WO2013047080A1 - Three-dimensional imaging device - Google Patents

Three-dimensional imaging device Download PDF

Info

Publication number
WO2013047080A1
WO2013047080A1 PCT/JP2012/072091 JP2012072091W WO2013047080A1 WO 2013047080 A1 WO2013047080 A1 WO 2013047080A1 JP 2012072091 W JP2012072091 W JP 2012072091W WO 2013047080 A1 WO2013047080 A1 WO 2013047080A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel cell
aperture
diaphragm
light
stereoscopic image
Prior art date
Application number
PCT/JP2012/072091
Other languages
French (fr)
Japanese (ja)
Inventor
裕樹 鈴木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013047080A1 publication Critical patent/WO2013047080A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • G03B35/10Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/218Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/286Image signal generators having separate monoscopic and stereoscopic modes

Definitions

  • the present invention relates to a stereoscopic image capturing apparatus capable of capturing a stereoscopic image.
  • Stereo image pickup devices that can pick up a stereoscopic image of a subject have begun to become popular, and television devices and personal computer monitor devices that can display stereoscopic images in a stereoscopic manner are also becoming popular.
  • Some conventional stereoscopic image pickup devices are equipped with two image pickup units, and the photographing lens systems of the respective image pickup units are provided side by side on the left and right of the front part of the camera housing.
  • This stereoscopic image capturing apparatus captures a subject image for the right eye through the right photographic lens system and images a subject image for the left eye through the left photographic lens system.
  • a stereoscopic image capturing apparatus having two image capturing units includes an expensive photographing lens system and image capturing element in each image capturing unit. For this reason, the cost of the imaging unit is doubled compared to a general camera that captures a two-dimensional image.
  • Patent Document 1 discloses a stereoscopic image capturing apparatus capable of capturing a stereoscopic image with a single photographing lens and a single image sensor.
  • a liquid crystal shutter provided between the image pickup element and the photographing lens blocks the right half of the optical path of the light collected by the photographing lens and the light collected by the photographing lens. Switch between the states that block the left half of the optical path. In each state, a three-dimensional image is generated from the right image and the left image captured by the image sensor. According to this stereoscopic image capturing apparatus, since a stereoscopic image can be captured by a single photographing lens and a single image sensor, the cost can be reduced.
  • Patent Document 1 needs to perform imaging twice in order to obtain a stereoscopic image. For this reason, when the subject is moving, an image difference other than parallax occurs between the right-eye image and the left-eye image, and a high-quality stereoscopic image cannot be generated. Further, since it is necessary to provide an unnecessary liquid crystal shutter in a general camera, the cost increases accordingly.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a stereoscopic image capturing apparatus that can simultaneously obtain a plurality of imaging data with parallax and that can reduce manufacturing costs. To do.
  • a stereoscopic image capturing apparatus includes a single photographing optical system including a photographing lens and a diaphragm that adjusts the amount of transmitted light by changing an aperture, and a single light receiving light that has passed through the photographing optical system.
  • a stereoscopic image capturing apparatus including an imaging element, the imaging element having a first pixel cell and a second pixel cell that photoelectrically convert light beams that have passed through different areas of the photographing optical system, respectively, It is configured to generate a first image obtained from the output value of the pixel cell and a second image obtained from the output value of the second pixel cell.
  • the amount of light shielding in the direction orthogonal to the pupil division direction is larger than the amount of light shielding in the pupil division direction.
  • a stereoscopic image capturing apparatus includes a single photographing optical system including a photographing lens, a diaphragm with a fixed aperture and a light amount adjusting unit, and a single imaging element that receives light passing through the photographing optical system.
  • the imaging device includes a first pixel cell and a second pixel cell that photoelectrically convert light beams that have passed through different areas of the imaging optical system, and the first pixel cell A first image obtained from the output value and a second image obtained from the output value of the second pixel cell are configured to generate a first aperture and a first aperture that can be taken in and out of the optical path of the photographing lens.
  • the first diaphragm includes a maximum sensitivity of each of the first pixel cell and the second pixel cell in the incident angle range in the pupil division direction of light incident on the image sensor, and the first diaphragm. Incident angle range in the pupil division direction of light incident on the image sensor via The center of gravity of the area surrounded by the sensitivity distribution waveform of each of the first pixel cell and the second pixel cell (hereinafter referred to as the sensitivity center of gravity) is combined, and the second diaphragm is inserted through the second diaphragm.
  • the incident angles that are the centroids of sensitivity of the first pixel cell and the second pixel cell in the incident angle range in the pupil division direction of the light incident on the image sensor are the first pixel cell and the second pixel cell.
  • Each pixel cell has an aperture that is smaller than the angle of incidence for maximum sensitivity, processes the output values of the first and second pixel cells, and processes the output values of the first pixel cell
  • a stereoscopic image generation processing unit for generating the output value of the first pixel cell and the second In the two-dimensional image generation processing unit that generates two-dimensional image data using the output value of the cell and the photographing mode for obtaining stereoscopic image data, the photographing mode for obtaining the two-dimensional image data by inserting the first aperture into the optical path Then, an image pickup control unit that inserts the second diaphragm into the optical path and causes the image pickup
  • a stereoscopic image capturing apparatus capable of simultaneously obtaining a plurality of imaging data with parallax and suppressing manufacturing cost.
  • FIG. 1 The figure which shows schematic structure of the stereo image imaging device for describing one Embodiment of this invention 2D schematic diagram showing a schematic configuration of the solid-state imaging device 100 shown in FIG. Diagram for explaining the aperture of a general configuration
  • FIG. 1 is a diagram showing a schematic configuration of a stereoscopic image capturing apparatus for explaining an embodiment of the present invention.
  • the stereoscopic image pickup apparatus include a digital camera and a digital video camera, an electronic endoscope, an imaging module mounted on a camera-equipped mobile phone, and the like.
  • a digital camera will be described as an example.
  • the image pickup system of the digital camera shown in the figure has a single shooting optical system including a shooting lens 1 such as a focus lens and a zoom lens and a diaphragm 2 provided behind the shooting lens 1 and light passing through the shooting optical system. And a solid-state imaging device 100 such as a CCD image sensor or a CMOS image sensor for receiving light.
  • a shooting lens 1 such as a focus lens and a zoom lens
  • a diaphragm 2 provided behind the shooting lens 1 and light passing through the shooting optical system.
  • a solid-state imaging device 100 such as a CCD image sensor or a CMOS image sensor for receiving light.
  • the system control unit 11 that controls the entire electric control system of the digital camera controls the flash light emitting unit 12 and the light receiving unit 13. Further, the system control unit 11 controls the lens driving unit 8 to adjust the position of the focus lens included in the photographing lens 1 or adjust the position of the zoom lens included in the photographing lens 1. Further, the system control unit 11 adjusts the exposure amount by controlling the aperture amount of the aperture 2 via the aperture drive unit 9.
  • system control unit 11 drives the solid-state image sensor 100 via the image sensor driving unit 10 and causes the solid-state image sensor 100 to output a subject image captured by the solid-state image sensor 100 through the imaging optical system as a captured image signal.
  • An instruction signal from the user is input to the system control unit 11 through the operation unit 14.
  • the electric control system of the digital camera further includes an analog signal processing unit 6 and an A / D conversion circuit 7.
  • the analog signal processing unit 6 performs analog signal processing such as correlated double sampling processing connected to the output of the solid-state imaging device 100.
  • the A / D conversion circuit converts the RGB color signal output from the analog signal processing unit 6 into a digital signal.
  • the analog signal processing unit 6 and the A / D conversion circuit 7 are controlled by the system control unit 11.
  • the electric control system of the digital camera includes a main memory 16 and a memory control unit 15 connected to the main memory 16. Furthermore, the electric control system of the digital camera includes a digital signal processing unit 17, a compression / decompression processing unit 18, an external memory control unit 20 to which a detachable recording medium 21 is connected, and a liquid crystal mounted on the back of the camera. And a display control unit 22 to which the display unit 23 is connected.
  • the digital signal processing unit 17 performs interpolation calculation, gamma correction calculation, RGB / YC conversion processing, and the like to generate captured image data.
  • the compression / decompression processing unit 18 compresses the captured image data generated by the digital signal processing unit 17 into the JPEG format or decompresses the compressed image data.
  • the memory control unit 15, the digital signal processing unit 17, the compression / decompression processing unit 18, the external memory control unit 20, and the display control unit 22 are connected to each other by a control bus 24 and a data bus 25, and commands from the system control unit 11. Controlled by.
  • the liquid crystal display unit 23 is configured to display two captured image data with parallax so as to be stereoscopically viewed.
  • FIG. 2 is a schematic plan view showing a schematic configuration of the solid-state imaging device 100 shown in FIG.
  • the solid-state imaging device 100 is two-dimensionally arranged in a row direction X and a column direction Y orthogonal to the row direction X (in the example of FIG. 2, a square lattice shape), and has two types of pixel cells (10, 11).
  • the two types of pixel cells include a pixel cell 10 that detects one of a pair of light beams that have passed through different pupil regions of the photographic lens 1 and a pixel cell 11 that detects the other of the pair of light beams. The same number of these two types of pixel cells is provided. Note that the solid-state imaging device 100 is not provided with a pixel cell that can detect both a pair of light beams that have passed through the pupil region of the photographing lens 1.
  • a light receiving region (a portion indicated by a white rectangle in FIG. 2) that receives light and performs photoelectric conversion is eccentric to the left with respect to the center of the pixel cell 10. It has a configuration. A region other than the light receiving region of the pixel cell 10 (a hatched region in FIG. 2) is shielded from light by a light shielding film.
  • the pixel cell 11 has a light receiving region (a portion indicated by a white rectangle in FIG. 2) that receives light and performs photoelectric conversion with respect to the center of the pixel cell 11.
  • the configuration is eccentric in the right direction opposite to the eccentric direction (left direction).
  • a region other than the light receiving region of the pixel cell 11 (a hatched region in FIG. 2) is shielded from light by a light shielding film.
  • Each of the pixel cells 10 and 11 is formed by, for example, decentering the center of the opening formed in the light shielding film provided above the semiconductor substrate on which the photodiode is formed with respect to the center of the pixel cell.
  • the pixel cells 10 and 11 have a configuration in which the center position of the photodiode formed in the semiconductor substrate is decentered with respect to the center of the pixel cell (the photodiode is formed only on the right half or the left half of the pixel cell). There may be.
  • the pixel cells 10 and 11 may be configured as long as pupil division can be performed in the row direction X by the pixel cell 10 and the pixel cell 11, and a well-known configuration can be adopted.
  • rows composed of a plurality of pixel cells 10 arranged in the row direction X and rows composed of a plurality of pixel cells 11 arranged in the row direction X are alternately arranged in the column direction Y. It is an array. That is, in the row of pixel cells of the solid-state imaging device 100, the pixel cells 10 are arranged in the odd rows and the pixel cells 11 are arranged in the even rows.
  • each pixel cell one of three types of color filters is mounted in the light receiving area.
  • a color filter that transmits red has a letter “R” in the light receiving area of the pixel cell provided in the light receiving area.
  • a color filter that transmits green has a letter “G” in the light receiving area of the pixel cell provided in the light receiving area.
  • a color filter that transmits blue is marked with a letter “B” in the light receiving area of the pixel cell provided in the light receiving area.
  • the array of color filters mounted on the pixel cells 10 of the solid-state image sensor 100 is a Bayer array
  • the array of color filters mounted on the pixel cells 11 of the solid-state image sensor 100 is also a Bayer array. It has become.
  • the solid-state imaging device 100 uses a pair that detects red light and green light. A pair to be detected and a pair to detect blue light are arranged in a Bayer shape as a whole.
  • the digital signal processing unit 17 processes captured image signals that are a set of signals output from the pixel cells 10 of the solid-state imaging device 100 to generate right-eye image data,
  • the captured image signal that is a set of signals output from the pixel cell 11 is processed to generate image data for the left eye.
  • the digital signal processing unit 17 generates stereoscopic image data in a format that can be stereoscopically reproduced from these two image data, and records this on the recording medium 21.
  • the system control unit 11 causes the display unit 23 to display a stereoscopic image based on the stereoscopic image data.
  • the digital camera shown in FIG. 1 uses the solid-state imaging device 100 in which pairs of pixel cells divided into pupils each including the pixel cell 10 and the pixel cell 11 adjacent to the pixel cell 10 are two-dimensionally arranged.
  • Two image data (right-eye image data and left-eye image data) having parallax can be generated by a single photographing optical system and a single image sensor.
  • this digital camera can generate two pieces of image data with parallax by one shooting without providing a liquid crystal shutter, unlike the image pickup apparatus described in Patent Document 1.
  • the diaphragm having the general configuration illustrated in FIG. 3 As illustrated in FIG. 2, in the configuration in which pupil division is performed in the pixel cells included in the solid-state imaging device 100, it is preferable to use the diaphragm having the general configuration illustrated in FIG. 3 as the diaphragm 2 illustrated in FIG. 1. May not obtain a good parallax. Hereinafter, the reason will be described.
  • FIG. 3 is a diagram for explaining a general aperture stop.
  • the aperture 200 shown in FIG. 3 forms an aperture 200a that passes all light that passes through the pupil region H of the photographing lens 1 when opened, and the aperture value from the fully open to the minimum aperture (hereinafter referred to as a small aperture).
  • an opening 200b that passes only light that passes through the central portion of the pupil region H is formed.
  • FIG. 4 is a diagram showing the sensitivity of each of the pixel cell 10 and the pixel cell 11 shown in FIG. 2 to the incident angle of light in the row direction X.
  • the horizontal axis of FIG. 4 indicates the incident angle when the incident angle when light is incident on the pixel cell perpendicularly is 0 °. This incident angle is obtained by adding the angle formed between the straight line perpendicular to the paper surface and the paper surface in FIG. 2 to the right, and the straight line perpendicular to the paper surface to the left. The angle between the straight line and the paper is negative.
  • the vertical axis in FIG. 4 indicates the sensitivity of the pixel cells 10 and 11 at each incident angle.
  • the sensitivity distribution of the pixel cell 10 has a waveform indicated by reference numeral 10a
  • the sensitivity distribution of the pixel cell 11 has a waveform indicated by reference numeral 11a.
  • the waveform indicated by reference numeral 11a and the waveform indicated by reference numeral 10a have substantially the same shape, and the incident angles at which the respective maximum sensitivities, that is, peak sensitivities (portions surrounded by circles in FIG. 4) are incident angles. They are located at substantially the same distance in the opposite directions from the 0 ° position.
  • the pixel cell 10 has a light incident angle range determined by the F value of the diaphragm 200.
  • the centroid of the area surrounded by the sensitivity distribution waveform 10a (11a) of (11), that is, the incident angle serving as the sensitivity centroid coincides with the incident angle serving as the peak sensitivity of the pixel cell 10 (11) shown in FIG. It is preferable.
  • incident angle ⁇ G which is the sensitivity centroid of the pixel cell 10 (11)
  • ⁇ G which is the sensitivity centroid of the pixel cell 10 (11)
  • represents the value of each incident angle in the incident angle range determined by the F value of the stop
  • I ( ⁇ ) represents the sensitivity of the pixel cell 10 (11) at the incident angle ⁇ .
  • reference numeral 42 denotes a range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 200 is a small diaphragm (the most narrowed state).
  • reference numeral 41 denotes a range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 200 is between the full aperture and the small diaphragm.
  • the sensitivity centroid of the pixel cells 10 and 11 when light in the incident angle range 40 is incident is a portion surrounded by a circle (solid line and broken line) in the figure. It almost agrees with the peak sensitivity.
  • the sensitivity centroid of the pixel cells 10 and 11 when light in the incident angle range 41 is incident is a portion surrounded by ⁇ (solid line and broken line) in the figure, and the pixel cell when light in the incident angle range 42 is incident.
  • the sensitivity centroids 10 and 11 are surrounded by ⁇ (solid line and broken line) in the figure, and the sensitivity centroids of the pixel cells 10 and 11 become closer to each other as the aperture 200 is reduced.
  • That the sensitivity center of gravity is close means that the pupil division performance (parallax separation performance) in the row direction X of the pixel cell 10 and the pixel cell 11 is lowered. Therefore, when the diaphragm 200 as shown in FIG. 3 is used, the pupil division performance is reduced on the small diaphragm side, and the captured image signal obtained from the pixel cell 10 and the captured image signal obtained from the pixel cell 11 have a parallax. It becomes difficult and a three-dimensional effect is impaired.
  • the pupil division direction (row direction X) is larger than the light shielding amount in the pupil division direction (row direction X).
  • a diaphragm that forms a diaphragm shape that increases the amount of light shielded in the direction orthogonal to the row direction X) is used.
  • the pixel cells 10 and 11 in the incident angle range of the pupil division direction (row direction X) of the light incident on the solid-state imaging device 100 at the respective aperture values from the open position to the small stop are used as the stop 2.
  • the pixel cells 10 and 11 in the incident angle range of the light in the pupil division direction (row direction X) of the solid-state imaging device 100 is coincident (not completely coincident, both are In other words, a device that changes the shape of an aperture through which light is incident on the solid-state imaging device 100 is used.
  • the diaphragm 2 one in which the incident angle range of light in the row direction X of the solid-state imaging device 100 changes as shown in FIG. 5 according to the F value is used.
  • an incident angle range 50 indicates a range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is opened.
  • the incident angle ranges 52a and 52b indicate the range of the incident angle of light to the solid-state imaging device 100 in the row direction X when the stop 2 is a small stop.
  • Incident angle ranges 51a and 51b indicate the range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is between the full aperture and the small diaphragm.
  • the sensitivity centroid of the pixel cells 10 and 11 in the incident angle range 50 shown in FIG. 5 is a portion surrounded by a circle (solid line and broken line) in the figure, and substantially coincides with the peak sensitivity of the pixel cells 10 and 11.
  • the sensitivity centroid of the pixel cell 10 in the incident angle range 51a shown in FIG. 5 is a portion surrounded by a circle (solid line) in the figure, and substantially coincides with the peak sensitivity of the pixel cell 10.
  • the sensitivity centroid of the pixel cell 11 in the incident angle range 51b shown in FIG. 5 is a portion surrounded by a circle (broken line) in the figure, and substantially coincides with the peak sensitivity of the pixel cell 11.
  • the sensitivity centroid of the pixel cell 10 in the incident angle range 52a shown in FIG. 5 is a portion surrounded by a circle (solid line) in the figure, and substantially coincides with the peak sensitivity of the pixel cell 10.
  • the sensitivity centroid of the pixel cell 11 in the incident angle range 52b shown in FIG. 5 is a portion surrounded by a circle (broken line) in the figure, and substantially coincides with the peak sensitivity of the pixel cell 11.
  • the diaphragm 2 shown in FIG. 6 includes a movable diaphragm member 2a and a diaphragm member 2b.
  • FIG. 6A in FIG. 6 shows a state when the diaphragm 2 is open. As shown in FIG. 6A, the aperture 2 forms one opening 60 with respect to the pupil region H of the photographing lens 1 when opened.
  • FIG. 6B to FIG. 6D show a state when the diaphragm is gradually narrowed from the state of FIG. 6A, and shows a state when the FIG. 6D is a small diaphragm.
  • the aperture 2 is in a state in which two apertures 60a and 60b arranged in the row direction X with respect to the pupil region H are formed when the aperture 2 is reduced to some extent from the open position. Further, when the diaphragm 2 is further reduced, the openings 60a and 60b become smaller like FIG. 6C and FIG. 6D, respectively.
  • the incident angle range of light incident on the solid-state imaging device 100 through the opening 60 in the case of FIG. 6A is as indicated by reference numeral 50 in FIG.
  • the incident angle range of the light incident on the solid-state image sensor 100 through the opening 60a in the case of FIG. 6B is as indicated by the reference numeral 51a in FIG. 5, and the light incident on the solid-state image sensor 100 through the opening 60b.
  • the incident angle range is indicated by the reference numeral 51b in FIG.
  • the incident angle range of the light incident on the solid-state image sensor 100 through the opening 60a in the case of FIG. 6D is as indicated by the reference numeral 52a in FIG. 5, and the light incident on the solid-state image sensor 100 through the opening 60b.
  • the incident angle range is indicated by reference numeral 52b in FIG.
  • a diaphragm whose incident angle range corresponding to the F value changes as shown in FIG. 7 can be used.
  • incident angle ranges 70 a and 70 b indicate ranges of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is opened.
  • incident angle ranges 72a and 72b indicate ranges of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is a small diaphragm.
  • Incident angle ranges 71a and 71b indicate the range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is between the open and small diaphragms.
  • the sensitivity centroids are the portions surrounded by circles (solid lines) in the figure, and substantially coincide with the peak sensitivity of the image cell 10.
  • the sensitivity centroid of the pixel cell 11 in the incident angle range 70b shown in FIG. 7 the sensitivity centroid of the pixel cell 11 in the incident angle range 71b shown in FIG. 7, and the pixel cell in the incident angle range 72b shown in FIG.
  • the sensitivity centroid of 11 is a portion surrounded by a circle (broken line) in the figure, and substantially coincides with the peak sensitivity of the image cell 11.
  • the diaphragm 2 shown in FIG. 8 includes a movable diaphragm member 2a and a diaphragm member 2b.
  • FIG. 8A in FIG. 8 shows a state when the diaphragm 2 is open.
  • the aperture 2 forms two openings 80a and 80b with respect to the pupil region H of the photographing lens 1 when opened.
  • 8 show the state when the diaphragm 2 is gradually reduced from the state of FIG. 8A, and shows the state when the FIG. 8D is a small stop.
  • the incident angle range of light incident on the solid-state image sensor 100 through the opening 80a is as indicated by the reference numeral 70a in FIG. 7, and the incident light incident on the solid-state image sensor 100 through the opening 80b.
  • the angular range is indicated by reference numeral 70b in FIG.
  • the incident angle range of the light incident on the solid-state image sensor 100 through the opening 80a is as indicated by reference numeral 71a in FIG. 7, and the incident light incident on the solid-state image sensor 100 through the opening 80b.
  • the angular range is indicated by reference numeral 71b in FIG.
  • the incident angle range of the light incident on the solid-state image sensor 100 through the opening 80a is as indicated by the reference numeral 72a in FIG. 7, and the incident light incident on the solid-state image sensor 100 through the opening 80b.
  • the angular range is indicated by reference numeral 72b in FIG.
  • a diaphragm whose incident angle range corresponding to the F value changes as shown in FIG. 9 can be used.
  • an incident angle range 90 indicates a range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is opened.
  • An incident angle range 92 indicates a range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is a small diaphragm.
  • An incident angle range 91 indicates a range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is between the full aperture and the small diaphragm.
  • the sensitivity centroid of the pixel cell 10 in each of the incident angle ranges 90, 91, and 92 shown in FIG. 9 is a portion surrounded by a circle (solid line) in the figure, and substantially coincides with the peak sensitivity of the pixel cell 10.
  • the sensitivity centroid of the pixel cell 11 in each of the incident angle ranges 90, 91, and 92 shown in FIG. 9 is a portion surrounded by a circle (broken line) in the figure, and almost coincides with the peak sensitivity of the pixel cell 11. To do.
  • the diaphragm 2 shown in FIG. 10 is constituted by a movable diaphragm member 2a and a diaphragm member 2b.
  • FIG. 10A in FIG. 10 shows a state when the diaphragm 2 is open. As shown in FIG. 10A, the aperture 2 forms one opening 101 larger than the pupil region H with respect to the pupil region H of the photographing lens 1 when opened.
  • FIG. 10B and FIG. 10C show a state when the diaphragm 2 is gradually reduced from the state of FIG. 10A, and show a state when the FIG.
  • the diaphragm 2 when the diaphragm 2 is squeezed to some extent from the open position, the length of the opening 101 in the column direction Y contracts, and the opening 101 becomes a shape elongated in the row direction X. That is, the diaphragm 2 forms an opening 101 having a longitudinal shape that crosses the pupil region H in the row direction X.
  • the diaphragm 2 when the diaphragm 2 is further reduced from the state of FIG. 10B, the length in the column direction Y of the openings 101 is further reduced.
  • the diaphragm 2 forms at least an opening in a portion overlapping the pupil region H in a line segment that bisects the pupil region H in the column direction Y.
  • the incident angle range of light incident on the solid-state imaging device 100 via the opening 101 is as indicated by reference numeral 90 in FIG.
  • the incident angle range of light incident on the solid-state imaging device 100 through the opening 101 is as indicated by reference numeral 91 in FIG.
  • the incident angle range of light incident on the solid-state imaging device 100 through the opening 101 in the state of FIG. 10C is as indicated by reference numeral 92 in FIG.
  • the sensitivity centroids and the peak sensitivities of the pixel cells 10 and 11 substantially match at any F value. Regardless of the value, good parallax can be obtained.
  • the configuration of the diaphragm shown in FIG. 10 all the light from the end to the end in the row direction X of the subject to be photographed can be incident on the solid-state imaging device 100. Therefore, it is possible to generate a stereoscopic image that can provide a good stereoscopic effect even in a special shooting scene in which the main subject spreads in the horizontal direction, such as a group photo.
  • FIG. 11 is a diagram showing a schematic configuration of a digital camera for explaining another embodiment of the present invention.
  • the digital camera shown in FIG. 11 is obtained by changing the aperture 2 of the digital camera shown in FIG. 1 to an aperture 2 ′ and adding an ND filter 3 and an ND drive unit 19.
  • the aperture 2 ′ includes a first aperture for a two-dimensional imaging mode that can be inserted into and removed from the optical path of the imaging lens 1 and a second aperture for a stereoscopic imaging mode.
  • the two-dimensional imaging mode is a mode in which the digital signal processing unit 17 generates and records one captured image data (two-dimensional image data) using each captured image signal of the pixel cell 10 and the pixel cell 11. .
  • the system control unit 11 that also functions as an imaging control unit retracts the second aperture from the optical path of the imaging lens 1 and inserts the first aperture in the optical path, and then the solid-state imaging device Control is performed to capture an image by 100.
  • the system control unit 11 causes the solid-state imaging device 100 to perform imaging with the first diaphragm retracted from the optical path of the photographing lens 1 and the second diaphragm inserted in the optical path. Take control.
  • the first diaphragm included in the diaphragm 2 ′ has an incident angle (absolute as a sensitivity centroid) of each of the pixel cells 10 and 11 in the incident angle range in the pupil division direction of light incident on the solid-state imaging device 100 through the diaphragm.
  • (Value) has an opening whose value is smaller than the incident angle (absolute value) that is the peak sensitivity of each of the pixel cells 10 and 11 in the pupil division direction of the solid-state imaging device 100.
  • FIG. 12A shows a configuration example of the first aperture in FIG.
  • An aperture 200 shown in FIG. 12A has an opening 200 a formed at the center of the pupil region H of the photographic lens 1.
  • the incident angle range of light incident on the solid-state imaging device 100 through the opening 200a is the same as the incident angle range 42 shown in FIG. 4, for example. That is, when imaging is performed by the solid-state imaging device 100 through the diaphragm 200, the incident angle serving as the sensitivity centroid of each of the pixel cells 10 and 11 approaches 0 °, and the pupil division performance is degraded.
  • the digital signal processing unit 17 that also functions as a two-dimensional image generation processing unit generates one captured image data by using these two captured image signals (for example, an output signal between pixel cells constituting a pair).
  • the captured image signal after the addition is processed to generate one captured image data), and natural captured image data without blur can be generated.
  • the second diaphragm included in the diaphragm 2 ′ includes the sensitivity centroid of each of the pixel cells 10 and 11 in the incident angle range in the pupil division direction of light incident on the solid-state image sensor 100 through the diaphragm, and the solid-state image sensor 100.
  • the pixel cells 10 and 11 in the pupil division direction are provided with apertures that substantially coincide with each other.
  • FIG. 12B and FIG. 12C A configuration example of the second aperture is shown in FIG. 12B and FIG. 12C in FIG.
  • the diaphragm 201 shown in FIG. 12B is formed so that the two openings 201a and 201b arranged in the row direction X overlap with the pupil region H of the photographing lens 1.
  • the stop 202 shown in FIG. 12C is formed so that the opening 202a long in the row direction X overlaps the pupil region H of the photographing lens 1.
  • the incident angle range of light incident on the solid-state imaging device 100 through the aperture 201a of the diaphragm 201 is the same as the incident angle ranges 52a and 52b shown in FIG. Further, the incident angle range of light incident on the solid-state imaging device 100 through the opening 202a of the diaphragm 202 is the same as the incident angle range 90 to 92 shown in FIG. 9, for example.
  • the digital signal processing unit 17 that also functions as a stereoscopic image generation processing unit generates stereoscopic image data having a favorable stereoscopic effect by generating one stereoscopic image data using the two captured image signals. be able to.
  • an ND filter 3 as a light amount adjustment unit is provided between the diaphragm 2 ′ and the solid-state image sensor 100.
  • the ND filter 3 is composed of, for example, an electrochromic element that can electrically control light transmittance.
  • the system control unit 11 issues a command to the ND filter driving unit 19, and the ND filter driving unit 19 adjusts the light transmittance of the ND filter 3 in accordance with this command.
  • the digital camera shown in FIG. 11 adjusts the amount of light incident on the solid-state imaging device 100 by the ND filter 3.
  • the solid-state imaging device 100 having the configuration shown in FIG. 2 is mounted, and the shape of the diaphragm 2 ′ is changed according to the shooting mode. It is possible to switch between shooting and two-dimensional shooting.
  • the aperture and the ND filter are mounted on a general digital camera. For this reason, according to the digital camera shown in FIG. 11, it is possible to realize a function of performing both stereoscopic photography and two-dimensional photography at a low cost.
  • the arrangement of the pixel cells of the solid-state imaging device 100 mounted on the digital camera shown in FIGS. 1 and 11 is not limited to that shown in FIG.
  • the even-numbered rows in which the pixel cells 11 are arranged may be a so-called honeycomb arrangement in which the odd-numbered rows in which the pixel cells 10 are arranged are shifted in the row direction X by 1/2 of the pixel cell arrangement pitch of each row. .
  • each pixel cell of the solid-state imaging device 100 may be a solid-state imaging device for monochrome imaging without mounting a color filter.
  • positions of the diaphragms 2 and 2 ′ may be in front of the photographing lens 1.
  • the disclosed stereoscopic image capturing apparatus includes a single photographing optical system including a photographing lens and a diaphragm that adjusts the amount of transmitted light by changing an aperture amount, and a single photographing that receives light passing through the photographing optical system.
  • the image pickup device includes a first pixel cell and a second pixel cell that photoelectrically convert light beams that have passed through different areas of the photographing optical system, and the first pixel. It is configured to generate a first image obtained from the output value of the cell and a second image obtained from the output value of the second pixel cell. Is characterized in that the light shielding amount in the direction orthogonal to the pupil division direction is larger than the light shielding amount in the pupil division direction.
  • the aperture forms one opening with respect to the pupil region of the photographing lens when opened, and the aperture value up to the minimum aperture is in the pupil division direction with respect to the pupil region.
  • One longitudinally shaped opening is formed.
  • the aperture forms two apertures arranged in the pupil division direction with respect to the pupil region of the photographing lens at any aperture value from the maximum aperture to the minimum aperture.
  • the aperture forms one opening with respect to the pupil region of the photographing lens when opened, and the aperture value up to the minimum aperture is in the pupil division direction with respect to the pupil region. Two side-by-side openings are formed.
  • a color filter is mounted on the first pixel cell arranged in two dimensions, and a color filter of the same color is mounted on the second pixel cell adjacent to the first pixel cell. Is done.
  • a color filter is mounted in a Bayer array in a first pixel cell arranged in two dimensions, and a color filter is arranged in a Bayer array in a second pixel cell arranged in two dimensions. Installed.
  • pupil division is performed by shifting the position of the light shielding film opening of the first pixel cell and the position of the light shielding film opening of the second pixel cell in the opposite directions.
  • the disclosed stereoscopic image capturing apparatus includes a single photographing optical system including a photographing lens, a diaphragm having a fixed aperture amount, and a light amount adjusting unit, and a single imaging element that receives light passing through the photographing optical system.
  • the imaging device includes a first pixel cell and a second pixel cell that photoelectrically convert light beams that have passed through different regions of the imaging optical system, and the first pixel cell A first image obtained from the output value and a second image obtained from the output value of the second pixel cell are configured to generate a first aperture and a first aperture that can be taken in and out of the optical path of the photographing lens.
  • the first diaphragm includes a maximum sensitivity of each of the first pixel cell and the second pixel cell in the incident angle range in the pupil division direction of light incident on the image sensor, and the first diaphragm.
  • Incident angle range in the pupil division direction of light incident on the image sensor via The center of the area surrounded by the sensitivity distribution waveform of each of the first pixel cell and the second pixel cell in the first pixel cell and the second diaphragm is a pupil of light incident on the image sensor through the second diaphragm
  • the size of the incident angle that is the center of gravity of the area surrounded by the sensitivity distribution waveforms of the first pixel cell and the second pixel cell in the incident angle range in the division direction is the first pixel cell and the second pixel.
  • Each cell has an aperture smaller than the angle of incidence for maximum sensitivity, processes the output values of the first and second pixel cells, and processes the output values of the first pixel cell.
  • First captured image data for generating the first image obtained in this way and second captured image data for generating the second image obtained by processing the output value of the second pixel cell Stereo image generation processing unit to be generated, output value of first pixel cell and second pixel
  • Stereo image generation processing unit to be generated, output value of first pixel cell and second pixel
  • the 2D image generation processing unit for generating 2D image data using the output value of the image and in the shooting mode for obtaining stereoscopic image data, in the shooting mode for obtaining 2D image data by inserting the first aperture in the optical path
  • an imaging control unit that inserts a second diaphragm into the optical path and causes the imaging device to perform imaging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

Provided is an imaging device that can obtain a plurality of image data having parallax and can hold down production costs. An imaging device (10) has an imaging optical system and an imaging element (100) that receives light that has passed through this imaging lens system. The imaging optical system includes an imaging lens (1) and an aperture (2). The imaging element (100) includes pairs of a first pixel cell and a second pixel cell (10, 11) that perform photoelectric conversion of respective luminous flux that has passed through different areas of the imaging lens (1), and these pairs are arranged two-dimensionally. A digital signal processing unit (17) of the imaging device (10) processes the captured image signals from each of the pixel cells (10, 11) and generates three-dimensional image data from the captured image data obtained by processing the captured image signal of the pixel cells (10) and the captured image data obtained by processing the captured image signal of the pixel cells (11). Even with an aperture (2) of any aperture value from open to a small aperture, the center of gravity of sensitivity for the pixel cells (10, 11) and the maximum sensitivity for the pixel cells (10, 11) coincide.

Description

立体画撮像装置Stereoscopic imaging device
 本発明は、立体画像を撮像可能な立体画像撮像装置に関する。 The present invention relates to a stereoscopic image capturing apparatus capable of capturing a stereoscopic image.
 被写体の立体画像を撮像できる立体画像撮像装置が実際に普及し始め、テレビジョン装置やパーソナルコンピュータ用のモニタ装置も、立体画像を立体視可能に表示できるものが普及し始めている。 Stereo image pickup devices that can pick up a stereoscopic image of a subject have begun to become popular, and television devices and personal computer monitor devices that can display stereoscopic images in a stereoscopic manner are also becoming popular.
 従来の立体画像撮像装置としては、2つの撮像部を装備し、各撮像部の撮影レンズ系をカメラ筐体前部の左右に並べて設けているものがある。この立体画像撮像装置は、右側の撮影レンズ系を通して右眼用の被写体画像を撮影し、左側の撮影レンズ系を通して左眼用の被写体画像を撮影している。 Some conventional stereoscopic image pickup devices are equipped with two image pickup units, and the photographing lens systems of the respective image pickup units are provided side by side on the left and right of the front part of the camera housing. This stereoscopic image capturing apparatus captures a subject image for the right eye through the right photographic lens system and images a subject image for the left eye through the left photographic lens system.
 2つの撮像部を持つ立体画像撮像装置は、個々の撮像部が高価な撮影レンズ系や撮像素子を備える。このため、二次元画像を撮影する一般的なカメラに比べて撮像部のコストが倍になる。 A stereoscopic image capturing apparatus having two image capturing units includes an expensive photographing lens system and image capturing element in each image capturing unit. For this reason, the cost of the imaging unit is doubled compared to a general camera that captures a two-dimensional image.
 特許文献1には、単一の撮影レンズと単一の撮像素子によって立体画像を撮像することのできる立体画像撮像装置が開示されている。この立体画像撮像装置は、撮像素子と撮影レンズとの間に設けられる液晶シャッタを、撮影レンズによって集光される光の光路の右半分を遮断する状態と、撮影レンズによって集光される光の光路の左半分を遮断する状態とで切替える。そして、この各状態において撮像素子により撮像した右画像と左画像により立体画像を生成している。この立体画像撮像装置によれば、単一の撮影レンズと単一の撮像素子によって立体画像を撮像できるため、コストを抑えることができる。 Patent Document 1 discloses a stereoscopic image capturing apparatus capable of capturing a stereoscopic image with a single photographing lens and a single image sensor. In this stereoscopic image pickup device, a liquid crystal shutter provided between the image pickup element and the photographing lens blocks the right half of the optical path of the light collected by the photographing lens and the light collected by the photographing lens. Switch between the states that block the left half of the optical path. In each state, a three-dimensional image is generated from the right image and the left image captured by the image sensor. According to this stereoscopic image capturing apparatus, since a stereoscopic image can be captured by a single photographing lens and a single image sensor, the cost can be reduced.
特開2001-61165号公報JP 2001-61165 A
 しかしながら、特許文献1に記載の撮像装置は、立体画像を得るために2回の撮像を行う必要がある。このため、被写体が動いている場合には、右眼用画像と左眼用画像とで視差以外の画像の差が生じてしまい、品質の高い立体画像を生成することができない。また、一般的なカメラには不要な液晶シャッタを設ける必要があるため、その分のコストが増えてしまう。 However, the imaging device described in Patent Document 1 needs to perform imaging twice in order to obtain a stereoscopic image. For this reason, when the subject is moving, an image difference other than parallax occurs between the right-eye image and the left-eye image, and a high-quality stereoscopic image cannot be generated. Further, since it is necessary to provide an unnecessary liquid crystal shutter in a general camera, the cost increases accordingly.
 本発明は、上記事情に鑑みてなされたものであり、視差のある複数の撮像データを同時に得ることができ、かつ、製造コストを抑えることが可能な立体画像撮像装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a stereoscopic image capturing apparatus that can simultaneously obtain a plurality of imaging data with parallax and that can reduce manufacturing costs. To do.
 第一発明の立体画像撮像装置は、撮影レンズと開口量を変更することにより透過光量を調整する絞りとを含む単一の撮影光学系と、撮影光学系を通った光を受光する単一の撮像素子とを備える立体画像撮像装置であって、撮像素子は、撮影光学系の異なる領域を通過した光束をそれぞれ光電変換する第一の画素セル及び第二の画素セルを有し、第一の画素セルの出力値から得られる第一の画像及び前記第二の画素セルの出力値から得られる第二の画像を生成するように構成され、絞りは、開放から遮光量を増加させる際に、絞り形状が瞳分割方向の遮光量よりも瞳分割方向に直交する方向の遮光量が大きくなる立体画像撮像装置である。 A stereoscopic image capturing apparatus according to a first aspect of the present invention includes a single photographing optical system including a photographing lens and a diaphragm that adjusts the amount of transmitted light by changing an aperture, and a single light receiving light that has passed through the photographing optical system. A stereoscopic image capturing apparatus including an imaging element, the imaging element having a first pixel cell and a second pixel cell that photoelectrically convert light beams that have passed through different areas of the photographing optical system, respectively, It is configured to generate a first image obtained from the output value of the pixel cell and a second image obtained from the output value of the second pixel cell. In this stereoscopic image capturing apparatus, the amount of light shielding in the direction orthogonal to the pupil division direction is larger than the amount of light shielding in the pupil division direction.
 第二発明の立体画像撮像装置は、撮影レンズと開口量が固定の絞りと光量調整部とを含む単一の撮影光学系と、撮影光学系を通った光を受光する単一の撮像素子とを備える立体画像撮像装置であって、撮像素子は、撮影光学系の異なる領域を通過した光束をそれぞれ光電変換する第一の画素セル及び第二の画素セルを有し、第一の画素セルの出力値から得られる第一の画像および第二の画素セルの出力値から得られる第二の画像を生成するように構成され、絞りは、撮影レンズの光路に出し入れ可能な第一の絞りと第二の絞りを含み、第一の絞りは、撮像素子に入射する光の瞳分割方向の入射角範囲における第一の画素セル及び第二の画素セルのそれぞれの最大感度と、第一の絞りを介して撮像素子に入射する光の瞳分割方向の入射角範囲における第一の画素セル及び第二の画素セルのそれぞれの感度分布波形に囲まれた面積の重心(以下、感度重心と記載する)とを合せ、第二の絞りは、第二の絞りを介して撮像素子に入射する光の瞳分割方向の入射角範囲における第一の画素セル及び第二の画素セルのそれぞれの感度重心となる入射角の大きさが、第一の画素セル及び第二の画素セルのそれぞれの最大感度となる入射角よりも小さくなる開口を有し、第一の画素セルと第二の画素セルの各々の出力値を処理し、第一の画素セルの出力値を処理して得られる第一の画像を生成するための第一の撮像画像データと、第二の画素セルの出力値を処理して得られる第二の画像を生成するための第二の撮像画像データを生成する立体画像生成処理部と、第一の画素セルの出力値と第二の画素セルの出力値を用いて二次元画像データを生成する二次元画像生成処理部と、立体画像データを得る撮影モードでは、第一の絞りを光路に挿入し、二次元画像データを得る撮影モードでは、第二の絞りを光路に挿入し、撮像素子により撮像を行わせる撮像制御部とを備える。なお、感度重心を遮光しないようにするため、第一発明を採用した。 A stereoscopic image capturing apparatus according to a second aspect of the present invention includes a single photographing optical system including a photographing lens, a diaphragm with a fixed aperture and a light amount adjusting unit, and a single imaging element that receives light passing through the photographing optical system. The imaging device includes a first pixel cell and a second pixel cell that photoelectrically convert light beams that have passed through different areas of the imaging optical system, and the first pixel cell A first image obtained from the output value and a second image obtained from the output value of the second pixel cell are configured to generate a first aperture and a first aperture that can be taken in and out of the optical path of the photographing lens. The first diaphragm includes a maximum sensitivity of each of the first pixel cell and the second pixel cell in the incident angle range in the pupil division direction of light incident on the image sensor, and the first diaphragm. Incident angle range in the pupil division direction of light incident on the image sensor via The center of gravity of the area surrounded by the sensitivity distribution waveform of each of the first pixel cell and the second pixel cell (hereinafter referred to as the sensitivity center of gravity) is combined, and the second diaphragm is inserted through the second diaphragm. The incident angles that are the centroids of sensitivity of the first pixel cell and the second pixel cell in the incident angle range in the pupil division direction of the light incident on the image sensor are the first pixel cell and the second pixel cell. Each pixel cell has an aperture that is smaller than the angle of incidence for maximum sensitivity, processes the output values of the first and second pixel cells, and processes the output values of the first pixel cell First captured image data for generating the first image obtained in this way, and second captured image data for generating the second image obtained by processing the output value of the second pixel cell A stereoscopic image generation processing unit for generating the output value of the first pixel cell and the second In the two-dimensional image generation processing unit that generates two-dimensional image data using the output value of the cell and the photographing mode for obtaining stereoscopic image data, the photographing mode for obtaining the two-dimensional image data by inserting the first aperture into the optical path Then, an image pickup control unit that inserts the second diaphragm into the optical path and causes the image pickup device to pick up an image is provided. The first invention is adopted in order not to shield the sensitivity center of gravity.
 本発明によれば、視差のある複数の撮像データを同時に得ることができ、かつ、製造コストを抑えることが可能な立体画像撮像装置を提供することができる。 According to the present invention, it is possible to provide a stereoscopic image capturing apparatus capable of simultaneously obtaining a plurality of imaging data with parallax and suppressing manufacturing cost.
本発明の一実施形態を説明するための立体画像撮像装置の概略構成を示す図The figure which shows schematic structure of the stereo image imaging device for describing one Embodiment of this invention 図1に示す固体撮像素子100の概略構成を示す二次元模式図2D schematic diagram showing a schematic configuration of the solid-state imaging device 100 shown in FIG. 一般的な構成の絞りを説明するための図Diagram for explaining the aperture of a general configuration 図2に示した画素セル10及び画素セル11の各々の、行方向Xにおける光の入射角に対する感度を示す図The figure which shows the sensitivity with respect to the incident angle of the light in the row direction X of each of the pixel cell 10 and the pixel cell 11 shown in FIG. 図1に示すデジタルカメラに搭載される絞り2による入射角範囲の変化を説明する図The figure explaining the change of the incident angle range by the aperture_diaphragm | restriction 2 mounted in the digital camera shown in FIG. 図5に示すような入射角範囲の変化を持つ絞り2の具体的な構成例を示す図The figure which shows the specific structural example of the aperture_diaphragm | restriction 2 with the change of an incident angle range as shown in FIG. 図1に示すデジタルカメラに搭載される絞り2による入射角範囲の変化の変形例を説明する図The figure explaining the modification of the change of the incident angle range by the aperture_diaphragm | restriction 2 mounted in the digital camera shown in FIG. 図7に示すような入射角範囲の変化を持つ絞り2の具体的な構成例を示す図The figure which shows the specific structural example of the aperture_diaphragm | restriction 2 with a change of an incident angle range as shown in FIG. 図1に示すデジタルカメラに搭載される絞り2による入射角範囲の変化の別の変形例を説明する図The figure explaining another modification of the change of the incident angle range by the aperture_diaphragm | restriction 2 mounted in the digital camera shown in FIG. 図9に示すような入射角範囲の変化を持つ絞り2の具体的な構成例を示す図The figure which shows the specific structural example of the aperture_diaphragm | restriction 2 with a change of an incident angle range as shown in FIG. 本発明の別実施形態を説明するためのデジタルカメラの概略構成を示す図The figure which shows schematic structure of the digital camera for describing another embodiment of this invention 図11に示すデジタルカメラに搭載される絞り2'の構成を示す図The figure which shows the structure of the aperture_diaphragm | restriction 2 'mounted in the digital camera shown in FIG.
 以下、本発明の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態を説明するための立体画像撮像装置の概略構成を示す図である。この立体画像撮像装置としては、デジタルカメラ及びデジタルビデオカメラ、電子内視鏡及びカメラ付携帯電話機等に搭載される撮像モジュール、等があり、ここではデジタルカメラを例にして説明する。 FIG. 1 is a diagram showing a schematic configuration of a stereoscopic image capturing apparatus for explaining an embodiment of the present invention. Examples of the stereoscopic image pickup apparatus include a digital camera and a digital video camera, an electronic endoscope, an imaging module mounted on a camera-equipped mobile phone, and the like. Here, a digital camera will be described as an example.
 図示するデジタルカメラの撮像系は、フォーカスレンズ、ズームレンズ等の撮影レンズ1と撮影レンズ1の後方に設けられる絞り2とを含む単一の撮影光学系と、この撮影光学系を通った光を受光するCCDイメージセンサやCMOSイメージセンサ等の固体撮像素子100とを備える。 The image pickup system of the digital camera shown in the figure has a single shooting optical system including a shooting lens 1 such as a focus lens and a zoom lens and a diaphragm 2 provided behind the shooting lens 1 and light passing through the shooting optical system. And a solid-state imaging device 100 such as a CCD image sensor or a CMOS image sensor for receiving light.
 デジタルカメラの電気制御系全体を統括制御するシステム制御部11は、フラッシュ発光部12及び受光部13を制御する。また、システム制御部11は、レンズ駆動部8を制御して、撮影レンズ1に含まれるフォーカスレンズの位置を調整したり、撮影レンズ1に含まれるズームレンズの位置を調整したりする。また、システム制御部11は、絞り駆動部9を介し絞り2の開口量を制御することにより露光量調整を行う。 The system control unit 11 that controls the entire electric control system of the digital camera controls the flash light emitting unit 12 and the light receiving unit 13. Further, the system control unit 11 controls the lens driving unit 8 to adjust the position of the focus lens included in the photographing lens 1 or adjust the position of the zoom lens included in the photographing lens 1. Further, the system control unit 11 adjusts the exposure amount by controlling the aperture amount of the aperture 2 via the aperture drive unit 9.
 また、システム制御部11は、撮像素子駆動部10を介して固体撮像素子100を駆動し、撮影光学系を通して固体撮像素子100により撮像した被写体像を、固体撮像素子100から撮像画像信号として出力させる。システム制御部11には、操作部14を通してユーザからの指示信号が入力される。 Further, the system control unit 11 drives the solid-state image sensor 100 via the image sensor driving unit 10 and causes the solid-state image sensor 100 to output a subject image captured by the solid-state image sensor 100 through the imaging optical system as a captured image signal. . An instruction signal from the user is input to the system control unit 11 through the operation unit 14.
 デジタルカメラの電気制御系は、更に、アナログ信号処理部6とA/D変換回路7とを備える。アナログ信号処理部6は、固体撮像素子100の出力に接続された相関二重サンプリング処理等のアナログ信号処理を行う。また、A/D変換回路は、アナログ信号処理部6から出力されたRGBの色信号をデジタル信号に変換する。アナログ信号処理部6とA/D変換回路7は、システム制御部11によって制御される。 The electric control system of the digital camera further includes an analog signal processing unit 6 and an A / D conversion circuit 7. The analog signal processing unit 6 performs analog signal processing such as correlated double sampling processing connected to the output of the solid-state imaging device 100. The A / D conversion circuit converts the RGB color signal output from the analog signal processing unit 6 into a digital signal. The analog signal processing unit 6 and the A / D conversion circuit 7 are controlled by the system control unit 11.
 更に、このデジタルカメラの電気制御系は、メインメモリ16と、メインメモリ16に接続されたメモリ制御部15とを備える。更にまた、デジタルカメラの電気制御系は、デジタル信号処理部17と、圧縮伸張処理部18と、着脱自在の記録媒体21が接続される外部メモリ制御部20と、カメラ背面等に搭載された液晶表示部23が接続される表示制御部22とを備える。デジタル信号処理部17は、補間演算やガンマ補正演算,RGB/YC変換処理等を行って撮像画像データを生成する。圧縮伸張処理部18は、デジタル信号処理部17で生成された撮像画像データをJPEG形式に圧縮したり圧縮画像データを伸張したりする。 Furthermore, the electric control system of the digital camera includes a main memory 16 and a memory control unit 15 connected to the main memory 16. Furthermore, the electric control system of the digital camera includes a digital signal processing unit 17, a compression / decompression processing unit 18, an external memory control unit 20 to which a detachable recording medium 21 is connected, and a liquid crystal mounted on the back of the camera. And a display control unit 22 to which the display unit 23 is connected. The digital signal processing unit 17 performs interpolation calculation, gamma correction calculation, RGB / YC conversion processing, and the like to generate captured image data. The compression / decompression processing unit 18 compresses the captured image data generated by the digital signal processing unit 17 into the JPEG format or decompresses the compressed image data.
 メモリ制御部15、デジタル信号処理部17、圧縮伸張処理部18、外部メモリ制御部20、及び表示制御部22は、制御バス24及びデータバス25によって相互に接続され、システム制御部11からの指令によって制御される。液晶表示部23は、視差のある2つの撮影画像データを立体視可能に表示することができるように構成される。 The memory control unit 15, the digital signal processing unit 17, the compression / decompression processing unit 18, the external memory control unit 20, and the display control unit 22 are connected to each other by a control bus 24 and a data bus 25, and commands from the system control unit 11. Controlled by. The liquid crystal display unit 23 is configured to display two captured image data with parallax so as to be stereoscopically viewed.
 図2は、図1に示す固体撮像素子100の概略構成を示す平面模式図である。 FIG. 2 is a schematic plan view showing a schematic configuration of the solid-state imaging device 100 shown in FIG.
 固体撮像素子100は、行方向Xとこれに直交する列方向Yに二次元状(図2の例では正方格子状)に配列され、2種類の画素セル(10,11)を有する。この2種類の画素セルは、撮影レンズ1の異なる瞳領域を通過した一対の光束のうちの一方を検出する画素セル10と、当該一対の光束のうちの他方を検出する画素セル11を含む。この2種類の画素セルは、それぞれ同じ数だけ設けられている。なお、固体撮像素子100には、撮影レンズ1の瞳領域を通過した一対の光束の両方を検出することのできる画素セルは設けられていない。 The solid-state imaging device 100 is two-dimensionally arranged in a row direction X and a column direction Y orthogonal to the row direction X (in the example of FIG. 2, a square lattice shape), and has two types of pixel cells (10, 11). The two types of pixel cells include a pixel cell 10 that detects one of a pair of light beams that have passed through different pupil regions of the photographic lens 1 and a pixel cell 11 that detects the other of the pair of light beams. The same number of these two types of pixel cells is provided. Note that the solid-state imaging device 100 is not provided with a pixel cell that can detect both a pair of light beams that have passed through the pupil region of the photographing lens 1.
 図2の例では、画素セル10は、光を受光して光電変換する領域である受光領域(図2中の白い矩形で示した部分)が画素セル10の中心に対して左方向に偏心した構成となっている。画素セル10の受光領域以外の領域(図2においてハッチングを付した領域)は遮光膜によって遮光されている。 In the example of FIG. 2, in the pixel cell 10, a light receiving region (a portion indicated by a white rectangle in FIG. 2) that receives light and performs photoelectric conversion is eccentric to the left with respect to the center of the pixel cell 10. It has a configuration. A region other than the light receiving region of the pixel cell 10 (a hatched region in FIG. 2) is shielded from light by a light shielding film.
 また、画素セル11は、光を受光して光電変換する領域である受光領域(図2中の白い矩形で示した部分)が、画素セル11の中心に対して、画素セル10における受光領域の偏心方向(左方向)とは反対の右方向に偏心した構成となっている。画素セル11の受光領域以外の領域(図2においてハッチングを付した領域)は遮光膜によって遮光されている。 Further, the pixel cell 11 has a light receiving region (a portion indicated by a white rectangle in FIG. 2) that receives light and performs photoelectric conversion with respect to the center of the pixel cell 11. The configuration is eccentric in the right direction opposite to the eccentric direction (left direction). A region other than the light receiving region of the pixel cell 11 (a hatched region in FIG. 2) is shielded from light by a light shielding film.
 画素セル10,11の各々は、例えば、フォトダイオードが形成された半導体基板上方に設ける遮光膜に形成する開口の中心を、画素セル中心に対して偏心させることで形成されている。 Each of the pixel cells 10 and 11 is formed by, for example, decentering the center of the opening formed in the light shielding film provided above the semiconductor substrate on which the photodiode is formed with respect to the center of the pixel cell.
 なお、画素セル10,11は、半導体基板内に形成するフォトダイオードの中心位置を、画素セル中心に対して偏心させた(画素セルの右半分又は左半分にのみフォトダイオードを形成した)構成であってもよい。画素セル10,11の構成は、画素セル10と画素セル11によって行方向Xにおいて瞳分割を行うことができればよく、よく知られている構成を採用することができる。 The pixel cells 10 and 11 have a configuration in which the center position of the photodiode formed in the semiconductor substrate is decentered with respect to the center of the pixel cell (the photodiode is formed only on the right half or the left half of the pixel cell). There may be. The pixel cells 10 and 11 may be configured as long as pupil division can be performed in the row direction X by the pixel cell 10 and the pixel cell 11, and a well-known configuration can be adopted.
 図2に示す画素セルの配列は、行方向Xに並ぶ複数の画素セル10からなる行と、行方向Xに並ぶ複数の画素セル11からなる行とが、列方向Yに交互に並べられた配列となっている。つまり、固体撮像素子100の画素セルの行において、奇数行には画素セル10が配置され、偶数行には画素セル11が配置されている。 In the pixel cell array shown in FIG. 2, rows composed of a plurality of pixel cells 10 arranged in the row direction X and rows composed of a plurality of pixel cells 11 arranged in the row direction X are alternately arranged in the column direction Y. It is an array. That is, in the row of pixel cells of the solid-state imaging device 100, the pixel cells 10 are arranged in the odd rows and the pixel cells 11 are arranged in the even rows.
 各画素セルにおいて、受光領域には3種類のカラーフィルタのいずれかが搭載されている。図2では、赤色を透過するカラーフィルタが受光領域に設けられる画素セルの受光領域内に"R"の文字を付してある。また、緑色を透過するカラーフィルタが受光領域に設けられる画素セルの受光領域内に"G"の文字を付してある。また、青色を透過するカラーフィルタが受光領域に設けられる画素セルの受光領域内に"B"の文字を付してある。 In each pixel cell, one of three types of color filters is mounted in the light receiving area. In FIG. 2, a color filter that transmits red has a letter “R” in the light receiving area of the pixel cell provided in the light receiving area. Further, a color filter that transmits green has a letter “G” in the light receiving area of the pixel cell provided in the light receiving area. Further, a color filter that transmits blue is marked with a letter “B” in the light receiving area of the pixel cell provided in the light receiving area.
 図2に示すように、固体撮像素子100の画素セル10に搭載されるカラーフィルタの配列はベイヤ配列となっており、固体撮像素子100の画素セル11に搭載されるカラーフィルタの配列もベイヤ配列となっている。 As shown in FIG. 2, the array of color filters mounted on the pixel cells 10 of the solid-state image sensor 100 is a Bayer array, and the array of color filters mounted on the pixel cells 11 of the solid-state image sensor 100 is also a Bayer array. It has become.
 列方向Yに隣接する同色の光を検出する画素セル10と画素セル11を、瞳分割を行う画素セルのペアとしたとき、固体撮像素子100は、赤色光を検出するペアと、緑色光を検出するペアと、青色光を検出するペアとが、全体としてベイヤ状に配列されたものとなっている。 When the pixel cell 10 and the pixel cell 11 that detect light of the same color adjacent to each other in the column direction Y are a pair of pixel cells that perform pupil division, the solid-state imaging device 100 uses a pair that detects red light and green light. A pair to be detected and a pair to detect blue light are arranged in a Bayer shape as a whole.
 図1に示すデジタルカメラでは、デジタル信号処理部17が、固体撮像素子100の各画素セル10から出力された信号の集合である撮像画像信号を処理して右眼用画像データを生成し、各画素セル11から出力された信号の集合である撮像画像信号を処理して左眼用画像データを生成する。そして、デジタル信号処理部17は、これら2つの画像データから、立体再生可能な形式の立体画像データを生成し、これを記録媒体21に記録する。システム制御部11は、この立体画像データに基づく立体画像を表示部23に表示させる。 In the digital camera shown in FIG. 1, the digital signal processing unit 17 processes captured image signals that are a set of signals output from the pixel cells 10 of the solid-state imaging device 100 to generate right-eye image data, The captured image signal that is a set of signals output from the pixel cell 11 is processed to generate image data for the left eye. Then, the digital signal processing unit 17 generates stereoscopic image data in a format that can be stereoscopically reproduced from these two image data, and records this on the recording medium 21. The system control unit 11 causes the display unit 23 to display a stereoscopic image based on the stereoscopic image data.
 このように、図1に示すデジタルカメラは、画素セル10及びこれに隣接する画素セル11からなる瞳分割された画素セルのペアが二次元状に配列された固体撮像素子100を用いることで、単一の撮影光学系と単一の撮像素子とにより、視差のある2つの画像データ(右眼用画像データと左眼用画像データ)を生成することを可能にしている。また、このデジタルカメラは、特許文献1に記載の撮像装置のように、液晶シャッタを設けることなく、かつ、1度の撮影で視差のある2つの画像データを生成することができる。 As described above, the digital camera shown in FIG. 1 uses the solid-state imaging device 100 in which pairs of pixel cells divided into pupils each including the pixel cell 10 and the pixel cell 11 adjacent to the pixel cell 10 are two-dimensionally arranged. Two image data (right-eye image data and left-eye image data) having parallax can be generated by a single photographing optical system and a single image sensor. Also, this digital camera can generate two pieces of image data with parallax by one shooting without providing a liquid crystal shutter, unlike the image pickup apparatus described in Patent Document 1.
 図2に例示したように、固体撮像素子100に含まれる画素セルで瞳分割を行う構成では、図1に示した絞り2として、図3に例示した一般的な構成の絞りを用いると、良好な視差を得られない場合がある。以下、この理由を説明する。 As illustrated in FIG. 2, in the configuration in which pupil division is performed in the pixel cells included in the solid-state imaging device 100, it is preferable to use the diaphragm having the general configuration illustrated in FIG. 3 as the diaphragm 2 illustrated in FIG. 1. May not obtain a good parallax. Hereinafter, the reason will be described.
 図3は、一般的な構成の絞りを説明するための図である。図3に示した絞り200は、開放では、撮影レンズ1の瞳領域Hを通過する全ての光を通過する開口200aを形成し、開放から最小絞りに至るまでの絞り値(以下、小絞りと記載する)では、瞳領域Hの中心部分を通過する光のみ通過する開口200bを形成する。 FIG. 3 is a diagram for explaining a general aperture stop. The aperture 200 shown in FIG. 3 forms an aperture 200a that passes all light that passes through the pupil region H of the photographing lens 1 when opened, and the aperture value from the fully open to the minimum aperture (hereinafter referred to as a small aperture). In the description, an opening 200b that passes only light that passes through the central portion of the pupil region H is formed.
 図4は、図2に示した画素セル10及び画素セル11の各々の、行方向Xにおける光の入射角に対する感度を示す図である。図4の横軸は、画素セルに対して垂直に光が入射するときの入射角を0°としたときの入射角を示している。この入射角は、図2において、紙面に垂直な直線を右に傾けていったときのその直線と紙面とのなす角度をプラスとし、紙面に垂直な直線を左に傾けていったときのその直線と紙面とのなす角度をマイナスとしている。また、図4の縦軸は、各入射角における画素セル10,11の感度を示している。 FIG. 4 is a diagram showing the sensitivity of each of the pixel cell 10 and the pixel cell 11 shown in FIG. 2 to the incident angle of light in the row direction X. The horizontal axis of FIG. 4 indicates the incident angle when the incident angle when light is incident on the pixel cell perpendicularly is 0 °. This incident angle is obtained by adding the angle formed between the straight line perpendicular to the paper surface and the paper surface in FIG. 2 to the right, and the straight line perpendicular to the paper surface to the left. The angle between the straight line and the paper is negative. The vertical axis in FIG. 4 indicates the sensitivity of the pixel cells 10 and 11 at each incident angle.
 画素セル10の感度分布は符号10aで示した波形となり、画素セル11の感度分布は符号11aで示した波形となっている。符合11aで示す波形と符号10aで示す波形は、それぞれ略同一形状であり、かつ、それぞれの最大感度、すなわち、ピーク感度(図4中の○で囲った部分)となる入射角が、入射角0°の位置から互いに逆方向に略同一の距離だけ離れた位置にある。 The sensitivity distribution of the pixel cell 10 has a waveform indicated by reference numeral 10a, and the sensitivity distribution of the pixel cell 11 has a waveform indicated by reference numeral 11a. The waveform indicated by reference numeral 11a and the waveform indicated by reference numeral 10a have substantially the same shape, and the incident angles at which the respective maximum sensitivities, that is, peak sensitivities (portions surrounded by circles in FIG. 4) are incident angles. They are located at substantially the same distance in the opposite directions from the 0 ° position.
 画素セル10から得られる撮像画像信号と、画素セル11から得られる撮像画像信号とで良好な視差が得られるようにするには、絞り200のF値によって決まる光の入射角範囲において画素セル10(11)の感度分布波形10a(11a)に囲まれた面積の重心、すなわち感度重心となる入射角と、図4に示した画素セル10(11)のピーク感度となる入射角とが一致していることが好ましい。 In order to obtain a good parallax between the captured image signal obtained from the pixel cell 10 and the captured image signal obtained from the pixel cell 11, the pixel cell 10 has a light incident angle range determined by the F value of the diaphragm 200. The centroid of the area surrounded by the sensitivity distribution waveform 10a (11a) of (11), that is, the incident angle serving as the sensitivity centroid coincides with the incident angle serving as the peak sensitivity of the pixel cell 10 (11) shown in FIG. It is preferable.
 なお、画素セル10(11)の感度重心となる入射角θGは、例えば以下の式によって求めることができる。 Note that the incident angle θG, which is the sensitivity centroid of the pixel cell 10 (11), can be obtained by the following equation, for example.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式において、θは、絞りのF値によって決まる入射角範囲における各入射角の値を示し、I(θ)は、入射角θにおける画素セル10(11)の感度を示す。 In the above equation, θ represents the value of each incident angle in the incident angle range determined by the F value of the stop, and I (θ) represents the sensitivity of the pixel cell 10 (11) at the incident angle θ.
 図4には、図3に例示した絞り200を開放としたときの、行方向Xにおける固体撮像素子100への光の入射角の範囲を符号40で示している。また、絞り200を小絞り(最も絞った状態)としたときの、行方向Xにおける固体撮像素子100への光の入射角の範囲を符号42で示している。更に、絞り200を開放と小絞りの間としたときの、行方向Xにおける固体撮像素子100への光の入射角の範囲を符号41で示している。 4 shows the range of the incident angle of light to the solid-state imaging device 100 in the row direction X when the diaphragm 200 illustrated in FIG. 3 is opened. Further, reference numeral 42 denotes a range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 200 is a small diaphragm (the most narrowed state). Further, reference numeral 41 denotes a range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 200 is between the full aperture and the small diaphragm.
 図4に示すように、入射角範囲40の光が入射するときの画素セル10,11の感度重心は、図中の○(実線,破線)で囲った部分となり、各画素セル10,11のピーク感度とほぼ一致する。 As shown in FIG. 4, the sensitivity centroid of the pixel cells 10 and 11 when light in the incident angle range 40 is incident is a portion surrounded by a circle (solid line and broken line) in the figure. It almost agrees with the peak sensitivity.
 しかし、入射角範囲41の光が入射するときの画素セル10,11の感度重心は図中の□(実線,破線)で囲った部分となり、入射角範囲42の光が入射するときの画素セル10,11の感度重心は図中の△(実線,破線)で囲った部分となり、絞り200が絞られていくほど、画素セル10,11の感度重心は互いに近づいていく。 However, the sensitivity centroid of the pixel cells 10 and 11 when light in the incident angle range 41 is incident is a portion surrounded by □ (solid line and broken line) in the figure, and the pixel cell when light in the incident angle range 42 is incident. The sensitivity centroids 10 and 11 are surrounded by Δ (solid line and broken line) in the figure, and the sensitivity centroids of the pixel cells 10 and 11 become closer to each other as the aperture 200 is reduced.
 感度重心が近づくということは、画素セル10と画素セル11の行方向Xにおける瞳分割性能(視差分離性能)が低下することを意味する。したがって、図3に示したような絞り200を用いると、小絞り側において瞳分割性能が低下し、画素セル10から得られる撮像画像信号と画素セル11から得られる撮像画像信号とで視差がつきにくくなり、立体感が損なわれることになる。 That the sensitivity center of gravity is close means that the pupil division performance (parallax separation performance) in the row direction X of the pixel cell 10 and the pixel cell 11 is lowered. Therefore, when the diaphragm 200 as shown in FIG. 3 is used, the pupil division performance is reduced on the small diaphragm side, and the captured image signal obtained from the pixel cell 10 and the captured image signal obtained from the pixel cell 11 have a parallax. It becomes difficult and a three-dimensional effect is impaired.
 そこで、本実施形態では、図1に示すデジタルカメラの絞り2として、開放から小絞りへと遮光量を増加させる際に、瞳分割方向(行方向X)の遮光量よりも該瞳分割方向(行方向X)に直交する方向の遮光量が大きくなる絞り形状を形成する絞りを用いる。 Therefore, in the present embodiment, when the light shielding amount is increased from the fully open position to the small diaphragm as the diaphragm 2 of the digital camera shown in FIG. 1, the pupil division direction (row direction X) is larger than the light shielding amount in the pupil division direction (row direction X). A diaphragm that forms a diaphragm shape that increases the amount of light shielded in the direction orthogonal to the row direction X) is used.
 すなわち、本実施形態では、絞り2として、開放から小絞りに至るまでの各絞り値で固体撮像素子100に入射する光の瞳分割方向(行方向X)の入射角範囲における画素セル10,11のそれぞれの感度重心が、固体撮像素子100の瞳分割方向(行方向X)における光の入射角範囲における画素セル10,11のそれぞれのピーク感度と一致(完全に一致しておらず、両者が立体視に影響のない程度に僅かにずれている場合も含む)するように、固体撮像素子100に光を入射させる開口形状を変化させるものを用いる。 That is, in the present embodiment, the pixel cells 10 and 11 in the incident angle range of the pupil division direction (row direction X) of the light incident on the solid-state imaging device 100 at the respective aperture values from the open position to the small stop are used as the stop 2. Of each of the pixel cells 10 and 11 in the incident angle range of the light in the pupil division direction (row direction X) of the solid-state imaging device 100 is coincident (not completely coincident, both are In other words, a device that changes the shape of an aperture through which light is incident on the solid-state imaging device 100 is used.
 例えば、絞り2として、固体撮像素子100の行方向Xにおける光の入射角範囲が、F値に応じて図5に示すように変化するものを用いる。 For example, as the diaphragm 2, one in which the incident angle range of light in the row direction X of the solid-state imaging device 100 changes as shown in FIG. 5 according to the F value is used.
 図5に示した各波形10a,11aは図4に示したものと同じである。図5において、入射角範囲50は、絞り2を開放としたときの、行方向Xにおける固体撮像素子100への光の入射角の範囲を示している。入射角範囲52a,52bは、絞り2を小絞りとしたときの、行方向Xにおける固体撮像素子100への光の入射角の範囲を示している。入射角範囲51a,51bは、絞り2を開放と小絞りの間としたときの、行方向Xにおける固体撮像素子100への光の入射角の範囲を示している。 The waveforms 10a and 11a shown in FIG. 5 are the same as those shown in FIG. In FIG. 5, an incident angle range 50 indicates a range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is opened. The incident angle ranges 52a and 52b indicate the range of the incident angle of light to the solid-state imaging device 100 in the row direction X when the stop 2 is a small stop. Incident angle ranges 51a and 51b indicate the range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is between the full aperture and the small diaphragm.
 図5に示した入射角範囲50における画素セル10,11の感度重心は、図中の○(実線,破線)で囲った部分となり、画素セル10,11のピーク感度とほぼ一致する。 The sensitivity centroid of the pixel cells 10 and 11 in the incident angle range 50 shown in FIG. 5 is a portion surrounded by a circle (solid line and broken line) in the figure, and substantially coincides with the peak sensitivity of the pixel cells 10 and 11.
 また、図5に示した入射角範囲51aにおける画素セル10の感度重心は、図中の○(実線)で囲った部分となり、画素セル10のピーク感度とほぼ一致する。また、図5に示した入射角範囲51bにおける画素セル11の感度重心は、図中の○(破線)で囲った部分となり、画素セル11のピーク感度とほぼ一致する。 Further, the sensitivity centroid of the pixel cell 10 in the incident angle range 51a shown in FIG. 5 is a portion surrounded by a circle (solid line) in the figure, and substantially coincides with the peak sensitivity of the pixel cell 10. Further, the sensitivity centroid of the pixel cell 11 in the incident angle range 51b shown in FIG. 5 is a portion surrounded by a circle (broken line) in the figure, and substantially coincides with the peak sensitivity of the pixel cell 11.
 また、図5に示した入射角範囲52aにおける画素セル10の感度重心は、図中の○(実線)で囲った部分となり、画素セル10のピーク感度とほぼ一致する。また、図5に示した入射角範囲52bにおける画素セル11の感度重心は、図中の○(破線)で囲った部分となり、画素セル11のピーク感度とほぼ一致する。 Further, the sensitivity centroid of the pixel cell 10 in the incident angle range 52a shown in FIG. 5 is a portion surrounded by a circle (solid line) in the figure, and substantially coincides with the peak sensitivity of the pixel cell 10. Further, the sensitivity centroid of the pixel cell 11 in the incident angle range 52b shown in FIG. 5 is a portion surrounded by a circle (broken line) in the figure, and substantially coincides with the peak sensitivity of the pixel cell 11.
 次に、図5に示すような入射角範囲の変化を持つ絞り2の具体的な構成を図6に示す。 Next, a specific configuration of the diaphragm 2 having a change in the incident angle range as shown in FIG. 5 is shown in FIG.
 図6に示す絞り2は、それぞれ移動可能な絞り部材2aと絞り部材2bとにより構成される。図6のFIG6Aは、絞り2が開放のときの状態を示している。FIG6Aに示すように、絞り2は、開放においては撮影レンズ1の瞳領域Hに対して1つの開口60を形成している。図6のFIG6B~6Dは、FIG6Aの状態から絞りを徐々に絞っていったときの状態を示しており、FIG6Dが小絞りのときの状態を示している。 The diaphragm 2 shown in FIG. 6 includes a movable diaphragm member 2a and a diaphragm member 2b. FIG. 6A in FIG. 6 shows a state when the diaphragm 2 is open. As shown in FIG. 6A, the aperture 2 forms one opening 60 with respect to the pupil region H of the photographing lens 1 when opened. FIG. 6B to FIG. 6D show a state when the diaphragm is gradually narrowed from the state of FIG. 6A, and shows a state when the FIG. 6D is a small diaphragm.
 FIG6Bに示すように、絞り2は、開放からある程度絞られると、瞳領域Hに対し行方向Xに並ぶ2つの開口60a,60bを形成した状態になる。また、絞り2が更に絞られると、開口60a,60bはそれぞれFIG6C、FIG6Dのように小さくなっていく。 As shown in FIG. 6B, the aperture 2 is in a state in which two apertures 60a and 60b arranged in the row direction X with respect to the pupil region H are formed when the aperture 2 is reduced to some extent from the open position. Further, when the diaphragm 2 is further reduced, the openings 60a and 60b become smaller like FIG. 6C and FIG. 6D, respectively.
 FIG6Aのときに開口60を介して固体撮像素子100に入射する光の入射角範囲は、図5の符号50で示したものとなる。また、FIG6Bのときに開口60aを介して固体撮像素子100に入射する光の入射角範囲は、図5の符号51aで示したものとなり、開口60bを介して固体撮像素子100に入射する光の入射角範囲は、図5の符号51bで示したものとなる。 The incident angle range of light incident on the solid-state imaging device 100 through the opening 60 in the case of FIG. 6A is as indicated by reference numeral 50 in FIG. In addition, the incident angle range of the light incident on the solid-state image sensor 100 through the opening 60a in the case of FIG. 6B is as indicated by the reference numeral 51a in FIG. 5, and the light incident on the solid-state image sensor 100 through the opening 60b. The incident angle range is indicated by the reference numeral 51b in FIG.
 また、FIG6Dのときに開口60aを介して固体撮像素子100に入射する光の入射角範囲は、図5の符号52aで示したものとなり、開口60bを介して固体撮像素子100に入射する光の入射角範囲は、図5の符号52bで示したものとなる。 In addition, the incident angle range of the light incident on the solid-state image sensor 100 through the opening 60a in the case of FIG. 6D is as indicated by the reference numeral 52a in FIG. 5, and the light incident on the solid-state image sensor 100 through the opening 60b. The incident angle range is indicated by reference numeral 52b in FIG.
 絞り2としては、F値に応じた入射角範囲が図7に示したように変化するものを用いることもできる。 As the diaphragm 2, a diaphragm whose incident angle range corresponding to the F value changes as shown in FIG. 7 can be used.
 図7に示した各波形10a,11aは図5に示したものと同じである。図7において、入射角範囲70a,70bは、絞り2を開放としたときの、行方向Xにおける固体撮像素子100への光の入射角の範囲を示している。入射角範囲72a,72bは、絞り2を小絞りとしたときの、行方向Xにおける固体撮像素子100への光の入射角の範囲を示している。入射角範囲71a,71bは、絞り2を開放と小絞りの間としたときの、行方向Xにおける固体撮像素子100への光の入射角の範囲を示している。 The waveforms 10a and 11a shown in FIG. 7 are the same as those shown in FIG. In FIG. 7, incident angle ranges 70 a and 70 b indicate ranges of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is opened. Incident angle ranges 72a and 72b indicate ranges of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is a small diaphragm. Incident angle ranges 71a and 71b indicate the range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is between the open and small diaphragms.
 図7に示した入射角範囲70aにおける画素セル10の感度重心と、図7に示した入射角範囲71aにおける画素セル10の感度重心と、図7に示した入射角範囲72aにおける画素セル10の感度重心は、それぞれ図中の○(実線)で囲った部分となり、画像セル10のピーク感度とほぼ一致する。 The sensitivity centroid of the pixel cell 10 in the incident angle range 70a shown in FIG. 7, the sensitivity centroid of the pixel cell 10 in the incident angle range 71a shown in FIG. 7, and the sensitivity centroid of the pixel cell 10 in the incident angle range 72a shown in FIG. The sensitivity centroids are the portions surrounded by circles (solid lines) in the figure, and substantially coincide with the peak sensitivity of the image cell 10.
 また、図7に示した入射角範囲70bにおける画素セル11の感度重心と、図7に示した入射角範囲71bにおける画素セル11の感度重心と、図7に示した入射角範囲72bにおける画素セル11の感度重心は、それぞれ図中の○(破線)で囲った部分となり、画像セル11のピーク感度とほぼ一致する。 Also, the sensitivity centroid of the pixel cell 11 in the incident angle range 70b shown in FIG. 7, the sensitivity centroid of the pixel cell 11 in the incident angle range 71b shown in FIG. 7, and the pixel cell in the incident angle range 72b shown in FIG. The sensitivity centroid of 11 is a portion surrounded by a circle (broken line) in the figure, and substantially coincides with the peak sensitivity of the image cell 11.
 次に、図7に示すような入射角範囲の変化を持つ絞り2の具体的な構成を図8に示す。 Next, a specific configuration of the diaphragm 2 having a change in the incident angle range as shown in FIG. 7 is shown in FIG.
 図8に示す絞り2は、それぞれ移動可能な絞り部材2aと絞り部材2bとにより構成される。図8のFIG8Aは、絞り2が開放のときの状態を示している。FIG8Aに示すように、絞り2は、開放においては撮影レンズ1の瞳領域Hに対して2つの開口80a,80bを形成している。図8のFIG8B~8Dは、FIG8Aの状態から絞り2を徐々に絞っていったときの状態を示しており、FIG8Dが小絞りのときの状態を示している。 The diaphragm 2 shown in FIG. 8 includes a movable diaphragm member 2a and a diaphragm member 2b. FIG. 8A in FIG. 8 shows a state when the diaphragm 2 is open. As shown in FIG. 8A, the aperture 2 forms two openings 80a and 80b with respect to the pupil region H of the photographing lens 1 when opened. 8 show the state when the diaphragm 2 is gradually reduced from the state of FIG. 8A, and shows the state when the FIG. 8D is a small stop.
 FIG8Bに示すように、絞り2は、開放からある程度絞られると開口80a,80bの各々の大きさが小さくなり、かつ、開口80aと開口80b間の行方向Xの距離が大きくなる。また、絞り2が更に絞られると、開口80a,80bはFIG8C、FIG8Dのように小さくなり、かつ、2つの開口間の行方向Xの距離が大きくなる。 As shown in FIG. 8B, when the diaphragm 2 is narrowed to a certain extent from the open state, the size of each of the openings 80a and 80b becomes small, and the distance in the row direction X between the openings 80a and 80b becomes large. Further, when the diaphragm 2 is further reduced, the openings 80a and 80b become smaller as in FIG. 8C and FIG. 8D, and the distance in the row direction X between the two openings becomes larger.
 FIG8Aの状態で、開口80aを介して固体撮像素子100に入射する光の入射角範囲は、図7の符号70aで示したものとなり、開口80bを介して固体撮像素子100に入射する光の入射角範囲は、図7の符号70bで示したものとなる。 In the state of FIG. 8A, the incident angle range of light incident on the solid-state image sensor 100 through the opening 80a is as indicated by the reference numeral 70a in FIG. 7, and the incident light incident on the solid-state image sensor 100 through the opening 80b. The angular range is indicated by reference numeral 70b in FIG.
 FIG8Cの状態で、開口80aを介して固体撮像素子100に入射する光の入射角範囲は、図7の符号71aで示したものとなり、開口80bを介して固体撮像素子100に入射する光の入射角範囲は、図7の符号71bで示したものとなる。 In the state of FIG. 8C, the incident angle range of the light incident on the solid-state image sensor 100 through the opening 80a is as indicated by reference numeral 71a in FIG. 7, and the incident light incident on the solid-state image sensor 100 through the opening 80b. The angular range is indicated by reference numeral 71b in FIG.
 FIG8Dの状態で、開口80aを介して固体撮像素子100に入射する光の入射角範囲は、図7の符号72aで示したものとなり、開口80bを介して固体撮像素子100に入射する光の入射角範囲は、図7の符号72bで示したものとなる。 In the state of FIG. 8D, the incident angle range of the light incident on the solid-state image sensor 100 through the opening 80a is as indicated by the reference numeral 72a in FIG. 7, and the incident light incident on the solid-state image sensor 100 through the opening 80b. The angular range is indicated by reference numeral 72b in FIG.
 また、絞り2としては、F値に応じた入射角範囲が図9に示したように変化するものを用いることもできる。 Further, as the aperture stop 2, a diaphragm whose incident angle range corresponding to the F value changes as shown in FIG. 9 can be used.
 図9に示した各波形10a,11aは図5に示したものと同じである。図9において、入射角範囲90は、絞り2を開放としたときの、行方向Xにおける固体撮像素子100への光の入射角の範囲を示している。入射角範囲92は、絞り2を小絞りとしたときの、行方向Xにおける固体撮像素子100への光の入射角の範囲を示している。入射角範囲91は、絞り2を開放と小絞りの間としたときの、行方向Xにおける固体撮像素子100への光の入射角の範囲を示している。 The respective waveforms 10a and 11a shown in FIG. 9 are the same as those shown in FIG. In FIG. 9, an incident angle range 90 indicates a range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is opened. An incident angle range 92 indicates a range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is a small diaphragm. An incident angle range 91 indicates a range of incident angles of light to the solid-state imaging device 100 in the row direction X when the diaphragm 2 is between the full aperture and the small diaphragm.
 図9に示した入射角範囲90,91,92の各々における画素セル10の感度重心は、いずれも図中の○(実線)で囲った部分となり、画素セル10のピーク感度とほぼ一致する。また、図9に示した入射角範囲90,91,92の各々における画素セル11の感度重心は、いずれも図中の○(破線)で囲った部分となり、画素セル11のピーク感度とほぼ一致する。 The sensitivity centroid of the pixel cell 10 in each of the incident angle ranges 90, 91, and 92 shown in FIG. 9 is a portion surrounded by a circle (solid line) in the figure, and substantially coincides with the peak sensitivity of the pixel cell 10. In addition, the sensitivity centroid of the pixel cell 11 in each of the incident angle ranges 90, 91, and 92 shown in FIG. 9 is a portion surrounded by a circle (broken line) in the figure, and almost coincides with the peak sensitivity of the pixel cell 11. To do.
 次に、図9に示すような入射角範囲の変化を持つ絞り2の具体的な構成を図10に示す。 Next, a specific configuration of the diaphragm 2 having a change in the incident angle range as shown in FIG. 9 is shown in FIG.
 図10に示す絞り2は、それぞれ移動可能な絞り部材2aと絞り部材2bとにより構成される。図10のFIG10Aは、絞り2が開放のときの状態を示している。FIG10Aに示すように、絞り2は、開放においては撮影レンズ1の瞳領域Hに対して瞳領域Hよりも大きい1つの開口101を形成している。図10のFIG10B,10Cは、FIG10Aの状態から絞り2を徐々に絞っていったときの状態を示しており、FIG10Cが小絞りのときの状態を示している。 The diaphragm 2 shown in FIG. 10 is constituted by a movable diaphragm member 2a and a diaphragm member 2b. FIG. 10A in FIG. 10 shows a state when the diaphragm 2 is open. As shown in FIG. 10A, the aperture 2 forms one opening 101 larger than the pupil region H with respect to the pupil region H of the photographing lens 1 when opened. FIG. 10B and FIG. 10C show a state when the diaphragm 2 is gradually reduced from the state of FIG. 10A, and show a state when the FIG.
 FIG10Bに示すように、絞り2は、開放からある程度絞られると、開口101の列方向Yの長さが縮んで、開口101が行方向Xに長手の形状になる。即ち、絞り2は、瞳領域Hを行方向Xに横断する長手の形状の開口101を形成する。 As shown in FIG. 10B, when the diaphragm 2 is squeezed to some extent from the open position, the length of the opening 101 in the column direction Y contracts, and the opening 101 becomes a shape elongated in the row direction X. That is, the diaphragm 2 forms an opening 101 having a longitudinal shape that crosses the pupil region H in the row direction X.
 また、FIG10Bの状態から絞り2が更に絞られると、開口101の列方向Yの長さが更に縮む。なお、絞り2は、いずれのF値においても、瞳領域Hを列方向Yに2等分する線分のうち瞳領域Hと重なる部分には少なくとも開口を形成する。 Further, when the diaphragm 2 is further reduced from the state of FIG. 10B, the length in the column direction Y of the openings 101 is further reduced. In any F value, the diaphragm 2 forms at least an opening in a portion overlapping the pupil region H in a line segment that bisects the pupil region H in the column direction Y.
 FIG10Aの状態で、開口101を介して固体撮像素子100に入射する光の入射角範囲は、図9の符号90で示したものとなる。FIG10Bの状態で、開口101を介して固体撮像素子100に入射する光の入射角範囲は、図9の符号91で示したものとなる。FIG10Cの状態で、開口101を介して固体撮像素子100に入射する光の入射角範囲は、図9の符号92で示したものとなる。 In the state of FIG. 10A, the incident angle range of light incident on the solid-state imaging device 100 via the opening 101 is as indicated by reference numeral 90 in FIG. In the state of FIG. 10B, the incident angle range of light incident on the solid-state imaging device 100 through the opening 101 is as indicated by reference numeral 91 in FIG. The incident angle range of light incident on the solid-state imaging device 100 through the opening 101 in the state of FIG. 10C is as indicated by reference numeral 92 in FIG.
 以上のように、図5,7,9に示すように開口を変化させる絞り2を用いることで、画素セル10,11の感度重心とピーク感度とがどのF値においても略一致するため、F値によらずに、良好な視差を得ることができる。特に、図10に示した絞りの構成によれば、撮影する被写体の行方向Xにおける端から端までの光を全て固体撮像素子100に入射させることができる。このため、集合写真等のように、主要被写体が横方向に広がっている特殊な撮影シーンであっても、良好な立体感を得られる立体画像を生成することができる。 As described above, by using the diaphragm 2 that changes the aperture as shown in FIGS. 5, 7, and 9, the sensitivity centroids and the peak sensitivities of the pixel cells 10 and 11 substantially match at any F value. Regardless of the value, good parallax can be obtained. In particular, according to the configuration of the diaphragm shown in FIG. 10, all the light from the end to the end in the row direction X of the subject to be photographed can be incident on the solid-state imaging device 100. Therefore, it is possible to generate a stereoscopic image that can provide a good stereoscopic effect even in a special shooting scene in which the main subject spreads in the horizontal direction, such as a group photo.
 図11は、本発明の別実施形態を説明するためのデジタルカメラの概略構成を示す図である。図11に示すデジタルカメラは、図1に示すデジタルカメラの絞り2を絞り2'に変更し、NDフィルタ3とND駆動部19を追加したものである。 FIG. 11 is a diagram showing a schematic configuration of a digital camera for explaining another embodiment of the present invention. The digital camera shown in FIG. 11 is obtained by changing the aperture 2 of the digital camera shown in FIG. 1 to an aperture 2 ′ and adding an ND filter 3 and an ND drive unit 19.
 絞り2'は、撮影レンズ1の光路上に挿脱可能な二次元撮影モード用の第一の絞りと立体撮影モード用の第二の絞りを含む。 The aperture 2 ′ includes a first aperture for a two-dimensional imaging mode that can be inserted into and removed from the optical path of the imaging lens 1 and a second aperture for a stereoscopic imaging mode.
 二次元撮影モードとは、デジタル信号処理部17が、画素セル10と画素セル11の各々の撮像画像信号を用いて1つの撮像画像データ(二次元画像データ)を生成して記録するモードである。撮像制御部としても機能するシステム制御部11は、二次元撮影モード時には、撮影レンズ1の光路上から第二の絞りを退避させ、その光路に第一の絞りを挿入した状態で、固体撮像素子100により撮像を行わせる制御を行う。また、システム制御部11は、立体撮影モード時には、撮影レンズ1の光路上から第一の絞りを退避させ、その光路に第二の絞りを挿入した状態で、固体撮像素子100により撮像を行わせる制御を行う。 The two-dimensional imaging mode is a mode in which the digital signal processing unit 17 generates and records one captured image data (two-dimensional image data) using each captured image signal of the pixel cell 10 and the pixel cell 11. . In the two-dimensional imaging mode, the system control unit 11 that also functions as an imaging control unit retracts the second aperture from the optical path of the imaging lens 1 and inserts the first aperture in the optical path, and then the solid-state imaging device Control is performed to capture an image by 100. Further, in the stereoscopic shooting mode, the system control unit 11 causes the solid-state imaging device 100 to perform imaging with the first diaphragm retracted from the optical path of the photographing lens 1 and the second diaphragm inserted in the optical path. Take control.
 絞り2'に含まれる第一の絞りは、この絞りを介して固体撮像素子100に入射する光の瞳分割方向における入射角範囲における画素セル10,11のそれぞれの感度重心となる入射角(絶対値)が、固体撮像素子100の瞳分割方向における画素セル10,11のそれぞれのピーク感度となる入射角(絶対値)よりも小さい値となる開口を有する。 The first diaphragm included in the diaphragm 2 ′ has an incident angle (absolute as a sensitivity centroid) of each of the pixel cells 10 and 11 in the incident angle range in the pupil division direction of light incident on the solid-state imaging device 100 through the diaphragm. (Value) has an opening whose value is smaller than the incident angle (absolute value) that is the peak sensitivity of each of the pixel cells 10 and 11 in the pupil division direction of the solid-state imaging device 100.
 第一の絞りの構成例を図12のFIG12Aに示す。FIG12Aに示した絞り200は、撮影レンズ1の瞳領域Hの中央部分に開口200aが形成されている。この開口200aを介して固体撮像素子100に入射する光の入射角範囲は、例えば図4に示した入射角範囲42と同じになっている。つまり、絞り200を介して固体撮像素子100により撮像を行うと、画素セル10,11の各々の感度重心となる入射角が0°に近づくことになり、瞳分割性能が低下する。 FIG. 12A shows a configuration example of the first aperture in FIG. An aperture 200 shown in FIG. 12A has an opening 200 a formed at the center of the pupil region H of the photographic lens 1. The incident angle range of light incident on the solid-state imaging device 100 through the opening 200a is the same as the incident angle range 42 shown in FIG. 4, for example. That is, when imaging is performed by the solid-state imaging device 100 through the diaphragm 200, the incident angle serving as the sensitivity centroid of each of the pixel cells 10 and 11 approaches 0 °, and the pupil division performance is degraded.
 そのため、画素セル10から得られる撮像画像信号と、画素セル11から得られる撮像画像信号とには視差があまり生じなくなる。したがって、二次元画像生成処理部としても機能するデジタル信号処理部17が、この2つの撮像画像信号を用いて1つの撮像画像データを生成する(例えば、ペアを構成する画素セル同士の出力信号を加算し、加算後の撮像画像信号を処理して1つの撮像画像データを生成する)ことで、ぼけのない自然な撮像画像データを生成することができる。 Therefore, parallax hardly occurs between the captured image signal obtained from the pixel cell 10 and the captured image signal obtained from the pixel cell 11. Therefore, the digital signal processing unit 17 that also functions as a two-dimensional image generation processing unit generates one captured image data by using these two captured image signals (for example, an output signal between pixel cells constituting a pair). The captured image signal after the addition is processed to generate one captured image data), and natural captured image data without blur can be generated.
 絞り2'に含まれる第二の絞りは、この絞りを介して固体撮像素子100に入射する光の瞳分割方向における入射角範囲における画素セル10,11のそれぞれの感度重心と、固体撮像素子100の瞳分割方向における画素セル10,11のそれぞれのピーク感度とが略一致する開口を備える。 The second diaphragm included in the diaphragm 2 ′ includes the sensitivity centroid of each of the pixel cells 10 and 11 in the incident angle range in the pupil division direction of light incident on the solid-state image sensor 100 through the diaphragm, and the solid-state image sensor 100. Of the pixel cells 10 and 11 in the pupil division direction are provided with apertures that substantially coincide with each other.
 第二の絞りの構成例を図12のFIG12B,FIG12Cに示す。FIG12Bに示した絞り201は、行方向Xに並ぶ2つの開口201a,201bが撮影レンズ1の瞳領域Hと重なるように形成される。また、FIG12Cに示した絞り202は、行方向Xに長手の開口202aが撮影レンズ1の瞳領域Hと重なるように形成される。 A configuration example of the second aperture is shown in FIG. 12B and FIG. 12C in FIG. The diaphragm 201 shown in FIG. 12B is formed so that the two openings 201a and 201b arranged in the row direction X overlap with the pupil region H of the photographing lens 1. Further, the stop 202 shown in FIG. 12C is formed so that the opening 202a long in the row direction X overlaps the pupil region H of the photographing lens 1.
 絞り201の開口201aを介して固体撮像素子100に入射する光の入射角範囲は、例えば図5に示した入射角範囲52a,52bと同じになっている。また、絞り202の開口202aを介して固体撮像素子100に入射する光の入射角範囲は、例えば図9に示した入射角範囲90~92と同じになっている。 The incident angle range of light incident on the solid-state imaging device 100 through the aperture 201a of the diaphragm 201 is the same as the incident angle ranges 52a and 52b shown in FIG. Further, the incident angle range of light incident on the solid-state imaging device 100 through the opening 202a of the diaphragm 202 is the same as the incident angle range 90 to 92 shown in FIG. 9, for example.
 絞り201又は絞り202を介して固体撮像素子100により撮像を行うと、画素セル10,11の各々の感度重心とピーク感度とが略一致することになり、瞳分割性能が最適となる。そのため、画素セル10から得られる撮像画像信号と、画素セル11から得られる撮像画像信号とには良好な視差が生じる。したがって、立体画像生成処理部としても機能するデジタル信号処理部17が、この2つの撮像画像信号を用いて1つの立体画像データを生成することで、良好な立体感を持つ立体画像データを生成することができる。 When imaging is performed by the solid-state imaging device 100 through the diaphragm 201 or the diaphragm 202, the sensitivity centroids and the peak sensitivities of the pixel cells 10 and 11 substantially coincide with each other, and the pupil division performance is optimized. Therefore, a good parallax occurs between the captured image signal obtained from the pixel cell 10 and the captured image signal obtained from the pixel cell 11. Accordingly, the digital signal processing unit 17 that also functions as a stereoscopic image generation processing unit generates stereoscopic image data having a favorable stereoscopic effect by generating one stereoscopic image data using the two captured image signals. be able to.
 なお、図11に示したデジタルカメラでは、各撮影モードにおいて、絞り2'の開口の面積が固定になるため、絞り2'では固体撮像素子100に入射させる光量の調整ができない。そこで、絞り2'と固体撮像素子100の間には光量調整部としてのNDフィルタ3が設けられている。 In the digital camera shown in FIG. 11, since the aperture area of the diaphragm 2 ′ is fixed in each photographing mode, the amount of light incident on the solid-state imaging device 100 cannot be adjusted with the diaphragm 2 ′. Therefore, an ND filter 3 as a light amount adjustment unit is provided between the diaphragm 2 ′ and the solid-state image sensor 100.
 NDフィルタ3は、例えば電気的に光透過率を制御できるエレクトロクロミック素子等により構成される。システム制御部11は、NDフィルタ駆動部19に指令を出し、この指令にしたがって、NDフィルタ駆動部19がNDフィルタ3の光透過率を調整する。このように、図11に示すデジタルカメラは、NDフィルタ3によって固体撮像素子100に入射する光量を調整する。 The ND filter 3 is composed of, for example, an electrochromic element that can electrically control light transmittance. The system control unit 11 issues a command to the ND filter driving unit 19, and the ND filter driving unit 19 adjusts the light transmittance of the ND filter 3 in accordance with this command. As described above, the digital camera shown in FIG. 11 adjusts the amount of light incident on the solid-state imaging device 100 by the ND filter 3.
 以上のように、図11に示したデジタルカメラによれば、図2に示した構成の固体撮像素子100を搭載していながら、絞り2'の形状を撮影モードに応じて変更するだけで、立体撮影と二次元撮影を切替えて行うことができる。絞りやNDフィルタは、一般的なデジタルカメラに搭載されているものである。このため、図11に示すデジタルカメラによれば、立体撮影と二次元撮影の両方を行う機能を低コストで実現することができる。 As described above, according to the digital camera shown in FIG. 11, the solid-state imaging device 100 having the configuration shown in FIG. 2 is mounted, and the shape of the diaphragm 2 ′ is changed according to the shooting mode. It is possible to switch between shooting and two-dimensional shooting. The aperture and the ND filter are mounted on a general digital camera. For this reason, according to the digital camera shown in FIG. 11, it is possible to realize a function of performing both stereoscopic photography and two-dimensional photography at a low cost.
 なお、図1及び図11に示すデジタルカメラに搭載される固体撮像素子100の画素セルの配列は、図2に示したものに限らない。例えば、図2において、画素セル11が並ぶ偶数行を、画素セル10が並ぶ奇数行に対して、各行の画素セル配列ピッチの1/2だけ行方向Xにずらした、いわゆるハニカム配列としてもよい。 Note that the arrangement of the pixel cells of the solid-state imaging device 100 mounted on the digital camera shown in FIGS. 1 and 11 is not limited to that shown in FIG. For example, in FIG. 2, the even-numbered rows in which the pixel cells 11 are arranged may be a so-called honeycomb arrangement in which the odd-numbered rows in which the pixel cells 10 are arranged are shifted in the row direction X by 1/2 of the pixel cell arrangement pitch of each row. .
 また、固体撮像素子100の各画素セルにはカラーフィルタを搭載せずに、白黒撮像用の固体撮像素子としてもよい。 Further, each pixel cell of the solid-state imaging device 100 may be a solid-state imaging device for monochrome imaging without mounting a color filter.
 また、絞り2,2'の位置は、撮影レンズ1の前としてもよい。 Further, the positions of the diaphragms 2 and 2 ′ may be in front of the photographing lens 1.
 以上説明してきたように、本明細書には以下の事項が開示されている。 As described above, the following items are disclosed in this specification.
 開示された立体画像撮像装置は、撮影レンズと開口量を変更することにより透過光量を調整する絞りとを含む単一の撮影光学系と、撮影光学系を通った光を受光する単一の撮像素子とを備える立体画像撮像装置であって、撮像素子は、撮影光学系の異なる領域を通過した光束をそれぞれ光電変換する第一の画素セル及び第二の画素セルを有し、第一の画素セルの出力値から得られる第一の画像及び第二の画素セルの出力値から得られる第二の画像を生成するように構成され、絞りは、開放から遮光量を増加させる際に、絞り形状が瞳分割方向の遮光量よりも該瞳分割方向に直交する方向の遮光量が大きくなることを特徴とする。 The disclosed stereoscopic image capturing apparatus includes a single photographing optical system including a photographing lens and a diaphragm that adjusts the amount of transmitted light by changing an aperture amount, and a single photographing that receives light passing through the photographing optical system. The image pickup device includes a first pixel cell and a second pixel cell that photoelectrically convert light beams that have passed through different areas of the photographing optical system, and the first pixel. It is configured to generate a first image obtained from the output value of the cell and a second image obtained from the output value of the second pixel cell. Is characterized in that the light shielding amount in the direction orthogonal to the pupil division direction is larger than the light shielding amount in the pupil division direction.
 開示された立体画像撮像装置において、絞りは、開放においては撮影レンズの瞳領域に対して1つの開口を形成し、最小絞りに至るまでの絞り値においては、瞳領域に対して瞳分割方向に長手の形状の1つの開口を形成する。 In the disclosed stereoscopic image capturing apparatus, the aperture forms one opening with respect to the pupil region of the photographing lens when opened, and the aperture value up to the minimum aperture is in the pupil division direction with respect to the pupil region. One longitudinally shaped opening is formed.
 開示された立体画像撮像装置において、絞りは、開放から最小絞りに至るまでのいずれの絞り値においても、撮影レンズの瞳領域に対して瞳分割方向に並ぶ2つの開口を形成する。 In the disclosed stereoscopic image capturing apparatus, the aperture forms two apertures arranged in the pupil division direction with respect to the pupil region of the photographing lens at any aperture value from the maximum aperture to the minimum aperture.
 開示された立体画像撮像装置において、絞りは、開放においては撮影レンズの瞳領域に対して1つの開口を形成し、最小絞りに至るまでの絞り値においては、瞳領域に対して瞳分割方向に並ぶ2つの開口を形成する。 In the disclosed stereoscopic image capturing apparatus, the aperture forms one opening with respect to the pupil region of the photographing lens when opened, and the aperture value up to the minimum aperture is in the pupil division direction with respect to the pupil region. Two side-by-side openings are formed.
 開示された立体画像撮像装置において、二次元に配列された第一の画素セルにはカラーフィルタが搭載され、第一の画素セルに隣接する第二の画素セルには同一色のカラーフィルタが搭載される。 In the disclosed stereoscopic imaging device, a color filter is mounted on the first pixel cell arranged in two dimensions, and a color filter of the same color is mounted on the second pixel cell adjacent to the first pixel cell. Is done.
 開示された立体画像撮像装置において、二次元に配列された第一の画素セルにはカラーフィルタがベイヤ配列に搭載され、二次元に配列された第二の画素セルにはカラーフィルタがベイヤ配列に搭載される。 In the disclosed stereoscopic image pickup device, a color filter is mounted in a Bayer array in a first pixel cell arranged in two dimensions, and a color filter is arranged in a Bayer array in a second pixel cell arranged in two dimensions. Installed.
 開示された立体画像撮像装置において、瞳分割は、第一の画素セルの遮光膜開口位置と第二の画素セルの遮光膜開口の位置を逆方向にずらすことで行われる。 In the disclosed stereoscopic image capturing apparatus, pupil division is performed by shifting the position of the light shielding film opening of the first pixel cell and the position of the light shielding film opening of the second pixel cell in the opposite directions.
 開示された立体画像撮像装置は、撮影レンズと開口量が固定の絞りと光量調整部とを含む単一の撮影光学系と、撮影光学系を通った光を受光する単一の撮像素子とを備える立体画像撮像装置であって、撮像素子は、撮影光学系の異なる領域を通過した光束ををそれぞれ光電変換する第一の画素セル及び第二の画素セルを有し、第一の画素セルの出力値から得られる第一の画像及び第二の画素セルの出力値から得られる第二の画像を生成するように構成され、絞りは、撮影レンズの光路に出し入れ可能な第一の絞りと第二の絞りを含み、第一の絞りは、撮像素子に入射する光の瞳分割方向の入射角範囲における第一の画素セル及び第二の画素セルのそれぞれの最大感度と、第一の絞りを介して撮像素子に入射する光の瞳分割方向の入射角範囲における第一の画素セル及び第二の画素セルのそれぞれの感度分布波形に囲まれた面積の重心とを合せ、第二の絞りは、第二の絞りを介して撮像素子に入射する光の瞳分割方向の入射角範囲における第一の画素セル及び第二の画素セルのそれぞれの感度分布波形に囲まれた面積の重心となる入射角の大きさが、第一の画素セル及び第二の画素セルのそれぞれの最大感度となる入射角よりも小さくなる開口を有し、第一の画素セルと第二の画素セルの各々の出力値を処理し、第一の画素セルの出力値を処理して得られる第一の画像を生成するための第一の撮像画像データと、第二の画素セルの出力値を処理して得られる第二の画像を生成するための第二の撮像画像データを生成する立体画像生成処理部と、第一の画素セルの出力値と第二の画素セルの出力値を用いて二次元画像データを生成する二次元画像生成処理部と、立体画像データを得る撮影モードでは、第一の絞りを光路に挿入し、二次元画像データを得る撮影モードでは、第二の絞りを光路に挿入し、撮像素子により撮像を行わせる撮像制御部とを備えるものである。 The disclosed stereoscopic image capturing apparatus includes a single photographing optical system including a photographing lens, a diaphragm having a fixed aperture amount, and a light amount adjusting unit, and a single imaging element that receives light passing through the photographing optical system. The imaging device includes a first pixel cell and a second pixel cell that photoelectrically convert light beams that have passed through different regions of the imaging optical system, and the first pixel cell A first image obtained from the output value and a second image obtained from the output value of the second pixel cell are configured to generate a first aperture and a first aperture that can be taken in and out of the optical path of the photographing lens. The first diaphragm includes a maximum sensitivity of each of the first pixel cell and the second pixel cell in the incident angle range in the pupil division direction of light incident on the image sensor, and the first diaphragm. Incident angle range in the pupil division direction of light incident on the image sensor via The center of the area surrounded by the sensitivity distribution waveform of each of the first pixel cell and the second pixel cell in the first pixel cell and the second diaphragm is a pupil of light incident on the image sensor through the second diaphragm The size of the incident angle that is the center of gravity of the area surrounded by the sensitivity distribution waveforms of the first pixel cell and the second pixel cell in the incident angle range in the division direction is the first pixel cell and the second pixel. Each cell has an aperture smaller than the angle of incidence for maximum sensitivity, processes the output values of the first and second pixel cells, and processes the output values of the first pixel cell. First captured image data for generating the first image obtained in this way and second captured image data for generating the second image obtained by processing the output value of the second pixel cell Stereo image generation processing unit to be generated, output value of first pixel cell and second pixel In the 2D image generation processing unit for generating 2D image data using the output value of the image and in the shooting mode for obtaining stereoscopic image data, in the shooting mode for obtaining 2D image data by inserting the first aperture in the optical path And an imaging control unit that inserts a second diaphragm into the optical path and causes the imaging device to perform imaging.
100 固体撮像素子
1 撮影レンズ
2 絞り
10a 画素セル10の入射角に対する感度分布波形
11a 画素セル11の入射角に対する感度分布波形
50 絞り2が開放のときの入射角範囲
51 絞り2が開放と小絞りの間のときの入射角範囲
52 絞り2が小絞りのときの入射角範囲 
DESCRIPTION OF SYMBOLS 100 Solid-state image sensor 1 Shooting lens 2 Diaphragm 10a Sensitivity distribution waveform 11a with respect to the incident angle of the pixel cell 10 Sensitivity distribution waveform 50 with respect to the incident angle of the pixel cell 11 Incident angle range 51 when the aperture 2 is open 51 Incident angle range 52 when the aperture is 2 Incident angle range when the aperture 2 is a small aperture

Claims (8)

  1.  撮影レンズと、開口量を変更することにより透過光量を調整する絞りとを含む単一の撮影光学系と、
     前記撮影光学系を通った光を受光する単一の撮像素子と、を備える立体画像撮像装置であって、
     前記撮像素子は、前記撮影光学系の異なる領域を通過した光束をそれぞれ光電変換する第一の画素セル及び第二の画素セルを有し、前記第一の画素セルの出力値から得られる第一の画像及び前記第二の画素セルの出力値から得られる第二の画像を生成するように構成され、
     前記絞りは、開放から遮光量を増加させる際に、絞り形状が瞳分割方向の遮光量よりも該瞳分割方向に直交する方向の遮光量が大きくなる、ことを特徴とする立体画像撮像装置。
    A single photographic optical system including a photographic lens and an aperture that adjusts the amount of transmitted light by changing the aperture;
    A single image pickup device that receives light passing through the photographing optical system, and a stereoscopic image pickup device comprising:
    The imaging element includes a first pixel cell and a second pixel cell that photoelectrically convert light beams that have passed through different regions of the photographing optical system, and is obtained from an output value of the first pixel cell. And a second image obtained from the output value of the second pixel cell,
    3. The stereoscopic image pickup apparatus according to claim 1, wherein when the diaphragm increases the light shielding amount from the open position, the light shielding amount in the direction orthogonal to the pupil division direction is larger than the light shielding amount in the pupil division direction.
  2.  請求項1記載の立体画像撮像装置であって、
     前記絞りは、開放においては前記撮影レンズの瞳領域に対して1つの開口を形成し、最小絞りに至るまでの絞り値においては、前記瞳領域に対して前記瞳分割方向に長手の形状の1つの開口を形成する立体画像撮像装置。
    The stereoscopic image capturing apparatus according to claim 1,
    The aperture forms one aperture with respect to the pupil region of the photographing lens when opened, and the aperture value up to the minimum aperture is 1 with a shape that is long in the pupil division direction with respect to the pupil region. Stereoscopic imaging device that forms two openings.
  3.  請求項1記載の立体画像撮像装置であって、
     前記絞りは、開放から最小絞りに至るまでのいずれの絞り値においても、前記撮影レンズの瞳領域に対して前記瞳分割方向に並ぶ2つの開口を形成する立体画像撮像装置。
    The stereoscopic image capturing apparatus according to claim 1,
    The three-dimensional image pickup apparatus in which the aperture forms two apertures arranged in the pupil division direction with respect to the pupil region of the photographing lens at any aperture value from the maximum aperture to the minimum aperture.
  4.  請求項1記載の立体画像撮像装置であって、
     前記絞りは、開放においては前記撮影レンズの瞳領域に対して1つの開口を形成し、最小絞りに至るまでの絞り値においては、前記瞳領域に対して前記瞳分割方向に並ぶ2つの開口を形成する立体画像撮像装置。
    The stereoscopic image capturing apparatus according to claim 1,
    The aperture forms one aperture with respect to the pupil region of the photographic lens when opened, and two apertures arranged in the pupil division direction with respect to the pupil region at the aperture value up to the minimum aperture. A stereoscopic image pickup device to be formed.
  5.  請求項1~4のいずれか1項記載の立体画像撮像装置であって、
     二次元に配列された前記第一の画素セルにはカラーフィルタが搭載され、
     前記第一の画素セルに隣接する前記第二の画素セルには同一色のカラーフィルタが搭載される立体画像撮像装置。
    The stereoscopic image capturing apparatus according to any one of claims 1 to 4,
    A color filter is mounted on the first pixel cell arranged two-dimensionally,
    A stereoscopic image pickup device in which a color filter of the same color is mounted on the second pixel cell adjacent to the first pixel cell.
  6.  請求項1~5のいずれか1項記載の立体画像撮像装置であって、
     前記二次元に配列された前記第一の画素セルにはカラーフィルタがベイヤ配列に搭載され、二次元に配列された前記第二の画素セルにはカラーフィルタがベイヤ配列に搭載されている立体画像撮像装置。
    A stereoscopic image capturing apparatus according to any one of claims 1 to 5,
    A stereoscopic image in which a color filter is mounted in a Bayer array in the first pixel cell arranged in the two-dimensional array, and a color filter is mounted in a Bayer array in the second pixel cell arranged in the two-dimensional array. Imaging device.
  7.  請求項1~6のいずれか1項記載の立体画像撮像装置であって、
     前記瞳分割は、前記第一の画素セルの遮光膜開口位置と前記第二の画素セルの遮光膜開口の位置を逆方向にずらすことで行われる立体画像撮像装置。
    The stereoscopic image capturing apparatus according to any one of claims 1 to 6,
    The pupil division is a stereoscopic image pickup device that is performed by shifting a light shielding film opening position of the first pixel cell and a light shielding film opening position of the second pixel cell in the opposite directions.
  8.  撮影レンズと開口量が固定の絞りと光量調整部とを含む単一の撮影光学系と、
     前記撮影光学系を通った光を受光する単一の撮像素子と、を備える立体画像撮像装置であって、
     前記撮像素子は、前記撮影光学系の異なる領域を通過した光束をそれぞれ光電変換する第一の画素セル及び第二の画素セルを有し、前記第一の画素セルの出力値から得られる第一の画像及び前記第二の画素セルの出力値から得られる第二の画像を生成するように構成され、
     前記絞りは、前記撮影レンズの光路に出し入れ可能な第一の絞りと第二の絞りを含み、
     前記第一の絞りは、前記撮像素子に入射する光の瞳分割方向の入射角範囲における前記第一の画素セル及び前記第二の画素セルのそれぞれの最大感度と、前記第一の絞りを介して前記撮像素子に入射する光の前記瞳分割方向の入射角範囲における前記第一の画素セル及び前記第二の画素セルのそれぞれの感度分布波形に囲まれた面積の重心とを合わせ、
     前記第二の絞りは、前記第二の絞りを介して前記撮像素子に入射する光の前記瞳分割方向の入射角範囲における前記第一の画素セル及び前記第二の画素セルのそれぞれの感度分布波形に囲まれた面積の重心となる入射角の大きさが、前記第一の画素セル及び前記第二の画素セルのそれぞれの最大感度となる入射角よりも小さくなる開口を有し、
     前記第一の画素セルと前記第二の画素セルの各々の前記出力値を処理し、前記第一の画素セルの出力値を処理して得られる前記第一の画像を生成するための第一の撮像画像データと、前記第二の画素セルの出力値を処理して得られる前記第二の画像を生成するための第二の撮像画像データを生成する立体画像生成処理部と、
     前記第一の画素セルの出力値と前記第二の画素セルの出力値を用いて二次元画像データを生成する二次元画像生成処理部と、
     立体画像データを得る撮影モードでは、前記第一の絞りを前記光路に挿入し、前記二次元画像データを得る撮影モードでは、前記第二の絞りを前記光路に挿入し、前記撮像素子により撮像を行わせる撮像制御部とを備える立体画像撮像装置。
    A single photographing optical system including a photographing lens, a diaphragm with a fixed aperture, and a light amount adjustment unit;
    A single image pickup device that receives light passing through the photographing optical system, and a stereoscopic image pickup device comprising:
    The imaging element includes a first pixel cell and a second pixel cell that photoelectrically convert light beams that have passed through different regions of the photographing optical system, and is obtained from an output value of the first pixel cell. And a second image obtained from the output value of the second pixel cell,
    The aperture includes a first aperture and a second aperture that can be taken in and out of the optical path of the photographic lens,
    The first diaphragm has a maximum sensitivity of each of the first pixel cell and the second pixel cell in an incident angle range in a pupil division direction of light incident on the image sensor, and the first diaphragm. The center of gravity of the area surrounded by the respective sensitivity distribution waveforms of the first pixel cell and the second pixel cell in the incident angle range in the pupil division direction of the light incident on the image sensor
    The second diaphragm is a sensitivity distribution of each of the first pixel cell and the second pixel cell in an incident angle range in the pupil division direction of light incident on the image sensor through the second diaphragm. An opening having a size of an incident angle that is a center of gravity of an area surrounded by a waveform that is smaller than an incident angle that is a maximum sensitivity of each of the first pixel cell and the second pixel cell;
    A first for processing the output value of each of the first pixel cell and the second pixel cell and generating the first image obtained by processing the output value of the first pixel cell A stereoscopic image generation processing unit that generates second captured image data for generating the second image obtained by processing the captured image data and the output value of the second pixel cell;
    A two-dimensional image generation processing unit that generates two-dimensional image data using the output value of the first pixel cell and the output value of the second pixel cell;
    In the imaging mode for obtaining stereoscopic image data, the first diaphragm is inserted into the optical path, and in the imaging mode for obtaining the two-dimensional image data, the second diaphragm is inserted into the optical path, and imaging is performed by the imaging device. A stereoscopic image capturing apparatus comprising: an imaging control unit to be performed.
PCT/JP2012/072091 2011-09-29 2012-08-31 Three-dimensional imaging device WO2013047080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-215641 2011-09-29
JP2011215641 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013047080A1 true WO2013047080A1 (en) 2013-04-04

Family

ID=47995128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072091 WO2013047080A1 (en) 2011-09-29 2012-08-31 Three-dimensional imaging device

Country Status (1)

Country Link
WO (1) WO2013047080A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108777760A (en) * 2018-07-25 2018-11-09 宁波舜宇光电信息有限公司 Iris ring structure, camera module and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061165A (en) * 1999-08-20 2001-03-06 Sony Corp Lens device and camera
JP2002369223A (en) * 2001-06-08 2002-12-20 Pentax Corp Image detector and diaphragm
JP2006301473A (en) * 2005-04-25 2006-11-02 Canon Inc Optical system having optical filter and photographing apparatus
JP2010016536A (en) * 2008-07-02 2010-01-21 Panasonic Corp Still image and moving image pickup device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061165A (en) * 1999-08-20 2001-03-06 Sony Corp Lens device and camera
JP2002369223A (en) * 2001-06-08 2002-12-20 Pentax Corp Image detector and diaphragm
JP2006301473A (en) * 2005-04-25 2006-11-02 Canon Inc Optical system having optical filter and photographing apparatus
JP2010016536A (en) * 2008-07-02 2010-01-21 Panasonic Corp Still image and moving image pickup device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108777760A (en) * 2018-07-25 2018-11-09 宁波舜宇光电信息有限公司 Iris ring structure, camera module and electronic equipment
CN108777760B (en) * 2018-07-25 2024-05-10 宁波舜宇光电信息有限公司 Iris diaphragm structure, camera module and electronic equipment

Similar Documents

Publication Publication Date Title
US8558915B2 (en) Photographing apparatus and method
JP5227368B2 (en) 3D imaging device
EP2618585B1 (en) Monocular 3d-imaging device, shading correction method for monocular 3d-imaging device, and program for monocular 3d-imaging device
EP2720455B1 (en) Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device
JP5923754B2 (en) 3D imaging device
JP2011199755A (en) Image pickup device
JP2010056865A (en) Image capturing apparatus
JP2012015819A (en) Stereoscopic image imaging apparatus
WO2012002430A1 (en) Stereoscopic image capture device
US11747714B2 (en) Image sensor and image-capturing device that selects pixel signal for focal position
JP2010154310A (en) Compound-eye camera, and photographing method
JP5525109B2 (en) Imaging device
WO2013018471A1 (en) Imaging device
JP5611469B2 (en) Stereoscopic imaging apparatus and method
WO2012169301A1 (en) Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device
JP5634614B2 (en) Imaging device and imaging apparatus
WO2013047080A1 (en) Three-dimensional imaging device
WO2012117619A1 (en) 3d imaging device
JP2012015820A (en) Stereoscopic video display apparatus and stereoscopic vide display method
JP5907668B2 (en) Imaging device and imaging device
JP2018026373A (en) Imaging apparatus
JP2011077680A (en) Stereoscopic camera and method for controlling photographing
JP2012063456A (en) Imaging apparatus
JP2015015629A (en) Image processing device and imaging device
JP2014215526A (en) Imaging element and camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP