15.
  • the fixing ring 17 is a ring having a circular inner peripheral surface.
  • the fixing ring 17 may be configured in a tubular shape.
  • the second eccentric ring 15 is fitted inside the circular inner peripheral surface of the fixed ring 17 via a bearing 18. That is, the fixing ring 17 is configured to include the second eccentric ring 15.
  • the fixing ring 17 supports the second eccentric ring 15 via a bearing 18 and is configured so that the second eccentric ring 15 can freely rotate with respect to the fixing ring 17.
  • bearing 14 bearing 16, and bearing 18
  • various well-known bearings such as a ball bearing and a roller bearing, are employable, for example.
  • the planetary movement about the central axis of the tube 12 is performed in a range inside a circle 21 having a radius of the sum of the first eccentric amount 22 and the second eccentric amount 23. It becomes possible to make it. That is, the circular motion having the radius of the first eccentric amount 22 and the circular motion having the radius of the second eccentric amount 23 are superimposed, and the central axis of the tube 12 performs planetary motion. As the central axis of the tube 12 moves, the optical fiber cable 11 included in the tube 12 also moves.
  • the central axis of the tube 12 is moved by the rotation of the first eccentric ring 13 and the second eccentric ring 15, and the beam radiation of the optical fiber cable 11 included in the tube 12.
  • the position of the end 37 is moved.
  • the first eccentric ring 13 and the second eccentric ring 15 can be rotated in a mechanical configuration.
  • the mechanical configuration has high reliability in a harsh underground environment as compared with electrical equipment and optical equipment. Therefore, the laser excavation apparatus 1 that can draw a desired laser beam pattern 205 on the rock surface 202 under a severe underground environment can be realized.
  • the laser excavator 1 further includes a first wave gear device 31 that penetrates the tube 12 and a second wave gear device 32 that penetrates the tube 12, and the tube 12 is connected via a joint 33.
  • the first eccentric ring 13 is connected to the output portion of the first wave gear device 31, and the pipe 12 is connected to the input of the second wave gear device 32 via the joint 34.
  • the second eccentric ring 15 is connected to the output portion of the second wave gear device, the rotation of the tube 12 is decelerated by the first wave gear device 31 to rotate the first eccentric ring 13, and the tube 12 May be decelerated by the second wave gear device 32 to rotate the second eccentric ring 15. That is, the first eccentric ring 13 and the second eccentric ring 15 may be rotated using the rotational force of the tube 12 as a drive source.
  • the drive source for the rotation of the tube 12 there is no particular limitation on the drive source for the rotation of the tube 12.
  • a motor may be installed on the ground or the sea, and the tube 12 may be rotated by the rotational force of the motor.
  • a downhole motor that obtains the rotation of a motor shaft using the flow of drilling fluid 38 such as mud that is fed into the mine through the drill string from the ground or the sea is installed in the mine, and the pipe is generated by the rotational force of the downhole motor. 12 may be rotated. In the latter case, all or part of the drilling fluid 38 may be introduced into the tube 12 after driving the downhole motor.
  • the rotational force of the pipe 12 is transmitted to the first eccentric ring 13 via the joint 33 and the speed reducer, and the joint 34. And transmitted to the second eccentric ring 15 via the reduction gear.
  • the joint 33 and the joint 34 connect the pipe 12 and the speed reducer, and are not particularly limited. As the joint 33 and the joint 34, for example, an Oldham joint is applicable.
  • a wave gear device (harmonic gear reducer) is adopted as a reducer. That is, the rotational force of the pipe 12 is transmitted to the first eccentric ring 13 through the joint 33 and the first wave gear device 31, and is transmitted to the second eccentric ring 15 through the joint 34 and the second wave gear device 32.
  • the wave gear unit is coaxial and takes the inner ring as an input and the outer ring as an output without using a complicated mechanism or structure, and a high reduction ratio of about 1/30 to 1/320 can be obtained. Therefore, it is suitable for harsh underground environments.
  • the rotating tube 12 passes through the first wave gear device 31, the first eccentric ring 13 and the second wave gear device 32, and the inside of the first wave gear device 31 through the joint 33. It is connected to a ring (corresponding to the input portion of the first wave gear device 31) and connected to an inner ring (corresponding to the input portion of the second wave gear device 32) of the second wave gear device 32 via a joint 34.
  • the rotation is transmitted to the first wave gear device 31 and the second wave gear device 32.
  • the rotation of the pipe 12 is decelerated at the respective reduction ratios in the first wave gear device 31 and the second wave gear device 32 and is output from the respective outer rings.
  • the outer ring of the first wave gear device 31 (corresponding to the output portion of the first wave gear device 31) has the first eccentric ring 13 so that the central axis thereof coincides with the central axis of the outer circumference of the first eccentric ring 13. Connected.
  • the outer ring of the second wave gear device 32 (corresponding to the output portion of the second wave gear device 32) has a second eccentricity such that the central axis coincides with the central axis of the outer circumferential circle of the second eccentric ring 15. Connected to the ring 15.
  • the first eccentric ring 13 and the second eccentric ring 15 can be rotated at a predetermined rotational speed by the rotational force of the tube 12.
  • the rotation of the tube 12 is decelerated by the first wave gear device 31 to rotate the first eccentric ring 13, and the rotation of the tube 12 is performed by the second wave gear device 32. Since the second eccentric ring 15 is rotated by decelerating, the first eccentric ring 13 and the second eccentric ring 15 can be rotated using the rotation of the tube 12. Therefore, the laser drilling apparatus 1 with higher reliability can be realized even in a harsh underground environment compared to electrical equipment and optical equipment.
  • the planetary motion of the tube 12 due to the simultaneous rotation of the first eccentric ring 13 and the second eccentric ring 15 is included in the tube 12 on the upstream side of the tube 12 (the tube 12 contains more than the first eccentric ring 13.
  • the universal joint 35 provided on the far side from the beam radiation end 37 of the optical fiber cable 11 is used as a fulcrum. Accordingly, as shown in FIG.
  • the first wave gear device 31, the second wave gear device 32, and the fixing ring 17 are fixed to the fixed pipe 48 on the outer periphery, and contact with the drilling fluid 38 in the mine is cut off by the seal portion 49. ing.
  • the fixing ring 17 and the fixing tube 48 may be integrally formed.
  • the tube 12 is connected via a coupling member 42 on the upstream side (the side farther from the beam radiation end 37 of the optical fiber cable 11 included in the tube 12 than the first eccentric ring 13).
  • the rotary tube 43 is coupled.
  • the rotary tube 43 is coupled to the output shaft of a downhole motor (not shown) on the upstream side (the side farther from the beam radiation end 37 of the optical fiber cable 11 included in the tube 12 than the coupling member 42). . That is, in the laser excavator 1 according to the first embodiment, the rotary tube 43 rotates by being coupled with the output shaft of the downhole motor, and further rotates the tube 12 via the universal joint 35.
  • the drilling fluid 38 is guided to the inside of the rotary tube 43, further guided to the tube 12, and sprayed from the tube end 36, which is the end of the tube 12, toward the rock surface 202. Then, the debris generated on the rock surface 202 is removed. Then, the scraps are transported through the gap between the housing 44 and the pit wall 50 of the laser excavator 1, that is, the annulus, and returned to the excavation rig.
  • the rotating tube 43 may be elastically deformed in the housing 44 by a known deflection mechanism, for example, a rotary steerable system to bend and deflect it.
  • a known deflection mechanism for example, a rotary steerable system to bend and deflect it.
  • the central axis 47 of the rotary tube 43 is displaced from the central axis 46 of the housing 44 at the focal bearing 45.
  • the tube 12 performs planetary motion with the universal joint 35 as a fulcrum and the central axis 47 as an axis by the action of the first eccentric ring 13 and the second eccentric ring 15.
  • the planetary motion of the tube 12 is transmitted and expanded by a laser beam 204 that is directed towards the rock surface 202, allowing the laser beam 204 to draw a laser beam pattern 205 on the rock surface 202.
  • the central axis 47 is the excavation direction.
  • the optical fiber cable 11 is configured to include one optical fiber, but the optical fiber cable 11 may be configured to include a plurality of optical fibers.
  • FIG. 4 is a cross-sectional view schematically showing another configuration example of the optical fiber cable 11.
  • the optical fiber cable 11 in the optical fiber cable 11, ten optical fibers 60 are accommodated in a protective sheath 65, and a gap between the protective sheath 65 and the optical fiber 60 is filled with a jelly 66.
  • each of the ten optical fibers 60 serves as a path for the laser beam 204. Since the optical fiber cable 11 includes a plurality of optical fibers 60, more energy can be given to the rock surface 202.
  • the protective sheath 65 of the optical fiber cable 11 having such a configuration is required to withstand a high temperature and high pressure underground environment.
  • the protective sheath 65 is preferably a metal tube.
  • the material of the protective sheath 65 include stainless steel, heat-resistant steel, and nickel-based alloy.
  • the jelly 66 functions to prevent water from entering from the inner end of the protective sheath 65 in the longitudinal direction.
  • a thixotropic viscous fluid compound can be used as the jelly 66.
  • Advantages of the optical fiber cable 11 shown in FIG. 4 include that it can be manufactured at a lower cost than the configuration described later with reference to FIGS. 5 to 9, and that a long cable of 10 km can be easily manufactured integrally.
  • FIG. 5 is a cross-sectional view schematically showing another configuration example of the optical fiber cable 11.
  • the optical fiber cable 11 is configured such that ten optical fibers 60 are accommodated in a groove provided on the outer periphery of the slot rod 61 and a presser wound layer 62 is wound so as to seal the groove. ing.
  • a tension member 63 made of a stranded steel wire is embedded in the slot rod 61.
  • the presser wound layer 62 is reinforced by an iron wire layer 64 on the outer periphery, and a protective sheath 65 is formed thereon.
  • each of the ten optical fibers 60 serves as a path for the laser beam 204. Since the optical fiber cable 11 includes a plurality of optical fibers 60, more energy can be given to the rock surface 202.
  • FIG. 6 is a cross-sectional view of the optical fiber cable 11 and the vicinity thereof, schematically showing another configuration example of the laser excavator 1 according to the first embodiment.
  • the laser excavation apparatus 1 according to the first embodiment may further include a jacket 70 that has a gap 71 and covers the optical fiber cable 11.
  • a transparent fluid (fluid (eg, fresh water) that is more transparent to the laser beam 204 than the drilling fluid 38 (eg, muddy water)) is supplied to the optical fiber. It can flow up to the beam radiation end 37 of the cable 11.
  • the transparent fluid eg, fresh water
  • the transparency to the laser beam 204 between the beam emission end 37 and the rock surface 202 can be increased. Therefore, the laser drilling apparatus 1 with high energy efficiency can be realized.
  • the laser excavation apparatus 1 is configured to further include a nozzle that is in communication with the gap 71 between the optical fiber cable 11 and the jacket 70 and is provided so as to surround the beam radiation end 37 of the optical fiber cable 11. May be.
  • FIG. 7 is a diagram schematically illustrating a configuration example of the beam radiation end 37 of the optical fiber cable 11 and the vicinity thereof as viewed from the direction along the central axis of the optical fiber cable 11.
  • ten circular single-hole nozzles 80 arranged at equal intervals so as to surround the beam radiation end 37 are provided around the beam radiation end 37 of the optical fiber cable 11.
  • the number and shape of the single-hole nozzles 80 can be arbitrarily selected according to the specifications of the laser excavator 1.
  • FIG. 8 is a diagram schematically showing another configuration example of the beam radiating end 37 of the optical fiber cable 11 and the vicinity thereof as viewed from the direction along the central axis of the optical fiber cable 11.
  • a slit nozzle 90 divided into four parts is provided around the beam radiation end 37 of the optical fiber cable 11 so as to surround the beam radiation end 37 at equal intervals.
  • the number and shape of the slit nozzles 90 can be arbitrarily selected according to the specifications of the laser excavator 1.
  • the slit nozzle 90 is provided so as to surround a part of the direction of the beam radiation end 37 of the optical fiber cable 11 when viewed from the direction along the central axis of the optical fiber cable 11.
  • the slit nozzle 90 may be provided so as to surround all directions of the beam radiation end 37 of the optical fiber cable 11.
  • a transparent fluid (excavation fluid 38 (muddy water) is obtained from a nozzle (single hole nozzle 80 or slit nozzle 90) provided so as to surround the beam emission end 37 of the optical fiber cable 11. Etc.) can be emitted to the laser beam 204 (eg, fresh water).
  • the laser beam 204 eg, fresh water.
  • the excavation debris generated by the irradiation of the laser beam 204 can be quickly removed from the rock surface 202 using a transparent fluid ejected from the nozzle.
  • the occurrence of turbidity between the beam radiation end 37 and the rock surface 202 can be suppressed.
  • the optical fiber cable 11 includes a plurality of optical fibers 60, communicates with the gap 71 between the optical fiber cable 11 and the jacket 70, and the beam emission ends of the plurality of optical fibers 60 are respectively connected.
  • You may be comprised including the nozzle 100 provided so that it might surround.
  • FIG. 9A is a cross-sectional view of the optical fiber cable 11 and the vicinity thereof schematically showing another configuration example of the laser excavation apparatus 1 according to the first embodiment
  • FIG. 9B is an A of FIG. It is sectional drawing in the -A line.
  • the nozzle 100 is provided at the end of the jacket 70 so that the center line coincides with the end of the optical fiber 60 (beam emission end).
  • the nozzle 100 is a circular single hole nozzle.
  • the transparent fluid is guided from the gap 71 to the nozzle 100 to form a transparent fluid jet stream 101. Since the transparent fluid jet stream 101 coincides with the end of the optical fiber 60 and the center line, the laser beam 204 emitted from the optical fiber 60 reaches the rock surface 202 through the transparent fluid jet stream 101 as a passage.
  • FIG. 9B the nozzle 100 is provided at the end of the jacket 70 so that the center line coincides with the end of the optical fiber 60 (beam emission end).
  • the nozzle 100 is a circular single hole nozzle.
  • the transparent fluid is guided from the gap 71 to the nozzle 100 to form a transparent fluid jet stream 101. Since the transparent fluid jet stream 101 coincides with the end of the optical fiber 60 and the center line, the laser beam 204 emitted from the optical fiber 60 reaches the rock surface 202
  • the nozzle 100 is provided so as to surround all directions of the beam radiation end of the optical fiber 60 when viewed from the direction along the central axis of the optical fiber 60, but it does not necessarily surround all directions. It is not necessary to be provided as such. For example, as viewed from the direction along the central axis of the optical fiber 60, there may be a portion where the nozzle 100 is not provided in a part around the beam emission end of the optical fiber 60.
  • the laser is more transparent than the transparent fluid (excavation fluid 38 (such as mud water)) from the plurality of nozzles 100 provided so as to surround the beam emission ends of the plurality of optical fibers 60.
  • a fluid that is highly transparent to the beam 204 eg, fresh water
  • the transparency with respect to the laser beam 204 between the beam emission end 37 and the rock surface 202 can be enhanced.
  • the fluid discharged from the nozzle 100 can suppress the entry of foreign matter onto the path of the laser beam 204. Therefore, the laser drilling apparatus 1 with high energy efficiency can be realized.
  • the environment surrounding the transparent fluid jet 101 formed by the single-hole nozzle 80, the slit nozzle 90 or the nozzle 100 is the drilling fluid 38. That is, the transparent fluid jet stream 101 is formed in the flowing drilling fluid 38.
  • Muddy water which is a typical drilling fluid, is a slurry-like fluid having water or oil as a continuous phase, and functions as a passage for the laser beam 204.
  • energy loss with respect to the laser beam 204 is large. From the viewpoint of efficiency, it is not preferable.
  • the transparent fluid provides a path for the laser beam 204 over muddy water from an energy efficiency perspective.
  • the transparent fluid and the drilling fluid may be selected so that the specific gravity of the transparent fluid is larger than that of the drilling fluid. As a result, the refractive index of the transparent fluid exceeds the refractive index of the drilling fluid, allowing total reflection.
  • An example of a suitable drilling fluid is brine.
  • Brine is a salt solution and preferably has a specific gravity of 1.4 to 2.2 from the viewpoint of realizing total reflection.
  • a fluid that becomes a gas at room temperature and normal pressure such as nitrogen, argon, or helium, may be selected.
  • the tube 12 has a gap 121 and encloses the optical fiber cable 11, communicates with the gap 121 between the optical fiber cable 11 and the tube 12, and beam radiation of the optical fiber cable 11.
  • a nozzle 110 provided so as to surround the end 37 may be further included.
  • FIG. 10 is a vertical sectional view schematically showing a configuration example of the beam radiation end 37 of the optical fiber cable 11 and the vicinity thereof.
  • the central axis of the non-rotating optical fiber cable 11 is aligned with the central axis of the rotating tube 12 at the tube end 36 of the tube 12.
  • the nozzle 110 is a slit nozzle that communicates with the gap 121 between the optical fiber cable 11 and the tube 12 and is configured by the inner surface of the tube end 36 and the outer surface of the optical fiber cable 11. is there.
  • FIG. 10 is a vertical sectional view schematically showing a configuration example of the beam radiation end 37 of the optical fiber cable 11 and the vicinity thereof.
  • the nozzle 110 is provided so as to surround all directions of the beam emitting end 37 of the optical fiber cable 11 when viewed from the direction along the central axis of the optical fiber cable 11. It is not necessary to be provided to surround. For example, as viewed from the direction along the central axis of the optical fiber cable 11, there may be a portion where the nozzle 110 is not provided in a part around the beam emission end 37.
  • the drilling fluid 38 flowing through the gap 121 between the optical fiber cable 11 and the pipe 12 is jetted from the nozzle 110 toward the rock surface 202 and becomes a drilling fluid jet stream 39.
  • the laser beam 204 emitted from the beam emitting end 37 reaches the rock surface 202 and melts the rock.
  • the generated melt and exfoliation pieces are removed by excavation fluid jet stream 39 ejected from nozzle 110 to become debris, conveyed by excavation fluid 38, and rock excavation proceeds.
  • the muddy water is communicated from the nozzle 110 provided to communicate with the gap 121 between the optical fiber cable 11 and the pipe 12 and surround the beam radiation end 37 of the optical fiber cable 11. Or other drilling fluid 38 can be discharged. Therefore, it is possible to easily remove the melted material such as the bedrock melted by the laser beam 204.
  • the drilling fluid 38 flows to the outer periphery of the pipe end 36 after colliding with the rock surface 202 as a drilling fluid jet 39.
  • the thickness of the liquid layer of the drilling fluid 38 flowing out is the smallest immediately below the pipe end 36.
  • the liquid layer thickness 113 which is the thickness of the drilling fluid 38 immediately below the pipe end 36, is not affected when the gap 112 between the pipe end 36 and the rock surface 202 is wide, but the gap 112 is not spaced apart. When it becomes narrower, the rock surface 202 is affected. That is, the liquid layer thickness 113 is regulated by the gap 112, the outflow speed of the drilling fluid 38 at this portion increases, and the pressure loss increases. This increase in pressure loss appears as an increase in the back pressure of the tube 12 on the ground or at sea.
  • the pipe end is obtained by using the own weight of the laser drilling apparatus 1 so that the back pressure of the pipe 12 falls within a predetermined range while supplying the drilling fluid 38 to the pipe 12 in a fixed amount. If an appropriate load is applied to 36, the gap 112 can be maintained in an appropriate range. As a result, since the gap 112 is stabilized, excavation can be continued under stable excavation conditions.
  • the laser beam 204 is emitted from the optical fiber 60 into the drilling fluid 38.
  • mud is used as the drilling fluid 38, but the use of mud involves a transmission loss of energy of the laser beam 204.
  • a fluid that absorbs less laser light than mud water may be used as the drilling fluid 38.
  • One of the functions of the drilling fluid 38 is the transport of swarf, and after separating the swarf on the ground or on the sea, it is sent again to the bottom of the mine, but it becomes turbid even when a fluid that absorbs less laser light than mud is applied It is unavoidable that this occurs, and a certain amount of energy transmission loss is unavoidable.
  • the nozzle 100 is provided so that the end of the optical fiber 60 and the center line coincide with each other, and the transparent fluid jet stream 101 is formed. It is formed in the drilling fluid 38 and can be used as a path for the laser beam 204. Since the transparent fluid jets 101 need only be provided by the number of the optical fibers 60, the flow rate of the transparent fluid is much smaller than the flow rate of the drilling fluid 38. Therefore, even if the transparent fluid is added, there is no obstacle to the establishment of the recycling system for the drilling fluid 38. This method makes it possible to suppress the energy transmission loss of the laser beam 204 to the limit.
  • FIG. 11 is a vertical sectional view schematically showing a configuration example of the beam radiation end 37 of the optical fiber cable 11 and the vicinity thereof.
  • the central axis of the non-rotating optical fiber cable 11 is aligned with the central axis of the rotating tube 12 at the tube end 36 of the tube 12.
  • the nozzle 110 is a slit nozzle that communicates with the gap 121 between the optical fiber cable 11 and the tube 12 and is configured by the inner surface of the tube end 36 and the outer surface of the optical fiber cable 11. is there.
  • the drilling fluid 38 flowing through the gap 121 between the optical fiber cable 11 and the pipe 12 is jetted from the nozzle 110 toward the rock surface 202 and becomes a drilling fluid jet stream 39.
  • the nozzle 100 is provided so that the end of the optical fiber 60 (beam emission end) and the center line coincide.
  • the nozzle 100 is a circular single hole nozzle.
  • the transparent fluid is guided from the gap 71 to the nozzle 100 to form a transparent fluid jet stream 101. Since the transparent fluid jet stream 101 coincides with the center line of the end portion of the optical fiber 60, the laser beam 204 emitted from the optical fiber 60 reaches the rock surface 202 by using the transparent fluid jet stream 101 as a passage to melt the rock.
  • the generated melt and exfoliation pieces are removed by excavation fluid jet stream 39 ejected from nozzle 110 to become debris, conveyed by excavation fluid 38, and rock excavation proceeds.
  • a transparent fluid layer 120 is formed to transport the debris and eventually integrate with the drilling fluid 38.
  • the drilling fluid 38 is supplied to the pipe 12 in a fixed amount, and the suspension load of the laser drilling apparatus 1 is adjusted so that the back pressure of the pipe 12 falls within a predetermined range. If an appropriate load is applied, the gap 112 can be kept in an appropriate range. As a result, the energy density of the laser beam 204 supplied to the rock surface 202 by the laser beam 204 emitted from the beam emission end 37 is stabilized, resulting in stable destruction of the rock mass. Therefore, excavation can be continued under stable excavation conditions.
  • FIG. 12 is a vertical sectional view schematically showing the main configuration of the laser excavation device 2 according to the second embodiment.
  • the back pressure of the pipe 12 detected on the ground or the sea is kept within a predetermined range in order to keep the gap 112 between the pipe end 36 and the rock surface 202 properly.
  • the laser excavator 2 according to the second embodiment has a configuration that can autonomously adjust the gap 112 in the mine.
  • symbol is attached
  • the laser excavator 2 is configured to include an outer tube 132 and an inner tube 133 in which the tube 12 is provided so as to be capable of sliding with respect to each other.
  • the tube 12 is configured to include an outer tube 132 and an inner tube 133 having a slidable overlapping portion 134.
  • the outer tube 132 is arranged on the upstream side, and the inner tube 133 is arranged on the downstream side.
  • the inner tube is arranged on the upstream side and the outer tube is arranged on the downstream side. Good.
  • FIG. 12 the example shown in FIG.
  • a seal portion 135 that seals between the outer tube 132 and the inner tube 133 at a position corresponding to the end portion of the outer tube 132 and a position corresponding to the end portion of the inner tube 133, and A seal portion 136 is provided.
  • the drilling fluid 38 flowing through the pipe 12 slides the inner pipe 133 in the extending direction of the pipe 12 by the internal pressure of the pipe 12.
  • the gap 112 shown in FIG. 11 is narrowed, the outflow resistance of the drilling fluid 38 in the gap 112 increases, and a force that pushes up the pipe end 36 acts. Due to the force pushing up the tube end 36, the inner tube 133 slides in the contraction direction of the tube 12, and the gap 112 is restored. In this way, the length of the tube 12 can be adjusted autonomously within a range in which the outer tube 132 and the inner tube 133 can slide.
  • the pipe 12 is used by using the self-weight of the laser drilling apparatus 2 until the back pressure of the pipe 12 shows a rapid rise every predetermined time.
  • the gap 112 can be kept in an appropriate range.
  • the energy density of the laser beam 204 supplied to the rock surface 202 by the laser beam 204 emitted from the beam emission end 37 is stabilized, resulting in stable destruction of the rock mass. Therefore, excavation can be continued under stable excavation conditions.
  • the length of the pipe 12 is autonomously changed because the pipe 12 includes the outer pipe 132 and the inner pipe 133 that are provided so as to be slidable with respect to each other. Can do.
  • the drilling fluid 38 such as muddy water
  • the length of the tube 12 can be adjusted autonomously using the outflow resistance. Therefore, it can suppress that the optical fiber cable 11 included in the pipe
  • the transparent fluid supply pipe 130 may be arranged in the pit and connected to the gap 71 between the optical fiber cable 11 and the jacket 70 at the connection portion 131. .
  • FIG. 13A is a horizontal sectional view of the optical fiber cable 11 of the laser excavator according to the third embodiment
  • FIG. 13B is a beam of the optical fiber cable 11 of the laser excavator according to the third embodiment.
  • FIG. 13B is a vertical sectional view (sectional view taken along the line AA in FIG. 13A) schematically showing a configuration example of the radiating end 37 and the vicinity thereof.
  • the configuration of the optical fiber cable 11 is the same as the example described with reference to FIG. 13A.
  • the beam emission end 37 of the optical fiber cable 11 protrudes outward from the end of the tube 12 (tube end 36). That is, in the first embodiment and the second embodiment, the beam radiating end 37 is disposed inside the tube end 36, but in the third embodiment, the beam radiating end 37 is close to or in contact with the rock surface 202. In this manner, the tube end 36 is disposed so as to protrude outside.
  • the beam radiation end 37 that is the end portion on the inner side of the optical fiber cable 11 is disposed so as to protrude from the tube end 36, and the optical fiber cable 11 and the tube end 36 form an annular nozzle. Form.
  • the drilling fluid 38 supplied through the pipe 12 becomes a drilling fluid jet stream 39 at the pipe end 36.
  • the optical fiber cable 11 can be moved toward the bottom of the shaft using the frictional force between the drilling fluid jet 39 and the optical fiber cable 11 as a driving force. Since the beam radiating end 37 of the optical fiber cable 11 is close to or in contact with the rock surface 202, the laser energy is efficiently transmitted from the beam radiating end 37 to the opposite portion of the rock surface 202.
  • the distance from the beam emission end 37 to the rock surface 202 is preferably 50 mm or less, and more preferably 30 mm or less. From the viewpoint of avoiding wear of the pipe 12, the distance from the pipe end 36 to the rock surface 202 is preferably 50 mm or more.
  • a part of the laser beam is reflected by the rock surface 202 and heats the inner end of the optical fiber cable 11 (near the beam emission end 37).
  • the jelly 66 evaporates and cools the optical fiber 60 and the protective sheath 65 by heat of vaporization, but the wear of the optical fiber 60 and the protective sheath 65 gradually proceeds.
  • the wear of the optical fiber 60, the protective sheath 65, and the jelly 66 is compensated by the supply of the optical fiber cable 11.
  • a holding mechanism 150 that can select a state in which the optical fiber cable 11 moves and a state in which the optical fiber cable 11 does not move may be installed inside the tube 12.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of the holding mechanism 150.
  • the holding mechanism 150 includes a spring mechanism 151, a fluid receiving portion 152, and a pressing portion 153.
  • the spring mechanism 151 is provided on the inner wall surface of the tube 12.
  • the spring mechanism 151 can move the arm having the fluid receiving portion 152 and the pressing portion 153 in the horizontal direction.
  • the fluid receiving part 152 is provided so as to have an inclined surface with respect to the flow direction of the drilling fluid 38.
  • the arm receives a force in a direction approaching the optical fiber cable 11 when the fluid receiving portion 152 receives the drilling fluid 38.
  • the pressing portion 153 can stop the movement of the optical fiber cable 11 by contacting the optical fiber cable 11.
  • a holding mechanism 150 by controlling the flow rate of the drilling fluid 38, a state in which the optical fiber cable 11 moves and a state in which the optical fiber cable 11 does not move can be selected. By providing such a holding mechanism 150, it is possible to adjust the distance from the beam radiation end 37 to the rock surface 202 and control the wear rate.
  • the beam radiating end 37 of the optical fiber cable 11 protrudes from the end portion (tube end 36) of the tube 12, so that the beam radiating end 37 is close to or in contact with the rock surface 202. Can be made. As a result, the transmission loss of laser energy becomes extremely small, so that the laser beam 204 can supply laser energy having a high power density to the rock surface 202.
  • the surface layer of the formed islands peels off and becomes a large number of fragments due to the difference in thermal expansion from the lower layer and the thermal expansion of water that has entered the cracks.
  • the debris occupying most of the rock is removed in the solid phase without reaching the melting point, so the rock is melted by applying a low power density.
  • the laser excavation apparatus according to the third embodiment is also suitable for an application for supplying laser energy having such a high energy density to the rock surface 202.
  • FIG. 15 is a vertical sectional view schematically showing a main configuration of a laser excavation device 3 according to the fourth embodiment.
  • symbol is attached
  • the laser excavation apparatus 3 is configured to further include a protective shell 140 that is provided outside the movable range of the optical fiber cable 11 and covers at least a part of the movable range of the optical fiber cable 11.
  • the protective shell 140 is fixed to the fixed tube 48 and the seal portion 49.
  • the protective shell 140 is provided outside the movable range of the optical fiber cable 11. Further, in the example shown in FIG. 15, at least the tip portion 141 of the protective shell 140 is configured to come into contact with the rock mass. In the example shown in FIG. 15, the protective shell 140 covers at least a part of the movable range of the optical fiber cable 11. Further, in the example shown in FIG. 15, the protective shell 140 is configured in a substantially funnel shape extending downward.
  • the protective shell 140 can be lowered in the mine by lowering the fixed pipe 48 into the mine.
  • the tip 141 of the protective shell 140 comes into contact with the rock at the outer periphery of the rock surface 202 where excavation is in progress.
  • the gap 112 between the beam radiation end 37 and the rock surface 202 is kept constant by keeping the load applied to the protective shell 140 constant by adjusting the suspension load of the laser excavator 3.
  • the load applied to the protective shell 140 can be, for example, 1 to 10 tons.
  • the tip portion 141 of the protective shell 140 is configured to have a plurality of outlets 142 discretely over the entire periphery of the tip of the protective shell 140.
  • the drilling fluid 38 that flows down from the pipe end 36 toward the rock surface 202 cleans the inner surface of the protective shell 140 to prevent debris from adhering to the rock surface 202, and is a transparent fluid discharged from the nozzle 100. And move to the outside of the protective shell 140 through the outflow port 142 with the digging waste and ascend the mine.
  • the tip 141 comes into contact with the rock and cuts the embrittled rock into fragments.
  • the tip 141 is made of a wear resistant material.
  • the wear resistant material can be selected from, for example, WC-Co based cemented carbide, cermet, ceramic and tool steel.
  • the tip portion 141 made of the wear resistant material may be a bulk material or a covering material.
  • As the covering material for example, a steel surface sprayed with Co-based alloy powder, cermet powder, or ceramic powder can be used.
  • the protection unit 140 is provided outside the movable range of the optical fiber cable 11 and covers at least a part of the movable range of the optical fiber cable 11. It can suppress that the optical fiber cable 11 breaks by colliding with a bedrock.
  • the pipe end 36 of the pipe 12 is provided in the vicinity of the seal portion 49, and the pipe end 36 is provided with a nozzle having a narrowed flow path for generating a drilling fluid jet flow. Absent.
  • the central axis of the optical fiber cable 11 protruding from the pipe 12 is adjusted at the pipe end 36 so as to coincide with the central axis of the pipe 12 using a swivel joint (not shown). Further, the portion of the optical fiber cable 11 protruding from the tube 12 is reinforced to prevent bending deformation.
  • the central axis of the tube 12 can be planetarily moved by rotating the first eccentric ring 13 and the second eccentric ring 15 at a predetermined rotational speed.
  • the beam radiation end 37 of the optical fiber cable 11 can be moved in a planetary motion.
  • the locus of the beam emission end 37 draws a movement pattern 203 on the beam emission surface 201, and this movement pattern 203 can be enlarged and transferred as a laser beam pattern 205 to the rock surface 202 via the laser beam 204. It becomes. Examples of such a laser beam pattern 205 are shown below.
  • First Example Table 1 shows the conditions of the first example.
  • Cycle time is the time for the first eccentric ring 13 or the second eccentric ring 15 to make one rotation.
  • the eccentric amount is the first eccentric amount 22 in the first eccentric ring 13 and the second eccentric amount 23 in the second eccentric ring 15.
  • FIG. 16A shows a laser beam pattern 205 when the laser beam 204 is irradiated for 120 seconds under the conditions shown in Table 1.
  • a laser beam pattern 205 shown in FIG. 16A is similar to the locus drawn by the center line of the optical fiber cable 11 at the beam emission end 37 of the optical fiber cable 11.
  • the optical fiber cable 11 is configured to include a plurality of optical fibers 60, a number of loci corresponding to the number of optical fibers 60 are drawn in the vicinity of the laser beam pattern 205.
  • the laser beam pattern 205 is a pattern that intersects at the center. Further, the laser beam pattern 205 is a pattern that is repeated with one cycle of 60 seconds when the first eccentric ring 13 rotates 10 times.
  • Second Example Table 2 shows the conditions of the second example.
  • FIG. 16B shows a laser beam pattern 205 when the laser beam 204 is irradiated for 120 seconds under the conditions shown in Table 2.
  • the first eccentric amount 22 is larger than the second eccentric amount 23, a blank portion is generated at the center of the laser beam pattern 205.
  • Third Example Table 3 shows the conditions of the third example.
  • FIG. 16C shows a laser beam pattern 205 when the laser beam 204 is irradiated for 120 seconds under the conditions shown in Table 3.
  • the blank portion at the center of the laser beam pattern 205 is larger than in the second embodiment. Yes.
  • Fourth Example Table 4 shows the conditions of the fourth example.
  • FIG. 16D shows a laser beam pattern 205 when the laser beam 204 is irradiated for 120 seconds under the conditions shown in Table 4.
  • the laser beam pattern 205 is a pattern that intersects at the center. Further, since the laser beam pattern 205 does not repeat the same trajectory for 120 seconds, the laser beam 204 can be finely irradiated to the rock surface 202.
  • FIG. 16E shows a laser beam pattern 205 when the laser beam 204 is irradiated for 120 seconds under the conditions shown in Table 5.
  • the laser beam pattern 205 is a pattern that intersects at the center. Further, since the laser beam pattern 205 is a pattern that repeats with one cycle of 60 seconds in which the first eccentric ring 13 rotates six times, the laser beam pattern 205 is formed on the rock surface 202 as compared with the laser beam pattern 205 of the first embodiment. It can irradiate roughly.
  • FIG. 16F shows a laser beam pattern 205 when the laser beam 204 is irradiated for 120 seconds under the conditions shown in Table 6.
  • the laser beam pattern 205 of the sixth embodiment is a pattern that can irradiate the peripheral portion roughly.
  • the laser beam pattern 205 is a pattern that is repeated with one cycle of 60 seconds when the first eccentric ring 13 rotates 10 times.
  • Examples 1 to 6 show that various laser beam patterns 205 can be formed by the above laser excavation apparatus.
  • the first eccentric ring 13 and the second eccentric ring 15 are continuously rotated.
  • the first eccentric ring 13 and the second eccentric ring 15 can be intermittently rotated.
  • various laser beam patterns 205 can be formed.
  • the present invention includes substantially the same configuration (for example, a configuration having the same function, method and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • Drilling fluid jet 42 ... Coupling member, 43 ... Rotating pipe, 44 ... Housing, 45 ... Focal bearing, 46 ... Center axis, 47 ... Center axis, 48 ... Fixed tube, 49 ... Seal member, 50 ... Anti-wall, 60 ... Optical fiber, 61 ... Slot rod, 62 ... Presser wound layer, 63 ... Tension member, 64 ... Line layer, 65 ... protective sheath, 66 ... jelly, 70 ... jacket, 71 ... air gap, 80 ... single hole nozzle, 90 ... slit nozzle, 100 ... nozzle, 101 ... transparent fluid jet flow, 110 ... nozzle, 112 ... gap, 113 ... Liquid layer thickness, 120 ...
  • Transparent fluid layer 121 ... Gap, 130 ... Transparent fluid supply pipe, 131 ... Connection part, 132 ... Outer pipe, 133 ... Inner pipe, 134 ... Overlapping part, 135 ... Sealing part, 136 ... Sealing part, 140 ... protective shell, 141 ... tip part, 142 ... outlet, 150 ... holding mechanism, 151 ... spring mechanism, 152 ... fluid receiving part, 153 ... pressing part, 201 ... beam radiation surface, 202 ... rock surface, 203 ... Movement pattern, 204 ... Laser beam, 205 ... Laser beam pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Earth Drilling (AREA)

Abstract

 レーザー掘削装置1は、光ファイバーケーブル11と、光ファイバーケーブル11を内包する管12と、管12を貫通させ、軸受14を介して管12を回転自在に支持する第1偏心リング13と、第1偏心リング13を内包し、軸受16を介して第1偏心リング13を回転自在に支持する第2偏心リング15と、第2偏心リング15を内包し、軸受16を介して第2偏心リング15を回転自在に支持する固定リング17と、を含み、第1偏心リング13及び第2偏心リング15の回転によって管12の中心軸を移動させて、管12に内包される光ファイバーケーブル1のビーム放射端37の位置を移動させる。

Description

レーザー掘削装置
 本発明は、レーザー掘削装置に関する。
 近年、石油やガスの開発エリアの拡大によって、深度5000mを超える大深度掘削や、水深1000mを超える海域での大水深掘削が盛んに行われている。
 石油掘削、天然ガス掘削、金属鉱山のボーリング、温泉のボーリング及び土木関連のボーリングでは、ドリルビットの高速回転によって坑底の岩盤を切り崩す、ロータリー掘削が一般的である。ロータリー掘削では、ドリルビットの摩耗が避けられないので、定期的に坑底より掘削リグが設置された地上又は海上にドリルパイプ又はコイルドチュービングからなるドリルストリングを引き上げてドリルビットを交換する作業が発生する。ドリルビットを交換する作業の間は、掘削は行えない掘削停止時間となる。掘削停止時間は坑井が深くなるほど長くなるので、大深度掘削や大水深掘削では掘削停止時間が掘削スケジュールの支配的要因の1つとなる。したがって、掘削停止時間の短縮は重要テーマの1つとなっている。
 ロータリー掘削とは異なる原理に基づく技術として、レーザー掘削が知られている。レーザー掘削は、レーザービームを坑底の岩盤表面に照射して岩盤を非接触掘削する掘削技術である。レーザー掘削の利点の1つとしては、ロータリー掘削には不可避のドリルビット交換が不要となることが挙げられる。したがって、レーザー掘削は、大深度掘削や大水深掘削において、画期的な技術となる可能性がある。しかし、未だ実用化には至っていない。
 ところで、石油掘削、天然ガス掘削、金属鉱山のボーリング、温泉のボーリング及び土木関連のボーリングでは、坑内に掘削流体が送り込まれる。その主要な目的は、(1)坑底から掘屑を除去して地表まで運ぶ、(2)坑壁内面に泥層を形成し、かつ、粘土鉱物を含む泥水によって加圧し坑壁の崩壊を抑える、(3)地下に存在する油、ガス、水などが坑壁から坑内に噴出してこないように抑える、及び(4)掘削に伴って発生する熱が坑底に蓄積しないように排出することであり、掘削流体は掘削作業を円滑に実施するために不可欠である。掘削流体は地上又は海上の掘削リグからドリルストリングを通して供給され坑底で放出されドリルストリング―坑壁間のアニュラス部を上昇して掘削リグに戻り、掘屑分離、成分調整後、再びドリルストリングへ圧送され、循環系を構成する。掘削流体はドリルストリングの内外で掘削リグから坑底まで繋がる液柱を形成し、坑底にはその液柱の圧力がかかる。坑底にかかる圧力は坑井が深くなるほど大きくなり、例えば垂直深度7000mの坑井では坑底にかかる液圧は通常700気圧を超える。また地熱の影響によって坑内温度も高くなる。例えば、垂直深度7000mでは坑内温度は約200℃にもなる。このように、掘削が行われる坑底は掘削流体による加圧、地熱による加熱という厳しい環境下にある。
 掘削流体として用いられる流体は、泥水、ブライン、エマルジョン、ガス等に分類できる。泥水は、水あるいは油を連続相とするスラリー状の流体であり、清水あるいは海水に、分散相として粘土鉱物のベントナイトを加えて調製されることが多い。しかし、ベントナイトはレーザービームを反射、もしくはそのエネルギーを吸収し、レーザービーム照射の妨げとなる。したがって、レーザー掘削においては、レーザービームの伝送過程で泥水に奪われるエネルギー損失を最小限に抑え、できるだけ多くのエネルギーを岩盤に伝えることが重要なポイントとなる。これに対して、ブラインは固形分を含まない透明の塩類溶液であり、2.2までの任意の比重に調整できるという特徴がある。
 米国特許第6,755,262号明細書(以下では「特許文献1」と記載する)には、坑底の直上に設置する高出力レーザー掘削用のレンズアセンブリーが開示されている。特許文献1に開示されているレンズアセンブリーは、掘削孔の大きさに合わせて少なくとも100本の光ファイバーを使用して掘削孔を覆うように、光ファイバーの端末に集光レンズからなる集光素子を配して構成されている。このレンズアセンブリーは、坑底の岩盤表面に向けて設置されて用いられる。レンズアセンブリーの冷却と岩盤表面から発生する掘屑の除去のために、冷却導管がレンズアセンブリーの中に組み込まれている。すなわち、冷却導管の中を流れる冷却水は、レンズアセンブリーを冷却した後、坑底に噴射されレーザー照射によって発生した掘屑を除去する役割を担う。レンズアセンブリーと冷却導管は防護容器に収納されている。
 米国特許第7,416,258号明細書(以下では「特許文献2」と記載する)には、坑底の岩盤表面にレーザービームを照射してその部位において熱応力を発生させるとともに水蒸気爆発を起こさせてその部位を剥離させ、発生した砕片を洗浄システムによって除去する装置及び方法が開示されている。特許文献2に開示されている装置及び方法では、グループを構成する単一のレーザービームのそれぞれが岩盤表面のそれぞれ対応する位置に照射されるように、電気光学レーザービーム切替器によってレーザービームの岩盤照射位置を順次選択し、ビーム照射によって岩盤表面を剥離させて多重に重なりあう剥離片を生成してこれを除去することによって掘削を行う。特許文献2に開示されている装置、すなわちレーザーヘッドは(1)レーザービームを集光し方向を整えるビーム形成用光学パッケージ、(2)剥離片の除去とレーザービームの通路形成のための除去流パッケージ、及び(3)電気光学レーザービーム切替器からなり、これらはすべて防護容器に収納されている。
 特開2010-17864号公報(以下では「特許文献3」と記載する)には、水中においてレーザービームを移動させて岩石を穿孔する装置が開示されている。特許文献3に開示されている装置は、レーザー発振器、レーザー伝送機構、レーザー集光径調整機構、レーザービーム操作機構及びモニタリング機構が防護容器に収納された装置である。特許文献3に開示されている装置においては、岩石穿孔に必要なエネルギーはレーザーではなく電力で供給されることが特徴的である。すなわち、地上又は海上の掘削リグから電力ケーブルで防護容器内のレーザー発振器に供給されここでレーザービームを発振する。レーザービームは穿孔される岩盤の底部に集光するように調整され岩盤にエネルギーを供給する。特許文献3に開示されている装置を構成する機器の中で、レーザービーム操作機構はレーザービームを岩盤上で移動させる機能を有するものであるが、その構成について特許文献3には具体的な記載はない。
 米国特許出願公開第2010/0044105号明細書(以下では「特許文献4」と記載する)には、レーザービームによって供給されるエネルギーが岩盤表面において所定のプロフィルとなるようにビームの形状を調節するシステム、装置及び方法が開示され、特に、高出力レーザーを岩盤表面に供給するレーザー坑底アセンブリーについて多様な実施例が開示されている。特許文献4におけるレーザー坑底アセンブリーは、レンズアセンブリーとその移動機構とからなる。通常、レーザービームはガウス分布のビームパターンを有するが、特許文献4に開示されているシステム等においては、レンズアセンブリーを通してこのビームパターンを所望のパターンに変換する。例えば、ビームパターンを複数のスポットに変換する。一方、移動機構はモーター駆動による回転をこのビームパターンに付与する。すなわち、特許文献4に開示されているシステム等においては、レンズアセンブリーによってレーザービームの形状を整え、その形状をモーター駆動によって回転し、坑底の岩盤表面にレーザービームパターンを描く。
 このレーザー坑底アセンブリー、すなわちレーザーヘッドは、防護容器に隔離され、レーザービームの透過可能な清浄流体をその内部に通すことによって冷却される。清浄流体はそのレーザーヘッドの側面から一部流出して掘屑の地上への輸送に使われる一方、先端からはレーザービームを包むように流出して掘屑を坑底の岩盤表面から除去する。レーザービームは防護容器に設けられた出口窓から岩盤表面に向けて照射される。この出口窓には岩盤表面から掘屑が飛散してくるが、清浄流体の噴射によって、掘屑の衝突及び付着を防止する。
 以上述べてきた従来のレーザー掘削装置を要約すると以下のようになる。従来のレーザー掘削装置においては、地上又は海上に設置された掘削リグと坑底とを光ファイバーで繋ぎ、その先端部にレーザーヘッドを設置する。掘削リグから光ファイバーを通じて供給されたレーザービームはレーザーヘッドから岩盤表面に向かって照射される。レーザーヘッドに関して、従来技術はいずれもレンズアセンブリーを使用し、ここでレーザービームのパターン及び照射方向を調節する。特許文献1に開示されているレーザーヘッドは、100本以上の光ファイバーによって掘削孔を覆い、光ファイバーの端末にそれぞれ個別にレンズアセンブリーが設置され、レンズアセンブリーが坑底の岩盤表面全体と対向する。特許文献2に開示されているレーザーヘッドは、1本のレーザービームをレンズアセンブリーにおいて集光し照射方向を整え、電気光学レーザービーム切替器によって照射位置を順次選択して岩盤表面にレーザーエネルギーを供給するものであり、電気光学レーザービーム切替器が坑底の岩盤表面と対向する。特許文献3に開示されているレーザーヘッドは、レンズアセンブリー(レーザー集光径調整機構)において集光距離を整えレーザービーム操作機構によって坑底の岩盤表面にレーザーエネルギーを分配するものである。レーザービーム操作機構について特許文献3には実施態様が開示されていない。一方、特許文献4はモーター駆動に言及している。特許文献4に開示されたレーザーヘッドは、レンズアセンブリーにおいてレーザービームの形状を整えてから、この形状をモーター駆動によって回転し、坑底の岩盤表面にレーザービームパターンを描くものである。
 特許文献1から特許文献4は、いずれもレーザーヘッドにレンズアセンブリーを含む。レンズアセンブリーは常温の清浄な雰囲気で機能するものであり、高圧の掘削流体中において地熱によって加熱される坑底の環境下では機能しない。このため、レーザーヘッドは防護容器に収納し、水冷して常温に維持せねばならない。このために、地上又は海上と坑内を結ぶ清水の循環ラインが必要となる。低温の清水を地上又は海上で製造して低温を維持したまま坑底に供給することは困難なので、冷却水製造用の冷却器の坑内設置は不可避である。この場合、坑内設置した冷却器で低温清水を得、防護容器と熱交換した後、戻りの配管で地上又は海上に上げここで大気への放熱と予備冷却を行い、再び、往きの配管で坑内の冷却器へ供給するように冷却循環システムを構築せねばならない。また、かかる冷却システムは制御用電源を必要とし、地上又は海上より坑内の冷却器まで電源ケーブルを引かねばならない。このほか、特許文献2に記載される電気光学レーザービーム切替器を使用すると、これも水冷の対象となる。また、電気光学レーザービーム切替器も制御用電源を必要とする。以上のように、レンズアセンブリーや電気光学レーザービーム切替器等の電気的あるいは光学的機器を坑底で使用するには、限られた坑内空間に冷却器の設置が必要となり、冷却器を含むレーザーヘッドの構成は複雑となる。これを過酷な坑内環境で実施するのは困難を伴い、好ましくない。
 レーザー掘削装置においては、地上又は海上から坑底直上まで光ファイバーを配して、坑底の岩盤表面全体に、効率よくレーザーエネルギーを供給することが望まれるが、従来技術には以下のような問題があった。
 掘削が行われる坑底は掘削流体による加圧、地熱による加熱という厳しい環境下にある。例えば、垂直深度7000mを超える坑井では、坑底にかかる掘削流体の圧力は通常700気圧を超え、温度は地熱の影響によって200℃を超える。このように過酷な坑内環境下で、レンズアセンブリーや電気光学的レーザービーム切替器等の電気的あるいは光学的機器を使用するには、これらの機器を防護容器に収納して清浄な雰囲気に隔離し、水冷等によって常温に維持することが不可欠となる。このために、専用の制御用電源ケーブル、清水の循環ラインが必要となる。さらに、低温の清水を地上又は海上で製造して低温を維持したまま坑底に供給することは困難なので、冷却水製造用の冷却器の坑内設置も必要となる。このように、電気的機器あるいは光学的機器を採用すると装置の構成が複雑となり、これを過酷な坑内環境で実施するのは困難を伴う。
 本発明は、以上のような技術的課題に鑑みてなされたものである。本発明のいくつかの態様によれば、過酷な坑内環境下で所望のレーザービームパターンを岩盤表面に描くことができるレーザー掘削装置を提供することができる。
(1)本発明に係るレーザー掘削装置は、
 光ファイバーケーブルと、
 前記光ファイバーケーブルを内包する管と、
 前記管を貫通させ、軸受を介して前記管を回転自在に支持する第1偏心リングと、
 前記第1偏心リングを内包し、軸受を介して前記第1偏心リングを回転自在に支持する第2偏心リングと、
 前記第2偏心リングを内包し、軸受を介して前記第2偏心リングを回転自在に支持する固定リングと、
 を含み、
 前記第1偏心リング及び前記第2偏心リングの回転によって前記管の中心軸を移動させて、前記管に内包される前記光ファイバーケーブルのビーム放射端の位置を移動させる。
 本発明によれば、第1偏心リング及び第2偏心リングの回転によって管の中心軸を移動させて、管に内包される光ファイバーケーブルのビーム放射端の位置を移動させる。第1偏心リング及び第2偏心リングは機械的な構成で回転させることができる。一般的に、機械的な構成は、電気的機器や光学的機器に比べて、過酷な坑内環境下においての信頼性が高い。したがって、過酷な坑内環境下で所望のレーザービームパターンを岩盤表面に描くことができるレーザー掘削装置を実現できる。
(2)上述のレーザー掘削装置において、
 前記管を貫通させる第1波動歯車装置と、
 前記管を貫通させる第2波動歯車装置と、
 をさらに含み、
 前記管を、継手を介して前記第1波動歯車装置の入力部に連結し、前記第1偏心リングを前記第1波動歯車装置の出力部に連結し、
 前記管を、継手を介して前記第2波動歯車装置の入力部に連結し、前記第2偏心リングを前記第2波動歯車装置の出力部に連結し、
 前記管の回転を前記第1波動歯車装置で減速して前記第1偏心リングを回転させ、
 前記管の回転を前記第2波動歯車装置で減速して前記第2偏心リングを回転させてもよい。
 本発明によれば、管の回転を第1波動歯車装置で減速して第1偏心リングを回転させ、管の回転を第2波動歯車装置で減速して第2偏心リングを回転させるので、管の回転を利用して第1偏心リング及び第2偏心リングを回転させることができる。したがって、電気的機器や光学的機器に比べて、過酷な坑内環境下でも信頼性の高いレーザー掘削装置を実現できる。
(3)上述のレーザー掘削装置において、
 空隙を有して前記光ファイバーケーブルを被覆するジャケットをさらに含んでもよい。
 本発明によれば、光ファイバーケーブルとジャケットとの間の空隙を利用して、レーザービームに対して透明性の高い流体(例えば、清水など)を、光ファイバーケーブルのビーム放射端まで流すことができる。したがって、エネルギー効率の高いレーザー掘削装置を実現できる。
(4)上述のレーザー掘削装置において、
 前記光ファイバーケーブルと前記ジャケットと間の前記空隙と連通し、前記光ファイバーケーブルの前記ビーム放射端を囲むように設けられたノズルをさらに含んでもよい。
 本発明によれば、光ファイバーケーブルのビーム放射端を囲むように設けられたノズルから、レーザービームに対して透明性の高い流体(例えば、清水など)を放出することができる。したがって、エネルギー効率の高いレーザー掘削装置を実現できる。
(5)上述のレーザー掘削装置において、
 前記光ファイバーケーブルは、複数の光ファイバーを含み、
 前記光ファイバーケーブルと前記ジャケットと間の前記空隙と連通し、前記複数の光ファイバーのそれぞれのビーム放射端を囲むように設けられたノズルをさらに含んでもよい。
 本発明によれば、複数の光ファイバーのそれぞれのビーム放射端を囲むように設けられた複数のノズルから、レーザービームに対して透明性の高い流体(例えば、清水など)を放出することができる。したがって、エネルギー効率の高いレーザー掘削装置を実現できる。
(6)上述のレーザー掘削装置において、
 前記管は、空隙を有して前記光ファイバーケーブルを内包し、
 前記光ファイバーケーブルと前記管との間の前記空隙と連通し、前記光ファイバーケーブルの前記ビーム放射端を囲むように設けられたノズルをさらに含んでもよい。
 本発明によれば、光ファイバーケーブルと管との間の空隙と連通し、光ファイバーケーブルのビーム放射端を囲むように設けられたノズルから、泥水などの掘削流体を放出することができる。したがって、レーザービームによって溶融された岩盤などの溶融物を容易に除去できる。
(7)上述のレーザー掘削装置において、
 前記管は、互いに褶動可能に設けられた外管と内管とを含んでもよい。
 本発明によれば、管が互いに褶動可能に設けられた外管と内管とを含んで構成されているので、自律的に長さを調節することができる。特に、光ファイバーケーブルと管との間の空隙と連通し、光ファイバーケーブルのビーム放射端を包囲するノズルから、泥水などの掘削流体を放出する場合には、掘削流体の流出抵抗を用いて管の長さを自律的に変えることができる。したがって、管や管に内包されている光ファイバーケーブルが岩盤などに衝突することによって破損することを抑制できる。
(8)上述のレーザー掘削装置において、
 前記光ファイバーケーブルの可動域の外に設けられ、前記光ファイバーケーブルの可動域の少なくとも一部を覆う防護殻をさらに含んでもよい。
 本発明によれば、光ファイバーケーブルの可動域の外に設けられ、光ファイバーケーブルの可動域の少なくとも一部を覆う防護殻を含んで構成されているので、光ファイバーケーブルが岩盤などに衝突することによって破損することを抑制できる。
(9)上述のレーザー掘削装置において、
 前記光ファイバーケーブルの前記ビーム放射端は、前記管の端部よりも外側に突出していてもよい。
 本発明によれば、光ファイバーケーブルを岩盤に近づけることができるので、レーザーのエネルギーを効率よく岩盤に供給できる。
図1は、第1実施形態にレーザー掘削装置1の機能の概略を説明するための模式図である。 図2は、第1実施形態に係るレーザー掘削装置1の要部を模式的に示す水平断面図である。 図3は、第1実施形態に係るレーザー掘削装置1の主要な構成を模式的に示す垂直断面図である。 図4は、光ファイバーケーブル11の他の構成例を模式的に示す断面図である。 図5は、光ファイバーケーブル11の他の構成例を模式的に示す断面図である。 図6は、第1実施形態に係るレーザー掘削装置1の他の構成例を模式的に示す、光ファイバーケーブル11及びその近傍の断面図である。 図7は、光ファイバーケーブル11の中心軸に沿った方向から見た光ファイバーケーブル11のビーム放射端37及びその近傍の構成例を模式的に示す図である。 図8は、光ファイバーケーブル11の中心軸に沿った方向から見た光ファイバーケーブル11のビーム放射端37及びその近傍の他の構成例を模式的に示す図である。 図9Aは、第1実施形態に係るレーザー掘削装置1の他の構成例を模式的に示す、光ファイバーケーブル11及びその近傍の断面図である。 図9Bは、ビーム放射端37近傍についての図9AのA-A線における断面図である。 図10は、光ファイバーケーブル11のビーム放射端37及びその近傍の構成例を模式的に示す垂直断面図である。 図11は、光ファイバーケーブル11のビーム放射端37及びその近傍の構成例を模式的に示す垂直断面図である。 図12は、第2実施形態に係るレーザー掘削装置2の主要な構成を模式的に示す垂直断面図である。 図13Aは、第3実施形態に係るレーザー掘削装置の光ファイバーケーブル11の水平断面図である。 図13Bは、第3実施形態に係るレーザー掘削装置の光ファイバーケーブル11のビーム放射端37及びその近傍の構成例を模式的に示す垂直断面図(図13AのA-A線における断面図)である。 図14は、保持機構150の構成を模式的に示す断面図である。 図15は、第4実施形態に係るレーザー掘削装置3の主要な構成を模式的に示す垂直断面図である。 図16Aは、レーザービームパターン205の実施例を示す図である。 図16Bは、レーザービームパターン205の実施例を示す図である。 図16Cは、レーザービームパターン205の実施例を示す図である。 図16Dは、レーザービームパターン205の実施例を示す図である。 図16Eは、レーザービームパターン205の実施例を示す図である。 図16Fは、レーザービームパターン205の実施例を示す図である。
 以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1.第1実施形態に係るレーザー掘削装置
 図1は、第1実施形態にレーザー掘削装置1の機能の概略を説明するための模式図である。第1実施形態に係るレーザー掘削装置1の機能は、図1に示されるように、ビーム放射端が移動する面であるビーム放射面201を岩盤表面202と対向させ、ビーム放射面201上において、光ファイバーのビーム放射端を移動させて移動パターン203を形成し、レーザービーム204を岩盤表面202へ照射することによって、移動パターン203を岩盤表面202に投影させてレーザービームパターン205を描くことである。ここで、光ファイバーケーブルが複数の光ファイバーを収納する場合には、レーザービーム204は複数のレーザービームで構成される。
 図2は、第1実施形態に係るレーザー掘削装置1の要部を模式的に示す水平断面図である。図3は、第1実施形態に係るレーザー掘削装置1の主要な構成を模式的に示す垂直断面図である。
 第1実施形態に係るレーザー掘削装置1は、光ファイバーケーブル11と、光ファイバーケーブル11を内包する管12と、管12を貫通させ、軸受14を介して管12を回転自在に支持する第1偏心リング13と、第1偏心リング13を内包し、軸受16を介して第1偏心リング13を回転自在に支持する第2偏心リング15と、第2偏心リング15を内包し、軸受18を介して第2偏心リング15を回転自在に支持する固定リング17と、を含み、第1偏心リング13及び第2偏心リング15の回転によって管12の中心軸を移動させて、管12に内包される光ファイバーケーブル11のビーム放射端37の位置を移動させる。
 図2に示されるように、本実施形態に係るレーザー掘削装置1は、光ファイバーケーブル11を管12の内部に収納し、二重の偏心リングを有する機構を適用して、管12と管12に内包されている光ファイバーケーブル11とを自在に面内移動させる。図2に示されるように、管12の断面の外形は円形である。管12の断面の内形は、光ファイバーケーブル11を内包できるかぎり任意の形状を採用できる。管12は、泥水などの掘削流体38を坑内に供給するための掘削流体供給管として機能してもよい。
 第1偏心リング13は、偏心した円形内周面を備えたリングである。管12は、軸受14を介して、第1偏心リング13の円形内周面の内側を貫通している。第1偏心リング13は、軸受14を介して管12を支持し、管12が第1偏心リング13に対して自在に回転できるように構成されている。
 第2偏心リング15は、偏心した円形内周面を備えたリングである。第1偏心リング13は、軸受16を介して、第2偏心リング15の円形内周面の内側に嵌め込まれている。すなわち、第2偏心リング15は、第1偏心リング13を内包するように構成されている。第2偏心リング15は、軸受16を介して第1偏心リング13を支持し、第1偏心リング13が第2偏心リング15に対して自在に回転できるように構成されている。
 固定リング17は、円形内周面を備えたリングである。固定リング17は、管状に構成されていてもよい。第2偏心リング15は、軸受18を介して、固定リング17の円形内周面の内側に嵌め込まれている。すなわち、固定リング17は、第2偏心リング15を内包するように構成されている。固定リング17は、軸受18を介して第2偏心リング15を支持し、第2偏心リング15が固定リング17に対して自在に回転できるように構成されている。
 なお、上述の軸受14、軸受16及び軸受18としては、例えば、玉軸受、ローラー軸受など種々の公知の軸受を採用できる。
 図2に示されるように、第1偏心リング13を単独で回転させると、管12の中心軸は、第1偏心リング13の外周円の中心とのずれ、すなわちこの第1偏心量22を半径として、軌跡19に示されるように、円を描いて移動する。また、図2に示されるように、第2偏心リング15を回転させると、第1偏心リング13の外周円の中心は、第2偏心リング15の外周円の中心とのずれ、すなわちこの第2偏心量23を半径として、軌跡20に示されるように、円を描いて移動する。第1偏心リング13と第2偏心リング15を同時に回転させると、第1偏心量22と第2偏心量23との和を半径とする円21の内側の範囲で管12の中心軸に遊星運動をさせることが可能となる。すなわち、第1偏心量22を半径とする円運動と第2偏心量23を半径とする円運動とが重畳して、管12の中心軸は遊星運動する。管12の中心軸が移動することによって、管12に内包されている光ファイバーケーブル11も移動する。
 なお、管12の中心軸が遊星運動することによって描かれるレーザービームパターン205の例については、「4.実施例」の項で後述される。
 第1実施形態に係るレーザー掘削装置1によれば、第1偏心リング13及び第2偏心リング15の回転によって管12の中心軸を移動させて、管12に内包される光ファイバーケーブル11のビーム放射端37の位置を移動させる。第1偏心リング13及び第2偏心リング15は機械的な構成で回転させることができる。一般的に、機械的な構成は、電気的機器や光学的機器に比べて、過酷な坑内環境下においての信頼性が高い。したがって、過酷な坑内環境下で所望のレーザービームパターン205を岩盤表面202に描くことができるレーザー掘削装置1を実現できる。
 第1実施形態に係るレーザー掘削装置1において、管12を貫通させる第1波動歯車装置31と、管12を貫通させる第2波動歯車装置32と、をさらに含み、管12を、継手33を介して第1波動歯車装置31の入力部に連結し、第1偏心リング13を第1波動歯車装置31の出力部に連結し、管12を、継手34を介して第2波動歯車装置32の入力部に連結し、第2偏心リング15を前記第2波動歯車装置の出力部に連結し、管12の回転を第1波動歯車装置31で減速して第1偏心リング13を回転させ、管12の回転を第2波動歯車装置32で減速して第2偏心リング15を回転させてもよい。すなわち、管12の回転力を駆動源として第1偏心リング13及び第2偏心リング15を回転させてもよい。
 第1実施形態に係るレーザー掘削装置1においては、管12の回転の駆動源について特に制約はない。例えば、地上あるいは海上にモーターを設置して、モーターの回転力によって管12を回転させてもよい。また例えば、地上あるいは海上からドリルストリング内を通して坑内に送り込まれる泥水などの掘削流体38の流れを利用してモーター軸の回転を得るダウンホールモーターを坑内に設置し、ダウンホールモーターの回転力によって管12を回転させてもよい。後者の場合、掘削流体38は、ダウンホールモーターを駆動した後に、管12の内部に、そのすべてあるいは一部が導入されてもよい。
 管12の回転力を第1偏心リング13と第2偏心リング15の駆動に利用するために、管12の回転力は継手33及び減速機を介して第1偏心リング13に伝達され、継手34及び減速機を介して第2偏心リング15に伝達される。継手33及び継手34は、管12と減速機を接続するものであり、特に制約はない。継手33及び継手34としては、例えば、オルダム継手が適用できる。
 第1実施形態に係るレーザー掘削装置1においては、減速機として波動歯車装置(調和歯車減速機)を採用している。すなわち、管12の回転力は継手33及び第1波動歯車装置31を介して第1偏心リング13に伝達され、継手34及び第2波動歯車装置32を介して第2偏心リング15に伝達される。波動歯車装置は複雑な機構や構造を用いることなく同軸上で内リングを入力とし外リングを出力として取出し、1/30~1/320程度の高い減速比が得られ、部品数が少なく小型軽量であるので、過酷な坑内環境に適している。
 図3に示されるように、回転する管12は、第1波動歯車装置31、第1偏心リング13及び第2波動歯車装置32を貫通し、継手33を介して第1波動歯車装置31の内リング(第1波動歯車装置31の入力部に相当する)と接続され、継手34を介して第2波動歯車装置32の内リング(第2波動歯車装置32の入力部に相当する)と接続され、その回転が第1波動歯車装置31及び第2波動歯車装置32に伝達される。管12の回転は、第1波動歯車装置31及び第2波動歯車装置32において、それぞれの減速比で減速され、それぞれの外リングより出力される。第1波動歯車装置31の外リング(第1波動歯車装置31の出力部に相当する)はその中心軸が第1偏心リング13の外周円の中心軸に一致すように、第1偏心リング13と接続される。同様に、第2波動歯車装置32の外リング(第2波動歯車装置32の出力部に相当する)は中心軸が第2偏心リング15の外周円の中心軸に一致するように、第2偏心リング15と接続される。この結果、管12の回転力によって、第1偏心リング13と第2偏心リング15を、所定の回転速度で回転させることができる。
 第1実施形態に係るレーザー掘削装置1によれば、管12の回転を第1波動歯車装置31で減速して第1偏心リング13を回転させ、管12の回転を第2波動歯車装置32で減速して第2偏心リング15を回転させるので、管12の回転を利用して第1偏心リング13及び第2偏心リング15を回転させることができる。したがって、電気的機器や光学的機器に比べて、過酷な坑内環境下でも信頼性の高いレーザー掘削装置1を実現できる。
 図3に示される例では、第1偏心リング13と第2偏心リング15が同時に回転することによる管12の遊星運動は、管12の上流側(第1偏心リング13よりも、管12に内包されている光ファイバーケーブル11のビーム放射端37から遠い側)に設けられた自在継手35を支点として行われる。これによって、図1に示されるように、ビーム放射端37がビーム放射面201の上で遊星運動を行うと、ビーム放射端37の軌跡はこの面上に移動パターン203を形成し、レーザービーム204が岩盤表面202へ到達すると、岩盤表面202に移動パターン203を相似形に拡大したレーザービームパターン205を描くことができる。
 図3に示される例では、第1波動歯車装置31、第2波動歯車装置32及び固定リング17は外周において固定管48に固定され、シール部49によって坑内の掘削流体38とは接触が断たれている。なお、固定リング17と固定管48とが一体として構成されていてもよい。
 図3に示される例では、管12は、上流側(第1偏心リング13よりも、管12に内包されている光ファイバーケーブル11のビーム放射端37から遠い側)において、結合部材42を介して回転管43と結合されている。回転管43は、上流側(結合部材42よりも、管12に内包されている光ファイバーケーブル11のビーム放射端37から遠い側)においてダウンホールモーター(図示せず)の出力軸と結合されている。すなわち、第1実施形態に係るレーザー掘削装置1においては、回転管43は、ダウンホールモーターの出力軸と結合されることによって回転し、さらに自在継手35を介して管12を回転させる。
 掘削流体38はダウンホールモーターの駆動に利用されたあと、回転管43の内部へ誘導され、さらに管12へと誘導され、管12の端部である管端36より岩盤表面202へ向けて噴射され、岩盤表面202において発生した掘屑を除去する。そしてレーザー掘削装置1のハウジング44と坑壁50との間の空隙、すなわち、アニュラス部を通って掘屑を搬送し掘削リグへと戻って行く。
 また、図示されないが、公知の偏向機構、例えばロータリーステアラブルシステムによって、ハウジング44の中で回転管43を弾性変形させて曲げを付与し偏向させてもよい。回転管43に曲げを付与することによって、回転管43の中心軸47はフォーカル軸受45においてハウジング44の中心軸46からずれる。また、管12は、第1偏心リング13と第2偏心リング15の作用によって、自在継手35を支点として中心軸47を軸として遊星運動をする。管12の遊星運動は、岩盤表面202に向けて照射されるレーザービーム204に伝達されて拡大され、レーザービーム204が岩盤表面202にレーザービームパターン205を描くことを可能にする。なお、上述の例の場合、中心軸47が掘削方向となる。
 図3に示される例では、光ファイバーケーブル11は、1本の光ファイバーを含んで構成されているが、光ファイバーケーブル11は、複数の光ファイバーを含んで構成されていてもよい。
 図4は、光ファイバーケーブル11の他の構成例を模式的に示す横断面図である。図4に示される例では、光ファイバーケーブル11は、10本の光ファイバー60が保護シース65の内部に収納され、保護シース65と光ファイバー60との間隙にはジェリー66が充填されている。図4に示される構成の光ファイバーケーブル11の場合には、10本の光ファイバー60のそれぞれがレーザービーム204の通路となる。光ファイバーケーブル11が複数の光ファイバー60を含んで構成されていることによって、より多くのエネルギーを岩盤表面202に与えることができる。このような構成の光ファイバーケーブル11の保護シース65には高温高圧の坑内環境に耐えることが求められる。かかる観点から保護シース65は金属管であることが好ましい。保護シース65の材質として、例えば、ステンレス鋼、耐熱鋼、ニッケル基合金が挙げられる。ジェリー66は、保護シース65の坑内側端部から長手方向に水が侵入するのを防ぐように機能する。ジェリー66としては、例えば、チクソトロピー性の粘性流体コンパウンドを用いることができる。図4に示される光ファイバーケーブル11の利点としては、図5~図9を用いて後述される構成よりも安価に製造できること、及び、10kmに及ぶ長いケーブルを容易に一体で製造できることが挙げられる。
 図5は、光ファイバーケーブル11の他の構成例を模式的に示す断面図である。図5に示される例では、光ファイバーケーブル11は、10本の光ファイバー60がスロットロッド61の外周に設けられた溝に収納され、溝を封鎖するように押え巻層62が巻き回されて構成されている。スロットロッド61には鋼撚線からなるテンションメンバー63が埋設されている。押え巻層62は外周を鉄線層64によって補強され、さらにその上から保護シース65が形成されている。図5に示される構成の光ファイバーケーブル11の場合には、10本の光ファイバー60のそれぞれがレーザービーム204の通路となる。光ファイバーケーブル11が複数の光ファイバー60を含んで構成されていることによって、より多くのエネルギーを岩盤表面202に与えることができる。
 図6は、第1実施形態に係るレーザー掘削装置1の他の構成例を模式的に示す、光ファイバーケーブル11及びその近傍の断面図である。第1実施形態に係るレーザー掘削装置1は、空隙71を有して光ファイバーケーブル11を被覆するジャケット70をさらに含んで構成されていてもよい。
 光ファイバーケーブル11とジャケット70との間の空隙71を利用して、透明流体(掘削流体38(泥水など)よりもレーザービーム204に対して透明性の高い流体(例えば、清水など))を、光ファイバーケーブル11のビーム放射端37まで流すことができる。透明流体を光ファイバーケーブル11のビーム放射端37まで流すことによって、ビーム放射端37から岩盤表面202までの間におけるレーザービーム204に対する透明性を高めることができる。したがって、エネルギー効率の高いレーザー掘削装置1を実現できる。
 第1実施形態に係るレーザー掘削装置1は、光ファイバーケーブル11とジャケット70と間の空隙71と連通し、光ファイバーケーブル11のビーム放射端37を囲むように設けられたノズルをさらに含んで構成されていてもよい。
 図7は、光ファイバーケーブル11の中心軸に沿った方向から見た光ファイバーケーブル11のビーム放射端37及びその近傍の構成例を模式的に示す図である。図7に示される例では、光ファイバーケーブル11のビーム放射端37の周囲に、ビーム放射端37を囲むように等間隔に配置された10個の円形の単孔ノズル80が設けられている。なお、単孔ノズル80の数及び形状は、レーザー掘削装置1の仕様に応じて任意に選択できる。
 図8は、光ファイバーケーブル11の中心軸に沿った方向から見た光ファイバーケーブル11のビーム放射端37及びその近傍の他の構成例を模式的に示す図である。図8に示される例では、光ファイバーケーブル11のビーム放射端37の周囲に、ビーム放射端37を囲むように等間隔に配置された4分割されたスリットノズル90が設けられている。なお、スリットノズル90の数及び形状は、レーザー掘削装置1の仕様に応じて任意に選択できる。なお、図8に示される例では、光ファイバーケーブル11の中心軸に沿った方向から見て、光ファイバーケーブル11のビーム放射端37の一部の方位を囲むようにスリットノズル90が設けられているが、光ファイバーケーブル11のビーム放射端37の全方位を囲むようにスリットノズル90が設けられていてもよい。
 第1実施形態に係るレーザー掘削装置1によれば、光ファイバーケーブル11のビーム放射端37を囲むように設けられたノズル(単孔ノズル80又はスリットノズル90)から、透明流体(掘削流体38(泥水など)よりもレーザービーム204に対して透明性の高い流体(例えば、清水など))を放出することができる。これによって、ビーム放射端37から岩盤表面202までの間におけるレーザービーム204に対する透明性を高めることができる。したがって、エネルギー効率の高いレーザー掘削装置1を実現できる。さらに、ノズルとして、出口近傍が狭窄された形状のノズルを採用することによって、ノズルから噴射された透明流体を用いて、レーザービーム204の照射によって生じた掘屑を岩盤表面202から速やかに除去し、ビーム放射端37から岩盤表面202までの間における濁りの発生を抑制できる。
 第1実施形態に係るレーザー掘削装置1は、光ファイバーケーブル11が、複数の光ファイバー60を含み、光ファイバーケーブル11とジャケット70と間の空隙71と連通し、複数の光ファイバー60のそれぞれのビーム放射端を囲むように設けられたノズル100を含んで構成されていてもよい。
 図9Aは、第1実施形態に係るレーザー掘削装置1の他の構成例を模式的に示す、光ファイバーケーブル11及びその近傍の断面図、図9Bは、ビーム放射端37近傍についての図9AのA-A線における断面図である。
 図9A及び図9Bに示される例では、ジャケット70は端部において、光ファイバー60の端部(ビーム放射端)と中心線が一致するようにノズル100が設けられている。図9Bに示される例では、ノズル100は円形の単孔ノズルである。これによって、透明流体は空隙71からノズル100へと導かれ、透明流体ジェット流101が形成される。透明流体ジェット流101は光ファイバー60の端部と中心線が一致するので、光ファイバー60から放射されたレーザービーム204は透明流体ジェット流101を通路として岩盤表面202に至る。なお、図9に示される例では、光ファイバー60の中心軸に沿った方向から見て、光ファイバー60のビーム放射端の全方位を囲むようにノズル100が設けられているが、必ずしも全方位を囲むように設けられている必要はない。例えば、光ファイバー60の中心軸に沿った方向から見て、光ファイバー60のビーム放射端の周囲の一部に、ノズル100が設けられていない箇所があってもよい。
 第1実施形態に係るレーザー掘削装置1によれば、複数の光ファイバー60のそれぞれのビーム放射端を囲むように設けられた複数のノズル100から、透明流体(掘削流体38(泥水など)よりもレーザービーム204に対して透明性の高い流体(例えば、清水など))を放出することができる。これによって、ビーム放射端37から岩盤表面202までの間におけるレーザービーム204に対する透明性を高めることができる。さらに、光ファイバー60とノズル100の中心軸を一致させることによって、ノズル100から放出される流体がレーザービーム204の進路上への異物の侵入を抑制できる。したがって、エネルギー効率の高いレーザー掘削装置1を実現できる。
 単孔ノズル80、スリットノズル90あるいはノズル100によって形成される透明流体ジェット流101を取り巻く環境は、掘削流体38である。すなわち、透明流体ジェット流101は、流動する掘削流体38中に形成される。代表的な掘削流体である泥水は、水あるいは油を連続相とするスラリー状の流体であり、レーザービーム204の通路として機能はするが、レーザービーム204に対してのエネルギー損失が大きいので、エネルギー効率の観点からは好適とはいえない。透明流体は、エネルギー効率の観点から、泥水に勝るレーザービーム204の通路を提供する。清水は透明流体として好適であるが、清水によって掘削流体38中に透明流体ジェット流101を形成した場合、清水を通過するレーザービーム204の一部が掘削流体38中へ漏れ、エネルギー損失の一因となる問題が発生する。レーザービーム204の掘削流体38中へ漏れを防止するにためは、透明流体ジェット流101と掘削流体38の界面でレーザービーム204の全反射が生じる必要がある。これを実現するには、透明流体の比重が掘削流体よりも大きくなるように透明流体及び掘削流体を選択すればよい。これによって、透明流体の屈折率が掘削流体の屈折率を上回り全反射が可能となる。好適な掘削流体の例としては、ブラインが挙げられる。ブラインは塩類溶液であり、全反射実現の観点から1.4~2.2の比重のものが好ましい。また、透明流体としては、例えば、窒素、アルゴン、ヘリウム等の常温常圧で気体となる流体を選択してもよい。
 第1実施形態に係るレーザー掘削装置1は、管12が空隙121を有して光ファイバーケーブル11を内包し、光ファイバーケーブル11と管12との間の空隙121と連通し、光ファイバーケーブル11のビーム放射端37を囲むように設けられたノズル110をさらに含んでもよい。
 図10は、光ファイバーケーブル11のビーム放射端37及びその近傍の構成例を模式的に示す垂直断面図である。図10に示される例では、スイベル継手(図示せず)を使用して、非回転の光ファイバーケーブル11の中心軸は、管12の管端36において、回転する管12の中心軸と一致させている。また、図10に示される例では、ノズル110は、光ファイバーケーブル11と管12との間の空隙121と連通し、管端36の内側面と光ファイバーケーブル11の外側面によって構成されるスリットノズルである。図10に示される例では、光ファイバーケーブル11の中心軸に沿った方向から見て、光ファイバーケーブル11のビーム放射端37の全方位を囲むようにノズル110が設けられているが、必ずしも全方位を囲むように設けられている必要はない。例えば、光ファイバーケーブル11の中心軸に沿った方向から見て、ビーム放射端37の周囲の一部に、ノズル110が設けられていない箇所があってもよい。光ファイバーケーブル11と管12との間の空隙121を流れる掘削流体38は、ノズル110から岩盤表面202に向けて噴射され掘削流体ジェット流39となる。ビーム放射端37から放射されたレーザービーム204は岩盤表面202に到達して岩石を溶融する。発生した溶融物及び剥離片はノズル110から噴射された掘削流体ジェット流39によって除去され掘屑となり、掘削流体38によって搬送され、岩石の掘削が進行する。
 第1実施形態に係るレーザー掘削装置1によれば、光ファイバーケーブル11と管12との間の空隙121と連通し、光ファイバーケーブル11のビーム放射端37を囲むように設けられたノズル110から、泥水などの掘削流体38を放出することができる。したがって、レーザービーム204によって溶融された岩盤などの溶融物を容易に除去できる。
 掘削の進行に伴って岩盤表面202の位置は変化する。岩盤の掘削を安定して継続するためには、岩盤表面202と管端36との間隙112を岩盤表面202の位置の変化に追従して適正な範囲に保つ必要がある。これを実現する方法の例について説明する。
 掘削流体38は掘削流体ジェット流39として岩盤表面202に衝突後、管端36の外周へ流出する。流出する掘削流体38の液層の厚さは管端36直下においてもっとも薄くなる。管端36直下における掘削流体38の液層の厚さである液層厚113は、管端36と岩盤表面202との間隙112の間隔が広いときにはその影響を受けないが、間隙112の間隔が狭くなると岩盤表面202から影響を受けるようになる。すなわち、液層厚113は間隙112によって規制されるようになり、この部位の掘削流体38の流出速度は増大し圧損が増加する。この圧損の増加は、地上あるいは海上において管12の背圧上昇として表れる。したがって、地上あるいは海上の掘削リグにおいて、掘削流体38を管12に定量供給しつつ、管12の背圧が所定の範囲に収まるように、レーザー掘削装置1の自重を利用するなどして管端36に適正な負荷を掛ければ、間隙112を適正な範囲に保つことができる。これによって、間隙112の間隔が安定するので、安定した掘削条件の下で掘削を継続することが可能となる。
 図10に示される例では、レーザービーム204は光ファイバー60から掘削流体38中へ放射される。掘削流体38には通常、泥水が使用されるが、泥水を使用するとレーザービーム204のエネルギーの伝送損失を伴う。エネルギー伝送損失を低減するために、泥水よりもレーザー光の吸収の少ない流体を掘削流体38としてもよい。掘削流体38の機能の一つは掘屑の搬送であり、地上あるいは海上において掘屑を分離後、再び坑底に送られるが、泥水よりもレーザー光の吸収の少ない流体を適用しても濁りが発生することは避けられず、ある程度のエネルギーの伝送損失は避けられない。
 レーザービーム204のエネルギーの伝送損失をさらに抑制するために、すでに図9を用いて説明したように、光ファイバー60の端部と中心線が一致するようにノズル100を設け、透明流体ジェット流101を掘削流体38中に形成しこれをレーザービーム204の通路として利用することができる。透明流体ジェット流101は光ファイバー60の数だけ設ければよいので、透明流体の流量は掘削流体38の流量に比べて圧倒的に少ない。したがって、透明流体が加わっても掘削流体38のリサイクルシステム成立の障害となることはない。この方法によってレーザービーム204のエネルギーの伝送損失を極限にまで抑制することが可能となる。
 図11は、光ファイバーケーブル11のビーム放射端37及びその近傍の構成例を模式的に示す垂直断面図である。図11に示される例では、スイベル継手(図示せず)を使用して、非回転の光ファイバーケーブル11の中心軸は、管12の管端36において、回転する管12の中心軸と一致させている。また、図11に示される例では、ノズル110は、光ファイバーケーブル11と管12との間の空隙121と連通し、管端36の内側面と光ファイバーケーブル11の外側面によって構成されるスリットノズルである。光ファイバーケーブル11と管12との間の空隙121を流れる掘削流体38は、ノズル110から岩盤表面202に向けて噴射され掘削流体ジェット流39となる。
 ジャケット70は端部において、光ファイバー60の端部(ビーム放射端)と中心線が一致するようにノズル100が設けられている。図11に示される例では、ノズル100は円形の単孔ノズルである。これによって、透明流体は空隙71からノズル100へと導かれ、透明流体ジェット流101が形成される。透明流体ジェット流101は光ファイバー60の端部と中心線が一致するので、光ファイバー60から放射されたレーザービーム204は透明流体ジェット流101を通路として岩盤表面202に到達して岩石を溶融する。発生した溶融物及び剥離片はノズル110から噴射された掘削流体ジェット流39によって除去され掘屑となり、掘削流体38によって搬送され、岩石の掘削が進行する。透明流体は岩盤表面202に衝突後、透明流体層120を形成して掘屑を搬送し、やがて掘削流体38と一体化する。
 また、地上あるいは海上において、掘削流体38を管12に定量供給しつつ、管12の背圧が所定の範囲に収まるように、レーザー掘削装置1の吊り荷重を調整するなどして管端36に適正な負荷を掛ければ、間隙112の間隔を適正な範囲に保つことができる。これによって、ビーム放射端37から発せられるレーザービーム204によって岩盤表面202に供給されるレーザービーム204のエネルギー密度が安定し、岩盤の安定的な破壊がもたらされる。したがって、安定した掘削条件の下で掘削を継続することが可能となる。
2.第2実施形態に係るレーザー掘削装置
 図12は、第2実施形態に係るレーザー掘削装置2の主要な構成を模式的に示す垂直断面図である。第1実施形態に係るレーザー掘削装置1においては、管端36と岩盤表面202の間隙112の間隔を適正に保つために、地上又は海上において検出される管12の背圧を所定の範囲に収める方法が採用されたが、第2実施形態に係るレーザー掘削装置2は、坑内において間隙112の間隔を自律的に調整できる構成となっている。なお、第1実施形態に係るレーザー掘削装置1と同様の構成には同一の符号を付し、詳細な説明を省略する。
 第2実施形態に係るレーザー掘削装置2は、管12が互いに褶動可能に設けられた外管132と内管133とを含んで構成されている。図12に示される例では、管12が摺動可能な重複部134を有する外管132と内管133とを含んで構成されている。図12に示される例では、上流側に外管132、下流側に内管133を配しているが、これとは逆に、上流側に内管、下流側に外管を配してもよい。図12に示される例では、外管132の端部に相当する位置と、内管133の端部に相当する位置に、外管132と内管133との間を封止するシール部135及びシール部136が設けられている。シール部135及びシール部136が設けられていることによって、管12の内部を流通する掘削流体38の漏洩が防止される。
 管12を流通する掘削流体38は、管12の内圧によって内管133を管12の伸長方向に摺動させる。図11に示した間隙112が狭まると、間隙112における掘削流体38の流出抵抗が増大して管端36を押し上げる力が働く。管端36を押し上げる力によって、内管133が管12の収縮方向に摺動し、間隙112は回復する。このようにして、管12の長さを、外管132と内管133とが摺動可能な範囲内で自律的に調節することができる。さらに、地上あるいは海上において、掘削流体38を管12に定量供給しつつ、一定時間毎に、管12の背圧が急上昇を示すまで、レーザー掘削装置2の自重を利用するなどして管12を降下させることによって、間隙112の間隔を適正な範囲に保つことができる。これによって、ビーム放射端37から発せられるレーザービーム204によって岩盤表面202に供給されるレーザービーム204のエネルギー密度が安定し、岩盤の安定的な破壊がもたらされる。したがって、安定した掘削条件の下で掘削を継続することが可能となる。
 第2実施形態に係るレーザー掘削装置2によれば、管12が互いに褶動可能に設けられた外管132と内管133とを含んで構成されているので、自律的に長さを変えることができる。特に、光ファイバーケーブル11と管12との間の空隙121と連通し、光ファイバーケーブル11のビーム放射端37を包囲するノズル110から、泥水などの掘削流体38を放出する場合には、掘削流体38の流出抵抗を用いて管12の長さを自律的に調節することができる。したがって、管12や管12に内包されている光ファイバーケーブル11が岩盤などに衝突することによって破損することを抑制できる。
 第2実施形態のレーザー掘削装置2において、図6及び図9に示されるような光ファイバーケーブル11及びジャケット70を有する構成を採用する場合には、地上又は海上においてこのような形態にして、坑内へ搬入してもよいし、また、図12に示されるように、透明流体供給管130を坑内に配して接続部131において光ファイバーケーブル11とジャケット70との間の空隙71と接続させてもよい。なお、第1実施形態においても同様である。
3.第3実施形態に係るレーザー掘削装置
 図13Aは、第3実施形態に係るレーザー掘削装置の光ファイバーケーブル11の水平断面図、図13Bは、第3実施形態に係るレーザー掘削装置の光ファイバーケーブル11のビーム放射端37及びその近傍の構成例を模式的に示す垂直断面図(図13AのA-A線における断面図)である。なお、以下では第1実施形態に係るレーザー掘削装置1と相違する点を中心に説明し、第1実施形態に係るレーザー掘削装置1と同様の構成には同一の符号を付し、詳細な説明を省略する。
 図13Aに示されるように、第3実施形態に係るレーザー掘削装置においては、光ファイバーケーブル11の構成は、図4を用いて説明した例と同様である。
 図13Bに示されるように、第3実施形態に係るレーザー掘削装置においては、光ファイバーケーブル11のビーム放射端37は、管12の端部(管端36)よりも外側に突出している。すなわち、第1実施形態及び第2実施形態においては、ビーム放射端37は管端36の内部に配置されていたが、第3実施形態においては、ビーム放射端37は岩盤表面202に近接あるいは接触するように管端36の外部に突出して配置されている。
 図13Bに示される例では、光ファイバーケーブル11の坑内側の端部となるビーム放射端37は、管端36から突出するように配置されており、光ファイバーケーブル11と管端36が環状のノズルを形成する。これによって、管12を通じて供給される掘削流体38は管端36において掘削流体ジェット流39となる。また、掘削流体ジェット流39と光ファイバーケーブル11との摩擦力を駆動力として、光ファイバーケーブル11を坑底へ向けて移動させることができる。光ファイバーケーブル11のビーム放射端37は、岩盤表面202に近接あるいは接触するので、レーザーエネルギーはビーム放射端37から岩盤表面202の対向部位に効率よく伝達される。より多くのレーザーエネルギーを岩盤表面202に伝達する観点から、ビーム放射端37から岩盤表面202までの間の距離は、50mm以下とすることが好ましく、30mm以下とすることがさらに好ましい。なお、管12の損耗を避ける観点からは、管端36から岩盤表面202までの間の距離は、50mm以上とすることが好ましい。
 レーザービームの一部は岩盤表面202において反射して、光ファイバーケーブル11の坑内側の端部(ビーム放射端37の近傍)を加熱する。この結果、ジェリー66は気化して光ファイバー60と保護シース65を気化熱によって冷却するが、光ファイバー60と保護シース65の損耗は徐々に進行する。光ファイバー60、保護シース65及びジェリー66の損耗分は光ファイバーケーブル11の供給によって補われる。このような損耗を制御するために、管12の内部に光ファイバーケーブル11が移動する状態と移動しない状態とを選択できる保持機構150を設置してもよい。
 図14は、保持機構150の構成を模式的に示す断面図である。図14に示される例では、保持機構150は、バネ機構151、流体受け部152及び押さえ部153を含んで構成されている。バネ機構151は、管12の内壁面に設けられている。バネ機構151は、流体受け部152及び押さえ部153を有するアームを水平方向に移動させることができる。流体受け部152は、掘削流体38の流通方向に対して斜面を有するように設けられている。図14に示される例では、流体受け部152が掘削流体38を受けることによって、アームは光ファイバーケーブル11に近づく方向に力を受ける。押さえ部153は、光ファイバーケーブル11と接することによって、光ファイバーケーブル11の移動を停止させることができる。このような保持機構150においては、掘削流体38の流量を制御することによって、光ファイバーケーブル11が移動する状態と移動しない状態とを選択することができる。このような保持機構150を設けることによって、ビーム放射端37から岩盤表面202の間の距離を調節し損耗速度を制御することが可能となる。
 第3実施形態に係るレーザー掘削装置においては、光ファイバーケーブル11のビーム放射端37が管12の端部(管端36)よりも突出しているので、ビーム放射端37を岩盤表面202に近接あるいは接触させることができる。これによってレーザーエネルギーの伝送損失が極めて小さくなるので、レーザービーム204は、高いパワー密度のレーザーエネルギーを岩盤表面202に供給することが可能となる。
 ビーム放射端37から、好ましくは10W/cm以上、より好ましくは10W/cm以上のパワー密度のレーザーエネルギーを岩盤表面202の局所に供給すると、レーザーエネルギーはほとんど損失なく岩石に伝達され、岩石成分の少なくとも一部が蒸発して噴出し、溝が形成される。「5.実施例」の項で後述されるように、坑底の岩盤表面202上でレーザービームを移動させながら照射しレーザービームパターンを描くと、レーザービームパターンに沿って溝状のパターンが形成される。すなわち、岩盤表面202は切り刻まれ多数の島に分割される。形成された島々の表層は、下層との熱膨張差や、亀裂に侵入した水の加熱膨張によって、剥離して多数の砕片となる。このように、高いエネルギー密度のレーザーエネルギーを岩盤表面202に供給すると、岩石の大部分を占める砕片は融点に達することなく固相のまま除去されるので、低いパワー密度を適用して岩石を溶融除去する方法に比べて、エネルギー効率が圧倒的に高くなるという利点がある。第3実施形態に係るレーザー掘削装置は、このように高いエネルギー密度のレーザーエネルギーを岩盤表面202に供給する用途にも適している。
4.第4実施形態に係るレーザー掘削装置
 図15は、第4実施形態に係るレーザー掘削装置3の主要な構成を模式的に示す垂直断面図である。なお、第1実施形態に係るレーザー掘削装置1と同様の構成には同一の符号を付し、詳細な説明を省略する。
 第4実施形態に係るレーザー掘削装置3は、光ファイバーケーブル11の可動域の外に設けられ、光ファイバーケーブル11の可動域の少なくとも一部を覆う防護殻140をさらに含んで構成されている。
 図15に示される例では、固定管48及びシール部49に防護殻140が固定されている。防護殻140は、光ファイバーケーブル11の可動域の外に設けられている。また、図15に示される例では、少なくとも防護殻140の先端部141が岩盤と接触できるように構成されている。また、図15に示される例では、防護殻140は、光ファイバーケーブル11の可動域の少なくとも側方の一部を覆っている。また、図15に示される例では、防護殻140は、下方に広がるほぼ漏斗状に構成されている。
 防護殻140は、固定管48を坑内に降下させることによって坑内を降下できる。坑内で防護殻140を降下させると、防護殻140の先端部141は掘削が進行中の岩盤表面202の外周部において岩盤と接触する。レーザー掘削装置3の吊り荷重を調整するなどして、防護殻140にかかる負荷を一定に保つことによって、ビーム放射端37と岩盤表面202の間隙112は一定に保持される。これによって、ビーム放射端37から発せられるレーザービーム204によって岩盤表面202に供給されるレーザービーム204のエネルギー密度が安定し、岩盤の安定的な破壊がもたらされる。このような状況を実現するためには、防護殻140にかける負荷を、例えば、1トンから10トンとすることができる。
 図15に示される例では、防護殻140の先端部141は、防護殻140の先端全周に渡って離散的に複数の流出口142有する形状に構成されている。管端36から岩盤表面202に向けて流下する掘削流体38は掘屑が付着するのを防止すべく防護殻140の内面を洗浄して岩盤表面202に到り、ノズル100から放出される透明流体と合流し、掘屑を伴って、流出口142を通って防護殻140の外部へ移動し、坑内を上昇する。先端部141は、岩盤と接触し、脆化した岩盤を切り崩して砕片とする。これに伴う摩耗を避けるために、先端部141は耐摩耗材料によって構成される。耐摩耗材料としては、例えば、WC-Co系の超硬合金、サーメット、セラミック及び工具鋼の中から選択することができる。耐摩耗材料で構成される先端部141は、バルク材であっても被覆材であってもよい。被覆材としては、例えば、鋼表面にCo基合金粉末、サーメット粉末又はセラミック粉末を溶射したものを用いることができる。
 第4実施形態に係るレーザー掘削装置3によれば、光ファイバーケーブル11の可動域の外に設けられ、光ファイバーケーブル11の可動域の少なくとも一部を覆う防護殻140を含んで構成されているので、光ファイバーケーブル11が岩盤などに衝突することによって破損することを抑制できる。
 図15に示される例では、管12の管端36はシール部49近傍に設けられ、管端36には掘削流体ジェット流を発生させるために流路が狭窄された形状のノズルは設けられていない。この場合、管12から突出した光ファイバーケーブル11の中心軸は、スイベル継手(図示せず)を使用して管12の中心軸と一致するように管端36において調整されている。また、光ファイバーケーブル11の管12から突出した部分においては、曲げ変形防止のための強化がなされている。
5.実施例
 上述のレーザー掘削装置を使用すれば、第1偏心リング13及び第2偏心リング15をそれぞれ所定の回転速度で回転させることによって管12の中心軸を遊星運動させることができる。これに伴って光ファイバーケーブル11のビーム放射端37を遊星運動させることができる。この作用によって、ビーム放射面201上においてビーム放射端37の軌跡が移動パターン203を描き、この移動パターン203を、レーザービーム204を介して岩盤表面202にレーザービームパターン205として拡大転写することが可能となる。このようなレーザービームパターン205の実施例を以下に示す。
5-1.第1実施例
 表1に、第1実施例の条件を示す。
Figure JPOXMLDOC01-appb-T000001
 サイクルタイムは、第1偏心リング13又は第2偏心リング15が1回転する時間である。偏心量は、第1偏心リング13においては第1偏心量22、第2偏心リング15においては第2偏心量23である。
 表1に示される条件で、レーザービーム204を120秒間照射した時のレーザービームパターン205を図16Aに示す。図16Aに示されるレーザービームパターン205は、光ファイバーケーブル11のビーム放射端37における光ファイバーケーブル11の中心線が描く軌跡と相似形である。光ファイバーケーブル11が複数の光ファイバー60を含んで構成されている場合には、レーザービームパターン205の近傍に、光ファイバー60の数に相当する数の軌跡が描かれる。
 第1実施例では、第1偏心量22と第2偏心量23の大きさが同じなので、レーザービームパターン205は、中心で交わるパターンとなっている。また、レーザービームパターン205は、第1偏心リング13が10回回転する60秒を1周期として繰り返されるパターンとなっている。
5-2.第2実施例
 表2に、第2実施例の条件を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示される条件で、レーザービーム204を120秒間照射した時のレーザービームパターン205を図16Bに示す。第2実施例では、第1偏心量22が第2偏心量23よりも大きいので、レーザービームパターン205の中心部において空白部分が生じる。
5-3.第3実施例
 表3に、第3実施例の条件を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示される条件で、レーザービーム204を120秒間照射した時のレーザービームパターン205を図16Cに示す。第3実施例では、第2実施例よりもさらに、第1偏心量22が第2偏心量23よりも大きいので、レーザービームパターン205の中心部の空白部分が第2実施例よりも大きくなっている。
5-4.第4実施例
 表4に、第4実施例の条件を示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示される条件で、レーザービーム204を120秒間照射した時のレーザービームパターン205を図16Dに示す。第4実施例では、第1偏心量22と第2偏心量23の大きさが同じなので、レーザービームパターン205は、中心で交わるパターンとなっている。また、120秒の間では、レーザービームパターン205が同一の軌跡を繰り返すことはないので、レーザービーム204を岩盤表面202に対して細かく照射できる。
5-5.第5実施例
 表5に、第5実施例の条件を示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示される条件で、レーザービーム204を120秒間照射した時のレーザービームパターン205を図16Eに示す。第5実施例では、第1偏心量22と第2偏心量23の大きさが同じなので、レーザービームパターン205は、中心で交わるパターンとなっている。また、レーザービームパターン205は、第1偏心リング13が6回回転する60秒を1周期として繰り返されるパターンとなっているので、第1実施例のレーザービームパターン205に比べて、岩盤表面202に対して荒く照射できる。
5-6.第6実施例
 表6に、第6実施例の条件を示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示される条件で、レーザービーム204を120秒間照射した時のレーザービームパターン205を図16Fに示す。第6実施例では、第1偏心量22が第2偏心量23よりも小さいので、レーザービームパターン205の中心部において空白部分が生じる。第2実施例及び第3実施例と比較すると、第6実施例のレーザービームパターン205は、周辺部を荒く照射できるパターンである。また、レーザービームパターン205は、第1偏心リング13が10回回転する60秒を1周期として繰り返されるパターンとなっている。
 上述の実施例1~6は、上述のレーザー掘削装置によって多様なレーザービームパターン205の形成が可能であることを示す。上述の実施例1~6においては、第1偏心リング13と第2偏心リング15とを連続回転させることを前提としたが、断続回転させることも可能である。この場合、さらに多様なレーザービームパターン205の形成が可能となる。
 なお、上述した実施形態及び変形例は一例であって、これらに限定されるわけではない。例えば各実施形態及び各変形例は、複数を適宜組み合わせることが可能である。
 本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
1…レーザー掘削装置、2…レーザー掘削装置、3…レーザー掘削装置、11…光ファイバーケーブル、12…管、13…第1偏心リング、14…軸受、15…第2偏心リング、16…軸受、17…固定リング、18…軸受、19…軌跡、20…軌跡、21…円、22…第1偏心量、23…第2偏心量、31…第1波動歯車装置、32…第2波動歯車装置、33…継手、34…継手、35…自在継手、36…管端、37…ビーム放射端、38…掘削流体、39…掘削流体ジェット流、42…結合部材、43…回転管、44…ハウジング、45…フォーカル軸受、46…中心軸、47…中心軸、48…固定管、49…シール部材、50…抗壁、60…光ファイバー、61…スロットロッド、62…押え巻層、63…テンションメンバー、64…鉄線層、65…保護シース、66…ジェリー、70…ジャケット、71…空隙、80…単孔ノズル、90…スリットノズル、100…ノズル、101…透明流体ジェット流、110…ノズル、112…間隙、113…液層厚、120…透明流体層、121…空隙、130…透明流体供給管、131…接続部、132…外管、133…内管、134…重複部、135…シール部、136…シール部、140…防護殻、141…先端部、142…流出口、150…保持機構、151…バネ機構、152…流体受け部、153…押さえ部、201…ビーム放射面、202…岩盤表面、203…移動パターン、204…レーザービーム、205…レーザービームパターン

Claims (9)

  1.  光ファイバーケーブルと、
     前記光ファイバーケーブルを内包する管と、
     前記管を貫通させ、軸受を介して前記管を回転自在に支持する第1偏心リングと、
     前記第1偏心リングを内包し、軸受を介して前記第1偏心リングを回転自在に支持する第2偏心リングと、
     前記第2偏心リングを内包し、軸受を介して前記第2偏心リングを回転自在に支持する固定リングと、
     を含み、
     前記第1偏心リング及び前記第2偏心リングの回転によって前記管の中心軸を移動させて、前記管に内包される前記光ファイバーケーブルのビーム放射端の位置を移動させる、レーザー掘削装置。
  2.  請求項1に記載のレーザー掘削装置において、
     前記管を貫通させる第1波動歯車装置と、
     前記管を貫通させる第2波動歯車装置と、
     をさらに含み、
     前記管を、継手を介して前記第1波動歯車装置の入力部に連結し、前記第1偏心リングを前記第1波動歯車装置の出力部に連結し、
     前記管を、継手を介して前記第2波動歯車装置の入力部に連結し、前記第2偏心リングを前記第2波動歯車装置の出力部に連結し、
     前記管の回転を前記第1波動歯車装置で減速して前記第1偏心リングを回転させ、
     前記管の回転を前記第2波動歯車装置で減速して前記第2偏心リングを回転させる、レーザー掘削装置。
  3.  請求項1又は2に記載のレーザー掘削装置において、
     空隙を有して前記光ファイバーケーブルを被覆するジャケットをさらに含む、レーザー掘削装置。
  4.  請求項3に記載のレーザー掘削装置において、
     前記光ファイバーケーブルと前記ジャケットと間の前記空隙と連通し、前記光ファイバーケーブルの前記ビーム放射端を囲むように設けられたノズルをさらに含む、レーザー掘削装置。
  5.  請求項3に記載のレーザー掘削装置において、
     前記光ファイバーケーブルは、複数の光ファイバーを含み、
     前記光ファイバーケーブルと前記ジャケットと間の前記空隙と連通し、前記複数の光ファイバーのそれぞれのビーム放射端を囲むように設けられたノズルをさらに含む、レーザー掘削装置。
  6.  請求項1ないし5のいずれか1項に記載のレーザー掘削装置において、
     前記管は、空隙を有して前記光ファイバーケーブルを内包し、
     前記光ファイバーケーブルと前記管との間の前記空隙と連通し、前記光ファイバーケーブルの前記ビーム放射端を囲むように設けられたノズルをさらに含む、レーザー掘削装置。
  7.  請求項1ないし6のいずれか1項に記載のレーザー掘削装置において、
     前記管は、互いに褶動可能に設けられた外管と内管とを含む、レーザー掘削装置。
  8.  請求項1ないし7のいずれか1項に記載のレーザー掘削装置において、
     前記光ファイバーケーブルの可動域の外に設けられ、前記光ファイバーケーブルの可動域の少なくとも一部を覆う防護殻をさらに含む、レーザー掘削装置。
  9.  請求項1ないし8のいずれか1項に記載のレーザー掘削装置において、
     前記光ファイバーケーブルの前記ビーム放射端は、前記管の端部よりも外側に突出している、レーザー掘削装置。
PCT/JP2012/075661 2011-10-04 2012-10-03 レーザー掘削装置 WO2013051611A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011220248 2011-10-04
JP2011-220248 2011-10-04
JP2012-199584 2012-09-11
JP2012199584A JP5256369B2 (ja) 2011-10-04 2012-09-11 レーザー掘削装置

Publications (1)

Publication Number Publication Date
WO2013051611A1 true WO2013051611A1 (ja) 2013-04-11

Family

ID=48043765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075661 WO2013051611A1 (ja) 2011-10-04 2012-10-03 レーザー掘削装置

Country Status (2)

Country Link
JP (1) JP5256369B2 (ja)
WO (1) WO2013051611A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956100A (zh) * 2018-08-13 2018-12-07 合肥英睿系统技术有限公司 一种激光校准装置
CN109139034A (zh) * 2018-08-08 2019-01-04 华中科技大学 一种采用激光切割破岩的隧道掘进装置及方法
WO2020077065A1 (en) * 2018-10-10 2020-04-16 Saudi Arabian Oil Company High power laser completion drilling tool and methods for upstream subsurface applications
CN111053611A (zh) * 2019-12-03 2020-04-24 中国科学院合肥物质科学研究院 激光骨科钻孔装置
CN113374473A (zh) * 2021-07-21 2021-09-10 四川大学 一种模拟月基环境钻进过程激光辅助破岩装置
CN113818844A (zh) * 2021-05-31 2021-12-21 中国海洋石油集团有限公司 一种用于超短半径井的完井管柱结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9063315B2 (en) * 2013-09-24 2015-06-23 Baker Hughes Incorporated Optical cable, downhole system having optical cable, and method thereof
KR102123458B1 (ko) * 2018-07-25 2020-06-16 김양수 편심슬롯장치를 이용한 암반절개공법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194190A (ja) * 1987-10-01 1989-04-12 Koken Boring Mach Co Ltd 穴掘機
JPH0679889U (ja) * 1993-04-28 1994-11-08 近畿イシコ株式会社 建設機械用二軸駆動装置
JPH08270369A (ja) * 1995-03-28 1996-10-15 Sekiyu Kodan 掘削機の掘削方向制御装置
JPH09217576A (ja) * 1995-11-22 1997-08-19 Astec Dev Ltd シャフトの整列装置および方向掘削ドリルの整列装置並びに方向掘削穴の掘削方法
WO2010096086A1 (en) * 2008-08-20 2010-08-26 Foro Energy Inc. Method and system for advancement of a borehole using a high power laser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286661A (en) * 1977-12-27 1981-09-01 Otis Engineering Corporation Equalizing valve for use in a well tool string
JPS57191561A (en) * 1981-05-21 1982-11-25 Taisei Kiso Sekkei Kk Measuring method for flow of fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194190A (ja) * 1987-10-01 1989-04-12 Koken Boring Mach Co Ltd 穴掘機
JPH0679889U (ja) * 1993-04-28 1994-11-08 近畿イシコ株式会社 建設機械用二軸駆動装置
JPH08270369A (ja) * 1995-03-28 1996-10-15 Sekiyu Kodan 掘削機の掘削方向制御装置
JPH09217576A (ja) * 1995-11-22 1997-08-19 Astec Dev Ltd シャフトの整列装置および方向掘削ドリルの整列装置並びに方向掘削穴の掘削方法
WO2010096086A1 (en) * 2008-08-20 2010-08-26 Foro Energy Inc. Method and system for advancement of a borehole using a high power laser

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139034A (zh) * 2018-08-08 2019-01-04 华中科技大学 一种采用激光切割破岩的隧道掘进装置及方法
CN108956100A (zh) * 2018-08-13 2018-12-07 合肥英睿系统技术有限公司 一种激光校准装置
CN108956100B (zh) * 2018-08-13 2020-12-04 合肥英睿系统技术有限公司 一种激光校准装置
WO2020077065A1 (en) * 2018-10-10 2020-04-16 Saudi Arabian Oil Company High power laser completion drilling tool and methods for upstream subsurface applications
US10941618B2 (en) 2018-10-10 2021-03-09 Saudi Arabian Oil Company High power laser completion drilling tool and methods for upstream subsurface applications
US11359438B2 (en) 2018-10-10 2022-06-14 Saudi Arabian Oil Company High power laser completion drilling tool and methods for upstream subsurface applications
CN111053611A (zh) * 2019-12-03 2020-04-24 中国科学院合肥物质科学研究院 激光骨科钻孔装置
CN111053611B (zh) * 2019-12-03 2023-05-30 中国科学院合肥物质科学研究院 激光骨科钻孔装置
CN113818844A (zh) * 2021-05-31 2021-12-21 中国海洋石油集团有限公司 一种用于超短半径井的完井管柱结构
CN113374473A (zh) * 2021-07-21 2021-09-10 四川大学 一种模拟月基环境钻进过程激光辅助破岩装置

Also Published As

Publication number Publication date
JP2013092036A (ja) 2013-05-16
JP5256369B2 (ja) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5256369B2 (ja) レーザー掘削装置
US9512679B2 (en) Methods and apparatus for removal and control of material in laser drilling of a borehole
US8967298B2 (en) Transmission of light through light absorbing medium
US10199798B2 (en) Downhole laser systems, apparatus and methods of use
US6851488B2 (en) Laser liner creation apparatus and method
US6755262B2 (en) Downhole lens assembly for use with high power lasers for earth boring
US20120067643A1 (en) Two-phase isolation methods and systems for controlled drilling
US20100078414A1 (en) Laser assisted drilling
EP3833851B1 (en) Laser tool configured for downhole beam generation
EP2388433A1 (en) Laser drilling method and system
US20170152744A1 (en) Method of mining using a laser
EP3810893B1 (en) Laser tool that combines purging medium and laser beam
US20190178036A1 (en) Downhole laser systems, apparatus and methods of use
US9085050B1 (en) High power laser fluid jets and beam paths using deuterium oxide
WO2019117872A1 (en) High power optical slip ring laser drilling system and method
WO2021171067A1 (en) Extended laser tool
US20230407724A1 (en) Wellbore drilling and completion systems using laser head
US20220000166A1 (en) Methods of binding food particles with edible bean products and products produced therefrom
WO2023250009A1 (en) Wellbore drilling and completion systems using laser head
CN115949351A (zh) 一种基于激光辅助帷幕成形的钻孔稳定系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838099

Country of ref document: EP

Kind code of ref document: A1