WO2013047850A1 - マルチモード共振器、マルチモードフィルタ及び無線通信装置 - Google Patents

マルチモード共振器、マルチモードフィルタ及び無線通信装置 Download PDF

Info

Publication number
WO2013047850A1
WO2013047850A1 PCT/JP2012/075271 JP2012075271W WO2013047850A1 WO 2013047850 A1 WO2013047850 A1 WO 2013047850A1 JP 2012075271 W JP2012075271 W JP 2012075271W WO 2013047850 A1 WO2013047850 A1 WO 2013047850A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
mode
resonator
multimode resonator
multimode
Prior art date
Application number
PCT/JP2012/075271
Other languages
English (en)
French (fr)
Inventor
石崎 俊雄
Original Assignee
学校法人 龍谷大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011218418A external-priority patent/JP5858521B2/ja
Priority claimed from JP2012187082A external-priority patent/JP5966238B2/ja
Application filed by 学校法人 龍谷大学 filed Critical 学校法人 龍谷大学
Priority to US14/348,073 priority Critical patent/US9385409B2/en
Publication of WO2013047850A1 publication Critical patent/WO2013047850A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2053Comb or interdigital filters; Cascaded coaxial cavities the coaxial cavity resonators being disposed parall to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/04Coaxial resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2082Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with multimode resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators

Definitions

  • the present invention relates to a multimode resonator in which a plurality of resonance modes are degenerated, a multimode filter using the multimode resonator, and a wireless communication apparatus using the multimode filter.
  • wireless communication devices that perform wireless communication using high-frequency signals such as microwaves have been used in many places such as mobile phone base stations.
  • these wireless communication devices incorporate a high-frequency filter having a multistage configuration in which a plurality of resonators that resonate at the resonance frequency are coupled.
  • the high-frequency filter has an N-stage configuration, typically, N resonators that resonate in one mode are coupled in order.
  • a multi-mode resonator in which the resonance frequency is substantially the same and a plurality of resonance modes are degenerated is proposed so that the high-frequency filter can be reduced in size by forming fewer than N resonators. Has been.
  • Patent Document 1 describes a multimode resonator in which four resonance modes are degenerated.
  • 18 to 21 show the configuration and electric field distribution of the multimode resonator 101 similar to that described in Patent Document 1.
  • FIG. 18 to 21 in order to show the members inside the outer conductor 102, the portion of the outer conductor 102 in front of these members is shown transparently.
  • the electric field is indicated by a solid arrow.
  • the magnetic field is distributed around the electric field.
  • the multimode resonator 101 includes a box-shaped outer conductor (cavity) 102 provided with a dielectric core 105 having a high dielectric constant having a special shape (substantially octagonal prism shape).
  • a dielectric core 105 having a high dielectric constant having a special shape (substantially octagonal prism shape).
  • an electromagnetic field whose wavelength is shortened by the wavelength shortening effect due to the high dielectric constant is unevenly distributed and resonates.
  • the three resonance modes of two TM modes (TM01 ⁇ x mode, TM01 ⁇ y mode) and one TE mode (TE01 ⁇ mode) are degenerated.
  • the two TM modes are modes in which the electric field runs in the X-axis direction and the Y-axis direction, respectively, and the electromagnetic field resonates with a half wavelength.
  • the TE mode is a mode in which the electric field runs in the circumferential direction around the central axis of the dielectric core 105 and the electromagnetic field resonates with one
  • a columnar center conductor 103 whose one end is short-circuited to the outer conductor 102 is inserted into a center hole formed in the center axis of the dielectric core 105. It has been added. With this configuration, a resonance mode of a so-called semi-coaxial resonator can be obtained. As shown in FIG. 21, the resonance mode of the semi-coaxial resonator is such that the electric field runs radially from the central conductor 103 toward the outer conductor 102 and the electromagnetic field is distributed along the central conductor 103 at a quarter wavelength. It is a TEM mode that resonates.
  • the resonance frequency of the TEM mode is such that, for example, the outer diameter of the center conductor 103 is different so that the gap distance from the center conductor 103 to the outer conductor 102 is shorter on the short-circuit end 103a side than the open end 103b side of the center conductor 103.
  • the resonance frequencies of the two TM modes and the TE mode are aligned.
  • the configuration of the multi-mode resonator 101 can reduce as many as four resonance modes.
  • the dielectric core 105 acting as a dielectric resonator is an essential member, and the cost for creating the dielectric core 105 having desired characteristics is very high.
  • the multimode resonator 101 cannot be said to have high utilization efficiency of the space occupied by the multimode resonator 101 because the TEM mode and other modes do not share an electromagnetic field in many places. .
  • the present invention has been made in view of the above-mentioned reasons, and its purpose is to degenerate at least three resonance modes, and does not necessarily require a dielectric member, and the utilization efficiency of the occupied space is improved.
  • a multimode resonator is a multimode resonator in which at least three resonance modes are degenerated, and both ends of a cylindrical peripheral wall portion are connected to the first end.
  • a box-shaped outer conductor closed by an end portion and a second end portion, a columnar first conductor disposed inside the outer conductor, one end short-circuited to the first end portion of the outer conductor and the other end opened And a central conductor.
  • the three resonance modes have two TE modes that resonate with a half wavelength at both ends of the outer conductor and a quarter wavelength around the first central conductor.
  • a resonating TEM mode is preferably used.
  • the multimode resonator further includes a columnar second central conductor disposed inside the outer conductor, one end of which is short-circuited to the second end of the outer conductor and the other end is opened. , At least four resonance modes are degenerated. In this case, preferably, one of the four resonance modes is a TEM mode which resonates with a quarter wavelength around the second central conductor.
  • the lengths of the first central conductor and the second central conductor in the longitudinal direction are substantially the same.
  • the first center conductor and the second center conductor are connected by a thin lead wire of the conductor.
  • an inductance component of the lead wire forms a parallel resonance circuit with a capacitance between the first center conductor and the second center conductor, and the parallel is made at the resonance frequency of the two TEM modes. Resonate the resonant circuit.
  • a plurality of convex portions extending from the inner wall toward the center and extending in the longitudinal direction are formed on the inner wall of the peripheral wall portion of the outer conductor.
  • the number of the convex portions formed is four.
  • the internal space of the outer conductor is filled with air or formed of a dielectric having a high dielectric constant.
  • a multimode filter according to a preferred embodiment of the present invention has a configuration using one multimode resonator or a multistage configuration using a plurality of multimode resonators.
  • a wireless communication apparatus incorporates the multimode filter described above.
  • the outer conductor and the first center conductor configured as described above, at least three resonance modes are degenerated, and a dielectric member such as a dielectric core is not necessarily required.
  • a multimode resonator with high utilization efficiency can be provided, and furthermore, by further including the second center conductor, at least four resonance modes can be degenerated.
  • FIG. 1 shows a configuration of a multimode resonator 1 according to an embodiment of the present invention, in which (a) is a cross-sectional view in the longitudinal direction, (b) is a cross-sectional view orthogonal to the longitudinal direction at a position GG, (C) is a cross-sectional view orthogonal to the longitudinal direction at the position AA (and BB). It is sectional drawing of the longitudinal direction which shows the modification of a structure of the multimode resonator 1 same as the above.
  • FIG. 2 schematically shows the electric field distribution of one TE mode of the multimode resonator 1 as described above, where (a) is a cross-sectional view in the longitudinal direction, and (b) is orthogonal to the longitudinal direction at the position GG.
  • FIG. 2 schematically shows another TE mode electric field distribution of the multimode resonator 1, wherein (a) is a longitudinal sectional view, and (b) is a longitudinal direction at a position GG.
  • An orthogonal cross-sectional view, (c) is a cross-sectional view orthogonal to the longitudinal direction at the position AA (and BB).
  • FIG. 2 schematically shows an electric field distribution of one TEM mode of the multimode resonator 1, wherein (a) is a sectional view in the longitudinal direction, and (b) is orthogonal to the longitudinal direction at the position AA.
  • FIG. 2 schematically shows another TEM mode electric field distribution of the multimode resonator 1, wherein (a) is a sectional view in the longitudinal direction, and (b) is a longitudinal direction at the position AA.
  • FIG. 4C is a cross-sectional view orthogonal to the longitudinal direction at the position BB. It is a block diagram which shows the example of a radio
  • FIG. 6 shows a configuration of a multimode resonator 5 according to still another embodiment of the present invention, where (a) is a longitudinal sectional view, and (b) is a position along AA (and BB). It is sectional drawing orthogonal to the longitudinal direction.
  • FIG. 6 is a cross-sectional view orthogonal to the longitudinal direction at the position AA (and BB) showing a modification of the configuration of the multimode resonator 5 of the above. It is sectional drawing of the longitudinal direction which shows another modification of a structure of the multimode resonator 5 same as the above.
  • FIG. 2 schematically shows an electric field distribution of one TE mode of the multimode resonator 5 according to the embodiment, in which (a) is a cross-sectional view in the longitudinal direction, and (b) is a position of AA (and BB). It is sectional drawing orthogonal to the longitudinal direction in.
  • FIG. 3 schematically shows another TE mode electric field distribution of the multimode resonator 5 according to the first embodiment, in which (a) is a cross-sectional view in the longitudinal direction, and (b) is a view taken along line AA (and BB). It is sectional drawing orthogonal to the longitudinal direction in a position.
  • FIG. 3 schematically shows another TE mode electric field distribution of the multimode resonator 5 according to the first embodiment, in which (a) is a cross-sectional view in the longitudinal direction, and (b) is a view taken along line AA (and BB). It is sectional drawing orthogonal to the longitudinal direction in a position.
  • FIG. 2 schematically shows the electric field distribution of one TEM mode of the multimode resonator 5 as described above, where (a) is a sectional view in the longitudinal direction, and (b) is orthogonal to the longitudinal direction at the position AA.
  • (C) is a cross-sectional view orthogonal to the longitudinal direction at the position BB.
  • FIG. 2 schematically shows another TEM mode electric field distribution of the multimode resonator 5, wherein (a) is a sectional view in the longitudinal direction, and (b) is a longitudinal direction at the position AA.
  • FIG. 4C is a cross-sectional view orthogonal to the longitudinal direction at the position BB.
  • the structure of the conventional multimode resonator 101 and the electric field distribution of another TM mode are shown, (a) is an external view in the longitudinal direction, and (b) is an external view orthogonal to the longitudinal direction.
  • the structure of the conventional multimode resonator 101 and the electric field distribution of TE mode are shown, Comprising: (a) is an external view in a longitudinal direction, (b) is an external view orthogonal to a longitudinal direction.
  • the structure of the conventional multimode resonator 101 and the electric field distribution of TEM mode are shown, Comprising: (a) is an external view in a longitudinal direction, (b) is an external view orthogonal to a longitudinal direction.
  • the multimode resonator 1 includes an outer conductor 2, a first center conductor 3, and a second center conductor 4.
  • the multimode resonator 1 is used in a high frequency region such as a microwave.
  • the outer conductor 2 is made of a metal material, and has a box shape in which both ends of the cylindrical peripheral wall 2c are closed by the first end 2a and the second end 2b.
  • the peripheral wall 2c is cylindrical.
  • the first center conductor 3 and the second center conductor 4 are made of a metal material and are disposed symmetrically inside the outer conductor 2.
  • the first center conductor 3 has one end 3a short-circuited to the first end 2a of the outer conductor 2 and the other end 3b open.
  • the second center conductor 4 has one end 4a short-circuited to the first end 2b of the outer conductor 2 and the other end 4b open. Therefore, the other end 3b of the first center conductor 3 and the other end 4b of the second center conductor 4 are opposed to each other via a longitudinal gap Sg having a predetermined distance.
  • first central conductor 3 and the second central conductor 4 are arranged so that their central axes substantially coincide with each other and also with the central axis of the external conductor 2.
  • first center conductor 3 and the second center conductor 4 are cylindrical.
  • first central conductor 3 and the second central conductor 4 may be columnar having hollow portions 3d and 4d, that is, bottomed cylindrical. In this case, as shown in FIG. 2, only the other ends 3 b and 4 b may have end faces, and the one ends 3 a and 4 a may open toward the outside of the external conductor 2.
  • the multimode resonator 1 can have four resonance modes.
  • specific resonance modes that is, two TE modes (first TE mode and second TE mode) and two TEM modes (first TEM mode and second TEM mode) will be described.
  • the electromagnetic field is generated in the internal space S that is a portion other than the first central conductor 3 and the second central conductor 4 in the outer conductor 2, and the electric field generated in the internal space S is indicated by a solid arrow in the figure. Is shown.
  • the magnetic field is distributed around the electric field.
  • the longitudinal direction of the multimode resonator 1 is the Z-axis direction
  • the first direction in the direction orthogonal thereto is the X-axis direction
  • the second direction that is orthogonal to the first direction and the second direction is orthogonal to the first direction.
  • the description will be made on the Y-axis direction.
  • the electric field is distributed around the first direction (X-axis direction), and the electromagnetic field is at both ends 2a and 2b of the outer conductor 2. It is distributed continuously between the two ends 2a and 2b and resonates with a half wavelength. More specifically, in the first TE mode, as shown in FIG. 3B, an electric field is present in the cross section GG at the center of the gap Sg between the first center conductor 3 and the second center conductor 4. It runs across the X-axis direction and crosses between the opposing portions of the peripheral wall 2c of the outer conductor 2.
  • This electric field is substantially the same as the so-called TE111 mode in which the electric field runs in the X-axis direction of the cylindrical cavity resonator (the resonator in which the first central conductor 3 and the second central conductor 4 are not provided). Yes. Then, following this electric field, as shown in FIG. 3C, the cross-section AA at the Z-axis position where the first central conductor 3 exists and the Z-axis position where the second central conductor 4 exists. In section BB in FIG. 2, an electric field substantially similar to the electric field in section GG is generated around the first central conductor 3 or the second central conductor 4.
  • the electric field is distributed around the second direction (Y-axis direction), and the electromagnetic field is at both ends 2a, 2b of the outer conductor 2. It is distributed continuously between the two ends 2a and 2b and resonates with a half wavelength. More specifically, in the second TE mode, as shown in FIG. 4B, an electric field is present in the cross section GG at the center of the gap Sg between the first center conductor 3 and the second center conductor 4. The outer conductor 2 crosses by running in the Y-axis direction between opposing portions of the peripheral wall 2c. This electric field is substantially the same as the so-called TE111 mode in which the electric field runs in the Y-axis direction of the cylindrical cavity resonator.
  • the electric field is generated between the first central conductor 3 and the peripheral wall 2 c of the outer conductor 2, and the second central conductor 4.
  • This is a TEM mode that runs radially between the peripheral wall portions 2 c of the outer conductor 2.
  • the electromagnetic field is at the position of one end 3a of the first center conductor 3 (position of the first end 2a of the outer conductor 2) and the other end of the first center conductor 3. It is distributed continuously between the positions 3b and resonates around the first central conductor 3 with a quarter wavelength.
  • the electric field becomes maximum near the position of the other end 3 b of the first center conductor 3, and the magnetic field becomes maximum near the one end 3 a of the first center conductor 3.
  • the electromagnetic field is generated between the position of one end 4a of the second central conductor 4 (the position of the second end 2b of the external conductor 2) and the second central conductor 4. It is distributed continuously between the positions of the other end 4b and resonates around the second central conductor 4 with a quarter wavelength.
  • the electric field becomes maximum near the position of the other end 4 b of the second center conductor 4, and the magnetic field becomes maximum near the one end 4 a of the second center conductor 4.
  • the first TEM mode includes an electric field direction between the first central conductor 3 and the peripheral wall portion 2c of the outer conductor 2, and an electric field direction between the second central conductor 4 and the peripheral wall portion 2c of the outer conductor 2.
  • the second TEM mode includes the direction of the electric field between the first central conductor 3 and the peripheral wall 2c of the outer conductor 2, and the direction of the electric field between the second central conductor 4 and the peripheral wall 2c of the outer conductor 2. Is the opposite direction.
  • the electromagnetic field around the first center conductor 3 and the electromagnetic field around the second center conductor 4 interfere with each other according to the distance Sg between the first center conductor 3 and the second center conductor 4.
  • the resonance frequency of the first TEM mode and the second TEM mode is slightly affected by the interference. 5 and 6, the electric field generated in the gap Sg between the first center conductor 3 and the second center conductor 4 is indicated by a broken line.
  • the resonance frequencies of the four resonance modes are such that the length M1 between the two end portions 2a and 2b of the outer conductor 2 is almost a half wavelength for the first TE mode and the second TE mode.
  • the first TEM mode and the second TEM mode are frequencies at which the length M2 of the first center conductor 3 and the length M3 of the second center conductor 4 are approximately a quarter wavelength. is there. Further, since the wavelengths of the first TE mode and the second TE mode are substantially the same as the in-tube wavelength of the cylindrical cavity resonator, even at the same frequency, the wavelengths of the first TEM mode and the second TEM mode are higher. Longer in principle.
  • the wavelengths of the first TE mode and the second TE mode can be adjusted by the diameter M4 of the peripheral wall 2c of the outer conductor 2. Therefore, basically, the length M2 of the first center conductor 3 and the length M3 of the second center conductor 4 are determined according to the value of the resonance frequency, and between the both end portions 2a, 2b of the outer conductor 2. By determining the length M1 and the diameter M4 of the peripheral wall 2c, it is possible to make the four resonance modes degenerate by making the resonance frequency substantially the same.
  • the use efficiency of the space occupied by the multimode resonator 1 is high from that point.
  • the dielectric member as shown in the background art is not necessarily required.
  • an input / output terminal, a frequency adjusting member, or the like can be attached to an appropriate portion of the outer conductor 2.
  • the input / output terminal is connected to the multimode resonator 1 to input / output a signal.
  • an electrode coupled to the first center conductor 3 or the second center conductor 4 is connected to the inner side.
  • the frequency adjusting member adjusts the frequency of each resonance mode.
  • the multimode resonator 1 in which the four resonance modes are degenerated can be used as a multimode filter by coupling the resonance modes to each other.
  • a known coupling adjusting member such as a coupling adjusting screw is attached to an appropriate portion of the outer conductor 2 so that the electromagnetic field distribution is asymmetrical to cause perturbation, thereby allowing the coupling to occur.
  • the multimode filter may be configured to use one multimode resonator 1 or a multistage configuration using a plurality of multimode resonators 1 according to desired characteristics.
  • this multi-mode filter it is possible to reduce the size of the wireless communication device at low cost. For example, as shown in FIG.
  • a transmission filter 12 and a reception filter 13 connected together with an antenna 11 are replaced with multimode filters having different resonance frequencies. Then, it will be miniaturized at a very low cost.
  • the simulation results performed by the inventors of the present invention for the multimode resonator 1 are as follows.
  • the length M1 between both ends 2a and 2b of the outer conductor 2 is 167.6 mm
  • the length M2 of the first center conductor 3 and the length M3 of the second center conductor 4 are both 15 mm
  • the peripheral wall portion of the outer conductor 2 The diameter M4 of 2c was 100 mm.
  • the diameter M5 of the first center conductor 3 and the second center conductor 4 was 50 mm.
  • the resonance frequency was 2.02 GHz in the first TE mode and the second TE mode, 2.04 GHz in the first TEM mode, and 2.00 GHz in the second TEM mode. Therefore, this multimode resonator 1 has four resonance modes degenerated, and can be used as a multimode filter by coupling them together.
  • the multimode resonator 1 ′ is obtained by deforming the multimode resonator 1 to degenerate three resonance modes. As shown in FIG. 8, the multimode resonator 1 ′ is configured such that the length M2 of the first center conductor 3 and the length M3 of the second center conductor 4 of the multimode resonator 1 are different from each other. Only the resonance mode of the mode is degenerated, and the resonance frequency of the resonance mode of the other TEM mode is separated so as not to degenerate. Therefore, in the multimode resonator 1 ′, the three resonance modes are degenerated.
  • the simulation results performed by the inventors of the present invention for the multimode resonator 1 ′ are as follows.
  • the length M1 between both ends 2a and 2b of the outer conductor 2 is 88 mm
  • the length M2 of the first center conductor 3 is 16.2 mm
  • the length M3 of the second center conductor 4 is 37.5 mm
  • the outer conductor 2 The diameter M4 of the peripheral wall portion 2c was 120 mm.
  • the diameter M5 of the first center conductor 3 and the second center conductor 4 was 64 mm.
  • the resonance frequency was 2.00 GHz in all of the first TE mode, the second TE mode, and the first TEM mode.
  • the multimode resonator 1 has three resonance modes degenerated, and can be used as a multimode filter by coupling them together.
  • the resonant frequency of the second TEM mode was 1.15 GHz.
  • the multimode resonator 5 is obtained by modifying the multimode resonator 1 to degenerate at least four resonance modes. As shown in FIG. 9, the multimode resonator 5 includes an outer conductor 6, a first center conductor 7, and a second center conductor 8.
  • the outer conductor 6 is made of a metal material like the outer conductor 2 described above, and has a box shape in which both ends of the cylindrical peripheral wall portion 6c are closed by the first end portion 6a and the second end portion 6b.
  • the peripheral wall 6c is cylindrical.
  • a plurality of convex portions 6ca extending toward the center and extending in the longitudinal direction are formed on the inner wall of the peripheral wall portion 6c of the outer conductor 6, a plurality of convex portions 6ca extending toward the center and extending in the longitudinal direction are formed.
  • the length in the radial direction toward the center of the convex portion 6ca (the height of the convex portion 6ca) (M6 in FIG. 9B) is the tip of the convex portion 6ca, the first central conductor 7 and the second central conductor 8. It has such a length as to have a predetermined gap between them.
  • the length of the gap is usually set to one fifth or less of the length of the gap Sg between the first center conductor and the second center conductor described later. Is good.
  • convex portions 6ca are formed at substantially equal intervals in the circumferential direction as shown in the figure. In some cases, an even number greater than four may be formed.
  • the cross section of the convex portion 6ca can be rectangular or trapezoidal.
  • the convex portion 6ca is formed by joining a plate member made of a metal material to the inner wall of the cylindrical peripheral wall portion 6c and integrating the outer conductor 6 as shown in FIG. It may be formed by being recessed.
  • the first center conductor 7 and the second center conductor 8 are made of a metal material and symmetrically inside the outer conductor 6, similarly to the first center conductor 3 and the second center conductor 4. It is arranged.
  • the first center conductor 7 has one end 7 a short-circuited to the first end 6 a of the outer conductor 6 and the other end 7 b opened.
  • the second center conductor 8 has one end 8a short-circuited to the first end 6b of the outer conductor 6 and the other end 8b open. Therefore, the other end 7b of the first center conductor 7 and the other end 8b of the second center conductor 8 are opposed to each other via a longitudinal gap Sg having a predetermined distance.
  • first center conductor 7 and the second center conductor 8 are substantially the same.
  • first central conductor 7 and the second central conductor 8 are arranged so that their central axes substantially coincide with each other and also with the central axis of the external conductor 6.
  • first central conductor 7 and the second central conductor 8 are cylindrical.
  • the first center conductor 7 and the second center conductor 8 may be columnar having hollow portions 7d and 8d, that is, bottomed cylindrical. In this case, as shown in FIG. 11, only the other ends 7 b and 8 b may have end faces, and the one ends 7 a and 8 a may open toward the outside of the external conductor 6.
  • the first center conductor 7 and the second center conductor 8 are connected by a thin conductor lead wire 9.
  • the multimode resonator 5 can have four resonance modes.
  • specific resonance modes that is, two TE modes (first TE mode and second TE mode) and two TEM modes (first TEM mode and second TEM mode) will be described. This will be described with reference to FIGS.
  • the electromagnetic field is generated in the internal space S that is a portion other than the first central conductor 7 and the second central conductor 8 in the external conductor 6, and the electric field generated in the internal space S in FIG. Is shown. Although not shown, the magnetic field is distributed around the electric field.
  • the longitudinal direction of the multimode resonator 5 is the Z-axis direction
  • the first direction in the direction orthogonal thereto is the X-axis direction
  • the second direction that is orthogonal to the first direction is orthogonal to the first direction.
  • the description will be made on the Y-axis direction.
  • the electric field runs in the first direction (X-axis direction) between the tip of the convex portion 6ca and the first center conductor 7 or the second center conductor 8. Distributed in the center, the electromagnetic field resonates between the both end portions 6a and 6b of the outer conductor 6 with a half wavelength.
  • the electric field runs in the second direction (Y-axis direction) between the tip of the convex portion 6 ca and the first center conductor 7 or the second center conductor 8.
  • the electromagnetic field resonates between the both end portions 6a and 6b of the outer conductor 6 with a half wavelength.
  • the electric field is generated between the first central conductor 7 and the peripheral wall 6 c of the outer conductor 6, and the second central conductor 8.
  • This is a TEM mode that runs radially between the peripheral wall portions 6 c of the outer conductor 6.
  • the electromagnetic field is at the position of one end 7a of the first central conductor 7 (position of the first end 6a of the external conductor 6) and the other end of the first central conductor 7. It is distributed continuously between the positions 7b and resonates around the first central conductor 7 with a quarter wavelength.
  • the electric field is maximized near the position of the other end 7 b of the first center conductor 7, and the magnetic field is maximized near the end 7 a of the first center conductor 7.
  • the electromagnetic field is generated between the position of one end 8a of the second central conductor 8 (the position of the second end 6b of the external conductor 6) and the second central conductor 8. It is distributed continuously between the positions of the other end 8b and resonates around the second central conductor 8 with a quarter wavelength.
  • the electric field is maximized near the position of the other end 8 b of the second center conductor 8, and the magnetic field is maximized near the end 8 a of the second center conductor 8. Further, in these two TEM modes, the electric field in the peripheral wall portion 6c other than the convex portion 6ca hardly occurs or is extremely small.
  • the first TEM mode includes the direction of the electric field between the first central conductor 7 and the peripheral wall portion 6c of the outer conductor 6, and the direction of the electric field between the second central conductor 8 and the peripheral wall portion 6c of the outer conductor 6. Are in the same direction.
  • the direction of the electric field between the first central conductor 7 and the peripheral wall 6c of the outer conductor 6 and the direction of the electric field between the second central conductor 8 and the peripheral wall 6c of the outer conductor 6 are Is the opposite direction.
  • the first center conductor 7 and the second center conductor 8 facing each other have a large coupling due to the capacitance unless the distance between the gaps Sg is long. Then, the electromagnetic field around the first center conductor 7 and the electromagnetic field around the second center conductor 8 interfere according to the distance Sg between the first center conductor 7 and the second center conductor 8. However, the resonance frequency of the first TEM mode and the second TEM mode is easily affected by the interference. As will be described later, this interference can be extremely reduced by the lead wire 9.
  • the resonance frequency of such four resonance modes is such that the length M1 between the both end portions 6a and 6b of the outer conductor 6 is almost a half wavelength in the first TE mode and the second TE mode.
  • the length M2 of the first center conductor 7 and the length M3 of the second center conductor 8 are approximately a quarter wavelength. Is the frequency. Since the wavelengths of the first TE mode and the second TE mode are substantially the same as the in-tube wavelength of the cylindrical cavity resonator, even the same frequency is more fundamental than the wavelengths of the first TEM mode and the second TEM mode.
  • the resonance frequencies of the first TE mode and the second TE mode are higher than the resonance frequencies of the first TEM mode and the second TEM mode.
  • the resonance frequencies of the first TE mode and the second TE mode and the resonance frequencies of the first TEM mode and the second TEM mode can be made closer to each other by the convex portion 6ca as described later.
  • the multi-mode resonator 5 is similar to the multi-mode resonator 1 described above, a plurality of resonance modes share an electromagnetic field at any location in the internal space S.
  • the utilization efficiency of the space occupied by the resonator 5 is high, and the dielectric member as shown in the background art is not necessarily required.
  • the lead wire 9 and the convex portion 6ca of the external conductor 6 make the resonance frequencies of the four resonance modes substantially coincide with each other to facilitate multi-mode reduction by degenerating the four resonance modes.
  • the length M1 between both ends 6a and 6b of the outer conductor 6 is 112 mm
  • the length M2 of the first center conductor 7 and the length M3 of the second center conductor 8 are 37.5 mm
  • the diameter M4 of the peripheral wall 6c of the outer conductor 6 was 100 mm.
  • the diameter M5 of the first center conductor 7 and the second center conductor 8 was 49 mm.
  • the lead wire 9 is split (separated) by the resonance frequency of the first TEM mode and the second TEM mode due to the coupling by the capacitance between the first center conductor 7 and the second center conductor 8. ) To suppress the phenomenon.
  • the lead wire 9 has an inductance component having an inductance value L approximately represented by the equation (1), where a is a length and b is a diameter.
  • This inductance component forms a parallel resonance circuit with the capacitance between the first center conductor 7 and the second center conductor 8, and when it resonates, it is between the first center conductor 7 and the second center conductor 8. Then, the electric field coupling is canceled, and the interference between the electromagnetic field around the first center conductor 7 and the electromagnetic field around the second center conductor 8 is extremely reduced. Therefore, the resonance frequency of the first TEM mode and the second TEM mode can be made to substantially coincide with each other by causing the parallel resonance circuit to resonate at the resonance frequency of the first TEM mode and the second TEM mode. Note that the frequency at which the parallel resonance circuit resonates is adjusted, for example, by changing the diameter of the lead wire 9 to control the inductance value.
  • the lead wire 9 can cancel the influence of the coupling due to the capacitance between the first center conductor 7 and the second center conductor 8, so that the resonance frequencies of the first TEM mode and the second TEM mode are eliminated.
  • the distance of the gap Sg between the first center conductor 7 and the second center conductor 8 can be shortened.
  • the first center conductor 7 and the second center conductor 7 can be shortened. It can be made shorter than any length of the two central conductors 8.
  • FIG. 16A shows simulation results showing changes in the resonance frequency of the first TEM mode and the second TEM mode when the inductance value is changed by changing the diameter of the lead wire 9. .
  • the resonance frequency changes depending on the diameter of the lead wire 9, and the resonance frequency of the first TEM mode and the resonance frequency of the second TEM mode coincide with each other in the vicinity of the diameter of 0.4 mm. I understand that.
  • this simulation is performed in the state which does not provide the convex part 6ca.
  • the convex portion 6ca lowers the resonance frequencies of the first TE mode and the second TE mode that are higher than the resonance frequencies of the first TEM mode and the second TEM mode. That is, the convex portion 6ca which is a part of the outer conductor 6 forms a capacitive coupling between the first center conductor 7 and the second center conductor 8, and the equivalent circumferential length of the outer conductor 6 is long. This is because the cut-off frequency decreases.
  • the resonance frequencies of the first TE mode and the second TE mode are made closer to the resonance frequencies of the first TEM mode and the second TEM mode. be able to.
  • FIG. 16B shows a simulation result showing changes in the resonance frequency of each of the four resonance modes when the height M6 of the convex portion 6ca is changed.
  • the resonance frequency of the first TE mode and the second TE mode decreases as the height M6 of the convex portion 6ca is increased.
  • the tendency for the convex part 6ca to raise the resonant frequency of a 1st TEM mode and a 2nd TEM mode was also seen, so that the height M6 was increased.
  • the lead wire 9 has a diameter of 0.4 mm.
  • Table 1 shows a simulation result in which the resonance frequencies of the four resonance modes are substantially matched by the lead wire 9 and the convex portion 6ca.
  • the diameter of the lead wire 9 was 0.2 mm
  • the height M6 of the convex portion 6ca was 25 mm.
  • the resonance frequencies of the first TEM mode, the second TEM mode, the first TE mode, and the second TE mode are substantially the same, and a multimode resonator in which four resonance modes are degenerated is possible. It is.
  • the third TE mode and the fourth TE mode are in the vicinity of the resonance frequencies of the four resonance modes as shown in Table 2. Appears with a resonance frequency.
  • the electric field is distributed around the electric field running in the first direction (X-axis direction), and the direction of the electric field at the Z-axis position where the first central conductor 7 exists and the second central conductor 8. The direction of the electric field at the Z-axis position where is present is opposite.
  • the electric field is distributed around the second direction (Y-axis direction) and the direction of the electric field at the Z-axis position where the first central conductor 7 exists and the second central conductor 8.
  • the direction of the electric field at the Z-axis position where is present is opposite.
  • the third TE mode and the fourth TE mode appear because the electric field is canceled between the first center conductor 7 and the second center conductor 8 by the lead wire 9 even in the TE mode. Because it is in.
  • the resonance frequencies of the third TE mode and the fourth TE mode are slightly separated from the resonance frequencies of the above four resonance modes, but can be made multimode for a broadband microwave filter. Including these, a multimode resonator in which six resonance modes are degenerated is possible.
  • the multimode resonator 5 has been described above. Note that the lead wire 9 and the convex portion 6ca make the resonance frequencies of at least four resonance modes substantially coincide with each other to facilitate multi-mode reduction by degenerating those resonance modes. It is also possible to use these means or to combine with other means.
  • the multi-mode resonator according to the embodiment of the present invention has been described above.
  • the present invention is not limited to the above-described embodiment, and various modifications within the scope of the matters described in the claims. Design changes are possible.
  • the outer conductor 2 of the multimode resonator 1 is not limited to a cylindrical shape, and may be a rectangular tube shape, and the first central conductor 3 and the second central conductor 4 are not limited to a cylindrical shape, A columnar shape or a stepped shape in which large and small diameter columns are stacked is also possible.
  • the multimode resonator 1 does not require a dielectric member, and air fills the internal space S.
  • the internal space S is made of a high dielectric such as ceramic. It can also be formed with a dielectric S 'with a rate.
  • the outer conductor 2, the first center conductor 3, and the second center conductor 4 can also be formed by simultaneously forming a film around the dielectric S '.
  • the dielectric S ′ is used, the wavelength of the electromagnetic field is shortened due to the wavelength shortening effect due to the high dielectric constant, and the multimode resonator 1 can be further downsized. The same applies to the multimode resonator 1 ′ and the multimode resonator 5.
  • Multimode resonator 2 External conductor 2a, 6a First end 2b, 6b of outer conductor Second end 2c, 6c of outer conductor Peripheral wall portion 3, 7 of first outer conductor Conductor 3a, 7a One end of the first central conductor 3b, 7b The other end of the first central conductor 4, 8 Second central conductor 4a, 8a One end of the second central conductor 4b, 8b Other than the second central conductor End 6ca Projection of peripheral wall of outer conductor 9 Lead wire S Internal space Sg Gap between first center conductor and second center conductor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 4個の共振モードを縮退させたもので、誘電体の部材を必ずしも必要とせず、かつ、占有空間の利用効率が高いマルチモード共振器を提供する。このマルチモード共振器1は、4個の共振モードを縮退させたマルチモード共振器であって、筒状の周壁部2cの両端を第1端部2a及び第2端部2bにより閉塞した箱状の外部導体2と、外部導体2の内部に配され、一端3aが外部導体2の第1端部2aに短絡されて他端3bが開放された柱状の第1の中心導体3と、外部導体2の内部に配され、一端4aが外部導体2の第2端部2bに短絡されて他端4bが開放された柱状の第2の中心導体4と、を備えてなる。

Description

マルチモード共振器、マルチモードフィルタ及び無線通信装置
 本発明は、複数の共振モードを縮退させたマルチモード共振器、そのマルチモード共振器を用いたマルチモードフィルタ、及び、そのマルチモードフィルタを用いた無線通信装置に関する。
 近年、携帯電話基地局などの多くの場所で、マイクロ波などの高周波信号で無線通信を行う無線通信装置が使用されている。これらの無線通信装置には、所望の共振周波数を中心とした帯域の電磁界を得るために、その共振周波数で共振する共振器を複数結合させて多段構成にした高周波フィルタが組み込まれている。高周波フィルタがN段構成の場合は、典型的には、1個のモードで共振する共振器が順にN個結合したものが用いられる。これに対し、高周波フィルタをN個よりも少ない個数の共振器で構成して小型化できるように、共振周波数を略同一にして複数の共振モードを縮退させたマルチモード共振器を用いるものが提案されている。
 例えば、特許文献1には、4個もの共振モードを縮退させたマルチモード共振器が記載されている。図18~図21は、特許文献1に記載されたものと同様のマルチモード共振器101の構成及び電界分布を示すものである。図18~図21では、外部導体102の内部の部材を示すために、それらの部材よりも手前の外部導体102の部分は透過して示している。また、電界を実線の矢印で示している。磁界は、図示を省略しているが、電界に対しそれを周回するように分布する。
 このマルチモード共振器101は、箱状の外部導体(キャビティ)102の中に、特殊形状(略八角柱形状)の高誘電率の誘電体コア105が設けられている。誘電体コア105の中には、高誘電率による波長短縮効果によって波長が短くなった電磁界が偏在して共振する。ここでは、2つのTMモード(TM01δxモード、TM01δyモード)と1つのTEモード(TE01δモード)の3個の共振モードが縮退する。2つのTMモードは、図18と図19に示すように、電界がそれぞれX軸方向とY軸方向に走り、電磁界が2分の1波長でもって共振するモードである。TEモードは、図20に示すように、電界が誘電体コア105の中心軸周りの円周方向に走り、電磁界が1波長でもって共振するモードである。
 そして、更に、共振モードの数を1つ増加させるために、一端が外部導体102に短絡した柱状の中心導体103が、誘電体コア105の中心軸に形成された中央孔に挿通するようにして付加されている。この構成により、いわゆる半同軸共振器の共振モードが得られる。半同軸共振器の共振モードは、図21に示すように、電界が中心導体103から外部導体102に向けて放射状に走り、電磁界が中心導体103に沿って分布して4分の1波長でもって共振するTEMモードである。このTEMモードの共振周波数は、中心導体103から外部導体102までの間隙距離について、中心導体103の開放端103b側に比べて短絡端103a側が短くなるように、例えば中心導体103の外径を異ならせるようにして、上記の2つのTMモード及びTEモードの共振周波数に揃えられている。
特開2004-349981号公報
 このように、特許文献1ではマルチモード共振器101の構成により、4個もの共振モードを縮退させることができるとしている。しかし、このマルチモード共振器101は、誘電体共振器として働く誘電体コア105が必須の部材であり、所望の特性の誘電体コア105を作りあげるためのコストは非常に大きい。また、マルチモード共振器101は、TEMモードと他のモードとは多くの場所で電磁界を共有していないという点から、マルチモード共振器101が占有する空間の利用効率が高いとは言えない。
 本発明は、係る事由に鑑みてなされたものであり、その目的は、少なくとも3個の共振モードを縮退させたもので、誘電体の部材を必ずしも必要とせず、かつ、占有空間の利用効率が高いマルチモード共振器を提供することにあり、また、そのマルチモード共振器を用いた高周波フィルタであるマルチモードフィルタ、及びそのマルチモードフィルタを用いて低コストで小型化した無線通信装置を提供することにある。
 上記目的を達成するために、本発明の好ましい実施形態に係るマルチモード共振器は、少なくとも3個の共振モードを縮退させたマルチモード共振器であって、筒状の周壁部の両端を第1端部及び第2端部により閉塞した箱状の外部導体と、前記外部導体の内部に配され、一端が前記外部導体の第1端部に短絡されて他端が開放された柱状の第1の中心導体と、を備えてなる。
 好ましくは、前記3個の共振モードは、前記外部導体の両端部で2分の1波長でもって共振する2個のTEモードと、前記第1の中心導体の周囲で4分の1波長でもって共振するTEMモードと、から成る。
 好ましくは、前記マルチモード共振器は、前記外部導体の内部に配され、一端が前記外部導体の前記第2端部に短絡されて他端が開放された柱状の第2の中心導体を更に備え、少なくとも4個の共振モードを縮退させている。この場合、好ましくは、前記4個の共振モードの一つは、前記第2の中心導体の周囲で4分の1波長でもって共振するTEMモードである。
 好ましくは、前記第1の中心導体と前記第2の中心導体の長手方向の長さは、略同一である。
 好ましくは、前記第1の中心導体と前記第2の中心導体の間は、導体の細いリード線で接続されている。この場合、好ましくは、前記リード線のインダクタンス成分が前記第1の中心導体と前記第2の中心導体の間の容量と並列共振回路を構成し、前記2個のTEMモードの共振周波数で前記並列共振回路を共振させる。
 好ましくは、前記外部導体の周壁部の内壁には、内壁から中心に向かい、かつ長手方向に延びる凸部が複数形成されている。この場合、好ましくは、前記形成された凸部は、4個である。
 好ましくは、前記外部導体の内部空間は、空気が満たされているか、または、高誘電率の誘電体で形成されている。
 本発明の好ましい実施形態に係るマルチモードフィルタは、上記のマルチモード共振器を1個用いた構成又は複数用いた多段構成にしている。
 本発明の好ましい実施形態に係る無線通信装置は、上記のマルチモードフィルタを組み込んでいる。
 本発明によれば、上記構成の外部導体と第1の中心導体を備えることにより、少なくとも3個の共振モードを縮退させ、誘電体コアのような誘電体の部材を必ずしも必要とせず占有空間の利用効率が高いマルチモード共振器を提供でき、更には、第2の中心導体を更に備えることにより、少なくとも4個の共振モードを縮退させることができる。また、そのマルチモード共振器を用いることによりマルチモードフィルタ、及びそのマルチモードフィルタを用いることにより低コストで小型化した無線通信装置を提供することが可能になる。
本発明の実施形態に係るマルチモード共振器1の構成を示すものであって、(a)は長手方向の断面図、(b)はG-Gの位置での長手方向に直交する断面図、(c)はA-A(及びB-B)の位置での長手方向に直交する断面図である。 同上のマルチモード共振器1の構成の変形例を示す長手方向の断面図である。 同上のマルチモード共振器1の一つのTEモードの電界分布を模式的に示すものであって、(a)は長手方向の断面図、(b)はG-Gの位置での長手方向に直交する断面図、(c)はA-A(及びB-B)の位置での長手方向に直交する断面図である。 同上のマルチモード共振器1のもう一つのTEモードの電界分布を模式的に示すものであって、(a)は長手方向の断面図、(b)はG-Gの位置での長手方向に直交する断面図、(c)はA-A(及びB-B)の位置での長手方向に直交する断面図である。 同上のマルチモード共振器1の一つのTEMモードの電界分布を模式的に示すものであって、(a)は長手方向の断面図、(b)はA-Aの位置での長手方向に直交する断面図、(c)はB-Bの位置での長手方向に直交する断面図である。 同上のマルチモード共振器1のもう一つのTEMモードの電界分布を模式的に示すものであって、(a)は長手方向の断面図、(b)はA-Aの位置での長手方向に直交する断面図、(c)はB-Bの位置での長手方向に直交する断面図である。 無線通信装置の例を示すブロック図である。 本発明の別の実施形態に係るマルチモード共振器1’を示す長手方向の断面図である。 本発明の更に別の実施形態に係るマルチモード共振器5の構成を示すものであって、(a)は長手方向の断面図、(b)はA-A(及びB-B)の位置での長手方向に直交する断面図である。 同上のマルチモード共振器5の構成の変形例を示すA-A(及びB-B)の位置での長手方向に直交する断面図である。 同上のマルチモード共振器5の構成の別の変形例を示す長手方向の断面図である。 同上のマルチモード共振器5の一つのTEモードの電界分布を模式的に示すものであって、(a)は長手方向の断面図、(b)はA-A(及びB-B)の位置での長手方向に直交する断面図である。 同上のマルチモード共振器5のもう一つのTEモードの電界分布を模式的に示すものであって、(a)は長手方向の断面図、(b)はA-A(及びB-B)の位置での長手方向に直交する断面図である。 同上のマルチモード共振器5の一つのTEMモードの電界分布を模式的に示すものであって、(a)は長手方向の断面図、(b)はA-Aの位置での長手方向に直交する断面図、(c)はB-Bの位置での長手方向に直交する断面図である。 同上のマルチモード共振器5のもう一つのTEMモードの電界分布を模式的に示すものであって、(a)は長手方向の断面図、(b)はA-Aの位置での長手方向に直交する断面図、(c)はB-Bの位置での長手方向に直交する断面図である。 同上のマルチモード共振器5についてのシミュレーション結果であって、(a)は2個のTEMモードの共振周波数のリード線の直径に対する依存性、(b)は各共振モードの共振周波数の凸部6caの高さに対する依存性を示すものである。 本発明の実施形態に係るマルチモード共振器1の構成の別の変形例を示す長手方向の断面図である。 従来のマルチモード共振器101の構成及び一つのTMモードの電界分布を示すものであって、(a)は長手方向の外観図、(b)は長手方向に直交する外観図である。 従来のマルチモード共振器101の構成及びもう一つのTMモードの電界分布を示すものであって、(a)は長手方向の外観図、(b)は長手方向に直交する外観図である。 従来のマルチモード共振器101の構成及びTEモードの電界分布を示すものであって、(a)は長手方向の外観図、(b)は長手方向に直交する外観図である。 従来のマルチモード共振器101の構成及びTEMモードの電界分布を示すものであって、(a)は長手方向の外観図、(b)は長手方向に直交する外観図である。
 以下、本発明を実施するための好ましい形態を図面を参照しながら説明する。本発明の実施形態に係るマルチモード共振器1は、図1に示すように、外部導体2と第1の中心導体3と第2の中心導体4とから構成されている。また、このマルチモード共振器1は、マイクロ波などの高周波の領域で用いられるものである。
 外部導体2は、金属材料製であり、筒状の周壁部2cの両端を第1端部2a及び第2端部2bにより閉塞した箱状のものである。本実施形態では、周壁部2cは円筒状のものとしている。
 第1の中心導体3と第2の中心導体4は、金属材料製であり、外部導体2の内部に対称的に配されている。第1の中心導体3は、一端3aが外部導体2の第1端部2aに短絡されて他端3bが開放されている。第2の中心導体4は、一端4aが外部導体2の第1端部2bに短絡されて他端4bが開放されている。よって、第1の中心導体3の他端3bと第2の中心導体4の他端4bとは、所定の距離を有する長手方向の間隙Sgを介して対向している。通常、第1の中心導体3と第2の中心導体4は、それらの中心軸が略一致し、外部導体2の中心軸とも略一致するようにして配される。また、本実施形態では、第1の中心導体3と第2の中心導体4は円柱状のものとしている。
 なお、第1の中心導体3と第2の中心導体4とは、中空部3d、4dを有する柱状、すなわち、有底筒状のものにしてもよい。この場合、図2に示すように、他端3b、4bのみに端面を有し、一端3a、4a側が外部導体2の外方に向かって開口するようにしてもよい。
 以上の構成により、マルチモード共振器1は4個の共振モードを有することができる。以下、具体的な共振モード、すなわち、2個のTEモード(第1のTEモード、第2のTEモード)と2個のTEMモード(第1のTEMモード、第2のTEMモード)について、図3~図6を用いて説明する。なお、電磁界は、外部導体2の内部のうち第1の中心導体3と第2の中心導体4以外の部分である内部空間Sに生じ、図においては内部空間Sに生じる電界を実線の矢印で示している。また、磁界は、図示を省略しているが、電界に対しそれを周回するように分布する。また、マルチモード共振器1の長手方向をZ軸方向、それと直交する方向における第1方向をX軸方向、Z軸方向に直交し、かつ、第1方向に直交する方向である第2方向をY軸方向として説明する。
 第1のTEモードは、図3(a)に示すように、電界が第1方向(X軸方向)に走るものを中心に分布し、また、電磁界が外部導体2の両端部2a、2b間に連続して分布し、かつ、両端部2a、2b間で2分の1波長でもって共振する。より詳細には、第1のTEモードは、図3(b)に示すように、第1の中心導体3と第2の中心導体4の間隙Sgの中央部の断面G―Gでは、電界が外部導体2の周壁部2cの対向する部分の間をX軸方向に走って横断している。この電界は、円筒空洞共振器(第1の中心導体3と第2の中心導体4が設けられていない状態の共振器)の、X軸方向に電界が走るいわゆるTE111モードと略同一になっている。そして、この電界に連続して、図3(c)に示すように、第1の中心導体3が存在するZ軸位置での断面A-A及び第2の中心導体4が存在するZ軸位置での断面B―Bでは、第1の中心導体3又は第2の中心導体4の周囲に断面G―Gの電界とほぼ同様な電界が生じている。
 第2のTEモードは、図4(a)に示すように、電界が第2方向(Y軸方向)に走るものを中心に分布し、また、電磁界が外部導体2の両端部2a、2b間に連続して分布し、かつ、両端部2a、2b間で2分の1波長でもって共振する。より詳細には、第2のTEモードは、図4(b)に示すように、第1の中心導体3と第2の中心導体4の間隙Sgの中央部の断面G―Gでは、電界が外部導体2の周壁部2cの対向する部分の間をY軸方向に走って横断している。この電界は、円筒空洞共振器の、Y軸方向に電界が走るいわゆるTE111モードと略同一になっている。そして、この電界に連続して、図4(c)に示すように、第1の中心導体3が存在するZ軸位置での断面A-A及び第2の中心導体4が存在するZ軸位置での断面B―Bでは、第1の中心導体3又は第2の中心導体4の周囲に断面G―Gの電界とほぼ同様な電界が生じている。
 第1のTEMモード及び第2のTEMモードは、図5及び図6に示すように、電界が第1の中心導体3と外部導体2の周壁部2cの間、及び第2の中心導体4と外部導体2の周壁部2cの間を放射状に走るTEMモードである。第1のTEMモード及び第2のTEMモードは、電磁界が第1の中心導体3の一端3aの位置(外部導体2の第1端部2aの位置)と第1の中心導体3の他端3bの位置の間に連続して分布し、かつ、第1の中心導体3の周囲で4分の1波長でもって共振する。電界は、第1の中心導体3の他端3bの位置近傍で最大になり、磁界は第1の中心導体3の一端3aの近傍で最大になる。また、第1のTEMモード及び第2のTEMモードは、電磁界が第2の中心導体4の一端4aの位置(外部導体2の第2端部2bの位置)と第2の中心導体4の他端4bの位置の間に連続して分布し、かつ、第2の中心導体4の周囲で4分の1波長でもって共振する。電界は、第2の中心導体4の他端4bの位置近傍で最大になり、磁界は第2の中心導体4の一端4aの近傍で最大になる。
 第1のTEMモードは、第1の中心導体3と外部導体2の周壁部2cの間の電界の方向と、第2の中心導体4と外部導体2の周壁部2cの間の電界の方向とが同じ向きになるものである。第2のTEMモードは、第1の中心導体3と外部導体2の周壁部2cの間の電界の方向と、第2の中心導体4と外部導体2の周壁部2cの間の電界の方向とが逆向きになるものである。第1の中心導体3の周囲の電磁界と第2の中心導体4の周囲の電磁界とは、第1の中心導体3と第2の中心導体4の間隙Sgの距離に応じて干渉し合い、その干渉により、僅かではあるが、第1のTEMモード及び第2のTEMモードの共振周波数は影響を受ける。なお、図5及び図6では、第1の中心導体3と第2の中心導体4の間隙Sgに生じる電界を破線で示している。
 このような4個の共振モードの共振周波数は、第1のTEモードと第2のTEモードについては、外部導体2の両端部2a、2b間の長さM1がほぼ2分の1波長になる周波数であり、第1のTEMモード及び第2のTEMモードについては、第1の中心導体3の長さM2及び第2の中心導体4の長さM3がほぼ4分の1波長になる周波数である。また、第1のTEモードと第2のTEモードの波長は、円筒空洞共振器の管内波長とほぼ同じであるから、同じ周波数でも、第1のTEMモード及び第2のTEMモードの波長よりも原理的に長くなる。第1のTEモードと第2のTEモードの波長は、外部導体2の周壁部2cの直径M4により調整も可能である。よって、基本的には、共振周波数の値に応じて、第1の中心導体3の長さM2と第2の中心導体4の長さM3を決め、外部導体2の両端部2a、2b間の長さM1と周壁部2cの直径M4を決めることにより、共振周波数を略同一にして4個の共振モードを縮退させることが可能である。
 また、内部空間Sのどの場所においても、複数の共振モードが電磁界を共有しているので、その点から、マルチモード共振器1が占有する空間の利用効率が高い。また、上記の背景技術で示したような誘電体の部材を必ずしも必要としない。
 なお、外部導体2の適切な箇所に、入出力端子や周波数調整用部材などを取り付けることができる。入出力端子は、マルチモード共振器1と結合して信号の入出力を行うものであり、例えば、第1の中心導体3又は第2の中心導体4と結合する電極が内部側に接続される。周波数調整用部材は、各々の共振モードの周波数を調整するものである。これらの入出力端子や周波数調整用部材は、様々な公知の技術を適宜利用することができる。
 このように4個の共振モードを縮退させたマルチモード共振器1は、各々の共振モードを互いに結合させることによりマルチモードフィルタとして用いることができる。この場合、結合調整用ねじなど公知の結合調整用部材を外部導体2の適切な箇所に取り付けるなどして、電磁界分布を非対称にして摂動を生じさせることによって、互いに結合させることができる。このマルチモードフィルタは、所望の特性に応じて、マルチモード共振器1を1個用いた構成又は複数個用いた多段構成にすればよい。また、このマルチモードフィルタを組み込んで、無線通信装置を低コストで小型化することが可能になる。例えば、図7に示すように、携帯電話基地局などの無線通信装置の送受共用器10において、アンテナ11にともに接続される送信用フィルタ12と受信用フィルタ13を共振周波数が異なるマルチモードフィルタとすれば、非常に低コストで小型化されたものとなる。
 マルチモード共振器1について本願発明者が行ったシミュレーション結果は以下の通りである。外部導体2の両端部2a、2b間の長さM1を167.6mm、第1の中心導体3の長さM2と第2の中心導体4の長さM3をともに15mm、外部導体2の周壁部2cの直径M4を100mmとした。また、第1の中心導体3と第2の中心導体4の直径M5を50mmとした。その結果、共振周波数は、第1のTEモードと第2のTEモードは2.02GHz、第1のTEMモードでは2.04GHz、第2のTEMモードでは2.00GHzであった。従って、このマルチモード共振器1は、4個の共振モードが縮退しており、互いに結合させることによりマルチモードフィルタとして用いることが可能である。
 次に、本発明の別の実施形態に係るマルチモード共振器1’について説明する。このマルチモード共振器1’は、マルチモード共振器1を変形して3個の共振モードを縮退させたものである。マルチモード共振器1’は、図8に示すように、マルチモード共振器1の第1の中心導体3の長さM2と第2の中心導体4の長さM3を異ならせて、一方のTEMモードの共振モードのみを縮退させ、他方のTEMモードの共振モードの共振周波数は離して縮退させないようにしている。よって、マルチモード共振器1’は、3個の共振モードが縮退する。
 マルチモード共振器1’について本願発明者が行ったシミュレーション結果は以下の通りである。外部導体2の両端部2a、2b間の長さM1を88mm、第1の中心導体3の長さM2を16.2mm、第2の中心導体4の長さM3を37.5mm、外部導体2の周壁部2cの直径M4を120mmとした。また、第1の中心導体3と第2の中心導体4の直径M5を64mmとした。その結果、共振周波数は、第1のTEモードと第2のTEモードと第1のTEMモードは全て2.00GHzであった。従って、このマルチモード共振器1は、3個の共振モードが縮退しており、互いに結合させることによりマルチモードフィルタとして用いることが可能である。なお、第2のTEMモードの共振周波数は、1.15GHzであった。
 また、3個の共振モードを縮退させる場合、第1の中心導体3と第2の中心導体4の一方を省略することも場合によっては可能である。
 次に、本発明の更に別の実施形態に係るマルチモード共振器5について説明する。このマルチモード共振器5は、マルチモード共振器1を変形して少なくとも4個の共振モードを縮退させたものである。マルチモード共振器5は、図9に示すように、外部導体6と第1の中心導体7と第2の中心導体8とから構成されている。
 外部導体6は、上記の外部導体2と同様に、金属材料製であり、筒状の周壁部6cの両端を第1端部6a及び第2端部6bにより閉塞した箱状のものである。本実施形態では、周壁部6cは円筒状のものとしている。
 外部導体6の周壁部6cの内壁には、中心に向かい、かつ長手方向に延びる凸部6caが複数形成されている。凸部6caの中心に向かう径方向の長さ(凸部6caの高さ)(図9(b)におけるM6)は、凸部6caの先端と第1の中心導体7及び第2の中心導体8との間に所定の空隙を有するような長さである。凸部6caが奏する効果のためには、この空隙の長さは、通常、後述する第1の中心導体と第2の中心導体の間の間隙Sgの長さの5分の1以下とするのがよい。
 凸部6caは、例えば、図示するように周方向に略等間隔に4個形成される。場合によっては、4個よりも多い偶数個形成されてもよい。凸部6caの断面は、長方形状や台形状などが可能である。凸部6caは、図9に示すように金属材料製の板状部材を円筒形の周壁部6cの内壁に接合して一体化しても、また、図10に示すように外部導体6を内方に凹ませて形成してもよい。
 第1の中心導体7と第2の中心導体8は、それぞれ上記の第1の中心導体3と第2の中心導体4と同様に、金属材料製であり、外部導体6の内部に対称的に配されている。第1の中心導体7は、一端7aが外部導体6の第1端部6aに短絡されて他端7bが開放されている。第2の中心導体8は、一端8aが外部導体6の第1端部6bに短絡されて他端8bが開放されている。よって、第1の中心導体7の他端7bと第2の中心導体8の他端8bとは、所定の距離を有する長手方向の間隙Sgを介して対向している。第1の中心導体7と第2の中心導体8の長手方向の長さ(図9(a)におけるM2とM3)は、略同一になっている。また、通常、第1の中心導体7と第2の中心導体8は、それらの中心軸が略一致し、外部導体6の中心軸とも略一致するようにして配される。また、本実施形態では、第1の中心導体7と第2の中心導体8は円柱状のものとしている。
 なお、第1の中心導体7と第2の中心導体8とは、中空部7d、8dを有する柱状、すなわち、有底筒状のものにしてもよい。この場合、図11に示すように、他端7b、8bのみに端面を有し、一端7a、8a側が外部導体6の外方に向かって開口するようにしてもよい。
 第1の中心導体7と第2の中心導体8の間は、導体の細いリード線9で接続している。
 以上の構成により、マルチモード共振器5は4個の共振モードを有することができる。以下、具体的な共振モード、すなわち、2個のTEモード(第1のTEモード、第2のTEモード)と2個のTEMモード(第1のTEMモード、第2のTEMモード)について、図12~図15を用いて説明する。なお、電磁界は、外部導体6の内部のうち第1の中心導体7と第2の中心導体8以外の部分である内部空間Sに生じ、図においては内部空間Sに生じる電界を実線の矢印で示している。また、磁界は、図示を省略しているが、電界に対しそれを周回するように分布する。また、マルチモード共振器5の長手方向をZ軸方向、それと直交する方向における第1方向をX軸方向、Z軸方向に直交し、かつ、第1方向に直交する方向である第2方向をY軸方向として説明する。
 第1のTEモードは、図12に示すように、電界が凸部6caの先端と第1の中心導体7又は第2の中心導体8の間を第1方向(X軸方向)に走るものを中心に分布し、電磁界が外部導体6の両端部6a、6b間で2分の1波長でもって共振する。第2のTEモードは、図13に示すように、電界が凸部6caの先端と第1の中心導体7又は第2の中心導体8の間を第2方向(Y軸方向)に走るものを中心に分布し、電磁界が外部導体6の両端部6a、6b間で2分の1波長でもって共振する。これらの2個のTEモードは、外部導体6が構成する円筒空洞共振器の、X軸方向又はY軸方向に電界が走るいわゆるTE111モードに種別することができる。
 また、これらの2個のTEモードは、凸部6ca以外の周壁部6cにおける電界は、ほとんど発生しないか或いは極めて小さい。また、これらの2個のTEモードは、第1の中心導体7と第2の中心導体8との間隙Sgの位置では、後述するリード線9により電界が打ち消されることで、凸部6caにおいても電界はほとんど発生しないか或いは極めて小さくなっている。
 第1のTEMモード及び第2のTEMモードは、図14及び図15に示すように、電界が第1の中心導体7と外部導体6の周壁部6cの間、及び第2の中心導体8と外部導体6の周壁部6cの間を放射状に走るTEMモードである。第1のTEMモード及び第2のTEMモードは、電磁界が第1の中心導体7の一端7aの位置(外部導体6の第1端部6aの位置)と第1の中心導体7の他端7bの位置の間に連続して分布し、かつ、第1の中心導体7の周囲で4分の1波長でもって共振する。電界は、第1の中心導体7の他端7bの位置近傍で最大になり、磁界は第1の中心導体7の一端7aの近傍で最大になる。また、第1のTEMモード及び第2のTEMモードは、電磁界が第2の中心導体8の一端8aの位置(外部導体6の第2端部6bの位置)と第2の中心導体8の他端8bの位置の間に連続して分布し、かつ、第2の中心導体8の周囲で4分の1波長でもって共振する。電界は、第2の中心導体8の他端8bの位置近傍で最大になり、磁界は第2の中心導体8の一端8aの近傍で最大になる。また、これらの2個のTEMモードは、凸部6ca以外の周壁部6cにおける電界は、ほとんど発生しないか或いは極めて小さい。
 第1のTEMモードは、第1の中心導体7と外部導体6の周壁部6cの間の電界の方向と、第2の中心導体8と外部導体6の周壁部6cの間の電界の方向とが同じ向きになるものである。第2のTEMモードは、第1の中心導体7と外部導体6の周壁部6cの間の電界の方向と、第2の中心導体8と外部導体6の周壁部6cの間の電界の方向とが逆向きになるものである。
 対向している第1の中心導体7と第2の中心導体8は、それらの間隙Sgの距離が長くないと、容量による結合が大きいものとなる。そうすると、第1の中心導体7の周囲の電磁界と第2の中心導体8の周囲の電磁界とは、第1の中心導体7と第2の中心導体8の間隙Sgの距離に応じて干渉し合い、その干渉により、第1のTEMモード及び第2のTEMモードの共振周波数は影響を受け易い。この干渉は、後述するように、リード線9によって極めて少なくすることができる。
 また、このような4個の共振モードの共振周波数は、第1のTEモードと第2のTEモードについては、外部導体6の両端部6a、6b間の長さM1がほぼ2分の1波長になる周波数であり、第1のTEMモード及び第2のTEMモードについては、第1の中心導体7の長さM2及び第2の中心導体8の長さM3がほぼ4分の1波長になる周波数である。第1のTEモードと第2のTEモードの波長は、円筒空洞共振器の管内波長とほぼ同じであるから、同じ周波数でも、第1のTEMモード及び第2のTEMモードの波長よりも原理的に長くなり、よって、通常、第1のTEモード及び第2のTEモードの共振周波数は、第1のTEMモード及び第2のTEMモードの共振周波数よりも高くなる。第1のTEモード及び第2のTEモードの共振周波数と第1のTEMモード及び第2のTEMモードの共振周波数は、後述するように、凸部6caによって近づけることができる。
 このようなマルチモード共振器5は、上記のマルチモード共振器1と同様に、内部空間Sのどの場所においても、複数の共振モードが電磁界を共有しているので、その点から、マルチモード共振器5が占有する空間の利用効率が高く、また、上記の背景技術で示したような誘電体の部材を必ずしも必要としない。
 次に、リード線9と外部導体6の凸部6caの作用について、本願発明者が行ったシミュレーション結果を参照しつつ、詳述する。リード線9と凸部6caは、4個の共振モードの共振周波数を略一致させて、4個の共振モードを縮退させたマルチモード化を容易にするものである。
 なお、シミュレーション条件としては、外部導体6の両端部6a、6b間の長さM1を112mm、第1の中心導体7の長さM2と第2の中心導体8の長さM3を37.5mm、外部導体6の周壁部6cの直径M4を100mmとした。また、第1の中心導体7と第2の中心導体8の直径M5を49mmとした。
 先ず、リード線9の作用について説明する。このリード線9は、第1の中心導体7と第2の中心導体8の間の容量による結合により、第1のTEMモードと第2のTEMモードの共振周波数が影響を受けてスプリットする(離れる)現象を抑制するものである。
 リード線9は、長さをa、直径をbとすると、近似的に式(1)で示すインダクタンス値Lのインダクタンス成分を持つ。
Figure JPOXMLDOC01-appb-M000001
 このインダクタンス成分が第1の中心導体7と第2の中心導体8の間の容量と並列共振回路を構成し、それが共振をすると、第1の中心導体7と第2の中心導体8の間では、電界結合が打ち消され、第1の中心導体7の周囲の電磁界と第2の中心導体8の周囲の電磁界の間の干渉が極めて少なくなる。よって、第1のTEMモードと第2のTEMモードの共振周波数でこの並列共振回路を共振させることで、第1のTEMモードと第2のTEMモードの共振周波数を略一致させることができる。なお、この並列共振回路が共振する周波数は、例えば、リード線9の直径を変えてインダクタンス値を制御することにより調整する。
 このようにリード線9により、第1の中心導体7と第2の中心導体8の間の容量による結合の影響を打ち消すことができるので、第1のTEMモードと第2のTEMモードの共振周波数を略一致させることができるとともに、第1の中心導体7と第2の中心導体8の間の間隙Sgの距離も短くでき、例えば、このシミュレーション条件のように、第1の中心導体7と第2の中心導体8のいずれの長さよりも短くできる。
 図16(a)に示すのは、リード線9の直径を変化させてインダクタンス値を変化させたときの、第1のTEMモードと第2のTEMモードの共振周波数の変化を示すシミュレーション結果である。図によると、リード線9の直径に依存して共振周波数が変化し、直径が0.4mmの近傍で、第1のTEMモードの共振周波数と第2のTEMモードの共振周波数が一致していることがわかる。なお、このシミュレーションは、凸部6caを設けていない状態で行っている。
 次に、外部導体6の凸部6caの作用について説明する。
 凸部6caは、第1のTEMモード及び第2のTEMモードの共振周波数よりも高いところに有る第1のTEモード及び第2のTEモードの共振周波数を降下させるものである。それは、外部導体6の一部である凸部6caが第1の中心導体7及び第2の中心導体8との間に容量結合を形成するとともに、外部導体6の等価的な円周長が長くなって遮断周波数が低下することによる。第1のTEモード及び第2のTEモードの共振周波数を下げることにより、第1のTEモード及び第2のTEモードの共振周波数と第1のTEMモード及び第2のTEMモードの共振周波数を近づけることができる。
 図16(b)に示すのは、凸部6caの高さM6を変化させたときの、4個の各共振モードの共振周波数の変化を示すシミュレーション結果である。図によると、凸部6caの高さM6を増加させる程、第1のTEモード及び第2のTEモードの共振周波数が降下していることが分かる。また、凸部6caは、その高さM6を増加させる程、第1のTEMモード及び第2のTEMモードの共振周波数を上げる傾向もみられた。なお、このシミュレーションは、リード線9の直径は、0.4mmとした。
 次に、リード線9と凸部6caにより、4個の共振モードの共振周波数を略一致させたシミュレーション結果を表1に示す。ここでは、リード線9の直径を0.2mmとし、凸部6caの高さM6を25mmとした。第1のTEMモード、第2のTEMモード、第1のTEモード、及び第2のTEモードの各共振周波数が略一致しており、4個の共振モードを縮退させたマルチモード共振器が可能である。
Figure JPOXMLDOC01-appb-T000002
 また、この4個の共振モードの共振周波数が略一致している状態において、表2に示すような、第3のTEモード及び第4のTEモードがこの4個の共振モードの共振周波数の近傍に共振周波数を有して出現している。第3のTEモードは、電界が第1方向(X軸方向)に走るものを中心に分布し、第1の中心導体7が存在するZ軸位置での電界の方向と第2の中心導体8が存在するZ軸位置での電界の方向とが逆向きとなっているものである。第4のTEモードは、電界が第2方向(Y軸方向)に走るものを中心に分布し、第1の中心導体7が存在するZ軸位置での電界の方向と第2の中心導体8が存在するZ軸位置での電界の方向とが逆向きとなっているものである。第3のTEモード及び第4のTEモードが出現しているのは、リード線9によって、第1の中心導体7と第2の中心導体8の間で、TEモードにおいても電界が打ち消される傾向にあるためである。
Figure JPOXMLDOC01-appb-T000003
 このシミュレーション結果では、第3のTEモード及び第4のTEモードの共振周波数は、上記の4個の共振モードの共振周波数から若干離れているが、広帯域のマイクロ波フィルタ用としてはマルチモード化でき、これらも含めると6個の共振モードを縮退させたマルチモード共振器が可能である。
 そして更に、この6個の共振モードの近傍に、表3に示すように、詳細は省略するが、断面の寸法で共振周波数が決まっているように見える共振モードが2個出現している。これらも、広帯域のマイクロ波フィルタ用としてはマルチモード化でき、これらも含めると8個の共振モードを縮退させたマルチモード共振器が可能である。
Figure JPOXMLDOC01-appb-T000004
 以上、マルチモード共振器5について説明した。なお、リード線9と凸部6caは、少なくとも4個の共振モードの共振周波数を略一致させて、それらの共振モードを縮退させたマルチモード化を容易にするものであるが、場合によっては他の手段を用いたり、他の手段と組み合わせたりすることも可能である。
 以上、本発明の実施形態に係るマルチモード共振器について説明したが、本発明は、上述の実施形態に記載したものに限られることなく、請求の範囲に記載する事項の範囲内でのさまざまな設計変更が可能である。例えば、マルチモード共振器1の外部導体2は、円筒状に限らず角筒状なども可能であり、また、第1の中心導体3と第2の中心導体4は円柱状に限らず、角柱状や大小の直径の柱を重ねた段付き形状なども可能である。マルチモード共振器1’及びマルチモード共振器5についても同様である。
 また、マルチモード共振器1は誘電体の部材を必要とするものではなく、内部空間Sを満たしているのは空気であるが、図17に示すように、内部空間Sをセラミックなどの高誘電率の誘電体S’で形成することもできる。この場合、外部導体2、第1の中心導体3、第2の中心導体4は、誘電体S’の周囲に同時に成膜することによって形成することも可能である。誘電体S’を用いると、高誘電率による波長短縮効果によって電磁界の波長が短くなり、マルチモード共振器1の更なる小型化が可能になる。マルチモード共振器1’及びマルチモード共振器5についても同様である。
 1、1’、5  マルチモード共振器
 2、6  外部導体
 2a、6a 外部導体の第1端部
 2b、6b 外部導体の第2端部
 2c、6c 外部導体の周壁部
 3、7  第1の中心導体
 3a、7a 第1の中心導体の一端
 3b、7b 第1の中心導体の他端
 4、8  第2の中心導体
 4a、8a 第2の中心導体の一端
 4b、8b 第2の中心導体の他端
 6ca 外部導体の周壁部の凸部
 9  リード線
 S  内部空間
 Sg 第1の中心導体と第2の中心導体の間の間隙

Claims (13)

  1.  少なくとも3個の共振モードを縮退させたマルチモード共振器であって、
     筒状の周壁部の両端を第1端部及び第2端部により閉塞した箱状の外部導体と、
     前記外部導体の内部に配され、一端が前記外部導体の第1端部に短絡されて他端が開放された柱状の第1の中心導体と、
    を備えてなることを特徴とするマルチモード共振器。
  2.  請求項1に記載のマルチモード共振器において、
     前記3個の共振モードは、
     前記外部導体の両端部で2分の1波長でもって共振する2個のTEモードと、
     前記第1の中心導体の周囲で4分の1波長でもって共振するTEMモードと、
    から成ることを特徴とするマルチモード共振器。
  3.  請求項1又は2に記載のマルチモード共振器において、
     前記外部導体の内部に配され、一端が前記外部導体の前記第2端部に短絡されて他端が開放された柱状の第2の中心導体を更に備え、
     少なくとも4個の共振モードを縮退させたことを特徴とするマルチモード共振器。
  4.  請求項3に記載のマルチモード共振器において、
     前記4個の共振モードの一つは、
     前記第2の中心導体の周囲で4分の1波長でもって共振するTEMモードであることを特徴とするマルチモード共振器。
  5.  請求項3又は4に記載のマルチモード共振器において、
     前記第1の中心導体と前記第2の中心導体の長手方向の長さは、略同一であることを特徴とするマルチモード共振器。
  6.  請求項3~5のいずれか1項に記載のマルチモード共振器において、
     前記第1の中心導体と前記第2の中心導体の間を、導体の細いリード線で接続したことを特徴とするマルチモード共振器。
  7.  請求項6に記載のマルチモード共振器において、
     前記リード線のインダクタンス成分が前記第1の中心導体と前記第2の中心導体の間の容量と並列共振回路を構成し、前記2個のTEMモードの共振周波数で前記並列共振回路を共振させることを特徴とするマルチモード共振器。
  8.  請求項3~7のいずれか1項に記載のマルチモード共振器において、
     前記外部導体の周壁部の内壁に、内壁から中心に向かい、かつ長手方向に延びる凸部を複数形成したことを特徴とするマルチモード共振器。
  9.  請求項8に記載のマルチモード共振器において、
     前記形成された凸部は、4個であることを特徴とするマルチモード共振器。
  10.  請求項1~9のいずれか1項に記載のマルチモード共振器において、
     前記外部導体の内部空間は、空気が満たされていることを特徴とするマルチモード共振器。
  11.  請求項1~9のいずれか1項に記載のマルチモード共振器において、
     前記外部導体の内部空間は、高誘電率の誘電体で形成されていることを特徴とするマルチモード共振器。
  12.  請求項1~11のいずれか1項に記載のマルチモード共振器を1個用いた構成又は複数用いた多段構成にしたことを特徴とするマルチモードフィルタ。
  13.  請求項12に記載のマルチモードフィルタを組み込んでいることを特徴とする無線通信装置。
PCT/JP2012/075271 2011-09-30 2012-09-29 マルチモード共振器、マルチモードフィルタ及び無線通信装置 WO2013047850A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/348,073 US9385409B2 (en) 2011-09-30 2012-09-29 Multi-mode resonator/filter comprised of first and second columnar central conductors disposed within a cylindrical exterior conductor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-218418 2011-09-30
JP2011218418A JP5858521B2 (ja) 2011-09-30 2011-09-30 マルチモード共振器、マルチモードフィルタ及び無線通信装置
JP2012-187082 2012-08-27
JP2012187082A JP5966238B2 (ja) 2012-08-27 2012-08-27 マルチモード共振器、マルチモードフィルタ及び無線通信装置

Publications (1)

Publication Number Publication Date
WO2013047850A1 true WO2013047850A1 (ja) 2013-04-04

Family

ID=47995874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075271 WO2013047850A1 (ja) 2011-09-30 2012-09-29 マルチモード共振器、マルチモードフィルタ及び無線通信装置

Country Status (2)

Country Link
US (1) US9385409B2 (ja)
WO (1) WO2013047850A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098987A1 (en) * 2021-12-01 2023-06-08 Huawei Technologies Co., Ltd. Cavity resonator, filter device and manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085908A (ja) * 1999-09-10 2001-03-30 Murata Mfg Co Ltd 多重モード共振器装置、フィルタ、複合フィルタ装置、デュプレクサおよび通信装置
JP2004064577A (ja) * 2002-07-31 2004-02-26 Antenna Giken Kk デュアルモード空洞共振器
JP2009267702A (ja) * 2008-04-24 2009-11-12 Shimada Phys & Chem Ind Co Ltd 高周波部品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3506104B2 (ja) * 1999-10-04 2004-03-15 株式会社村田製作所 共振器装置、フィルタ、複合フィルタ装置、デュプレクサおよび通信装置
US7755456B2 (en) * 2008-04-14 2010-07-13 Radio Frequency Systems, Inc Triple-mode cavity filter having a metallic resonator
WO2010088373A2 (en) * 2009-01-29 2010-08-05 Emwavedev Inductive coupling in a transverse electromagnetic mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085908A (ja) * 1999-09-10 2001-03-30 Murata Mfg Co Ltd 多重モード共振器装置、フィルタ、複合フィルタ装置、デュプレクサおよび通信装置
JP2004064577A (ja) * 2002-07-31 2004-02-26 Antenna Giken Kk デュアルモード空洞共振器
JP2009267702A (ja) * 2008-04-24 2009-11-12 Shimada Phys & Chem Ind Co Ltd 高周波部品

Also Published As

Publication number Publication date
US20140232487A1 (en) 2014-08-21
US9385409B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP2008543192A (ja) 同軸共振器に接続可能な端壁を備えたマイクロ波フィルタ
US10056665B2 (en) Resonator assembly and filter
JP5597065B2 (ja) 導波管・平面線路変換器及び高周波回路
US20220271410A1 (en) Resonator apparatus, filter apparatus as well as radio frequency and microwave device
EP3104452A1 (en) A resonator, a microwave frequency filter and a method of radio frequency filtering
WO2018150171A1 (en) A microwave resonator, a microwave filter and a microwave multiplexer
US6529094B1 (en) Dielectric resonance device, dielectric filter, composite dielectric filter device, dielectric duplexer, and communication apparatus
GB2378585A (en) Resonator device, filter, duplexer, and communication apparatus using the same
WO2014024349A1 (ja) Tm010モード用誘電体共振器及び共振子並びに誘電体フィルタ
WO2013047850A1 (ja) マルチモード共振器、マルチモードフィルタ及び無線通信装置
JP5966238B2 (ja) マルチモード共振器、マルチモードフィルタ及び無線通信装置
KR20160004664A (ko) 너치가 형성된 유전체 도파관 필터
JP5858521B2 (ja) マルチモード共振器、マルチモードフィルタ及び無線通信装置
US7274273B2 (en) Dielectric resonator device, dielectric filter, duplexer, and high-frequency communication apparatus
KR101468409B1 (ko) 홈이 파인 도체판을 포함하는 이중 모드 공진기 및 이를 이용한 필터
WO2017215742A1 (en) Radio frequency filter
CN212461993U (zh) 微波谐振器和滤波器
CN106063026A (zh) 具有精细温度漂移调谐机构的微波滤波器
Chaudhury et al. Multiple passband circular cavity substrate integrated waveguide filter using asymmetric complementary split ring resonators
CN110148820A (zh) 一种基于阶跃阻抗饼片加载的小型化同轴腔三模宽带滤波器
JP2004349981A (ja) 共振器装置、フィルタ、複合フィルタ装置および通信装置
Bayaskar et al. Substrate integrated waveguide based bandpass filter for X and K u-band application
JP2012205096A (ja) 帯域通過フィルタ
CN112186323A (zh) 微波谐振器和滤波器
KR20160076019A (ko) 유전체가 적층된 스텝 임피던스 공진기 및 이를 이용한 필터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835414

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14348073

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835414

Country of ref document: EP

Kind code of ref document: A1