WO2012169301A1 - Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device - Google Patents

Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device Download PDF

Info

Publication number
WO2012169301A1
WO2012169301A1 PCT/JP2012/061675 JP2012061675W WO2012169301A1 WO 2012169301 A1 WO2012169301 A1 WO 2012169301A1 JP 2012061675 W JP2012061675 W JP 2012061675W WO 2012169301 A1 WO2012169301 A1 WO 2012169301A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
image
pixels
group
phase difference
Prior art date
Application number
PCT/JP2012/061675
Other languages
French (fr)
Japanese (ja)
Inventor
智行 河合
宗之 大島
太田 毅
遠藤 宏
井上 知己
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012169301A1 publication Critical patent/WO2012169301A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/218Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Definitions

  • the present invention relates to an imaging device having a structure suitable for capturing a stereoscopic moving image and a planar moving image, and an imaging device mounted on the imaging device.
  • Patent Document 1 As a conventional imaging device that captures a stereoscopic image (hereinafter also referred to as a 3D image), for example, there is a device described in Patent Document 1 below.
  • This conventional imaging apparatus includes two cameras, and can capture the same subject with left and right cameras and reproduce a stereoscopic image of the subject.
  • the conventional stereoscopic image capturing apparatus needs to prepare two cameras, there is a problem that the cost is increased and the apparatus is further increased in size.
  • Patent Document 2 a conventional technique described in Patent Document 2 below has been proposed as an imaging apparatus that can capture a stereoscopic image of a subject with a single camera.
  • This stereoscopic image pickup apparatus divides a plurality of pixels (photoelectric conversion elements: photodiodes) two-dimensionally arranged on the surface of a solid-state image pickup device into two groups, and light from an object viewed from the right side enters one group. The other group is made to receive light viewed from the left side of the subject.
  • a single camera can capture a stereoscopic image of a subject, but it cannot capture a two-dimensional image (planar image, hereinafter also referred to as a 2D image) of the subject.
  • a two-dimensional image plane image, hereinafter also referred to as a 2D image
  • Patent Documents 1 and 2 There have been many demands for imaging devices in recent years, and both 3D moving images and 2D moving images that are difficult to realize with the prior art described in Patent Documents 1 and 2 are not limited to low cost and downsizing. A video shooting function that can be used is required.
  • An object of the present invention is to provide an image pickup device that can suitably process both 3D moving image shooting and 2D moving image shooting, and an image pickup apparatus mounted on the image pickup device.
  • the imaging device includes a first group pixel that includes a plurality of pixels arranged in a two-dimensional array and is configured by one pixel row of odd or even rows and the other pixel row of odd or even rows.
  • the second group pixels to be arranged are shifted by a 1 ⁇ 2 pixel pitch in the horizontal direction and the vertical direction, the Bayer array color filter stacked on the first group pixels, and the second group pixels stacked on the second group pixels.
  • An image pickup device including a color filter having a Bayer array, wherein each of the pixels of the first group pixel is obliquely adjacent to the pixel and the color filter of the same color as the pixel is stacked.
  • the imaging apparatus alternately captures an image signal of the phase difference detection pixel from the pixel row of the first group pixel and the pixel row of the second group pixel at the time of capturing a stereoscopic moving image. And an image sensor driving unit for reading.
  • the imaging element driving unit when imaging a planar moving image, the imaging element driving unit outputs the captured image signals of the paired pixels other than the phase difference detection pixels to the pixel rows of the first group pixels and the second group pixels. Are alternately read from the pixel rows.
  • FIG. 1 is an external perspective view of an imaging apparatus (digital camera) according to an embodiment of the present invention. It is a functional block block diagram of the imaging device shown in FIG. It is a surface schematic diagram of the solid-state image sensor shown in FIG. It is explanatory drawing when a 3D moving image is imaged with the solid-state image sensor shown in FIG. It is principle explanatory drawing which can image
  • FIG. 1 is an external perspective view of an imaging apparatus according to an embodiment of the present invention.
  • a lens barrel 13 that houses a photographing lens 12 is attached to a front portion of a camera housing 11 so as to be retractable.
  • a shutter release button 14 is provided at the right end of the upper surface of the camera casing 11, and a liquid crystal display section (display section 28 in FIG. 2) not shown in FIG. 1 is provided at the back of the camera casing 11. .
  • FIG. 2 is a functional block configuration diagram of the imaging apparatus 10 shown in FIG.
  • the imaging device 10 includes a photographic lens 12 and a CMOS solid-state imaging device 21 that is placed on the back of the photographic lens 12 and disposed on the imaging plane thereof.
  • the photographing lens 12 and the solid-state solid-state imaging device 21 are driven by instructions from a system control unit (CPU) 29 described later.
  • CPU system control unit
  • the solid-state imaging device 21 is a CMOS type image sensor in this embodiment, but may be a CCD type or other type of solid-state imaging device.
  • the imaging apparatus 10 of the present embodiment further includes a digital signal processing unit 26 that takes in a digital captured image signal output from the solid-state image sensor 21 and performs interpolation processing, white balance correction, RGB / YC conversion processing, and the like, and a captured image signal
  • a compression / decompression processing unit 27 that compresses image data in JPEG format or the like
  • a display unit 28 that displays menus and displays through images and captured images, and overall control of the entire digital camera
  • a bus 40 connected to each other.
  • an operation unit 33 for inputting an instruction from the user is connected to the system control unit 29, and a flash 25 that emits light in response to an instruction from the system control unit 29 is connected.
  • the imaging device 10 captures a high-definition 2D still image of a subject, a 2D moving image or a 3D moving image with a resolution lower than that of the high-definition still image based on a selection instruction from the operation unit 33 of the user. Then, based on these selection instructions, drive control and image processing of the solid-state imaging device 21 are performed.
  • FIG. 3 is a schematic diagram of the surface of the solid-state imaging device 21, showing a pixel array and a color filter array on each pixel.
  • even-numbered pixel rows are arranged by being shifted by 1/2 pixel pitch with respect to odd-numbered pixel rows. If only even pixel rows are viewed, each pixel 2 is arranged in a square grid, and further, three primary color filters are Bayer arranged, and even if only odd pixel rows are viewed, each pixel 2 is arranged in a square lattice. The three primary color filters are arranged in a Bayer array.
  • the color filter on each pixel in the even line is indicated by uppercase RGB
  • the color filter on each pixel in the odd line is indicated by lowercase rgb.
  • Each pixel in either the even row or the odd row (even row in the illustrated example) is hereinafter also referred to as a group A (or first group) pixel, and the other of the even row or the odd row (in the illustrated example, the odd row).
  • Each pixel is also referred to as a B group (or second group) pixel.
  • the color filter array is a Bayer array for both the A group pixel and the B group pixel, the A group pixel and the B group pixel that are diagonally adjacent to each other are the same color pixel, and constitute a pair pixel.
  • phase difference detection pixel also referred to as a focus detection pixel
  • the light shielding film openings 2a and 2b are located at the center of each of the pair pixels. It is configured to be eccentric in the opposite direction.
  • a normal pixel a pixel that is not a phase difference detection pixel
  • the membrane opening 1 is opened.
  • the light shielding film openings 2a and 2b of the paired pixels of the phase difference detection pixel are smaller than the light shielding film opening 1, and in the example shown in the drawing, the light shielding film opening 2a opens only to the left half with respect to the opening 1.
  • the opening 2b has a configuration in which only the right half of the opening 1 is opened.
  • FIG. 3 only one light-shielding film opening 1 is shown, but it is also provided in other normal pixels (the illustration is omitted because the figure becomes complicated).
  • the microlens is also stacked on the phase difference detection pixel.
  • the opening center position of the light shielding film opening 2a is eccentric to the left with respect to the center of the pixel, and the opening center position of the light shielding film opening 2b is eccentric to the right with respect to the center of the pixel.
  • a lens 12 is disposed in front of the solid-state imaging device 21, and light passing through the lens 12 and received by the pixel through the light-shielding film opening 2 a is on the left side of the lens 12. From the direction of viewing the subject with the left eye, and the light received by the pixels through the light shielding film opening 2b is the light from the right side of the lens 12, that is, the subject viewed with the right eye. The light coming from the direction is the main.
  • the captured image signal of the pixel having the light shielding film opening 2a among the paired pixels constituting the phase difference detection pixel becomes an image obtained by viewing the subject with the left eye, and the captured image signal of the pixel having the light shielding film opening 2b represents the subject.
  • the image is seen with the right eye. Therefore, a combination of the two makes it possible to reproduce a stereoscopic image of the subject.
  • the pupil division method illustrated in FIG. 3 is configured by decentering the light shielding film openings 2a and 2b.
  • it is commonly used for paired pixels.
  • a configuration may be adopted in which a single microlens or the like is mounted, and the incident angles of the paired pixels to each pixel are different.
  • FIG. 4 shows a pair of pixels for reading a picked-up image signal when a solid-state moving image 21 is picked up by the solid-state image pickup device 21 shown in FIG. 3, and a thick line frame is shown in FIG. Only the captured image signal detected by each pixel of the phase difference detection pixel pair indicated by is read out.
  • Shooting is performed by, for example, rolling shutter driving, and when reading a picked-up image signal from the solid-state image pickup device 21, reading is performed in order of horizontal lines in order of A group pixel ⁇ B group pixel ⁇ A group pixel ⁇ B group pixel ⁇ .
  • the captured image signal of the pixel mounting the light shielding film opening 2a is processed as image data of the subject viewed with the left eye, and the captured image signal of the pixel mounting the light shielding film opening 2b is imaged of the subject viewed with the right eye.
  • a stereoscopic moving image of the subject can be recorded by performing image processing as data, associating the subject image after the image processing, and recording the captured image data for each frame in the memory. Of course, it can also be recorded as a stereoscopic still image.
  • the captured image signal for the left eye and the captured image signal for the right eye read from the solid-state image sensor 21 are signals read from the Bayer array pixels, the image processing is performed for the existing Bayer array. An image processing engine can be used, and cost reduction can be achieved.
  • FIG. 5 is a diagram for explaining the principle that a stereoscopic image of a subject can be picked up by a phase difference detection pixel pair.
  • the phase difference detection pixel pairs are arranged at a required interval in the horizontal direction, and a change in the captured image signal obtained through the light shielding film opening 2a is defined as a signal f (x), and a change in the captured image signal obtained through the light shielding film opening 2b is represented as a signal Let g (x).
  • the signal f (x) and the signal g (x) are obtained as a result of receiving incident light from the same subject on the same horizontal line.
  • the signals f (x) and g (x) have the same waveform shifted in the horizontal direction.
  • the amount of phase difference. This phase difference amount is a parallax according to the distance to the subject, and the right-eye captured image signal and the left-eye captured image signal having this phase difference amount are read out from the solid-state image sensor 21, so An image can be generated.
  • the imaging apparatus 10 can capture 3D moving images, but some users may prefer 2D moving images.
  • the monitor or television receiver to be played back is not for 3D image playback and only supports 2D images.
  • it may be required to simultaneously capture both a 3D moving image and a 2D moving image.
  • the imaging apparatus 10 of the present embodiment is equipped with not only 3D but also a 2D moving image shooting function.
  • FIG. 6 is an explanatory diagram of the first embodiment for capturing a 2D moving image.
  • the solid-state imaging device 21 is the same, the pixel arrangement and the color filter arrangement shown in FIG. 6 are the same as those in FIGS.
  • normal pixels surrounded by a thick black frame shown in FIG. 6 are used when capturing a 2D moving image.
  • the pixel pair surrounded by the thick black frame in FIG. 6 is a pixel adjacent to the phase difference detection pixel pair surrounded by the thick black frame in FIG. 4 in the horizontal direction, and is a normal pixel pair.
  • a moving image is generated using an addition average value of captured image signals detected by each pixel of the normal pixel pair. By using the addition average value, S / N is improved.
  • a 3D moving image and a 2D moving image can be shot simultaneously using pixels adjacent in the horizontal direction. Since the above-described average value is used as data for generating a 2D moving image, each pixel position becomes an addition centroid position of a pair pixel, and a position closest to each pixel position of the 3D image. For this reason, 3D moving images and 2D moving images having the same resolution and the same resolution can be obtained.
  • 3D moving image data and 2D moving image data can be read from the same horizontal line from the solid-state imaging device 21, it is possible to simultaneously read the 3D moving image and the 2D moving image in a short time.
  • the image processing of 2D moving image data can use a Bayer array image processing engine because the color array of the read captured image signal is a Bayer array. Can be achieved.
  • FIG. 7 is a flowchart showing a processing procedure when performing 2D moving image shooting according to the second embodiment.
  • the 2D moving image is generated using the addition average value of the normal pixel pair.
  • the present invention is not limited to this, and the 2D moving image is generated using only the captured image signal of one of the paired pixels.
  • the 2D moving image may be generated by adding signals of both captured image signals of the paired pixels outside the solid-state imaging device. It is better to decide which one to use depending on the brightness of the shooting scene.
  • the brightness of the photographic scene is determined in step S1, and if the brightness is equal to or greater than the predetermined threshold value ⁇ , the process proceeds to step S2, and the captured image signal of one of the paired pixels is employed, or the pair The addition average value of the captured image signals of the two pixels of the pixels is adopted, and the process proceeds to step S4.
  • step S1 determines whether the scene brightness is darker than the threshold value ⁇ . If the result of determination in step S1 is that the scene brightness is darker than the threshold value ⁇ , the process proceeds to step S3 to increase the sensitivity, and the captured image signals of the two pixels of the paired pixels are added to step S4. In step S4, 2D moving image data is generated, and this process ends.
  • FIGS. 8 to 10 are diagrams illustrating a method of reading a captured image signal for 2D moving images from the solid-state image sensor 21 according to the third embodiment of the present invention.
  • FIG. 7 when the shooting scene is dark and low in illuminance, two pixels of the paired pixels are added to increase the sensitivity. However, when the shooting scene is darker, it is necessary to further increase the number of added pixels.
  • FIGS. 8 to 10 are diagrams showing the pixel positions to be added when the number of added pixels is increased.
  • a 2D moving image is generated using only the addition average value of the paired pixels described in FIG. 6 and the captured image signal of one pixel, but the shooting scene is darker.
  • FIG. 8 for example, as image data at a pixel position indicated by an ellipse, two normal pixel pairs (indicated by bold black frames) adjacent to the left and right in the horizontal direction of the phase difference detection pixel position indicated by the ellipse.
  • the imaged image signals of a total of 4 pixels are added to obtain image data at the ellipse center position.
  • the four paired pixel positions are, for example, the positions shown in FIG. That is, as the image data at the phase difference detection pixel position indicated by the ellipse, the picked-up image signals of four normal color pixel pairs on the top, bottom, left, and right are selected as addition targets.
  • phase difference detection pixel indicated by an ellipse is also added. Since the phase difference detection pixel is an addition of the left eye and the right eye, if it is added in pairs, it can be used in the same way as a normal pixel.
  • FIG. 10 shows eight pair pixel positions where 16 pixel addition is performed. That is, as the image data at the phase difference detection pixel position indicated by an ellipse, a captured image signal of four pairs of pixels in an oblique direction is added in addition to the top, bottom, left, and right in FIG.
  • a phase difference detection pixel pair indicated by an ellipse is also added in the same manner as described above.
  • FIG. 10 only eight pair pixel positions for one phase difference detection pixel position are shown. However, when eight pair pixel positions for each phase difference detection pixel position are taken, all normal pixel pairs are added. Will be selected. That is, since a 2D moving image is generated using captured image signals of all normal pixels, it is possible to suppress image quality deterioration factors such as false colors and jaggy.
  • FIG. 11 is a diagram for explaining a method of reading a captured image signal for 2D moving images from a solid-state image sensor according to the fourth embodiment.
  • a 2D moving image having the same resolution as that of the 3D moving image has been described.
  • a 2D moving image having an increased horizontal resolution may be desired.
  • an HD quality moving image having an aspect ratio of 16: 9 is desired.
  • the aspect ratio of an image captured by the imaging apparatus 10 is normally 4: 3, but there are cases where it is desired to view a moving image on a large screen of a large television receiver having an aspect ratio of 16: 9. In such a case, the reading method of the following fourth embodiment may be adopted, and selection is made on the menu screen of the imaging apparatus 10.
  • a pair of normal pixels indicated by a thick black frame is selected to read a captured image signal for a 2D image.
  • pixels are not thinned out in the horizontal line, and pixels in the vertical line are thinned out without reading the horizontal line in which the phase difference detection pixel exists.
  • Shooting is performed by, for example, rolling shutter drive, and when a captured image signal is read out from the solid-state image sensor 21, reading is performed in the order of horizontal lines in the order of A group pixel ⁇ B group pixel ⁇ A group pixel ⁇ B group pixel ⁇ .
  • the color array of the picked-up image signal as a result of the averaging is a Bayer array, and it is possible to use an image processing engine for the Bayer array.
  • the 2D moving image data is not generated by using the average value of the paired pixels, but one of the paired pixels is selected and 2D is selected as described in FIG. 2D moving image data is generated by generating moving image data or performing two-pixel addition of paired pixels.
  • the pixel addition is preferably performed by the digital signal processing unit 26 in FIG. 2 after reading out the captured image signal from the solid-state image sensor 21. As a result, the generation speed of 2D moving image data is improved, or highly sensitive 2D moving image data can be obtained.
  • FIG. 12 is a view showing a captured image signal reading method for 2D moving images according to the sixth embodiment. Also in the present embodiment, signal readout is not performed for horizontal lines in which phase difference detection pixels exist, and horizontal lines in which only other normal pixels exist are read out. Then, in this embodiment, when the shooting scene is dark and the sensitivity is insufficient even with the two-pixel addition of the fifth embodiment described above, as shown in FIG. 12, two sets of the same color sandwiching the non-read line in the vertical direction. Four pairs of pixels are added. In FIG. 12, the pair pixels are surrounded by an ellipse, and the pair pixel ellipses to be added are connected by lines. Thereby, it is possible to shoot a 2D moving image with high sensitivity and HD image quality.
  • FIG. 13 is a flowchart showing a processing procedure for variably controlling the pixel addition number according to the brightness of the shooting scene.
  • the process proceeds to step S12, and as described with reference to FIG. 11, only the captured image signal of one pixel of the paired pixels is obtained. Or, an addition average value of captured image signals of paired pixels is adopted.
  • the process proceeds to the next step S13, where a 2D moving image of HD image quality is generated using the adopted captured image signal, and this process is terminated.
  • step S11 determines whether or not the photographed scene is brighter than the second threshold value ⁇ 2 that is darker than ⁇ 1. If it is brighter than the second threshold value ⁇ 2, the process proceeds from step S14 to step S15, the captured image signals of the two pixels of the pair pixel are added, and the process proceeds to step S13.
  • step S14 If the result of determination in step S14 is that the brightness of the photographic scene is darker than the second threshold value ⁇ 2, the process proceeds to step S16, the four-pixel addition of the captured image signal described in FIG. 12 is performed, and the process proceeds to step S13.
  • the imaged image signals of all the pixels are read out. Since the solid-state imaging device 21 can acquire two Bayer array images (captured images by group A pixels and captured images by group B pixels) in which the pixel array (array of captured image signals) is shifted by half a pitch in the vertical and horizontal directions. A high-definition 2D still image can be generated using the two pieces of image data.
  • the captured image signal of the phase difference detection pixel is corrected by interpolation calculation using data of surrounding normal pixels.
  • the gain of the amplification process performed by the digital signal processing unit 26 of FIG. 2 on the captured image signal of the phase difference detection pixel is corrected to be higher than the amplification rate of the captured image signal of the normal pixel.
  • a phase difference detection pixel pair is set only within the range of the aspect ratio of 16: 9 on the light receiving surface. Just place it.
  • the plurality of pixels are arranged in a two-dimensional array, and the first group pixel configured by one pixel row of an odd row or an even row and an odd row or an even row.
  • An image pickup device comprising a Bayer array color filter stacked on a second group pixel, wherein each pixel of the first group pixel and the color filter of the same color as the pixel adjacent to the pixel are stacked
  • the phase difference detection pixel included in the first group pixel acquires one of an image for the right eye or an image for the left eye, and the position included in the second group pixel.
  • the phase difference detection pixel is configured to acquire the other of the right-eye image and the left-eye image.
  • the imaging apparatus includes the imaging element described above, and the captured image signal of the phase difference detection pixel when the stereoscopic moving image is captured, the pixel row of the first group pixel, and the pixel row of the second group pixel. And an image sensor driving unit that alternately reads from the image sensor.
  • the difference in exposure time between the first group pixel and the second group pixel can be minimized, and post-processing can be simplified side by side.
  • the captured image signal of the paired pixels other than the phase difference detection pixel is transmitted to the pixel group row of the first group pixel and the second group. It is characterized by alternately reading from pixel rows of pixels. This makes it possible to generate a 2D moving image while avoiding the influence of the phase difference pixels.
  • the imaging apparatus uses a captured image signal of any one of the paired pixels other than the phase difference detection pixels or a captured image signal of two pixels.
  • An image processing unit that generates the planar moving image using the addition average value is provided. As a result, a 2D moving image can be quickly obtained, and a 2D moving image with good S / N can be obtained.
  • the imaging apparatus includes an image processing unit that generates the planar moving image by adding both the captured image signals of the paired pixels other than the phase difference detection pixels when the shooting scene is dark. It is characterized by. Thereby, a highly sensitive 2D moving image can be obtained.
  • the image processing unit when the shooting scene is further dark, the image processing unit captures image signals of a plurality of pixels constituting the adjacent pair pixels of the same color among the pair pixels other than the phase difference detection pixels. Are added to generate the planar moving image. This makes it possible to capture a 2D moving image with higher sensitivity.
  • the imaging apparatus is characterized in that the planar moving image is captured simultaneously with the stereoscopic moving image. This makes it possible to capture two types of moving images in a short time.
  • phase difference detection pixels of the imaging apparatus of the embodiment are arranged in an aspect ratio of 16: 9 in the imaging device, and the planar moving image is vertical without performing pixel thinning in the horizontal direction of the imaging device. Only the pixel thinning in the direction is performed to obtain an image with an aspect ratio of 16: 9. As a result, a large screen moving image can be captured by a television receiver having an aspect ratio of 16: 9.
  • the imaging apparatus when capturing a high-definition planar still image, the imaging apparatus according to the embodiment reads a captured image signal from all pixels of the image sensor and corrects the captured image signal of the phase difference detection pixel to generate a high-definition planar still image. It is characterized by generating. Since normal pixels are arranged around the phase difference detection pixels, correction can be performed easily and reliably, and a high-definition still image can be acquired.
  • the imaging apparatus can capture not only a still image but also a 3D moving image and a 2D moving image, and is useful as a digital camera or the like with a moving image shooting function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Studio Devices (AREA)
  • Color Television Image Signal Generators (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Blocking Light For Cameras (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

An image pickup device includes first group pixels and second group pixels which are arranged horizontally and vertically so as to be displaced by 1/2 pixel pitch, and is provided with color filters (RGB) stacked on the first group pixels and color filters (rgb) stacked on the second group pixels. Each pixel of the first group pixels, and the pixel belonging to the second group pixels, which is obliquely adjacent to the each pixel and is stacked with the color filter, the color of which is the same as the each pixel, are defined as paired pixels, and the paired pixels horizontally and vertically corresponding at the interval of (2n + 1) (n = 1, 2, …) among the paired pixels are configured by phase difference detection pixels. The paired pixels having light-shielding film openings (2a, 2b) are the phase difference detection pixel pairs.

Description

立体動画像及び平面動画像を撮像する撮像素子及びこの撮像素子を搭載する撮像装置Image pickup device for picking up three-dimensional moving image and plane moving image, and image pickup apparatus equipped with the image pickup device
 本発明は、立体動画像及び平面動画像を撮像するのに好適な構造の撮像素子及びこの撮像素子に搭載した撮像装置に関する。 The present invention relates to an imaging device having a structure suitable for capturing a stereoscopic moving image and a planar moving image, and an imaging device mounted on the imaging device.
 立体画像(以下、3D画像ともいう。)を撮像する従来の撮像装置として、例えば、下記の特許文献1記載のものがある。この従来の撮像装置は、2台のカメラを備え、同じ被写体を左右のカメラで撮影し、被写体の立体画像を再生できる様になっている。しかし、従来の立体画像撮像装置は、カメラを2台用意する必要があるため、コストが嵩み、更に装置も大型化してしまうという問題がある。 As a conventional imaging device that captures a stereoscopic image (hereinafter also referred to as a 3D image), for example, there is a device described in Patent Document 1 below. This conventional imaging apparatus includes two cameras, and can capture the same subject with left and right cameras and reproduce a stereoscopic image of the subject. However, since the conventional stereoscopic image capturing apparatus needs to prepare two cameras, there is a problem that the cost is increased and the apparatus is further increased in size.
 そこで、1台のカメラで被写体の立体画像を撮影できる撮像装置として、下記の特許文献2記載の従来技術が提案されている。この立体画像撮像装置は、固体撮像素子表面に二次元配列された複数の画素(光電変換素子:フォトダイオード)を2つのグループに分け、一方のグループには被写体を右側から見た光が入射し、他方のグループには被写体を左側から見た光が入射する様にしている。 Therefore, a conventional technique described in Patent Document 2 below has been proposed as an imaging apparatus that can capture a stereoscopic image of a subject with a single camera. This stereoscopic image pickup apparatus divides a plurality of pixels (photoelectric conversion elements: photodiodes) two-dimensionally arranged on the surface of a solid-state image pickup device into two groups, and light from an object viewed from the right side enters one group. The other group is made to receive light viewed from the left side of the subject.
 この従来技術によれば、1台のカメラ(撮像素子)で被写体の立体画像を撮像できるが、被写体の二次元画像(平面画像、以下、2D画像ともいう。)を撮影することができないという問題がある。 According to this prior art, a single camera (imaging device) can capture a stereoscopic image of a subject, but it cannot capture a two-dimensional image (planar image, hereinafter also referred to as a 2D image) of the subject. There is.
 近年の撮像装置に対する要求は多く、低価格,小型化はいうに及ばず、上記の特許文献1,2に記載の従来技術では実現が困難な、3Dの動画像及び2Dの動画像を共に撮影することができる動画撮影機能が要求される様になっている。 There have been many demands for imaging devices in recent years, and both 3D moving images and 2D moving images that are difficult to realize with the prior art described in Patent Documents 1 and 2 are not limited to low cost and downsizing. A video shooting function that can be used is required.
日本国特開平11―341522号公報Japanese Unexamined Patent Publication No. 11-341522 日本国特開2003―7994号公報Japanese Unexamined Patent Publication No. 2003-7994
 本発明の目的は、3Dの動画撮影と2Dの動画撮影の両方を好適に処理できる撮像素子及びこの撮像素子に搭載した撮像装置を提供することにある。 An object of the present invention is to provide an image pickup device that can suitably process both 3D moving image shooting and 2D moving image shooting, and an image pickup apparatus mounted on the image pickup device.
 本発明の撮像素子は、複数の画素が二次元アレイ状に配列形成され奇数行又は偶数行の一方の画素行で構成される第1群画素と奇数行又は偶数行の他方の画素行で構成される第2群画素とが水平方向及び垂直方向に1/2画素ピッチずらして配置された半導体基板と、前記第1群画素に積層されたベイヤ配列のカラーフィルタ及び前記第2群画素に積層されたベイヤ配列のカラーフィルタを備える撮像素子であって、前記第1群画素の各々の画素と該画素に対して斜めに隣接し該画素と同色の前記カラーフィルタが積層された前記第2群画素に属する画素とをペア画素とし、該ペア画素のうち水平方向及び垂直方向に2n+1(n=1,2,…)個間隔に対応するペア画素を位相差検出画素で構成したことを特徴とする。 The imaging device according to the present invention includes a first group pixel that includes a plurality of pixels arranged in a two-dimensional array and is configured by one pixel row of odd or even rows and the other pixel row of odd or even rows. The second group pixels to be arranged are shifted by a ½ pixel pitch in the horizontal direction and the vertical direction, the Bayer array color filter stacked on the first group pixels, and the second group pixels stacked on the second group pixels. An image pickup device including a color filter having a Bayer array, wherein each of the pixels of the first group pixel is obliquely adjacent to the pixel and the color filter of the same color as the pixel is stacked. A pixel belonging to a pixel is a pair pixel, and among the pair of pixels, a pair pixel corresponding to an interval of 2n + 1 (n = 1, 2,...) In the horizontal direction and the vertical direction is configured by a phase difference detection pixel. To do.
 本発明の撮像装置は、上記の撮像素子と、立体動画像の撮像時には前記位相差検出画素の撮像画像信号を前記第1群画素の画素行と前記第2群画素の画素行とから交互に読み出す撮像素子駆動部とを備えることを特徴とする。 The imaging apparatus according to the present invention alternately captures an image signal of the phase difference detection pixel from the pixel row of the first group pixel and the pixel row of the second group pixel at the time of capturing a stereoscopic moving image. And an image sensor driving unit for reading.
 本発明の撮像装置は、平面動画像を撮像する時、前記位相差検出画素以外の前記ペア画素の撮像画像信号を前記撮像素子駆動部が前記第1群画素の画素行と前記第2群画素の画素行とから交互に読み出す。 In the imaging apparatus of the present invention, when imaging a planar moving image, the imaging element driving unit outputs the captured image signals of the paired pixels other than the phase difference detection pixels to the pixel rows of the first group pixels and the second group pixels. Are alternately read from the pixel rows.
 本発明によれば、1つの撮像素子で高品質な立体動画像と平面動画像の両方を撮像することが可能となる。 According to the present invention, it is possible to capture both a high-quality stereoscopic moving image and a planar moving image with a single image sensor.
本発明の一実施形態に係る撮像装置(デジタルカメラ)の外観斜視図である。1 is an external perspective view of an imaging apparatus (digital camera) according to an embodiment of the present invention. 図1に示す撮像装置の機能ブロック構成図である。It is a functional block block diagram of the imaging device shown in FIG. 図2に示す固体撮像素子の表面模式図である。It is a surface schematic diagram of the solid-state image sensor shown in FIG. 図3に示す固体撮像素子で3Dの動画像を撮像するときの説明図である。It is explanatory drawing when a 3D moving image is imaged with the solid-state image sensor shown in FIG. 位相差検出画素で3D画像を撮影できる原理説明図である。It is principle explanatory drawing which can image | photograph 3D image with a phase difference detection pixel. 図3の固体撮像素子で2D動画像データを読み出す説明図である。It is explanatory drawing which reads 2D moving image data with the solid-state image sensor of FIG. 2D動画像データを生成するときの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence when producing | generating 2D moving image data. 高感度な2D動画像を4画素加算で生成するときの加算画素位置を示す図である。It is a figure which shows the addition pixel position when producing | generating a highly sensitive 2D moving image by 4 pixel addition. 高感度な2D動画像を8画素加算で生成するときの加算画素位置を示す図である。It is a figure which shows the addition pixel position when producing | generating a highly sensitive 2D moving image by 8 pixel addition. 高感度な2D動画像を16画素加算で生成するときの加算画素位置を示す図である。It is a figure which shows the addition pixel position when producing | generating a highly sensitive 2D moving image by 16 pixel addition. HD画質の2D動画像データを図3の固体撮像素子から読み出すときの説明図である。It is explanatory drawing when reading 2D moving image data of HD image quality from the solid-state image sensor of FIG. HD画質の2D動画像を4画素加算で生成するときの加算画素位置を示す図である。It is a figure which shows the addition pixel position when producing | generating 2D moving image of HD image quality by 4 pixel addition. HD画質の2D動画像を撮影シーンの明るさに応じて生成する処理手順を示すフローチャートである。It is a flowchart which shows the process sequence which produces | generates 2D moving image of HD image quality according to the brightness of a photographing scene.
 以下、本発明の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る撮像装置の外観斜視図である。この単眼の撮像装置(デジタルカメラ)10は、カメラ筐体11の前部に、撮影レンズ12を収納するレンズ鏡筒13が沈胴可能に取り付けられている。カメラ筐体11の上面右端部にはシャッタレリーズボタン14が設けられており、カメラ筐体11の背部には、図1では図示しない液晶表示部(図2の表示部28)が設けられている。 FIG. 1 is an external perspective view of an imaging apparatus according to an embodiment of the present invention. In this monocular imaging device (digital camera) 10, a lens barrel 13 that houses a photographing lens 12 is attached to a front portion of a camera housing 11 so as to be retractable. A shutter release button 14 is provided at the right end of the upper surface of the camera casing 11, and a liquid crystal display section (display section 28 in FIG. 2) not shown in FIG. 1 is provided at the back of the camera casing 11. .
 図2は、図1に示す撮像装置10の機能ブロック構成図である。この撮像装置10は、撮影レンズ12と、撮影レンズ12の背部に置かれその結像面に配置されたCMOS型の固体撮像素子21とを備える。撮影レンズ12及び固体固体撮像素子21は、後述のシステム制御部(CPU)29からの指示によって駆動される。 FIG. 2 is a functional block configuration diagram of the imaging apparatus 10 shown in FIG. The imaging device 10 includes a photographic lens 12 and a CMOS solid-state imaging device 21 that is placed on the back of the photographic lens 12 and disposed on the imaging plane thereof. The photographing lens 12 and the solid-state solid-state imaging device 21 are driven by instructions from a system control unit (CPU) 29 described later.
 固体撮像素子21は、本実施形態ではCMOS型のイメージセンサであるが、CCD型やその他の形式の固体撮像素子でも良い。 The solid-state imaging device 21 is a CMOS type image sensor in this embodiment, but may be a CCD type or other type of solid-state imaging device.
 本実施形態の撮像装置10は更に、固体撮像素子21から出力されるデジタルの撮像画像信号を取り込み補間処理やホワイトバランス補正,RGB/YC変換処理等を行うデジタル信号処理部26と、撮像画像信号をJPEG形式などの画像データに圧縮したり逆に伸長したりする圧縮/伸長処理部27と、メニューなどを表示したりスルー画像や撮像画像を表示する表示部28と、デジタルカメラ全体を統括制御するシステム制御部(CPU)29と、フレームメモリ等の内部メモリ30と、JPEG画像データ等を格納する記録メディア32との間のインタフェース処理を行うメディアインタフェース(I/F)部31と、これらを相互に接続するバス40とを備える。 The imaging apparatus 10 of the present embodiment further includes a digital signal processing unit 26 that takes in a digital captured image signal output from the solid-state image sensor 21 and performs interpolation processing, white balance correction, RGB / YC conversion processing, and the like, and a captured image signal A compression / decompression processing unit 27 that compresses image data in JPEG format or the like, a display unit 28 that displays menus and displays through images and captured images, and overall control of the entire digital camera A system control unit (CPU) 29, an internal memory 30 such as a frame memory, and a media interface (I / F) unit 31 that performs interface processing between a recording medium 32 that stores JPEG image data and the like. And a bus 40 connected to each other.
 更に、システム制御部29には、ユーザからの指示入力を行う操作部33が接続され、システム制御部29からの指示によって発光するフラッシュ25が接続される。 Furthermore, an operation unit 33 for inputting an instruction from the user is connected to the system control unit 29, and a flash 25 that emits light in response to an instruction from the system control unit 29 is connected.
 撮像装置10は、被写体の高精細な2D静止画像や,高精細静止画像に比べて解像度を落とした2Dの動画像や3Dの動画像を、ユーザの操作部33からの選択指示に基づいて撮影し、これらの選択指示に基づいて、固体撮像素子21の駆動制御や画像処理を行う。 The imaging device 10 captures a high-definition 2D still image of a subject, a 2D moving image or a 3D moving image with a resolution lower than that of the high-definition still image based on a selection instruction from the operation unit 33 of the user. Then, based on these selection instructions, drive control and image processing of the solid-state imaging device 21 are performed.
 図3は、固体撮像素子21の表面模式図であり、画素配列と各画素上のカラーフィルタ配列を示している。斜めに45度傾けた個々の正方形2が、半導体基板上に形成された各画素(光電変換素子)を示しており、その上に記載されたR(=r),G(=g),B(=b)は、各画素2上に積層された三原色カラーフィルタの色(R,r=赤、G,g=緑、B,b=青)を示している。信号読出回路や垂直走査回路,水平走査回路等は、通常のCMOS型イメージセンサと同じで良いため、図示は省略している。 FIG. 3 is a schematic diagram of the surface of the solid-state imaging device 21, showing a pixel array and a color filter array on each pixel. Each square 2 inclined 45 degrees obliquely represents each pixel (photoelectric conversion element) formed on the semiconductor substrate, and R (= r), G (= g), B described thereon (= B) indicates the colors (R, r = red, G, g = green, B, b = blue) of the three primary color filters stacked on each pixel 2. Since the signal readout circuit, vertical scanning circuit, horizontal scanning circuit, and the like may be the same as those of a normal CMOS image sensor, illustration is omitted.
 本実施形態の固体撮像素子21は、奇数行の画素行に対して偶数行の画素行が1/2画素ピッチずつずらして配置されている。偶数行の画素行だけ見ると各画素2は正方格子配列され、その上に、三原色のカラーフィルタがベイヤ配列され、奇数行の画素行だけ見ても各画素2は正方格子配列され、その上に、三原色のカラーフィルタがベイヤ配列されている。 In the solid-state imaging device 21 of the present embodiment, even-numbered pixel rows are arranged by being shifted by 1/2 pixel pitch with respect to odd-numbered pixel rows. If only even pixel rows are viewed, each pixel 2 is arranged in a square grid, and further, three primary color filters are Bayer arranged, and even if only odd pixel rows are viewed, each pixel 2 is arranged in a square lattice. The three primary color filters are arranged in a Bayer array.
 偶数行の各画素上のカラーフィルタを大文字のRGBで示し、奇数行の各画素上のカラーフィルタを小文字のrgbで示している。偶数行または奇数行の一方(図示する例では偶数行)の各画素を、以下、A群(或いは第1群)画素ともいい、偶数行または奇数行の他方(図示する例では奇数行)の各画素を、B群(或いは第2群)画素ともいうことにする。図示する様に、A群画素,B群画素共に、夫々カラーフィルタ配列がベイヤ配列のため、斜めに最隣接するA群画素とB群画素とは同色画素となり、これがペア画素を構成する。 The color filter on each pixel in the even line is indicated by uppercase RGB, and the color filter on each pixel in the odd line is indicated by lowercase rgb. Each pixel in either the even row or the odd row (even row in the illustrated example) is hereinafter also referred to as a group A (or first group) pixel, and the other of the even row or the odd row (in the illustrated example, the odd row). Each pixel is also referred to as a B group (or second group) pixel. As shown in the figure, since the color filter array is a Bayer array for both the A group pixel and the B group pixel, the A group pixel and the B group pixel that are diagonally adjacent to each other are the same color pixel, and constitute a pair pixel.
 本実施形態の固体撮像素子21は、全画素ペアのうち、離散的,周期的位置に存在するペア画素を位相差検出画素のペア画素としている。位相差検出画素(焦点検出用画素ともいわれる。)とは、瞳分割したペア画素のことをいい、図示する例では、ペア画素の一方と他方とで遮光膜開口2a,2bを夫々の画素中心に対して反対方向に偏心させて構成される。 In the solid-state imaging device 21 of the present embodiment, among all the pixel pairs, pair pixels existing at discrete and periodic positions are used as pair pixels of phase difference detection pixels. A phase difference detection pixel (also referred to as a focus detection pixel) refers to a pair of pixels obtained by pupil division. In the example shown in the drawing, the light shielding film openings 2a and 2b are located at the center of each of the pair pixels. It is configured to be eccentric in the opposite direction.
 通常の画素(位相差検出画素でない画素)には、図示省略したマイクロレンズの下部に、図3の左上に点線矩形枠で記載した様に、当該画素の受光面と略同一の大きさの遮光膜開口1が開口されている。これに対し、位相差検出画素のペア画素の遮光膜開口2a,2bは、遮光膜開口1より小さく、図示する例では遮光膜開口2aは開口1に対して左半分しか開口せず、遮光膜開口2bは開口1に対して右半分しか開口しない構成となっている。なお、図3では遮光膜開口1を1箇所だけ図示しているが、他の通常画素にも設けられている(図が煩雑になるため、図示は省略している。)。なお、この実施形態では、マイクロレンズは位相差検出画素にも積層される。 For a normal pixel (a pixel that is not a phase difference detection pixel), as shown in a dotted rectangular frame at the upper left of FIG. The membrane opening 1 is opened. On the other hand, the light shielding film openings 2a and 2b of the paired pixels of the phase difference detection pixel are smaller than the light shielding film opening 1, and in the example shown in the drawing, the light shielding film opening 2a opens only to the left half with respect to the opening 1. The opening 2b has a configuration in which only the right half of the opening 1 is opened. In FIG. 3, only one light-shielding film opening 1 is shown, but it is also provided in other normal pixels (the illustration is omitted because the figure becomes complicated). In this embodiment, the microlens is also stacked on the phase difference detection pixel.
 遮光膜開口2aの開口中心位置は、当該画素の中心に対して左側に偏心し、遮光膜開口2bの開口中心位置は、当該画素の中心に対して右側に偏心して設けられている。図1に示す様に、固体撮像素子21の前段にはレンズ12が配置されており、このレンズ12を通ることで、遮光膜開口2aを通って画素に受光される光は、レンズ12の左側からの光すなわち被写体を左眼で見た方向から来た光が主となり、遮光膜開口2bを通って画素に受光される光は、レンズ12の右側からの光すなわち被写体を右眼で見た方向から来た光が主となる。 The opening center position of the light shielding film opening 2a is eccentric to the left with respect to the center of the pixel, and the opening center position of the light shielding film opening 2b is eccentric to the right with respect to the center of the pixel. As shown in FIG. 1, a lens 12 is disposed in front of the solid-state imaging device 21, and light passing through the lens 12 and received by the pixel through the light-shielding film opening 2 a is on the left side of the lens 12. From the direction of viewing the subject with the left eye, and the light received by the pixels through the light shielding film opening 2b is the light from the right side of the lens 12, that is, the subject viewed with the right eye. The light coming from the direction is the main.
 即ち、位相差検出画素を構成する各ペア画素のうち遮光膜開口2aを持つ画素の撮像画像信号が被写体を左眼で見た画像となり、遮光膜開口2bを持つ画素の撮像画像信号が被写体を右眼で見た画像となる。このため、両者を組み合わせることで、被写体の立体画像を再生することができる。 That is, the captured image signal of the pixel having the light shielding film opening 2a among the paired pixels constituting the phase difference detection pixel becomes an image obtained by viewing the subject with the left eye, and the captured image signal of the pixel having the light shielding film opening 2b represents the subject. The image is seen with the right eye. Therefore, a combination of the two makes it possible to reproduce a stereoscopic image of the subject.
 図3で例示した瞳分割方法は、遮光膜開口2a,2bを偏心させて構成したが、この他にも、例えば特開2007―281296号公報に記載されている様に、ペア画素に共通に1つの楕円形等のマイクロレンズを搭載し、ペア画素の各々の画素への入射角を異ならせる構成とすることでも良い。 The pupil division method illustrated in FIG. 3 is configured by decentering the light shielding film openings 2a and 2b. In addition to this, as described in, for example, Japanese Patent Application Laid-Open No. 2007-281296, it is commonly used for paired pixels. A configuration may be adopted in which a single microlens or the like is mounted, and the incident angles of the paired pixels to each pixel are different.
 本実施形態の位相差検出画素のペア画素は、垂直方向,水平方向共に、3ペア毎に1ペアを位相差検出画素ペアとしているが、5ペア毎に1ペアを位相差検出画素ペアとしても良い。一般的には、〔2n+1〕ペア毎(n=1,2,…)に1ペアを位相差検出画素ペアとする。この様に、位相差検出画素ペアの配置位置を決めることで、位相差検出画素ペアのカラーフィルタ配列もR,G,Bの三原色を有したベイヤ配列となる。 The paired pixels of the phase difference detection pixel of the present embodiment are one pair every three pairs in the vertical direction and the horizontal direction as a phase difference detection pixel pair, but one pair every five pairs may be a phase difference detection pixel pair. good. Generally, one pair is used as a phase difference detection pixel pair for every [2n + 1] pairs (n = 1, 2,...). Thus, by determining the arrangement position of the phase difference detection pixel pair, the color filter array of the phase difference detection pixel pair is also a Bayer array having the three primary colors of R, G, and B.
 図4は、図3に示す固体撮像素子21で立体動画像を撮像するときに撮像画像信号を読み出すペア画素を示しており、水平,垂直共に2n+1ペア毎の画素間引き読み出しにより、図に太線枠で示す位相差検出画素ペアの各々の画素が検出した撮像画像信号だけを読み出す。 FIG. 4 shows a pair of pixels for reading a picked-up image signal when a solid-state moving image 21 is picked up by the solid-state image pickup device 21 shown in FIG. 3, and a thick line frame is shown in FIG. Only the captured image signal detected by each pixel of the phase difference detection pixel pair indicated by is read out.
 撮影は、例えばローリングシャッタ駆動で行い、固体撮像素子21から撮像画像信号を読み出す場合には、A群画素→B群画素→A群画素→B群画素→……と、水平ライン順に読み出す。 Shooting is performed by, for example, rolling shutter driving, and when reading a picked-up image signal from the solid-state image pickup device 21, reading is performed in order of horizontal lines in order of A group pixel → B group pixel → A group pixel → B group pixel →.
 そして、遮光膜開口2aを搭載した画素の撮像画像信号を左眼で見た被写体の画像データとして画像処理し、遮光膜開口2bを搭載した画素の撮像画像信号を右眼で見た被写体の画像データとして画像処理し、画像処理後の被写体画像を関連付けて、各フレーム毎の撮像画像データをメモリに記録することで、被写体の立体動画像を記録することができる。勿論、立体の静止画像としても記録できる。 The captured image signal of the pixel mounting the light shielding film opening 2a is processed as image data of the subject viewed with the left eye, and the captured image signal of the pixel mounting the light shielding film opening 2b is imaged of the subject viewed with the right eye. A stereoscopic moving image of the subject can be recorded by performing image processing as data, associating the subject image after the image processing, and recording the captured image data for each frame in the memory. Of course, it can also be recorded as a stereoscopic still image.
 固体撮像素子21から読み出した左眼用の撮像画像信号や右眼用の撮像画像信号は、夫々、ベイヤ配列画素から読み出された信号となるため、上記画像処理は、既存のベイヤ配列用の画像処理エンジンを使用することができ、低コスト化を図ることができる。 Since the captured image signal for the left eye and the captured image signal for the right eye read from the solid-state image sensor 21 are signals read from the Bayer array pixels, the image processing is performed for the existing Bayer array. An image processing engine can be used, and cost reduction can be achieved.
 図5は、位相差検出画素ペアで被写体の立体画像を撮像できる原理を説明する図である。位相差検出画素ペアが水平方向に所要間隔で並び、遮光膜開口2aを通して得られた撮像画像信号の変化を信号f(x)とし、遮光膜開口2bを通して得られた撮像画像信号の変化を信号g(x)とする。 FIG. 5 is a diagram for explaining the principle that a stereoscopic image of a subject can be picked up by a phase difference detection pixel pair. The phase difference detection pixel pairs are arranged at a required interval in the horizontal direction, and a change in the captured image signal obtained through the light shielding film opening 2a is defined as a signal f (x), and a change in the captured image signal obtained through the light shielding film opening 2b is represented as a signal Let g (x).
 信号f(x)と信号g(x)とは、同一水平線上の同一被写体からの入射光を受光した結果得られるもので、互いに水平方向にずれた同一波形となり、両者間のズレ量が位相差量となる。この位相差量は、被写体までの距離に応じた視差であり、この位相差量を持った右眼用撮像画像信号及び左眼用撮像画像信号を固体撮像素子21から読み出すことで、被写体の立体画像を生成することが可能となる。 The signal f (x) and the signal g (x) are obtained as a result of receiving incident light from the same subject on the same horizontal line. The signals f (x) and g (x) have the same waveform shifted in the horizontal direction. The amount of phase difference. This phase difference amount is a parallax according to the distance to the subject, and the right-eye captured image signal and the left-eye captured image signal having this phase difference amount are read out from the solid-state image sensor 21, so An image can be generated.
 次に、撮像装置10を用いて2Dの動画像を撮影する場合を説明する。前述した様に、この撮像装置10では、3Dの動画像を撮影することができるが、ユーザによっては2Dの動画像を好む場合もある。また、再生するモニタやテレビジョン受像機が3D画像再生用では無く、2D画像にしか対応しない場合もある。あるいは、3Dの動画像と2Dの動画像を同時に両方撮影することが要求されることもある。そこで、本実施形態の撮像装置10では、3Dのみならず2Dの動画像の撮影機能も搭載している。 Next, a case where a 2D moving image is captured using the imaging device 10 will be described. As described above, the imaging apparatus 10 can capture 3D moving images, but some users may prefer 2D moving images. In some cases, the monitor or television receiver to be played back is not for 3D image playback and only supports 2D images. Alternatively, it may be required to simultaneously capture both a 3D moving image and a 2D moving image. In view of this, the imaging apparatus 10 of the present embodiment is equipped with not only 3D but also a 2D moving image shooting function.
 図6は、2Dの動画像を撮影する第1実施形態の説明図である。勿論、固体撮像素子21は同じため、図6に示す画素配列,カラーフィルタ配列は、図3,図4と同じである。本実施形態では、図6に示す太線黒枠で囲った通常画素を、2Dの動画像撮影時に用いる。 FIG. 6 is an explanatory diagram of the first embodiment for capturing a 2D moving image. Of course, since the solid-state imaging device 21 is the same, the pixel arrangement and the color filter arrangement shown in FIG. 6 are the same as those in FIGS. In the present embodiment, normal pixels surrounded by a thick black frame shown in FIG. 6 are used when capturing a 2D moving image.
 図6の太線黒枠で囲った画素ペアは、図4の太線黒枠で囲った位相差検出画素ペアの水平方向に隣接する画素であり、通常画素のペアである。本実施形態では、通常画素ペアの各々の画素が検出した撮像画像信号の加算平均値を用いて、動画像を生成する。加算平均値を用いることで、S/Nが向上する。 The pixel pair surrounded by the thick black frame in FIG. 6 is a pixel adjacent to the phase difference detection pixel pair surrounded by the thick black frame in FIG. 4 in the horizontal direction, and is a normal pixel pair. In the present embodiment, a moving image is generated using an addition average value of captured image signals detected by each pixel of the normal pixel pair. By using the addition average value, S / N is improved.
 3Dの動画像と2Dの動画像とを両方共に撮影する場合、本実施形態では、水平方向に隣接する画素を用いて3Dの動画像と2Dの動画像とを同時に撮影することができる。2D動画像を生成するデータとして上記の加算平均値を用いるため、その各画素位置はペア画素の加算重心位置となり、3D画像の各画素位置に最も近い位置となる。このため、同じ画像で同じ解像度の3D動画像と2D動画像とが得られる。 When both a 3D moving image and a 2D moving image are shot, in this embodiment, a 3D moving image and a 2D moving image can be shot simultaneously using pixels adjacent in the horizontal direction. Since the above-described average value is used as data for generating a 2D moving image, each pixel position becomes an addition centroid position of a pair pixel, and a position closest to each pixel position of the 3D image. For this reason, 3D moving images and 2D moving images having the same resolution and the same resolution can be obtained.
 また、固体撮像素子21から3D動画像データと2D動画像データとを同一水平ラインから読み出すことができるため、短時間で3D動画像と2D動画像とを同時に読み出すことが可能となる。2D動画像データの画像処理も、3D動画像の画像処理と同様に、読み出した撮像画像信号のカラー配列がベイヤ配列であるため、ベイヤ配列用の画像処理エンジンを使用することができ、低コスト化を図ることが可能となる。 Further, since 3D moving image data and 2D moving image data can be read from the same horizontal line from the solid-state imaging device 21, it is possible to simultaneously read the 3D moving image and the 2D moving image in a short time. Similarly to the image processing of 3D moving images, the image processing of 2D moving image data can use a Bayer array image processing engine because the color array of the read captured image signal is a Bayer array. Can be achieved.
 図7は、第2実施形態に係る2D動画像撮影を行うときの処理手順を示すフローチャートである。図6の実施形態では、通常画素ペアの加算平均値を用いて2D動画像を生成したが、これに限るものではなく、ペア画素の一方の画素の撮像画像信号だけを用いて2D動画像を生成しても、ペア画素の両方の撮像画像信号を固体撮像素子外部で信号加算して2D動画像を生成しても良い。いずれとするかは、撮影シーンの明るさで決めるのが良い。 FIG. 7 is a flowchart showing a processing procedure when performing 2D moving image shooting according to the second embodiment. In the embodiment of FIG. 6, the 2D moving image is generated using the addition average value of the normal pixel pair. However, the present invention is not limited to this, and the 2D moving image is generated using only the captured image signal of one of the paired pixels. Alternatively, the 2D moving image may be generated by adding signals of both captured image signals of the paired pixels outside the solid-state imaging device. It is better to decide which one to use depending on the brightness of the shooting scene.
 本実施形態では、ステップS1で撮影シーンの明るさを判定し、明るさが所定の閾値α以上の場合にはステップS2に進み、ペア画素の一方の画素の撮像画像信号を採用し、あるいはペア画素の2つ画素の撮像画像信号の加算平均値を採用してステップS4に進む。 In the present embodiment, the brightness of the photographic scene is determined in step S1, and if the brightness is equal to or greater than the predetermined threshold value α, the process proceeds to step S2, and the captured image signal of one of the paired pixels is employed, or the pair The addition average value of the captured image signals of the two pixels of the pixels is adopted, and the process proceeds to step S4.
 ステップS1の判定の結果、シーンの明るさが閾値α未満で暗い場合には、高感度化を図るためにステップS3に進み、ペア画素の2つの画素の撮像画像信号を加算してステップS4に進み、ステップS4で、2D動画像データを生成してこの処理を終了する。 If the result of determination in step S1 is that the scene brightness is darker than the threshold value α, the process proceeds to step S3 to increase the sensitivity, and the captured image signals of the two pixels of the paired pixels are added to step S4. In step S4, 2D moving image data is generated, and this process ends.
 なお、3D動画像と2D動画像とを同時に撮影するのではなく、2D動画像だけを撮影する場合には、ダイナミックレンジの広い動画像を撮影することも可能である。画素の信号読出回路に印加するリセット信号や読出信号のタイミング等を調整することで、A群画素の露光時間に対してB群画素の露光時間を短くして撮影を行い、ペア画素の一方(A群画素)と他方(B群画素)で露光時間を変えてやれば、両者の撮像画像信号を加算することで、ダイナミックレンジの広い2D動画像を得ることができる。 Note that it is also possible to shoot a moving image with a wide dynamic range when shooting only a 2D moving image instead of shooting a 3D moving image and a 2D moving image at the same time. By adjusting the reset signal applied to the pixel signal readout circuit, the timing of the readout signal, etc., the exposure time of the B group pixel is shortened relative to the exposure time of the A group pixel, and one of the paired pixels ( If the exposure time is changed between the (A group pixel) and the other (B group pixel), a 2D moving image with a wide dynamic range can be obtained by adding both captured image signals.
 図8~図10は、本発明の第3実施形態に係る2D動画像用の撮像画像信号を固体撮像素子21から読み出す方法を示す図である。図7の実施形態では、撮影シーンが暗く低照度の場合にはペア画素の2画素加算を行って高感度化を図った。しかし、撮影シーンが更に暗い場合には、画素加算数を更に増やす必要がある。この画素加算数を増やすときの加算対象画素位置を示す図が図8~図10である。 8 to 10 are diagrams illustrating a method of reading a captured image signal for 2D moving images from the solid-state image sensor 21 according to the third embodiment of the present invention. In the embodiment of FIG. 7, when the shooting scene is dark and low in illuminance, two pixels of the paired pixels are added to increase the sensitivity. However, when the shooting scene is darker, it is necessary to further increase the number of added pixels. FIGS. 8 to 10 are diagrams showing the pixel positions to be added when the number of added pixels is increased.
 即ち、撮影シーンが通常の明るさの場合には、図6で説明したペア画素の加算平均値や一方の画素の撮像画像信号だけを用いて2D動画像を生成するが、更に撮影シーンが暗い場合には、図8に示すように、例えば楕円で示す画素位置の画像データとして、楕円で示す位相差検出画素位置の水平方向左右に隣接する同色2つの通常画素ペア(太線黒枠で示す)の計4画素の撮像画像信号を加算して、楕円中心位置の画像データとする。 That is, when the shooting scene has normal brightness, a 2D moving image is generated using only the addition average value of the paired pixels described in FIG. 6 and the captured image signal of one pixel, but the shooting scene is darker. In this case, as shown in FIG. 8, for example, as image data at a pixel position indicated by an ellipse, two normal pixel pairs (indicated by bold black frames) adjacent to the left and right in the horizontal direction of the phase difference detection pixel position indicated by the ellipse. The imaged image signals of a total of 4 pixels are added to obtain image data at the ellipse center position.
 更に暗い場合には、8画素加算や10画素加算を行う。8画素加算を行う場合、4つのペア画素位置は、例えば図9に示す位置とする。即ち、楕円で示す位相差検出画素位置の画像データとして、上下左右にある4つの同色通常画素ペアの撮像画像信号を加算対象として選択する。 If darker, add 8 pixels or 10 pixels. In the case of performing 8-pixel addition, the four paired pixel positions are, for example, the positions shown in FIG. That is, as the image data at the phase difference detection pixel position indicated by the ellipse, the picked-up image signals of four normal color pixel pairs on the top, bottom, left, and right are selected as addition targets.
 10画素加算を行う場合は、8画素加算に加えて、楕円で示す位相差検出画素も加算する。位相差検出画素は、左眼と右眼の加算なので、ペアで加算すると、通常画素と同じ様に使える。 When performing 10-pixel addition, in addition to 8-pixel addition, a phase difference detection pixel indicated by an ellipse is also added. Since the phase difference detection pixel is an addition of the left eye and the right eye, if it is added in pairs, it can be used in the same way as a normal pixel.
 更に暗い場合には、16画素加算か18画素加算を行う。16画素加算を行う8つのペア画素位置を図10に示す。即ち、楕円で示す位相差検出画素位置の画像データとして、図9の上下左右の他に、斜め方向の4ペア画素の撮像画像信号を加える。18画素加算を行う場合は、16画素加算に加えて、上記と同様に楕円で示す位相差検出画素ペアも加算する。 If darker, add 16 pixels or add 18 pixels. FIG. 10 shows eight pair pixel positions where 16 pixel addition is performed. That is, as the image data at the phase difference detection pixel position indicated by an ellipse, a captured image signal of four pairs of pixels in an oblique direction is added in addition to the top, bottom, left, and right in FIG. When performing 18-pixel addition, in addition to 16-pixel addition, a phase difference detection pixel pair indicated by an ellipse is also added in the same manner as described above.
 図10では1つの位相差検出画素位置に対する8つのペア画素位置だけを示しているが、各々の位相差検出画素位置用の8つのペア画素位置をとると、全ての通常画素ペアが加算対象として選択されることになる。即ち、全ての通常画素の撮像画像信号を利用して2D動画像を生成するため、偽色やジャギー等の画質劣化要因を抑えることが可能となる。 In FIG. 10, only eight pair pixel positions for one phase difference detection pixel position are shown. However, when eight pair pixel positions for each phase difference detection pixel position are taken, all normal pixel pairs are added. Will be selected. That is, since a 2D moving image is generated using captured image signals of all normal pixels, it is possible to suppress image quality deterioration factors such as false colors and jaggy.
 図11は、第4実施形態に係る2D動画像用の撮像画像信号を固体撮像素子からの読み出す方法を説明する図である。第2,第3実施形態では、3D動画像と同じ解像度の2D動画像を生成する場合について述べたが、3D動画像とは別に、水平解像度を増やした2D動画像が欲しい場合がある。例えば、アスペクト比16:9のHD画質の動画像が欲しい場合がある。 FIG. 11 is a diagram for explaining a method of reading a captured image signal for 2D moving images from a solid-state image sensor according to the fourth embodiment. In the second and third embodiments, the case where a 2D moving image having the same resolution as that of the 3D moving image is generated has been described. However, in addition to the 3D moving image, a 2D moving image having an increased horizontal resolution may be desired. For example, there is a case where an HD quality moving image having an aspect ratio of 16: 9 is desired.
 撮像装置10で撮影する画像のアスペクト比は、通常は4:3であるが、動画像をアスペクト比16:9の大型テレビジョン受像機の大画面で観賞したい場合がある。この様な場合、次の第4実施形態の読み出し方法を採用すれば良く、撮像装置10のメニュー画面で選択する。 The aspect ratio of an image captured by the imaging apparatus 10 is normally 4: 3, but there are cases where it is desired to view a moving image on a large screen of a large television receiver having an aspect ratio of 16: 9. In such a case, the reading method of the following fourth embodiment may be adopted, and selection is made on the menu screen of the imaging apparatus 10.
 図11において、太線黒枠で示した通常画素のペア画素を選択して2D画像用の撮像画像信号を読み出す。この場合、水平ラインでは画素間引きはせずに、垂直ラインは、位相差検出画素が存在する水平ラインを読まずに画素間引きする。撮影は、例えばローリングシャッタ駆動で行い、固体撮像素子21から撮像画像信号を読み出す場合には、A群画素→B群画素→A群画素→B群画素→……と、水平ライン順に読み出す。 In FIG. 11, a pair of normal pixels indicated by a thick black frame is selected to read a captured image signal for a 2D image. In this case, pixels are not thinned out in the horizontal line, and pixels in the vertical line are thinned out without reading the horizontal line in which the phase difference detection pixel exists. Shooting is performed by, for example, rolling shutter drive, and when a captured image signal is read out from the solid-state image sensor 21, reading is performed in the order of horizontal lines in the order of A group pixel → B group pixel → A group pixel → B group pixel →.
 上述した実施形態と同様に、ペア画素の夫々の撮像画像信号を加算平均した値を採用して、ペア画素位置の信号を1画素の信号として使用する。この様に画素間引きすることで、加算平均した結果の撮像画像信号のカラー配列はベイヤ配列となり、ベイヤ配列用の画像処理エンジンを使用することが可能となる。 As in the above-described embodiment, a value obtained by averaging the captured image signals of the paired pixels is used, and the signal at the paired pixel position is used as a signal for one pixel. By thinning out pixels in this way, the color array of the picked-up image signal as a result of the averaging is a Bayer array, and it is possible to use an image processing engine for the Bayer array.
 次に第5の実施形態について説明する。第5の実施形態では、ペア画素の加算平均値を用いて2D動画像データを生成するのではなく、図7で説明したのと同様に、ペア画素のうちの一方の画素を選択して2D動画像データを生成したり、ペア画素の2画素加算を行って2D動画像データを生成する。画素加算は、固体撮像素子21から撮像画像信号を読み出した後に、図2のデジタル信号処理部26で演算するのが良い。これにより、2D動画像データの生成速度が向上し、または、高感度な2D動画像データを得ることが可能となる。 Next, a fifth embodiment will be described. In the fifth embodiment, the 2D moving image data is not generated by using the average value of the paired pixels, but one of the paired pixels is selected and 2D is selected as described in FIG. 2D moving image data is generated by generating moving image data or performing two-pixel addition of paired pixels. The pixel addition is preferably performed by the digital signal processing unit 26 in FIG. 2 after reading out the captured image signal from the solid-state image sensor 21. As a result, the generation speed of 2D moving image data is improved, or highly sensitive 2D moving image data can be obtained.
 図12は、第6実施形態に係る2D動画像用の撮像画像信号読出方法を示す図である。本実施形態でも、位相差検出画素が存在する水平ラインについては信号読出は行わず、その他の通常画素しか存在しない水平ラインは読み出す。そして、本実施形態は、撮影シーンが暗く、上述した第5実施形態の2画素加算でも感度が不足する場合に、図12に示す様に、非読出ラインを垂直方向に挟む同色の2組のペア画素を4画素加算する。図12では、ペア画素を楕円で囲み、画素加算するペア画素の楕円を線で結んで示している。これにより、高感度且つHD画質の2D動画像を撮影することが可能となる。 FIG. 12 is a view showing a captured image signal reading method for 2D moving images according to the sixth embodiment. Also in the present embodiment, signal readout is not performed for horizontal lines in which phase difference detection pixels exist, and horizontal lines in which only other normal pixels exist are read out. Then, in this embodiment, when the shooting scene is dark and the sensitivity is insufficient even with the two-pixel addition of the fifth embodiment described above, as shown in FIG. 12, two sets of the same color sandwiching the non-read line in the vertical direction. Four pairs of pixels are added. In FIG. 12, the pair pixels are surrounded by an ellipse, and the pair pixel ellipses to be added are connected by lines. Thereby, it is possible to shoot a 2D moving image with high sensitivity and HD image quality.
 図13は、画素加算数を、撮影シーンの明るさに応じて可変制御する処理手順を示すフローチャートである。先ず、撮影シーンの明るさが第1閾値α1より明るいか否かを判定し、明るい場合にはステップS12に進み、図11で説明した様に、ペア画素の一方の画素の撮像画像信号だけを採用し、或いは、ペア画素の撮像画像信号の加算平均値を採用する。そして、次のステップS13に進み、採用した撮像画像信号を用いてHD画質の2D動画像を生成し、この処理を終了する。 FIG. 13 is a flowchart showing a processing procedure for variably controlling the pixel addition number according to the brightness of the shooting scene. First, it is determined whether or not the brightness of the shooting scene is brighter than the first threshold value α1, and if it is bright, the process proceeds to step S12, and as described with reference to FIG. 11, only the captured image signal of one pixel of the paired pixels is obtained. Or, an addition average value of captured image signals of paired pixels is adopted. Then, the process proceeds to the next step S13, where a 2D moving image of HD image quality is generated using the adopted captured image signal, and this process is terminated.
 ステップS11の判定の結果、明るさが第1閾値α1より暗い場合には、次にステップS14に進み、α1より暗い第2閾値α2より撮影シーンが明るいか否かを判定する。第2閾値α2より明るい場合には、ステップS14からステップS15に進み、ペア画素の2画素の撮像画像信号を加算して、ステップS13に進む。 If the result of determination in step S11 is that the brightness is darker than the first threshold value α1, the process proceeds to step S14, where it is determined whether or not the photographed scene is brighter than the second threshold value α2 that is darker than α1. If it is brighter than the second threshold value α2, the process proceeds from step S14 to step S15, the captured image signals of the two pixels of the pair pixel are added, and the process proceeds to step S13.
 ステップS14の判定の結果、撮影シーンの明るさが第2閾値α2より暗い場合には、ステップS16に進み、図12で説明した撮像画像信号の4画素加算を行い、ステップS13に進む。 If the result of determination in step S14 is that the brightness of the photographic scene is darker than the second threshold value α2, the process proceeds to step S16, the four-pixel addition of the captured image signal described in FIG. 12 is performed, and the process proceeds to step S13.
 以上により、撮影シーンの明るさが明るい場合でも暗い場合でも所要範囲内の感度でHD画質の2D動画像を撮影することが可能となる。 As described above, it is possible to shoot a 2D moving image of HD image quality with a sensitivity within a required range regardless of whether the brightness of the shooting scene is bright or dark.
 この固体撮像素子21を用いて高精細な2Dの静止画像を撮影する場合には、全画素の夫々の撮像画像信号を読み出す。固体撮像素子21からは、画素配列(撮像画像信号の配列)が縦横それぞれ半ピッチずれた2枚のベイヤ配列の画像(A群画素による撮像画像と、B群画素による撮像画像)が取得できるため、この2枚の画像データを用いて高精細な2Dの静止画像を生成することができる。 When taking a high-definition 2D still image using this solid-state imaging device 21, the imaged image signals of all the pixels are read out. Since the solid-state imaging device 21 can acquire two Bayer array images (captured images by group A pixels and captured images by group B pixels) in which the pixel array (array of captured image signals) is shifted by half a pitch in the vertical and horizontal directions. A high-definition 2D still image can be generated using the two pieces of image data.
 この場合、位相差検出画素の遮光膜開口2a,2bは、通常画素の遮光膜開口1より狭いため感度が低い。そこで、位相差検出画素の撮像画像信号を、周囲の通常画素のデータを用いて補間演算して補正する。あるいは、位相差検出画素の撮像画像信号に対して図2のデジタル信号処理部26が行う増幅処理の増幅率を、通常画素の撮像画像信号に対する増幅率より高くして補正する。 In this case, since the light shielding film openings 2a and 2b of the phase difference detection pixel are narrower than the light shielding film opening 1 of the normal pixel, the sensitivity is low. Therefore, the captured image signal of the phase difference detection pixel is corrected by interpolation calculation using data of surrounding normal pixels. Alternatively, the gain of the amplification process performed by the digital signal processing unit 26 of FIG. 2 on the captured image signal of the phase difference detection pixel is corrected to be higher than the amplification rate of the captured image signal of the normal pixel.
 静止画像を撮像するとき、A群画素とB群画素の露光時間を同じ時間としてペア画素の撮像画像信号を加算し被写体画像を生成すると、正方配列の2枚の画像として高精細な被写体画像を生成することができる。A群画素とB群画素をペア画素間で画素加算すると、信号配列は1枚の正方配列となり高感度な画像を生成できる。また、静止画像データを画像処理する場合、本実施形態の固体撮像素子21ではカラーフィルタ配列の基本がベイヤ配列であるため、ベイヤ配列用の画像処理エンジンを使用でき、低コスト化を図ることができる。この場合も、上記と同様に、位相差検出画素の撮像画像信号を補正する必要がある。 When capturing a still image, when the subject image is generated by adding the captured image signals of the pair pixels with the same exposure time for the A group pixel and the B group pixel, a high-definition subject image is obtained as two images in a square array. Can be generated. When the A group pixel and the B group pixel are pixel-added between the paired pixels, the signal arrangement becomes one square arrangement and a highly sensitive image can be generated. Further, when image processing is performed on still image data, since the basic color filter array is a Bayer array in the solid-state imaging device 21 of the present embodiment, an image processing engine for the Bayer array can be used, thereby reducing costs. it can. In this case as well, it is necessary to correct the captured image signal of the phase difference detection pixel as described above.
 固体撮像素子21を用いてダイナミックレンジの広い高精細(実画素数の1/2の画素数)な静止画像を撮影することも可能である。各画素の信号読出回路に印加するリセット信号や読出信号のタイミング等を調整し、A群画素の露光時間に対してB群画素の露光時間を短くして撮影を行う。そして、全画素から撮像画像信号を読み出し、ペア画素の撮像画像信号を加算することで、撮像画像のダイナミックレンジが広くなる。この場合も、上記と同様に、位相差検出画素の検出信号を補正する必要がある。 It is also possible to photograph a high-definition (number of pixels that is 1/2 of the actual number of pixels) wide dynamic range using the solid-state imaging device 21. The reset signal applied to the signal readout circuit of each pixel, the timing of the readout signal, etc. are adjusted, and the exposure time of the B group pixel is shortened with respect to the exposure time of the A group pixel. Then, by reading out the captured image signal from all the pixels and adding the captured image signals of the paired pixels, the dynamic range of the captured image is widened. Also in this case, it is necessary to correct the detection signal of the phase difference detection pixel as described above.
 以上の様に、上述した実施形態によれば、3D画像を撮像する場合には、位相差検出画素の撮像画像信号だけを用いて画像処理し、静止画像でない2D画像を撮像する場合には、位相差検出画素以外の通常画素の撮像画像信号だけを用いて画像処理するため、両者を一緒に撮像し、両者を固体撮像素子21から読み出してから、画像処理にて区別し、別々の画像データとして記録メディアに保存することができる。また、2D動画像を撮像する場合には、撮影シーンの明るさに応じて画素加算数を制御できるため、所要感度の動画像を生成することができる。 As described above, according to the above-described embodiment, when a 3D image is captured, image processing is performed using only the captured image signal of the phase difference detection pixel, and when a 2D image that is not a still image is captured, Since image processing is performed using only captured image signals of normal pixels other than the phase difference detection pixels, both are imaged together, both are read out from the solid-state image sensor 21, and then are distinguished by image processing. Can be stored in a recording medium. In addition, when capturing a 2D moving image, the number of pixel additions can be controlled according to the brightness of the shooting scene, so that a moving image with a required sensitivity can be generated.
 また、上述した実施形態の様に、画素加算する場合に、加算重心位置を位相差検出画素の位置とすることで、画面内の位相差ムラを無くすことができ、高品質な動画像を得ることが可能となる。 In addition, as in the above-described embodiment, when adding pixels, by setting the added barycentric position as the position of the phase difference detection pixel, it is possible to eliminate phase difference unevenness in the screen and obtain a high-quality moving image. It becomes possible.
 尚、アスペクト比4:3の受光面の撮像素子を用いてアスペクト比16:9の3D動画像を撮像する場合、この受光面のうちアスペクト比16:9の範囲にだけ位相差検出画素ペアを配置しておけば良い。 When a 3D moving image having an aspect ratio of 16: 9 is picked up using an image sensor on a light receiving surface with an aspect ratio of 4: 3, a phase difference detection pixel pair is set only within the range of the aspect ratio of 16: 9 on the light receiving surface. Just place it.
 以上述べた様に、実施形態の撮像素子は、複数の画素が二次元アレイ状に配列形成され奇数行又は偶数行の一方の画素行で構成される第1群画素と奇数行又は偶数行の他方の画素行で構成される第2群画素とが水平方向及び垂直方向に1/2画素ピッチずらして配置された半導体基板と、前記第1群画素に積層されたベイヤ配列のカラーフィルタ及び前記第2群画素に積層されたベイヤ配列のカラーフィルタを備える撮像素子であって、前記第1群画素の各々の画素と該画素に対して斜めに隣接し該画素と同色の前記カラーフィルタが積層された前記第2群画素に属する画素とをペア画素とし、該ペア画素のうち水平方向及び垂直方向に2n+1(n=1,2,…)個間隔に対応するペア画素を位相差検出画素で構成したことを特徴とする。これにより、静止画像,動画像を画像処理するときの画像処理エンジンとして、ベイヤ配列用のものが使用可能となる。 As described above, in the imaging device of the embodiment, the plurality of pixels are arranged in a two-dimensional array, and the first group pixel configured by one pixel row of an odd row or an even row and an odd row or an even row. A semiconductor substrate in which a second group pixel constituted by the other pixel row is disposed with a ½ pixel pitch shift in the horizontal direction and the vertical direction; a Bayer array color filter stacked on the first group pixel; An image pickup device comprising a Bayer array color filter stacked on a second group pixel, wherein each pixel of the first group pixel and the color filter of the same color as the pixel adjacent to the pixel are stacked The pixel belonging to the second group pixel is set as a pair pixel, and among the pair of pixels, pair pixels corresponding to 2n + 1 (n = 1, 2,...) Intervals in the horizontal direction and the vertical direction are phase difference detection pixels. Characterized by constructionAs a result, the Bayer array can be used as an image processing engine for image processing of still images and moving images.
 また、実施形態の撮像素子は、前記第1群画素に含まれる前記位相差検出画素は右眼用の画像又は左眼用の画像の一方を取得し、前記第2群画素に含まれる前記位相差検出画素は右眼用画像又は左眼用の画像の他方を取得する構成としたことを特徴とする。 In the imaging device according to the embodiment, the phase difference detection pixel included in the first group pixel acquires one of an image for the right eye or an image for the left eye, and the position included in the second group pixel. The phase difference detection pixel is configured to acquire the other of the right-eye image and the left-eye image.
 また、実施形態の撮像素子は、n=1とすることを特徴とする。これにより、撮像素子の画素数に対して3D動画像の画素数を最大にすることができる。 Further, the image pickup device of the embodiment is characterized in that n = 1. Thereby, the number of pixels of the 3D moving image can be maximized with respect to the number of pixels of the image sensor.
 また、実施形態の撮像装置は、上記の撮像素子と、立体動画像の撮像時には前記位相差検出画素の撮像画像信号を、前記第1群画素の画素行と前記第2群画素の画素行とから交互に読み出す撮像素子駆動部とを備えることを特徴とする。これにより、第1群画素と第2群画素の露光時間のずれを最小に抑えることができ、後処理もサイドバイサイドで簡単となる。 In addition, the imaging apparatus according to the embodiment includes the imaging element described above, and the captured image signal of the phase difference detection pixel when the stereoscopic moving image is captured, the pixel row of the first group pixel, and the pixel row of the second group pixel. And an image sensor driving unit that alternately reads from the image sensor. As a result, the difference in exposure time between the first group pixel and the second group pixel can be minimized, and post-processing can be simplified side by side.
 また、実施形態の撮像装置は、平面動画像の撮像時には前記位相差検出画素以外の前記ペア画素の撮像画像信号を、前記撮像素子駆動部が前記第1群画素の画素行と前記第2群画素の画素行とから交互に読み出すことを特徴とする。これにより、位相差画素の影響を避けて2D動画像を生成することが可能となる。 In the imaging apparatus according to the embodiment, when a planar moving image is captured, the captured image signal of the paired pixels other than the phase difference detection pixel is transmitted to the pixel group row of the first group pixel and the second group. It is characterized by alternately reading from pixel rows of pixels. This makes it possible to generate a 2D moving image while avoiding the influence of the phase difference pixels.
 また、実施形態の撮像装置は、前記位相差検出画素以外の前記ペア画素の撮像画像信号のうち、いずれか1方の画素の撮像画像信号を用いて、又は、2つの画素の撮像画像信号の加算平均値を用いて、前記平面動画像を生成する画像処理部を備えることを特徴とする。これにより、迅速に2D動画像を得ることができ、また、S/Nの良好な2D動画像が得られる。 In addition, the imaging apparatus according to the embodiment uses a captured image signal of any one of the paired pixels other than the phase difference detection pixels or a captured image signal of two pixels. An image processing unit that generates the planar moving image using the addition average value is provided. As a result, a 2D moving image can be quickly obtained, and a 2D moving image with good S / N can be obtained.
 また、実施形態の撮像装置では、撮影シーンが暗い場合には、前記位相差検出画素以外の前記ペア画素の撮像画像信号の両方を加算して前記平面動画像を生成する画像処理部を備えることを特徴とする。これにより、高感度な2D動画像を得ることができる。 In addition, the imaging apparatus according to the embodiment includes an image processing unit that generates the planar moving image by adding both the captured image signals of the paired pixels other than the phase difference detection pixels when the shooting scene is dark. It is characterized by. Thereby, a highly sensitive 2D moving image can be obtained.
 また、実施形態の撮像装置は、撮影シーンが更に暗い場合、前記画像処理部は、前記位相差検出画素以外の前記ペア画素のうち近接する同色のペア画素を構成する複数の画素の撮像画像信号を加算して前記平面動画像を生成することを特徴とする。これにより、更に高感度な2D動画像を撮像することが可能となる。 In addition, in the imaging device of the embodiment, when the shooting scene is further dark, the image processing unit captures image signals of a plurality of pixels constituting the adjacent pair pixels of the same color among the pair pixels other than the phase difference detection pixels. Are added to generate the planar moving image. This makes it possible to capture a 2D moving image with higher sensitivity.
 また、実施形態の撮像装置は、前記平面動画像を前記立体動画像と同時に撮像することを特徴とする。これにより、2種類の動画像を短時間に撮像することが可能となる。 Further, the imaging apparatus according to the embodiment is characterized in that the planar moving image is captured simultaneously with the stereoscopic moving image. This makes it possible to capture two types of moving images in a short time.
 また、実施形態の撮像装置の前記位相差検出画素は前記撮像素子のうちアスペクト比16:9の範囲に配置され、前記平面動画像が、前記撮像素子の水平方向の画素間引きをせずに垂直方向の画素間引きだけを行い、アスペクト比16:9の画像とすることを特徴とする。これにより、アスペクト比16:9のテレビジョン受像機による大画面の動画を撮像可能となる。 In addition, the phase difference detection pixels of the imaging apparatus of the embodiment are arranged in an aspect ratio of 16: 9 in the imaging device, and the planar moving image is vertical without performing pixel thinning in the horizontal direction of the imaging device. Only the pixel thinning in the direction is performed to obtain an image with an aspect ratio of 16: 9. As a result, a large screen moving image can be captured by a television receiver having an aspect ratio of 16: 9.
 また、実施形態の撮像装置は、高精細平面静止画像の撮像時には、前記撮像素子の全画素から撮像画像信号を読み出すと共に前記位相差検出画素の撮像画像信号を補正して高精細平面静止画像を生成することを特徴とする。位相差検出画素の周囲には通常の画素が配置されているため、補正が容易且つ確実にでき、高精細な静止画像を取得可能となる。 In addition, when capturing a high-definition planar still image, the imaging apparatus according to the embodiment reads a captured image signal from all pixels of the image sensor and corrects the captured image signal of the phase difference detection pixel to generate a high-definition planar still image. It is characterized by generating. Since normal pixels are arranged around the phase difference detection pixels, correction can be performed easily and reliably, and a high-definition still image can be acquired.
 以上述べた実施形態によれば、ユーザの要求に応える動画像を短時間且つ低コストに取得することが可能となる。 According to the embodiment described above, it is possible to acquire a moving image that meets a user's request in a short time and at a low cost.
 本発明に係る撮像装置は、静止画像のみならず3D動画像と2D動画像を撮影することができ、動画撮影機能付のデジタルカメラ等として有用である。 The imaging apparatus according to the present invention can capture not only a still image but also a 3D moving image and a 2D moving image, and is useful as a digital camera or the like with a moving image shooting function.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年6月6日出願の日本特許出願(特願2011-126643)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on June 6, 2011 (Japanese Patent Application No. 2011-126643), the contents of which are incorporated herein by reference.
1 通常画素の遮光膜開口
2 画素(光電変換素子)
2a,2b 位相差検出画素の遮光膜開口
10 撮像装置
12 撮影レンズ
26 デジタル信号処理部
29 システム制御部
1 Light-shielding film opening of normal pixel 2 Pixel (photoelectric conversion element)
2a, 2b Light-shielding film opening 10 of phase difference detection pixel Imaging device 12 Shooting lens 26 Digital signal processing unit 29 System control unit

Claims (11)

  1.  複数の画素が二次元アレイ状に配列形成され奇数行又は偶数行の一方の画素行で構成される第1群画素と奇数行又は偶数行の他方の画素行で構成される第2群画素とが水平方向及び垂直方向に1/2画素ピッチずらして配置された半導体基板と、前記第1群画素に積層されたベイヤ配列のカラーフィルタ及び前記第2群画素に積層されたベイヤ配列のカラーフィルタを備える撮像素子であって、前記第1群画素の各々の画素と該画素に対して斜めに隣接し該画素と同色の前記カラーフィルタが積層された前記第2群画素に属する画素とをペア画素とし、該ペア画素のうち水平方向及び垂直方向に2n+1(n=1,2,…)個間隔に対応するペア画素を位相差検出画素で構成した撮像素子。 A first group of pixels formed by arranging one or more odd rows or even rows of pixels and a second group of pixels comprising the other row of odd rows or even rows; Are arranged with a half pixel pitch shifted in the horizontal and vertical directions, a Bayer array color filter stacked on the first group pixel, and a Bayer array color filter stacked on the second group pixel. A pair of each pixel of the first group pixel and a pixel belonging to the second group pixel that is obliquely adjacent to the pixel and in which the color filters of the same color as the pixel are stacked. An image sensor in which pair pixels corresponding to 2n + 1 (n = 1, 2,...) Intervals in the horizontal direction and the vertical direction are configured by phase difference detection pixels.
  2.  請求項1に記載の撮像素子であって、前記第1群画素に含まれる前記位相差検出画素は右眼用の画像又は左眼用の画像の一方を取得し、前記第2群画素に含まれる前記位相差検出画素は右眼用画像又は左眼用の画像の他方を取得する構成とした撮像素子。 2. The imaging device according to claim 1, wherein the phase difference detection pixel included in the first group pixel acquires one of an image for a right eye or an image for a left eye and is included in the second group pixel. The imaging device configured to acquire the other of the right-eye image or the left-eye image.
  3.  請求項1又は請求項2に記載の撮像素子であって、n=1である撮像素子。 The image pickup device according to claim 1 or 2, wherein n = 1.
  4.  請求項1乃至請求項3のいずれか1項に記載の撮像素子と、立体動画像の撮像時には前記位相差検出画素の撮像画像信号を前記第1群画素の画素行と前記第2群画素の画素行とから交互に読み出す撮像素子駆動部とを備える撮像装置。 The imaging device according to any one of claims 1 to 3, and a captured image signal of the phase difference detection pixel at the time of imaging a stereoscopic moving image, the pixel row of the first group pixel and the second group pixel An imaging device comprising: an imaging element driving unit that alternately reads from pixel rows.
  5.  請求項4に記載の撮像装置であって、平面動画像の撮像時には前記位相差検出画素以外の前記ペア画素の撮像画像信号を、前記撮像素子駆動部が前記第1群画素の画素行と前記第2群画素の画素行とから交互に読み出す撮像装置。 5. The imaging device according to claim 4, wherein when imaging a planar moving image, the imaging element driving unit outputs a captured image signal of the paired pixels other than the phase difference detection pixels and a pixel row of the first group pixel and the pixel group An imaging device that alternately reads out the pixel rows of the second group pixels.
  6.  請求項5に記載の撮像装置であって、前記位相差検出画素以外の前記ペア画素の撮像画像信号のうち、いずれか1方の画素の撮像画像信号を用いて、又は、2つの画素の撮像画像信号の加算平均値を用いて、前記平面動画像を生成する画像処理部を備える撮像装置。 The imaging apparatus according to claim 5, wherein an imaging image signal of any one of the paired pixels other than the phase difference detection pixels is used, or imaging of two pixels is performed. An imaging apparatus including an image processing unit that generates the planar moving image by using an average value of image signals.
  7.  請求項5に記載の撮像装置であって、撮影シーンが暗い場合には、前記位相差検出画素以外の前記ペア画素の撮像画像信号の両方を加算して前記平面動画像を生成する画像処理部を備える撮像装置。 The image processing unit according to claim 5, wherein when the shooting scene is dark, the planar moving image is generated by adding both of the captured image signals of the paired pixels other than the phase difference detection pixels. An imaging apparatus comprising:
  8.  請求項7に記載の撮像装置であって、撮影シーンが更に暗い場合、前記画像処理部は、前記位相差検出画素以外の前記ペア画素のうち近接する同色のペア画素を構成する複数の画素の撮像画像信号を加算して前記平面動画像を生成する撮像装置。 The imaging apparatus according to claim 7, wherein when the shooting scene is further dark, the image processing unit includes a plurality of pixels constituting a pair of adjacent pixels of the same color among the pair of pixels other than the phase difference detection pixels. An imaging apparatus that generates the planar moving image by adding captured image signals.
  9.  請求項4乃至請求項8のいずれか1項に記載の撮像装置であって、前記平面動画像を前記立体動画像と同時に撮像する撮像装置。 The imaging apparatus according to claim 4, wherein the planar moving image is captured simultaneously with the stereoscopic moving image.
  10.  請求項4乃至請求項8のいずれか1項に記載の撮像装置であって、前記位相差検出画素は前記撮像素子のうちアスペクト比16:9の範囲に配置され、前記平面動画像は、前記撮像素子の水平方向の画素間引きをせずに垂直方向の画素間引きだけを行い、アスペクト比16:9の画像とする撮像装置。 9. The imaging apparatus according to claim 4, wherein the phase difference detection pixels are arranged in an aspect ratio of 16: 9 in the imaging device, and the planar moving image is An image pickup apparatus that performs only pixel thinning in the vertical direction without thinning out pixels in the horizontal direction of the image pickup device, and forms an image with an aspect ratio of 16: 9.
  11.  請求項4乃至請求項10のいずれか1項に記載の撮像装置であって、高精細平面静止画像の撮像時には、前記撮像素子の全画素から撮像画像信号を読み出すと共に前記位相差検出画素の撮像画像信号を補正して高精細平面静止画像を生成する撮像装置。 11. The imaging device according to claim 4, wherein when a high-definition planar still image is captured, a captured image signal is read from all pixels of the image sensor and imaging of the phase difference detection pixel is performed. An imaging device that corrects an image signal to generate a high-definition flat still image.
PCT/JP2012/061675 2011-06-06 2012-05-07 Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device WO2012169301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011126643A JP2014158062A (en) 2011-06-06 2011-06-06 Imaging element for capturing stereoscopic dynamic image and plane dynamic image, and imaging device mounting this imaging element
JP2011-126643 2011-06-06

Publications (1)

Publication Number Publication Date
WO2012169301A1 true WO2012169301A1 (en) 2012-12-13

Family

ID=47295872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061675 WO2012169301A1 (en) 2011-06-06 2012-05-07 Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device

Country Status (2)

Country Link
JP (1) JP2014158062A (en)
WO (1) WO2012169301A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136819A1 (en) * 2012-03-16 2013-09-19 株式会社ニコン Image sensor, imaging device and imaging system
JP2014060693A (en) * 2012-03-16 2014-04-03 Nikon Corp Imaging element, imaging device and imaging system
WO2015112517A1 (en) * 2014-01-27 2015-07-30 Microsoft Technology Licensing, Llc Universal capture
CN105684436A (en) * 2013-09-26 2016-06-15 株式会社尼康 Image pickup element and image pickup device
CN111052736A (en) * 2017-08-22 2020-04-21 索尼半导体解决方案公司 Solid-state image pickup element, method for manufacturing solid-state image pickup element, and electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007994A (en) * 2001-06-27 2003-01-10 Konica Corp Solid-state image pickup element, stereoscopic camera apparatus, and range finder
JP2010056865A (en) * 2008-08-28 2010-03-11 Fujifilm Corp Image capturing apparatus
JP2010081609A (en) * 2008-09-25 2010-04-08 Samsung Electronics Co Ltd Solid image sensor
JP2011077829A (en) * 2009-09-30 2011-04-14 Fujifilm Corp Imaging device and electronic camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007994A (en) * 2001-06-27 2003-01-10 Konica Corp Solid-state image pickup element, stereoscopic camera apparatus, and range finder
JP2010056865A (en) * 2008-08-28 2010-03-11 Fujifilm Corp Image capturing apparatus
JP2010081609A (en) * 2008-09-25 2010-04-08 Samsung Electronics Co Ltd Solid image sensor
JP2011077829A (en) * 2009-09-30 2011-04-14 Fujifilm Corp Imaging device and electronic camera

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9906770B2 (en) 2012-03-16 2018-02-27 Nikon Corporation Image sensor, image-capturing apparatus and image capturing system
JP2014060693A (en) * 2012-03-16 2014-04-03 Nikon Corp Imaging element, imaging device and imaging system
US10412358B2 (en) 2012-03-16 2019-09-10 Nikon Corporation Image sensor, image-capturing apparatus and image-capturing system
WO2013136819A1 (en) * 2012-03-16 2013-09-19 株式会社ニコン Image sensor, imaging device and imaging system
CN105684436A (en) * 2013-09-26 2016-06-15 株式会社尼康 Image pickup element and image pickup device
JPWO2015045375A1 (en) * 2013-09-26 2017-03-09 株式会社ニコン Imaging device and imaging apparatus
EP3051811A4 (en) * 2013-09-26 2017-03-22 Nikon Corporation Image pickup element and image pickup device
US20160286104A1 (en) * 2013-09-26 2016-09-29 Nikon Corporation Imaging element and imaging device
CN111479066A (en) * 2013-09-26 2020-07-31 株式会社尼康 Image pickup element and image pickup apparatus
CN111479067A (en) * 2013-09-26 2020-07-31 株式会社尼康 Image pickup element and image pickup apparatus
CN106063248A (en) * 2014-01-27 2016-10-26 微软技术许可有限责任公司 Universal capture
WO2015112517A1 (en) * 2014-01-27 2015-07-30 Microsoft Technology Licensing, Llc Universal capture
CN111052736A (en) * 2017-08-22 2020-04-21 索尼半导体解决方案公司 Solid-state image pickup element, method for manufacturing solid-state image pickup element, and electronic apparatus
US11240450B2 (en) 2017-08-22 2022-02-01 Sony Semiconductor Solutions Corporation Solid-state imaging element, method for manufacturing solid-state imaging element, and electronic apparatus

Also Published As

Publication number Publication date
JP2014158062A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP5493054B2 (en) Image pickup device for picking up three-dimensional moving image and plane moving image, and image pickup apparatus equipped with the image pickup device
JP5640143B2 (en) Imaging apparatus and imaging method
US9319659B2 (en) Image capturing device and image capturing method
WO2012039180A1 (en) Image pickup device and image pickup apparatus
CN204697179U (en) There is the imageing sensor of pel array
US9661210B2 (en) Image pickup device and image pickup apparatus
US8558915B2 (en) Photographing apparatus and method
JP5493011B2 (en) Imaging apparatus and focus position detection method thereof
JP5385462B2 (en) Monocular stereoscopic imaging apparatus, shading correction method for monocular stereoscopic imaging apparatus, and program for monocular stereoscopic imaging apparatus
JP5597777B2 (en) Color imaging device and imaging apparatus
JP2012015819A (en) Stereoscopic image imaging apparatus
WO2013069445A1 (en) Three-dimensional imaging device and image processing method
WO2012169301A1 (en) Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device
JPWO2012046522A1 (en) Imaging apparatus and color mixing correction method
WO2014041845A1 (en) Imaging device and signal processing method
WO2012147515A1 (en) Image capture device and image capture method
JP5634613B2 (en) Image sensor and imaging apparatus
JP5634614B2 (en) Imaging device and imaging apparatus
JP2011210748A (en) Ccd type solid-state imaging element and method of manufacturing the same, and imaging device
WO2013047080A1 (en) Three-dimensional imaging device
US8797438B2 (en) Digital camera and pixel adding method of same
JP2011077680A (en) Stereoscopic camera and method for controlling photographing
JP2011199426A (en) Solid-state image pickup element, image pickup device, and smear correction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP