WO2012117619A1 - 3d imaging device - Google Patents

3d imaging device Download PDF

Info

Publication number
WO2012117619A1
WO2012117619A1 PCT/JP2011/075739 JP2011075739W WO2012117619A1 WO 2012117619 A1 WO2012117619 A1 WO 2012117619A1 JP 2011075739 W JP2011075739 W JP 2011075739W WO 2012117619 A1 WO2012117619 A1 WO 2012117619A1
Authority
WO
WIPO (PCT)
Prior art keywords
stereoscopic image
image capturing
capturing apparatus
light
solid
Prior art date
Application number
PCT/JP2011/075739
Other languages
French (fr)
Japanese (ja)
Inventor
岩崎 洋一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012117619A1 publication Critical patent/WO2012117619A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • G03B35/10Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/218Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing

Definitions

  • the present invention relates to a stereoscopic image capturing apparatus, and more particularly to a stereoscopic image capturing apparatus capable of performing left and right parallax separation and upper and lower parallax separation by a monocular method.
  • a conventional stereoscopic image capturing apparatus has a two-lens system in which two photographing lens systems arranged in the horizontal direction are mounted on the front surface of a camera housing as described in, for example, Patent Document 1 below.
  • the left taking lens system corresponds to a human right eye
  • the right taking lens system corresponds to a human left eye.
  • the left and right photographing lens systems are provided with a distance of about 6.5 cm, which is the distance between the left and right eyes of a human.
  • the two-lens stereoscopic image pickup apparatus includes two expensive photographing lens systems, there is a problem that the product cost increases.
  • This stereoscopic image pickup apparatus is equipped with one photographing lens system, and converts incident light from a subject condensed through the photographing lens system into parallel light by passing through a relay lens.
  • the parallel light 1 obtained through the relay lens is separated into right and left by a light splitting mirror 4 in which two mirrors 2 and 3 are abutted at right angles, and incident light reflected by the mirror 2 is reflected. Is reflected by the mirror 5 to form an image on the image sensor 6. Incident light reflected by the mirror 3 is reflected by the mirror 7 and forms an image on the image sensor 8.
  • the photographing lens system is provided on the light incident side of the relay lens that emits the parallel light 1
  • the incident light from the object field is reversed left and right in the photographing lens system, and the image sensor 6 is passed through the left eye.
  • the viewed image is formed, and an image viewed through the right eye is formed on the image sensor 8.
  • the monocular stereoscopic image capturing apparatus (camera) described in Patent Document 2 can capture a stereoscopic image when a subject is imaged with the camera placed horizontally, but the camera is used to capture a vertically long subject. If a subject is imaged with the vertical position, a stereoscopic image cannot be captured.
  • An object of the present invention is to provide a stereoscopic image capturing apparatus that is monocular and that can capture a stereoscopic image of a subject even when the subject is imaged horizontally or the subject is imaged vertically. is there.
  • the stereoscopic image pickup apparatus of the present invention is a monocular photographing lens and is placed on an optical path of incident light from a subject incident through the photographing lens, and uses the incident light as an arbitrary vertical line with respect to the optical axis.
  • An image processing unit configured to generate stereoscopic image data of the subject to be processed to form a stereoscopic image, and the first and second solid-state imaging elements each include a plurality of pixels arranged in a two-dimensional array. Each of the two adjacent pixels is set as a pair pixel, and one pixel and the other pixel of each pair pixel have a parallax with a boundary line orthogonal to the vertical line as a boundary.
  • the stereoscopic image pickup apparatus of the present invention divides incident light from a subject incident through a monocular photographing lens into, for example, left and right parts, and receives each divided incident light by each solid-state image pickup element.
  • the phase difference pixel that receives light by separating the parallax in the vertical direction can acquire image data constituting a stereoscopic image regardless of whether the camera is placed horizontally or vertically.
  • FIG. 1 is an external perspective view of a stereoscopic image capturing apparatus according to an embodiment of the present invention. It is a functional block block diagram of the stereo image imaging device shown in FIG. It is a surface schematic diagram of the solid-state image sensor shown in FIG. It is a figure which shows the incident angle sensitivity characteristic of the solid-state image sensor shown in FIG.
  • FIG. 4 is an explanatory diagram of parallax separation in the vertical direction in the solid-state imaging device shown in FIG. 3. It is explanatory drawing of the parallax separation in the stereo image imaging device of FIG. It is an effect explanatory view of parallax separation means. It is explanatory drawing of the light non-transmission area
  • FIG. 4 is a surface schematic diagram of a solid-state imaging device instead of FIG. 3. It is explanatory drawing of the conventional monocular type stereo image imaging device.
  • FIG. 1 is an external perspective view of a digital camera capable of capturing a stereoscopic image according to an embodiment of the present invention.
  • This digital camera 10 is provided with a monocular photographing lens 12 on the front surface of a rectangular casing 11.
  • the photographic lens 12 is disposed in a lens barrel 13 provided in the casing 11 so as to be retractable, and a shutter release button 14 is provided on the right shoulder of the casing 11.
  • FIG. 2 is a functional block configuration diagram of the digital camera 10 shown in FIG.
  • a lens barrel 13 that houses the taking lens 12 is provided.
  • the lens barrel 13 houses a focus positioning lens, a telephoto lens, and the like.
  • a relay lens 21 is provided on the back of the lens barrel 13, and incident light collected by the photographing lens 12 or the like is converted into parallel light 22 by passing through the relay lens 21.
  • a parallax separating means 23 and a light splitting mirror 24 are provided in the optical path of the parallel light 22.
  • the parallax separation means 23 to be described in detail later is configured by a liquid crystal shutter in the present embodiment.
  • the light splitting mirror 24 is configured by abutting the front edges of the two mirrors 25 and 26. It is preferable to arrange a diaphragm for controlling the F value at the front stage or the rear stage of the parallax separation means 23.
  • the parallax separation means 23 is provided to perform the parallax separation well, and is not necessarily required.
  • the mirror 25 is provided with an inclination of 45 degrees to the right with respect to the parallel light 22, and the mirror 26 is provided with an inclination of 45 degrees with respect to the parallel light 22.
  • the mirror 25 and the mirror 26 are joined so that the respective leading edges thereof are abutted, and the leading edge joining edge 27 is provided so as to be perpendicular to the bottom surface of the housing 11 of FIG.
  • the parallel light 22 when viewed from the optical axis direction is divided into two with the front end joint edge 27 as a boundary line, the left half is reflected by the mirror 26 to the left in the horizontal direction, and the right half is reflected by the mirror 25 in the horizontal direction. Reflected to the right.
  • a mirror 28 is provided on the reflecting surface of the mirror 25 so as to be slightly separated from each other. Incident light reflected by the mirror 28 passes through a condensing lens 29 and forms an image on the light receiving surface of the solid-state imaging device 30.
  • a mirror 31 is provided on the reflecting surface of the mirror 26 so as to be slightly separated from each other.
  • the incident light reflected by the mirror 31 passes through the condenser lens 32 and forms an image on the light receiving surface of the solid-state imaging device 33.
  • the mirrors 28 and 31 may be omitted, and the reflected light of the mirrors 25 and 26 may be received by the condensing lenses 29 and 32 and the solid-state imaging devices 30 and 33 provided in the direction of the reflected light.
  • the electric control system of the digital camera 10 includes a central control unit (CPU) 40 that performs overall control of the entire digital camera 10, an operation unit (including the shutter release button 14) 41 that receives operation instructions from a user, and image processing.
  • Unit 42 an encoder 44 that encodes image data processed by the image processing unit 42 into display data, a driver 46 that displays the display data on the display unit 45, a main memory 47, and a write / read of the memory card 48.
  • a media control unit 49 that performs read control and a bus 50 that interconnects them are provided.
  • Analog signal processing units (AFE) 34 and 35 and analog / digital (A / D) converters 36 and 37 are connected to the solid-state imaging devices 30 and 33, respectively. Captured image signals from the solid-state imaging devices 30 and 33 converted into digital signals by the A / D converters 36 and 37 are input to the bus 50. Note that the AFEs 34 and 35 and the A / D converters 36 and 37 may be integrated into one unit and used by switching.
  • a device control unit 51 is connected to the CPU 40.
  • the device control unit 51 controls the photographing lens 12 including the focus alignment lens and the telephoto lens based on an instruction from the CPU 40, and the parallax separation unit 23, the solid-state imaging devices 30 and 33, AFEs 34 and 35, A / D converters 36 and 37 are controlled.
  • FIG. 3 is a schematic view of the surface of the solid-state imaging device 30, 33 shown in FIG.
  • the solid-state imaging devices 30 and 33 may be of a CCD type or a CMOS type or other type as a signal readout format.
  • pixels photoelectric conversion elements: photodiodes
  • FIG. 3 pixels (photoelectric conversion elements: photodiodes) are arranged in a square lattice pattern.
  • RGB red (R, r), green (G, g), and blue (B, b) color filters
  • Two pixels of the same color arranged in the vertical direction constitute a pair pixel that performs parallax separation.
  • each pixel 52 is covered with a light shielding film, and an opening is provided in the light shielding film on each pixel 52.
  • the light shielding film of each pixel 52 in the odd-numbered row is provided with an opening 52x that is eccentric in the upward direction in the drawing, and the light shielding film of each pixel 52 in the even-numbered row is provided with an opening 52y that is eccentric in the downward direction.
  • FIG. 4B of FIG. 4 is a diagram showing the incident angle sensitivity characteristic in the direction perpendicular to the bottom surface of the housing 11 of the solid-state imaging device 30 (33) shown in FIG.
  • the light receiving sensitivity TD of the odd-numbered pixels of the solid-state imaging device 33 is shifted to the left, and the light receiving sensitivity TU of the even-numbered pixels is shifted to the right.
  • This left / right shift becomes a parallax in a direction perpendicular to the bottom surface of the housing 11, and a captured image obtained from the odd-numbered pixels of the solid-state image sensor 33 is obtained as the right-eye image from the even-numbered pixels of the solid-state image sensor 33.
  • the captured image By using the captured image as the left-eye image, it is possible to reproduce a stereoscopic image of the subject.
  • FIG. 4A of FIG. 4 combines the incident angle sensitivity characteristic in the direction parallel to the casing 11 of the solid-state image sensor 30 and the incident angle sensitivity characteristic in the direction parallel to the casing 11 of the solid-state image sensor 33 shown in FIG. FIG.
  • the sensitivity distribution TL with respect to the incident angle of the light of the solid-state imaging device 30 with respect to the incident light reflected by the mirror 25 among the incident light that has become the parallel light 22 by the relay lens 21 is a distribution shifted to the right side as shown in FIG. 4A. It has become.
  • the sensitivity distribution TR with respect to the incident angle of the light of the solid-state imaging device 33 with respect to the incident light reflected by the mirror 26 is a distribution shifted to the left side.
  • This left / right misalignment becomes a parallax in a direction parallel to the bottom surface of the housing 11, the captured image obtained from the solid-state image sensor 30 is the right-eye image, and the captured image obtained from the solid-state image sensor 33 is the left-eye image.
  • the captured image obtained from the solid-state image sensor 33 is the left-eye image.
  • FIG. 5 is an explanatory diagram of the parallax of the solid-state imaging device 30 (33) shown in FIG.
  • a stereoscopic image separated in the vertical direction is picked up by using this parallax shift. That is, when the camera is placed vertically, the vertical parallax shift in FIG. 5 becomes a horizontal parallax shift of a person standing on the ground, and a stereoscopic image can be captured.
  • FIG. 6 is an explanatory diagram of four viewpoints when the left and right parallax separation by the light dividing mirror 24 and the vertical parallax separation by the eccentricity of the light shielding film openings 52x and 52y are performed.
  • the subject 53 is viewed through a monocular lens, the center of the subject 53 is seen.
  • the incident light from the subject is divided into the left and right when viewed from the optical axis direction by the light dividing mirror 24, and the viewpoint is shown in FIG. Similarly, it is divided into left and right L and R.
  • the incident light divided into the left and right is incident on the solid-state imaging device 30 (33) described with reference to FIG. 3, the incident light viewed from the viewpoint of the left side L is now a light shielding film opening 52x decentered vertically. 52y, and as shown in FIG. 6B, the incident light that is separated into the upper and lower viewpoints A and B and viewed from the right R viewpoint is the upper and lower viewpoints C and D. Will be separated.
  • the viewpoint A An image in which the subject 53 is viewed from the perspective of viewing the subject diagonally from the upper left
  • an image of the subject 53 viewed from the viewpoint B viewpoint of viewing the subject from the diagonally lower left
  • an image of the subject 53 viewed from the viewpoint C is captured by the even-numbered pixels of the solid-state image sensor 33, and the viewpoint D (subject diagonally rightward by the odd-numbered pixels of the solid-state image sensor 33 is captured.
  • An image in which the subject 53 is viewed from the viewpoint (viewed from below) is captured.
  • Captured image data of the solid-state imaging devices 30 and 33 is taken into the main memory 47, and is subjected to well-known image processing such as offset correction, gamma correction, RGB / YC conversion processing and the like in the image processing unit 42 and data compression in JPEG format. And stored in the memory card 48. At the time of saving, the four pieces of image data on the left, right, upper and lower sides are saved in association with each other. For example, it is stored in the MPO format that is a standard of the Camera and Imaging Products Association (CIPA).
  • CIPA Camera and Imaging Products Association
  • the image obtained by adding the image data of the viewpoints C and D may be used as the right eye image.
  • the position of the viewpoint ABCD in FIG. 6B is rotated by 90 degrees counterclockwise, and the addition data of the viewpoints C and A and the addition of the viewpoints B and D are obtained. It is possible to generate a stereoscopic image of a standing image of the subject 53 with the data.
  • a stereoscopic image of the subject 53 is generated with the addition data of the viewpoints C and A and the addition data of the viewpoints B and D.
  • the user views the stereoscopic image displayed on the television receiver or the personal computer monitor while lying down (a state where the left and right eyes are arranged up and down), stereoscopic viewing is possible.
  • the parallax separation means 23 is provided.
  • incident light at an incident angle of 0 degree and the vicinity thereof is cut (shielded) so as not to enter the light splitting mirror 24.
  • FIG. 7B in FIG. 7 the incident angle near 0 degrees is cut in the vertical direction, the ratio of the hatched area (overlapping area) to the sensitivity distributions TU and TD is reduced, and the vertical parallax separation is good. It becomes.
  • FIG. 7A the vicinity of the incident angle of 0 degree is cut in the left-right direction, the sensitivity becomes zero, and the parallax separation in the left-right direction becomes good.
  • FIG. 8 is an explanatory diagram of the parallax separation means 23.
  • the parallax separating means 23 placed in the front stage of the light splitting mirror 24 having a V-shaped cross section is composed of, for example, a liquid crystal shutter whose light incident surface is erected perpendicular to the optical axis.
  • the ridgeline which becomes the boundary line between the left and right parallaxes of the light dividing mirror 24 is covered with the required width x, and the upper and lower parallax separation boundaries of the solid-state imaging devices 30 and 33 are covered with the required width x.
  • a cross-shaped (cross-shaped) light non-transmissive region 61 is electrically formed.
  • the transparent region of the square liquid crystal shutter is completely divided into four regions 23a, 23b, 23d, and 23c by the light non-transmissive region 61, and each region 23a to 23d corresponds to the viewpoint ABDC.
  • the width x of the light non-transmissive region 61 may be a fixed value, but preferably the width x is variably controlled according to the photographing conditions. For example, if the width x is too wide, the light receiving sensitivity is lowered as can be seen from FIG. 7, so the width x is determined in consideration of the brightness of the shooting scene. That is, when the shooting scene is dark, if the light non-transmissive region 61 is wide, only a dark image is captured. Therefore, the width x is narrowed, and when the shooting scene is bright, the width x is wide.
  • the photographic lens 12 has a short focal length, such as a wide-angle lens, it is difficult to separate the parallax. Therefore, it is easy to separate the parallax by widening the width x of the light non-transmissive region 61, and the focal point is like a telephoto lens. Conversely, when the distance is long, the width x is narrowed.
  • the width x of the light non-transmissive region 61 may be variably controlled in relation to the F value.
  • the F value When the F value is small (when the aperture is open), the scene is often dark, and when the F value is large (when the aperture is narrow), the scene is often bright.
  • the width x of the light non-transmissive region 61 is controlled. That is, when the F value is large, the sensitivity is not lowered even if the width x is wide because the scene is bright, so the width x is widened to increase the degree of parallax separation.
  • the parallax separation means 23 is disposed immediately before the light splitting mirror 24 to shield the light splitting boundary portion of the light splitting mirror 24. It is not limited to just before the light splitting mirror 24.
  • a diaphragm is also arranged near the focal position of the photographing lens 12 that collects incident light.
  • a parallax separation unit may be provided at the position of the diaphragm. Also by providing the parallax separating means at this position, it becomes possible to equally divide the incident light into four in the horizontal and vertical directions with a small area liquid crystal shutter.
  • FIG. 9 is a perspective view of the parallax separation means 63 (also used as the light splitting mirror 24) according to another embodiment.
  • electrochromic mirrors 65 and 66 whose reflectance can be partially changed by electric control are used, and reflection of the ridge line portion of the tip joint edge 67 of the mirrors 65 and 66 is reflected. Change the rate with the required width.
  • the reflectance is 0%. The portion having the reflectance of 0% becomes the parallax separation means of this embodiment.
  • the reflectance of the center line portion 68 orthogonal to the tip joint edge 67 of the mirrors 65 and 66 is changed to a required width.
  • this width can be variably controlled. As in the embodiment of FIG. 8, this makes it possible to obtain the same effect as when the region along the boundary line for parallax separation in the incident light is shielded with the required width, and the overlapping of the upper and lower sensitivity distributions TD and TU. It is possible to cut most of the region and most of the boundary between the left and right sensitivity distributions TR and TL.
  • FIG. 10 is a perspective view of the parallax separation means 71 according to still another embodiment.
  • the mirrors 65 and 66 shown in FIG. 9 are constituted by four mirrors 69a, 69b, 69c, and 69d from which the reflectance changing portion is removed, and the reflecting mirror is moved between the reflecting mirrors 69a to 69d. It can be expanded by the mechanism.
  • the width of the gap 69 formed by widening the space between the reflecting surfaces 69a to 69d is variably controlled.
  • the solid-state imaging device 68 can capture a two-dimensional image (planar image) of the subject.
  • the incident light is separated from the left and right by the mirror 24 and the parallax is separated from the upper and lower by the solid-state imaging devices 30 and 33, but the reverse is also possible. That is, the arrangement of the mirror 24 is rotated by 90 degrees, and the incident light is vertically separated by the mirror 24, and the solid-state image pickup devices 30 and 33 of FIG.
  • the viewpoint may be divided into four.
  • the parallax separation is performed by decentering the position of the light shielding film opening.
  • one microlens 83 is provided for each pair of pixels 81 a and 81 b that perform two parallax separations. May be used to perform parallax separation (pupil division).
  • the position of the 4-viewpoint ABCD can be set to the vertical and horizontal positions with respect to the subject as shown in FIG. In this case, this is possible by tilting the tip joint edge 27 of the mirror 24 of FIG.
  • the pixel arrangement of the solid-state imaging devices 30 and 33 is not limited to a square arrangement, and as shown in FIG.
  • each pixel is indicated by a circle
  • symbols 84x and 84y are light shielding film openings
  • pixels adjacent obliquely are paired pixels (parallax separation pixels: phase difference pixels).
  • the stereoscopic image capturing apparatus is placed on the optical path of incident light from a monocular photographing lens and a subject incident through the photographing lens, and forms an arbitrary vertical line with respect to the optical axis.
  • a light dividing unit that divides the incident light as a boundary line
  • first and second solid-state imaging devices that respectively receive the divided incident lights of the divided incident light
  • the first and second solids An image processing unit configured to perform image processing on an output signal of the imaging device to generate stereoscopic image data of the subject that forms a stereoscopic image
  • the first and second solid-state imaging devices include a plurality of pixels in a two-dimensional array Are formed as a pair pixel, and one pixel and the other pixel of each pair pixel have a parallax with a boundary line orthogonal to the vertical line as a boundary. It is characterized by.
  • the stereoscopic image capturing apparatus includes a parallax separation unit that blocks incidence of incident light on the two boundary lines having a cross shape into the first and second solid-state imaging elements. To do.
  • the stereoscopic image capturing apparatus includes a control unit that controls the blocking width on the boundary line.
  • control unit of the stereoscopic image capturing apparatus is characterized in that the blocking width is adjusted according to a shooting condition.
  • control unit of the stereoscopic image capturing apparatus of the embodiment widens the width as the F value is smaller, the photographing scene is brighter, the focal length of the photographing lens is shorter, or the distance to the main subject is shorter, The width is narrowed as the F value is larger, the photographing scene is darker, the focal length of the photographing lens is longer, or the distance to the main subject is longer.
  • the parallax separation unit of the stereoscopic image pickup device of the embodiment is configured by a liquid crystal shutter placed in front of the light splitting unit, and the light non-transmission region formed in the cross shape in the center of the liquid crystal shutter. The incident light on the boundary line is cut.
  • the light splitting unit of the stereoscopic image capturing apparatus is configured by abutting the leading edges of two mirrors opened at 90 degrees.
  • the light dividing unit and the parallax separating unit of the stereoscopic image capturing apparatus of the embodiment are integrally formed, and the light dividing unit is configured by abutting the front end edges of two mirrors opened at 90 degrees,
  • the parallax separation unit is configured by controlling the reflectance of the front edge of the two mirrors and the center line of each mirror perpendicular to the front edge over a required width.
  • the light dividing unit and the parallax separating unit of the stereoscopic image capturing apparatus of the embodiment are integrally formed, and the light dividing unit is configured by arranging two mirrors opened at 90 degrees in two stages.
  • the parallax separation unit is configured by a gap formed between the mirrors.
  • the camera can be reduced in size and weight.
  • the stereoscopic image capturing apparatus of the present invention can capture a subject image from four viewpoints with a monocular system, and can capture a stereoscopic image regardless of whether the camera is placed vertically or horizontally, at low cost. It is useful when applied to a small stereoscopic image capturing apparatus.

Abstract

Provided is a low-cost, small-form-factor, single-lens 3D imaging device that can image a subject from four different viewpoints. Said imaging device is provided with: a single imaging lens (12); a beam-splitting means (24), placed in the path of incident light that comes from the subject and passes through the imaging lens (12), that splits said incident light along an arbitrary boundary line perpendicular to the optical axis; first and second solid-state imaging elements (30 and 33) that receive the split incident light beams, respectively; and an image-processing means (42) that generates 3D image data constituting a 3D image of the abovementioned subject by performing image processing on output signals from the solid-stage imaging elements (30 and 33). In each solid-stage imaging element (30 and 33), a plurality of pixels are arranged in a two-dimensional array, each two adjacent pixels are paired together, and the two pixels in each pair exhibit parallax about a boundary line perpendicular to the abovementioned boundary line.

Description

立体画像撮像装置Stereo imaging device
 本発明は立体画像撮像装置に係り、特に、単眼方式で左右の視差分離と上下の視差分離を行うことができる立体画像撮像装置に関する。 The present invention relates to a stereoscopic image capturing apparatus, and more particularly to a stereoscopic image capturing apparatus capable of performing left and right parallax separation and upper and lower parallax separation by a monocular method.
 立体画像(3D画像)を表示できるテレビジョン受像機が普及し、被写体の立体画像を撮影できる立体画像撮影用のデジタルカメラ(立体画像撮像装置)も普及の兆しを見せている。 Television receivers that can display stereoscopic images (3D images) have become widespread, and digital cameras (stereoscopic imaging devices) that can capture stereoscopic images of subjects have also shown signs of widespread use.
 従来の立体画像撮像装置は、例えば下記の特許文献1に記載されている様に、カメラ筐体の前面に水平方向に並ぶ2個の撮影レンズ系を搭載し、2眼方式となっている。向かって左側の撮影レンズ系は人間の右眼に相当し、右側の撮影レンズ系は人間の左眼に相当する。左右の撮影レンズ系は、人間の左右の眼の距離である6.5cm程度離して設けられる。 A conventional stereoscopic image capturing apparatus has a two-lens system in which two photographing lens systems arranged in the horizontal direction are mounted on the front surface of a camera housing as described in, for example, Patent Document 1 below. The left taking lens system corresponds to a human right eye, and the right taking lens system corresponds to a human left eye. The left and right photographing lens systems are provided with a distance of about 6.5 cm, which is the distance between the left and right eyes of a human.
 この様な2眼方式の立体画像撮像装置は、左眼用の被写体画像と右眼用の被写体画像とを、6.5cm離間した別々の撮影レンズ系を通して撮像するため、左右の視差分離の程度が高い被写体画像を撮影することができる。 Since such a binocular stereoscopic image capturing apparatus captures a subject image for the left eye and a subject image for the right eye through separate photographing lens systems separated by 6.5 cm, the degree of parallax separation between the left and right sides It is possible to shoot a subject image with high.
 しかし、2眼方式の立体画像撮像装置は、高価な撮影レンズ系を2系統備えるため、製品コストが嵩んでしまうという問題がある。 However, since the two-lens stereoscopic image pickup apparatus includes two expensive photographing lens systems, there is a problem that the product cost increases.
 そこで、下記の特許文献2に記載されている様に、単眼方式の立体画像撮像装置が提案されている。この立体画像撮像装置は、1系統の撮影レンズ系を搭載し、この撮影レンズ系を通して集光した被写体からの入射光をリレーレンズを通すことで平行光に変換している。 Therefore, as described in Patent Document 2 below, a monocular stereoscopic image capturing apparatus has been proposed. This stereoscopic image pickup apparatus is equipped with one photographing lens system, and converts incident light from a subject condensed through the photographing lens system into parallel light by passing through a relay lens.
 そして、図14に示す様に、リレーレンズを通して得られた平行光1を、2枚のミラー2,3を直角に突き合わせた光分割用ミラー4で左右に分離し、ミラー2で反射した入射光をミラー5で反射しイメージセンサ6に結像させる。ミラー3で反射した入射光はミラー7で反射しイメージセンサ8に結像させる。 Then, as shown in FIG. 14, the parallel light 1 obtained through the relay lens is separated into right and left by a light splitting mirror 4 in which two mirrors 2 and 3 are abutted at right angles, and incident light reflected by the mirror 2 is reflected. Is reflected by the mirror 5 to form an image on the image sensor 6. Incident light reflected by the mirror 3 is reflected by the mirror 7 and forms an image on the image sensor 8.
 平行光1を出射する上記のリレーレンズの光入射側には撮影レンズ系が設けられているため、撮影レンズ系で被写界からの入射光が左右反転し、イメージセンサ6には左眼を通して見た画像が結像し、イメージセンサ8には右眼を通して見た画像が結像する。 Since the photographing lens system is provided on the light incident side of the relay lens that emits the parallel light 1, the incident light from the object field is reversed left and right in the photographing lens system, and the image sensor 6 is passed through the left eye. The viewed image is formed, and an image viewed through the right eye is formed on the image sensor 8.
日本国特開2008―187385号公報Japanese Unexamined Patent Publication No. 2008-187385 日本国特開2010―81580号公報Japanese Unexamined Patent Publication No. 2010-81580
 しかしながら、特許文献2に記載の単眼方式の立体画像撮像装置(カメラ)は、カメラを横置きで被写体を撮像したときは立体画像を撮像することができるが、縦長の被写体を撮像するためにカメラを縦置きにして被写体を撮像すると、立体画像を撮像できない。 However, the monocular stereoscopic image capturing apparatus (camera) described in Patent Document 2 can capture a stereoscopic image when a subject is imaged with the camera placed horizontally, but the camera is used to capture a vertically long subject. If a subject is imaged with the vertical position, a stereoscopic image cannot be captured.
 本発明の目的は、単眼方式で、しかも、横置きにして被写体を撮像しても縦置きで被写体を撮像しても被写体の立体画像を撮像することができる立体画像撮像装置を提供することにある。 An object of the present invention is to provide a stereoscopic image capturing apparatus that is monocular and that can capture a stereoscopic image of a subject even when the subject is imaged horizontally or the subject is imaged vertically. is there.
 本発明の立体画像撮像装置は、単眼の撮影レンズと、該撮影レンズを通して入射してくる被写体からの入射光の光路上に置かれ光軸に対し任意の垂直線を境界線として前記入射光を分割する光分割部と、前記分割した前記入射光の各々の分割入射光を夫々受光する第1,第2の固体撮像素子と、該第1,第2の各固体撮像素子の出力信号を画像処理し立体画像を構成する前記被写体の立体画像データを生成する画像処理部とを備え、前記第1,第2の固体撮像素子は、二次元アレイ状に複数の画素が配列形成され、該画素のうち隣接する2画素ずつを夫々ペア画素とし、各ペア画素の一方の画素と他方の画素とが前記垂直線に直交する境界線を境に視差を持つ構成になっている。 The stereoscopic image pickup apparatus of the present invention is a monocular photographing lens and is placed on an optical path of incident light from a subject incident through the photographing lens, and uses the incident light as an arbitrary vertical line with respect to the optical axis. The light splitting unit for splitting, the first and second solid-state imaging devices that respectively receive the split incident light of the split incident light, and the output signals of the first and second solid-state imaging devices as images An image processing unit configured to generate stereoscopic image data of the subject to be processed to form a stereoscopic image, and the first and second solid-state imaging elements each include a plurality of pixels arranged in a two-dimensional array. Each of the two adjacent pixels is set as a pair pixel, and one pixel and the other pixel of each pair pixel have a parallax with a boundary line orthogonal to the vertical line as a boundary.
 本発明の立体画像撮像装置は、単眼の撮影レンズを通して入射してきた被写体からの入射光を例えば左右に2分割して、各々の分割入射光を夫々の固体撮像素子で受光すると共に、固体撮像素子の画素構成を、例えば上下に視差を分離して受光する位相差画素としたため、カメラを横置きにしても縦置きにしても立体画像を構成する画像データを取得することが可能となる。 The stereoscopic image pickup apparatus of the present invention divides incident light from a subject incident through a monocular photographing lens into, for example, left and right parts, and receives each divided incident light by each solid-state image pickup element. For example, the phase difference pixel that receives light by separating the parallax in the vertical direction can acquire image data constituting a stereoscopic image regardless of whether the camera is placed horizontally or vertically.
本発明の一実施形態に係る立体画像撮像装置の外観斜視図である。1 is an external perspective view of a stereoscopic image capturing apparatus according to an embodiment of the present invention. 図1に示す立体画像撮像装置の機能ブロック構成図である。It is a functional block block diagram of the stereo image imaging device shown in FIG. 図1に示す固体撮像素子の表面模式図である。It is a surface schematic diagram of the solid-state image sensor shown in FIG. 図2に示す固体撮像素子の入射角感度特性を示す図である。It is a figure which shows the incident angle sensitivity characteristic of the solid-state image sensor shown in FIG. 図3に示す固体撮像素子における上下方向の視差分離説明図である。FIG. 4 is an explanatory diagram of parallax separation in the vertical direction in the solid-state imaging device shown in FIG. 3. 図2の立体画像撮像装置における視差分離の説明図である。It is explanatory drawing of the parallax separation in the stereo image imaging device of FIG. 視差分離手段の効果説明図である。It is an effect explanatory view of parallax separation means. 視差分離手段の光非透過領域の説明図である。It is explanatory drawing of the light non-transmission area | region of a parallax separation means. 視差分離手段の別実施形態の説明図である。It is explanatory drawing of another embodiment of a parallax separation means. 視差分離手段の更に別実施形態の説明図である。It is explanatory drawing of another embodiment of a parallax separation means. 図3に代わる固体撮像素子の説明図である。It is explanatory drawing of the solid-state image sensor replaced with FIG. 図6に代わる視差分離の別実施形態の説明図である。FIG. 7 is an explanatory diagram of another embodiment of parallax separation instead of FIG. 6. 図3に代わる固体撮像素子の表面模式図である。FIG. 4 is a surface schematic diagram of a solid-state imaging device instead of FIG. 3. 従来の単眼方式立体画像撮像装置の説明図である。It is explanatory drawing of the conventional monocular type stereo image imaging device.
 以下、本発明の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る立体画像撮像が可能なデジタルカメラの外観斜視図である。このデジタルカメラ10は、矩形筐体11の前面に単眼の撮影レンズ12が設けられる。この撮影レンズ12は、筐体11内に沈胴可能に設けられたレンズ鏡筒13内に配置され、筐体11の右肩には、シャッタレリーズボタン14が設けられている。 FIG. 1 is an external perspective view of a digital camera capable of capturing a stereoscopic image according to an embodiment of the present invention. This digital camera 10 is provided with a monocular photographing lens 12 on the front surface of a rectangular casing 11. The photographic lens 12 is disposed in a lens barrel 13 provided in the casing 11 so as to be retractable, and a shutter release button 14 is provided on the right shoulder of the casing 11.
 図2は、図1に示すデジタルカメラ10の機能ブロック構成図である。撮影レンズ12を収納したレンズ鏡筒13を備える。レンズ鏡筒13には、撮影レンズ12の他に、焦点位置合わせ用レンズ,望遠レンズ等が収納される。 FIG. 2 is a functional block configuration diagram of the digital camera 10 shown in FIG. A lens barrel 13 that houses the taking lens 12 is provided. In addition to the taking lens 12, the lens barrel 13 houses a focus positioning lens, a telephoto lens, and the like.
 レンズ鏡筒13の背部にはリレーレンズ21が設けられており、撮影レンズ12等で集光された入射光は、このリレーレンズ21を通ることで、平行光22に変換される。 A relay lens 21 is provided on the back of the lens barrel 13, and incident light collected by the photographing lens 12 or the like is converted into parallel light 22 by passing through the relay lens 21.
 平行光22の光路には、視差分離手段23と、光分割用ミラー24とが設けられる。詳細は後述する視差分離手段23は、本実施形態では液晶シャッタで構成される。光分割用ミラー24は、2枚のミラー25,26の前縁を突き合わせて構成される。視差分離手段23の前段又は後段にF値を制御する絞りを配置するのが良い。視差分離手段23は、視差分離を良好に行うために設けるものであり、必ずしも必要ではない。 A parallax separating means 23 and a light splitting mirror 24 are provided in the optical path of the parallel light 22. The parallax separation means 23 to be described in detail later is configured by a liquid crystal shutter in the present embodiment. The light splitting mirror 24 is configured by abutting the front edges of the two mirrors 25 and 26. It is preferable to arrange a diaphragm for controlling the F value at the front stage or the rear stage of the parallax separation means 23. The parallax separation means 23 is provided to perform the parallax separation well, and is not necessarily required.
 ミラー25は、平行光22に対して右斜め45度に傾斜して設けられ、ミラー26は平行光22に対して左斜め45度に傾斜して設けられる。そして、ミラー25とミラー26とは夫々の先端縁が突き合わされる様に接合され、先端接合縁27は、図1の筐体11の底面に対し垂直となる様に設けられる。この結果、光軸方向からみたときの平行光22は、先端接合縁27を境界線として2分割され、その左半分はミラー26で水平方向左側に反射され、その右半分はミラー25で水平方向右側に反射される。 The mirror 25 is provided with an inclination of 45 degrees to the right with respect to the parallel light 22, and the mirror 26 is provided with an inclination of 45 degrees with respect to the parallel light 22. And the mirror 25 and the mirror 26 are joined so that the respective leading edges thereof are abutted, and the leading edge joining edge 27 is provided so as to be perpendicular to the bottom surface of the housing 11 of FIG. As a result, the parallel light 22 when viewed from the optical axis direction is divided into two with the front end joint edge 27 as a boundary line, the left half is reflected by the mirror 26 to the left in the horizontal direction, and the right half is reflected by the mirror 25 in the horizontal direction. Reflected to the right.
 ミラー25の反射面には若干離間して平行なミラー28が設けられている。このミラー28で反射した入射光は、集光レンズ29を通り固体撮像素子30の受光面に結像する。 A mirror 28 is provided on the reflecting surface of the mirror 25 so as to be slightly separated from each other. Incident light reflected by the mirror 28 passes through a condensing lens 29 and forms an image on the light receiving surface of the solid-state imaging device 30.
 同様に、ミラー26の反射面には若干離間して平行なミラー31が設けられている。このミラー31で反射した入射光は、集光レンズ32を通り固体撮像素子33の受光面に結像する。なお、ミラー28,31を省略し、ミラー25,26の反射光をこの反射光の方向に設けた集光レンズ29,32と固体撮像素子30,33で受光する構成としても良い。 Similarly, a mirror 31 is provided on the reflecting surface of the mirror 26 so as to be slightly separated from each other. The incident light reflected by the mirror 31 passes through the condenser lens 32 and forms an image on the light receiving surface of the solid-state imaging device 33. The mirrors 28 and 31 may be omitted, and the reflected light of the mirrors 25 and 26 may be received by the condensing lenses 29 and 32 and the solid- state imaging devices 30 and 33 provided in the direction of the reflected light.
 このデジタルカメラ10の電気制御系は、デジタルカメラ10の全体を統括制御する中央制御装置(CPU)40と、ユーザからの操作指示を取り込む操作部(シャッタレリーズボタン14を含む)41と、画像処理部42と、画像処理部42で処理された画像データを表示データにエンコードするエンコーダ44と、前記表示データを表示部45に表示するドライバ46と、メインメモリ47と、メモリカード48の書込/読出制御を行うメディア制御部49と、これらを相互に接続するバス50とを備える。 The electric control system of the digital camera 10 includes a central control unit (CPU) 40 that performs overall control of the entire digital camera 10, an operation unit (including the shutter release button 14) 41 that receives operation instructions from a user, and image processing. Unit 42, an encoder 44 that encodes image data processed by the image processing unit 42 into display data, a driver 46 that displays the display data on the display unit 45, a main memory 47, and a write / read of the memory card 48. A media control unit 49 that performs read control and a bus 50 that interconnects them are provided.
 各固体撮像素子30,33には、夫々、アナログ信号処理部(AFE)34,35と、アナログ/デジタル(A/D)変換器36,37が接続される。A/D変換器36,37でデジタル信号に変換された各固体撮像素子30,33による撮像画像信号はバス50に入力される。なお、AFE34,35やA/D変換器36,37は夫々1個に集約し、切り替えて使用する構成としても良い。 Analog signal processing units (AFE) 34 and 35 and analog / digital (A / D) converters 36 and 37 are connected to the solid- state imaging devices 30 and 33, respectively. Captured image signals from the solid- state imaging devices 30 and 33 converted into digital signals by the A / D converters 36 and 37 are input to the bus 50. Note that the AFEs 34 and 35 and the A / D converters 36 and 37 may be integrated into one unit and used by switching.
 CPU40にはデバイス制御部51が接続される。デバイス制御部51は、CPU40からの指示に基づいて、焦点位置合わせレンズ,望遠レンズを含む撮影レンズ12を制御すると共に、視差分離手段23と、固体撮像素子30,33と、AFE34,35と、A/D変換器36,37を制御する。 A device control unit 51 is connected to the CPU 40. The device control unit 51 controls the photographing lens 12 including the focus alignment lens and the telephoto lens based on an instruction from the CPU 40, and the parallax separation unit 23, the solid- state imaging devices 30 and 33, AFEs 34 and 35, A / D converters 36 and 37 are controlled.
 図3は、図2に示す固体撮像素子30,33の表面模式図である。この固体撮像素子30,33は、信号読出形式がCCD型であってもCMOS型その他の形式でも良い。図3に示す固体撮像素子30(33)は、各画素(光電変換素子:フォトダイオード)が正方格子状に配列形成されている。 FIG. 3 is a schematic view of the surface of the solid- state imaging device 30, 33 shown in FIG. The solid- state imaging devices 30 and 33 may be of a CCD type or a CMOS type or other type as a signal readout format. In the solid-state imaging device 30 (33) shown in FIG. 3, pixels (photoelectric conversion elements: photodiodes) are arranged in a square lattice pattern.
 奇数行の各画素52には、3原色のカラーフィルタRGBがベイヤ配列されており、偶数行の各画素52にも、3原色のカラーフィルタrgbがベイヤ配列されている。各画素内に記載したRGBrgbは夫々赤色(R,r),緑色(G,g),青色(B,b)のカラーフィルタの色を示しており、R=r,G=g,B=bである。垂直方向に並ぶ同色の2画素が視差分離を行うペア画素を構成している。 In each odd-numbered row of pixels 52, three primary color filters RGB are arranged in a Bayer array, and in each even-numbered row of pixels 52, three primary color filters rgb are arranged in a Bayer array. RGBrgb described in each pixel indicates the color of red (R, r), green (G, g), and blue (B, b) color filters, and R = r, G = g, B = b. It is. Two pixels of the same color arranged in the vertical direction constitute a pair pixel that performs parallax separation.
 各画素52の上面は遮光膜で覆われており、各画素52上の遮光膜には開口が設けられている。奇数行の各画素52の遮光膜には、図の上方向に偏心した開口52xが設けられており、偶数行の各画素52の遮光膜には、下方向に偏心した開口52yが設けられている。 The upper surface of each pixel 52 is covered with a light shielding film, and an opening is provided in the light shielding film on each pixel 52. The light shielding film of each pixel 52 in the odd-numbered row is provided with an opening 52x that is eccentric in the upward direction in the drawing, and the light shielding film of each pixel 52 in the even-numbered row is provided with an opening 52y that is eccentric in the downward direction. Yes.
 図4のFIG4Bは、図3に示す固体撮像素子30(33)の筐体11の底面に対して垂直な方向における入射角感度特性を示す図である。固体撮像素子33の奇数行の画素の受光感度TDは左側にズレ、偶数行の画素の受光感度TUは右側にズレる。 FIG. 4B of FIG. 4 is a diagram showing the incident angle sensitivity characteristic in the direction perpendicular to the bottom surface of the housing 11 of the solid-state imaging device 30 (33) shown in FIG. The light receiving sensitivity TD of the odd-numbered pixels of the solid-state imaging device 33 is shifted to the left, and the light receiving sensitivity TU of the even-numbered pixels is shifted to the right.
 この左右のズレが、筐体11の底面に垂直な方向の視差となり、固体撮像素子33の奇数行の画素から得られる撮像画像を右眼用画像とし固体撮像素子33の偶数行の画素から得られる撮像画像を左眼用画像とすることで、被写体の立体画像を再生することが可能となる。 This left / right shift becomes a parallax in a direction perpendicular to the bottom surface of the housing 11, and a captured image obtained from the odd-numbered pixels of the solid-state image sensor 33 is obtained as the right-eye image from the even-numbered pixels of the solid-state image sensor 33. By using the captured image as the left-eye image, it is possible to reproduce a stereoscopic image of the subject.
 図4のFIG4Aは、図2に示される固体撮像素子30の筐体11に平行な方向における入射角感度特性と固体撮像素子33の筐体11に平行な方向における入射角感度特性とを併せて示した図である。 FIG. 4A of FIG. 4 combines the incident angle sensitivity characteristic in the direction parallel to the casing 11 of the solid-state image sensor 30 and the incident angle sensitivity characteristic in the direction parallel to the casing 11 of the solid-state image sensor 33 shown in FIG. FIG.
 リレーレンズ21で平行光22となった入射光のうち、ミラー25で反射した入射光に対する固体撮像素子30の当該光の入射角に対する感度分布TLは、FIG4Aに示す様に、右側にずれた分布となっている。反対に、ミラー26で反射した入射光に対する固体撮像素子33の当該光の入射角に対する感度分布TRは、左側にずれた分布となる。 The sensitivity distribution TL with respect to the incident angle of the light of the solid-state imaging device 30 with respect to the incident light reflected by the mirror 25 among the incident light that has become the parallel light 22 by the relay lens 21 is a distribution shifted to the right side as shown in FIG. 4A. It has become. On the contrary, the sensitivity distribution TR with respect to the incident angle of the light of the solid-state imaging device 33 with respect to the incident light reflected by the mirror 26 is a distribution shifted to the left side.
 この左右のズレが、筐体11の底面に平行な方向の視差となり、固体撮像素子30から得られる撮像画像を右眼用画像とし固体撮像素子33から得られる撮像画像を左眼用画像とすることで、被写体の立体画像を再生することが可能となる。 This left / right misalignment becomes a parallax in a direction parallel to the bottom surface of the housing 11, the captured image obtained from the solid-state image sensor 30 is the right-eye image, and the captured image obtained from the solid-state image sensor 33 is the left-eye image. Thus, it is possible to reproduce a stereoscopic image of the subject.
 図5は、図3に示す固体撮像素子30(33)の視差の説明図である。上方向に偏心した遮光膜開口52xを通して被写体を撮像した奇数行画素の撮像画像と、下方向に偏心した遮光膜開口52yを通して同一の被写体を撮像した偶数行画素の撮像画像とは、遮光膜開口52x,52yが偏心している関係で、上下方向に視差のずれた画像となる。この視差のズレを利用して、本実施形態では、上下方向に視差分離した立体画像を撮像する。即ち、カメラを縦置きにしたとき、図5の上下方向の視差のズレは地面に立つ人の左右方向の視差のズレとなり、立体画像を撮像することが可能となる。 FIG. 5 is an explanatory diagram of the parallax of the solid-state imaging device 30 (33) shown in FIG. The captured image of the odd-numbered row pixels in which the subject is imaged through the light-shielding film opening 52x that is eccentric in the upward direction and the captured image of the even-numbered pixels in which the same subject is imaged through the light-shielding film opening 52y that is eccentric in the downward direction Due to the eccentricity of 52x and 52y, the image has a parallax shift in the vertical direction. In the present embodiment, a stereoscopic image separated in the vertical direction is picked up by using this parallax shift. That is, when the camera is placed vertically, the vertical parallax shift in FIG. 5 becomes a horizontal parallax shift of a person standing on the ground, and a stereoscopic image can be captured.
 図6は、光分割用ミラー24による左右の視差分離と、遮光膜開口52x,52yの偏心による上下の視差分離を行ったときの4視点の説明図である。被写体53を単眼レンズを通して見たとき、被写体53の中心を見ることになる。しかし、本実施形態の立体画像撮像装置10では、光分割用ミラー24で被写体からの入射光を光軸方向から見たときに左右に分割するため、その視点は、図6(a)に示す様に、左右L,Rに分割されることになる。 FIG. 6 is an explanatory diagram of four viewpoints when the left and right parallax separation by the light dividing mirror 24 and the vertical parallax separation by the eccentricity of the light shielding film openings 52x and 52y are performed. When the subject 53 is viewed through a monocular lens, the center of the subject 53 is seen. However, in the stereoscopic image capturing apparatus 10 of the present embodiment, the incident light from the subject is divided into the left and right when viewed from the optical axis direction by the light dividing mirror 24, and the viewpoint is shown in FIG. Similarly, it is divided into left and right L and R.
 左右に分割された入射光は、図3で説明した固体撮像素子30(33)に入射するため、左側Lの視点から被写体53を見た入射光は、今度は上下に偏心した遮光膜開口52x,52yを通して見ることになり、図6(b)に示す様に、上下の視点A,Bに分離し、右側Rの視点から見た被写体53を見た入射光は、上下の視点C,Dに分離することになる。 Since the incident light divided into the left and right is incident on the solid-state imaging device 30 (33) described with reference to FIG. 3, the incident light viewed from the viewpoint of the left side L is now a light shielding film opening 52x decentered vertically. 52y, and as shown in FIG. 6B, the incident light that is separated into the upper and lower viewpoints A and B and viewed from the right R viewpoint is the upper and lower viewpoints C and D. Will be separated.
 つまり、図2に示す立体画像撮像装置10では、撮影レンズ12によって左右上下が反転した被写体からの入射光を固体撮像素子30,33で撮像すると、固体撮像素子30の偶数行画素によって視点A(被写体を左斜め上から見る視点)から被写体53を見た画像が撮像され、固体撮像素子30の奇数行画素によって視点B(被写体を左斜め下から見る視点)から被写体53を見た画像が撮像され、固体撮像素子33の偶数行画素によって視点C(被写体を右斜め上から見る視点)から被写体53を見た画像が撮像され、固体撮像素子33の奇数行画素によって視点D(被写体を右斜め下から見る視点)から被写体53を見た画像が撮像されることになる。 That is, in the stereoscopic image capturing apparatus 10 shown in FIG. 2, when incident light from a subject whose left and right and upside down are reversed by the photographic lens 12 is picked up by the solid-state image pickup devices 30 and 33, the viewpoint A ( An image in which the subject 53 is viewed from the perspective of viewing the subject diagonally from the upper left) is captured, and an image of the subject 53 viewed from the viewpoint B (viewpoint of viewing the subject from the diagonally lower left) is captured by the odd row pixels of the solid-state imaging device 30. Then, an image of the subject 53 viewed from the viewpoint C (viewpoint viewing the subject from diagonally right above) is captured by the even-numbered pixels of the solid-state image sensor 33, and the viewpoint D (subject diagonally rightward by the odd-numbered pixels of the solid-state image sensor 33 is captured. An image in which the subject 53 is viewed from the viewpoint (viewed from below) is captured.
 固体撮像素子30,33の撮像画像データはメインメモリ47に取り込まれ、画像処理部42でオフセット補正,ガンマ補正,RGB/YC変換処理等の周知の画像処理が施されると共にJPEG形式でデータ圧縮され、メモリカード48に保存される。この保存時に、左右上下の4枚の画像データは関連づけて保存される。例えば、カメラ映像機器工業会(CIPA)の規格であるMPO形式で保存される。 Captured image data of the solid- state imaging devices 30 and 33 is taken into the main memory 47, and is subjected to well-known image processing such as offset correction, gamma correction, RGB / YC conversion processing and the like in the image processing unit 42 and data compression in JPEG format. And stored in the memory card 48. At the time of saving, the four pieces of image data on the left, right, upper and lower sides are saved in association with each other. For example, it is stored in the MPO format that is a standard of the Camera and Imaging Products Association (CIPA).
 カメラを横置きで被写体53を撮影したときの4枚の画像データから立体画像を再生する場合には、図6(b)の視点A,Bの画像データを加算した画像を左眼用画像とし、視点C,Dの画像データを加算した画像を右眼用画像とすれば良い。また、カメラを縦置きで被写体を撮影したときは、図6(b)の視点ABCDの位置は反時計回りに90度回転する結果となり、視点C,Aの加算データと視点B,Dの加算データとで被写体53の立像の立体画像を生成することが可能となる。 When a stereoscopic image is reproduced from four pieces of image data when the subject 53 is photographed with the camera placed horizontally, an image obtained by adding the image data of the viewpoints A and B in FIG. The image obtained by adding the image data of the viewpoints C and D may be used as the right eye image. Further, when the subject is photographed with the camera placed vertically, the position of the viewpoint ABCD in FIG. 6B is rotated by 90 degrees counterclockwise, and the addition data of the viewpoints C and A and the addition of the viewpoints B and D are obtained. It is possible to generate a stereoscopic image of a standing image of the subject 53 with the data.
 あるいは、図6(b)の視点ABCDの状態で、視点C,Aの加算データと視点B,Dの加算データとで被写体53の立体画像を生成する。この場合には、テレビ受像機やパソコンモニタで表示した立体画像を、ユーザが横になって見たとき(左右眼が上下に配置された状態)、立体視が可能となる。 Alternatively, in the state of the viewpoint ABCD in FIG. 6B, a stereoscopic image of the subject 53 is generated with the addition data of the viewpoints C and A and the addition data of the viewpoints B and D. In this case, when the user views the stereoscopic image displayed on the television receiver or the personal computer monitor while lying down (a state where the left and right eyes are arranged up and down), stereoscopic viewing is possible.
 図4を用い、上下左右の視差を分離する原理について説明した。しかし、上下左右のズレ即ち視差が充分にとれないと、左眼用画像,右眼用画像を再生しても、立体画像として視認するのは困難になってしまう。図4で言えば、感度分布TDと感度分布TUとが重なった斜線領域(重複領域)の各感度分布TD,TUに占める割合が多くなるほど、立体視が困難となってしまう。特に、単眼方式の場合、立体視可能な画像を撮像するには、重複領域の各感度分布に占める割合を減らすのが好ましい。 The principle of separating the vertical and horizontal parallaxes has been described with reference to FIG. However, if the vertical and horizontal misalignment, that is, the parallax is not sufficient, it is difficult to visually recognize the left eye image and the right eye image as a stereoscopic image. In FIG. 4, stereoscopic viewing becomes more difficult as the ratio of the shaded area (overlapping area) where the sensitivity distribution TD and the sensitivity distribution TU overlap each sensitivity distribution TD, TU increases. In particular, in the case of the monocular system, in order to capture a stereoscopically viewable image, it is preferable to reduce the ratio of the overlapping area to each sensitivity distribution.
 そこで、本実施形態では、視差分離手段23を設けている。この視差分離手段23により、図4で言えば、入射角0度及びその近辺の入射光をカット(遮光)して光分割用ミラー24に入射しない様にする。これにより、図7のFIG7Bに示す様に、上下方向において入射角0度近辺がカットされて斜線領域(重複領域)の各感度分布TU,TDに占める割合が減り、上下方向の視差分離が良好となる。また、FIG7Aに示すように、左右方向において入射角0度近辺がカットされて感度がゼロになり、左右方向の視差の分離が良好となる。 Therefore, in this embodiment, the parallax separation means 23 is provided. With this parallax separating means 23, as shown in FIG. 4, incident light at an incident angle of 0 degree and the vicinity thereof is cut (shielded) so as not to enter the light splitting mirror 24. As a result, as shown in FIG. 7B in FIG. 7, the incident angle near 0 degrees is cut in the vertical direction, the ratio of the hatched area (overlapping area) to the sensitivity distributions TU and TD is reduced, and the vertical parallax separation is good. It becomes. Further, as shown in FIG. 7A, the vicinity of the incident angle of 0 degree is cut in the left-right direction, the sensitivity becomes zero, and the parallax separation in the left-right direction becomes good.
 図8は、視差分離手段23の説明図である。横断面V字形状の光分割用ミラー24の前段に置かれた視差分離手段23は、例えば光入射面が光軸に垂直に立設された液晶シャッタで構成される。この液晶シャッタは、光分割用ミラー24の左右の視差の境界線となる稜線を所要幅xで覆うと共に、固体撮像素子30,33の上下の視差の分離境界を所要幅xで覆う様に、クロス形状(十字形状)の光非透過領域61を電気的に形成している。 FIG. 8 is an explanatory diagram of the parallax separation means 23. The parallax separating means 23 placed in the front stage of the light splitting mirror 24 having a V-shaped cross section is composed of, for example, a liquid crystal shutter whose light incident surface is erected perpendicular to the optical axis. In this liquid crystal shutter, the ridgeline which becomes the boundary line between the left and right parallaxes of the light dividing mirror 24 is covered with the required width x, and the upper and lower parallax separation boundaries of the solid- state imaging devices 30 and 33 are covered with the required width x. A cross-shaped (cross-shaped) light non-transmissive region 61 is electrically formed.
 この光非透過領域61によって、正方形状の液晶シャッタの透明領域は4領域23a,23b,23d,23cに完全に等分に分割され、夫々の領域23a~23dが視点ABDCに対応する。 The transparent region of the square liquid crystal shutter is completely divided into four regions 23a, 23b, 23d, and 23c by the light non-transmissive region 61, and each region 23a to 23d corresponds to the viewpoint ABDC.
 光非透過領域61の幅xは、固定値でも良いが、好適には、撮影条件によって幅xを可変制御するのが良い。例えば、幅xをあまり広くとると、図7から分かる通り、受光感度が低下するため、撮影シーンの明るさとの兼ね合いを考えて幅xを決める。即ち、撮影シーンが暗いときは光非透過領域61の幅を広くとると暗い画像しか写らなくなるため、幅xは狭くし、明るい撮影シーンのときは幅xを広くとる。 The width x of the light non-transmissive region 61 may be a fixed value, but preferably the width x is variably controlled according to the photographing conditions. For example, if the width x is too wide, the light receiving sensitivity is lowered as can be seen from FIG. 7, so the width x is determined in consideration of the brightness of the shooting scene. That is, when the shooting scene is dark, if the light non-transmissive region 61 is wide, only a dark image is captured. Therefore, the width x is narrowed, and when the shooting scene is bright, the width x is wide.
 また、撮影レンズ12が広角レンズの様に焦点距離が短い場合には、視差分離が難しいため、光非透過領域61の幅xを広くとって視差を分離し易くし、望遠レンズの様に焦点距離が長い場合には、逆に幅xを狭くする。 In addition, when the photographic lens 12 has a short focal length, such as a wide-angle lens, it is difficult to separate the parallax. Therefore, it is easy to separate the parallax by widening the width x of the light non-transmissive region 61, and the focal point is like a telephoto lens. Conversely, when the distance is long, the width x is narrowed.
 更に、F値との関係で光非透過領域61の幅xを可変制御しても良い。F値が小さい場合(絞りが開いている場合)は、撮影シーンが暗い場合が多く、F値が大きい場合(絞りが狭くなっている場合)は撮影シーンが明るい場合が多いため、それに合わせて光非透過領域61の幅xを制御する。即ち、F値が大きい場合には明るい撮影シーンのため幅xを広くとっても感度は低下しないため幅xを広くとって視差分離の程度を大きくする。 Furthermore, the width x of the light non-transmissive region 61 may be variably controlled in relation to the F value. When the F value is small (when the aperture is open), the scene is often dark, and when the F value is large (when the aperture is narrow), the scene is often bright. The width x of the light non-transmissive region 61 is controlled. That is, when the F value is large, the sensitivity is not lowered even if the width x is wide because the scene is bright, so the width x is widened to increase the degree of parallax separation.
 図2に示す実施形態では、光分割用ミラー24の直前に視差分離手段23を配置して光分割用ミラー24の光分割の境界線部分を遮光したが、視差分離手段23を配置する場所は、光分割用ミラー24の直前に限るものではない。例えば、入射光を集光する撮影レンズ12の焦点位置付近にも絞りが配置されるが、この絞り配置個所に視差分離手段を併設しても良い。この位置に視差分離手段を併設することでも、小面積の液晶シャッタで入射光を左右上下に均等に4分割することが可能となる。 In the embodiment shown in FIG. 2, the parallax separation means 23 is disposed immediately before the light splitting mirror 24 to shield the light splitting boundary portion of the light splitting mirror 24. It is not limited to just before the light splitting mirror 24. For example, a diaphragm is also arranged near the focal position of the photographing lens 12 that collects incident light. However, a parallax separation unit may be provided at the position of the diaphragm. Also by providing the parallax separating means at this position, it becomes possible to equally divide the incident light into four in the horizontal and vertical directions with a small area liquid crystal shutter.
 図9は、別実施形態に係る視差分離手段63(光分割用ミラー24を兼用する)の斜視図である。光分割用ミラー24の各反射ミラー25,26の替わりに、部分的に反射率を電気制御で変更できるエレクトロクロミックミラー65,66を用い、ミラー65,66の先端接合縁67の稜線部分の反射率を所要幅で変更する。好適には、反射率0%とする。この反射率0%とした部分が本実施形態の視差分離手段となる。同様に、ミラー65,66の先端接合縁67に直交する中央線部分68を所要幅で反射率を変更する。 FIG. 9 is a perspective view of the parallax separation means 63 (also used as the light splitting mirror 24) according to another embodiment. Instead of the reflecting mirrors 25 and 26 of the light splitting mirror 24, electrochromic mirrors 65 and 66 whose reflectance can be partially changed by electric control are used, and reflection of the ridge line portion of the tip joint edge 67 of the mirrors 65 and 66 is reflected. Change the rate with the required width. Preferably, the reflectance is 0%. The portion having the reflectance of 0% becomes the parallax separation means of this embodiment. Similarly, the reflectance of the center line portion 68 orthogonal to the tip joint edge 67 of the mirrors 65 and 66 is changed to a required width.
 この幅を可変制御できる様にしておくのが好ましい。これにより、図8の実施形態と同様に、入射光のうち、視差分離を図る境界線に沿う領域が所要幅で遮光されたと同じ効果を得ることができ、上下の感度分布TD,TUの重なり領域の大部分,左右の感度分布TR,TLの境界部分の大部分をカットすることが可能となる。 It is preferable that this width can be variably controlled. As in the embodiment of FIG. 8, this makes it possible to obtain the same effect as when the region along the boundary line for parallax separation in the incident light is shielded with the required width, and the overlapping of the upper and lower sensitivity distributions TD and TU. It is possible to cut most of the region and most of the boundary between the left and right sensitivity distributions TR and TL.
 図10は、更に別実施形態に係る視差分離手段71の斜視図である。本実施形態では、図9に示したミラー65,66を、反射率変更部分を削除した4枚のミラー69a,69b,69c,69dで構成し、各反射ミラー69a~69d間を、反射ミラー移動機構によって広げることを可能としている。各反射面69a~69d間を広げることで形成される隙間69の幅を可変制御する。 FIG. 10 is a perspective view of the parallax separation means 71 according to still another embodiment. In the present embodiment, the mirrors 65 and 66 shown in FIG. 9 are constituted by four mirrors 69a, 69b, 69c, and 69d from which the reflectance changing portion is removed, and the reflecting mirror is moved between the reflecting mirrors 69a to 69d. It can be expanded by the mechanism. The width of the gap 69 formed by widening the space between the reflecting surfaces 69a to 69d is variably controlled.
 この様にすることで、光軸方向から見たときの入射光を左,右,上,下に分割する境界線上の入射光を、固体撮像素子30,33に入射させないことができ、視差の左右分離と上下分離を良好に行うことが可能となる。また、隙間69を透過した入射光を受光する第3の固体撮像素子68を設けることで、固体撮像素子68は、被写体の二次元画像(平面画像)を撮像することが可能となる。 By doing in this way, it is possible to prevent the incident light on the boundary line dividing the incident light when viewed from the optical axis direction into the left, right, up and down, from being incident on the solid- state imaging devices 30 and 33, and the parallax. The left / right separation and the upper / lower separation can be performed satisfactorily. In addition, by providing the third solid-state imaging device 68 that receives incident light transmitted through the gap 69, the solid-state imaging device 68 can capture a two-dimensional image (planar image) of the subject.
 以上述べた様に、上述した実施形態によれば、少なくとも4視点から見た被写体画像の撮像データを得ることが可能となり、カメラを横置きで被写体を撮影しても、縦置きで撮影しても被写体の立体画像を再生することが可能となる。また、単眼方式でかつ2個の固体撮像素子を用いるだけで4視点の被写体画像を撮影できる構成のため、カメラの小型化,低コスト化を図ることが可能となる。 As described above, according to the above-described embodiment, it is possible to obtain image data of a subject image viewed from at least four viewpoints. Even if the subject is photographed horizontally, the subject can be photographed vertically. It is also possible to reproduce a stereoscopic image of the subject. In addition, since it is a monocular system and can shoot subject images of four viewpoints only by using two solid-state imaging devices, it is possible to reduce the size and cost of the camera.
 なお、図2に示す実施形態では、ミラー24で入射光を左右に視差分離し、固体撮像素子30,33で視差を上下に分離したが、逆でも良い。即ち、ミラー24の配置を90度回転させてミラー24で入射光を上下に視差分離し、図3の固体撮像素子30,33を90度回転させて配置して視差を左右に分離し、全体で視点を4つに分割しても良い。 In the embodiment shown in FIG. 2, the incident light is separated from the left and right by the mirror 24 and the parallax is separated from the upper and lower by the solid- state imaging devices 30 and 33, but the reverse is also possible. That is, the arrangement of the mirror 24 is rotated by 90 degrees, and the incident light is vertically separated by the mirror 24, and the solid-state image pickup devices 30 and 33 of FIG. The viewpoint may be divided into four.
 また、図3の実施形態では、遮光膜開口の位置を偏心させることで視差分離を行ったが、図11に示す様に、2つの視差分離を行うペア画素81a,81bに1つのマイクロレンズ83を搭載し、視差分離(瞳分割)を行う構成でも良い。更に、4視点ABCDの位置は、図12に示す様な被写体に対し上下左右の位置とすることも可能である。この場合、図2のミラー24の先端接合縁27を斜め45度に傾けることで可能となる。更にまた、固体撮像素子30,33の画素配列は正方配列に限るものではなく、図13に示す様に、奇数行の画素行に対して偶数行の画素行が1/2画素ピッチずつずれた所謂ハニカム画素配列でも良い。図13の場合、各画素を○形で示しており、符号84x,84yが遮光膜開口となっており、斜めに隣接する画素がペア画素(視差分離画素:位相差画素)となっている。 In the embodiment of FIG. 3, the parallax separation is performed by decentering the position of the light shielding film opening. However, as shown in FIG. 11, one microlens 83 is provided for each pair of pixels 81 a and 81 b that perform two parallax separations. May be used to perform parallax separation (pupil division). Furthermore, the position of the 4-viewpoint ABCD can be set to the vertical and horizontal positions with respect to the subject as shown in FIG. In this case, this is possible by tilting the tip joint edge 27 of the mirror 24 of FIG. Furthermore, the pixel arrangement of the solid- state imaging devices 30 and 33 is not limited to a square arrangement, and as shown in FIG. 13, even-numbered pixel rows are shifted by ½ pixel pitch with respect to odd-numbered pixel rows. A so-called honeycomb pixel arrangement may be used. In the case of FIG. 13, each pixel is indicated by a circle, symbols 84x and 84y are light shielding film openings, and pixels adjacent obliquely are paired pixels (parallax separation pixels: phase difference pixels).
 以上述べた様に、本実施形態による立体画像撮像装置は、単眼の撮影レンズと、該撮影レンズを通して入射してくる被写体からの入射光の光路上に置かれ光軸に対し任意の垂直線を境界線として前記入射光を分割する光分割部と、前記分割した前記入射光の各々の分割入射光を夫々受光する第1,第2の固体撮像素子と、該第1,第2の各固体撮像素子の出力信号を画像処理し立体画像を構成する前記被写体の立体画像データを生成する画像処理部とを備え、前記第1,第2の固体撮像素子は、二次元アレイ状に複数の画素が配列形成され、該画素のうち隣接する2画素ずつを夫々ペア画素とし、各ペア画素の一方の画素と他方の画素とが前記垂直線に直交する境界線を境に視差を持つ構成になっていることを特徴とする。 As described above, the stereoscopic image capturing apparatus according to the present embodiment is placed on the optical path of incident light from a monocular photographing lens and a subject incident through the photographing lens, and forms an arbitrary vertical line with respect to the optical axis. A light dividing unit that divides the incident light as a boundary line, first and second solid-state imaging devices that respectively receive the divided incident lights of the divided incident light, and the first and second solids An image processing unit configured to perform image processing on an output signal of the imaging device to generate stereoscopic image data of the subject that forms a stereoscopic image, and the first and second solid-state imaging devices include a plurality of pixels in a two-dimensional array Are formed as a pair pixel, and one pixel and the other pixel of each pair pixel have a parallax with a boundary line orthogonal to the vertical line as a boundary. It is characterized by.
 また、実施形態の立体画像撮像装置は、十字形となる2本の前記境界線上の入射光の前記第1,第2の固体撮像素子への入射を阻止する視差分離部を備えることを特徴とする。 In addition, the stereoscopic image capturing apparatus according to the embodiment includes a parallax separation unit that blocks incidence of incident light on the two boundary lines having a cross shape into the first and second solid-state imaging elements. To do.
 また、実施形態の立体画像撮像装置は、前記境界線上の前記阻止する幅を制御する制御部を備えることを特徴とする。 In addition, the stereoscopic image capturing apparatus according to the embodiment includes a control unit that controls the blocking width on the boundary line.
 また、実施形態の立体画像撮像装置の前記制御部は、撮影条件に応じて前記阻止する幅を調整することを特徴とする。 Further, the control unit of the stereoscopic image capturing apparatus according to the embodiment is characterized in that the blocking width is adjusted according to a shooting condition.
 また、実施形態の立体画像撮像装置の前記制御部は、F値が小さいほど又は撮影シーンが明るいほど又は撮影レンズの焦点距離が短いほど又は主要被写体までの距離が近いほど前記幅を広くし、F値が大きいほど又は撮影シーンが暗いほど又は撮影レンズの焦点距離が長いほど又は主要被写体までの距離が遠いほど前記幅を狭くすることを特徴とする。 Further, the control unit of the stereoscopic image capturing apparatus of the embodiment widens the width as the F value is smaller, the photographing scene is brighter, the focal length of the photographing lens is shorter, or the distance to the main subject is shorter, The width is narrowed as the F value is larger, the photographing scene is darker, the focal length of the photographing lens is longer, or the distance to the main subject is longer.
 また、実施形態の立体画像撮像装置の前記視差分離部は前記光分割部の前段に置かれた液晶シャッタで構成され、該液晶シャッタの中央に前記十字形に形成された光非透過領域で前記境界線上の前記入射光をカットすることを特徴とする。 Further, the parallax separation unit of the stereoscopic image pickup device of the embodiment is configured by a liquid crystal shutter placed in front of the light splitting unit, and the light non-transmission region formed in the cross shape in the center of the liquid crystal shutter. The incident light on the boundary line is cut.
 また、実施形態の立体画像撮像装置の前記光分割部は90度に開いた2枚のミラーの先端縁を突き合わして構成されることを特徴とする。 Further, the light splitting unit of the stereoscopic image capturing apparatus according to the embodiment is configured by abutting the leading edges of two mirrors opened at 90 degrees.
 また、実施形態の立体画像撮像装置の前記光分割部と前記視差分離部とは一体成形され、前記光分割部は90度に開いた2枚のミラーの先端縁を突き合わして構成され、該2枚のミラーの先端縁及び該先端縁に直交する各ミラーの中央線とが所要幅に渡って反射率可変制御されることで前記視差分離部が構成されることを特徴とする。 Further, the light dividing unit and the parallax separating unit of the stereoscopic image capturing apparatus of the embodiment are integrally formed, and the light dividing unit is configured by abutting the front end edges of two mirrors opened at 90 degrees, The parallax separation unit is configured by controlling the reflectance of the front edge of the two mirrors and the center line of each mirror perpendicular to the front edge over a required width.
 また、実施形態の立体画像撮像装置の前記光分割部と前記視差分離部とは一体成形され、90度に開いた2枚のミラーを2段に並べて前記光分割部が構成され、計4枚の前記ミラーの間に形成した隙間で前記視差分離部が構成されることを特徴とする。 In addition, the light dividing unit and the parallax separating unit of the stereoscopic image capturing apparatus of the embodiment are integrally formed, and the light dividing unit is configured by arranging two mirrors opened at 90 degrees in two stages. The parallax separation unit is configured by a gap formed between the mirrors.
 以上述べた実施形態によれば、カメラを横置きにして被写体を撮像してもカメラを縦置きで被写体を撮像しても被写体の立体画像を撮像することが可能となる。また、固体撮像素子の画素を位相差画素として入射光を2分割する構成としたため、カメラの小型軽量化を図ることが可能となる。 According to the embodiment described above, it is possible to capture a stereoscopic image of a subject even when the subject is imaged with the camera placed horizontally or the subject is imaged with the camera placed vertically. In addition, since the incident light is divided into two by using the pixels of the solid-state imaging device as phase difference pixels, the camera can be reduced in size and weight.
 本発明の立体画像撮像装置は、単眼式で4視点からの被写体画像を撮像することができ、カメラを縦置き,横置きのいずれにしても立体画像を撮像することが可能となり、低コストで小型の立体画像撮像装置に適用すると有用である。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年3月2日出願の日本出願(特願2011-45546)に基づくものであり、その内容はここに参照として取り込まれる。
The stereoscopic image capturing apparatus of the present invention can capture a subject image from four viewpoints with a monocular system, and can capture a stereoscopic image regardless of whether the camera is placed vertically or horizontally, at low cost. It is useful when applied to a small stereoscopic image capturing apparatus.
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese application (Japanese Patent Application No. 2011-45546) filed on Mar. 2, 2011, the contents of which are incorporated herein by reference.
10 デジタルカメラ(立体画像撮像装置)
11 筐体
12 撮影レンズ
21 リレーレンズ
22 平行光
23,63 視差分離手段
24 光分割用ミラー
27 先端接合縁
30,33 固体撮像素子
52x,52y ペア画素の遮光膜開口
40 CPU
42 画像処理部
51 デバイス制御部
61 光非透過領域
72 隙間
10 Digital camera (stereoscopic imaging device)
DESCRIPTION OF SYMBOLS 11 Case 12 Shooting lens 21 Relay lens 22 Parallel light 23, 63 Parallax separation means 24 Light splitting mirror 27 Front joint edge 30, 33 Solid- state image sensor 52x, 52y Light shielding film opening 40 of paired pixel CPU
42 Image Processing Unit 51 Device Control Unit 61 Light Non-Transparent Area 72 Gap

Claims (9)

  1.  単眼の撮影レンズと、
     該撮影レンズを通して入射してくる被写体からの入射光の光路上に置かれ光軸に対し任意の垂直線を境界線として前記入射光を分割する光分割部と、
     前記分割した前記入射光の各々の分割入射光を夫々受光する第1,第2の固体撮像素子と、
     該第1,第2の各固体撮像素子の出力信号を画像処理し立体画像を構成する前記被写体の立体画像データを生成する画像処理部とを備え、
     前記第1,第2の固体撮像素子は、二次元アレイ状に複数の画素が配列形成され、該画素のうち隣接する2画素ずつを夫々ペア画素とし、各ペア画素の一方の画素と他方の画素とが前記垂直線に直交する境界線を境に視差を持つ構成になっている立体画像撮像装置。
    A monocular photographic lens,
    A light dividing unit that is placed on the optical path of incident light from the subject incident through the photographing lens and divides the incident light with an arbitrary vertical line as a boundary line with respect to the optical axis;
    First and second solid-state imaging devices that respectively receive the split incident lights of the split incident light;
    An image processing unit that performs image processing on output signals of the first and second solid-state imaging devices to generate stereoscopic image data of the subject that forms a stereoscopic image;
    In the first and second solid-state imaging devices, a plurality of pixels are arrayed in a two-dimensional array, and two adjacent pixels among the pixels are paired, and one pixel of each paired pixel and the other A stereoscopic image capturing apparatus configured to have parallax with respect to a boundary line perpendicular to the vertical line.
  2.  請求項1に記載の立体画像撮像装置であって、
     十字形となる2本の前記境界線上の入射光の前記第1,第2の固体撮像素子への入射を阻止する視差分離部を備える立体画像撮像装置。
    The stereoscopic image capturing apparatus according to claim 1,
    A stereoscopic image capturing apparatus including a parallax separation unit that blocks incidence of incident light on two boundary lines having a cross shape into the first and second solid-state imaging elements.
  3.  請求項2に記載の立体画像撮像装置であって、
     前記境界線上の前記阻止する幅を制御する制御部を備える立体画像撮像装置。
    The stereoscopic image capturing apparatus according to claim 2,
    A stereoscopic image capturing apparatus including a control unit that controls the blocking width on the boundary line.
  4.  請求項3に記載の立体画像撮像装置であって、
     前記制御部は、撮影条件に応じて前記阻止する幅を調整する立体画像撮像装置。
    The stereoscopic image capturing apparatus according to claim 3,
    The control unit is a stereoscopic image capturing device that adjusts the blocking width according to a shooting condition.
  5.  請求項4に記載の立体画像撮像装置であって、
     前記制御部は、F値が小さいほど又は撮影シーンが明るいほど又は撮影レンズの焦点距離が短いほど前記幅を広くし、F値が大きいほど又は撮影シーンが暗いほど又は撮影レンズの焦点距離が長いほど前記幅を狭くする立体画像撮像装置。
    The stereoscopic image capturing apparatus according to claim 4,
    The controller increases the width as the F value is smaller or the photographing scene is brighter or the focal length of the photographing lens is shorter, and as the F value is larger or the photographing scene is darker or the focal length of the photographing lens is longer. A stereoscopic image capturing apparatus that narrows the width as much as possible.
  6.  請求項2乃至請求項5のいずれか1項に記載の立体画像撮像装置であって、
     前記視差分離部は前記光分割部の前段に置かれた液晶シャッタで構成され、該液晶シャッタの中央に前記十字形に形成された光非透過領域で前記境界線上の前記入射光をカットする立体画像撮像装置。
    The stereoscopic image capturing apparatus according to any one of claims 2 to 5,
    The parallax separation unit is composed of a liquid crystal shutter placed in front of the light splitting unit, and cuts the incident light on the boundary line in a light non-transmissive region formed in the cross shape in the center of the liquid crystal shutter. Imaging device.
  7.  請求項1乃至請求項6のいずれか1項に記載の立体画像撮像装置であって、
     前記光分割部は90度に開いた2枚のミラーの先端縁を突き合わして構成される立体画像撮像装置。
    The stereoscopic image capturing apparatus according to any one of claims 1 to 6,
    The light splitting unit is a stereoscopic image pickup device configured by abutting the leading edges of two mirrors opened at 90 degrees.
  8.  請求項2乃至請求項5のいずれか1項に記載の立体画像撮像装置であって、
     前記光分割部と前記視差分離部とは一体成形され、前記光分割部は90度に開いた2枚のミラーの先端縁を突き合わして構成され、該2枚のミラーの先端縁及び該先端縁に直交する各ミラーの中央線とが所要幅に渡って反射率可変制御されることで前記視差分離部が構成される立体画像撮像装置。
    The stereoscopic image capturing apparatus according to any one of claims 2 to 5,
    The light splitting part and the parallax separating part are integrally formed, and the light splitting part is configured by abutting the front end edges of two mirrors opened at 90 degrees, and the front end edges of the two mirrors and the front end A stereoscopic image capturing apparatus in which the parallax separation unit is configured by performing variable reflectance control of a center line of each mirror orthogonal to an edge over a required width.
  9.  請求項2乃至請求項5のいずれか1項に記載の立体画像撮像装置であって、
     前記光分割部と前記視差分離部とは一体成形され、90度に開いた2枚のミラーを2段に並べて前記光分割部が構成され、計4枚の前記ミラーの間に形成した隙間で前記視差分離部が構成される立体画像撮像装置。
    The stereoscopic image capturing apparatus according to any one of claims 2 to 5,
    The light splitting unit and the parallax separation unit are integrally formed, and the light splitting unit is configured by arranging two mirrors opened at 90 degrees in two stages, and a gap formed between a total of four mirrors. A stereoscopic image capturing apparatus in which the parallax separation unit is configured.
PCT/JP2011/075739 2011-03-02 2011-11-08 3d imaging device WO2012117619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-045546 2011-03-02
JP2011045546A JP2014103427A (en) 2011-03-02 2011-03-02 Stereoscopic image pickup device

Publications (1)

Publication Number Publication Date
WO2012117619A1 true WO2012117619A1 (en) 2012-09-07

Family

ID=46757568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075739 WO2012117619A1 (en) 2011-03-02 2011-11-08 3d imaging device

Country Status (2)

Country Link
JP (1) JP2014103427A (en)
WO (1) WO2012117619A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001788A1 (en) * 2013-07-05 2015-01-08 株式会社ニコン Imaging device
CN113519059A (en) * 2019-05-09 2021-10-19 虹软科技股份有限公司 Image sensor package

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165115A (en) * 2007-12-12 2009-07-23 Sony Corp Imaging device
JP2010081580A (en) * 2008-08-29 2010-04-08 Sony Corp Imaging apparatus, and image recording and playback system
JP2010268444A (en) * 2009-04-17 2010-11-25 Sony Corp Imaging device
JP2010268443A (en) * 2009-04-17 2010-11-25 Sony Corp Imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165115A (en) * 2007-12-12 2009-07-23 Sony Corp Imaging device
JP2010081580A (en) * 2008-08-29 2010-04-08 Sony Corp Imaging apparatus, and image recording and playback system
JP2010268444A (en) * 2009-04-17 2010-11-25 Sony Corp Imaging device
JP2010268443A (en) * 2009-04-17 2010-11-25 Sony Corp Imaging device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001788A1 (en) * 2013-07-05 2015-01-08 株式会社ニコン Imaging device
CN105359519A (en) * 2013-07-05 2016-02-24 株式会社尼康 Imaging device
JPWO2015001788A1 (en) * 2013-07-05 2017-02-23 株式会社ニコン Imaging device
CN105359519B (en) * 2013-07-05 2017-07-04 株式会社尼康 Camera head
CN113519059A (en) * 2019-05-09 2021-10-19 虹软科技股份有限公司 Image sensor package
CN113519059B (en) * 2019-05-09 2024-04-02 虹软科技股份有限公司 Image sensor package

Also Published As

Publication number Publication date
JP2014103427A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5827988B2 (en) Stereo imaging device
US8885026B2 (en) Imaging device and imaging method
US9041770B2 (en) Three-dimensional image capture device
JP4625515B2 (en) Three-dimensional imaging apparatus, method, and program
US20020140835A1 (en) Single sensor chip digital stereo camera
US8130259B2 (en) Three-dimensional display device and method as well as program
US20080117316A1 (en) Multi-eye image pickup device
WO2012002297A1 (en) Imaging device and imaging method
US20110234767A1 (en) Stereoscopic imaging apparatus
JP5469258B2 (en) Imaging apparatus and imaging method
JP2011199755A (en) Image pickup device
WO2012002430A1 (en) Stereoscopic image capture device
JP2011259168A (en) Stereoscopic panoramic image capturing device
JP2012015819A (en) Stereoscopic image imaging apparatus
US11353775B2 (en) Image sensor and image-capturing device that selects pixel signal for focal position
US20120307016A1 (en) 3d camera
WO2012117619A1 (en) 3d imaging device
JP2012124650A (en) Imaging apparatus, and imaging method
US20130120374A1 (en) Image processing device, image processing method, and image processing program
WO2012132088A1 (en) Imaging apparatus and interchangeable lens
WO2011101928A1 (en) Three-dimensional image capturing adopter, hybrid image-capturing system, and electronic camera
WO2013047080A1 (en) Three-dimensional imaging device
JP2012088549A (en) Stereoscopic image pickup device, stereoscopic image display device, and stereoscopic image pickup and display device
JP5853510B2 (en) Imaging device
JP2003279847A (en) Focus state detector for photographing lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP