WO2013047061A1 - 水中清掃ロボット - Google Patents

水中清掃ロボット Download PDF

Info

Publication number
WO2013047061A1
WO2013047061A1 PCT/JP2012/071828 JP2012071828W WO2013047061A1 WO 2013047061 A1 WO2013047061 A1 WO 2013047061A1 JP 2012071828 W JP2012071828 W JP 2012071828W WO 2013047061 A1 WO2013047061 A1 WO 2013047061A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling means
cleaning
traveling
robot
cleaning robot
Prior art date
Application number
PCT/JP2012/071828
Other languages
English (en)
French (fr)
Inventor
尾坂 滝太郎
大輔 平田
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to EP12836745.5A priority Critical patent/EP2732885B1/en
Priority to AU2012318067A priority patent/AU2012318067B2/en
Publication of WO2013047061A1 publication Critical patent/WO2013047061A1/ja
Priority to HRP20160388TT priority patent/HRP20160388T1/hr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/04Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
    • B05B3/06Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet by jet reaction, i.e. creating a spinning torque due to a tangential component of the jet
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/60Floating cultivation devices, e.g. rafts or floating fish-farms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/10Cleaning bottoms or walls of ponds or receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/024Cleaning by means of spray elements moving over the surface to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/093Cleaning containers, e.g. tanks by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B59/00Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
    • B63B59/06Cleaning devices for hulls
    • B63B59/08Cleaning devices for hulls of underwater surfaces while afloat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/007At least a part of the apparatus, e.g. a container, being provided with means, e.g. wheels, for allowing its displacement relative to the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to an underwater cleaning robot for cleaning an object to be cleaned such as an aquaculture fish net by jetting high-pressure water.
  • an underwater cleaning robot for removing algae and shellfish adhering to an aquaculture fish net.
  • Such an underwater cleaning robot cleans an object to be cleaned by jetting high-pressure water from a cleaning nozzle unit toward the surface of the object to be cleaned while moving along the surface of the object to be cleaned existing in water.
  • the cleaning nozzle unit is attached to a rotating shaft that is rotatably provided in the robot body, and rotates integrally with the rotating shaft by a reaction force of high-pressure water jet on the surface of the object to be cleaned. .
  • a propeller that rotates with the rotation of the rotation shaft and generates a propulsive force for pressing the robot body toward the surface of the object to be cleaned is attached to the rotation shaft. Then, water is introduced into the submersible cleaning robot toward the rotating propeller, and a water flow blown out of the submersible cleaning robot is generated. The state of contact by pressure is maintained.
  • the aquaculture fish net Since the aquaculture fish net has a muscle net (fish net rope), the aquaculture fish net is bent at the portion where the fish net rope is bent and protrudes largely upward.
  • the nozzle gets caught on the aquaculture fishnet or fishnet rope, the robot body rides on the protruding part, and the underwater cleaning robot gets over the protruding part and runs. It was difficult.
  • an underwater cleaning robot which includes auxiliary roller devices at the lower portions on both the left and right sides of the robot body so that the underwater cleaning robot can travel over the protruding portion (see, for example, Patent Document 1). .
  • an underwater cleaning robot there has been proposed one in which a plurality of cleaning nozzle units are provided in the left-right direction of the robot body so that the surface of the object to be cleaned can be efficiently cleaned in a wide range.
  • Some fish net ropes are provided by crossing a vertical rope along the traveling direction of the submersible cleaning robot and a horizontal rope perpendicular to the traveling direction of the submersible cleaning robot. Even when the fishnet rope is provided in parallel in one direction, depending on the traveling direction of the submersible cleaning robot, it may be a vertical rope or a horizontal rope with respect to the submersible cleaning robot.
  • the underwater cleaning robot described in Patent Document 1 has a configuration in which an auxiliary roller device is provided between the front and rear wheels, so that the horizontal rope can get over, but the vertical rope located between the left and right wheels cannot get over. There was a problem.
  • the underwater cleaning robot having a plurality of cleaning nozzle units has a wide wheel width (distance between the wheels) in the left-right direction of the robot body, so when there are obstacles such as a net or a vertical rope below, Interference with the bottom of the body makes it difficult to run.
  • the present invention is capable of traveling over the protruding portion without being caught by the fish net or the like even if the cleaning target such as a fish net has a protruding portion and improving the cleaning ability.
  • the underwater cleaning robot of the present invention is made to solve the above-described problem, and is provided in the cleaning nozzle unit toward the cleaning object surface while moving along the surface of the cleaning object existing in the water.
  • An underwater cleaning robot that cleans an object to be cleaned by spraying high-pressure water with a cleaning nozzle, wherein the cleaning nozzle unit is rotatably provided at a lower portion of the robot body, and a traveling device for moving the robot body is provided.
  • the traveling device includes first traveling means provided on the left and right of the robot body, and second traveling means positioned above a lower end of the first traveling means, and the second traveling means.
  • the said first traveling means second running means are characterized by driving and rotating in the same direction.
  • the present invention makes it possible to improve the running performance of both the vertical rope and the horizontal rope, and can efficiently and stably clean in a wide range.
  • the front and rear second traveling means has a smaller diameter than the first traveling means, and the length of the robot body in the left-right direction is set longer than the length dimension of the first traveling means. It is preferable. In such a case, since the vehicle can travel by the first traveling means, it is possible to maintain good turning performance.
  • the second traveling means may include left and right second traveling means provided on the left and right of the robot body.
  • the left and right second traveling means can travel more reliably with respect to the lateral rope, the traveling performance can be improved.
  • the left and right second traveling means may be an endless track or a plurality of wheels.
  • the front / rear second traveling means may be formed in a taper having a small diameter toward the center of the robot body.
  • the portion of the surface of the object to be cleaned such as aquaculture fish net that comes into contact with the second traveling means is brought closer to the large diameter side of the second traveling means.
  • the object to be cleaned can be tensioned, and the underwater cleaning robot can travel more easily.
  • the rotation axis of the endless track of the first traveling unit and the left and right second traveling unit is provided on the same axis, and the outer diameter of the first traveling unit is larger than the outer diameter of the endless track. It may be set large. In such a case, since the first traveling means can travel, the endless track is hardly hindered.
  • Another underwater cleaning robot performs cleaning by injecting high-pressure water by a cleaning nozzle provided in a cleaning nozzle unit toward the surface of the cleaning object while moving along the surface of the object to be cleaned existing in the water.
  • An underwater cleaning robot for cleaning an object wherein the cleaning nozzle unit is rotatably provided at a lower portion of the robot main body, and a traveling device for moving the robot main body is provided.
  • First traveling means provided on the left and right sides of the first traveling means, and second traveling means provided respectively in the front-rear direction of the first traveling means.
  • the second traveling means has a length dimension in the left-right direction of the robot body. Is set longer than the length of the first traveling means, and is characterized by rotationally driving the first traveling means and the second traveling means in the same direction. .
  • the present invention makes it possible to improve the running performance of both the vertical rope and the horizontal rope, and can efficiently and stably clean in a wide range.
  • the underwater cleaning robot according to the present invention can perform stable cleaning against unevenness and bending of the surface of the cleaning object even when the surface of the object to be cleaned such as a fish net is wide, and can be cleaned efficiently.
  • FIG. 1 is a schematic plan view including a partial cross section of an underwater cleaning robot according to an embodiment of the present invention.
  • FIG. 2 is a side view of the underwater cleaning robot.
  • FIG. 3 is a front view of the underwater cleaning robot.
  • FIG. 4 is a perspective view of the underwater cleaning robot.
  • FIG. 5 shows a cleaning state of the submersible cleaning robot, where (a) is a plan view and (b) is a side view.
  • 6A and 6B show a cleaning state of the submersible cleaning robot, where FIG. 6A is a plan view and FIG. 6B is a rear view.
  • FIG. 7 shows another embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 1 is a schematic plan view including a partial cross section of an underwater cleaning robot according to an embodiment of the present invention.
  • FIG. 2 is a side view of the underwater cleaning robot.
  • FIG. 3 is a front view of the underwater cleaning robot.
  • FIG. 8 shows another embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 9 shows another embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 10 shows another embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • 11A and 11B show another embodiment of the present invention, in which FIG. 11A is a plan view and FIG. 11B is a cross-sectional view showing the main part.
  • FIG. 12 shows another embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 13 shows another embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • the underwater cleaning robot 1 includes a robot body 2, a cleaning nozzle unit 5, and a propulsion force generating propeller 4 (hereinafter simply referred to as a propeller) as shown in FIGS.
  • the robot main body 2 includes a lower nozzle side main body 2A, an upper propeller side main body 2B, and a connecting body 2C that connects these main bodies.
  • the direction indicated by the arrow F indicates the front of the underwater cleaning robot 1.
  • the right side of the submersible cleaning robot 1 is indicated by an arrow R, and the left side is indicated by an arrow L.
  • the propeller-side main body 2B includes a plurality of propeller covers 20A, 20B, and 20C (in this embodiment, three openings 21 are illustrated) having relatively large-diameter openings 21 so as to communicate with the introduction space D. I have.
  • the propeller covers 20A, 20B, and 20C are provided in the left-right direction (vehicle width direction) of the robot body 2, and the propeller 4 is accommodated in each opening 21.
  • the traveling device 3 is provided in the nozzle side main body 2A.
  • the traveling device 3 includes submersible motors M1 and M2 with reduction gears, four wheels (front and rear and left and right wheels) 22, 23, 24, and 25, and a pair of left and right endless tracks (crawlers) 27 and 28. ing.
  • Front and rear cylindrical axles 30 and 31 are provided in front and rear portions of the nozzle-side main body 2A in parallel in the left-right direction.
  • One submersible motor M1 is built in one end on the right side of the front axle 30 and the other
  • the underwater motor M2 is built in the other end portion on the left side of the rear axle 31.
  • Each of the wheels 22 to 25 has a cylindrical rotating body 32, 33, 34, 35 that is rotatably fitted on both sides of the front and rear axles 30, 31, and an outer peripheral surface of the cylindrical rotating body 32, 33, 34, 35.
  • Each of the tires 36, 37, 38, 39 has a cylindrical shape, and is larger than the first traveling means 36a, 37a, 38a, 39a having a large diameter provided outside the robot body 2 in the left-right direction, and the first traveling means.
  • the robot body 2 includes front and rear second traveling means 36b, 37b, 38b, and 39b provided to face the inside of the robot body 2 in the left-right direction.
  • the lower ends of the front / rear second traveling means 36b, 37b, 38b, 39b is located above the lower end (ground plane).
  • the length dimension (second travel means dimension) L3 of 37b, 38b, 39b can be set as appropriate.
  • the wheel width dimension L1 is preferably set to one third or more of the dimension in the left-right direction of the robot body 2.
  • the wheel width dimension L1 it is possible to reduce the distance L4 between the left and right wheels compared to the distance between the left and right wheels of the submersible cleaning robot provided with the conventional single cleaning nozzle unit. .
  • the first travel means dimension L2 is set shorter than the front and rear second travel means dimension L3. That is, the first travel means dimension L2 is set to a length corresponding to the wheel width length of the conventional underwater cleaning robot.
  • the ground contact length of the first traveling means is reduced, and the turning traveling performance is improved.
  • Rotating plates 40 are fixed to the ends of the cylindrical rotating bodies 32, 33, 34, and 35, respectively.
  • the rotating shaft of one submersible motor M1 is inserted into and linked to a rotating plate 40 fixed to the cylindrical rotating body 32 of the front right wheel 22. Therefore, one underwater motor M1 is configured to drive the front right wheel 22 to rotate.
  • the rotation shaft of the other submersible motor M2 is inserted into and linked to a rotating plate 40 fixed to the cylindrical rotating body 35 of the rear left wheel 25. Accordingly, the other underwater motor M2 is configured to drive the rear left wheel 25 to rotate.
  • the crawlers 27 and 28 as second left and right traveling means are provided outside the wheels 22 to 25 in the left and right direction.
  • the left and right second traveling means (crawlers 27 and 28) and the front and rear second traveling means 36b, 37b, 38b and 39b constitute a second traveling means.
  • the crawler 27 on the right side is a driven wheel supported by a drive shaft 27a fixed to the rotation shaft of one submersible motor M1 and a rotation shaft 43 that rotates integrally with a rotation plate 40 fixed to the rear right cylindrical rotating body 34. 27b, and an annular endless belt (crawler belt) 27c wound around the drive wheel 27a and the driven wheel 27b. Therefore, the crawler 27 rotates the crawler belt 27c by the rotation of the underwater motor M1, and simultaneously rotates the rear right cylindrical rotating body 34. That is, the submersible motor M1 rotates the front and rear right wheels 22 and 24 and the crawler 27 simultaneously in the same direction on the same rotation axis.
  • the left crawler 28 is a driven wheel supported by a driving wheel 28a fixed to the rotating shaft of the other submersible motor M2 and a rotating shaft 44 that rotates integrally with a rotating plate 40 fixed to the front left cylindrical rotating body 33. 28 c and a crawler belt 28 c wound between the driving wheel 28 a and the driven wheel 28 b. Therefore, the crawler 28 rotates the crawler belt 28c by the rotation of the underwater motor M2, and simultaneously rotates the front left cylindrical rotating body 33. That is, the submersible motor M2 simultaneously rotates the front and rear left wheels 23 and 25 and the crawler 28 in the same direction on the same rotating shaft.
  • the outer diameters of the first traveling means 36a, 37a, 38a, 39a are set larger than the outer diameters of the crawler belts 27c, 28c of both the crawlers 27, 28.
  • the lower ends (grounding surfaces) of the crawler belts 27c, 28c of both the crawlers 27, 28 are located above the lower ends of the first traveling means 36a, 37a, 38a, 39a. Therefore, normal traveling can be performed by the first traveling means 36a, 37a, 38a, 39a.
  • a power feeding cable (not shown) is connected to each submersible motor M1, M2.
  • a power supply cable extends from a power supply device (not shown) on land or on the ship toward the underwater cleaning robot 1 to supply power to each of the submersible motors M1 and M2.
  • the rotational speed of the right submersible motor M1 is set higher than the rotational speed of the left submersible motor M2.
  • the traveling direction of the submersible cleaning robot 1 is directed to the left (in the direction of arrow L) in FIG.
  • the cleaning nozzle unit 5 injects high-pressure water supplied from a high-pressure water hose (not shown) toward the cultured fish net N as a cleaning object, and cleans the cultured fish net N by the jet.
  • the cleaning nozzle unit 5 is attached to the lower part of the rotating shaft 6 that is rotatably supported by the nozzle-side main body 2A. High-pressure water pumped from a high-pressure pump (not shown) on land or on a ship via a high-pressure water hose is supplied to the cleaning nozzle unit 5.
  • the cleaning nozzle unit 5 includes a disk-shaped rotating body 55 fixed to the lower end of the rotating shaft 6 and a plurality of cleaning nozzles 53 provided on the outer periphery of the rotating body 55.
  • These cleaning nozzles 53 are inclined downward by a predetermined angle so that the injection direction of the high-pressure water faces the surface of the cultured fish net. Thereby, when the high pressure water is jetted from the cleaning nozzle 53, the cleaning nozzle unit 5 is rotated together with the rotary shaft 6 by the jet reaction force generated when this high pressure water is sprayed on the surface of the cultured fish net N. It has become. In other words, the cleaning nozzle unit 5 sprays high-pressure water on the surface of the cultured fish net N while rotating around the axis of the rotary shaft 6, thereby spreading algae and shellfish attached to the cultured fish net N over a wide range. It is comprised so that it can be removed over.
  • the propeller 4 is provided integrally with the rotary shaft 6 so as to be accommodated in the opening 21 of the propeller side main body 2B. Therefore, when high pressure water is jetted from the cleaning nozzle 53 and the rotary shaft 6 rotates together with the cleaning nozzle unit 5 due to the jet reaction force, the propeller 4 also rotates integrally to press the submersible cleaning robot 1 downward. Of water flow. -Operational explanation of submersible cleaning robot 1- Next, the cleaning operation of the cultured fish net N by the underwater cleaning robot 1 configured as described above will be described.
  • the underwater cleaning robot 1 When cleaning with the underwater cleaning robot 1, the underwater cleaning robot 1 is submerged inside the aquaculture fish net N (aquaculture space) from onshore or on board. Then, power is supplied to each submersible motor from the power supply cable and high-pressure water is supplied from the high-pressure water hose to the cleaning nozzle unit 5.
  • the submersible motors M1 and M2 are operated, the wheels 22 to 25 and the crawlers 27 and 28 are rotated, and the submersible cleaning robot 1 travels along the aquaculture fish net N.
  • High pressure water is jetted from each cleaning nozzle 53 of the cleaning nozzle unit 5.
  • a jet of high-pressure water from the cleaning nozzle 53 algae, shellfish, and the like attached to the cultured fish net N are removed and discharged out of the aquaculture space, and the cultured fish net N is cleaned.
  • the cleaning nozzle unit 5, the rotating shaft 6 and the propeller 4 rotate integrally by the injection reaction force accompanying the injection of the high pressure water.
  • the rotation of the propeller 4 introduces water from the introduction space D toward the propeller 4 to generate a water flow blown from the openings 21 of the propeller covers 20A, 20B, and 20C. As a result, the state in which the wheels 22 to 25 are in contact with the cultured fish net N at a predetermined pressure is maintained.
  • the wheels 22 to 25 are not lifted from the cultured fish net N, and the cultured fish net N is cleaned while the underwater cleaning robot 1 stably travels along the cultured fish net N.
  • the cultured fish net N Since the cultured fish net N is flexible, it will bend downward. Specifically, when the cultured fish net N is large, the rope may become a net bone. In such a case, the portion of the rope becomes the top of the mountain and unevenness occurs in the cultured fish net N. Therefore, the underwater cleaning robot 1 needs to cross the mountain.
  • FIGS. 5A and 5B illustrate a case in which the underwater cleaning robot 1 travels on a mountain portion with a horizontal rope N1.
  • the crawlers 27, 28 then travel on the horizontal rope N1 and get over.
  • the left and right rear wheels 24, 25 travel on the horizontal rope N1 and get over.
  • FIGS. 6 (a) and 6 (b) the case of traveling along the vertical rope N2 is illustrated in FIGS. 6 (a) and 6 (b).
  • the first traveling means 37a, 39a of the front and rear left wheels 23, 25 and the first traveling means 36a, 38a of the front and rear right wheels 22, 24 are straddling the vertical rope N2.
  • the second traveling means 36b, 37b, 38b, 39b on either the left or right can travel on the vertical rope N2, it is possible to prevent the underwater cleaning robot 1 from being disabled.
  • the vertical rope N2 is positioned between the left and right second traveling means 36b, 37b, 38b, 39b.
  • the distance between the left and right second traveling means 36b, 37b, 38b, 39b (between the wheels) Since the distance L4) is narrow, a part of the wheels 22 to 25 comes into contact with the cultured fish net N, and the underwater cleaning robot 1 can get over without any trouble.
  • the underwater cleaning robot 1 can travel over the cleaning protrusions of the cultured fish net N while cleaning, and can be prevented from being disabled and stable. Cleaning work can be performed in a wide range at the same time.
  • the lower end of the second traveling means (front and rear second traveling means 36b, 37b, 38b, 39b and crawlers 27, 28) is set to be lower than the lower ends of the first traveling means 36a, 37a, 38a, 39a. Since it is located above and can be traveled by the first travel means, the turning performance of the submersible cleaning robot 1 can be maintained well.
  • the present invention is not limited to the above embodiment.
  • the embodiment shown in FIGS. 7A and 7B exemplifies a case where the diameters of the wheels 22 to 25 are set to one type.
  • the outer diameters of the crawlers 27 and 28 are made larger than the diameters of the wheels 22 to 25.
  • the crawlers 27 and 28 correspond to the first traveling means and have a normal traveling function.
  • the wheels 22 to 25 correspond to the front and rear second traveling means.
  • the front and rear second traveling means 36 b, 37 b, 38 b, 39 b are formed in a tapered shape so as to have a small diameter toward the center of the submersible cleaning robot 1.
  • the front and rear second traveling means 36b, 37b, 38b, and 39b are formed in a tapered shape, the portion of the cultured fish net N that contacts the front and rear second traveling means 36b, 37b, 38b, and 39b Since the two traveling means are brought closer to the large diameter side, the cultured fish net N can be tensioned, and the underwater cleaning robot 1 can travel more easily.
  • the crawlers 27 and 28 are arranged between the outer circumferences of the wheels 22 to 25 so that the wheels 22 to 25 and the crawlers 27 and 28 do not overlap in the vehicle width direction.
  • the crawlers 27 and 28 as the left and right second traveling means are disposed between the first traveling means 36 a and 37 a of the left and right front wheels 22 and 23 and the first traveling means 38 a and 39 a of the left and right rear wheels 24 and 25. It is a thing. In such a case, the crawlers 27 and 28 and the wheels 22 to 25 are driven by different drive sources (motors).
  • 10 (a) and 10 (b) employs a plurality of wheels 60 as left and right second traveling means instead of the crawlers 27 and 28 shown in FIG.
  • a plurality of wheels 60 are arranged in the front-rear direction of the robot body 2 so that all the wheels 60 are configured.
  • the traveling device 3 is composed of left and right crawlers 27 and 28 as first traveling means and front and rear rollers 61 and 62 as second traveling means. It is. Specifically, an arm 63 protrudes from the side of the robot body 2, and a sealed container 65 in which the underwater motor M is built is fixed to the arm 63. The rotating shaft of the submersible motor M is fixed to one end of the rollers 61 and 62. The other ends of the rollers 61 and 62 are supported by the arm 63 via bearings.
  • the rollers 61 and 62 can travel along the vertical rope N2. Further, since the drive sources (submersible motors) of the crawlers 27 and 28 and the rollers 61 and 62 are different, the axis of the drive wheels of the crawlers 27 and 28 and the axis of the rollers 61 and 62 are not necessarily the same. There may be no case, and it may be a different case.
  • the first traveling means comprises front, rear, left and right wheels 60,60.
  • the distance between the front and rear wheels 60, 60 is set narrow.
  • the second traveling means includes a plurality of wheels 66 provided in the front-rear direction of the front and rear wheels 60, 60, respectively.
  • the second traveling means is continuously provided in the left-right direction of the submersible cleaning robot 1.
  • the second traveling means is positioned above the lower end of the first traveling means when the first traveling means and the second traveling means are rotated on the same axis.
  • the rotational axis centers of the first traveling means and the second traveling means may be different. In such a case, it is not always necessary to make the diameter of the second traveling means smaller than the diameter of the first traveling means, and even if they are equivalent, the diameter of the second traveling means is larger than the diameter of the first traveling means. It may be a case of increasing.
  • the cleaning nozzle unit 5 can also be composed of a pair of horizontal extension pipes extending in the horizontal direction from the rotary shaft 6 and a cleaning nozzle provided at the tip of the horizontal extension pipe.
  • the propeller 4 may be configured to rotate in the same direction or rotate in opposite directions.
  • the robot main body 2 does not need to be divided into the nozzle side main body 2A and the propeller side main body 2B, and an introduction space D may be formed by opening a part of the robot main body 2.
  • the present invention is useful for an underwater cleaning robot that cleans an object to be cleaned such as an aquaculture fish net by jetting high-pressure water.
  • an object to be cleaned such as an aquaculture fish net by jetting high-pressure water.
  • the present invention can be applied to an application in which it can travel over the protruding portion without being caught by the fish net and the cleaning ability is increased.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Zoology (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

本発明の水中清掃ロボット(1)は、清掃ノズルユニット(5)が、前記ロボット本体(2)の下部に回転自在に設けられ、前記ロボット本体を移動させる走行装置(3)が設けられている。前記走行装置(3)は、前記ロボット本体の左右に設けられた第1走行手段(36a、37a、38a、39a)と、前記第1走行手段の前後方向にそれぞれ設けられ且つ前記第1走行手段の下端よりも上方に位置している第2走行手段(36b、37b、38b、39b)とを備えている。本発明は、魚網等の清掃対象物表面が広範囲であっても、清掃対象物表面の凹凸や撓みに対して安定した走行が可能となり、効率よく清掃できる。

Description

水中清掃ロボット
 本発明は、養殖魚網等の清掃対象物を、高圧水の噴射により清掃する水中清掃ロボットに関する。
 例えば養殖魚網に付着した藻や貝類の除去を行うための水中清掃ロボットが知られている。かかる水中清掃ロボットは、水中に存在する清掃対象物表面に沿って移動しながら、この清掃対象物表面に向かって清掃ノズルユニットより高圧水を噴射して清掃対象物を清掃するものである。清掃ノズルユニットは、ロボット本体に回転自在に設けられた回転軸に取り付けられており、清掃対象物表面に対する高圧水の噴射の反力により、この回転軸と一体的に回転するようになっている。
 また、回転軸には、この回転軸の回転に伴って回転して、ロボット本体を清掃対象物表面に向かって押し付けるための推進力を発生するプロペラが取り付けられている。そして、水中清掃ロボットには、回転するプロペラに向けて水が導入され、水中清掃ロボット外部に吹き出される水流が発生し、これによって水中清掃ロボットには推進力が得られ、養殖魚網に所定の圧力で当接した状態が維持される。
 前記養殖魚網には、筋網(魚網ロープ)があるため、魚網ロープがある部分で養殖魚網が撓んで上方に大きく突出する。このような突出部を、水中清掃ロボットが乗り越えようとすると、ノズルが養殖魚網や魚網ロープに引っかかり、ロボット本体が突出部に乗り上げたりして、水中清掃ロボットが突出部を乗り越えて走行することは困難であった。
 そこで、ロボット本体の左右両側の下部に、それぞれ補助ローラ装置を備え、水中清掃ロボットが突出部を乗り越えて走行することができるようにした水中清掃ロボットが公知である(例えば、特許文献1参照)。
 また、水中清掃ロボットとしては、清掃対象物表面を広範囲において効率よく清掃できるように、清掃ノズルユニットをロボット本体の左右方向に複数個設けたものも提案されている。
特開平8-318229号公報
 前記魚網ロープは、水中清掃ロボットの進行方向に沿う縦ロープと、水中清掃ロボットの進行方向に対して直角方向の横ロープとが交差して設けられたものがある。また、魚網ロープが一方向に並行して設けられている場合においても、水中清掃ロボットの進行方向によっては、水中清掃ロボットに対して縦ロープまたは横ロープとなる場合がある。
 特許文献1に記載の水中清掃ロボットは、前後車輪間に補助ローラ装置を設けた構成であるため、横ロープは乗り越えることができるが、左右車輪間に位置する縦ロープは、乗り越えることができないという問題があった。
 特に、前記のように、清掃ノズルユニットを複数個備える水中清掃ロボットは、ロボット本体左右方向の車輪幅(車輪間距離)が広くなるため、下方に網や縦ロープ等の障害物があると、本体底面に干渉して走行困難となる。
 そこで、本発明は、今回上記問題を解決すべく、魚網等の清掃対象物に突出部分があっても、魚網等に引っかかることなく、突出部を乗り越えて走行でき、かつ清掃能力を高めることを目的とする。
 本発明の水中清掃ロボットは、前記課題を解決するためになされたもので、水中に存在する清掃対象物表面に沿って移動しながら、この清掃対象物表面に向かって清掃ノズルユニットに設けられた清掃ノズルにより高圧水を噴射して清掃対象物を清掃する水中清掃ロボットであって、前記清掃ノズルユニットは、前記ロボット本体の下部に回転自在に設けられ、前記ロボット本体を移動させる走行装置が設けられ、前記走行装置は、前記ロボット本体の左右に設けられた第1走行手段と、前記第1走行手段の下端よりも上方に位置している第2走行手段とを備え、前記第2走行手段は、前記ロボット本体の前後方向のそれぞれで且つ前記第1走行手段よりも前記ロボット本体の左右方向内側に臨むように設けられた前後第2走行手段を備え、前記第1走行手段と前記第2走行手段とを同方向に回転駆動させることによって特徴付けられている。
 前記本発明は、縦方向のロープおよび横方向のロープの両方のロープに対して、走行性能を改善することが可能となり、広範囲において効率よく安定して清掃することができる。
 前記水中清掃ロボットにおいて、前後第2走行手段は、前記第1走行手段よりも小径で且つ前記ロボット本体の左右方向の長さ寸法が、前記第1走行手段の長さ寸法よりも長く設定されているのが好ましい。かかる場合には、第1走行手段により走行できるため、旋回性能を良好に維持することができる。
 前記水中清掃ロボットにおいて、前記第2走行手段は、前記ロボット本体の左右に設けられた左右第2走行手段を備えていてもよい。かかる場合には、左右第2走行手段がより確実に、横方向のロープに対して走行できるため、走行性能を改善することができる。
 前記水中清掃ロボットにおいて、前記左右第2走行手段は、無限軌道であってもよいし、複数個の車輪であってもよい。
 前記水中清掃ロボットにおいて、前記前後第2走行手段は、前記ロボット本体の中心に向けて小径となるテーパに形成されていてもよい。このように、第2走行手段をテーパ状に形成した場合には、養殖魚網等の清掃対象物表面の第2走行手段に接触する部分は、第2走行手段の大径側に寄せられるため、清掃対象物を緊張させることができ、水中清掃ロボットはより容易に走行することができる。
 前記水中清掃ロボットにおいて、前記第1走行手段と前記前記左右第2走行手段の無限軌道の回転軸が同一軸上に設けられ、前記第1走行手段の外周径が前記無限軌道の外周径よりも大きく設定されていてもよい。かかる場合は、前記第1走行手段で走行できるため、前記無限軌道が支障となるおそれはほとんどない。
 本発明の別の水中清掃ロボットは、水中に存在する清掃対象物表面に沿って移動しながら、この清掃対象物表面に向かって清掃ノズルユニットに設けられた清掃ノズルにより高圧水を噴射して清掃対象物を清掃する水中清掃ロボットであって、前記清掃ノズルユニットは、前記ロボット本体の下部に回転自在に設けられ、前記ロボット本体を移動させる走行装置が設けられ、前記走行装置は、前記ロボット本体の左右に設けられた第1走行手段と、前記第1走行手段の前後方向にそれぞれ設けられた第2走行手段とを備え、前記第2走行手段は、前記ロボット本体の左右方向の長さ寸法が、前記第1走行手段の長さ寸法よりも長く設定され、前記第1走行手段と前記第2走行手段とを同方向に回転駆動させることによって特徴付けられている。
 前記本発明は、縦方向のロープおよび横方向のロープの両方のロープに対して、走行性能を改善することが可能となり、広範囲において効率よく安定して清掃することができる。
 本発明の水中清掃ロボットは、魚網等の清掃対象物表面が広範囲であっても、清掃対象物表面の凹凸や撓みに対して安定した走行が可能となり、効率よく清掃できる
図1は、本発明の一実施形態に係る水中清掃ロボットの一部断面を含む概略平面図である。 図2は、前記水中清掃ロボットの側面図である。 図3は、前記水中清掃ロボットの正面図である。 図4は、前記水中清掃ロボットの斜視図である。 図5は、前記水中清掃ロボットの洗浄状態を示し、(a)は平面図、(b)は側面図である。 図6は、前記水中清掃ロボットの洗浄状態を示し、(a)は平面図、(b)は背面図である。 図7は、本発明の他実施形態を示し、(a)は平面図、(b)は側面図である。 図8は、本発明の他実施形態を示し、(a)は平面図、(b)は側面図である。 図9は、本発明の他実施形態を示し、(a)は平面図、(b)は側面図である。 図10は、本発明の他実施形態を示し、(a)は平面図、(b)は側面図である。 図11は、本発明の他実施形態を示し、(a)は平面図、(b)は要部を示す断面図である。 図12は、本発明の他実施形態を示し、(a)は平面図、(b)は側面図である。 図13は、本発明の他実施形態を示し、(a)は平面図、(b)は側面図である。
 以下、本発明の実施形態について図面を参照しながら説明する。
 本実施形態では、養殖魚網の清掃を行うための自走式の水中清掃ロボットとして本発明を適用した場合について説明する。
-水中清掃ロボットの構成説明-
 図1~図6は、本発明の一実施形態に係る水中清掃ロボット1を示す。本実施形態にかかる水中清掃ロボット1は、図1~図4に示すようにロボット本体2、清掃ノズルユニット5、推進力発生用プロペラ4(以下、単にプロペラという)を備えている。
 ロボット本体2は、下方のノズル側本体2Aと、上方のプロペラ側本体2Bと、これら各本体同士を連結する連結体2Cとを備えている。
 図1および図4において、矢印Fで示す方向が水中清掃ロボット1の前方を示す。また水中清掃ロボット1の前方に向かって右側を矢印Rで示し、左側を矢印Lで示す。
 プロペラ側本体2Bは、導入空間Dに連通するように比較的大径の開口21を有する複数個(本実施形態では、3個の開口21を例示する。)のプロペラカバー20A、20B、20Cを備えている。プロペラカバー20A、20B、20Cは、ロボット本体2の左右方向(車幅方向)に設けられており、この各開口21の内部にプロペラ4が、それぞれ収容されている。
 ノズル側本体2Aには、走行装置3が設けられている。かかる走行装置3は、減速機付きの水中モータM1、M2と、4個の車輪(前後左右の車輪)22、23、24、25と、左右一対の無限軌道(クローラ)27、28とを備えている。
 ノズル側本体2Aの前後部には、前後筒状の車軸30、31が、左右方向に平行に設けられており、一方の水中モータM1は、前車軸30右側の一方端部に内蔵され、他方の水中モータM2は、後車軸31左側の他方端部に内蔵されている。
 各車輪22~25は、前後車軸30、31の両側に回転自在に外嵌された筒状回転体32、33、34、35と、この筒状回転体32、33、34、35の外周面に装着された弾性体としてのタイヤ36、37、38、39とからなる。各タイヤ36、37、38、39は筒状を呈しており、ロボット本体2左右方向の外側に設けられた大径の第1走行手段36a、37a、38a、39aと、第1走行手段よりも小径で且つロボット本体2左右方向の内側に臨むように設けられた前後第2走行手段36b、37b、38b、39bとからなる。このように、前後第2走行手段36b、37b、38b、39bを第1走行手段よりも小径に形成することにより、前後第2走行手段36b、37b、38b、39bの下端は、前記第1走行手段36a、37a、38a、39aの下端(接地面)よりも上方に位置している。
 ここで、各車輪22~25の長さ寸法(車輪幅寸法)L1、第1走行手段36a、37a、38a、39aの長さ寸法(第1走行手段寸法)L2および前後第2走行手段36b、37b、38b、39bの長さ寸法(第2走行手段寸法)L3は、適宜設定可能である。例えば、車輪幅寸法L1は、ロボット本体2左右方向の寸法の3分の1以上に設定されているのが好ましい。このように、車輪幅寸法L1を設定することにより、従来の単体の清掃ノズルユニットを備えた水中清掃ロボットの左右車輪間距離に比し、左右の車輪間距離L4を小さくすることが可能となる。
 第1走行手段寸法L2は、前後第2走行手段寸法L3よりも短く設定されている。すなわち、第1走行手段寸法L2は、前記従来の水中清掃ロボットの車輪幅長に相当する長さに設定されている。このように、第1走行手段寸法L2を前後第2走行手段寸法L3よりも短くすることにより、第1走行手段の接地長さを小さくして、旋回走行性を良くしている。
 前記筒状回転体32、33、34、35の端部には、回転板40がそれぞれ固定されている。一方の水中モータM1の回転軸は、前右車輪22の筒状回転体32に固定された回転板40に挿通され且つ連動連結されている。従って、一方の水中モータM1は、前右車輪22を回転駆動させるようになっている。
 他方の水中モータM2の回転軸は、後左車輪25の筒状回転体35に固定された回転板40に挿通され且つ連動連結されている。従って、他方の水中モータM2は、後左車輪25を回転駆動させるようになっている。
 車輪22~25の左右方向の外側には、左右第2走行手段としての前記クローラ27、28が設けられている。なお、かかる左右第2走行手段(クローラ27、28)と前記前後第2走行手段36b、37b、38b、39bとにより、第2走行手段が構成されている。
 右側のクローラ27は、一方の水中モータM1の回転軸に固定された駆動輪27aと、後右筒状回転体34に固定された回転板40と一体回転する回転軸43に支持された従動輪27bと、駆動輪27aおよび従動輪27b間に巻き掛けられた環状の無端帯(履帯)27cとを備えている。よって、クローラ27は、水中モータM1の回転により履帯27cが回転するとともに、後右筒状回転体34も同時に回転させる。すなわち、水中モータM1は、前後右車輪22、24およびクローラ27を同一の回転軸において同じ方向に同時に回転させることになる。
 左側のクローラ28は、他方の水中モータM2の回転軸に固定された駆動輪28aと、前左筒状回転体33に固定された回転板40と一体回転する回転軸44に支持された従動輪28bと、駆動輪28aおよび従動輪28b間に巻き掛けられた履帯28cとを備えている。よって、クローラ28は、水中モータM2の回転により履帯28cが回転するとともに、前左筒状回転体33も同時に回転させる。すなわち、水中モータM2は、前後左車輪23、25およびクローラ28を同一の回転軸において同じ方向に同時に回転させることになる。
 ここで、第1走行手段36a、37a、38a、39aの外周直径は、両クローラ27、28の履帯27c、28cの外周直径よりも大きく設定されている。このように、両クローラ27、28の履帯27c、28cの下端(接地面)は、前記第1走行手段36a、37a、38a、39aの下端よりも上方に位置している。従って、通常の走行は、第1走行手段36a、37a、38a、39aで行うことができる。
 各水中モータM1、M2には給電ケーブル(図示省略)が接続されている。水中清掃ロボット1が水中に沈められた状態では、陸上または船上の図示しない電源装置から水中清掃ロボット1に向けて給電ケーブルが延びて、各水中モータM1,M2への給電が行われる。
 例えば、水中清掃ロボット1が前進走行(図1の矢印F方向に走行)している状況で、右側の一方の水中モータM1の回転数を左側の他方の水中モータM2の回転数よりも高くすれば、水中清掃ロボット1の走行方向が図1中左方向(矢印L方向)へ向くようになっている。
 逆に、左側の水中モータM2の回転数を右側の水中モータM1の回転数よりも高くすれば、水中清掃ロボット1の走行方向が右方向(矢印R方向)へ向くようになっている。
 水中モータM1,M2を上記とは逆方向に回転させて水中清掃ロボット1を後退走行させている場合も同様にして進行方向を変えることが可能である。更に、各水中モータM1と、水中モータM2を互いに逆方向に回転させれば、水中清掃ロボット1を転回させることもできる。
 清掃ノズルユニット5は、高圧水ホース(図示省略)から供給された高圧水を清掃対象物としての養殖魚網Nに向かって噴射し、その噴流によって養殖魚網Nの清掃を行うものである。清掃ノズルユニット5は、ノズル側本体2Aに回転自在に支持された回転軸6の下部に取り付けられている。陸上または船上の図示しない高圧ポンプから高圧水ホースを介して圧送される高圧水が、清掃ノズルユニット5に供給されるようになっている。
 清掃ノズルユニット5は、前記回転軸6の下端に固定された円盤状の回転体55と、回転体55の外周部に設けられた複数個の清掃ノズル53とを備えている。
 これら清掃ノズル53は、高圧水の噴射方向が養殖魚網の表面を向くように所定角度だけ下方に傾斜するようになっている。これにより、清掃ノズル53から高圧水が噴射された場合、この高圧水が養殖魚網Nの表面に吹き付けられることに伴って発生する噴射反力により、清掃ノズルユニット5が回転軸6と共に回転するようになっている。換言すると、この清掃ノズルユニット5は、回転軸6の軸心回りに回転しながら養殖魚網Nの表面に高圧水を噴射することによって、養殖魚網Nに付着している藻や貝類等を広範囲に亘って除去できるように構成されている。
 前記プロペラ4は、プロペラ側本体2Bの開口21内に収容されるように回転軸6と一体的に設けられている。従って、清掃ノズル53から高圧水が噴射され、その噴射反力によって清掃ノズルユニット5と共に回転軸6が回転した場合、このプロペラ4も一体的に回転し、水中清掃ロボット1を下側へ押し付けるための水流を発生させる。
-水中清掃ロボット1の動作説明-
 次に、上述の如く構成された水中清掃ロボット1による養殖魚網Nの清掃動作について説明する。
 この水中清掃ロボット1による清掃時には、陸上または船上から水中清掃ロボット1が養殖魚網Nの内側(養殖用スペース)に沈められる。そして、給電ケーブルからの各水中モータへの給電及び高圧水ホースからの清掃ノズルユニット5への高圧水の供給が行われる。
 各水中モータ水中モータM1、M2が作動し、各車輪22~25およびクローラ27、28が回転して水中清掃ロボット1は養殖魚網Nに沿って走行する。
 清掃ノズルユニット5の各清掃ノズル53から高圧水の噴射が行われる。清掃ノズル53からの高圧水の噴射により、養殖魚網Nに付着した藻や貝類等が除去されて養殖用スペースの外に排出され養殖魚網Nが清掃される。
 この高圧水の噴射に伴う噴射反力により、清掃ノズルユニット5、回転軸6及びプロペラ4は一体的に回転する。このプロペラ4の回転によって導入空間Dからプロペラ4に向けて水が導入され、プロペラカバー20A、20B、20Cの開口21から吹き出される水流が発生し、これによって水中清掃ロボット1には推進力が得られ、各車輪22~25が養殖魚網Nに所定の圧力で当接した状態が維持される。
 このため、各車輪22~25が養殖魚網Nから浮き上がってしまうことがなく、水中清掃ロボット1が養殖魚網Nに沿って安定して走行しながら養殖魚網Nの清掃が行われる。
 養殖魚網Nは、可撓性を有するため、下方に撓むこととなる。具体的には、養殖魚網Nが大きいとロープが網の骨となる場合がある。かかる場合は、ロープの部分が山頂部となり養殖魚網Nに凹凸が生じる。従って、水中清掃ロボット1は、山部を越える必要がある。
 例えば、図5(a)および(b)に、水中清掃ロボット1が、横ロープN1による山部を走行する場合について例示する。同図において、左右前車輪22、23が横ロープN1を通過すると、次に、クローラ27、28が横ロープN1を走行し乗り越える。さらに、左右後車輪24、25が横ロープN1を走行し乗り超える。
 次に、図6(a)および(b)に、縦ロープN2に沿って走行する場合について例示する。同図において、前後左車輪23、25の第1走行手段37a、39aと、前後右車輪22、24の第1走行手段36a、38aとが、縦ロープN2を跨いだ状態となっている。このとき、左右何れかの第2走行手段36b、37b、38b、39bが、縦ロープN2を走行することができるため、水中清掃ロボット1が走行不能になるのを防止できる。なお、縦ロープN2が左右の第2走行手段36b、37b、38b、39b間に位置する場合もあるが、かかる場合には、左右の第2走行手段36b、37b、38b、39b間(車輪間距離L4)が狭くなっていることから、車輪22~25の一部が養殖魚網Nに接触することとなり、水中清掃ロボット1は支障なく乗り越えることができる。
 以上のように、いずれの場合においても、水中清掃ロボット1は、洗浄しながら養殖魚網Nの洗浄突出部を乗り越えて走行することができ、走行不能になるのを防止することができ、安定した清掃作業を広範囲に同時に行うことができる。
 また、本実施の形態では、前記第1走行手段36a、37a、38a、39aの下端よりも第2走行手段(前後第2走行手段36b、37b、38b、39bおよびクローラ27、28)の下端を上方に位置させて、第1走行手段により走行できるように構成しているため、水中清掃ロボット1の旋回性能を良好に維持することができる。
 本発明は、前記実施形態に限定されるものではない。図7(a)および(b)に示す実施形態は、車輪22~25の直径を1種類に設定した場合を例示するものである。しかも、本実施形態では、クローラ27、28の外周径を、車輪22~25の直径よりも大きくしたものである。かかる場合には、クローラ27、28が、第1走行手段に該当し、通常の走行機能を備えている。また、車輪22~25が、前後第2走行手段に該当する。
 図8(a)および(b)に示す実施形態は、前後第2走行手段36b、37b、38b、39bを水中清掃ロボット1の中心に向けて小径となるように、テーパ状に形成した場合を例示するものである。このように、前後第2走行手段36b、37b、38b、39bをテーパ状に形成した場合には、養殖魚網Nの前後第2走行手段36b、37b、38b、39bに接触する部分は、前後第2走行手段の大径側に寄せられるため、養殖魚網Nを緊張させることができ、水中清掃ロボット1はより容易に走行することができる。
 図9(a)および(b)に示す実施形態は、車輪22~25とクローラ27、28とが車幅方向に重ならないように、車輪22~25の外周間にクローラ27、28を配置したものである。すなわち、左右前車輪22、23の第1走行手段36a、37aと、左右後車輪24、25の第1走行手段38a、39aとの間に、左右第2走行手段としてのクローラ27、28を配置したものである。かかる場合には、クローラ27、28と車輪22~25とは別の駆動源(モータ)でそれぞれ駆動する。
 図10(a)および(b)に示す実施形態は、前記図9に示したクローラ27、28に代えて、左右第2走行手段としての複数個の車輪60を採用したものである。すなわち、本実施形態は、複数個の車輪60をロボット本体2の前後方向に配置することにより、すべて車輪で構成している。
 図11(a)および(b)に示す実施形態は、走行装置3を第1走行手段としての左右のクローラ27、28と、第2走行手段としての前後のローラ61、62とから構成したものである。具体的には、ロボット本体2側面からアーム63が突設され、このアーム63に水中モータMが内蔵された密閉容器65が固定されている。そして、水中モータMの回転軸が、ローラ61、62の一端に固定されている。また、ローラ61、62の他端は、軸受けを介してアーム63に支持されている。
 そして、左右のクローラ27、28で走行を行なうとともに、横ロープN1を乗り越えることができる。また、ローラ61、62で縦ロープN2に沿って走行することができる。また、クローラ27、28とローラ61、62との駆動源(水中モータ)は別であるため、クローラ27、28の駆動輪の軸心と、ローラ61、62の軸心とは、必ずしも同一で無くてもよく、相違する場合であってもよい。
 図12(a)および(b)に示す実施形態は、前記図9に示した第2走行手段を複数個の車輪66としたものである。
 図13(a)および(b)に示す実施形態は、第1走行手段を、前後左右の車輪60、60から構成している。前後車輪60、60の間隔は狭く設定されている。しかも、第2走行手段は、前後車輪60、60の前後方向のそれぞれに設けられた複数個の車輪66からなる。なお、第2走行手段は、水中清掃ロボット1の左右方向に連続して設けられている。
 また、前記第1走行手段の下端よりも第2走行手段を上方に位置させる構成としては、前記第1走行手段と第2走行手段とを同一軸上で回転させる場合に、第2走行手段の直径を、第1走行手段の直径よりも小さくする場合を例示したが、第1走行手段と第2走行手段との回転軸心を相違させる場合であってもよい。かかる場合には、必ずしも第2走行手段の直径を、第1走行手段の直径よりも小さくする必要はなく、同等であっても、第2走行手段の直径を、第1走行手段の直径よりも大きくする場合であってもよい。
 清掃ノズルユニット5は、回転軸6から水平方向に延びる一対の水平延長管と、この水平延長管の先端に設けられた洗浄ノズルとから構成することもできる。
 プロペラ4は、同一方向に回転しても、あるいは、それぞれ反対方向に回転する構成であってもよい。
 また、ロボット本体2は、ノズル側本体2Aとプロペラ側本体2Bとに分割する必要はなく、このロボット本体2の一部を開口して導入空間Dを形成したものであってもよい。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 なお、この出願は、日本で2011年9月27日に出願された特願2011-210802号に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込まれるものである。
 本発明は、養殖魚網等の清掃対象物を、高圧水の噴射により清掃する水中清掃ロボットに有用である。特に、魚網等の清掃対象物に突出部分があっても、魚網等に引っかかることなく、突出部を乗り越えて走行でき、かつ清掃能力を高める用途に適用できる。
1     水中清掃ロボット
2     ロボット本体
3     走行装置
4     推進力発生用プロペラ(プロペラ)
5     清掃ノズルユニット
22~25 車輪
27、28 クローラ(無限軌道、第2走行手段)
30、31 車軸
32~35 筒状回転体
36~39 タイヤ
36a、37a、38a、39a 第1走行手段
36b、37b、38b、39b 第2走行手段
L1    車輪幅寸法
L2    第1走行手段寸法
L3    第2走行手段寸法
L4    車輪間距離
N     養殖魚網

Claims (8)

  1.  水中に存在する清掃対象物表面に沿って移動しながら、この清掃対象物表面に向かって清掃ノズルユニットに設けられた清掃ノズルにより高圧水を噴射して清掃対象物を清掃する水中清掃ロボットであって、
     前記清掃ノズルユニットは、前記ロボット本体の下部に回転自在に設けられ、前記ロボット本体を移動させる走行装置が設けられ、前記走行装置は、前記ロボット本体の左右に設けられた第1走行手段と、第2走行手段とを備え、前記第2走行手段は、前記ロボット本体の前後方向のそれぞれで且つ前記第1走行手段よりも前記ロボット本体の左右方向内側に臨むように設けられた前後第2走行手段を備え、前記第1走行手段と前記第2走行手段とを同方向に回転駆動させる構成であることを特徴とする水中清掃ロボット。
  2.  請求項1に記載の水中清掃ロボットにおいて、前後第2走行手段は、前記第1走行手段よりも小径で且つ前記ロボット本体の左右方向の長さ寸法が、前記第1走行手段の長さ寸法よりも長く設定されていることを特徴とする水中清掃ロボット。
  3.  請求項1または2に記載の水中清掃ロボットにおいて、前記第2走行手段は、前記ロボット本体の左右に設けられた左右第2走行手段を備えることを特徴とする水中清掃ロボット。
  4.  請求項3に記載の水中清掃ロボットにおいて、前記左右第2走行手段は、無限軌道からなることを特徴とする水中清掃ロボット。
  5.  請求項3に記載の水中清掃ロボットにおいて、前記左右第2走行手段は、複数個の車輪からなることを特徴とする水中清掃ロボット。
  6.  請求項1から請求項5の何れか1項に記載の水中清掃ロボットにおいて、前記前後第2走行手段は、前記ロボット本体の中心に向けて小径となるテーパに形成されていることを特徴とする水中清掃ロボット。
  7.  請求項4に記載の水中清掃ロボットにおいて、前記第1走行手段と前記前記左右第2走行手段の無限軌道の回転軸が同一軸上に設けられ、前記第1走行手段の外周径が前記無限軌道の外周径よりも大きく設定されていることを特徴とする水中清掃ロボット。
  8.  水中に存在する清掃対象物表面に沿って移動しながら、この清掃対象物表面に向かって清掃ノズルユニットに設けられた清掃ノズルにより高圧水を噴射して清掃対象物を清掃する水中清掃ロボットであって、
     前記清掃ノズルユニットは、前記ロボット本体の下部に回転自在に設けられ、前記ロボット本体を移動させる走行装置が設けられ、前記走行装置は、前記ロボット本体の左右に設けられた第1走行手段と、前記第1走行手段の前後方向にそれぞれ設けられた第2走行手段とを備え、前記第2走行手段は、前記ロボット本体の左右方向の長さ寸法が、前記第1走行手段の長さ寸法よりも長く設定され、前記第1走行手段と前記第2走行手段とを同方向に回転駆動させる構成であることを特徴とする水中清掃ロボット。
PCT/JP2012/071828 2011-09-27 2012-08-29 水中清掃ロボット WO2013047061A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12836745.5A EP2732885B1 (en) 2011-09-27 2012-08-29 Submersiable cleaning robot
AU2012318067A AU2012318067B2 (en) 2011-09-27 2012-08-29 Underwater cleaning robot
HRP20160388TT HRP20160388T1 (hr) 2011-09-27 2016-04-14 Podvodni robot za čišćenje

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-210802 2011-09-27
JP2011210802A JP5718776B2 (ja) 2011-09-27 2011-09-27 水中清掃ロボット

Publications (1)

Publication Number Publication Date
WO2013047061A1 true WO2013047061A1 (ja) 2013-04-04

Family

ID=47995110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071828 WO2013047061A1 (ja) 2011-09-27 2012-08-29 水中清掃ロボット

Country Status (6)

Country Link
EP (1) EP2732885B1 (ja)
JP (1) JP5718776B2 (ja)
AU (1) AU2012318067B2 (ja)
CL (1) CL2014000729A1 (ja)
HR (1) HRP20160388T1 (ja)
WO (1) WO2013047061A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106419725A (zh) * 2016-12-02 2017-02-22 广东省智能制造研究所 一种基于静电吸附原理的双履带式爬壁机器人
CN107598425A (zh) * 2017-10-21 2018-01-19 孟庆仕 一种密闭式水下焊接机器人
WO2018199767A1 (en) 2017-04-28 2018-11-01 Mpi As An underwater cleaning device and apparatus
US20200029536A1 (en) * 2018-07-24 2020-01-30 Running Tide Technologies, Inc. Systems and methods for the cultivation of aquatic animals
WO2020069556A1 (en) * 2018-10-05 2020-04-09 Aqua Clean Tas Pty Ltd Net cleaning device for in-situ cleaning of a submerged net, propeller for use with net cleaning device, method and system.
CN116116786A (zh) * 2023-02-07 2023-05-16 中交海洋建设开发有限公司 一种半潜式深远海养殖网箱装配式水下洗网机器人

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762654B1 (ko) * 2015-09-09 2017-07-28 삼성중공업 주식회사 무어링체인의 모니터링 로봇
CN106238371B (zh) * 2016-10-21 2019-01-08 华南农业大学 一种深海域养殖网箱自动清洗装置
NO343336B1 (en) * 2016-10-28 2019-02-04 Haukaas John Kristian Assembly for carrying out an operation on a net
CN112141239A (zh) * 2019-06-27 2020-12-29 科沃斯机器人股份有限公司 自移动机器人及其辅助轮
CN111316907B (zh) * 2020-03-07 2021-12-10 江苏博润图制造有限公司 一种基于风力发电的浅海海带养殖辅助装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107735A (ja) * 1994-10-11 1996-04-30 Mitsubishi Heavy Ind Ltd 回転散水式水中洗浄装置
JPH08318229A (ja) 1995-05-24 1996-12-03 Mitsubishi Heavy Ind Ltd 水中清掃ロボット
JP2001276754A (ja) * 2000-01-26 2001-10-09 Yanmar Diesel Engine Co Ltd 水中清掃ロボット
WO2010040171A1 (en) * 2008-10-10 2010-04-15 Mic Pty Ltd In situ sub marine net cleaning and inspecting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000295939A (ja) * 1999-04-12 2000-10-24 Kanmon Dock Service Kk 海洋構造物の洗浄装置
JP2003025265A (ja) * 2001-07-11 2003-01-29 Mitsubishi Heavy Ind Ltd 水中ロボット操作支援シミュレータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107735A (ja) * 1994-10-11 1996-04-30 Mitsubishi Heavy Ind Ltd 回転散水式水中洗浄装置
JPH08318229A (ja) 1995-05-24 1996-12-03 Mitsubishi Heavy Ind Ltd 水中清掃ロボット
JP2001276754A (ja) * 2000-01-26 2001-10-09 Yanmar Diesel Engine Co Ltd 水中清掃ロボット
WO2010040171A1 (en) * 2008-10-10 2010-04-15 Mic Pty Ltd In situ sub marine net cleaning and inspecting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2732885A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106419725A (zh) * 2016-12-02 2017-02-22 广东省智能制造研究所 一种基于静电吸附原理的双履带式爬壁机器人
WO2018199767A1 (en) 2017-04-28 2018-11-01 Mpi As An underwater cleaning device and apparatus
CN107598425A (zh) * 2017-10-21 2018-01-19 孟庆仕 一种密闭式水下焊接机器人
US20200029536A1 (en) * 2018-07-24 2020-01-30 Running Tide Technologies, Inc. Systems and methods for the cultivation of aquatic animals
US10945417B2 (en) * 2018-07-24 2021-03-16 Running Tide Technologies, Inc. Systems and methods for the cultivation of aquatic animals
US11647735B2 (en) 2018-07-24 2023-05-16 Running Tide Technologies, Inc. System and methods for the cultivation of aquatic animals
WO2020069556A1 (en) * 2018-10-05 2020-04-09 Aqua Clean Tas Pty Ltd Net cleaning device for in-situ cleaning of a submerged net, propeller for use with net cleaning device, method and system.
CN113165025A (zh) * 2018-10-05 2021-07-23 净水Tas私人有限公司 用于水下网的原位清洁的网清洁装置,与网清洁装置一起使用的螺旋桨,方法和系统
CN116116786A (zh) * 2023-02-07 2023-05-16 中交海洋建设开发有限公司 一种半潜式深远海养殖网箱装配式水下洗网机器人
CN116116786B (zh) * 2023-02-07 2024-05-24 中交海洋建设开发有限公司 一种半潜式深远海养殖网箱装配式水下洗网机器人

Also Published As

Publication number Publication date
JP2013071037A (ja) 2013-04-22
EP2732885B1 (en) 2016-03-16
EP2732885A4 (en) 2014-07-16
AU2012318067B2 (en) 2015-12-17
HRP20160388T1 (hr) 2016-05-20
JP5718776B2 (ja) 2015-05-13
AU2012318067A1 (en) 2014-03-06
EP2732885A1 (en) 2014-05-21
CL2014000729A1 (es) 2014-09-05

Similar Documents

Publication Publication Date Title
WO2013047061A1 (ja) 水中清掃ロボット
AU2006340223B2 (en) Submersible cleaning robot
JP3592204B2 (ja) 水中清掃ロボット
US7185397B2 (en) Floor cleaning machine
JP6542976B2 (ja) 履帯緊張装置及び履帯式走行装置
JP2018531171A6 (ja) 履帯緊張装置及び履帯式走行装置
JP6639957B2 (ja) 車輌泥落洗浄装置
WO2018061122A1 (ja) 壁面移動装置および壁面移動方法
JP2006341710A (ja) クローラ型走行装置
US11319006B2 (en) Spiral drive mechanism, particularly for mechanical vehicles, land and marine machines
JP6629104B2 (ja) 車輌泥落洗浄装置
JP4476953B2 (ja) 水中清掃ロボット
JP4758819B2 (ja) コンバインの洗浄装置
JP3204199U (ja) 車輌泥落洗浄装置
JP3204200U (ja) 車輌泥落洗浄装置
JP2009189961A (ja) 水中清掃ロボットおよび補助洗浄作業機
JP6057237B2 (ja) 貝類除去装置
CN114906245A (zh) 一种爬壁机器人
CN214888745U (zh) 拖拉机齿轮传动支座
CN219096947U (zh) 一种船体附着物清洁机器人
JP2005280646A (ja) 農作業機
KR20110070044A (ko) 방사성 슬러지 제거 이동로봇
JP2018105032A (ja) 洗浄装置
WO2020149190A1 (ja) 水中清掃作業機
JP2006117059A (ja) 作業車両のタイヤ洗浄装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836745

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012836745

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012318067

Country of ref document: AU

Date of ref document: 20120829

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014000729

Country of ref document: CL

NENP Non-entry into the national phase

Ref country code: DE