JP2003007994A - Solid-state image pickup element, stereoscopic camera apparatus, and range finder - Google Patents

Solid-state image pickup element, stereoscopic camera apparatus, and range finder

Info

Publication number
JP2003007994A
JP2003007994A JP2001194972A JP2001194972A JP2003007994A JP 2003007994 A JP2003007994 A JP 2003007994A JP 2001194972 A JP2001194972 A JP 2001194972A JP 2001194972 A JP2001194972 A JP 2001194972A JP 2003007994 A JP2003007994 A JP 2003007994A
Authority
JP
Japan
Prior art keywords
light
solid
image pickup
image
state image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001194972A
Other languages
Japanese (ja)
Inventor
Shuji Hayashi
修二 林
Koichiro Murakami
耕一郎 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2001194972A priority Critical patent/JP2003007994A/en
Publication of JP2003007994A publication Critical patent/JP2003007994A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state image pickup element that can generate image signals capable of forming a stereoscopic image by itself from the image of an object received at different incident angles through one-time image pickup. SOLUTION: This solid-state image picking-up element 1 has many pixels arranged on the same image picking-up surface 3, and generates the image signals by performing photoelectric conversion on the objective image formed on the image forming surface. The pixels 3 are divided into two groups and the light receiving incident angles of the pixels in each groups are made different from each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は固体撮像素子、立体
カメラ装置及び測距離装置に関し、詳しくは、1つの固
体撮像素子で異なる受光入射角度で撮像された画像信号
を生成することのできる固体撮像素子及びこれを用いた
立体カメラ装置並びに測距装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device, a stereoscopic camera device, and a distance measuring device, and more particularly to a solid-state image pickup device capable of generating image signals picked up by different light-receiving incident angles with one solid-state image pickup device. The present invention relates to an element, a stereoscopic camera device using the same, and a distance measuring device.

【0002】[0002]

【従来の技術】一般に、観察者の左右両眼の視差を利用
して画像を立体視させるための立体画像を生成する立体
カメラ装置は、図9に示すように、一つの被写体100
を異なる2方向からそれぞれレンズ等からなる光学系1
01A、101Bを介して、所定間隔を置いて配置され
たCCD(Charge Coupled Device)等からなる2つの
撮像素子102A、102Bの撮像面にそれぞれ結像さ
せ、それを撮像することにより得られた2つの画像信号
103A、103Bを生成し、その2つの画像信号10
3A、103Bを融合させることにより、立体画像を形
成可能な画像信号104を生成するようになっている。
2. Description of the Related Art Generally, a stereoscopic camera device for generating a stereoscopic image for stereoscopically viewing an image by utilizing the parallax of the left and right eyes of an observer is shown in FIG.
An optical system 1 including lenses and the like from two different directions.
2 obtained by forming images on the image pickup surfaces of two image pickup devices 102A and 102B, which are CCDs (Charge Coupled Devices) and the like, which are arranged at a predetermined interval, through 01A and 101B, and picked up the images. Image signals 103A and 103B are generated, and the two image signals 10A and 103B are generated.
By fusing 3A and 103B, an image signal 104 capable of forming a stereoscopic image is generated.

【0003】[0003]

【発明が解決しようとする課題】このように、異なる2
方向から撮影された画像103A、103Bを一度の撮
像によりに生成するためには、上記光学系101A、1
01B及び撮像素子102A、102Bを有して構成さ
れる撮像装置は、それぞれ個々に独立した通常の撮像装
置を2台並列使用する場合の他、それら2つの光学系1
01A、101B及び撮像素子102A、102Bを一
つの筐体内に収容してなる1台の撮像装置を使用する場
合があるが、いずれの場合も、撮像素子は異なる2方向
からの被写体像を結像させるためにそれぞれ専用のもの
が必要であり、複数なくてはならない。
As described above, the two different
In order to generate the images 103A and 103B taken from the direction by a single image pickup, the optical systems 101A and 1B
01B and the image pickup devices 102A and 102B are used in the image pickup device, two ordinary image pickup devices which are independent of each other are used in parallel.
There is a case where one image pickup device in which 01A, 101B and image pickup devices 102A, 102B are housed in one housing is used. In either case, the image pickup device forms an object image from two different directions. Each requires a dedicated one, and there must be more than one.

【0004】また、測定対象物を異なる2方向からそれ
ぞれ光学系を介して、所定間隔を置いて配置された2つ
の撮像素子の撮像面に結像させ、それを撮像することに
より得られた2つの画像信号の位相差を検出することに
より、三角測量の原理で測定対象物までの距離を測定す
る測距装置においても、従来は異なる2方向からの測定
対象物の像を結像させるためにそれぞれ専用の撮像素子
が必要であり、上記同様の問題点を有している。
Further, the object to be measured is imaged from two different directions via the optical system on the image pickup surfaces of two image pickup elements arranged at a predetermined interval, and the image is picked up. Even in a distance measuring device that measures the distance to a measurement object by the principle of triangulation by detecting the phase difference between two image signals, conventionally, in order to form an image of the measurement object from two different directions. Each requires a dedicated image pickup element, and has the same problems as described above.

【0005】ところで、CCD等に代表される固体撮像
素子は、近年各画素サイズの小型化が進み、多画素化が
可能となってきている。本発明者らは、かかる多画素化
された固体撮像素子に着目し、1つの固体撮像素子で、
異なる2方向からの入射光を同時に受光することによ
り、一度に2つの画像信号を生成できるようにすること
を考えた。
By the way, in the solid-state image pickup device represented by CCD or the like, the size of each pixel has been reduced in recent years, and the number of pixels can be increased. The present inventors focused their attention on such a multi-pixel solid-state imaging device,
It was considered that two image signals can be generated at one time by simultaneously receiving incident light from two different directions.

【0006】即ち、本発明の第1の課題は、異なる入射
角度で受光した被写体像から、それ自身で、一度の撮像
により、立体画像を形成可能な画像信号を生成すること
のできる固体撮像素子を提供することにある。
That is, the first object of the present invention is to provide a solid-state image pickup device capable of generating an image signal capable of forming a stereoscopic image from the subject images received at different incident angles by itself. To provide.

【0007】また、本発明の第2の課題は、1つの固体
撮像素子により一度の撮像で、立体画像を表示するため
の2つの画像信号を容易に生成することのできる構造簡
単な立体カメラ装置を提供することにある。
A second object of the present invention is to provide a stereoscopic camera device having a simple structure which can easily generate two image signals for displaying a stereoscopic image by one solid-state image pickup device at one time. To provide.

【0008】更に、本発明の第3の課題は、1つの固体
撮像素子により一度の撮像で、位相差を検出するための
2つの画像信号を容易に生成することのできる構造簡単
な測距装置を提供することにある。
Further, a third object of the present invention is to provide a distance measuring device having a simple structure capable of easily generating two image signals for detecting a phase difference by one image pickup by one solid-state image pickup element. To provide.

【0009】[0009]

【課題を解決するための手段】上記第1の課題を解決す
る請求項1記載の発明は、多数の画素を同一撮像面上に
配列し、該撮像面に結像された被写体像を光電変換して
画像信号を生成する固体撮像素子において、上記多数の
画素を2つのグループに区分けし、各グループにおける
画素の受光入射角度をそれぞれ異ならせてなることを特
徴とする固体撮像素子である。
According to a first aspect of the invention for solving the first problem, a large number of pixels are arranged on the same image pickup surface, and a subject image formed on the image pickup surface is photoelectrically converted. In the solid-state imaging device for generating an image signal, the large number of pixels are divided into two groups, and the light-receiving incident angles of the pixels in each group are different from each other.

【0010】請求項2記載の発明は、各画素毎にオンチ
ップマイクロレンズを備え、該オンチップマイクロレン
ズの表面に入射光の一部を遮る遮光部を設けると共に、
上記遮光部の配置を各グループで互いに異ならせること
により、各グループにおける画素の受光入射角度をそれ
ぞれ異ならせることを特徴とする請求項1記載の固体撮
像素子である。
According to a second aspect of the present invention, an on-chip microlens is provided for each pixel, and a light-shielding portion for blocking a part of incident light is provided on the surface of the on-chip microlens.
The solid-state image pickup device according to claim 1, wherein the light-shielding portions are arranged differently in each group so that the light-receiving incident angles of the pixels in each group are made different.

【0011】請求項3記載の発明は、各画素毎にオンチ
ップマイクロレンズを備え、該オンチップマイクロレン
ズと上記画素との間に入射光の一部を遮る遮光部材を設
けると共に、上記遮光部材の配置を各グループで互いに
異ならせることにより、各グループにおける画素の受光
入射角度をそれぞれ異ならせることを特徴とする請求項
1記載の固体撮像素子である。
According to a third aspect of the present invention, an on-chip microlens is provided for each pixel, and a light-shielding member for blocking a part of incident light is provided between the on-chip microlens and the pixel, and the light-shielding member is provided. 2. The solid-state image pickup device according to claim 1, wherein the light receiving incidence angles of the pixels in the respective groups are made different by making the arrangements of the groups different from each other.

【0012】請求項4記載の発明は、各画素毎にオンチ
ップマイクロレンズを備え、該オンチップマイクロレン
ズの形状を各グループで互いに異ならせることにより、
各グループにおける画素の受光入射角度をそれぞれ異な
らせることを特徴とする請求項1記載の固体撮像素子で
ある。
According to a fourth aspect of the present invention, an on-chip microlens is provided for each pixel, and the shape of the on-chip microlens is made different in each group.
The solid-state image pickup device according to claim 1, wherein the light-receiving incident angles of the pixels in each group are different from each other.

【0013】請求項5記載の発明は、各画素毎に、入射
光の一部を遮る位置と開く位置とにマイクロアクチュエ
ータにより選択的に動作可能な遮蔽体を設け、該遮蔽体
を入射光の一部を遮る位置に動作させることにより、各
グループにおける画素の受光入射角度をそれぞれ異なら
せることを特徴とする請求項1記載の固体撮像素子であ
る。
According to a fifth aspect of the present invention, for each pixel, a shield that is selectively operable by a microactuator is provided at a position where a part of the incident light is shielded and a position where the incident light is opened, and the shield is provided for shielding the incident light. The solid-state image pickup device according to claim 1, wherein the light-receiving incident angles of the pixels in each group are made different by operating in a position where a part of the pixels is blocked.

【0014】請求項6記載の発明は、請求項1〜5のい
ずれかに記載の1つの固体撮像素子と、同一の被写体か
らの光を上記固体撮像素子の撮像面に対して異なる2方
向から入射させる2つの光学系とを有し、上記固体撮像
素子により受光入射角度の異なる2つの画像信号を同時
に生成し、これら2つの画像信号を合成することにより
立体画像を表示するための画像信号を生成することを特
徴とする立体カメラ装置である。
According to a sixth aspect of the present invention, one solid-state image pickup device according to any one of the first to fifth aspects is provided with light from the same subject from two different directions with respect to the image pickup surface of the solid-state image pickup device. Two image systems for making incident light are generated, two image signals having different incident angles of light reception are simultaneously generated by the solid-state imaging device, and an image signal for displaying a stereoscopic image is obtained by synthesizing these two image signals. It is a stereoscopic camera device characterized by generating.

【0015】請求項7記載の発明は、請求項1〜5のい
ずれかに記載の1つの固体撮像素子と、測定対象物から
の光を上記固体撮像素子の撮像面に対して異なる2方向
から入射させる2つの光学系とを有し、上記固体撮像素
子により受光入射角度の異なる2つの画像信号を同時に
生成し、これら2つの画像信号の位相差を検出すること
により測距を行うことを特徴とする測距装置である。
According to a seventh aspect of the present invention, there is provided one solid-state image pickup device according to any one of the first to fifth aspects, and light from a measurement object is emitted from two different directions with respect to the image pickup surface of the solid-state image pickup device. The present invention is characterized in that it has two optical systems for making incident light, two solid-state image pickup devices simultaneously generate two image signals with different light-receiving incident angles, and detects the phase difference between these two image signals to perform distance measurement. It is a distance measuring device.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0017】図1は、本発明に係る固体撮像素子の撮像
面を示す部分平面図、図2は、図1の(a)−(a)線に沿う
断面図である。
FIG. 1 is a partial plan view showing an image pickup surface of a solid-state image pickup device according to the present invention, and FIG. 2 is a sectional view taken along line (a)-(a) of FIG.

【0018】固体撮像素子1は、基板2上に多数の画素
3がXY方向に2次元的に配列されており、これら多数
配列された画素3の表面によって撮像面が構成される。
In the solid-state image pickup device 1, a large number of pixels 3 are two-dimensionally arranged in the XY direction on a substrate 2, and the image pickup surface is constituted by the surfaces of the plural arranged pixels 3.

【0019】このように撮像面を構成している各画素3
の表面には、それぞれオンチップマイクロレンズ4(以
下、単にマイクロレンズ4という。)が設けられてお
り、画素3への入射光を効率的に受光面に集光し、実効
的な開口率を向上させるようにしている。かかるマイク
ロレンズ4には、半球型のレンズやシリンドリカルレン
ズを用いるようにしてもよい。
Each pixel 3 forming the image pickup surface in this way
On-chip microlenses 4 (hereinafter, simply referred to as microlenses 4) are provided on the respective surfaces of, and the light incident on the pixels 3 is efficiently condensed on the light-receiving surface so that the effective aperture ratio is increased. I am trying to improve. A hemispherical lens or a cylindrical lens may be used as the microlens 4.

【0020】それぞれのマイクロレンズ4には、平面視
でその表面の略半分に亘って遮光部5が形成されてい
る。詳細には図3(A)に示すように、この遮光部5側
からマイクロレンズ4に入射する光を画素3へ到達させ
ずに遮り、遮光部5が形成されていない側からの入射光
のみを画素3へ到達させ得るようになっている。これに
よって各画素3は、遮光部5を有するマイクロレンズ4
によって受光入射角度が規制される。
Each microlens 4 is provided with a light shielding portion 5 over substantially half of its surface in plan view. More specifically, as shown in FIG. 3A, the light incident on the microlens 4 from the light shielding portion 5 side is blocked without reaching the pixel 3, and only the incident light from the side where the light shielding portion 5 is not formed is blocked. Can be made to reach the pixel 3. As a result, each pixel 3 has a microlens 4 having a light shielding portion 5.
The incident angle of received light is regulated by.

【0021】遮光部5は、被写体像からの可視光の一部
を遮ることができるものであればよく、例えば黒色の顔
料や染料を用いてマイクロレンズ4の表面に適用するこ
とによって形成することができる。
The light-shielding portion 5 may be any one capable of shielding a part of visible light from the subject image, and is formed by applying it to the surface of the microlens 4 using, for example, a black pigment or dye. You can

【0022】本発明における固体撮像素子1において、
かかるマイクロレンズ4を有する各画素3は、各マイク
ロレンズ4の表面の略半分に亘って形成されている遮光
部5の配置を180度異ならせた2つのグループ、即
ち、遮光部5が平面視左側に配置されるAグループと、
右側に配置されるBグループとに区分けされている。従
って、Aグループに属する各画素3とBグループに属す
る各画素3とは、それぞれ互いに異なる受光入射角度を
持つことになる。
In the solid-state image sensor 1 of the present invention,
In each pixel 3 having such a microlens 4, two groups in which the arrangement of the light shielding portion 5 formed over substantially half of the surface of each microlens 4 is different by 180 degrees, that is, the light shielding portion 5 is seen in a plan view. A group placed on the left side,
It is divided into B group arranged on the right side. Therefore, the respective pixels 3 belonging to the A group and the respective pixels 3 belonging to the B group have mutually different light receiving incident angles.

【0023】本発明において、上記A、Bの2つのグル
ープの撮像面上の配置は、撮像面全面に亘ってほぼ均等
に行き渡るようにすることが好ましい。この場合、同一
のグループに属する各画素3の配列態様としては、市松
状に配置される態様(図4(A))、縦又は横一列状に
配置される態様(図4(B)、(C))が挙げられる。
In the present invention, it is preferable that the two groups A and B are arranged on the image pickup surface substantially evenly over the entire image pickup surface. In this case, the pixels 3 belonging to the same group are arranged in a checkered pattern (FIG. 4 (A)), or vertically or horizontally in one row (FIG. 4 (B), C)).

【0024】本発明において、各画素3をA、Bの2つ
のグループに区分けする際、隣接する複数の画素3から
なる画素群を1単位とすることが好ましい。一般に、カ
ラー画像を生成するための固体撮像素子1における各画
素3は、R、G、Bのカラーフィルタ(図示せず)を有
しており、図5に示すように、それらR、G、Bがほぼ
規則的に配列されるようになっているが、上記1単位に
は、これらR、G、Bの各色の画素3が少なくとも含ま
れた3画素以上によって構成されることが好ましい。図
1の例では、XY方向に隣接するR、G、G、Bの4つ
の画素群(点線で囲まれた画素)によって1単位を構成
しているものを示し、この4つからなる画素群で、Aグ
ループ及びBグループにおけるそれぞれの1単位を構成
し、その1単位内での各画素3の受光入射角度を同一に
すると共に、その1単位毎にA、Bのグループに区分け
してそれぞれ受光入射角度を異ならせ、図4(A)に示
すように市松状に配置している。
In the present invention, when each pixel 3 is divided into two groups of A and B, it is preferable that a pixel group consisting of a plurality of adjacent pixels 3 be one unit. Generally, each pixel 3 in the solid-state imaging device 1 for generating a color image has R, G, B color filters (not shown), and as shown in FIG. Although B is arranged almost regularly, it is preferable that one unit is composed of three or more pixels including at least the pixels 3 of the respective colors of R, G, and B. In the example of FIG. 1, four pixel groups of R, G, G, and B (pixels surrounded by a dotted line) that are adjacent to each other in the XY direction constitute one unit, and a pixel group composed of these four groups. Then, one unit in each of the A group and the B group is configured, the light receiving and incident angle of each pixel 3 in the one unit is made the same, and each unit is divided into the A and B groups. The incident angles of light reception are different, and the light receiving incidence angles are arranged in a checkered pattern as shown in FIG.

【0025】このようにグループに区分けする際に、隣
接する複数の画素3によって1単位とすることで、例え
ばAグループの画素群から出力された電気信号から、B
グループの画素群に相当する画素分の電気信号の補間を
行うことができ、劣化の少ない画像信号を生成すること
ができるようになる。
When the pixels are divided into groups in this way, a plurality of adjacent pixels 3 form one unit, so that, for example, from the electric signals output from the pixel groups of the A group,
It is possible to interpolate the electric signals of the pixels corresponding to the pixel group of the group, and to generate the image signal with less deterioration.

【0026】このように本発明に係る固体撮像素子1に
よれば、それぞれ受光入射角度の異なるAグループ及び
Bグループの2つに区分けされた画素3によって、被写
体像を異なる受光入射角度でそれぞれ撮像することがで
きるため、一度の撮像により、同時に受光入射角度の異
なる2つの画像信号を生成することができるようにな
る。
As described above, according to the solid-state image pickup device 1 of the present invention, the image of the object is picked up at different light-receiving incident angles by the pixels 3 which are divided into two groups, A group and B group, which have different light-receiving incident angles. Therefore, it is possible to simultaneously generate two image signals having different incident angles of light reception by imaging once.

【0027】図3(B)は、遮光部の別の態様を示して
いる。この遮光部51は、マイクロレンズ4と画素3と
の間に配置され、平面視(図示せず)で画素3の略半分
に亘って遮るように形成されている。従って、マイクロ
レンズ4を通って遮光部51側から入射する光を画素3
へ到達させずに遮り、遮光部51によって覆われていな
い側からの入射光のみを画素3へ到達させ得るようにな
っている。これによって各画素3は、遮光部51によっ
て受光入射角度が規制される。
FIG. 3B shows another mode of the light shielding portion. The light shielding portion 51 is arranged between the microlens 4 and the pixel 3 and is formed so as to shield almost half of the pixel 3 in a plan view (not shown). Therefore, the light incident from the light blocking portion 51 side through the microlens 4 is transmitted to the pixel 3
The light is blocked without reaching to the pixel 3 and only the incident light from the side not covered by the light blocking portion 51 can reach the pixel 3. As a result, the light receiving incident angle of each pixel 3 is regulated by the light shielding portion 51.

【0028】このような遮光部51は、アルミやタング
ステン等を用いて形成することができる。
Such a light shielding portion 51 can be formed by using aluminum, tungsten or the like.

【0029】図3(C)は、各画素3の受光入射角度を
規制するための更に別の態様を示している。ここでは遮
光部5、51を用いず、その形状が1方向からの入射光
のみを画素3に到達させ得るように形成されたマイクロ
レンズ41を用いている。即ち、マイクロレンズ41
は、図示するように縦断面が略扇状に形成され、その曲
面41a側からの入射光のみを画素3に到達させ得るよ
うに構成されている。従って、このようなマイクロレン
ズ41を、A、Bの各グループ毎に曲面41aの向きを
互いに異ならせて配置することで、被写体像を異なる受
光入射角度でそれぞれ撮像し、一度の撮像により同時に
受光入射角度の異なる2つの画像信号を生成することが
できる。
FIG. 3C shows another mode for regulating the light receiving incident angle of each pixel 3. Here, the light-shielding portions 5 and 51 are not used, and the microlens 41 whose shape is formed so that only incident light from one direction can reach the pixel 3 is used. That is, the micro lens 41
Has a substantially fan-shaped longitudinal section as shown in the drawing, and is configured to allow only incident light from the curved surface 41a side to reach the pixel 3. Therefore, by arranging such microlenses 41 such that the directions of the curved surfaces 41a are different for each of the groups A and B, the subject images are captured at different light reception incident angles, and light is simultaneously received by one image capturing. It is possible to generate two image signals with different incident angles.

【0030】図3(D)は、各画素3の受光入射角度を
規制するための更に別の態様を示している。ここでは、
マイクロレンズ4の表面に、実線に示す1方向からの入
射光のみを画素3に到達させる遮蔽位置と、鎖線に示す
開放位置との2つの位置にマイクロアクチュエータによ
って選択的に動作可能とした遮蔽体52を設けて構成し
ている。この態様によれば、遮蔽体52が開放位置にあ
るときには、全方向からの入射光が受光可能であるた
め、通常の撮像素子と同様の撮像を行うことができる。
FIG. 3D shows another mode for regulating the light receiving incident angle of each pixel 3. here,
On the surface of the microlens 4, a shield which can be selectively operated by a microactuator at two positions, a shield position where only the incident light from one direction shown by the solid line reaches the pixel 3 and an open position where the chain line shows. 52 is provided and configured. According to this aspect, since the incident light from all directions can be received when the shield 52 is at the open position, it is possible to perform the same image pickup as a normal image pickup element.

【0031】このマイクロアクチュエータとしては、静
電形、ピエゾ積層形、ピエゾバイモルフ、超音波モー
タ、形状記憶合金、熱膨張、バイメタル形、超電導形等
を用いることができる。
As the microactuator, an electrostatic type, a piezo laminated type, a piezo bimorph, an ultrasonic motor, a shape memory alloy, a thermal expansion, a bimetal type, a superconducting type or the like can be used.

【0032】このようにして構成された固体撮像素子1
は、例えば立体カメラ装置や測距装置等のように、2つ
の画像信号を生成する必要のある装置において好ましく
用いることができる。
The solid-state image pickup device 1 thus constructed
Can be preferably used in a device that needs to generate two image signals, such as a stereoscopic camera device or a distance measuring device.

【0033】図6は、かかる立体カメラ装置10の概要
を説明するブロック図である。
FIG. 6 is a block diagram for explaining the outline of the stereoscopic camera device 10.

【0034】立体カメラ装置10は、一つの被写体20
からの光を異なる2方向からそれぞれ入射させるための
レンズ等からなる光学系11A、11Bを備えており、
これら光学系11A、11Bを介して1つの固体撮像素
子1の撮像面に被写体像を結像させるようになってい
る。なお、、これら光学系11A、11B及び固体撮像
素子1は、一つの筐体内に一体に収納される。
The stereoscopic camera device 10 has one subject 20.
Optical systems 11A and 11B, each of which has a lens or the like for allowing light from the light source to enter from two different directions,
A subject image is formed on the image pickup surface of one solid-state image pickup device 1 via these optical systems 11A and 11B. The optical systems 11A and 11B and the solid-state image sensor 1 are integrally housed in a single housing.

【0035】この固体撮像素子1は、上述のように、多
数の画素を2つのグループに区分けし、各グループにお
ける画素の受光入射角度をそれぞれ異ならせていること
により、被写体像を異なる受光入射角度で撮像すること
ができる。従って、この固体撮像素子1における各グル
ープの画素3への受光入射角度を、光学系11A及び1
1Bの入射光軸LA及びLBと一致させることにより、
一度の撮像で同一の被写体像を異なる2方向から撮像す
ることができる。即ち、この固体撮像素子1からは、一
度の撮像により、光学系11Aを介して撮像された画像
信号12Aと光学系11Bを介して撮像された画像信号
12Bとが同時に生成される。
As described above, this solid-state image pickup device 1 divides a large number of pixels into two groups and makes the light receiving and incident angles of the pixels in each group different, so that the light receiving and incident angles of the object image are different. You can take a picture with. Therefore, the light-receiving incident angles on the pixels 3 of each group in the solid-state imaging device 1 are set to the optical systems 11A and 1
By matching the incident optical axes LA and LB of 1B,
The same subject image can be picked up from two different directions by one shot. That is, from this solid-state image pickup device 1, an image signal 12A picked up through the optical system 11A and an image signal 12B picked up through the optical system 11B are simultaneously generated by a single image pickup.

【0036】固体撮像素子1により異なる2方向からの
入射光を撮像することにより得られた画像信号は、画像
分離部12において、まず左右の画像信号にそれぞれ分
離される。左右に分離されたそれぞれの画像信号は、そ
れぞれに対応する2つの画像変換部13A及び13Bに
おいて所定の変換処理が施され、R、G、Bの画像信号
から画面表示に適した輝度信号(Y)と色差信号(C
r、Cb)に変換される。
Image signals obtained by capturing incident light from two different directions by the solid-state image pickup device 1 are first separated into left and right image signals in the image separating section 12. Each of the left and right image signals is subjected to predetermined conversion processing in the corresponding two image conversion units 13A and 13B, and the R, G, and B image signals are converted into a luminance signal (Y) suitable for screen display. ) And the color difference signal (C
r, Cb).

【0037】なお、画像信号の変換処理は、図示例のよ
うに2つの画像変換部13A及び13Bを並列させて行
う代わりに、1つの画像変換部のみによって、左右に分
離された画像信号をそれぞれタイムシェアリングで実行
するようにしてもよい。
It should be noted that the image signal conversion processing is performed by arranging the two image conversion units 13A and 13B in parallel as in the example shown in the figure. It may be executed by time sharing.

【0038】このようにして変換処理された左右の画像
信号は、画像合成部14において合成することにより立
体画像を形成可能な画像信号として生成されるが、ここ
での画像信号の合成は画像の表示体系に依存する。例え
ば、表示装置が縦方向のストライプ状に1画素おきに0
度と90度の偏光板を設けたものでは、図7に示すよう
に、左右の画像信号(R信号、L信号)の合成も、縦方
向のストライプ状となるように1画素おきにはめ込んで
いくようにする。このようにして生成された画像に対し
ては、0度と180度の光線しか通さない眼鏡を掛ける
ことで立体画像を視認することができる。
The left and right image signals converted in this way are generated as an image signal capable of forming a stereoscopic image by synthesizing them in the image synthesizing section 14. Depends on the display system. For example, if the display device has a vertical stripe pattern, every other pixel is set to 0.
In the case where the polarizing plates of 90 degrees and 90 degrees are provided, as shown in FIG. 7, the combination of the left and right image signals (R signal and L signal) is fitted into every other pixel so as to form a vertical stripe shape. Let go With respect to the image generated in this way, a stereoscopic image can be visually recognized by wearing glasses that allow only rays of 0 degree and 180 degrees to pass therethrough.

【0039】図8は、前記固体撮像素子1を1つだけ用
いて構成した測距装置20の概要を説明するブロック図
である。
FIG. 8 is a block diagram for explaining the outline of the distance measuring device 20 constructed by using only one solid-state image pickup device 1.

【0040】測距装置20は、一つの測定対象物200
からの光を異なる2方向からそれぞれ入射させるための
レンズ等からなる光学系21A、21Bを備えており、
これら光学系21A、21Bを介して1つの固体撮像素
子1の撮像面に測定対象物200の像を結像させるよう
になっている。
The distance measuring device 20 is a single measuring object 200.
Optical systems 21A and 21B, each of which has a lens or the like for allowing light from the light source to enter from two different directions,
An image of the measuring object 200 is formed on the image pickup surface of one solid-state image pickup device 1 via these optical systems 21A and 21B.

【0041】固体撮像素子1により異なる2方向からの
入射光を撮像することにより得られた画像信号は、画像
分離部22において左右の画像信号にそれぞれ分離され
る。左右に分離されたそれぞれの画像信号は、それぞれ
に対応する2つの画像変換部23A及び23Bにおいて
所定の変換処理が施される。この画像信号の変換処理
は、図示例のように2つの画像変換部23A及び23B
を並列させて行う代わりに、1つの画像変換部のみによ
って、左右に分離された画像信号をそれぞれタイムシェ
アリングで実行するようにしてもよい。
The image signal obtained by capturing the incident light from the two different directions by the solid-state image sensor 1 is separated into the left and right image signals by the image separating section 22. Each of the left and right image signals is subjected to a predetermined conversion process in the two image conversion units 23A and 23B corresponding thereto. This image signal conversion processing is performed by two image conversion units 23A and 23B as in the illustrated example.
Instead of performing the above in parallel, the image signals separated into the right and left may be executed by time sharing by only one image conversion unit.

【0042】続いて、変換処理が施された左右の画像信
号はそれぞれ位相差検出部24に出力され、ここでそれ
ぞれの画像信号の位相差を検出し、得られた検出値によ
り演算処理部25において測定対象物200までの距離
が算出される。
Next, the left and right image signals that have been subjected to the conversion processing are output to the phase difference detecting section 24, where the phase difference between the respective image signals is detected, and the arithmetic processing section 25 is based on the detected values obtained. At, the distance to the measurement object 200 is calculated.

【0043】このように、本発明に係る固体撮像素子1
を1つだけ用いることによって立体画像の生成及び測定
対象物までの測距を行うことができるため、構造簡単な
立体カメラ装置10や測距装置20を構成することがで
きる。
Thus, the solid-state image pickup device 1 according to the present invention
Since it is possible to generate a stereoscopic image and measure the distance to the object to be measured by using only one, it is possible to configure the stereoscopic camera device 10 and the distance measuring device 20 having a simple structure.

【0044】[0044]

【発明の効果】本発明によれば、異なる入射角度で受光
した被写体像から、それ自身で、一度の撮像により、立
体画像を形成可能な画像信号を生成することのできる固
体撮像素子を提供することができる。
According to the present invention, there is provided a solid-state image pickup device capable of generating an image signal capable of forming a stereoscopic image from an object image received at different incident angles by itself. be able to.

【0045】また、本発明によれば、1つの固体撮像素
子により一度の撮像で、立体画像を表示するための2つ
の画像信号を容易に生成することのできる構造簡単な立
体カメラ装置を提供することができる。
Further, according to the present invention, there is provided a stereoscopic camera device having a simple structure which can easily generate two image signals for displaying a stereoscopic image by one image pickup by one solid-state image pickup device. be able to.

【0046】更に、本発明によれば、1つの固体撮像素
子により一度の撮像で、位相差を検出するための2つの
画像信号を容易に生成することのできる構造簡単な測距
装置を提供することができる。
Further, according to the present invention, there is provided a distance measuring device having a simple structure capable of easily generating two image signals for detecting a phase difference by one image pickup by one solid-state image pickup element. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る固体撮像素子の撮像面側を示す部
分平面図
FIG. 1 is a partial plan view showing an image pickup surface side of a solid-state image pickup element according to the present invention.

【図2】図1の(a)-(a)線に沿う断面図FIG. 2 is a sectional view taken along line (a)-(a) of FIG.

【図3】(A)〜(D)は、それぞれ本発明に係る固体
撮像素子の構造を示す断面図
3A to 3D are cross-sectional views showing the structure of a solid-state image sensor according to the present invention.

【図4】(A)〜(C)は、それぞれ区分けされた各ク
ループの配列例を示す図
4 (A) to (C) are diagrams showing an example of arrangement of each divided group.

【図5】本発明に係る固体撮像素子のカラーフィルタの
配列例を示す図
FIG. 5 is a view showing an arrangement example of color filters of a solid-state image sensor according to the present invention.

【図6】本発明に係る立体カメラ装置の概要を示すブロ
ック図
FIG. 6 is a block diagram showing an outline of a stereoscopic camera device according to the present invention.

【図7】立体画像を生成するための画像信号の合成列を
示す説明図
FIG. 7 is an explanatory diagram showing a combined sequence of image signals for generating a stereoscopic image.

【図8】本発明に係る測距装置の概要を示すブロック図FIG. 8 is a block diagram showing an outline of a distance measuring device according to the present invention.

【図9】従来の立体カメラ装置の原理を説明する図FIG. 9 is a diagram illustrating the principle of a conventional stereoscopic camera device.

【符号の説明】[Explanation of symbols]

1:固体撮像素子 2:基板 3:画素 4:オンチップマイクロレンズ 5:遮光部 51:遮光板 52:遮蔽体 10:立体カメラ装置 11A、11B:光学系 12:画像分離部 13A、13B:画像変換部 14:画像合成部 20:測距装置 21A、21B:光学系 22:画像分離部 23A、23B:画像変換部 24:位相差検出部 25:演算処理部 1: Solid-state image sensor 2: substrate 3: Pixel 4: On-chip micro lens 5: Light-shielding part 51: Shading plate 52: Shield 10: Stereoscopic camera device 11A, 11B: Optical system 12: Image separation unit 13A, 13B: Image conversion unit 14: Image composition section 20: Distance measuring device 21A, 21B: Optical system 22: Image separation unit 23A, 23B: Image conversion unit 24: Phase difference detector 25: Arithmetic processing unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03B 13/36 H01L 27/14 D 4M118 35/10 G02B 7/11 A 5C024 H04N 5/335 G03B 3/00 A 5C061 13/02 G01B 11/24 K Fターム(参考) 2F065 AA51 FF01 FF04 HH14 JJ03 JJ05 JJ26 LL08 LL10 LL33 2F112 AC06 BA02 BA09 CA12 DA04 DA13 DA17 DA28 2H011 AA01 BA05 BB01 2H051 BB07 BB21 CB22 2H059 AA08 4M118 AA10 AB01 AB03 AB10 BA10 FA06 FA50 GB03 GB05 GB10 GB11 GB19 GB20 GC08 GD04 GD05 GD07 GD20 5C024 CX39 CY17 CY37 DX01 EX43 GX21 GY11 5C061 AA02 AB03 AB06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G03B 13/36 H01L 27/14 D 4M118 35/10 G02B 7/11 A 5C024 H04N 5/335 G03B 3/00 A 5C06 13 13/02 G01B 11/24 K F Term (reference) 2F065 AA51 FF01 FF04 HH14 JJ03 JJ05 JJ26 LL08 LL10 LL33 2F112 AC06 BA02 BA09 CA12 DA04 DA13 DA17 DA28 2H011 ABB01 BB01 A10BH2159A082H051 ABB2H051 ABB2H051 ABB22H051 ABB2H051 ABB2H2159A082H051 ABB22 BA10 FA06 FA50 GB03 GB05 GB10 GB11 GB19 GB20 GC08 GD04 GD05 GD07 GD20 5C024 CX39 CY17 CY37 DX01 EX43 GX21 GY11 5C061 AA02 AB03 AB06

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】多数の画素を同一撮像面上に配列し、該撮
像面に結像された被写体像を光電変換して画像信号を生
成する固体撮像素子において、上記多数の画素を2つの
グループに区分けし、各グループにおける画素の受光入
射角度をそれぞれ異ならせてなることを特徴とする固体
撮像素子。
1. A solid-state image pickup device in which a large number of pixels are arranged on the same image pickup surface, and a subject image formed on the image pickup surface is photoelectrically converted to generate an image signal. A solid-state image sensor, characterized in that the light receiving and incident angles of the pixels in each group are made different.
【請求項2】各画素毎にオンチップマイクロレンズを備
え、該オンチップマイクロレンズの表面に入射光の一部
を遮る遮光部を設けると共に、上記遮光部の配置を各グ
ループで互いに異ならせることにより、各グループにお
ける画素の受光入射角度をそれぞれ異ならせることを特
徴とする請求項1記載の固体撮像素子。
2. An on-chip microlens is provided for each pixel, a light-shielding portion that blocks a part of incident light is provided on the surface of the on-chip microlens, and the arrangement of the light-shielding portion is different for each group. 2. The solid-state image sensor according to claim 1, wherein the light receiving incident angles of the pixels in each group are made different from each other.
【請求項3】各画素毎にオンチップマイクロレンズを備
え、該オンチップマイクロレンズと上記画素との間に入
射光の一部を遮る遮光部材を設けると共に、上記遮光部
材の配置を各グループで互いに異ならせることにより、
各グループにおける画素の受光入射角度をそれぞれ異な
らせることを特徴とする請求項1記載の固体撮像素子。
3. An on-chip microlens is provided for each pixel, a light-shielding member is provided between the on-chip microlens and the pixel to block a part of incident light, and the light-shielding member is arranged in each group. By making them different from each other,
The solid-state imaging device according to claim 1, wherein the light-receiving incident angles of the pixels in each group are different from each other.
【請求項4】各画素毎にオンチップマイクロレンズを備
え、該オンチップマイクロレンズの形状を各グループで
互いに異ならせることにより、各グループにおける画素
の受光入射角度をそれぞれ異ならせることを特徴とする
請求項1記載の固体撮像素子。
4. An on-chip microlens is provided for each pixel, and by making the shape of the on-chip microlens different for each group, the light receiving and incident angles of the pixels in each group are made different. The solid-state image sensor according to claim 1.
【請求項5】各画素毎に、入射光の一部を遮る位置と開
く位置とにマイクロアクチュエータにより選択的に動作
可能な遮蔽体を設け、該遮蔽体を入射光の一部を遮る位
置に動作させることにより、各グループにおける画素の
受光入射角度をそれぞれ異ならせることを特徴とする請
求項1記載の固体撮像素子。
5. A shield that can be selectively operated by a microactuator is provided at a position for blocking a part of incident light and an opening position for each pixel, and the shield is provided at a position for blocking a part of the incident light. The solid-state image pickup device according to claim 1, wherein the light-receiving incident angles of the pixels in each group are made different by being operated.
【請求項6】請求項1〜5のいずれかに記載の1つの固
体撮像素子と、同一の被写体からの光を上記固体撮像素
子の撮像面に対して異なる2方向から入射させる2つの
光学系とを有し、上記固体撮像素子により受光入射角度
の異なる2つの画像信号を同時に生成し、これら2つの
画像信号を合成することにより立体画像を表示するため
の画像信号を生成することを特徴とする立体カメラ装
置。
6. The one solid-state image pickup device according to claim 1, and two optical systems that allow light from the same subject to enter the image pickup surface of the solid-state image pickup device from two different directions. And two image signals having different incident angles of light reception are simultaneously generated by the solid-state imaging device, and an image signal for displaying a stereoscopic image is generated by combining these two image signals. 3D camera device.
【請求項7】請求項1〜5のいずれかに記載の1つの固
体撮像素子と、測定対象物からの光を上記固体撮像素子
の撮像面に対して異なる2方向から入射させる2つの光
学系とを有し、上記固体撮像素子により受光入射角度の
異なる2つの画像信号を同時に生成し、これら2つの画
像信号の位相差を検出することにより測距を行うことを
特徴とする測距装置。
7. The one solid-state image pickup device according to claim 1, and two optical systems that allow light from a measurement object to enter the image pickup surface of the solid-state image pickup device from two different directions. And a distance measuring device having the above-mentioned solid-state image sensor, which simultaneously generates two image signals having different incident angles of light reception, and detects a phase difference between these two image signals to perform distance measurement.
JP2001194972A 2001-06-27 2001-06-27 Solid-state image pickup element, stereoscopic camera apparatus, and range finder Pending JP2003007994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194972A JP2003007994A (en) 2001-06-27 2001-06-27 Solid-state image pickup element, stereoscopic camera apparatus, and range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194972A JP2003007994A (en) 2001-06-27 2001-06-27 Solid-state image pickup element, stereoscopic camera apparatus, and range finder

Publications (1)

Publication Number Publication Date
JP2003007994A true JP2003007994A (en) 2003-01-10

Family

ID=19033019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194972A Pending JP2003007994A (en) 2001-06-27 2001-06-27 Solid-state image pickup element, stereoscopic camera apparatus, and range finder

Country Status (1)

Country Link
JP (1) JP2003007994A (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147821A (en) * 2006-12-07 2008-06-26 Sony Corp Imaging element and imaging apparatus
JP2009047735A (en) * 2007-08-13 2009-03-05 Olympus Corp Imaging apparatus and image processing program
JP2009047734A (en) * 2007-08-13 2009-03-05 Olympus Corp Imaging apparatus and image processing program
EP2037321A1 (en) 2007-09-11 2009-03-18 Sony Corporation Imaging device and in-focus control method
JP2009086144A (en) * 2007-09-28 2009-04-23 Olympus Corp Imaging device and imaging equipment provided therewith
JP2009300268A (en) * 2008-06-13 2009-12-24 Nippon Hoso Kyokai <Nhk> Three-dimensional information detection device
JP2010066558A (en) * 2008-09-11 2010-03-25 National Institute Of Information & Communication Technology Stereoscopic video photographing device and stereoscopic video photographing method
KR100958628B1 (en) * 2007-12-27 2010-05-19 주식회사 동부하이텍 Method of fabricating CMOS image sensor
JP2011199755A (en) * 2010-03-23 2011-10-06 Fujifilm Corp Image pickup device
JP2012008370A (en) * 2010-06-25 2012-01-12 Nikon Corp Imaging device and interchangeable lens
WO2012108099A1 (en) * 2011-02-09 2012-08-16 富士フイルム株式会社 Imaging device and imaging method
JP2012182824A (en) * 2012-05-01 2012-09-20 Nikon Corp Solid-state imaging device having generation function of focus detection signal, and electronic camera
WO2012132123A1 (en) * 2011-03-31 2012-10-04 富士フイルム株式会社 Stereoscopic imaging apparatus and stereoscopic imaging method
US8284295B2 (en) 2007-06-12 2012-10-09 Nikon Corporation Digital camera
WO2012140917A1 (en) * 2011-04-14 2012-10-18 株式会社ニコン Image processing apparatus and image processing program
JP2012230300A (en) * 2011-04-27 2012-11-22 Olympus Corp Imaging apparatus and imaging element
WO2012165087A1 (en) * 2011-06-01 2012-12-06 富士フイルム株式会社 Image capture device and ghosting correction method
WO2012164934A1 (en) * 2011-05-30 2012-12-06 株式会社ニコン Image processing device, image processing method, and program
WO2012169301A1 (en) * 2011-06-06 2012-12-13 富士フイルム株式会社 Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device
WO2012169318A1 (en) 2011-06-09 2012-12-13 富士フイルム株式会社 Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device
WO2013024659A1 (en) * 2011-08-15 2013-02-21 Canon Kabushiki Kaisha Image capturing apparatus, method of controlling the same and program
WO2013038863A1 (en) * 2011-09-13 2013-03-21 富士フイルム株式会社 Monocular stereoscopic imaging device, imaging method, and program
WO2013038629A1 (en) * 2011-09-13 2013-03-21 Canon Kabushiki Kaisha Imaging apparatus and method for controlling same
WO2013038598A1 (en) * 2011-09-14 2013-03-21 株式会社ニコン Imaging element, imaging device, and image processing device
WO2013042281A1 (en) * 2011-09-20 2013-03-28 パナソニック株式会社 Solid-state image capture device
JP2013057744A (en) * 2011-09-07 2013-03-28 Nikon Corp Imaging device
WO2013042606A1 (en) * 2011-09-22 2013-03-28 富士フイルム株式会社 Digital camera and solid-state image capturing device
WO2013042518A1 (en) * 2011-09-22 2013-03-28 富士フイルム株式会社 Digital camera
WO2013047141A1 (en) 2011-09-29 2013-04-04 富士フイルム株式会社 Imaging element, and imaging device
WO2013047220A1 (en) * 2011-09-28 2013-04-04 富士フイルム株式会社 Digital camera
EP2590023A1 (en) * 2010-06-30 2013-05-08 FUJIFILM Corporation Imaging device and imaging method
WO2013077154A1 (en) * 2011-11-21 2013-05-30 Canon Kabushiki Kaisha Image sensing device and image capturing apparatus
WO2013100039A1 (en) * 2011-12-27 2013-07-04 富士フイルム株式会社 Color imaging element and imaging device
EP2618585A1 (en) * 2010-09-13 2013-07-24 Fujifilm Corporation Monocular 3d-imaging device, shading correction method for monocular 3d-imaging device, and program for monocular 3d-imaging device
JP2013162362A (en) * 2012-02-06 2013-08-19 Nikon Corp Image pickup device and image pickup program
JP2013162354A (en) * 2012-02-06 2013-08-19 Nikon Corp Image pickup device and image pickup program thereof
WO2013145886A1 (en) * 2012-03-28 2013-10-03 富士フイルム株式会社 Image capture element and image capture device and image capture method employing same
EP2648405A1 (en) * 2010-11-29 2013-10-09 Nikon Corporation Imaging element and imaging device
CN103430094A (en) * 2011-03-30 2013-12-04 株式会社尼康 Image processing device, imaging device, and image processing program
WO2014049941A1 (en) * 2012-09-28 2014-04-03 パナソニック株式会社 Solid-state image pickup device and image pickup device
JP2014077830A (en) * 2012-10-09 2014-05-01 Olympus Corp Imaging apparatus and focus control method
JP2014138279A (en) * 2013-01-17 2014-07-28 Canon Inc Image pickup device and method for controlling image pickup device
US8885026B2 (en) 2011-03-31 2014-11-11 Fujifilm Corporation Imaging device and imaging method
CN104170377A (en) * 2012-03-16 2014-11-26 株式会社尼康 Image processing device, imaging device and image processing program
JP2015026675A (en) * 2013-07-25 2015-02-05 ソニー株式会社 Solid state image sensor, manufacturing method thereof and electronic apparatus
JPWO2013035858A1 (en) * 2011-09-07 2015-03-23 株式会社ニコン IMAGING DEVICE AND IMAGING ELEMENT FOR IMAGING DEVICE
US9077977B2 (en) 2011-09-28 2015-07-07 Fujifilm Corporation Image sensor and imaging apparatus with sensitivity versus incident angle ranges for 2D and 3D imaging
US9461083B2 (en) 2010-09-29 2016-10-04 Fujifilm Corporation Solid-state image pickup element and image pickup apparatus
US9509978B2 (en) 2012-08-10 2016-11-29 Nikon Corporation Image processing method, image processing apparatus, image-capturing apparatus, and image processing program
US9706186B2 (en) 2013-07-05 2017-07-11 Nikon Corporation Imaging apparatus for generating parallax image data
US9723288B2 (en) 2012-06-22 2017-08-01 Nikon Corporation Image processing apparatus, image-capturing apparatus and image processing method
US9727985B2 (en) 2012-03-16 2017-08-08 Nikon Corporation Image processing apparatus, image-capturing apparatus, and storage medium having image processing program stored thereon
US9786714B2 (en) 2014-02-18 2017-10-10 Sony Corporation Solid-state imaging element, method for manufacturing solid-state imaging element, and electronic device
US9832404B2 (en) 2013-05-31 2017-11-28 Nikon Corporation Image sensor, imaging apparatus, and image processing device
US9838665B2 (en) 2012-04-25 2017-12-05 Nikon Corporation Image processing device, imaging device, and image processing program
US9900529B2 (en) 2012-08-10 2018-02-20 Nikon Corporation Image processing apparatus, image-capturing apparatus and image processing apparatus control program using parallax image data having asymmetric directional properties
US9906770B2 (en) 2012-03-16 2018-02-27 Nikon Corporation Image sensor, image-capturing apparatus and image capturing system
US9942537B2 (en) 2013-03-29 2018-04-10 Nikon Corporation Image processing device, imaging apparatus, and computer-readable medium having stored thereon an image processing program
JP2018185162A (en) * 2017-04-24 2018-11-22 キヤノン株式会社 Range finding device, range finding system, and range finding method
CN109003993A (en) * 2018-07-26 2018-12-14 德淮半导体有限公司 Imaging sensor and forming method thereof
US10291901B2 (en) 2014-04-04 2019-05-14 Nikon Corporation Image sensor, imaging device and image processing device that generate parallax images in both visible and invisible wavelength bands
WO2021253308A1 (en) * 2020-06-18 2021-12-23 深圳市汇顶科技股份有限公司 Image acquisition apparatus
US11418741B2 (en) 2017-06-30 2022-08-16 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic device

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147821A (en) * 2006-12-07 2008-06-26 Sony Corp Imaging element and imaging apparatus
US8284295B2 (en) 2007-06-12 2012-10-09 Nikon Corporation Digital camera
JP2009047735A (en) * 2007-08-13 2009-03-05 Olympus Corp Imaging apparatus and image processing program
JP2009047734A (en) * 2007-08-13 2009-03-05 Olympus Corp Imaging apparatus and image processing program
EP2037321A1 (en) 2007-09-11 2009-03-18 Sony Corporation Imaging device and in-focus control method
JP2009069255A (en) * 2007-09-11 2009-04-02 Sony Corp Imaging device and focusing control method
JP2009086144A (en) * 2007-09-28 2009-04-23 Olympus Corp Imaging device and imaging equipment provided therewith
KR100958628B1 (en) * 2007-12-27 2010-05-19 주식회사 동부하이텍 Method of fabricating CMOS image sensor
JP2009300268A (en) * 2008-06-13 2009-12-24 Nippon Hoso Kyokai <Nhk> Three-dimensional information detection device
JP2010066558A (en) * 2008-09-11 2010-03-25 National Institute Of Information & Communication Technology Stereoscopic video photographing device and stereoscopic video photographing method
JP2011199755A (en) * 2010-03-23 2011-10-06 Fujifilm Corp Image pickup device
JP2012008370A (en) * 2010-06-25 2012-01-12 Nikon Corp Imaging device and interchangeable lens
CN104977777A (en) * 2010-06-30 2015-10-14 富士胶片株式会社 Imaging device and imaging method
EP2590023A4 (en) * 2010-06-30 2013-12-18 Fujifilm Corp Imaging device and imaging method
EP2590023A1 (en) * 2010-06-30 2013-05-08 FUJIFILM Corporation Imaging device and imaging method
US9282312B2 (en) 2010-09-13 2016-03-08 Fujifilm Corporation Single-eye stereoscopic imaging device, correction method thereof, and recording medium thereof
EP2618585A4 (en) * 2010-09-13 2014-02-26 Fujifilm Corp Monocular 3d-imaging device, shading correction method for monocular 3d-imaging device, and program for monocular 3d-imaging device
EP2618585A1 (en) * 2010-09-13 2013-07-24 Fujifilm Corporation Monocular 3d-imaging device, shading correction method for monocular 3d-imaging device, and program for monocular 3d-imaging device
US9461083B2 (en) 2010-09-29 2016-10-04 Fujifilm Corporation Solid-state image pickup element and image pickup apparatus
EP2648405A4 (en) * 2010-11-29 2014-07-30 Nikon Corp Imaging element and imaging device
JPWO2012073491A1 (en) * 2010-11-29 2014-05-19 株式会社ニコン IMAGING ELEMENT AND IMAGING DEVICE
JP5915537B2 (en) * 2010-11-29 2016-05-11 株式会社ニコン IMAGING ELEMENT AND IMAGING DEVICE
EP2648405A1 (en) * 2010-11-29 2013-10-09 Nikon Corporation Imaging element and imaging device
US9532033B2 (en) 2010-11-29 2016-12-27 Nikon Corporation Image sensor and imaging device
JP5469258B2 (en) * 2011-02-09 2014-04-16 富士フイルム株式会社 Imaging apparatus and imaging method
WO2012108099A1 (en) * 2011-02-09 2012-08-16 富士フイルム株式会社 Imaging device and imaging method
JPWO2012108099A1 (en) * 2011-02-09 2014-07-03 富士フイルム株式会社 Imaging apparatus and imaging method
US8823778B2 (en) 2011-02-09 2014-09-02 Fujifilm Corporation Imaging device and imaging method
CN103430094B (en) * 2011-03-30 2017-03-01 株式会社尼康 Image processing apparatus, filming apparatus and image processing program
US9854224B2 (en) 2011-03-30 2017-12-26 Nikon Corporation Image processing apparatus, image capturing apparatus, and image processing program
CN103430094A (en) * 2011-03-30 2013-12-04 株式会社尼康 Image processing device, imaging device, and image processing program
WO2012132123A1 (en) * 2011-03-31 2012-10-04 富士フイルム株式会社 Stereoscopic imaging apparatus and stereoscopic imaging method
US9648305B2 (en) 2011-03-31 2017-05-09 Fujifilm Corporation Stereoscopic imaging apparatus and stereoscopic imaging method
US8885026B2 (en) 2011-03-31 2014-11-11 Fujifilm Corporation Imaging device and imaging method
JPWO2012140917A1 (en) * 2011-04-14 2014-07-28 株式会社ニコン Image processing apparatus and image processing program
JP5979134B2 (en) * 2011-04-14 2016-08-24 株式会社ニコン Image processing apparatus and image processing program
WO2012140917A1 (en) * 2011-04-14 2012-10-18 株式会社ニコン Image processing apparatus and image processing program
CN103621078A (en) * 2011-04-14 2014-03-05 株式会社尼康 Image processing apparatus and image processing program
JP2012230300A (en) * 2011-04-27 2012-11-22 Olympus Corp Imaging apparatus and imaging element
CN103688536A (en) * 2011-05-30 2014-03-26 株式会社尼康 Image processing device, image processing method, and program
WO2012164934A1 (en) * 2011-05-30 2012-12-06 株式会社ニコン Image processing device, image processing method, and program
US9860516B2 (en) 2011-05-30 2018-01-02 Nikon Corporation Image processing apparatus, image processing method and recording medium
WO2012165087A1 (en) * 2011-06-01 2012-12-06 富士フイルム株式会社 Image capture device and ghosting correction method
WO2012169301A1 (en) * 2011-06-06 2012-12-13 富士フイルム株式会社 Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device
JPWO2012169318A1 (en) * 2011-06-09 2015-02-23 富士フイルム株式会社 Image pickup device for picking up three-dimensional moving image and plane moving image, and image pickup apparatus equipped with the image pickup device
WO2012169318A1 (en) 2011-06-09 2012-12-13 富士フイルム株式会社 Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device
CN103597811A (en) * 2011-06-09 2014-02-19 富士胶片株式会社 Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device
EP2720455A4 (en) * 2011-06-09 2015-04-15 Fujifilm Corp Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device
CN103597811B (en) * 2011-06-09 2015-07-29 富士胶片株式会社 Take the image-capturing element of Three-dimensional movable image and planar moving image and be equipped with its image capturing device
JP5493054B2 (en) * 2011-06-09 2014-05-14 富士フイルム株式会社 Image pickup device for picking up three-dimensional moving image and plane moving image, and image pickup apparatus equipped with the image pickup device
EP2720455A1 (en) * 2011-06-09 2014-04-16 FUJIFILM Corporation Image pickup device imaging three-dimensional moving image and two-dimensional moving image, and image pickup apparatus mounting image pickup device
JP2013041103A (en) * 2011-08-15 2013-02-28 Canon Inc Image pickup apparatus, control method thereof, and program
CN103733133A (en) * 2011-08-15 2014-04-16 佳能株式会社 Image capturing apparatus, method of controlling the same and program
US9420261B2 (en) 2011-08-15 2016-08-16 Canon Kabushiki Kaisha Image capturing apparatus, method of controlling the same and program
WO2013024659A1 (en) * 2011-08-15 2013-02-21 Canon Kabushiki Kaisha Image capturing apparatus, method of controlling the same and program
RU2565855C1 (en) * 2011-08-15 2015-10-20 Кэнон Кабусики Кайся Image capturing device, method of controlling said device and programme
JPWO2013035858A1 (en) * 2011-09-07 2015-03-23 株式会社ニコン IMAGING DEVICE AND IMAGING ELEMENT FOR IMAGING DEVICE
JP2013057744A (en) * 2011-09-07 2013-03-28 Nikon Corp Imaging device
WO2013038629A1 (en) * 2011-09-13 2013-03-21 Canon Kabushiki Kaisha Imaging apparatus and method for controlling same
WO2013038863A1 (en) * 2011-09-13 2013-03-21 富士フイルム株式会社 Monocular stereoscopic imaging device, imaging method, and program
JP2013061440A (en) * 2011-09-13 2013-04-04 Canon Inc Imaging device and control method of imaging device
WO2013038598A1 (en) * 2011-09-14 2013-03-21 株式会社ニコン Imaging element, imaging device, and image processing device
US9414046B2 (en) 2011-09-14 2016-08-09 Nikon Corporation Image sensor, imaging device and image processing device
CN103907188A (en) * 2011-09-14 2014-07-02 株式会社尼康 Imaging element, imaging device, and image processing device
JPWO2013038598A1 (en) * 2011-09-14 2015-03-23 株式会社ニコン Image pickup device, image pickup apparatus, and image processing apparatus
CN103828346B (en) * 2011-09-20 2017-06-27 松下知识产权经营株式会社 Solid camera head
US9466626B2 (en) 2011-09-20 2016-10-11 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging apparatus
WO2013042281A1 (en) * 2011-09-20 2013-03-28 パナソニック株式会社 Solid-state image capture device
JPWO2013042281A1 (en) * 2011-09-20 2015-03-26 パナソニックIpマネジメント株式会社 Solid-state imaging device
CN103828346A (en) * 2011-09-20 2014-05-28 松下电器产业株式会社 Solid-state image capture device
WO2013042518A1 (en) * 2011-09-22 2013-03-28 富士フイルム株式会社 Digital camera
WO2013042606A1 (en) * 2011-09-22 2013-03-28 富士フイルム株式会社 Digital camera and solid-state image capturing device
JPWO2013042518A1 (en) * 2011-09-22 2015-03-26 富士フイルム株式会社 Digital camera
JP5547349B2 (en) * 2011-09-22 2014-07-09 富士フイルム株式会社 Digital camera
US8866954B2 (en) 2011-09-22 2014-10-21 Fujifilm Corporation Digital camera
WO2013047220A1 (en) * 2011-09-28 2013-04-04 富士フイルム株式会社 Digital camera
US9077977B2 (en) 2011-09-28 2015-07-07 Fujifilm Corporation Image sensor and imaging apparatus with sensitivity versus incident angle ranges for 2D and 3D imaging
US9215447B2 (en) 2011-09-29 2015-12-15 Fujifilm Corporation Imaging device and imaging apparatus including a pixel with light receiving region on one side of a center of the pixel
WO2013047141A1 (en) 2011-09-29 2013-04-04 富士フイルム株式会社 Imaging element, and imaging device
JP2013110607A (en) * 2011-11-21 2013-06-06 Canon Inc Imaging device and imaging apparatus
WO2013077154A1 (en) * 2011-11-21 2013-05-30 Canon Kabushiki Kaisha Image sensing device and image capturing apparatus
US9241120B2 (en) 2011-11-21 2016-01-19 Canon Kabushiki Kaisha Image sensing device and image capturing apparatus
JP5621059B2 (en) * 2011-12-27 2014-11-05 富士フイルム株式会社 Color imaging device and imaging apparatus
US9100558B2 (en) 2011-12-27 2015-08-04 Fujifilm Corporation Color imaging element and imaging apparatus
WO2013100039A1 (en) * 2011-12-27 2013-07-04 富士フイルム株式会社 Color imaging element and imaging device
JPWO2013100039A1 (en) * 2011-12-27 2015-05-11 富士フイルム株式会社 Color imaging device and imaging apparatus
JP2013162354A (en) * 2012-02-06 2013-08-19 Nikon Corp Image pickup device and image pickup program thereof
JP2013162362A (en) * 2012-02-06 2013-08-19 Nikon Corp Image pickup device and image pickup program
US9727985B2 (en) 2012-03-16 2017-08-08 Nikon Corporation Image processing apparatus, image-capturing apparatus, and storage medium having image processing program stored thereon
CN104170377A (en) * 2012-03-16 2014-11-26 株式会社尼康 Image processing device, imaging device and image processing program
US10412358B2 (en) 2012-03-16 2019-09-10 Nikon Corporation Image sensor, image-capturing apparatus and image-capturing system
US10027942B2 (en) 2012-03-16 2018-07-17 Nikon Corporation Imaging processing apparatus, image-capturing apparatus, and storage medium having image processing program stored thereon
US9906770B2 (en) 2012-03-16 2018-02-27 Nikon Corporation Image sensor, image-capturing apparatus and image capturing system
CN104221369A (en) * 2012-03-28 2014-12-17 富士胶片株式会社 Image capture element and image capture device and image capture method employing same
JPWO2013145886A1 (en) * 2012-03-28 2015-12-10 富士フイルム株式会社 Image pickup device, image pickup apparatus using the same, and image pickup method
JP5542249B2 (en) * 2012-03-28 2014-07-09 富士フイルム株式会社 Image pickup device, image pickup apparatus using the same, and image pickup method
US10003731B2 (en) 2012-03-28 2018-06-19 Fujifilm Corporation Image element, and imaging device and imaging method using the same for achieving improved image quality regardless of an incident angle of light
CN104221369B (en) * 2012-03-28 2016-02-10 富士胶片株式会社 Imaging apparatus and use camera head and the image capture method of this imaging apparatus
WO2013145886A1 (en) * 2012-03-28 2013-10-03 富士フイルム株式会社 Image capture element and image capture device and image capture method employing same
US9838665B2 (en) 2012-04-25 2017-12-05 Nikon Corporation Image processing device, imaging device, and image processing program
JP2012182824A (en) * 2012-05-01 2012-09-20 Nikon Corp Solid-state imaging device having generation function of focus detection signal, and electronic camera
US9723288B2 (en) 2012-06-22 2017-08-01 Nikon Corporation Image processing apparatus, image-capturing apparatus and image processing method
US9509978B2 (en) 2012-08-10 2016-11-29 Nikon Corporation Image processing method, image processing apparatus, image-capturing apparatus, and image processing program
US9900529B2 (en) 2012-08-10 2018-02-20 Nikon Corporation Image processing apparatus, image-capturing apparatus and image processing apparatus control program using parallax image data having asymmetric directional properties
WO2014049941A1 (en) * 2012-09-28 2014-04-03 パナソニック株式会社 Solid-state image pickup device and image pickup device
JP2014077830A (en) * 2012-10-09 2014-05-01 Olympus Corp Imaging apparatus and focus control method
JP2014138279A (en) * 2013-01-17 2014-07-28 Canon Inc Image pickup device and method for controlling image pickup device
US9942537B2 (en) 2013-03-29 2018-04-10 Nikon Corporation Image processing device, imaging apparatus, and computer-readable medium having stored thereon an image processing program
US9832404B2 (en) 2013-05-31 2017-11-28 Nikon Corporation Image sensor, imaging apparatus, and image processing device
US9706186B2 (en) 2013-07-05 2017-07-11 Nikon Corporation Imaging apparatus for generating parallax image data
JP2015026675A (en) * 2013-07-25 2015-02-05 ソニー株式会社 Solid state image sensor, manufacturing method thereof and electronic apparatus
US9842874B2 (en) 2013-07-25 2017-12-12 Sony Corporation Solid state image sensor, method of manufacturing the same, and electronic device
US9786714B2 (en) 2014-02-18 2017-10-10 Sony Corporation Solid-state imaging element, method for manufacturing solid-state imaging element, and electronic device
US10291901B2 (en) 2014-04-04 2019-05-14 Nikon Corporation Image sensor, imaging device and image processing device that generate parallax images in both visible and invisible wavelength bands
JP2018185162A (en) * 2017-04-24 2018-11-22 キヤノン株式会社 Range finding device, range finding system, and range finding method
EP3648454B1 (en) * 2017-06-30 2023-08-16 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic equipment
US11924566B2 (en) 2017-06-30 2024-03-05 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic device
US11418741B2 (en) 2017-06-30 2022-08-16 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic device
US11632510B2 (en) 2017-06-30 2023-04-18 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic device
CN109003993A (en) * 2018-07-26 2018-12-14 德淮半导体有限公司 Imaging sensor and forming method thereof
WO2021253308A1 (en) * 2020-06-18 2021-12-23 深圳市汇顶科技股份有限公司 Image acquisition apparatus

Similar Documents

Publication Publication Date Title
JP2003007994A (en) Solid-state image pickup element, stereoscopic camera apparatus, and range finder
JP7180658B2 (en) Solid-state image sensor and electronic equipment
JP5915537B2 (en) IMAGING ELEMENT AND IMAGING DEVICE
JP5538553B2 (en) Solid-state imaging device and imaging apparatus
US9851483B2 (en) Stereoscopic imaging method and system that divides a pixel matrix into subgroups
KR101701528B1 (en) Three-dimensional image capture device
JP5810173B2 (en) Imaging apparatus and electronic information device
JP5227368B2 (en) 3D imaging device
JP5923754B2 (en) 3D imaging device
WO2013166215A1 (en) CAMERA MODULES PATTERNED WITH pi FILTER GROUPS
WO2011142062A1 (en) Three-dimensional imaging device
JP5927570B2 (en) Three-dimensional imaging device, light transmission unit, image processing device, and program
US20110181763A1 (en) Image pickup device and solid-state image pickup element of the type illuminated from both faces
JP5507362B2 (en) Three-dimensional imaging device and light transmission plate
WO2013057859A1 (en) Image capture element
JP2002191060A (en) Three-dimensional imaging unit
JP2012211942A (en) Solid-state image sensor and image pickup apparatus
JP5874334B2 (en) Image processing apparatus, imaging apparatus, image processing program, and imaging apparatus control program
JP5907668B2 (en) Imaging device and imaging device
WO2015062141A1 (en) Pixel unit of 3d cmos image sensor
JPS6295086A (en) Finder for video camera