WO2012165087A1 - Image capture device and ghosting correction method - Google Patents

Image capture device and ghosting correction method Download PDF

Info

Publication number
WO2012165087A1
WO2012165087A1 PCT/JP2012/060987 JP2012060987W WO2012165087A1 WO 2012165087 A1 WO2012165087 A1 WO 2012165087A1 JP 2012060987 W JP2012060987 W JP 2012060987W WO 2012165087 A1 WO2012165087 A1 WO 2012165087A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
detection
ghost
pixels
green
Prior art date
Application number
PCT/JP2012/060987
Other languages
French (fr)
Japanese (ja)
Inventor
博文 渡邊
善工 古田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012165087A1 publication Critical patent/WO2012165087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/626Reduction of noise due to residual charges remaining after image readout, e.g. to remove ghost images or afterimages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Definitions

  • the present invention relates to an imaging apparatus and a ghost correction method.
  • Imaging devices such as digital still cameras and digital video cameras generally have an imaging optical system composed of a plurality of lenses and prisms.
  • the subject includes a bright light source such as the sun or a light bulb
  • the light from the light source is reflected on the lens surface, the imaging optical system structure (screws, lens barrel, diaphragm, etc.) or the surface of the image sensor, and the reflection
  • An image of light may be formed on the image sensor.
  • An image generated by forming an image of the reflected light is generally called a ghost.
  • a ghost in the shape of an aperture is generated around a light source such as the sun, or reflection of a structure often becomes a ghost.
  • Japanese Patent Application Laid-Open No. 2004-133867 determines whether or not there is a ghost using a difference image between a focus image and a defocus image as a determination image, and subtracts the ghost from the focus image when it is determined that there is a ghost, thereby correcting the ghost. Is disclosed.
  • Patent Document 1 needs to execute imaging for acquiring a defocused image in order to detect a ghost. For this reason, the photographing time becomes longer and the power consumption becomes larger.
  • the present invention has been made in view of the above circumstances, and in any shooting environment, an imaging device capable of detecting the presence or absence of a ghost by one shooting and correcting the ghost when there is a ghost. It is another object of the present invention to provide a ghost correction method.
  • the imaging device of the present invention is an imaging device including a solid-state imaging device having two pixel groups each including a plurality of pixels, and the plurality of pixels of each pixel group are arranged in two dimensions, green
  • the pixel group includes three types of pixels: a first color detection pixel that detects light, a blue detection pixel that detects blue light, and a red detection pixel that detects red light.
  • Each pixel group includes the three types of pixels.
  • the array of the plurality of pixels of each pixel group is arranged in a Bayer shape, the first pixel row in which the green detection pixels and the blue detection pixels are alternately arranged in a row direction, and the red detection pixels And a second pixel row in which the green detection pixels are alternately arranged in a row direction, are alternately arranged in a column direction orthogonal to the row direction, and one pixel group of the two pixel groups
  • Each of the pixels includes the two images in a predetermined direction with respect to the pixels.
  • Pixels of the same type as the respective pixels of the other pixel group of the group are arranged adjacent to each other, and an optical aperture of each pixel of the one pixel group and an optical aperture of each pixel of the other pixel group Are decentered in opposite directions, and each pixel of the one pixel group and a pixel of the other pixel group arranged adjacent to each pixel in the predetermined direction constitute a pixel pair.
  • At least one of the first color detection pixels included in the first pixel row and the first color detection pixels included in the second pixel row obtained by dividing the one pixel group.
  • the other pixel group in which pixels forming a pair with the green area detection pixel and the green area detection pixel in the division area are arranged using the detection signal of each green detection pixel included in the division area.
  • a ghost presence / absence determination unit that determines whether a ghost has occurred by the ghost presence / absence determination unit, a detection signal of each green detection pixel in the divided area, and detection of a pixel that forms a pair with each green detection pixel
  • a ghost image quality difference calculating unit that calculates data indicating a difference in image quality of ghosts generated in each of the divided area and the area of the other pixel group determined that the ghost is generated using a signal; When the data indicating the image quality difference exceeds a first threshold value, the detection signal of each green detection pixel in the divided area and each green color detection so that the data indicating the image quality difference is equal to or less than the first threshold value.
  • a signal correction unit that corrects at least one of detection signals of pixels that form a pair with the pixel.
  • the ghost correction method of the present invention is a ghost correction method for correcting a ghost of a captured image obtained by imaging with a solid-state imaging device having two pixel groups each including a plurality of pixels, wherein These pixels are arranged in two dimensions, and include three types of pixels: a green detection pixel that detects green light, a blue detection pixel that detects blue light, and a red detection pixel that detects red light, Each pixel group includes the three types of pixels arranged in a Bayer shape, and the plurality of pixels in each pixel group are arranged by alternately arranging the green detection pixels and the blue detection pixels in a row direction.
  • a first pixel row and a second pixel row in which the red detection pixels and the green detection pixels are alternately arranged in a row direction are alternately arranged in a column direction orthogonal to the row direction.
  • One pixel of the two pixel groups In each of the pixels, pixels of the same type as the respective pixels of the other pixel group of the two pixel groups are arranged adjacent to each other in a predetermined direction with respect to each of the pixels.
  • the optical aperture of the pixel and the optical aperture of each pixel of the other pixel group are decentered in opposite directions, and each pixel of the one pixel group is adjacent to the pixel in the predetermined direction.
  • a pair of pixels is formed by the pixels of the other pixel group arranged in a row, and the green pixel and the second pixel included in the first pixel row obtained by dividing the one pixel group For each divided area including at least one of the green detection pixels included in a pixel row, a detection signal of each green detection pixel included in the divided area is used to detect each green detection pixel in the divided area and the divided area.
  • a ghost presence / absence determination step for determining whether or not a ghost has occurred in the area of the other pixel group, and detection of each green color detection pixel in the divided area determined to have a ghost generated by the ghost presence / absence determination step ghosts generated in the divided area and the other pixel group area where the ghost is determined to be generated using a signal and a detection signal of a pixel forming a pair with each green detection pixel
  • a ghost image quality difference calculating step for calculating data indicating a difference in image quality, and when the data indicating the image quality difference exceeds a first threshold, the data indicating the image quality difference is equal to or less than the first threshold.
  • a signal correction step for correcting at least one of a detection signal of each green detection pixel in the divided area and a detection signal of a pixel forming a pair with each of the green detection pixels; Is provided.
  • an imaging apparatus and a ghost correction method capable of detecting the presence or absence of a ghost by one shooting and correcting the ghost when there is a ghost in any shooting environment. it can.
  • FIG. 1 is a schematic plan view showing a schematic configuration of the solid-state imaging device 5 shown in FIG.
  • movement of the system control part 11 in the digital camera shown by FIG. The figure which shows the modification of the solid-state image sensor 5 mounted in the digital camera shown in FIG.
  • FIG. 1 is a diagram showing a schematic configuration of an imaging apparatus for explaining an embodiment of the present invention.
  • the imaging device include an imaging device such as a digital camera and a digital video camera, an imaging module mounted on an electronic endoscope, a camera-equipped mobile phone, and the like.
  • a digital camera will be described as an example.
  • the imaging system of the digital camera shown in FIG. 1 includes a photographing lens 1 including a focus lens and a zoom lens, a CCD type or MOS type solid-state imaging device 5, a diaphragm 2 provided therebetween, and an infrared ray cut-off.
  • a filter 3 and an optical low-pass filter 4 are provided.
  • the system control unit 11 that controls the entire electric control system of the digital camera controls the flash light emitting unit 12 and the light receiving unit 13. In addition, the system control unit 11 controls the lens driving unit 8 to adjust the position of the photographing lens 1 to the focus position or perform zoom adjustment. In addition, the system control unit 11 adjusts the exposure amount by controlling the opening amount of the aperture 2 via the aperture driving unit 9.
  • system control unit 11 drives the solid-state imaging device 5 by controlling the imaging device driving unit 10 to output a subject image captured through the photographing lens 1 as a captured image signal.
  • An instruction signal from the user is input to the system control unit 11 through the operation unit 14.
  • the electric control system of the digital camera further includes an analog signal processing unit 6 that performs analog signal processing such as correlated double sampling processing connected to the output of the solid-state imaging device 5, and RGB output from the analog signal processing unit 6. And an A / D conversion circuit 7 for converting the color signal into a digital signal.
  • the analog signal processing unit 6 and the A / D conversion circuit 7 are controlled by the system control unit 11.
  • the electric control system of this digital camera generates image data by performing main memory 16, memory control unit 15 connected to main memory 16, interpolation calculation, gamma correction calculation, RGB / YC conversion processing, and the like.
  • a digital signal processing unit 17, a compression / decompression processing unit 18 that compresses image data generated by the digital signal processing unit 17 into a JPEG format or expands compressed image data, and a detachable recording medium 21 are connected.
  • the memory control unit 15, the digital signal processing unit 17, the compression / decompression processing unit 18, the external memory control unit 20, and the display control unit 22 are connected to each other by a control bus 24 and a data bus 25, and commands from the system control unit 11. Controlled by.
  • FIG. 2 is a schematic plan view showing a schematic configuration of the solid-state imaging device 5 shown in FIG.
  • the solid-state imaging device 5 includes a first pixel group including a plurality of pixels 52 arranged in a two-dimensional manner (a square lattice shape in the example of FIG. 2) in a row direction X and a column direction Y orthogonal thereto. And a second pixel group made up of a plurality of pixels 53 having the same arrangement.
  • Each pixel 52 includes a photoelectric conversion unit such as a photodiode and a color filter provided thereabove.
  • the color filter array included in all the pixels 52 is a Bayer array.
  • Each pixel 53 includes a photoelectric conversion unit such as a photodiode and a color filter provided thereabove.
  • the array of color filters included in all the pixels 53 is a Bayer array.
  • pixels with “R” are pixels that detect red light.
  • the pixels with “G” are pixels that detect green light.
  • the pixels with “B” are pixels that detect blue light.
  • the pixels 52 and 53 with “R” are also referred to as an R pixel 52 and an R pixel 53.
  • the pixels 52 and 53 with “G” are also referred to as G pixel 52 and G pixel 53.
  • the pixels 52 and 53 with “B” are also referred to as B pixel 52 and B pixel 53.
  • the first pixel group of the solid-state imaging device 5 includes a GR pixel row, which is a pixel row in which G pixels 52 and R pixels 52 are alternately arranged in the row direction X, and B pixels 52 and G pixels 52 in the row direction X.
  • a GR pixel row which is a pixel row in which G pixels 52 and R pixels 52 are alternately arranged in the row direction X
  • B pixels 52 and G pixels 52 in the row direction X Two types of pixel rows, including BG pixel rows, which are alternately arranged pixel rows, are included. These two types of pixel rows are alternately arranged in the column direction Y.
  • a second pixel group that detects light of the same color as each pixel 52 in a predetermined direction with respect to each pixel 52 (in the diagonally downward direction in the example of FIG. 2).
  • Pixels 53 are arranged.
  • Each pixel 52 and a pixel 53 adjacent thereto in the predetermined direction constitute a pixel pair.
  • the optical aperture 52k of each pixel 52 (opening of the photoelectric conversion unit included in the pixel 52) and the optical aperture 53k of each pixel 53 (opening of the photoelectric conversion unit included in the pixel 53) are as shown in FIG. In the row direction X, they are eccentric in opposite directions. Therefore, parallax occurs between the image data captured by the first pixel group and the image data captured by the second pixel group.
  • This digital camera generates stereoscopic image data that can be stereoscopically viewed using the two pieces of image data having parallax.
  • the optical aperture 52k of each pixel 52 and the optical aperture 53k of each pixel 53 may be decentered in opposite directions in the column direction Y.
  • the captured image signal output from the first pixel group and the second image signal are output.
  • a ghost occurs in each captured image signal output from the pixel group.
  • the first pixel group and the second pixel group have different optical aperture positions. For this reason, the ghost included in the captured image signal output from the first pixel group and the ghost included in the captured image signal output from the second pixel group are not exactly the same.
  • the appearance of the ghost may become unnatural.
  • this phenomenon will be described in detail.
  • each signal (ghost component) constituting the ghost in the captured image signal and the output source pixel of each signal have a one-to-one correspondence.
  • a ghost component is included in a pixel signal obtained from an arbitrary pixel of the solid-state imaging device 5 as synonymous with the occurrence of a ghost in the arbitrary pixel.
  • an R pixel 52 exists on the left side of the upper left G pixel 52 (hereinafter also referred to as the upper left G pixel 52), and the upper left G pixel.
  • An R pixel 53 exists on the left side of a G pixel 53 (hereinafter also referred to as an upper left G pixel 53) that forms a pair with 52.
  • the optical aperture is decentered in the opposite direction in the X direction. For this reason, the amount of light leaking from the R pixels 52 and 53 and leaking to the adjacent upper left G pixel 52 and upper left G pixel 53 is different.
  • This level difference includes a component caused by a difference in optical aperture between the G pixel 52 and the G pixel 53 and a component caused by a difference in the amount of light leaking from adjacent pixels.
  • the upper left G pixel 52 and the left adjacent to each of the lower right G pixel 52 (hereinafter also referred to as the lower right G pixel 52) of the four pixels 52 of the first pixel group surrounded by the broken line in FIG. are arranged with different types of pixels (R pixel 52 and B pixel 52) having different detection colors. For this reason, a level difference caused by the difference in the amount of light leaking from the adjacent pixel occurs between the detection signal of the upper left G pixel 52 and the detection signal of the lower right G pixel 52.
  • a ghost component is included in the detection signals of the four pixels 52 in the area surrounded by the broken line in FIG. 3, the ghost component is also included in the detection signals of the four pixels 53 that form a pair with the four pixels 52. Will be. However, these two ghost components do not match due to the difference in aperture. Therefore, a level difference equal to or greater than the second threshold value is also generated between the detection signal of each pixel 52 in the region surrounded by the broken line in FIG. 3 and the detection signal of the pixel 53 that forms a pair with each pixel 52. .
  • the system control unit 11 includes a total of four pixels 52 in two rows and two columns adjacent to the first pixel group of the solid-state imaging device 5 in the row direction X and the column direction Y. For each detection area (area surrounded by a broken line shown in FIG. 3), a difference between detection signals of two G pixels 52 included in the detection area is obtained, and a ghost is detected in this detection area based on the difference between the detection signals. Whether or not has occurred is determined.
  • the system control unit 11 detects the detection signal of each pixel 52 in the detection area, and the detection signal of the pixel 53 that forms a pair with each pixel 52. If the difference is large enough to affect the appearance of the ghost in the stereoscopic image data, reduce this difference to the extent that the ghost does not appear unnatural. Make corrections.
  • the system control unit 11 determines the region where the ghost is generated for each of the first pixel group and the second pixel group, and the first control unit 11 in the region where the ghost is generated.
  • the level difference between the detection signals of the first pixel group and the second pixel group is corrected.
  • FIG. 4 is a flowchart for explaining the operation of the system control unit 11 in the digital camera shown in FIG.
  • the system control unit 11 controls the image sensor driving unit 10 to cause the solid-state image sensor 5 to perform imaging.
  • a captured image signal including the first captured image signal output from the first pixel group and the second captured image signal output from the second pixel group is output from the solid-state image sensor 5.
  • the output captured image signal is temporarily stored in the main memory 16 after being subjected to analog signal processing and digital conversion processing.
  • the system control unit 11 performs the processing described below on the captured image signal stored in the main memory 16.
  • the system control unit 11 uses a plurality of pixels 52 in a total of two rows and two columns as one detection area (area surrounded by a broken line in FIG. 5). Divide into detection areas.
  • the system control unit 11 calculates a difference (absolute value) between the detection signals of the two G pixels 52 in the arbitrary detection area for the arbitrary detection area (step S1).
  • step S2 determines whether or not the difference calculated in step S1 is greater than or equal to a threshold Th1 (step S2).
  • step S2 when the difference calculated in step S1 is less than the threshold Th1, the system control unit 11 determines that no ghost has occurred in the detection area that is the difference calculation target in step S1. .
  • step S7 the system control unit 11 determines whether or not the processing after step S1 has been completed for all the detection areas. When the determination in step S7 is NO, the system control unit 11 changes the detection area to an unprocessed one, and performs the processing after step S1 again on the changed detection area.
  • step S3 if the difference calculated in step S1 is greater than or equal to the threshold Th1, the system control unit 11 pairs the detection area that is the difference calculation target in step S1 with each pixel 52 in this detection area. It is determined that a ghost is generated in each of the areas of the second pixel group in which the pixels 53 constituting the pixel are arranged (hereinafter referred to as the area of the second pixel group constituting a pair with the detection area) (Ste S3).
  • the system control unit 11 pairs a detection signal (hereinafter also referred to as a first detection signal) of each G pixel 52 included in the detection area that is a difference calculation target in step S ⁇ b> 1 and the pixel 52.
  • a difference (absolute value) from a detection signal (hereinafter also referred to as a second detection signal) of the constituting G pixel 53 is calculated (step S4).
  • this difference includes the difference between the detection signal of the upper left G pixel 52 included in the detection area that is the difference calculation target in step S1 and the detection signal of the G pixel 53 that forms a pair with the upper left G pixel 52.
  • the difference between the detection signal of the lower right G pixel 52 included in the detection area subjected to the difference calculation in step S1 and the difference between the detection signal of the G pixel 53 that forms a pair with the lower right G pixel 52 is provided. included.
  • the upper left G pixel 52 and the lower right G pixel 52 have the same optical aperture and are close to each other, the two types of difference values are almost the same.
  • the difference calculated in step S4 is the difference in image quality between the ghost that occurs in the detection area that is the difference calculation target in step S1 and the ghost that occurs in the area of the second pixel group that forms a pair with this detection area. It becomes the data to show.
  • step S5 When the difference calculated in step S4 is equal to or greater than the threshold Th2 (step S5: YES), the system control unit 11 sets a ghost generated in the detection area that is a difference calculation target in step S1 and a pair with this detection area. It is determined that there is an image quality difference in the ghost that occurs in the area of the second pixel group that constitutes the image so as to give a sense of discomfort when each ghost is viewed stereoscopically. Then, the system control unit 11 corrects the level of at least one of the first detection signal and the second detection signal so that the difference calculated in step S4 is equal to or less than the threshold Th2 (step S6).
  • the system control unit 11 detects the detection signal of the upper left G pixel 52, the detection signal of the G pixel 53 that forms a pair with the upper left G pixel 52, the detection signal of the lower right G pixel 52, and the lower right G pixel 52.
  • the detection signals of the G pixel 53 constituting the pair the detection signal of the upper left G pixel 52 and the detection signal of the lower right G pixel 52 are multiplied by a uniform gain to perform correction.
  • step S5 NO
  • the system control unit 11 sets a ghost generated in the detection area that is the difference calculation target in step S1 and a pair with this detection area. It is determined that the ghost image generated in the area of the second pixel group to be configured does not have a difference in image quality that gives a sense of incongruity when each ghost image is stereoscopically viewed. And the system control part 11 performs the process of step S7.
  • step S7 determines whether the processing from step S1 is performed on all detection areas. If the determination in step S7 is YES, that is, if the processing from step S1 is performed on all detection areas, the system control unit 11 ends the ghost detection and correction operation.
  • G pixel 52 and G pixel 53 are pixels whose optical apertures are decentered in opposite directions. For this reason, even if there is a level difference of the threshold Th2 or more between the detection signal of the G pixel 52 and the detection signal of the G pixel 53 that forms a pair with the G pixel 52 in each detection area, the G pixel 52 And it cannot be said that a ghost is generated in the area including the G pixel 53.
  • the system control unit 11 generates a ghost for each detection area of the first pixel group based on the difference between the detection signals of the two G pixels 52 included in each detection area. The presence or absence of is determined.
  • the difference between the detection signals is equal to or greater than the threshold Th2 for the G pixel 52 in the detection area where it is determined that a ghost has occurred and the G pixel 53 that forms a pair with the G pixel 52.
  • the system control unit 11 corrects the detection signal so that the difference is less than the threshold Th2. By such processing, the area where the ghost is generated can be accurately determined. Even in an area where a ghost is generated, correction can be performed only for a ghost that causes a sense of incongruity when viewed stereoscopically.
  • the digital camera of the present embodiment it is possible to detect ghosts with high accuracy and to make ghosts without any sense of incongruity even when a stereoscopic image is displayed. Further, in this digital camera, since the ghost level is corrected only in a necessary area, it is possible to visually recognize a ghost without a sense of incongruity without increasing the time required for the ghost correction.
  • the system control unit 11 detects the detection signal (third detection signal) of the R pixel 52 in the detection area that is the difference calculation target in step S ⁇ b> 1 and the R pixel.
  • the detection signal difference absolute value
  • the system control unit 11 corrects at least one of the third detection signal and the fourth detection signal so that the detection signal difference is less than the threshold Th3. Further, the system control unit 11 may perform the process of step S7 when the detection signal difference is less than the threshold Th3.
  • the system control unit 11 detects the detection signal (the first detection signal of the B pixel 52 in the detection area that is the difference calculation target in step S1.
  • the detection signal difference absolute value
  • the system control unit 11 corrects at least one of the fifth detection signal and the sixth detection signal so that the detection signal difference is less than the threshold Th4. Further, when the detection signal difference is less than the threshold Th4, the system control unit 11 may perform the process of step S7.
  • the process of calculating the difference and the process of correcting at least one of the fifth detection signal and the sixth detection signal may be reversed in order.
  • the ghost is greatly affected by the luminance component included in the detection signal, as shown in the flowchart of FIG. 4, even if only the detection signal of the G pixel is corrected in step S6, the image quality improvement effect of the ghost is sufficiently obtained. Obtainable.
  • the first pixel group is divided into a plurality of detection areas, and the processing after step S1 in FIG. 4 is performed on each detection area.
  • the second pixel group may be divided into a plurality of detection areas, and the processing after step S1 in FIG. 4 may be performed on each detection area.
  • the notation of the first pixel group and the second pixel group in FIG. 4 is reversed.
  • system control unit 11 performs the processing of steps S1 to S3 in FIG. 4 for all the detection areas, and then performs step S4 in FIG. 4 for each detection area determined to have a ghost. Step S6 may be performed.
  • step S6 can be performed by a simple process of replacing the detection signal of the pixel 53 that forms a pair with the pixel 52.
  • system control unit 11 divides the first pixel group into a plurality of blocks each including a plurality of detection areas shown in FIG. 5, and processing for determining whether or not a ghost has occurred for each divided block. Correction processing may be performed.
  • FIG. 6 is a flowchart for explaining a modification of the operation of the system control unit 11 in the digital camera shown in FIG.
  • the system control unit 11 selects the first pixel group, for example, the detection area shown in FIG. It is divided into a plurality of blocks including four each.
  • the system control unit 11 has, for an arbitrary divided block, an average value of the detection signals of the G pixels 52 in the GR pixel row in the arbitrary divided block and the BG pixel row in the arbitrary divided block. A difference (absolute value) from the average value of the detection signals of the G pixel 52 is calculated (step S11).
  • step S12 determines whether or not the difference calculated in step S11 is greater than or equal to the threshold Th1 (step S12).
  • step S12 when the difference calculated in step S11 is less than the threshold value Th1, the system control unit 11 determines that no ghost has occurred in the divided block subjected to the difference calculation in step S11.
  • step S17 it is determined whether or not the processes in and after step S11 have been completed for all the divided blocks. When the determination in step S17 is NO, the system control unit 11 changes the divided block to an unprocessed block, and performs the processing from step S11 on the changed divided block again.
  • step S11 If the difference calculated in step S11 is greater than or equal to the threshold Th1 as a result of the determination in step S12, the system control unit 11 determines that a ghost has occurred in the divided block that is the difference calculation target in step S11 (step S11). S3).
  • the system control unit 11 calculates the average value of the detection signals (hereinafter also referred to as seventh detection signals) of the G pixels 52 included in the divided block that is the difference calculation target in step S11, and the pixels 52.
  • the difference (absolute value) from the average value of the detection signals (hereinafter also referred to as the eighth detection signal) of the G pixel 53 constituting the pair is calculated (step S14).
  • the difference calculated here is a ghost that occurs in the divided block that is the difference calculation target in step S11 and a ghost that occurs in the area of the second pixel group that forms a pair with each detection area included in this divided block.
  • the data indicates the difference in image quality.
  • step S15 When the difference calculated in step S14 is greater than or equal to the threshold Th2 (step S15: YES), the system control unit 11 includes a ghost that occurs in the divided block that is the difference calculation target in step S11 and the divided block. It is determined that an image quality difference is generated in a ghost that occurs in the area of the second pixel group that forms a pair with each detection area, so as to give a sense of incongruity when each ghost is stereoscopically viewed. Then, the system control unit 11 includes at least the seventh detection signal and the eighth detection signal so that the difference between the average value of the seventh detection signal and the average value of the eighth detection signal is equal to or less than the threshold Th2. One level is corrected (step S16).
  • the system control unit 11 multiplies the detection signal of each G pixel 52 in the divided block by a uniform gain so that the difference between the average value of the seventh detection signal and the average value of the eighth detection signal is a threshold value. It is made to become below Th2.
  • step S15 NO
  • the system control unit 11 includes a ghost that occurs in the divided block that is the difference calculation target in step S11 and the divided block. It is determined that a ghost image generated in the area of the second pixel group that forms a pair with each detection area does not have a difference in image quality that gives a sense of discomfort when each ghost image is stereoscopically viewed. And the system control part 11 performs the process of step S17.
  • step S17 determines whether the processing from step S11 is performed on all the divided blocks. If the determination in step S17 is YES, that is, if the processing from step S11 is performed on all the divided blocks, the system control unit 11 ends the ghost detection and correction operation.
  • the time required for detecting and correcting the ghost can be shortened by detecting the ghost in the divided block unit instead of the detection area unit and correcting the ghost.
  • threshold values Th1 and Th2 are stored in the internal memory of the system control unit 11 for each shooting condition such as an aperture value and a zoom magnification, and the system control unit 11 sets a threshold value Th1 corresponding to the set shooting condition.
  • Th2 are preferably read from the internal memory and used in the processing shown in FIGS. By doing so, it is possible to maintain ghost detection and correction accuracy even when the shooting conditions are changed.
  • FIG. 7 is a view showing a modification of the solid-state imaging device 5 mounted on the digital camera shown in FIG.
  • the solid-state imaging device 5a shown in FIG. 7 has a pixel 53 that detects light of the same color as each of the pixels 52 arranged next to the lower direction of each of the pixels 52 in the first pixel group.
  • the configuration is the same as that shown in FIG. In FIG. 7, the shape of each pixel is obtained by rotating each pixel shown in FIG. 2 by 45 degrees, and the shapes of the optical apertures 52k and 53k are rectangular.
  • the area surrounded by the broken line in FIG. 7 is used as a detection area, the first pixel group is divided into a plurality of detection areas, and the processing shown in FIG. 4 is performed on each detection area. By doing so, the same effect as when the solid-state imaging device 5 is used can be obtained.
  • the disclosed imaging device is an imaging device including a solid-state imaging device having two pixel groups each including a plurality of pixels, and the plurality of pixels of each pixel group are arranged in a two-dimensional manner, and are green
  • the pixel includes three types of pixels: a green detection pixel that detects light, a blue detection pixel that detects blue light, and a red detection pixel that detects red light
  • the array of the plurality of pixels in each pixel group includes: A first pixel row in which green detection pixels and blue detection pixels are alternately arranged in a row direction; and a second pixel row in which red detection pixels and green detection pixels are alternately arranged in a row direction.
  • Each pixel of one pixel group of the two pixel groups is alternately arranged in a column direction orthogonal to the direction, and the other pixel of the two pixel groups in a predetermined direction with respect to each pixel. Pixels of the same type as each pixel in the pixel group are placed adjacent to each other.
  • each pixel of the one pixel group and the optical aperture of each pixel of the other pixel group are decentered in opposite directions, and each pixel of the one pixel group, A pixel pair is formed by pixels of the other pixel group arranged adjacent to the pixel in the predetermined direction, and is included in the first pixel row obtained by dividing the one pixel group For each of the divided areas each including at least one of the green color detection pixels and the green color detection pixel included in the second pixel row, using the detection signal of each green color detection pixel included in the division area.
  • a ghost presence / absence determination unit that determines whether or not a ghost has occurred in the area and the area of the other pixel group in which pixels forming a pair with each green detection pixel in the divided area are disposed; and the ghost presence / absence determination Go by part It is determined that the ghost is generated using the detection signal of each green detection pixel in the divided area where it is determined that the image is generated and the detection signal of the pixel that forms a pair with each green detection pixel.
  • a ghost image quality difference calculating unit for calculating data indicating a difference in image quality of a ghost generated in each of the divided area and the area of the other pixel group, and when the data indicating the image quality difference exceeds a first threshold, At least one of a detection signal of each green detection pixel in the divided area and a detection signal of a pixel forming a pair with each green detection pixel so that the data indicating the image quality difference is equal to or less than the first threshold value.
  • a signal correction unit for correction.
  • the divided area includes a plurality of green detection pixels included in the first pixel row and a plurality of green detection pixels included in the second pixel row, and the ghost presence / absence determination unit Are an average value of detection signals of the green detection pixels included in the first pixel row included in the divided area, and the green detection pixels included in the second pixel row included in the divided area.
  • the difference between the average value of the detection signals is equal to or greater than a second threshold value, it is determined that the ghost has occurred in the divided area and the area of the other pixel group, and the ghost image quality difference calculating unit, The average value of the detection signals of the green detection pixels in the divided areas determined by the ghost presence / absence determination unit and the average value of the detection signals of the pixels forming a pair with each green detection pixel difference A and calculates the data indicating the quality difference.
  • the divided area is included in the green detection pixel included in the first pixel row, the blue detection pixel included in the first pixel row, and the second pixel row.
  • the ghost presence / absence determination unit is included in the first pixel row, which is included in the divided area, and includes the green detection pixel and the red detection pixel included in the second pixel row one by one.
  • the ghost image quality difference calculation unit determines the green detection pixel of each divided area that is determined that the ghost is generated by the ghost presence / absence determination unit.
  • Detection signal The difference between the detection signals of the pixels constituting the respective green detection pixel pair, and calculates the data indicating the quality difference.
  • the first threshold value and the second threshold value are changed according to shooting conditions.
  • the disclosed ghost correction method is a ghost correction method for correcting a ghost of a captured image obtained by imaging with a solid-state imaging device having two pixel groups each including a plurality of pixels, and the plurality of the ghost correction methods in each pixel group.
  • the two pixels include three types of pixels arranged in a two-dimensional manner: a green color detection pixel that detects green light, a second color detection pixel that detects blue light, and a third color detection pixel that detects red light.
  • the arrangement of the plurality of pixels of each pixel group includes a first pixel row in which the green detection pixels and the blue detection pixels are alternately arranged in a row direction, the red detection pixels, and the green detection pixels.
  • the second pixel rows alternately arranged in the row direction are alternately arranged in the column direction orthogonal to the row direction, and each pixel of one pixel group of the two pixel groups includes: The two images in a predetermined direction with respect to each pixel. Pixels of the same type as the respective pixels of the other pixel group of the group are arranged adjacent to each other, and an optical aperture of each pixel of the one pixel group and an optical aperture of each pixel of the other pixel group Are decentered in opposite directions, and each pixel of the one pixel group and a pixel of the other pixel group arranged adjacent to each pixel in the predetermined direction constitute a pixel pair.
  • the division area and the area of the other pixel group in which pixels forming a pair with each green detection pixel of the division area are arranged.
  • a ghost image quality difference calculating step for calculating data indicating a difference in image quality between ghosts occurring in each of the divided area and the other pixel group area where it is determined that the ghost has occurred, and When the data indicating the image quality difference exceeds the first threshold value, the detection signal of each green detection pixel in the divided area and each of the green color detection pixels so that the data indicating the image quality difference is equal to or less than the first threshold value.
  • the divided area includes a plurality of green detection pixels included in the first pixel row and a plurality of green detection pixels included in the second pixel row, and the ghost presence / absence determination is performed.
  • an average value of detection signals of the green detection pixels included in the first pixel row included in the division area and the green detection included in the second pixel row included in the division area is performed.
  • the average value of the detection signals of the green detection pixels in the divided areas determined by the ghost presence / absence determination unit to generate ghost, The difference between the average value of the detection signal of the pixels constituting the, and calculates the data indicating the quality difference.
  • the divided area is divided into the green detection pixel included in the first pixel row, the blue detection pixel included in the first pixel row, and the second pixel row.
  • the green detection pixel included and the red detection pixel included in the second pixel row are included one by one, and the ghost presence determination step includes the first pixel row included in the divided area.
  • the difference between the detection signal of the green detection pixel and the detection signal of the green detection pixel included in the second pixel row included in the divided area is equal to or greater than a second threshold value, It is determined that the ghost is generated in the area of the other pixel group, and in the ghost image quality difference calculating step, the divided area determined that the ghost is generated by the ghost presence / absence determination unit.
  • a detection signal of the green detection pixel, the difference between the detection signals of the pixels constituting the respective green detection pixel pair and calculates the data indicating the quality difference.
  • the first threshold value and the second threshold value are changed according to shooting conditions.
  • the imaging apparatus and ghost correction method of the present invention can detect the presence or absence of a ghost by one shooting in any shooting environment, and can correct this ghost if there is a ghost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

When the difference between G pixels (52) in a detection area of a first group of pixels is greater than or equal to a threshold (Th1), a system control unit (11) determines that ghosting has occurred in the detection area and an area of a second group of pixels which configures a pair with the detection area, and further, when the difference between the detection signal of each G pixel (52) in the detection area and the detection signal of a G pixel (53) which configures a pair with each G pixel (52) is greater than or equal to a threshold (Th2), carries out a correction which reduces the level difference of the ghosting which occurs in each of the detection area and the area of the second group of pixels which configures the pair with the detection area.

Description

撮像装置及びゴースト補正方法Imaging apparatus and ghost correction method
 本発明は、撮像装置及びゴースト補正方法に関する。 The present invention relates to an imaging apparatus and a ghost correction method.
 デジタルスチルカメラやデジタルビデオカメラ等の撮像装置は、一般に複数のレンズやプリズムから構成された撮像光学系を有している。被写体に太陽や電球などの明るい光源が含まれている場合、その光源の光がレンズ表面や撮像光学系の構造物(ねじ、鏡筒、絞りなど)や撮像素子の表面で反射し、その反射光の像が撮像素子上に結像することがある。この反射光の像が結像して発生する画像は、一般にゴーストと呼ばれる。通常、太陽などの光源を中心に絞りの形状のゴーストが発生したり、構造物の反射がゴーストとなったりする場合が多い。 Imaging devices such as digital still cameras and digital video cameras generally have an imaging optical system composed of a plurality of lenses and prisms. When the subject includes a bright light source such as the sun or a light bulb, the light from the light source is reflected on the lens surface, the imaging optical system structure (screws, lens barrel, diaphragm, etc.) or the surface of the image sensor, and the reflection An image of light may be formed on the image sensor. An image generated by forming an image of the reflected light is generally called a ghost. Usually, a ghost in the shape of an aperture is generated around a light source such as the sun, or reflection of a structure often becomes a ghost.
 特許文献1は、フォーカス画像とデフォーカス画像の差分画像を判定画像としてゴーストの有無判定を行い、ゴーストがあると判断したときには、フォーカス画像からゴーストを減算することにより、ゴーストの補正を行う撮像装置を開示している。 Japanese Patent Application Laid-Open No. 2004-133867 determines whether or not there is a ghost using a difference image between a focus image and a defocus image as a determination image, and subtracts the ghost from the focus image when it is determined that there is a ghost, thereby correcting the ghost. Is disclosed.
 特許文献1に記載の撮像装置によれば、あらゆる撮影環境において、ゴーストを精度良く補正することができる。 According to the imaging apparatus described in Patent Document 1, it is possible to accurately correct a ghost in any shooting environment.
日本国特開2008-54206号公報Japanese Unexamined Patent Publication No. 2008-54206
 しかしながら、特許文献1に記載の撮像装置は、ゴーストの検出を行うために、デフォーカス画像を取得するための撮影を実行する必要がある。このため、撮影時間が長くなったり、消費電力が大きくなったりする。 However, the imaging apparatus described in Patent Document 1 needs to execute imaging for acquiring a defocused image in order to detect a ghost. For this reason, the photographing time becomes longer and the power consumption becomes larger.
 本発明は、上記事情に鑑みてなされたものであり、あらゆる撮影環境においても、1回の撮影によりゴーストの有無を検出し、ゴーストが有る場合にはこのゴーストを補正することが可能な撮像装置及びゴースト補正方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in any shooting environment, an imaging device capable of detecting the presence or absence of a ghost by one shooting and correcting the ghost when there is a ghost. It is another object of the present invention to provide a ghost correction method.
 本発明の撮像装置は、それぞれが複数の画素を含む2つの画素群を有する固体撮像素子を備える撮像装置であって、各画素群の前記複数の画素は、二次元状に配列された、緑色光を検出する第一色検出画素、青色光を検出する青色検出画素、及び赤色光を検出する赤色検出画素の3種類の画素を含むものであり、各画素群は、前記3種類の画素がベイヤ状に配列されたものであり、各画素群の前記複数の画素の配列は、前記緑色検出画素と前記青色検出画素を行方向に交互に並べた第一の画素行と、前記赤色検出画素と前記緑色検出画素を行方向に交互に並べた第二の画素行とを、前記行方向に直交する列方向に交互に並べたものとなっており、前記2つの画素群の一方の画素群の各画素には、前記各画素に対して所定方向に前記2つの画素群の他方の画素群の当該各画素と同一種類の画素が隣接して配置されており、前記一方の画素群の各画素の光学開口と、前記他方の画素群の各画素の光学開口とは、互いに逆方向に偏心しており、前記一方の画素群の各画素と、前記各画素に対して前記所定方向に隣接して配置される前記他方の画素群の画素とで画素のペアが構成され、前記一方の画素群を分割して得られる、前記第一の画素行に含まれる前記第一色検出画素と前記第二の画素行に含まれる前記第一色検出画素とをそれぞれ少なくとも1つ含む分割エリア毎に、前記分割エリアに含まれる各緑色検出画素の検出信号を用いて、前記分割エリアと前記分割エリアの各緑色検出画素とペアを構成する画素が配置される前記他方の画素群のエリアとにゴーストが発生しているか否かを判定するゴースト有無判定部と、前記ゴースト有無判定部によりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号とを用いて、前記ゴーストが発生していると判定された分割エリア及び前記他方の画素群のエリアにそれぞれ発生しているゴーストの画質差を示すデータを算出するゴースト画質差算出部と、前記画質差を示すデータが第一の閾値を越える場合、前記画質差を示すデータが前記第一の閾値以下となるように、前記分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号との少なくとも一方を補正する信号補正部とを備えるものである。 The imaging device of the present invention is an imaging device including a solid-state imaging device having two pixel groups each including a plurality of pixels, and the plurality of pixels of each pixel group are arranged in two dimensions, green The pixel group includes three types of pixels: a first color detection pixel that detects light, a blue detection pixel that detects blue light, and a red detection pixel that detects red light. Each pixel group includes the three types of pixels. The array of the plurality of pixels of each pixel group is arranged in a Bayer shape, the first pixel row in which the green detection pixels and the blue detection pixels are alternately arranged in a row direction, and the red detection pixels And a second pixel row in which the green detection pixels are alternately arranged in a row direction, are alternately arranged in a column direction orthogonal to the row direction, and one pixel group of the two pixel groups Each of the pixels includes the two images in a predetermined direction with respect to the pixels. Pixels of the same type as the respective pixels of the other pixel group of the group are arranged adjacent to each other, and an optical aperture of each pixel of the one pixel group and an optical aperture of each pixel of the other pixel group Are decentered in opposite directions, and each pixel of the one pixel group and a pixel of the other pixel group arranged adjacent to each pixel in the predetermined direction constitute a pixel pair. At least one of the first color detection pixels included in the first pixel row and the first color detection pixels included in the second pixel row obtained by dividing the one pixel group. The other pixel group in which pixels forming a pair with the green area detection pixel and the green area detection pixel in the division area are arranged using the detection signal of each green detection pixel included in the division area. Whether or not there is a ghost in this area A ghost presence / absence determination unit that determines whether a ghost has occurred by the ghost presence / absence determination unit, a detection signal of each green detection pixel in the divided area, and detection of a pixel that forms a pair with each green detection pixel A ghost image quality difference calculating unit that calculates data indicating a difference in image quality of ghosts generated in each of the divided area and the area of the other pixel group determined that the ghost is generated using a signal; When the data indicating the image quality difference exceeds a first threshold value, the detection signal of each green detection pixel in the divided area and each green color detection so that the data indicating the image quality difference is equal to or less than the first threshold value. And a signal correction unit that corrects at least one of detection signals of pixels that form a pair with the pixel.
 本発明のゴースト補正方法は、それぞれが複数の画素を含む2つの画素群を有する固体撮像素子により撮像して得られる撮像画像のゴーストを補正するゴースト補正方法であって、各画素群の前記複数の画素は、二次元状に配列された、緑色光を検出する緑色検出画素、青色光を検出する青色検出画素、及び赤色光を検出する赤色検出画素の3種類の画素を含むものであり、各画素群は、前記3種類の画素がベイヤ状に配列されたものであり、各画素群の前記複数の画素の配列は、前記緑色検出画素と前記青色検出画素を行方向に交互に並べた第一の画素行と、前記赤色検出画素と前記緑色検出画素を行方向に交互に並べた第二の画素行とを、前記行方向に直交する列方向に交互に並べたものとなっており、前記2つの画素群の一方の画素群の各画素には、前記各画素に対して所定方向に前記2つの画素群の他方の画素群の当該各画素と同一種類の画素が隣接して配置されており、前記一方の画素群の各画素の光学開口と、前記他方の画素群の各画素の光学開口とは、互いに逆方向に偏心しており、前記一方の画素群の各画素と、前記各画素に対して前記所定方向に隣接して配置される前記他方の画素群の画素とで画素のペアが構成され、前記一方の画素群を分割して得られる、前記第一の画素行に含まれる前記緑色検出画素と前記第二の画素行に含まれる前記緑色検出画素とをそれぞれ少なくとも1つ含む分割エリア毎に、前記分割エリアに含まれる各緑色検出画素の検出信号を用いて、前記分割エリアと前記分割エリアの各緑色検出画素とペアを構成する画素が配置される前記他方の画素群のエリアとにゴーストが発生しているか否かを判定するゴースト有無判定ステップと、前記ゴースト有無判定ステップによりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号とを用いて、前記ゴーストが発生していると判定された分割エリア及び前記他方の画素群のエリアにそれぞれ発生しているゴーストの画質差を示すデータを算出するゴースト画質差算出ステップと、前記画質差を示すデータが第一の閾値を越える場合、前記画質差を示すデータが前記第一の閾値以下となるように、前記分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号との少なくとも一方を補正する信号補正ステップとを備えるものである。 The ghost correction method of the present invention is a ghost correction method for correcting a ghost of a captured image obtained by imaging with a solid-state imaging device having two pixel groups each including a plurality of pixels, wherein These pixels are arranged in two dimensions, and include three types of pixels: a green detection pixel that detects green light, a blue detection pixel that detects blue light, and a red detection pixel that detects red light, Each pixel group includes the three types of pixels arranged in a Bayer shape, and the plurality of pixels in each pixel group are arranged by alternately arranging the green detection pixels and the blue detection pixels in a row direction. A first pixel row and a second pixel row in which the red detection pixels and the green detection pixels are alternately arranged in a row direction are alternately arranged in a column direction orthogonal to the row direction. , One pixel of the two pixel groups In each of the pixels, pixels of the same type as the respective pixels of the other pixel group of the two pixel groups are arranged adjacent to each other in a predetermined direction with respect to each of the pixels. The optical aperture of the pixel and the optical aperture of each pixel of the other pixel group are decentered in opposite directions, and each pixel of the one pixel group is adjacent to the pixel in the predetermined direction. A pair of pixels is formed by the pixels of the other pixel group arranged in a row, and the green pixel and the second pixel included in the first pixel row obtained by dividing the one pixel group For each divided area including at least one of the green detection pixels included in a pixel row, a detection signal of each green detection pixel included in the divided area is used to detect each green detection pixel in the divided area and the divided area. Before the pixels that make up the pair are placed A ghost presence / absence determination step for determining whether or not a ghost has occurred in the area of the other pixel group, and detection of each green color detection pixel in the divided area determined to have a ghost generated by the ghost presence / absence determination step Ghosts generated in the divided area and the other pixel group area where the ghost is determined to be generated using a signal and a detection signal of a pixel forming a pair with each green detection pixel A ghost image quality difference calculating step for calculating data indicating a difference in image quality, and when the data indicating the image quality difference exceeds a first threshold, the data indicating the image quality difference is equal to or less than the first threshold. A signal correction step for correcting at least one of a detection signal of each green detection pixel in the divided area and a detection signal of a pixel forming a pair with each of the green detection pixels; Is provided.
 本発明によれば、あらゆる撮影環境においても、1回の撮影によりゴーストの有無を検出し、ゴーストが有る場合にはこのゴーストを補正することが可能な撮像装置及びゴースト補正方法を提供することができる。 According to the present invention, it is possible to provide an imaging apparatus and a ghost correction method capable of detecting the presence or absence of a ghost by one shooting and correcting the ghost when there is a ghost in any shooting environment. it can.
本発明の一実施形態を説明するための撮像装置の概略構成を示す図The figure which shows schematic structure of the imaging device for describing one Embodiment of this invention 図1に示される固体撮像素子5の概略構成を示す平面模式図FIG. 1 is a schematic plan view showing a schematic configuration of the solid-state imaging device 5 shown in FIG. ゴーストが発生しているエリアにおける画素の検出信号のレベル差について説明する図The figure explaining the level difference of the detection signal of the pixel in the area where the ghost has occurred 図1に示されるデジタルカメラにおけるシステム制御部11の動作を説明するためのフローチャートThe flowchart for demonstrating operation | movement of the system control part 11 in the digital camera shown by FIG. 検出エリアの設定例を説明するための図Diagram for explaining an example of setting a detection area 図1に示されるデジタルカメラにおけるシステム制御部11の動作の変形例を説明するためのフローチャートThe flowchart for demonstrating the modification of operation | movement of the system control part 11 in the digital camera shown by FIG. 図1に示したデジタルカメラに搭載される固体撮像素子5の変形例を示す図The figure which shows the modification of the solid-state image sensor 5 mounted in the digital camera shown in FIG.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態を説明するための撮像装置の概略構成を示す図である。撮像装置としては、デジタルカメラ及びデジタルビデオカメラ等の撮像装置、電子内視鏡及びカメラ付携帯電話機等に搭載される撮像モジュール、等がある。以下では、デジタルカメラを例にして説明する。 FIG. 1 is a diagram showing a schematic configuration of an imaging apparatus for explaining an embodiment of the present invention. Examples of the imaging device include an imaging device such as a digital camera and a digital video camera, an imaging module mounted on an electronic endoscope, a camera-equipped mobile phone, and the like. Hereinafter, a digital camera will be described as an example.
 図1に示されるデジタルカメラの撮像系は、フォーカスレンズやズームレンズを含む撮影レンズ1と、CCD型又はMOS型の固体撮像素子5と、この両者の間に設けられた絞り2と、赤外線カットフィルタ3と、光学ローパスフィルタ4とを備える。 The imaging system of the digital camera shown in FIG. 1 includes a photographing lens 1 including a focus lens and a zoom lens, a CCD type or MOS type solid-state imaging device 5, a diaphragm 2 provided therebetween, and an infrared ray cut-off. A filter 3 and an optical low-pass filter 4 are provided.
 デジタルカメラの電気制御系全体を統括制御するシステム制御部11は、フラッシュ発光部12及び受光部13を制御する。また、システム制御部11は、レンズ駆動部8を制御して撮影レンズ1の位置をフォーカス位置に調整したりズーム調整を行ったりする。また、システム制御部11は、絞り駆動部9を介し絞り2の開口量を制御して露光量調整を行う。 The system control unit 11 that controls the entire electric control system of the digital camera controls the flash light emitting unit 12 and the light receiving unit 13. In addition, the system control unit 11 controls the lens driving unit 8 to adjust the position of the photographing lens 1 to the focus position or perform zoom adjustment. In addition, the system control unit 11 adjusts the exposure amount by controlling the opening amount of the aperture 2 via the aperture driving unit 9.
 また、システム制御部11は、撮像素子駆動部10を制御して固体撮像素子5を駆動し、撮影レンズ1を通して撮像した被写体像を撮像画像信号として出力させる。システム制御部11には、操作部14を通してユーザからの指示信号が入力される。 Further, the system control unit 11 drives the solid-state imaging device 5 by controlling the imaging device driving unit 10 to output a subject image captured through the photographing lens 1 as a captured image signal. An instruction signal from the user is input to the system control unit 11 through the operation unit 14.
 デジタルカメラの電気制御系は、更に、固体撮像素子5の出力に接続された相関二重サンプリング処理等のアナログ信号処理を行うアナログ信号処理部6と、このアナログ信号処理部6から出力されたRGBの色信号をデジタル信号に変換するA/D変換回路7とを備える。アナログ信号処理部6とA/D変換回路7はシステム制御部11によって制御される。 The electric control system of the digital camera further includes an analog signal processing unit 6 that performs analog signal processing such as correlated double sampling processing connected to the output of the solid-state imaging device 5, and RGB output from the analog signal processing unit 6. And an A / D conversion circuit 7 for converting the color signal into a digital signal. The analog signal processing unit 6 and the A / D conversion circuit 7 are controlled by the system control unit 11.
 更に、このデジタルカメラの電気制御系は、メインメモリ16と、メインメモリ16に接続されたメモリ制御部15と、補間演算やガンマ補正演算,RGB/YC変換処理等を行って画像データを生成するデジタル信号処理部17と、デジタル信号処理部17で生成された画像データをJPEG形式に圧縮したり圧縮画像データを伸張したりする圧縮伸張処理部18と、着脱自在の記録媒体21が接続される外部メモリ制御部20と、カメラ背面等に搭載された液晶表示部23が接続される表示制御部22とを備える。 Furthermore, the electric control system of this digital camera generates image data by performing main memory 16, memory control unit 15 connected to main memory 16, interpolation calculation, gamma correction calculation, RGB / YC conversion processing, and the like. A digital signal processing unit 17, a compression / decompression processing unit 18 that compresses image data generated by the digital signal processing unit 17 into a JPEG format or expands compressed image data, and a detachable recording medium 21 are connected. An external memory control unit 20 and a display control unit 22 to which a liquid crystal display unit 23 mounted on the back of the camera or the like is connected.
 メモリ制御部15、デジタル信号処理部17、圧縮伸張処理部18、外部メモリ制御部20、及び表示制御部22は、制御バス24及びデータバス25によって相互に接続され、システム制御部11からの指令によって制御される。 The memory control unit 15, the digital signal processing unit 17, the compression / decompression processing unit 18, the external memory control unit 20, and the display control unit 22 are connected to each other by a control bus 24 and a data bus 25, and commands from the system control unit 11. Controlled by.
 図2は、図1に示される固体撮像素子5の概略構成を示す平面模式図である。 FIG. 2 is a schematic plan view showing a schematic configuration of the solid-state imaging device 5 shown in FIG.
 固体撮像素子5は、行方向Xとこれに直交する列方向Yに二次元状(図2の例では正方格子状)に配列された複数の画素52からなる第一の画素群と、第一の画素群と同じ配列の複数の画素53からなる第二の画素群とを有する。 The solid-state imaging device 5 includes a first pixel group including a plurality of pixels 52 arranged in a two-dimensional manner (a square lattice shape in the example of FIG. 2) in a row direction X and a column direction Y orthogonal thereto. And a second pixel group made up of a plurality of pixels 53 having the same arrangement.
 各画素52は、フォトダイオード等の光電変換部とその上方に設けられるカラーフィルタとを含む。全ての画素52に含まれるカラーフィルタの配列はベイヤ配列となっている。 Each pixel 52 includes a photoelectric conversion unit such as a photodiode and a color filter provided thereabove. The color filter array included in all the pixels 52 is a Bayer array.
 各画素53は、フォトダイオード等の光電変換部とその上方に設けられるカラーフィルタとを含む。全ての画素53に含まれるカラーフィルタの配列はベイヤ配列となっている。 Each pixel 53 includes a photoelectric conversion unit such as a photodiode and a color filter provided thereabove. The array of color filters included in all the pixels 53 is a Bayer array.
 図2において、“R”を付した画素は、赤色光を検出する画素である。また、“G”を付した画素は、緑色光を検出する画素である。また、“B”を付した画素は、青色光を検出する画素である。以下では、“R”を付した画素52,53をR画素52,R画素53とも言う。また、“G”を付した画素52,53をG画素52,G画素53とも言う。また、“B”を付した画素52,53をB画素52,B画素53とも言う。 In FIG. 2, pixels with “R” are pixels that detect red light. Also, the pixels with “G” are pixels that detect green light. Also, the pixels with “B” are pixels that detect blue light. Hereinafter, the pixels 52 and 53 with “R” are also referred to as an R pixel 52 and an R pixel 53. The pixels 52 and 53 with “G” are also referred to as G pixel 52 and G pixel 53. The pixels 52 and 53 with “B” are also referred to as B pixel 52 and B pixel 53.
 固体撮像素子5の第一の画素群は、G画素52とR画素52が行方向Xに交互に並べられた画素行であるGR画素行と、B画素52とG画素52が行方向Xに交互に並べられた画素行であるBG画素行との2種類の画素行を含む。この2種類の画素行は、列方向Yに交互に並べられている。 The first pixel group of the solid-state imaging device 5 includes a GR pixel row, which is a pixel row in which G pixels 52 and R pixels 52 are alternately arranged in the row direction X, and B pixels 52 and G pixels 52 in the row direction X. Two types of pixel rows, including BG pixel rows, which are alternately arranged pixel rows, are included. These two types of pixel rows are alternately arranged in the column direction Y.
 第一の画素群の各画素52の隣には、各画素52に対して所定方向(図2の例では右斜め下方向)に、当該各画素52と同色光を検出する第二の画素群の画素53が配置されている。そして、各画素52と、これに当該所定方向で隣接する画素53とで画素のペアを構成している。 Next to each pixel 52 of the first pixel group, a second pixel group that detects light of the same color as each pixel 52 in a predetermined direction with respect to each pixel 52 (in the diagonally downward direction in the example of FIG. 2). Pixels 53 are arranged. Each pixel 52 and a pixel 53 adjacent thereto in the predetermined direction constitute a pixel pair.
 各画素52の光学開口52k(画素52に含まれる光電変換部の開口)と、各画素53の光学開口53k(画素53に含まれる光電変換部の開口)とは、図2に示されるように、行方向Xにおいて互いに逆方向に偏心している。したがって、第一の画素群によって撮影される画像データと、第二の画素群によって撮影される画像データとには視差が生じる。このデジタルカメラは、この視差のある2つの画像データを利用して、立体視可能な立体画像データを生成する。なお、各画素52の光学開口52kと、各画素53の光学開口53kとは、列方向Yにおいて互いに逆方向に偏心しているものであってもよい。 The optical aperture 52k of each pixel 52 (opening of the photoelectric conversion unit included in the pixel 52) and the optical aperture 53k of each pixel 53 (opening of the photoelectric conversion unit included in the pixel 53) are as shown in FIG. In the row direction X, they are eccentric in opposite directions. Therefore, parallax occurs between the image data captured by the first pixel group and the image data captured by the second pixel group. This digital camera generates stereoscopic image data that can be stereoscopically viewed using the two pieces of image data having parallax. The optical aperture 52k of each pixel 52 and the optical aperture 53k of each pixel 53 may be decentered in opposite directions in the column direction Y.
 この固体撮像素子5により、ゴーストが発生する条件(例えば受光面に対し斜め方向から強い光を入射した状態)で撮影を行うと、第一の画素群から出力される撮像画像信号と第二の画素群から出力される撮像画像信号の各々に、ゴーストが発生する。第一の画素群と第二の画素群は、光学開口の位置が互いに異なる。このため、第一の画素群から出力される撮像画像信号に含まれるゴーストと、第二の画素群から出力される撮像画像信号に含まれるゴーストは、全く同じにはならない。この結果、立体画像データを再生したときに、ゴーストの見え方が不自然になってしまうことがある。以下、この現象について詳しく説明する。 When the solid-state imaging device 5 is used for shooting under conditions where ghost is generated (for example, a state where strong light is incident on the light receiving surface obliquely), the captured image signal output from the first pixel group and the second image signal are output. A ghost occurs in each captured image signal output from the pixel group. The first pixel group and the second pixel group have different optical aperture positions. For this reason, the ghost included in the captured image signal output from the first pixel group and the ghost included in the captured image signal output from the second pixel group are not exactly the same. As a result, when stereoscopic image data is reproduced, the appearance of the ghost may become unnatural. Hereinafter, this phenomenon will be described in detail.
 なお、ゴーストは、撮像画像信号において発生するが、撮像画像信号におけるゴーストを構成する各信号(ゴースト成分)と、この各信号の出力元の画素とは一対一で対応する。このため、本明細書においては、固体撮像素子5の任意の画素から得られた画素信号にゴースト成分が含まれることを、当該任意の画素にゴーストが発生していることと同義として説明する。 Note that a ghost is generated in the captured image signal, but each signal (ghost component) constituting the ghost in the captured image signal and the output source pixel of each signal have a one-to-one correspondence. For this reason, in the present specification, the fact that a ghost component is included in a pixel signal obtained from an arbitrary pixel of the solid-state imaging device 5 will be described as synonymous with the occurrence of a ghost in the arbitrary pixel.
 固体撮像素子5に対し、ゴーストを発生し得る強い斜め光(例えば、図3中のX方向左から右に向かう斜め光)が入射した場合において、ゴーストが発生する領域である図3の破線で囲った領域にある第一の画素群の4つの画素52に着目する。 When a strong oblique light that can generate a ghost (for example, an oblique light that goes from left to right in the X direction in FIG. 3) is incident on the solid-state imaging device 5, a broken line in FIG. Focus on the four pixels 52 of the first pixel group in the enclosed area.
 図3の破線で囲った第一の画素群の4つの画素52のうち、左上のG画素52(以下、左上G画素52とも言う)の左隣にはR画素52が存在し、左上G画素52とペアを構成するG画素53(以下、左上G画素53とも言う)の左隣にはR画素53が存在する。R画素52とR画素53は、光学開口がX方向において逆方向に偏心している。このため、これらR画素52,53から漏れ出して隣の左上G画素52,左上G画素53に漏れ出す光の量は、それぞれ異なる。その結果、左上G画素52の検出信号と、左上G画素53の検出信号とには、レベル差が生じる。このレベル差は、G画素52とG画素53の光学開口の違いによって生じる成分と、隣接画素から漏れこんできた光量の差に起因する成分とを含む。 Among the four pixels 52 in the first pixel group surrounded by the broken line in FIG. 3, an R pixel 52 exists on the left side of the upper left G pixel 52 (hereinafter also referred to as the upper left G pixel 52), and the upper left G pixel. An R pixel 53 exists on the left side of a G pixel 53 (hereinafter also referred to as an upper left G pixel 53) that forms a pair with 52. In the R pixel 52 and the R pixel 53, the optical aperture is decentered in the opposite direction in the X direction. For this reason, the amount of light leaking from the R pixels 52 and 53 and leaking to the adjacent upper left G pixel 52 and upper left G pixel 53 is different. As a result, a level difference is generated between the detection signal of the upper left G pixel 52 and the detection signal of the upper left G pixel 53. This level difference includes a component caused by a difference in optical aperture between the G pixel 52 and the G pixel 53 and a component caused by a difference in the amount of light leaking from adjacent pixels.
 また、左上G画素52と、図3の破線で囲った第一の画素群の4つの画素52のうちの右下のG画素52(以下、右下G画素52とも言う)のそれぞれの左隣には、検出色の異なる種類の画素(R画素52とB画素52)が配置されている。このため、左上G画素52の検出信号と右下G画素52の検出信号とには、隣接画素から漏れこんできた光量の差に起因するレベル差が生じる。 Also, the upper left G pixel 52 and the left adjacent to each of the lower right G pixel 52 (hereinafter also referred to as the lower right G pixel 52) of the four pixels 52 of the first pixel group surrounded by the broken line in FIG. Are arranged with different types of pixels (R pixel 52 and B pixel 52) having different detection colors. For this reason, a level difference caused by the difference in the amount of light leaking from the adjacent pixel occurs between the detection signal of the upper left G pixel 52 and the detection signal of the lower right G pixel 52.
 また、図3の破線で囲った第一の画素群の4つの画素52のうちの右下G画素52を除く各画素52と、これとペアを構成する画素53との間にも、隣接画素から漏れこんできた光量の差に起因する検出信号のレベル差が生じる。 Also, adjacent pixels between each pixel 52 except for the lower right G pixel 52 among the four pixels 52 of the first pixel group surrounded by the broken line in FIG. A difference in the level of the detection signal due to the difference in the amount of light leaking from the light occurs.
 以上のように、図3の破線で囲った領域にある4つの画素52の検出信号にゴースト成分が含まれる場合(言い換えると、図3の破線で囲った領域にゴーストが発生している場合)、図3の破線で囲ったエリアにおいて、左上G画素52の検出信号と右下G画素52の検出信号との間に第一の閾値以上のレベル差が生じる。 As described above, when the ghost component is included in the detection signals of the four pixels 52 in the region surrounded by the broken line in FIG. 3 (in other words, when the ghost is generated in the region surrounded by the broken line in FIG. 3). In the area surrounded by the broken line in FIG. 3, a level difference equal to or higher than the first threshold value is generated between the detection signal of the upper left G pixel 52 and the detection signal of the lower right G pixel 52.
 また、図3の破線で囲った領域にある4つの画素52の検出信号にゴースト成分が含まれる場合、当該4つの画素52とペアを構成する4つの画素53の検出信号にもゴースト成分が含まれることになる。しかし、これら2つのゴースト成分は開口の違いによって一致しない。したがって、図3の破線で囲った領域にある各画素52の検出信号と、この各画素52とペアを構成する画素53の検出信号との間にも、第二の閾値以上のレベル差が生じる。 Further, when a ghost component is included in the detection signals of the four pixels 52 in the area surrounded by the broken line in FIG. 3, the ghost component is also included in the detection signals of the four pixels 53 that form a pair with the four pixels 52. Will be. However, these two ghost components do not match due to the difference in aperture. Therefore, a level difference equal to or greater than the second threshold value is also generated between the detection signal of each pixel 52 in the region surrounded by the broken line in FIG. 3 and the detection signal of the pixel 53 that forms a pair with each pixel 52. .
 図1に示されるデジタルカメラでは、システム制御部11が、固体撮像素子5の第一の画素群に対し、行方向X及び列方向Yに隣接する2行2列の計4つの画素52を含む検出エリア(図3に示した破線で囲った領域)毎に、その検出エリアに含まれる2つのG画素52の検出信号の差を求め、この検出信号の差に基づいて、この検出エリアにゴーストが発生しているか否かを判定する。 In the digital camera shown in FIG. 1, the system control unit 11 includes a total of four pixels 52 in two rows and two columns adjacent to the first pixel group of the solid-state imaging device 5 in the row direction X and the column direction Y. For each detection area (area surrounded by a broken line shown in FIG. 3), a difference between detection signals of two G pixels 52 included in the detection area is obtained, and a ghost is detected in this detection area based on the difference between the detection signals. Whether or not has occurred is determined.
 検出エリアにゴーストが発生していると判定された場合に、システム制御部11は、その検出エリア内の各画素52の検出信号と、当該各画素52とペアを構成する画素53の検出信号との差を算出し、この差が、立体画像データにおけるゴーストの見え方に影響を与える程度の大きさになっている場合には、ゴーストの見え方が不自然とならない程度に、この差を小さくする補正を行う。 When it is determined that a ghost has occurred in the detection area, the system control unit 11 detects the detection signal of each pixel 52 in the detection area, and the detection signal of the pixel 53 that forms a pair with each pixel 52. If the difference is large enough to affect the appearance of the ghost in the stereoscopic image data, reduce this difference to the extent that the ghost does not appear unnatural. Make corrections.
 このようにして、システム制御部11は、第一の画素群と第二の画素群の各々に対して、ゴーストが発生している領域を判定し、ゴーストが発生している領域における、第一の画素群と第二の画素群の検出信号のレベル差を補正する。 In this way, the system control unit 11 determines the region where the ghost is generated for each of the first pixel group and the second pixel group, and the first control unit 11 in the region where the ghost is generated. The level difference between the detection signals of the first pixel group and the second pixel group is corrected.
 以下、システム制御部11の動作についてフローチャートを参照して説明する。 Hereinafter, the operation of the system control unit 11 will be described with reference to flowcharts.
 図4は、図1に示されるデジタルカメラにおけるシステム制御部11の動作を説明するためのフローチャートである。 FIG. 4 is a flowchart for explaining the operation of the system control unit 11 in the digital camera shown in FIG.
 操作部14に含まれるレリーズボタンが押下されると、システム制御部11は、撮像素子駆動部10を制御して、固体撮像素子5に撮像を行わせる。この撮像により、第一の画素群から出力された第一の撮像画像信号と、第二の画素群から出力された第二の撮像画像信号とを含む撮像画像信号が固体撮像素子5から出力される。 When a release button included in the operation unit 14 is pressed, the system control unit 11 controls the image sensor driving unit 10 to cause the solid-state image sensor 5 to perform imaging. By this imaging, a captured image signal including the first captured image signal output from the first pixel group and the second captured image signal output from the second pixel group is output from the solid-state image sensor 5. The
 出力された撮像画像信号は、アナログ信号処理、デジタル変換処理が行われた後、メインメモリ16に一時記憶される。システム制御部11は、このメインメモリ16に記憶された撮像画像信号に対して、以下に説明する処理を行う。 The output captured image signal is temporarily stored in the main memory 16 after being subjected to analog signal processing and digital conversion processing. The system control unit 11 performs the processing described below on the captured image signal stored in the main memory 16.
 まず、システム制御部11は、第一の画素群を、図5に示すように、2行2列の計4つの画素52を1つの検出エリア(図5の破線で囲ったエリア)とする複数の検出エリアに分割する。 First, as shown in FIG. 5, the system control unit 11 uses a plurality of pixels 52 in a total of two rows and two columns as one detection area (area surrounded by a broken line in FIG. 5). Divide into detection areas.
 そして、システム制御部11は、任意の検出エリアに対し、当該任意の検出エリア内の2つのG画素52の検出信号同士の差分(絶対値)を算出する(ステップS1)。 Then, the system control unit 11 calculates a difference (absolute value) between the detection signals of the two G pixels 52 in the arbitrary detection area for the arbitrary detection area (step S1).
 次に、システム制御部11は、ステップS1において算出した差分が閾値Th1以上か否かを判定する(ステップS2)。 Next, the system control unit 11 determines whether or not the difference calculated in step S1 is greater than or equal to a threshold Th1 (step S2).
 ステップS2の判定の結果、ステップS1において算出した差分が閾値Th1未満であった場合、システム制御部11は、ステップS1において差分算出対象となった検出エリアにはゴーストが発生していないと判定する。そして、システム制御部11は、ステップS7において、全ての検出エリアに対してステップS1以降の処理を終了したか否かを判定する。ステップS7の判定がNOの場合、システム制御部11は、検出エリアを未処理のものに変更し、変更後の検出エリアに対して、再びステップS1以降の処理を行う。 As a result of the determination in step S2, when the difference calculated in step S1 is less than the threshold Th1, the system control unit 11 determines that no ghost has occurred in the detection area that is the difference calculation target in step S1. . In step S7, the system control unit 11 determines whether or not the processing after step S1 has been completed for all the detection areas. When the determination in step S7 is NO, the system control unit 11 changes the detection area to an unprocessed one, and performs the processing after step S1 again on the changed detection area.
 ステップS2の判定の結果、ステップS1において算出した差分が閾値Th1以上であった場合、システム制御部11は、ステップS1において差分算出対象となった検出エリアと、この検出エリアの各画素52とペアを構成する画素53が配置された第二の画素群のエリア(以下、検出エリアとペアを構成する第二の画素群のエリアと言う)とに、それぞれゴーストが発生していると判定する(ステップS3)。 As a result of the determination in step S2, if the difference calculated in step S1 is greater than or equal to the threshold Th1, the system control unit 11 pairs the detection area that is the difference calculation target in step S1 with each pixel 52 in this detection area. It is determined that a ghost is generated in each of the areas of the second pixel group in which the pixels 53 constituting the pixel are arranged (hereinafter referred to as the area of the second pixel group constituting a pair with the detection area) ( Step S3).
 次に、システム制御部11は、ステップS1において差分算出対象となった検出エリアに含まれる各G画素52の検出信号(以下、第一の検出信号とも言う)と、当該各画素52とペアを構成するG画素53の検出信号(以下、第二の検出信号とも言う)との差分(絶対値)を算出する(ステップS4)。 Next, the system control unit 11 pairs a detection signal (hereinafter also referred to as a first detection signal) of each G pixel 52 included in the detection area that is a difference calculation target in step S <b> 1 and the pixel 52. A difference (absolute value) from a detection signal (hereinafter also referred to as a second detection signal) of the constituting G pixel 53 is calculated (step S4).
 なお、この差分には、ステップS1において差分算出対象となった検出エリアに含まれる左上G画素52の検出信号と、当該左上G画素52とペアを構成するG画素53の検出信号との差分と、ステップS1において差分算出対象となった検出エリアに含まれる右下G画素52の検出信号と、当該右下G画素52とペアを構成するG画素53の検出信号との差分との2種類が含まれる。しかし、左上G画素52と右下G画素52は光学開口が一致しており、また、位置も近接しているため、この2種類の差分の値はほぼ一致する。ステップS4において算出された差分が、ステップS1において差分算出対象となった検出エリアに発生するゴーストと、この検出エリアとペアを構成する第二の画素群のエリアに発生するゴーストとの画質差を示すデータとなる。 Note that this difference includes the difference between the detection signal of the upper left G pixel 52 included in the detection area that is the difference calculation target in step S1 and the detection signal of the G pixel 53 that forms a pair with the upper left G pixel 52. The difference between the detection signal of the lower right G pixel 52 included in the detection area subjected to the difference calculation in step S1 and the difference between the detection signal of the G pixel 53 that forms a pair with the lower right G pixel 52 is provided. included. However, since the upper left G pixel 52 and the lower right G pixel 52 have the same optical aperture and are close to each other, the two types of difference values are almost the same. The difference calculated in step S4 is the difference in image quality between the ghost that occurs in the detection area that is the difference calculation target in step S1 and the ghost that occurs in the area of the second pixel group that forms a pair with this detection area. It becomes the data to show.
 ステップS4において算出された差分が閾値Th2以上である場合(ステップS5:YES)、システム制御部11は、ステップS1において差分算出対象となった検出エリアに発生するゴーストと、この検出エリアとペアを構成する第二の画素群のエリアに発生するゴーストには、それぞれのゴーストを立体視した場合に違和感を与えてしまう程度の画質差が発生していると判定する。そして、システム制御部11は、ステップS4で算出された差分が閾値Th2以下となるように、第一の検出信号と第二の検出信号の少なくとも一方のレベルを補正する(ステップS6)。 When the difference calculated in step S4 is equal to or greater than the threshold Th2 (step S5: YES), the system control unit 11 sets a ghost generated in the detection area that is a difference calculation target in step S1 and a pair with this detection area. It is determined that there is an image quality difference in the ghost that occurs in the area of the second pixel group that constitutes the image so as to give a sense of discomfort when each ghost is viewed stereoscopically. Then, the system control unit 11 corrects the level of at least one of the first detection signal and the second detection signal so that the difference calculated in step S4 is equal to or less than the threshold Th2 (step S6).
 例えば、システム制御部11は、左上G画素52の検出信号と、左上G画素52とペアを構成するG画素53の検出信号と、右下G画素52の検出信号と、右下G画素52とペアを構成するG画素53の検出信号とのうち、左上G画素52の検出信号と右下G画素52の検出信号とに一律のゲインを乗じることで補正を行う。 For example, the system control unit 11 detects the detection signal of the upper left G pixel 52, the detection signal of the G pixel 53 that forms a pair with the upper left G pixel 52, the detection signal of the lower right G pixel 52, and the lower right G pixel 52. Of the detection signals of the G pixel 53 constituting the pair, the detection signal of the upper left G pixel 52 and the detection signal of the lower right G pixel 52 are multiplied by a uniform gain to perform correction.
 ステップS4において算出された差分が閾値Th2未満である場合(ステップS5:NO)、システム制御部11は、ステップS1において差分算出対象となった検出エリアに発生するゴーストと、この検出エリアとペアを構成する第二の画素群のエリアに発生するゴーストには、それぞれのゴーストを立体視した場合に違和感を与えてしまう程度の画質差が発生していないと判定する。そして、システム制御部11は、ステップS7の処理を行う。 When the difference calculated in step S4 is less than the threshold Th2 (step S5: NO), the system control unit 11 sets a ghost generated in the detection area that is the difference calculation target in step S1 and a pair with this detection area. It is determined that the ghost image generated in the area of the second pixel group to be configured does not have a difference in image quality that gives a sense of incongruity when each ghost image is stereoscopically viewed. And the system control part 11 performs the process of step S7.
 ステップS7の判定がYESの場合、即ち、全ての検出エリアに対して、ステップS1以降の処理が行われた場合、システム制御部11は、ゴーストの検出及び補正動作を終了する。 If the determination in step S7 is YES, that is, if the processing from step S1 is performed on all detection areas, the system control unit 11 ends the ghost detection and correction operation.
 G画素52とG画素53は光学開口が互いに逆方向に偏心している画素である。このため、各検出エリアにおいて、G画素52の検出信号と、このG画素52とペアを構成するG画素53の検出信号とに、閾値Th2以上のレベル差があった場合でも、このG画素52及びG画素53を含むエリアにゴーストが発生しているとは言い切れない。 G pixel 52 and G pixel 53 are pixels whose optical apertures are decentered in opposite directions. For this reason, even if there is a level difference of the threshold Th2 or more between the detection signal of the G pixel 52 and the detection signal of the G pixel 53 that forms a pair with the G pixel 52 in each detection area, the G pixel 52 And it cannot be said that a ghost is generated in the area including the G pixel 53.
 そこで、前述したように、システム制御部11は、第一の画素群の各検出エリアに対し、各検出エリアに含まれる2つのG画素52の各々の検出信号の差分に基づいて、ゴーストの発生の有無を判定する。そして、ゴーストが発生していると判定した検出エリアのG画素52と、当該G画素52とペアを構成するG画素53とに対しては、検出信号の差分が閾値Th2以上となっている場合にのみ、システム制御部11が、当該差分が閾値Th2未満となるように検出信号の補正を行う。このような処理により、ゴーストが発生しているエリアを正確に判定することができる。また、ゴーストが発生しているエリアであっても、立体視したときに違和感を生じさせてしまうようなゴーストに対してのみ、補正を行うことができる。 Therefore, as described above, the system control unit 11 generates a ghost for each detection area of the first pixel group based on the difference between the detection signals of the two G pixels 52 included in each detection area. The presence or absence of is determined. When the difference between the detection signals is equal to or greater than the threshold Th2 for the G pixel 52 in the detection area where it is determined that a ghost has occurred and the G pixel 53 that forms a pair with the G pixel 52. Only, the system control unit 11 corrects the detection signal so that the difference is less than the threshold Th2. By such processing, the area where the ghost is generated can be accurately determined. Even in an area where a ghost is generated, correction can be performed only for a ghost that causes a sense of incongruity when viewed stereoscopically.
 したがって、本実施形態のデジタルカメラによれば、ゴーストの検出を精度良く行なうことができるとともに、立体画像を表示した場合でも、違和感のないゴーストを視認させることができる。また、このデジタルカメラでは、必要なエリアのみゴーストのレベル補正を行うため、ゴーストの補正に要する時間を長くすることなく、違和感のないゴーストを視認させることが可能となる。 Therefore, according to the digital camera of the present embodiment, it is possible to detect ghosts with high accuracy and to make ghosts without any sense of incongruity even when a stereoscopic image is displayed. Further, in this digital camera, since the ghost level is corrected only in a necessary area, it is possible to visually recognize a ghost without a sense of incongruity without increasing the time required for the ghost correction.
 なお、図4のフローチャートにおいて、ステップS6の後に、システム制御部11が、ステップS1において差分算出対象となった検出エリア内のR画素52の検出信号(第三の検出信号)と、このR画素52とペアを構成するR画素53の検出信号(第四の検出信号)との検出信号差(絶対値)を算出する。そして、この検出信号差が閾値Th3以上のときに、システム制御部11は、検出信号差が閾値Th3未満となるように、第三の検出信号と第四の検出信号の少なくとも一方を補正する。また、システム制御部11は、この検出信号差が閾値Th3未満のときに、ステップS7の処理を行うようにしてもよい。 In the flowchart of FIG. 4, after step S <b> 6, the system control unit 11 detects the detection signal (third detection signal) of the R pixel 52 in the detection area that is the difference calculation target in step S <b> 1 and the R pixel. The detection signal difference (absolute value) from the detection signal (fourth detection signal) of the R pixel 53 that forms a pair with 52 is calculated. When the detection signal difference is equal to or greater than the threshold Th3, the system control unit 11 corrects at least one of the third detection signal and the fourth detection signal so that the detection signal difference is less than the threshold Th3. Further, the system control unit 11 may perform the process of step S7 when the detection signal difference is less than the threshold Th3.
 更に、第三の検出信号と第四の検出信号の少なくとも一方を補正する処理の後に、システム制御部11が、ステップS1において差分算出対象となった検出エリア内のB画素52の検出信号(第五の検出信号)と、このB画素52とペアを構成するB画素53の検出信号(第六の検出信号)との検出信号差(絶対値)を算出する。そして、この検出信号差が閾値Th4以上のときに、システム制御部11は、検出信号差が閾値Th4未満となるように、第五の検出信号と第六の検出信号の少なくとも一方を補正する。また、この検出信号差が閾値Th4未満のときに、システム制御部11は、ステップS7の処理を行うようにしてもよい。 Further, after the process of correcting at least one of the third detection signal and the fourth detection signal, the system control unit 11 detects the detection signal (the first detection signal of the B pixel 52 in the detection area that is the difference calculation target in step S1. The detection signal difference (absolute value) between the fifth detection signal) and the detection signal (sixth detection signal) of the B pixel 53 that forms a pair with the B pixel 52 is calculated. When the detection signal difference is equal to or greater than the threshold Th4, the system control unit 11 corrects at least one of the fifth detection signal and the sixth detection signal so that the detection signal difference is less than the threshold Th4. Further, when the detection signal difference is less than the threshold Th4, the system control unit 11 may perform the process of step S7.
 第三の検出信号と第四の検出信号の差分算出処理、及び、第三の検出信号と第四の検出信号の少なくとも一方を補正する処理と、第五の検出信号と第六の検出信号の差分を算出処理、及び、第五の検出信号と第六の検出信号の少なくとも一方を補正する処理とは、順番を逆にしてもよい。 A difference calculation process between the third detection signal and the fourth detection signal; a process for correcting at least one of the third detection signal and the fourth detection signal; and a fifth detection signal and a sixth detection signal. The process of calculating the difference and the process of correcting at least one of the fifth detection signal and the sixth detection signal may be reversed in order.
 ゴーストは、検出信号に含まれる輝度成分に影響を大きく受けるため、図4のフローチャートに示したように、ステップS6においてG画素の検出信号のみを補正するだけでも、ゴーストの画質改善効果を十分に得ることができる。 Since the ghost is greatly affected by the luminance component included in the detection signal, as shown in the flowchart of FIG. 4, even if only the detection signal of the G pixel is corrected in step S6, the image quality improvement effect of the ghost is sufficiently obtained. Obtainable.
 また、以上の説明では、第一の画素群を複数の検出エリアに分割し、各検出エリアに対して図4のステップS1以降の処理を行うものとした。しかし、第二の画素群を複数の検出エリアに分割し、各検出エリアに対して図4のステップS1以降の処理を行ってもよい。この場合のフローチャートは、図4における第一の画素群と第二の画素群の表記を逆にしたものとなる。 In the above description, the first pixel group is divided into a plurality of detection areas, and the processing after step S1 in FIG. 4 is performed on each detection area. However, the second pixel group may be divided into a plurality of detection areas, and the processing after step S1 in FIG. 4 may be performed on each detection area. In the flowchart in this case, the notation of the first pixel group and the second pixel group in FIG. 4 is reversed.
 また、システム制御部11は、図4のステップS1~ステップS3の処理を全ての検出エリアに対して行った後、ゴーストが発生していると判定した各検出エリアに対し、図4のステップS4~ステップS6の処理を行ってもよい。 Further, the system control unit 11 performs the processing of steps S1 to S3 in FIG. 4 for all the detection areas, and then performs step S4 in FIG. 4 for each detection area determined to have a ghost. Step S6 may be performed.
 このような処理によれば、例えば、図5に示した6つの検出エリアのうち、右上にある検出エリアだけがゴーストが発生していると判定された検出エリアであった場合に、この検出エリアに含まれる各画素52と当該各画素52とペアを構成する画素53の検出信号を、その検出エリアの隣にある、ゴーストが発生していないと判定された検出エリアに含まれる各画素52と、この画素52とペアを構成する画素53の検出信号に置き換える単純な処理により、ステップS6の処理を行うことができる。 According to such a process, for example, when only the detection area in the upper right of the six detection areas shown in FIG. 5 is a detection area where it is determined that a ghost has occurred, this detection area The detection signal of each pixel 52 included in each pixel 52 and a pixel 53 that forms a pair with each pixel 52 is received from each pixel 52 included in the detection area adjacent to the detection area and determined to have no ghost. The process of step S6 can be performed by a simple process of replacing the detection signal of the pixel 53 that forms a pair with the pixel 52.
 また、システム制御部11が、第一の画素群を、図5に示した検出エリアをそれぞれ複数個含む複数のブロックに分割し、分割ブロック毎に、ゴーストの発生の有無の判定処理、ゴーストの補正処理を行うようにしてもよい。 Further, the system control unit 11 divides the first pixel group into a plurality of blocks each including a plurality of detection areas shown in FIG. 5, and processing for determining whether or not a ghost has occurred for each divided block. Correction processing may be performed.
 図6は、図1に示されるデジタルカメラにおけるシステム制御部11の動作の変形例を説明するためのフローチャートである。 FIG. 6 is a flowchart for explaining a modification of the operation of the system control unit 11 in the digital camera shown in FIG.
 撮像が終了して、固体撮像素子5から出力された撮像画像信号がメインメモリ16に記憶されると、システム制御部11は、第一の画素群を、例えば、図5に示した検出エリアを4つずつ含む複数のブロックに分割する。 When the imaging is finished and the captured image signal output from the solid-state imaging device 5 is stored in the main memory 16, the system control unit 11 selects the first pixel group, for example, the detection area shown in FIG. It is divided into a plurality of blocks including four each.
 そして、システム制御部11は、任意の分割ブロックに対し、当該任意の分割ブロック内のGR画素行にあるG画素52の検出信号の平均値と、当該任意の分割ブロック内のBG画素行にあるG画素52の検出信号の平均値との差分(絶対値)を算出する(ステップS11)。 Then, the system control unit 11 has, for an arbitrary divided block, an average value of the detection signals of the G pixels 52 in the GR pixel row in the arbitrary divided block and the BG pixel row in the arbitrary divided block. A difference (absolute value) from the average value of the detection signals of the G pixel 52 is calculated (step S11).
 次に、システム制御部11は、ステップS11において算出した差分が閾値Th1以上か否かを判定する(ステップS12)。 Next, the system control unit 11 determines whether or not the difference calculated in step S11 is greater than or equal to the threshold Th1 (step S12).
 ステップS12の判定の結果、ステップS11において算出した差分が閾値Th1未満であった場合、システム制御部11は、ステップS11において差分算出対象となった分割ブロックにはゴーストが発生していないと判定し、ステップS17において、全ての分割ブロックに対してステップS11以降の処理が終了したか否かを判定する。ステップS17の判定がNOの場合、システム制御部11は、分割ブロックを未処理のものに変更し、変更後の分割ブロックに対し、再びステップS11以降の処理を行う。 As a result of the determination in step S12, when the difference calculated in step S11 is less than the threshold value Th1, the system control unit 11 determines that no ghost has occurred in the divided block subjected to the difference calculation in step S11. In step S17, it is determined whether or not the processes in and after step S11 have been completed for all the divided blocks. When the determination in step S17 is NO, the system control unit 11 changes the divided block to an unprocessed block, and performs the processing from step S11 on the changed divided block again.
 ステップS12の判定の結果、ステップS11において算出した差分が閾値Th1以上であった場合、システム制御部11は、ステップS11において差分算出対象となった分割ブロックにゴーストが発生している判定する(ステップS3)。 If the difference calculated in step S11 is greater than or equal to the threshold Th1 as a result of the determination in step S12, the system control unit 11 determines that a ghost has occurred in the divided block that is the difference calculation target in step S11 (step S11). S3).
 次に、システム制御部11は、ステップS11において差分算出対象となった分割ブロックに含まれる各G画素52の検出信号(以下、第七の検出信号とも言う)の平均値と、当該各画素52とペアを構成するG画素53の検出信号(以下、第八の検出信号とも言う)の平均値との差分(絶対値)を算出する(ステップS14)。ここで算出される差分が、ステップS11において差分算出対象となった分割ブロックに発生するゴーストと、この分割ブロックに含まれる各検出エリアとペアを構成する第二の画素群のエリアに発生するゴーストとの画質差を示すデータとなる。 Next, the system control unit 11 calculates the average value of the detection signals (hereinafter also referred to as seventh detection signals) of the G pixels 52 included in the divided block that is the difference calculation target in step S11, and the pixels 52. The difference (absolute value) from the average value of the detection signals (hereinafter also referred to as the eighth detection signal) of the G pixel 53 constituting the pair is calculated (step S14). The difference calculated here is a ghost that occurs in the divided block that is the difference calculation target in step S11 and a ghost that occurs in the area of the second pixel group that forms a pair with each detection area included in this divided block. The data indicates the difference in image quality.
 ステップS14において算出された差分が閾値Th2以上である場合(ステップS15:YES)、システム制御部11は、ステップS11において差分算出対象となった分割ブロックに発生するゴーストと、この分割ブロックに含まれる各検出エリアとペアを構成する第二の画素群のエリアに発生するゴーストには、それぞれのゴーストを立体視した場合に違和感を与えてしまう程度の画質差が発生していると判定する。そして、システム制御部11は、第七の検出信号の平均値と第八の検出信号の平均値との差分が閾値Th2以下となるように、第七の検出信号と第八の検出信号の少なくとも一方のレベルを補正する(ステップS16)。 When the difference calculated in step S14 is greater than or equal to the threshold Th2 (step S15: YES), the system control unit 11 includes a ghost that occurs in the divided block that is the difference calculation target in step S11 and the divided block. It is determined that an image quality difference is generated in a ghost that occurs in the area of the second pixel group that forms a pair with each detection area, so as to give a sense of incongruity when each ghost is stereoscopically viewed. Then, the system control unit 11 includes at least the seventh detection signal and the eighth detection signal so that the difference between the average value of the seventh detection signal and the average value of the eighth detection signal is equal to or less than the threshold Th2. One level is corrected (step S16).
 例えば、システム制御部11は、分割ブロック内の各G画素52の検出信号に一律のゲインを乗じることで、第七の検出信号の平均値と第八の検出信号の平均値との差分が閾値Th2以下となるようにする。 For example, the system control unit 11 multiplies the detection signal of each G pixel 52 in the divided block by a uniform gain so that the difference between the average value of the seventh detection signal and the average value of the eighth detection signal is a threshold value. It is made to become below Th2.
 ステップS14において算出された差分が閾値Th2未満である場合(ステップS15:NO)、システム制御部11は、ステップS11において差分算出対象となった分割ブロックに発生するゴーストと、この分割ブロックに含まれる各検出エリアとペアを構成する第二の画素群のエリアに発生するゴーストには、それぞれのゴーストを立体視した場合に違和感を与えてしまう程度の画質差が発生していないと判定する。そして、システム制御部11は、ステップS17の処理を行う。 When the difference calculated in step S14 is less than the threshold Th2 (step S15: NO), the system control unit 11 includes a ghost that occurs in the divided block that is the difference calculation target in step S11 and the divided block. It is determined that a ghost image generated in the area of the second pixel group that forms a pair with each detection area does not have a difference in image quality that gives a sense of discomfort when each ghost image is stereoscopically viewed. And the system control part 11 performs the process of step S17.
 ステップS17の判定がYESの場合、即ち、全ての分割ブロックに対して、ステップS11以降の処理が行われた場合、システム制御部11は、ゴーストの検出及び補正動作を終了する。 If the determination in step S17 is YES, that is, if the processing from step S11 is performed on all the divided blocks, the system control unit 11 ends the ghost detection and correction operation.
 以上のように、検出エリア単位ではなく、分割ブロック単位でゴーストを検出し、ゴーストの補正を行うことで、ゴーストの検出及び補正に要する時間を短縮することができる。 As described above, the time required for detecting and correcting the ghost can be shortened by detecting the ghost in the divided block unit instead of the detection area unit and correcting the ghost.
 なお、ここまで述べた閾値Th1,Th2は、デジタルカメラに搭載される絞り2の絞り値や、撮影レンズ1に含まれるズームレンズのズーム倍率等によって最適な値が決まる。このため、システム制御部11の内部メモリに、絞り値やズーム倍率等の撮影条件毎に閾値Th1,Th2を記憶しておき、システム制御部11が、設定されている撮影条件に応じた閾値Th1,Th2をこの内部メモリから読み出して、図4,6に示した処理において使用することが好ましい。このようにすることで、撮影条件が変更された場合でも、ゴーストの検出及び補正精度を維持することができる。 Note that the optimum values of the threshold values Th1 and Th2 described so far are determined by the aperture value of the aperture 2 mounted on the digital camera, the zoom magnification of the zoom lens included in the photographing lens 1, and the like. For this reason, threshold values Th1 and Th2 are stored in the internal memory of the system control unit 11 for each shooting condition such as an aperture value and a zoom magnification, and the system control unit 11 sets a threshold value Th1 corresponding to the set shooting condition. , Th2 are preferably read from the internal memory and used in the processing shown in FIGS. By doing so, it is possible to maintain ghost detection and correction accuracy even when the shooting conditions are changed.
 図7は、図1に示したデジタルカメラに搭載される固体撮像素子5の変形例を示す図である。 FIG. 7 is a view showing a modification of the solid-state imaging device 5 mounted on the digital camera shown in FIG.
 図7に示した固体撮像素子5aは、第一の画素群の各画素52の下方向の隣に、当該各画素52と同色光を検出する画素53が配置されている点を除いては、図2に示した構成と同じである。なお、図7では、各画素の形状を、図2に示した各画素を45度回転させたものとし、光学開口52k,53kの形状を長方形としている。 The solid-state imaging device 5a shown in FIG. 7 has a pixel 53 that detects light of the same color as each of the pixels 52 arranged next to the lower direction of each of the pixels 52 in the first pixel group. The configuration is the same as that shown in FIG. In FIG. 7, the shape of each pixel is obtained by rotating each pixel shown in FIG. 2 by 45 degrees, and the shapes of the optical apertures 52k and 53k are rectangular.
 固体撮像素子5aであっても、図7において破線で囲ったエリアを検出エリアとして、第一の画素群を複数の検出エリアに分割し、各検出エリアに対して、図4に示した処理を行うことで、固体撮像素子5を用いたときと同様の効果を得ることができる。 Even in the solid-state imaging device 5a, the area surrounded by the broken line in FIG. 7 is used as a detection area, the first pixel group is divided into a plurality of detection areas, and the processing shown in FIG. 4 is performed on each detection area. By doing so, the same effect as when the solid-state imaging device 5 is used can be obtained.
 以上説明してきたように、本明細書には次の事項が開示されている。 As described above, the following items are disclosed in this specification.
 開示された撮像装置は、それぞれが複数の画素を含む2つの画素群を有する固体撮像素子を備える撮像装置であって、各画素群の前記複数の画素は、二次元状に配列された、緑色光を検出する緑色検出画素、青色光を検出する青色検出画素、及び赤色光を検出する赤色検出画素の3種類の画素を含むものであり、各画素群の前記複数の画素の配列は、前記緑色検出画素と前記青色検出画素を行方向に交互に並べた第一の画素行と、前記赤色検出画素と前記緑色検出画素を行方向に交互に並べた第二の画素行とを、前記行方向に直交する列方向に交互に並べたものとなっており、前記2つの画素群の一方の画素群の各画素には、前記各画素に対して所定方向に前記2つの画素群の他方の画素群の当該各画素と同一種類の画素が隣接して配置されており、前記一方の画素群の各画素の光学開口と、前記他方の画素群の各画素の光学開口とは、互いに逆方向に偏心しており、前記一方の画素群の各画素と、前記各画素に対して前記所定方向に隣接して配置される前記他方の画素群の画素とで画素のペアが構成され、前記一方の画素群を分割して得られる、前記第一の画素行に含まれる前記緑色検出画素と前記第二の画素行に含まれる前記緑色検出画素とをそれぞれ少なくとも1つ含む分割エリア毎に、前記分割エリアに含まれる各緑色検出画素の検出信号を用いて、前記分割エリアと前記分割エリアの各緑色検出画素とペアを構成する画素が配置される前記他方の画素群のエリアとにゴーストが発生しているか否かを判定するゴースト有無判定部と、前記ゴースト有無判定部によりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号とを用いて、前記ゴーストが発生していると判定された分割エリア及び前記他方の画素群のエリアにそれぞれ発生しているゴーストの画質差を示すデータを算出するゴースト画質差算出部と、前記画質差を示すデータが第一の閾値を越える場合、前記画質差を示すデータが前記第一の閾値以下となるように、前記分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号との少なくとも一方を補正する信号補正部とを備えるものである。 The disclosed imaging device is an imaging device including a solid-state imaging device having two pixel groups each including a plurality of pixels, and the plurality of pixels of each pixel group are arranged in a two-dimensional manner, and are green The pixel includes three types of pixels: a green detection pixel that detects light, a blue detection pixel that detects blue light, and a red detection pixel that detects red light, and the array of the plurality of pixels in each pixel group includes: A first pixel row in which green detection pixels and blue detection pixels are alternately arranged in a row direction; and a second pixel row in which red detection pixels and green detection pixels are alternately arranged in a row direction. Each pixel of one pixel group of the two pixel groups is alternately arranged in a column direction orthogonal to the direction, and the other pixel of the two pixel groups in a predetermined direction with respect to each pixel. Pixels of the same type as each pixel in the pixel group are placed adjacent to each other. The optical aperture of each pixel of the one pixel group and the optical aperture of each pixel of the other pixel group are decentered in opposite directions, and each pixel of the one pixel group, A pixel pair is formed by pixels of the other pixel group arranged adjacent to the pixel in the predetermined direction, and is included in the first pixel row obtained by dividing the one pixel group For each of the divided areas each including at least one of the green color detection pixels and the green color detection pixel included in the second pixel row, using the detection signal of each green color detection pixel included in the division area. A ghost presence / absence determination unit that determines whether or not a ghost has occurred in the area and the area of the other pixel group in which pixels forming a pair with each green detection pixel in the divided area are disposed; and the ghost presence / absence determination Go by part It is determined that the ghost is generated using the detection signal of each green detection pixel in the divided area where it is determined that the image is generated and the detection signal of the pixel that forms a pair with each green detection pixel. A ghost image quality difference calculating unit for calculating data indicating a difference in image quality of a ghost generated in each of the divided area and the area of the other pixel group, and when the data indicating the image quality difference exceeds a first threshold, At least one of a detection signal of each green detection pixel in the divided area and a detection signal of a pixel forming a pair with each green detection pixel so that the data indicating the image quality difference is equal to or less than the first threshold value. And a signal correction unit for correction.
 開示された撮像装置は、前記分割エリアは、前記第一の画素行に含まれる前記緑色検出画素と前記第二の画素行に含まれる前記緑色検出画素とをそれぞれ複数含み、前記ゴースト有無判定部は、前記分割エリアに含まれる、前記第一の画素行に含まれる前記緑色検出画素の検出信号の平均値と、前記分割エリアに含まれる、前記第二の画素行に含まれる前記緑色検出画素の検出信号の平均値との差分が第二の閾値以上の場合に、前記分割エリア及び前記他方の画素群のエリアに前記ゴーストが発生していると判定し、前記ゴースト画質差算出部は、前記ゴースト有無判定部によりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号の平均値と、前記各緑色検出画素とペアを構成する画素の検出信号の平均値との差分を、前記画質差を示すデータとして算出するものである。 In the disclosed imaging device, the divided area includes a plurality of green detection pixels included in the first pixel row and a plurality of green detection pixels included in the second pixel row, and the ghost presence / absence determination unit Are an average value of detection signals of the green detection pixels included in the first pixel row included in the divided area, and the green detection pixels included in the second pixel row included in the divided area. When the difference between the average value of the detection signals is equal to or greater than a second threshold value, it is determined that the ghost has occurred in the divided area and the area of the other pixel group, and the ghost image quality difference calculating unit, The average value of the detection signals of the green detection pixels in the divided areas determined by the ghost presence / absence determination unit and the average value of the detection signals of the pixels forming a pair with each green detection pixel difference A and calculates the data indicating the quality difference.
 開示された撮像装置は、前記分割エリアは、前記第一の画素行に含まれる前記緑色検出画素と、前記第一の画素行に含まれる前記青色検出画素と、前記第二の画素行に含まれる前記緑色検出画素と、前記第二の画素行に含まれる前記赤色検出画素とを1つずつ含み、前記ゴースト有無判定部は、前記分割エリアに含まれる、前記第一の画素行に含まれる前記緑色検出画素の検出信号と、前記分割エリアに含まれる、前記第二の画素行に含まれる前記緑色検出画素の検出信号との差分が第二の閾値以上の場合に、前記分割エリア及び前記他方の画素群のエリアに前記ゴーストが発生していると判定し、前記ゴースト画質差算出部は、前記ゴースト有無判定部によりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号との差分を、前記画質差を示すデータとして算出するものである。 In the disclosed imaging device, the divided area is included in the green detection pixel included in the first pixel row, the blue detection pixel included in the first pixel row, and the second pixel row. The ghost presence / absence determination unit is included in the first pixel row, which is included in the divided area, and includes the green detection pixel and the red detection pixel included in the second pixel row one by one. When the difference between the detection signal of the green detection pixel and the detection signal of the green detection pixel included in the second pixel row included in the division area is equal to or greater than a second threshold, the division area and the It is determined that the ghost is generated in the area of the other pixel group, and the ghost image quality difference calculation unit determines the green detection pixel of each divided area that is determined that the ghost is generated by the ghost presence / absence determination unit. Detection signal The difference between the detection signals of the pixels constituting the respective green detection pixel pair, and calculates the data indicating the quality difference.
 開示された撮像装置は、前記第一の閾値及び前記第二の閾値は、撮影条件に応じて変更されるものである。 In the disclosed imaging apparatus, the first threshold value and the second threshold value are changed according to shooting conditions.
 開示されたゴースト補正方法は、それぞれが複数の画素を含む2つの画素群を有する固体撮像素子により撮像して得られる撮像画像のゴーストを補正するゴースト補正方法であって、各画素群の前記複数の画素は、二次元状に配列された、緑色光を検出する緑色検出画素、青色光を検出する第二色検出画素、及び赤色光を検出する第三色検出画素の3種類の画素を含むものであり、各画素群の前記複数の画素の配列は、前記緑色検出画素と前記青色検出画素を行方向に交互に並べた第一の画素行と、前記赤色検出画素と前記緑色検出画素を行方向に交互に並べた第二の画素行とを、前記行方向に直交する列方向に交互に並べたものとなっており、前記2つの画素群の一方の画素群の各画素には、前記各画素に対して所定方向に前記2つの画素群の他方の画素群の当該各画素と同一種類の画素が隣接して配置されており、前記一方の画素群の各画素の光学開口と、前記他方の画素群の各画素の光学開口とは、互いに逆方向に偏心しており、前記一方の画素群の各画素と、前記各画素に対して前記所定方向に隣接して配置される前記他方の画素群の画素とで画素のペアが構成され、前記一方の画素群を分割して得られる、前記第一の画素行に含まれる前記緑色検出画素と前記第二の画素行に含まれる前記緑色検出画素とをそれぞれ少なくとも1つ含む分割エリア毎に、前記分割エリアに含まれる各緑色検出画素の検出信号を用いて、前記分割エリアと前記分割エリアの各緑色検出画素とペアを構成する画素が配置される前記他方の画素群のエリアとにゴーストが発生しているか否かを判定するゴースト有無判定ステップと、前記ゴースト有無判定ステップによりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号とを用いて、前記ゴーストが発生していると判定された分割エリア及び前記他方の画素群のエリアにそれぞれ発生しているゴーストの画質差を示すデータを算出するゴースト画質差算出ステップと、前記画質差を示すデータが第一の閾値を越える場合、前記画質差を示すデータが前記第一の閾値以下となるように、前記分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号との少なくとも一方を補正する信号補正ステップとを備えるものである。 The disclosed ghost correction method is a ghost correction method for correcting a ghost of a captured image obtained by imaging with a solid-state imaging device having two pixel groups each including a plurality of pixels, and the plurality of the ghost correction methods in each pixel group. The two pixels include three types of pixels arranged in a two-dimensional manner: a green color detection pixel that detects green light, a second color detection pixel that detects blue light, and a third color detection pixel that detects red light. The arrangement of the plurality of pixels of each pixel group includes a first pixel row in which the green detection pixels and the blue detection pixels are alternately arranged in a row direction, the red detection pixels, and the green detection pixels. The second pixel rows alternately arranged in the row direction are alternately arranged in the column direction orthogonal to the row direction, and each pixel of one pixel group of the two pixel groups includes: The two images in a predetermined direction with respect to each pixel. Pixels of the same type as the respective pixels of the other pixel group of the group are arranged adjacent to each other, and an optical aperture of each pixel of the one pixel group and an optical aperture of each pixel of the other pixel group Are decentered in opposite directions, and each pixel of the one pixel group and a pixel of the other pixel group arranged adjacent to each pixel in the predetermined direction constitute a pixel pair. Each divided area obtained by dividing the one pixel group and including at least one of the green color detection pixels included in the first pixel row and the green color detection pixels included in the second pixel row. In addition, using the detection signal of each green detection pixel included in the division area, the division area and the area of the other pixel group in which pixels forming a pair with each green detection pixel of the division area are arranged. Whether a ghost has occurred A ghost presence / absence determination step, a detection signal of each green detection pixel in the divided area determined to have a ghost generated by the ghost presence / absence determination step, and a detection signal of a pixel forming a pair with each of the green detection pixels And a ghost image quality difference calculating step for calculating data indicating a difference in image quality between ghosts occurring in each of the divided area and the other pixel group area where it is determined that the ghost has occurred, and When the data indicating the image quality difference exceeds the first threshold value, the detection signal of each green detection pixel in the divided area and each of the green color detection pixels so that the data indicating the image quality difference is equal to or less than the first threshold value. And a signal correction step of correcting at least one of the detection signals of the pixels constituting the pair.
 開示されたゴースト補正方法は、前記分割エリアは、前記第一の画素行に含まれる前記緑色検出画素と前記第二の画素行に含まれる前記緑色検出画素とをそれぞれ複数含み、前記ゴースト有無判定ステップでは、前記分割エリアに含まれる、前記第一の画素行に含まれる前記緑色検出画素の検出信号の平均値と、前記分割エリアに含まれる、前記第二の画素行に含まれる前記緑色検出画素の検出信号の平均値との差分を表す第一の差分が第二の閾値以上の場合に、前記分割エリア及び前記他方の画素群のエリアに前記ゴーストが発生していると判定し、前記ゴースト画質差算出ステップでは、前記ゴースト有無判定部によりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号の平均値と、前記各緑色検出画素とペアを構成する画素の検出信号の平均値との差分を、前記画質差を示すデータとして算出するものである。 In the disclosed ghost correction method, the divided area includes a plurality of green detection pixels included in the first pixel row and a plurality of green detection pixels included in the second pixel row, and the ghost presence / absence determination is performed. In the step, an average value of detection signals of the green detection pixels included in the first pixel row included in the division area and the green detection included in the second pixel row included in the division area. When the first difference representing the difference between the average value of the detection signals of the pixels is equal to or greater than a second threshold, it is determined that the ghost has occurred in the area of the divided area and the other pixel group, In the ghost image quality difference calculating step, the average value of the detection signals of the green detection pixels in the divided areas determined by the ghost presence / absence determination unit to generate ghost, The difference between the average value of the detection signal of the pixels constituting the, and calculates the data indicating the quality difference.
 開示されたゴースト補正方法は、前記分割エリアは、前記第一の画素行に含まれる前記緑色検出画素と、前記第一の画素行に含まれる前記青色検出画素と、前記第二の画素行に含まれる前記緑色検出画素と、前記第二の画素行に含まれる前記赤色検出画素とを1つずつ含み、前記ゴースト有無判定ステップでは、前記分割エリアに含まれる、前記第一の画素行に含まれる前記緑色検出画素の検出信号と、前記分割エリアに含まれる、前記第二の画素行に含まれる前記緑色検出画素の検出信号との差分が第二の閾値以上の場合に、前記分割エリア及び前記他方の画素群のエリアに前記ゴーストが発生していると判定し、前記ゴースト画質差算出ステップでは、前記ゴースト有無判定部によりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号との差分を、前記画質差を示すデータとして算出するものである。 In the disclosed ghost correction method, the divided area is divided into the green detection pixel included in the first pixel row, the blue detection pixel included in the first pixel row, and the second pixel row. The green detection pixel included and the red detection pixel included in the second pixel row are included one by one, and the ghost presence determination step includes the first pixel row included in the divided area. When the difference between the detection signal of the green detection pixel and the detection signal of the green detection pixel included in the second pixel row included in the divided area is equal to or greater than a second threshold value, It is determined that the ghost is generated in the area of the other pixel group, and in the ghost image quality difference calculating step, the divided area determined that the ghost is generated by the ghost presence / absence determination unit. A detection signal of the green detection pixel, the difference between the detection signals of the pixels constituting the respective green detection pixel pair, and calculates the data indicating the quality difference.
 開示されたゴースト補正方法は、前記第一の閾値及び前記第二の閾値を撮影条件に応じて変更するものである。 In the disclosed ghost correction method, the first threshold value and the second threshold value are changed according to shooting conditions.
 本発明の撮像装置及びゴースト補正方法は、あらゆる撮影環境においても、1回の撮影によりゴーストの有無を検出し、ゴーストが有る場合にはこのゴーストを補正することができる。 The imaging apparatus and ghost correction method of the present invention can detect the presence or absence of a ghost by one shooting in any shooting environment, and can correct this ghost if there is a ghost.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年6月1日出願の日本特許出願(特願2011-123434)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on June 1, 2011 (Japanese Patent Application No. 2011-123434), the contents of which are incorporated herein by reference.
5   固体撮像素子
52 第一の画素群の画素
53 第二の画素群の画素
52k,53k 光学開口
11 システム制御部
5 Solid-State Image Sensor 52 Pixel 53 in First Pixel Group Pixels 52k and 53k in Second Pixel Group Optical Aperture 11 System Control Unit

Claims (8)

  1.  それぞれが複数の画素を含む2つの画素群を有する固体撮像素子を備える撮像装置であって、
     各画素群の前記複数の画素は、二次元状に配列された、緑色光を検出する緑色検出画素、青色光を検出する青色検出画素、及び赤色光を検出する赤色検出画素の3種類の画素を含むものであり、
     各画素群は、前記3種類の画素がベイヤ状に配列されたものであり、
     各画素群の前記複数の画素の配列は、前記緑色検出画素と前記青色検出画素を行方向に交互に並べた第一の画素行と、前記赤色検出画素と前記緑色検出画素を行方向に交互に並べた第二の画素行とを、前記行方向に直交する列方向に交互に並べたものとなっており、
     前記2つの画素群の一方の画素群の各画素には、前記各画素に対して所定方向に前記2つの画素群の他方の画素群の当該各画素と同一種類の画素が隣接して配置されており、
     前記一方の画素群の各画素の光学開口と、前記他方の画素群の各画素の光学開口とは、互いに逆方向に偏心しており、
     前記一方の画素群の各画素と、前記各画素に対して前記所定方向に隣接して配置される前記他方の画素群の画素とで画素のペアが構成され、
     前記一方の画素群を分割して得られる、前記第一の画素行に含まれる前記第一色検出画素と前記第二の画素行に含まれる前記緑色検出画素とをそれぞれ少なくとも1つ含む分割エリア毎に、前記分割エリアに含まれる各緑色検出画素の検出信号を用いて、前記分割エリアと前記分割エリアの各緑色検出画素とペアを構成する画素が配置される前記他方の画素群のエリアとにゴーストが発生しているか否かを判定するゴースト有無判定部と、
     前記ゴースト有無判定部によりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号とを用いて、前記ゴーストが発生していると判定された分割エリア及び前記他方の画素群のエリアにそれぞれ発生しているゴーストの画質差を示すデータを算出するゴースト画質差算出部と、
     前記画質差を示すデータが第一の閾値を越える場合、前記画質差を示すデータが前記第一の閾値以下となるように、前記分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号との少なくとも一方を補正する信号補正部とを備える撮像装置。
    An imaging apparatus including a solid-state imaging device having two pixel groups each including a plurality of pixels,
    The plurality of pixels in each pixel group are three-dimensionally arranged in two dimensions: a green detection pixel that detects green light, a blue detection pixel that detects blue light, and a red detection pixel that detects red light. Including
    Each pixel group includes the three types of pixels arranged in a Bayer shape,
    The arrangement of the plurality of pixels in each pixel group includes a first pixel row in which the green detection pixels and the blue detection pixels are alternately arranged in the row direction, and the red detection pixels and the green detection pixels in the row direction. And the second pixel rows arranged in a row in a column direction orthogonal to the row direction,
    In each pixel of one of the two pixel groups, a pixel of the same type as that of each pixel of the other pixel group of the two pixel groups is arranged adjacent to each pixel in a predetermined direction. And
    The optical aperture of each pixel of the one pixel group and the optical aperture of each pixel of the other pixel group are decentered in opposite directions,
    Each pixel of the one pixel group and a pixel of the other pixel group arranged adjacent to each pixel in the predetermined direction constitute a pixel pair,
    A divided area obtained by dividing the one pixel group and including at least one of the first color detection pixel included in the first pixel row and the green detection pixel included in the second pixel row. And using the detection signal of each green detection pixel included in the divided area for each area of the other pixel group in which pixels forming a pair with the green detection pixel in the divided area and the divided area are arranged. A ghost presence / absence determination unit that determines whether or not a ghost has occurred,
    The ghost is detected using a detection signal of each green detection pixel in the divided area determined that the ghost is generated by the ghost presence / absence determination unit and a detection signal of a pixel forming a pair with each green detection pixel. A ghost image quality difference calculating unit for calculating data indicating a difference in image quality of a ghost generated in each of the divided area determined to be generated and the area of the other pixel group;
    When the data indicating the image quality difference exceeds a first threshold value, the detection signal of each green detection pixel in the divided area and each green color detection so that the data indicating the image quality difference is equal to or less than the first threshold value. An imaging apparatus comprising: a signal correction unit that corrects at least one of detection signals of pixels that form a pair with a pixel.
  2.  請求項1記載の撮像装置であって、
     前記分割エリアは、前記第一の画素行に含まれる前記緑色検出画素と前記第二の画素行に含まれる前記緑色検出画素とをそれぞれ複数含み、
     前記ゴースト有無判定部は、前記分割エリアに含まれる、前記第一の画素行に含まれる前記緑色検出画素の検出信号の平均値と、前記分割エリアに含まれる、前記第二の画素行に含まれる前記緑色検出画素の検出信号の平均値との差分が第二の閾値以上の場合に、前記分割エリア及び前記他方の画素群のエリアに前記ゴーストが発生していると判定し、
     前記ゴースト画質差算出部は、前記ゴースト有無判定部によりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号の平均値と、前記各緑色検出画素とペアを構成する画素の検出信号の平均値との差分を、前記画質差を示すデータとして算出する撮像装置。
    The imaging apparatus according to claim 1,
    The divided area includes a plurality of green detection pixels included in the first pixel row and a plurality of green detection pixels included in the second pixel row, respectively.
    The ghost presence / absence determination unit is included in the second pixel row included in the divided area and an average value of detection signals of the green detection pixels included in the first pixel row included in the divided area. When the difference between the average value of the detection signals of the green detection pixels is equal to or greater than a second threshold, it is determined that the ghost has occurred in the divided area and the area of the other pixel group,
    The ghost image quality difference calculation unit includes an average value of detection signals of each green detection pixel in the divided area determined by the ghost presence / absence determination unit and a pixel that forms a pair with each green detection pixel An image pickup apparatus that calculates a difference from the average value of the detection signals as data indicating the image quality difference.
  3.  請求項1記載の撮像装置であって、
     前記分割エリアは、前記第一の画素行に含まれる前記緑色検出画素と、前記第一の画素行に含まれる前記青色検出画素と、前記第二の画素行に含まれる前記緑色検出画素と、前記第二の画素行に含まれる前記赤色検出画素とを1つずつ含み、
     前記ゴースト有無判定部は、前記分割エリアに含まれる、前記第一の画素行に含まれる前記緑色検出画素の検出信号と、前記分割エリアに含まれる、前記第二の画素行に含まれる前記緑色検出画素の検出信号との差分が第二の閾値以上の場合に、前記分割エリア及び前記他方の画素群のエリアに前記ゴーストが発生していると判定し、
     前記ゴースト画質差算出部は、前記ゴースト有無判定部によりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号との差分を、前記画質差を示すデータとして算出する撮像装置。
    The imaging apparatus according to claim 1,
    The divided area includes the green color detection pixel included in the first pixel row, the blue color detection pixel included in the first pixel row, and the green color detection pixel included in the second pixel row; Each including the red detection pixels included in the second pixel row;
    The ghost presence / absence determination unit includes a detection signal of the green detection pixel included in the first pixel row included in the division area, and the green included in the second pixel row included in the division area. When the difference between the detection signal of the detection pixel and the second threshold value or more, it is determined that the ghost has occurred in the area of the divided area and the other pixel group,
    The ghost image quality difference calculation unit is configured to detect a detection signal of each green detection pixel in the divided area determined by the ghost presence / absence determination unit and a detection signal of a pixel forming a pair with each green detection pixel An imaging device that calculates the difference between the two as data indicating the image quality difference.
  4.  請求項2又は3記載の撮像装置であって、
     前記第一の閾値及び前記第二の閾値は、撮影条件に応じて変更される撮像装置。
    The imaging device according to claim 2 or 3,
    The imaging apparatus in which the first threshold value and the second threshold value are changed according to imaging conditions.
  5.  それぞれが複数の画素を含む2つの画素群を有する固体撮像素子により撮像して得られる撮像画像のゴーストを補正するゴースト補正方法であって、
     各画素群の前記複数の画素は、二次元状に配列された、緑色光を検出する緑色検出画素、青色光を検出する青色検出画素、及び赤色光を検出する赤色検出画素の3種類の画素を含むものであり、
     各画素群は、前記3種類の画素がベイヤ状に配列されたものであり、
     各画素群の前記複数の画素の配列は、前記緑色検出画素と前記青色検出画素を行方向に交互に並べた第一の画素行と、前記赤色検出画素と前記緑色検出画素を行方向に交互に並べた第二の画素行とを、前記行方向に直交する列方向に交互に並べたものとなっており、
     前記2つの画素群の一方の画素群の各画素には、前記各画素に対して所定方向に前記2つの画素群の他方の画素群の当該各画素と同一種類の画素が隣接して配置されており、
     前記一方の画素群の各画素の光学開口と、前記他方の画素群の各画素の光学開口とは、互いに逆方向に偏心しており、
     前記一方の画素群の各画素と、前記各画素に対して前記所定方向に隣接して配置される前記他方の画素群の画素とで画素のペアが構成され、
     前記一方の画素群を分割して得られる、前記第一の画素行に含まれる前記緑色検出画素と前記第二の画素行に含まれる前記緑色検出画素とをそれぞれ少なくとも1つ含む分割エリア毎に、前記分割エリアに含まれる各緑色検出画素の検出信号を用いて、前記分割エリアと前記分割エリアの各緑色検出画素とペアを構成する画素が配置される前記他方の画素群のエリアとにゴーストが発生しているか否かを判定するゴースト有無判定ステップと、
     前記ゴースト有無判定ステップによりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号とを用いて、前記ゴーストが発生していると判定された分割エリア及び前記他方の画素群のエリアにそれぞれ発生しているゴーストの画質差を示すデータを算出するゴースト画質差算出ステップと、
     前記画質差を示すデータが第一の閾値を越える場合、前記画質差を示すデータが前記第一の閾値以下となるように、前記分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号との少なくとも一方を補正する信号補正ステップとを備えるゴースト補正方法。
    A ghost correction method for correcting a ghost of a captured image obtained by imaging with a solid-state imaging device having two pixel groups each including a plurality of pixels,
    The plurality of pixels in each pixel group are two-dimensionally arranged in three dimensions: a green detection pixel that detects green light, a blue detection pixel that detects blue light, and a red detection pixel that detects red light. Including
    Each pixel group includes the three types of pixels arranged in a Bayer shape,
    The arrangement of the plurality of pixels in each pixel group includes a first pixel row in which the green detection pixels and the blue detection pixels are alternately arranged in the row direction, and the red detection pixels and the green detection pixels in the row direction. And the second pixel rows arranged in a row in a column direction orthogonal to the row direction,
    In each pixel of one of the two pixel groups, a pixel of the same type as that of each pixel of the other pixel group of the two pixel groups is arranged adjacent to each pixel in a predetermined direction. And
    The optical aperture of each pixel of the one pixel group and the optical aperture of each pixel of the other pixel group are decentered in opposite directions,
    Each pixel of the one pixel group and a pixel of the other pixel group arranged adjacent to each pixel in the predetermined direction constitute a pixel pair,
    For each divided area obtained by dividing the one pixel group and including at least one of the green color detection pixel included in the first pixel row and the green color detection pixel included in the second pixel row. Using the detection signal of each green detection pixel included in the divided area, a ghost is generated in the divided area and the area of the other pixel group in which pixels forming a pair with each green detection pixel in the divided area are arranged. A ghost presence / absence determination step for determining whether or not an occurrence has occurred;
    The ghost is detected using a detection signal of each green detection pixel in the divided area determined to have a ghost in the ghost presence / absence determination step and a detection signal of a pixel forming a pair with each green detection pixel. A ghost image quality difference calculating step for calculating data indicating the image quality difference of the ghost generated in each of the divided area determined to be generated and the area of the other pixel group;
    When the data indicating the image quality difference exceeds a first threshold value, the detection signal of each green detection pixel in the divided area and each green color detection so that the data indicating the image quality difference is equal to or less than the first threshold value. A ghost correction method comprising: a signal correction step of correcting at least one of detection signals of pixels forming a pair with a pixel.
  6.  請求項5記載のゴースト補正方法であって、
     前記分割エリアは、前記第一の画素行に含まれる前記緑色検出画素と前記第二の画素行に含まれる前記緑色検出画素とをそれぞれ複数含み、
     前記ゴースト有無判定ステップでは、前記分割エリアに含まれる、前記第一の画素行に含まれる前記緑色検出画素の検出信号の平均値と、前記分割エリアに含まれる、前記第二の画素行に含まれる前記緑色検出画素の検出信号の平均値との差分を表す第一の差分が第二の閾値以上の場合に、前記分割エリア及び前記他方の画素群のエリアに前記ゴーストが発生していると判定し、
     前記ゴースト画質差算出ステップでは、前記ゴースト有無判定部によりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号の平均値と、前記各緑色検出画素とペアを構成する画素の検出信号の平均値との差分を、前記画質差を示すデータとして算出するゴースト補正方法。
    The ghost correction method according to claim 5,
    The divided area includes a plurality of green detection pixels included in the first pixel row and a plurality of green detection pixels included in the second pixel row, respectively.
    In the ghost presence / absence determination step, an average value of detection signals of the green detection pixels included in the first pixel row included in the divided area and included in the second pixel row included in the divided area. When the first difference representing the difference from the average value of the detection signals of the green detection pixels is equal to or greater than a second threshold, the ghost is generated in the area of the divided area and the other pixel group. Judgment,
    In the ghost image quality difference calculating step, the average value of the detection signals of the green detection pixels in the divided area determined by the ghost presence / absence determination unit to generate a ghost, and the pixels forming a pair with the green detection pixels A ghost correction method for calculating a difference from the average value of the detected signals as data indicating the image quality difference.
  7.  請求項5記載のゴースト補正方法であって、
     前記分割エリアは、前記第一の画素行に含まれる前記緑色検出画素と、前記第一の画素行に含まれる前記青色検出画素と、前記第二の画素行に含まれる前記緑色検出画素と、前記第二の画素行に含まれる前記赤色検出画素とを1つずつ含み、
     前記ゴースト有無判定ステップでは、前記分割エリアに含まれる、前記第一の画素行に含まれる前記緑色検出画素の検出信号と、前記分割エリアに含まれる、前記第二の画素行に含まれる前記緑色検出画素の検出信号との差分が第二の閾値以上の場合に、前記分割エリア及び前記他方の画素群のエリアに前記ゴーストが発生していると判定し、
     前記ゴースト画質差算出ステップでは、前記ゴースト有無判定部によりゴーストが発生していると判定された分割エリアの各緑色検出画素の検出信号と、前記各緑色検出画素とペアを構成する画素の検出信号との差分を、前記画質差を示すデータとして算出するゴースト補正方法。
    The ghost correction method according to claim 5,
    The divided area includes the green color detection pixel included in the first pixel row, the blue color detection pixel included in the first pixel row, and the green color detection pixel included in the second pixel row; Each including the red detection pixels included in the second pixel row;
    In the ghost presence / absence determination step, a detection signal of the green detection pixel included in the first pixel row included in the divided area and the green color included in the second pixel row included in the divided area. When the difference between the detection signal of the detection pixel and the second threshold value or more, it is determined that the ghost has occurred in the area of the divided area and the other pixel group,
    In the ghost image quality difference calculating step, a detection signal of each green detection pixel in the divided area where it is determined by the ghost presence / absence determination unit that a ghost has occurred, and a detection signal of a pixel forming a pair with each green detection pixel The ghost correction method of calculating the difference between the two as data indicating the image quality difference.
  8.  請求項6又は7記載のゴースト補正方法であって、
     前記第一の閾値及び前記第二の閾値を撮影条件に応じて変更するゴースト補正方法。
    The ghost correction method according to claim 6 or 7,
    A ghost correction method in which the first threshold value and the second threshold value are changed according to a shooting condition.
PCT/JP2012/060987 2011-06-01 2012-04-24 Image capture device and ghosting correction method WO2012165087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011123434A JP2014158061A (en) 2011-06-01 2011-06-01 Imaging device and ghost correction method
JP2011-123434 2011-06-01

Publications (1)

Publication Number Publication Date
WO2012165087A1 true WO2012165087A1 (en) 2012-12-06

Family

ID=47258951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060987 WO2012165087A1 (en) 2011-06-01 2012-04-24 Image capture device and ghosting correction method

Country Status (2)

Country Link
JP (1) JP2014158061A (en)
WO (1) WO2012165087A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249766B2 (en) * 2018-12-14 2023-03-31 キヤノン株式会社 Information processing device, system, control method for information processing device, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007994A (en) * 2001-06-27 2003-01-10 Konica Corp Solid-state image pickup element, stereoscopic camera apparatus, and range finder
JP2008054206A (en) * 2006-08-28 2008-03-06 Matsushita Electric Ind Co Ltd Ghost detection device and its related technology
JP2008228181A (en) * 2007-03-15 2008-09-25 Canon Inc Image processing device, imaging apparatus and image processing program
JP2009200749A (en) * 2008-02-20 2009-09-03 Nittoh Kogaku Kk Image processing apparatus, image processing method and image processing program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007994A (en) * 2001-06-27 2003-01-10 Konica Corp Solid-state image pickup element, stereoscopic camera apparatus, and range finder
JP2008054206A (en) * 2006-08-28 2008-03-06 Matsushita Electric Ind Co Ltd Ghost detection device and its related technology
JP2008228181A (en) * 2007-03-15 2008-09-25 Canon Inc Image processing device, imaging apparatus and image processing program
JP2009200749A (en) * 2008-02-20 2009-09-03 Nittoh Kogaku Kk Image processing apparatus, image processing method and image processing program

Also Published As

Publication number Publication date
JP2014158061A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
US9055181B2 (en) Solid-state imaging device, image processing apparatus, and a camera module having an image synthesizer configured to synthesize color information
US8558915B2 (en) Photographing apparatus and method
US8593509B2 (en) Three-dimensional imaging device and viewpoint image restoration method
JP5701785B2 (en) The camera module
US9729805B2 (en) Imaging device and defective pixel correction method
JP5361535B2 (en) Imaging device
JP5901935B2 (en) Solid-state imaging device and camera module
US9369693B2 (en) Stereoscopic imaging device and shading correction method
US20170134634A1 (en) Photographing apparatus, method of controlling the same, and computer-readable recording medium
US8830384B2 (en) Imaging device and imaging method
KR101817655B1 (en) Photographing apparatus and method for three dimensional image
WO2014041845A1 (en) Imaging device and signal processing method
WO2013069445A1 (en) Three-dimensional imaging device and image processing method
US10511779B1 (en) Image capturing apparatus, method of controlling same, and storage medium
JP5159715B2 (en) Image processing device
JP2015103971A (en) Solid-state imaging device and digital camera
JP5634614B2 (en) Imaging device and imaging apparatus
CN116468596A (en) Image processing apparatus, image processing method, and storage medium
WO2012165087A1 (en) Image capture device and ghosting correction method
JP2011166422A (en) Imaging apparatus
JP2009303020A (en) Image capturing apparatus and defective pixel correcting method
US20130141614A1 (en) Shading correction method for image capturing apparatus, and image capturing apparatus
US20150070529A1 (en) Imaging apparatus and image correction data generating method
JP2013098920A (en) Defect correction device, defect correction method, and imaging device
KR20150060502A (en) Digital camera and solid-state imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP