WO2013047011A1 - Radiographic image detector, method of manufacturing same, and radiography system employing radiographic image detector - Google Patents

Radiographic image detector, method of manufacturing same, and radiography system employing radiographic image detector Download PDF

Info

Publication number
WO2013047011A1
WO2013047011A1 PCT/JP2012/071074 JP2012071074W WO2013047011A1 WO 2013047011 A1 WO2013047011 A1 WO 2013047011A1 JP 2012071074 W JP2012071074 W JP 2012071074W WO 2013047011 A1 WO2013047011 A1 WO 2013047011A1
Authority
WO
WIPO (PCT)
Prior art keywords
image detector
radiation
ray
shielding member
pixels
Prior art date
Application number
PCT/JP2012/071074
Other languages
French (fr)
Japanese (ja)
Inventor
岩切 直人
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013047011A1 publication Critical patent/WO2013047011A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors

Definitions

  • the present invention relates to a radiation image detector, a manufacturing method thereof, and a radiation imaging system using the radiation image detector.
  • X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance.
  • X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
  • a subject In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that acquires an X-ray transmission image, and the subject is photographed.
  • each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector.
  • an X-ray transmission image of the subject is detected and imaged by the X-ray image detector.
  • X-ray image detectors include a combination of an X-ray intensifying screen and film, a stimulable phosphor (accumulating phosphor), and a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit. Widely used.
  • X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and a difference in X-ray absorptivity is small in living soft tissue or soft material. Therefore, there is a problem that a sufficient contrast (contrast) of the X-ray transmission image cannot be obtained.
  • most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
  • an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object.
  • Imaging research is actively conducted.
  • a first diffraction grating (phase type grating or absorption type grating) is arranged behind the subject, and a specific distance (Talbot interference distance) determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating.
  • the Talbot interference distance is a distance at which the X-rays that have passed through the first diffraction grating form a self-image (hereinafter referred to as a G1 image) that is a periodic pattern due to the Talbot interference effect. It is modulated by the interaction (phase change) between the subject and the X-rays arranged between the source and the first diffraction grating.
  • the X-ray Talbot interferometer detects the moiré fringes generated by superimposing the G1 image and the second diffraction grating, and obtains the phase information of the subject by analyzing the modulation of the moire fringes by the subject.
  • a method for analyzing moire fringes for example, a fringe scanning method is known.
  • the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating.
  • X-rays refracted by the subject from a change in signal value for each corresponding pixel between a plurality of image data obtained by performing a plurality of times of imaging while translating in a vertical direction with a scanning pitch obtained by equally dividing the lattice pitch.
  • Angle distribution (differential image of phase shift) can be obtained, and a phase contrast image of the subject can be obtained based on this angle distribution.
  • a first diffraction grating is provided separately from the X-ray image detector. For this reason, for example, in order to actually use the X-ray imaging system described in Patent Document 3 for imaging a subject, first, a first diffraction grating for generating a G1 image and an X pattern for detecting a periodic pattern of the G1 image are detected.
  • the relative alignment of the line image detector must be performed with high accuracy.
  • the periodic pattern of G1 is as small as about several ⁇ m, and highly accurate position adjustment is complicated.
  • phase information of a subject is acquired by analyzing a minute change of modulation of the periodic pattern of the G1 image that occurs when there is no subject and when there is a subject. For this reason, if the relative positional relationship between the first diffraction grating and the X-ray image detector deviates between the shooting when there is no subject and the shooting when there is a subject, an appropriate periodic pattern modulation is performed. Cannot be obtained, greatly affecting the accuracy of the phase information.
  • the present invention has been made in view of the above-described circumstances, and reduces the positional deviation of the radiation image detector exemplified by the first diffraction grating and the X-ray image detector, and improves the accuracy of the obtained phase information of the subject.
  • the purpose is to increase.
  • a lattice unit that forms a radiation image including a periodic intensity distribution by passing radiation and a plurality of pixels that detect the radiation and accumulate charges are arranged in a matrix and include a periodic pattern based on the periodic intensity distribution
  • the support is fixed to the detection unit, and the detection unit is supported from the radiation incident side, and the shielding member is a radiation image detector formed in the support.
  • the shielding member functioning as a grating is integrally incorporated in the radiation image detector itself, it is not necessary to align it many times. Further, since the positional deviation between the shielding member and the detection unit is reduced, the accuracy of the obtained subject phase information can be increased. Further, since a mechanism for adjusting the position of the shielding member is not required, the configuration of the radiation imaging system is simplified.
  • FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention
  • FIG. 2 shows a control block of the radiation imaging system of FIG.
  • the X-ray imaging system 10 generates an image data by detecting an X-ray source 11 that emits X-rays to the subject H and an X-ray source 11 that is disposed opposite to the X-ray source 11 and transmits the subject H from the X-ray source 11.
  • the imaging unit 12 that controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12 based on the operation of the operator, and the image data acquired by the imaging unit 12 is arithmetically processed to obtain a phase contrast image
  • the X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling.
  • the photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
  • the X-ray source 11 includes an X-ray source control unit 17, an X-ray tube 18 that generates X-rays according to a high voltage applied from the high voltage generator 16 based on the control of the X-ray source control unit 17, A collimator unit 19 having a movable collimator 19a that limits the irradiation field so as to shield a portion of the X-rays emitted from the X-ray tube 18 that does not contribute to the inspection region of the subject H. Yes.
  • the X-ray tube 18 is an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides it with a rotating anode 18a rotating at a predetermined speed. X-rays are generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
  • the X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. And have.
  • a motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
  • a holding part 15b for holding the photographing part 12 is attached to a main body 15a installed on the floor so as to be movable in the vertical direction.
  • the holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c.
  • the driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
  • the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the amount of rotation of the pulley 15c or the amount of movement of the endless belt 15d. It has been.
  • the detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like.
  • the X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
  • the console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like.
  • the control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
  • a switch, a touch panel, a mouse, a keyboard, or the like can be used as the input device 21, for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used.
  • X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, and the like.
  • the monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
  • the imaging unit 12 includes an X-ray image detector 30 that is integrally provided with an absorption grating unit 31 for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging. .
  • FIG. 3 and 4 schematically show the configuration of the X-ray image detector 30.
  • FIG. 3 and 4 schematically show the configuration of the X-ray image detector 30.
  • the X-ray image detector 30 includes an absorption lattice portion 31 that forms an X-ray image including a periodic intensity distribution by passing X-rays, and a plurality of pixels 40 that detect X-rays and accumulate charges in a matrix. And a sensor unit 41 that acquires an X-ray image including a periodic pattern based on the periodic intensity distribution.
  • the detection surface of the sensor unit 41 is disposed so as to be orthogonal to the optical axis A of X-rays emitted from the X-ray source 11.
  • the absorption type lattice part 31 is fixed to the sensor part 41. Further, the absorption type grating unit 31 is provided on the X-ray incident side with respect to the sensor unit 41, and is provided between the sensor unit 41 and the X-ray source 11.
  • the absorptive lattice portion 31 is formed of a substrate portion 31a that transmits X-rays and an X-ray shielding member 31b that absorbs X-rays.
  • the substrate unit 31a is fixed to the sensor unit 41 and is formed of an X-ray transmissive material (low radiation absorption material) such as a silicon substrate that transmits X-rays.
  • the substrate unit 31a supports the sensor unit 41 from the X-ray incident side.
  • the X-ray shielding member 31b is formed in the substrate portion 31a, and is in one direction in the plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (in the illustrated example, the x direction and the z direction). It is comprised by the linear member extended
  • a material of the X-ray shielding member 31b a material excellent in X-ray absorption (radiation high absorption material) is preferable, and for example, a heavy metal such as gold or platinum is preferable.
  • the X-ray shielding member 31b can be formed by the metal plating method or the vapor deposition method using the above-described material. A method for manufacturing the X-ray shielding member 31b will be described later.
  • X-ray shielding member 31b is in a plane perpendicular to the optical axis A of the X-ray, at a pitch p 1 constant in the direction (x-direction) orthogonal to the one direction, parallel at a predetermined distance d 1 from each other It is arranged. Since the X-ray shielding member 31b does not give a phase difference to incident X-rays but gives an intensity difference to incident X-rays, it is also called an amplitude type grating.
  • the X-ray shielding member 31b is configured to geometrically project X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the interval d 1 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, most of the X-rays included in the irradiated X-rays are not diffracted by the slit portion. In addition, it is configured to pass while maintaining straightness. For example, when tungsten is used as the rotary anode 18a described above and the tube voltage is 50 kV, the peak wavelength of the X-ray is about 0.4 mm. In this case, if the distance d 1 is about 1 to 10 ⁇ m, most of the X-rays are geometrically projected without being diffracted by the slit portion.
  • the X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam with the X-ray focal point 18b as a light emitting point, and therefore a projection image projected through the X-ray shielding member 31b (hereinafter referred to as this image).
  • the projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b.
  • the distance L 2 can be set independently of the Talbot distance. Accordingly, the distance L 2, is set to be smaller than the Talbot interference distance, the X-ray image detector 30 can be made thinner.
  • the X-ray shielding member 31b preferably completely shields (absorbs) X-rays in order to generate a periodic pattern image with high contrast.
  • the X-ray shielding member 31b is excellent in X-ray absorption (such as gold and platinum). Even if is used, there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the thickness h 1 of the X-ray shielding member 31b, it is preferable to be thick as possible.
  • the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays. In this case, the thickness h 1 is 30 ⁇ m or more in terms of gold (Au). Is preferred.
  • the thickness h 1 may be set to 100 ⁇ m or less.
  • the pitch p 1 of the X-ray shielding member 31b may be 3.28 ⁇ m or less.
  • the G1 image of the X-ray shielding member 31b is captured by the sensor unit 41.
  • the configuration of the X-ray image detector 30 will be described.
  • FIG. 5 schematically shows the configuration of the X-ray image detector 30.
  • FIG. 5A is a schematic diagram of a front view of the X-ray image detector 30, and
  • FIG. 5B is shown in FIG. 5A is a schematic diagram of a cross-sectional view taken along line vv of 5A.
  • FIG. 5A is a schematic diagram of a cross-sectional view taken along line vv of 5A.
  • the X-ray image detector 30 includes the above-described absorption-type grating unit 31, a sensor unit 41 in which a plurality of pixels 40 that detect X-rays and accumulate electric charges are two-dimensionally arranged in the xy direction, and accumulate in each pixel 40.
  • a scanning circuit 42 for controlling the read timing of the read charges, a signal processing circuit 43 for converting and storing signals sequentially read from the respective pixels 40 into image data, and the image data via the I / F 25 of the console 13.
  • a data transmission circuit 44 for transmitting to the arithmetic processing unit 22. (FIG. 5A).
  • the X-ray image detector 30 can be configured based on a solid-state imaging device such as a CMOS (Complementary Metal Oxide Semiconductor) sensor.
  • the sensor unit 41 includes a semiconductor substrate 48 such as a silicon substrate, a plurality of pixels 40 such as photodiodes formed on the semiconductor substrate 48, and a plurality of readout circuits that read out charges accumulated in each pixel 40 (FIG. (Not shown), a wiring unit 47 for connecting the sensor unit 41 to the scanning circuit 42 and the signal processing circuit 43, and a scintillator 49 that emits fluorescence having a wavelength suitable for the spectral sensitivity of the pixel 40 by X-ray exposure. (FIG. 5B).
  • CMOS Complementary Metal Oxide Semiconductor
  • the wiring portion 47 is formed on a semiconductor substrate made of single crystal silicon or the like, and includes a plurality of scanning lines 45 and a plurality of signal lines 46 provided in a matrix for reading out the electric charges accumulated in the pixels 40.
  • the wiring part 47 is provided between the substrate part 31a of the absorption lattice part 31 and the pixel 40 in the z direction (FIG. 5B).
  • the scanning line 45 is formed above the region between the pixel rows of the pixels 40 that are two-dimensionally arranged. That is, the scanning line 45 does not overlap the pixel 40 in the thickness direction (z direction) of the sensor unit 41. In other words, the scanning line 45 is formed between the adjacent pixels 40 in a plan view from the X-ray incident side. Further, in the thickness direction of the sensor unit 41 (thickness direction of the X-ray shielding member 31b) (z direction), the X-ray shielding member 31b extends over the entire row direction (y direction) of some scanning lines 45 and pixels 40. overlapping.
  • the X-ray shielding member 31b does not overlap all the scanning lines 45, the X-ray shielding member 31b periodically overlaps the scanning lines 45 in a plan view from the X-ray incident side. Yes.
  • the distance d between the X-ray shielding members 31b so that at least two pixels 40 are included between the adjacent X-ray shielding members 31b. 1 is set.
  • the scanning line 45 overlapping the X-ray shielding member 31b has an X-ray shielding member 31b whose width in the direction orthogonal to the thickness direction of the sensor unit 41 (the arrangement direction of the X-ray shielding members 31b) (x direction) corresponds. It is preferable that the width is smaller.
  • the signal line 46 is provided above the region between the pixel columns of the pixels 40 arranged in a two-dimensional manner. That is, the signal line 46 is formed between the adjacent pixels 40 in a plan view from the X-ray incident side.
  • the scintillator 49 is provided on the side opposite to the wiring portion 47 with respect to the pixel 40 (FIG. 5B).
  • a granular scintillator such as terbium activated gadolinium oxide (Gd 2 O 2 S: Tb) or a columnar scintillator such as thallium activated cesium iodide (CsI: Tl) is used.
  • the scintillator is Gd 2 SiO 5 : Ce, Bi 4 Ge 3 O 12 , Gd 2 O 2 S: Pr, Lu 2 SiO 5 : Ce, Lu 0.4 Gd.
  • a single crystal scintillator such as SiO 5 : Ce may be used. This is because there is no reflection or scattering of light at the crystal interface unlike granular scintillators and columnar scintillators having a crystal size of about a dozen ⁇ m to 2 ⁇ m.
  • the single crystal scintillator may not be configured as a single scintillator having a large area, a plurality of single crystal scintillators may be arranged in a tile shape to increase the area. Further, the light emission area of the single crystal scintillators arranged in an integer number and the total pixel area of the pixels used as image pixels among the pixels 40 may be substantially matched.
  • the gap between the scintillators is located at a position different from the effective pixel.
  • a dark correction pixel area used as a dark correction pixel or the like in the wiring portion 47 or the pixel 40, an area for taking out the wiring from the IC, etc. are suitable.
  • the sensor unit 41 may be composed of a single group of single crystal scintillators and pixels 40, or a plurality of groups of single crystal scintillators and pixels 40 are prepared and arranged. It is good.
  • the X-rays are incident from the absorption type grating unit 31 side, pass through the wiring unit 47 and the like, and then enter the scintillator 49.
  • X-rays incident on the scintillator 49 are generated as fluorescence by the scintillator 49.
  • the generated fluorescence is accumulated as charges in the pixel 40.
  • the accumulated charges are read out based on the timing set by the scanning circuit 42 and converted into image data by the signal processing circuit 43 (FIG. 5B).
  • FIG. 6 shows one X-ray refracted according to the phase shift distribution ⁇ (x) of the subject H in the x direction.
  • Reference numeral 55 denotes an X-ray path that goes straight when the subject H does not exist, and the X-ray that travels along this path 55 passes through the substrate part 31 a of the absorption grating part 31 and enters the pixel 40.
  • Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along the path 56 are shielded by the X-ray shielding member 31 b of the absorption type lattice unit 31.
  • phase shift distribution ⁇ (x) of the subject H is expressed by the following equation (3), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
  • the G1 image projected through the X-ray shielding member 31b and projected to the position of the pixel 40 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of the X-ray at the subject H. That is, the pattern period p 1 ′ in the x direction of the G1 image also changes in the x direction in accordance with the change in the G1 image.
  • the displacement amount ⁇ x of the G1 image is approximately expressed by the following equation (4) based on the small X-ray refraction angle ⁇ (x).
  • the refraction angle ⁇ (x) is expressed by Expression (5) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x of the G1 image is expressed by the following equation (6) based on the phase shift amount ⁇ of the signal output from each pixel 40 (the phase shift amount of the signal with and without the subject H). Related.
  • the phase shift distribution ⁇ (x) of the subject H that is, the phase contrast image of the subject H can be generated by integrating this with respect to x.
  • a method of calculating the phase shift amount ⁇ will be described.
  • FIG. 7 schematically shows a signal output from each pixel 40 of the sensor unit 41.
  • a plurality of pixels 40 adjacent in the x direction are used as a unit, and the pixel value I of the plurality of pixels 40 constituting one unit is interpolated for each unit.
  • the pixel values of a plurality of pixels 40 are interpolated by a sine curve, and three points need only be interpolated by the sine curve.
  • phase difference between the waveforms of the signal curve (FIG. 7A) when the subject H does not exist and the signal curve (FIG. 7B) when the subject H exists corresponds to a unit pixel (one unit pixel group). This corresponds to the phase shift amount ⁇ of the pixel to be processed.
  • the refraction angle ⁇ (x) is a value corresponding to the differential value of the phase shift distribution ⁇ (x) as shown in the equation (5), the refraction angle ⁇ (x) is integrated along the x-axis. Thus, the phase shift distribution ⁇ (x) is obtained.
  • the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution ⁇ (x , Y).
  • the arithmetic processing unit 22 causes the storage unit 23 to store a phase contrast image obtained by imaging the phase shift distribution ⁇ (x, y).
  • the above-described phase contrast image generation processing is automatically performed by the respective units operating in conjunction with each other under the control of the control device 20 after an imaging instruction is given from the input device 21 by the operator. A phase contrast image is displayed on the monitor 24.
  • FIG 8 and 9 are schematic views showing an example of a method for manufacturing the X-ray image detector 30 of the X-ray imaging system 10.
  • a solid-state imaging device in which pixels 40 and wiring portions 47 are substantially formed is prepared.
  • a support substrate 51 made of an X-ray low absorption material is formed on the wiring portion 47.
  • a resist film 52 is formed on the support substrate 51.
  • the pixels 40 formed on the semiconductor substrate 48 are not exposed to the outside at this time.
  • the resist film 52 either a negative type or a positive type can be used.
  • a negative type resist film is used as the resist film 52.
  • a positive type resist film is used as the resist film 52.
  • the resist film 52 is exposed with an electromagnetic wave having a wavelength suitable for the resist to be used from the direction of the arrow through the mask 53 (FIG. 8A). Thereby, portions other than the portion shielded by the mask 53 are cured, and etching resistance is imparted.
  • the mask pattern formed by each mask 53 corresponds to a portion where the X-ray shielding member 31b is formed. When viewed from the direction of the arrow, the scanning line 45 overlapping the X-ray shielding member 31 b is hidden by the corresponding mask 53.
  • the semiconductor substrate 48 on which the pixels 40 are formed is polished to expose the pixels 40 to the outside (FIG. 8C).
  • a portion of the support substrate 51 corresponding to the mask pattern is removed by etching.
  • a plurality of grooves for filling the X-ray shielding member 31b are formed in the support substrate 51, and the substrate portion 31a of the absorption lattice portion 31 is formed (FIG. 9A).
  • a plurality of grooves formed in the support substrate 51 is filled with an X-ray high absorption material by metal plating or the like. Thereby, the X-ray shielding member 31b of the absorption type lattice part 31 is formed (FIG. 9B).
  • the scintillator 49 may be formed by direct vapor deposition, or may be bonded to the pixel 40 via an adhesive layer or the like (FIG. 9C).
  • a plurality of grooves are formed in the support substrate 51 fixed to the sensor unit 41, and the X-ray shielding member 31b is provided by filling these grooves. Yes. For this reason, it is possible to manufacture the X-ray image detector 30 with higher accuracy than separately preparing the sensor unit 41 and the absorption type grating unit 31 and aligning the pixel 40 and the X-ray shielding member 31b later.
  • the support substrate 51 is preferably an X-ray low absorption material. For example, resin or Si. Further, it is desirable that the thermal expansion coefficient of the support substrate 51 is a material close to that of the layer forming the pixel 40. For example, when this layer is formed using single crystal Si, it is single crystal Si, silicon nitride Si 3 N 4 , a-Si, p-Si, or the like. When this layer is formed using SiC of a compound semiconductor, it is AlN or the like. Furthermore, when this layer is a TFT formed on a glass substrate, it is SiC, AlN, or the like.
  • the absorption type grating unit 31 that functions as a grating is integrated into the sensor unit 41 in the X-ray image detector 30. Therefore, it is not necessary to align this many times. Furthermore, since the positional deviation between the absorption type grating unit 31 and the sensor unit 41 is also reduced, the accuracy of the phase information can be increased in the radiation phase imaging for acquiring the phase information of the subject. Further, the configuration of the X-ray image detector 30 is simplified.
  • the X-ray source 11 may be a general X-ray source used in the medical field.
  • the distance L 2 from X-ray shield member 31b to the sensor unit 41 can be any value, the distance L 2, it is possible to set smaller than the minimum Talbot interference distance in Talbot interferometer
  • the X-ray image detector 30 can be downsized (thinned). Furthermore, in this X-ray imaging system, almost all wavelength components of irradiated X-rays contribute to the projected image (G1 image) from the X-ray shielding member 31b, and the contrast of the G1 image is improved. Detection sensitivity can be improved.
  • the scintillator 49 since the main light emitting region of the scintillator 49 is arranged so as to be close to the pixel 40, the scintillator 49 emits light in the vicinity of the pixel 40, and sensitivity is improved.
  • the scanning line 45 is arranged so as to overlap the X-ray shielding member 31b, X-ray absorption by the scanning line 45 can be reduced.
  • the X-ray shielding member 31b and a part of the scanning line 45 are overlapped in the thickness direction (z direction) of the X-ray shielding member 31b.
  • a plurality of X-ray shielding members 31b may be arranged in the y direction, and a part of the X-ray shielding member 31b and the signal line 46 may overlap in the thickness direction of the X-ray shielding member 31b.
  • the X-ray shielding member 31b and the signal line 46 overlap each other in terms of noise reduction.
  • the width of the scanning line 45 (or the signal line 46) of the wiring portion 47 is made smaller than the width of the X-ray shielding member 31b in the arrangement direction of the X-ray shielding member 31b, X-rays other than the X-ray shielding member 31b are used. Vignetting can be prevented.
  • the X-ray shielding member 31b is described as an absorption type grating, but the present invention is not limited to this.
  • the grating is not limited to the absorption type grating but may be a phase type grating.
  • the phase shift distribution ⁇ is obtained by integrating the differential amount of the phase shift distribution ⁇ obtained from the refraction angle ⁇ .
  • the differential amount of the refraction angle ⁇ and the phase shift distribution ⁇ is also related to the X-ray phase change by the subject. Therefore, an image of the refraction angle ⁇ and an image of the differential amount of the phase shift are also included in the phase contrast image.
  • phase contrast image generation processing may be performed on an image acquired by shooting (pre-shooting) in the absence of a subject to acquire a phase contrast image.
  • This phase contrast image reflects, for example, phase unevenness (initial phase shift) caused by non-uniformity of the X-ray shielding member 31b or the like.
  • FIG. 10 shows another example of the X-ray image detector 30.
  • the X-ray image detector 50 differs from the X-ray image detector 30 in that all the scanning lines 45 overlap the X-ray shielding member 31b of the absorption type grating portion 31 in the thickness direction of the X-ray shielding member 31b. That is, each X-ray shielding member 31b and each scanning line 45 are overlapped in a one-to-one correspondence.
  • the arrangement pitch P of the pixels 40 less than 'is 1 / 2p 1 pitch required to detect a periodic pattern of G1 image (resolution)' period p 1.
  • the moire period T in the x direction of moire generated in the image is expressed by the following equation (7).
  • moire generated in an image detected by the pixel 40 of the X-ray image detector 50 is modulated by the subject H. Receive. This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, a phase contrast image of the subject H can be generated by analyzing this moire.
  • the G1 image projected from the X-ray shielding member 31b to the position of the pixel 40 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of the X-ray by the subject H.
  • the moire generated in the image due to a minute difference between the pattern period p 1 ′ in the x direction of the G1 image and the arrangement pitch P in the x direction of the pixels 40 also changes in the x direction in accordance with the change in the G1 image.
  • the displacement amount ⁇ X of the moire is expressed by the following equation (8) using the displacement amount ⁇ x of the G1 image. expressed.
  • This displacement amount ⁇ X is expressed by the following equation (9) based on the phase shift amount ⁇ of the signal output from each pixel 40 of the X-ray image detector 50 (the phase shift amount of the signal with and without the subject H). Are related.
  • the refraction angle ⁇ is obtained from the equations (4), (8), and (9), and the above equation (5) is used. Since the differential amount of the phase shift distribution ⁇ (x) is obtained, by integrating this with respect to x, the phase shift distribution ⁇ (x) of the subject H, that is, the phase contrast image of the subject H can be generated.
  • FIG. 11 schematically shows a signal output from each pixel 40 of the X-ray image detector 50.
  • a plurality of pixels 40 adjacent in the x direction are used as a unit, and the pixel value I of the plurality of pixels 40 constituting one unit is interpolated for each unit.
  • the pixel values of a plurality of pixels 40 are interpolated by a sine curve, and three points need only be interpolated by the sine curve.
  • the signal curve changes periodically with the period T of moire. To do.
  • the moire also changes in the x direction, and the phase of the signal curve corresponding to the moire changes.
  • the displacement amount ⁇ x of the G1 image reaches the period p 1 ′ of the periodic pattern, the moire displacement amount ⁇ X becomes the moire period T, and the moire and signal curve return to the original state.
  • phase difference between the waveforms of the signal curve (FIG. 7A) when the subject H is not present and the signal curve (FIG. 7B) when the subject H is present is the signal of each pixel 40 constituting the unit. This corresponds to the phase shift amount ⁇ .
  • the refraction angle ⁇ (x) is a value corresponding to the differential value of the phase shift distribution ⁇ (x) as shown in the equation (5), the refraction angle ⁇ (x) is integrated along the x-axis. Thus, the phase shift distribution ⁇ (x) is obtained.
  • the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution ⁇ (x , Y).
  • the arithmetic processing unit 22 causes the storage unit 23 to store a phase contrast image obtained by imaging the phase shift distribution ⁇ (x, y).
  • the above-described phase contrast image generation processing is automatically performed by the respective units operating in conjunction with each other under the control of the control device 20 after an imaging instruction is given from the input device 21 by the operator. A phase contrast image is displayed on the monitor 24.
  • FIG. 12 shows another example of a moire analysis method using the X-ray image detector 50.
  • moire is analyzed using Fourier transform and inverse Fourier transform.
  • the moire formed by the interference between the period of the periodic pattern of the X-ray shielding member 31b and the arrangement pitch of the pixels 40 of the X-ray image detector 50 can be expressed by the following expression (10). (11) can be rewritten.
  • a (x, y) represents the background
  • b (x, y) represents the amplitude of the spatial frequency component corresponding to the fundamental period of moire
  • (f 0x, f 0y ) represents the moire. Represents the basic period.
  • c (x, y) is represented by the following formula (12).
  • Formula (11) becomes following Formula (13) by Fourier-transform.
  • the spatial frequency spectrum of the moire at least, a peak derived from A (f x, f y), the sandwich so C (f x, Three peaks are generated, including the peak of the spatial frequency component corresponding to the fundamental period of moire derived from f y ) and C * (f x , f y ).
  • a (f x, f y) peak derived from the origin also, C (f x, f y ) and C * (f x, f y ) peak derived from the ( ⁇ f 0x, ⁇ f 0y ) It occurs at the position of (combined same order).
  • the region R including the peak frequency of the spatial frequency component corresponding to the fundamental period of moire is cut out so that the peak frequency overlaps the origin of the frequency space.
  • the extracted region R is moved and inverse Fourier transform is performed. Then, the refraction angle ⁇ (x, y) can be obtained from the complex number information obtained by the inverse Fourier transform.
  • FIG. 13 shows a manufacturing method of the X-ray image detector 50 of FIG.
  • the manufacturing method of the X-ray image detector 50 is different from the manufacturing method shown in FIGS. 8 and 9 in that a mask pattern is not separately prepared.
  • a solid-state imaging device is prepared in which a sensor unit 41 and a wiring unit 47 in which pixels 40 are already arranged in a two-dimensional manner are formed. At this time, the scanning line 45 of the wiring portion 47 is provided above the region between the pixel rows of the pixels 40.
  • a support substrate 51 formed of an X-ray low absorption material is formed on the wiring portion 47.
  • a resist film 52 is formed on the wiring part 47.
  • the pixels 40 formed on the semiconductor substrate 48 are not exposed to the outside at this time.
  • the resist film 52 either a negative type or a positive type can be used. In this example, a case where a positive resist film is used will be described.
  • each scanning line 45 functions as a mask constituting a mask pattern.
  • the location where the X-ray shielding member 31b is to be formed can be determined by such a self-alignment method.
  • each scanning line 45 preferably has a low X-ray transmittance. For this reason, it is preferable to manufacture the scanning line 45 thickly in the thickness direction.
  • the signal line 46 that does not function as a mask is preferably formed thinner than the scanning line 45. Further, since the scanning line 45 is manufactured to be thick, the wiring resistance can be lowered, and it is preferable to use it for a wiring that requires a low wiring resistance, such as a readout wiring from the pixel 40.
  • the manufacturing method of the X-ray image detector 50 since the scanning line 45 of the wiring part 47 is used as a mask pattern, a groove can be formed in the substrate part 31a without using the mask pattern again.
  • FIG. 14 shows still another example of the X-ray image detector 30.
  • the X-ray image detector 60 is different from the X-ray image detector 30 in that the X-ray image detector 60 is configured based on an organic CMOS sensor, and the detection is performed by two-dimensionally arranging the pixels 40 with a photoelectric conversion element using an organic photoelectric conversion material.
  • the unit 61 is configured.
  • the plurality of pixels 40 include an upper electrode film 64, a lower electrode film 63, and a photoelectric conversion film 62 disposed therebetween.
  • the photoelectric conversion film 62 is composed of an organic photoelectric conversion film.
  • the photoelectric conversion film 62 for example, an organic photoelectric conversion material described in JP2009-32854A is used.
  • the photoelectric conversion film 62 absorbs light emitted from the scintillator 49 and generates electric charges according to the absorbed light.
  • the photoelectric conversion film 62 including the organic photoelectric conversion material has a sharp absorption spectrum in the visible region, and electromagnetic waves other than light emitted by the scintillator 49 are hardly absorbed by the photoelectric conversion film 62, and noise is generated. It can be effectively suppressed.
  • the organic photoelectric conversion material of the photoelectric conversion film 62 is preferably such that its absorption peak wavelength is closer to the emission peak wavelength of the scintillator 49 in order to absorb light emitted by the scintillator 49 most efficiently.
  • the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the scintillator 49, but if the difference between the two is small, the light emitted from the scintillator 49 can be sufficiently absorbed.
  • the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength with respect to the radiation of the scintillator 49 is preferably within 10 nm, and more preferably within 5 nm.
  • organic photoelectric conversion materials that can satisfy such conditions include arylidene organic compounds, quinacridone organic compounds, and phthalocyanine organic compounds.
  • arylidene organic compounds such as arylidene organic compounds
  • quinacridone organic compounds such as arylidene organic compounds
  • phthalocyanine organic compounds such as arylidene organic compounds
  • the absorption peak wavelength in the visible region of quinacridone is 560 nm
  • CsI: Tl is used as the material of the scintillator 49
  • the difference between the peak wavelengths can be made within 5 nm.
  • the amount of charge generated in the photoelectric conversion film 62 can be substantially maximized.
  • the pixel 40 may be configured by an organic layer including an upper electrode film 64, a lower electrode film 63, and a photoelectric conversion film 62 disposed therebetween. More specifically, this organic layer is a part that absorbs electromagnetic waves, a photoelectric conversion part, an electron transport part, a hole transport part, an electron blocking part, a hole blocking part, a crystallization preventing part, an electrode, and an interlayer contact improvement. It can be formed by stacking or mixing parts.
  • the thickness of the photoelectric conversion film 62 is preferably as large as possible in terms of absorbing light from the scintillator 49, but considering the ratio that does not contribute to charge separation, it is preferably 30 nm to 300 nm, more preferably 50 nm to 250 nm. Hereinafter, it is particularly preferably 80 nm or more and 200 nm or less.
  • the upper electrode film 64 is preferably made of a conductive material that is transparent at least with respect to the emission wavelength of the scintillator 49 because light generated by the scintillator 49 needs to enter the photoelectric conversion film 62. Specifically, it is preferable to use a transparent conductive oxide (TCO) that has a high visible light transmittance and a low resistance value.
  • TCO transparent conductive oxide
  • the resistance value tends to increase if an attempt is made to obtain a transmittance of 90% or more, so the TCO is preferred.
  • a metal thin film such as Au
  • ITO, IZO, AZO, FTO, SnO2, TiO2, and ZnO2 can be preferably used, and ITO is most preferable from the viewpoint of process simplicity, low resistance, and transparency.
  • the upper electrode film 64 may have a single configuration common to all the pixels 40 or may be divided for each pixel 40.
  • the thickness of the upper electrode film 64 can be, for example, 30 nm or more and 300 nm or less.
  • the lower electrode film 63 is a thin film divided for each pixel 40.
  • the lower electrode film 63 can be made of a transparent or opaque conductive material, and aluminum, silver, or the like can be suitably used.
  • the thickness of the lower electrode film 63 can be, for example, 30 nm or more and 300 nm or less.
  • the photoelectric conversion film 62 using the organic photoelectric conversion material is provided in the pixel 40, noise in the phase contrast image can be reduced.
  • 15 and 16 show a method for manufacturing the X-ray image detector 60 of FIG.
  • a wiring portion 47 having a plurality of scanning lines 45 and a plurality of signal lines 46 is formed on the support substrate 51.
  • a lower electrode film 63 is formed on the surface of the wiring portion 47 opposite to the support substrate 51 (FIG. 15A). The lower electrode film 63 is connected to the readout circuit.
  • the absorption type lattice portion 31 having the X-ray shielding member 31b is formed on the side where the lower electrode film 63 is not provided (FIG. 15B).
  • the support formed of the low X-ray absorption material may be formed on the silicon substrate.
  • the groove is formed by etching or the like using the silicon substrate itself as the support and then X-ray shielding is performed by metal plating or the like.
  • the member 31b is formed.
  • a photoelectric conversion film 62 is formed on the lower electrode film 63 (FIG. 15C).
  • the upper electrode film 64 is formed on the photoelectric conversion film 62, and the protective film 65 is formed on the upper electrode film 64 (FIG. 16A).
  • the scintillator 49 may be directly deposited on the protective film 65, or an adhesive layer may be provided separately from the protective film 65, and the scintillator 49 may be bonded to the protective film 65 (FIG. 16B).
  • FIG. 17 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • a mammography system 170 shown in FIG. 17 is an apparatus that captures an X-ray image (phase contrast image) of a breast B as a subject.
  • the mammography system 170 is disposed at one end of an arm member 81 that is pivotably connected to a base (not shown), and disposed at the other end of the arm member 81.
  • An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
  • the X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12.
  • the X-ray source 11 and the imaging unit 12 are arranged to face each other.
  • the compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
  • the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • FIG. 18 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • the X-ray imaging system 180 is different from the X-ray imaging system 10 of the first embodiment in that the multi-slit 103 is disposed in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • the X-ray imaging system 10 when the distance from the X-ray source 11 to the X-ray image detector 30 is set to a distance (1 m to 2 m) set in a general hospital imaging room, X
  • the blur of the G1 image due to the focal size of the line focal point 18b (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is deteriorated. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size.
  • the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall.
  • the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
  • the multi slit 103 is an absorptive grating like the X-ray shielding member 31b, and a plurality of X-ray shielding members extending in one direction (y direction) are in the same direction as the X-ray shielding member 31b of the absorptive grating part 31. They are periodically arranged in the (x direction).
  • the multi-slit 103 partially shields the radiation emitted from the X-ray focal point 18b, thereby reducing the effective focal size in the x direction and forming a large number of point light sources (dispersed light sources) in the x direction. The purpose is to do.
  • Expression (14) is for the projection image (G1 image) of the X-rays emitted from the respective point light sources dispersedly formed by the multi-slit 103 to coincide with each other at the position of the pixel 40 (overlapping). It is a geometric condition.
  • G1 images based on a plurality of point light sources formed by the multi-slit 103 are superimposed, thereby improving the image quality of the phase contrast image without reducing the X-ray intensity.
  • the multi slit 103 described above can be applied to any of the X-ray imaging systems described above.
  • FIG. 19 is a schematic diagram showing still another example of the radiation image detector of the radiation imaging system of FIG.
  • the X-ray shielding member 31b of the above-described X-ray image detector 30 is configured such that the periodic arrangement direction of the X-ray shielding member 31b is linear (that is, the lattice plane is planar).
  • the X-ray image detector 70 uses an absorption type grating unit 110 in which the grating surface of the X-ray shielding member 31 b is concaved into a curved surface.
  • the G1 image detection surface is cylindrical. That is, the detection surface of the G1 image by the X-ray image detector 70 is a cylindrical surface having a straight line extending in the y direction passing through the X-ray focal point 18b as a central axis.
  • Absorption grating 110 is formed by X-ray transparent, and the curved surface of the substrate portion 110a, a plurality of X-ray shielding member 110b is periodically arranged at a predetermined pitch p 1.
  • Each X-ray shielding member 110b is formed of a material excellent in X-ray absorption and extends linearly in the y direction, and the lattice plane of the absorption type grating portion 110 passes through the X-ray focal point 18b and is X-ray shielded. It has a shape along a cylindrical surface with a straight line extending in the extending direction of the member 110b as the central axis.
  • the X-ray shielding members 110b in the absorption type grating unit 110 are arranged at a predetermined pitch. are those substantially parallel, and a plurality of X-ray shielding member 110b is included that are arranged parallel to at a predetermined pitch p 1.
  • the pixel pitch of the X-ray image detector 70 is a pitch that causes moire in the image in relation to the pattern period of the G1 image formed in the X-ray image detector 70.
  • the line shielding members 110b limit constraints thickness h 1 of is not necessary to consider the above-mentioned formula (1).
  • each X-ray imaging system described above has the following features compared to the conventional example.
  • the array of high-definition pixels 40 provided in the X-ray image detector also serves as the second diffraction grating
  • the G1 image of the first diffraction grating can be directly detected.
  • the second diffraction grating of the conventional example becomes unnecessary.
  • X-rays can be used effectively and the patient's X-ray exposure can be greatly reduced.
  • the first diffraction grating is integrated with the sensor unit 41, there is no relative displacement between the first diffraction grating and the pixel as in the conventional example, and the position adjustment is highly accurate. There is no need to repeat.
  • the phase information of the subject can be obtained by one imaging using Fourier transform and inverse Fourier transform.
  • the fundamental frequency component of moire is higher than that of a subject structure such as a human body structure, the frequency domain including the fundamental frequency component is separated and the differential image of the phase shift is reproduced by inverse Fourier transform.
  • the resolution degradation of the subject structure can be suppressed to a problem-free level. Therefore, it is possible to obtain sufficient resolution for observing the human body structure even with a single shot, and there is no image quality degradation due to subject blurring and grid movement accuracy during multiple shots, such as the fringe scanning method. An accurate phase contrast image can be obtained.
  • the radiation used in the present invention is not limited to X-rays, such as ⁇ -rays and ⁇ -rays. It is also possible to use radiation other than X-rays.
  • an indirect conversion type radiation detector that photoelectrically converts the light emitted from the scintillator 49
  • the present invention is not limited thereto.
  • the direct conversion type has no blur due to scattering of light emitted from the scintillator, and an image with higher resolution than the indirect conversion type can be obtained.
  • CMOS Complementary Metal Metal Oxide Semiconductor
  • CMOS Complementary Metal Metal Oxide Semiconductor
  • a CCD Charge-Coupled Device
  • TFT Thin-Film-Transistor
  • a TFT sensor made of a-Si has a higher pixel size than a radiation image detector using a CMOS sensor or a CCD sensor, but has a higher mobility than an element structure change or a-Si.
  • a groove such as a glass substrate serving as a support for the TFT sensor is formed by etching as described above, and the groove is filled to form the X-ray shielding member 31b.
  • a lattice portion that forms a radiation image including a periodic intensity distribution by passing radiation
  • a plurality of pixels for detecting the radiation and accumulating charges, arranged in a matrix and acquiring the radiation image including a periodic pattern based on the periodic intensity distribution, and the lattice unit includes the The lattice unit is fixed to the detection unit, and the lattice unit is formed of a support that transmits the radiation and a shielding member that absorbs the radiation.
  • the support is fixed to the detection unit, and the detection unit is The radiation image detector is supported from the radiation incident side, and the shielding member is formed in the support body.
  • the shielding member is a radiation image detector that forms the radiation image by projecting the passing radiation.
  • the radiation image detector according to (1) or (2), The shielding member is a radiographic image detector which is an amplitude type grating which is composed of linear members arranged in parallel with each other at a constant pitch and gives an intensity difference to the incident radiation.
  • the radiation image detector according to any one of (1) to (3), The detection unit has a wiring unit including a plurality of scanning lines and a plurality of signal lines provided in a matrix for reading the radiation image, The wiring portion is a radiation image detector provided between the support on which the shielding member is formed and the plurality of pixels.
  • the radiation image detector according to (4) The radiographic image detector, wherein the detection unit includes a phosphor that emits light having a wavelength suitable for spectral sensitivity of the plurality of pixels by exposure of the radiation on a side opposite to the wiring unit with respect to the plurality of pixels.
  • the support is formed of a radiation-absorbing material
  • the said shielding member is a radiographic image detector formed with the radiation high absorption material with which the several linear groove
  • the radiation image detector according to (7), The shielding member is a radiation image detector that periodically overlaps at least a part of one of the plurality of scanning lines or the plurality of signal lines in the thickness direction of the detection unit.
  • the shielding member is a radiation image detector that periodically overlaps at least a part of the plurality of signal lines.
  • the radiation image detector according to (8) or (9), The scanning line or signal line that overlaps the shielding member has a width that is perpendicular to the thickness direction of the detection unit and is smaller than the width of the corresponding shielding member.
  • the radiation image detector according to any one of (8) to (10), One of the scanning line and the signal line on which the shielding member overlaps is a radiation image detector formed thicker than the other.
  • CMOS Complementary Metal Oxide Semiconductor
  • a method for manufacturing a radiation image detector according to (6) On the detection unit, a support substrate to be the support formed of a low radiation absorbing material is formed, Forming a plurality of linear grooves on the support substrate at a constant pitch; A method for manufacturing a radiation image detector, wherein the shielding member is formed by filling the plurality of linear grooves with a radiation-absorbing material.
  • a radiography system comprising: (19) The radiographic system according to (18), The arithmetic processing unit calculates a phase of an intensity modulation signal obtained by interpolating pixel values of a plurality of pixels constituting each set, with three or more adjacent pixels among the plurality of pixels as a set.
  • a radiation imaging system that generates a phase contrast image of the subject based on the phase shift amount of the intensity modulation signal when the subject is present and when the subject is absent.
  • the radiographic system according to (18), The arithmetic processing unit performs a Fourier transform on the radiation image acquired by the radiation image detector to acquire a spatial frequency spectrum of the radiation image, and obtains a fundamental frequency component of moire in the spatial frequency spectrum.
  • a radiography system that separates a spatial frequency region including the spatial frequency spectrum from the spatial frequency spectrum and generates a partial phase contrast image by performing inverse Fourier transform on the separated spatial frequency region.
  • the radiation image detector and the radiation imaging system are useful when used for inspection of a subject in medical diagnosis, inspection of an object in nondestructive inspection, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A radiographic image detector comprises: a lattice part which forms a radiographic image by radiation passing therethrough, having a periodic intensity distribution; and a detector part in which multiple pixels which detect the radiation and accumulate an electric charge are arrayed in a matrix, said detector part acquiring the radiographic image including a periodic pattern based on the periodic intensity distribution. The lattice part is anchored to the detector part.

Description

放射線画像検出器及びその製造方法、並びに放射線画像検出器を用いた放射線撮影システムRadiation image detector, method of manufacturing the same, and radiation imaging system using the radiation image detector
 本発明は、放射線画像検出器及びその製造方法、並びに放射線画像検出器を用いた放射線撮影システムに関する。 The present invention relates to a radiation image detector, a manufacturing method thereof, and a radiation imaging system using the radiation image detector.
 X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被写体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。 X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance. X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
 一般的なX線撮影システムでは、X線を放射するX線源と、X線透過像を取得するX線画像検出器との間に被写体を配置して、被写体を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する被写体を構成する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器に入射する。この結果、被写体のX線透過像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体(蓄積性蛍光体)のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。 In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that acquires an X-ray transmission image, and the subject is photographed. In this case, each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector. X-ray image detectors include a combination of an X-ray intensifying screen and film, a stimulable phosphor (accumulating phosphor), and a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit. Widely used.
 しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなり、生体軟部組織やソフトマテリアルなどでは、X線吸収能の差が小さい。従って、X線透過像の十分な濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が小さいため、画像のコントラストが得られにくい。 However, X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and a difference in X-ray absorptivity is small in living soft tissue or soft material. Therefore, there is a problem that a sufficient contrast (contrast) of the X-ray transmission image cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
 このような問題を背景に、近年、被写体によるX線の強度変化に代えて、被写体によるX線の位相変化(角度変化)に基づいた画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。一般に、X線が物体に入射したとき、X線の強度よりも位相のほうが高い相互作用を示すことが知られている。このため、位相差を利用したX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を得ることができる。このようなX線位相イメージングの一種として、近年、X線画像検出器と、これとは別体の2枚の透過回折格子(位相型格子及び吸収型格子)とからなるX線タルボ干渉計を用いたX線撮影システムが考案されている(例えば、特許文献1参照)。 Against the background of such problems, in recent years, an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object. Imaging research is actively conducted. In general, it is known that when X-rays are incident on an object, the interaction is higher in phase than in X-ray intensity. For this reason, in the X-ray phase imaging using the phase difference, a high-contrast image can be obtained even for a weakly absorbing object having a low X-ray absorption capability. As a kind of such X-ray phase imaging, in recent years, an X-ray Talbot interferometer comprising an X-ray image detector and two separate transmission diffraction gratings (phase grating and absorption grating) has been developed. An X-ray imaging system used has been devised (see, for example, Patent Document 1).
 X線タルボ干渉計では、被写体の背後に第1の回折格子(位相型格子あるいは吸収型格子)を配置し、第1の回折格子の格子ピッチとX線波長で決まる特定距離(タルボ干渉距離)だけ下流に第2の回折格子(吸収型格子)を配置し、その背後にX線画像検出器を配置することにより構成される。タルボ干渉距離とは、第1の回折格子を通過したX線が、タルボ干渉効果によって、周期パターンである自己像(以下、G1像という)を形成する距離であり、このG1像は、X線源と第1の回折格子との間に配置された被写体とX線との相互作用(位相変化)により変調を受ける。 In the X-ray Talbot interferometer, a first diffraction grating (phase type grating or absorption type grating) is arranged behind the subject, and a specific distance (Talbot interference distance) determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating. The Talbot interference distance is a distance at which the X-rays that have passed through the first diffraction grating form a self-image (hereinafter referred to as a G1 image) that is a periodic pattern due to the Talbot interference effect. It is modulated by the interaction (phase change) between the subject and the X-rays arranged between the source and the first diffraction grating.
 X線タルボ干渉計では、G1像と第2の回折格子との重ね合わせにより生じるモアレ縞を検出し、被写体によるモアレ縞の変調を解析することによって被写体の位相情報を取得する。モアレ縞の解析方法としては、たとえば、縞走査法が知られている。この縞走査法によると、第1の回折格子に対して第2の回折格子を、第1の回折格子の面にほぼ平行で、かつ第1の回折格子の格子方向(条帯方向)にほぼ垂直な方向に、格子ピッチを等分割した走査ピッチで並進移動させながら複数回の撮影を行い、得られる複数の画像データ間で対応する画素毎の信号値の変化から、被写体で屈折したX線の角度分布(位相シフトの微分像)を取得し、この角度分布に基づいて被写体の位相コントラスト画像を得ることができる。 The X-ray Talbot interferometer detects the moiré fringes generated by superimposing the G1 image and the second diffraction grating, and obtains the phase information of the subject by analyzing the modulation of the moire fringes by the subject. As a method for analyzing moire fringes, for example, a fringe scanning method is known. According to this fringe scanning method, the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating. X-rays refracted by the subject from a change in signal value for each corresponding pixel between a plurality of image data obtained by performing a plurality of times of imaging while translating in a vertical direction with a scanning pitch obtained by equally dividing the lattice pitch. Angle distribution (differential image of phase shift) can be obtained, and a phase contrast image of the subject can be obtained based on this angle distribution.
 しかし、上記の縞走査法によると、複数回の撮影を行う必要があり、撮影中の被写体の移動、それによる画質の低下が懸念される。そこで、フーリエ変換及び逆フーリエ変換を用いることによって1回の撮影で被写体の位相情報を取得する方法が提案されている(例えば、特許文献2参照)。この方法では、モアレ縞をフーリエ変換して得られる空間周波数スペクトルからモアレ縞の基本周波数成分を含む周波数領域を分離し、分離された周波数領域に対して逆フーリエ変換を行うことによって位相シフトの微分像を取得する。それによれば、複数回の撮影の間の格子の移動を高精度に行う移動機構が不要であるため、撮影ワークフローの向上と装置の簡易化が可能になる。また、各撮影間の被写体の移動に起因する画質低下を解消することができる。ただし、モアレ縞の基本周波数成分を分離する際にモアレ縞の基本周波数帯又は基本周波数成分以上の高周波成分をフィルタ等でカットする。そのため、逆フーリエ変換により再構成された位相シフトの微分像はカットされた周波数成分がないことから、解像度は縞走査法よりも劣る。 However, according to the above-described fringe scanning method, it is necessary to perform photographing a plurality of times, and there is a concern about the movement of the subject during photographing and the resulting deterioration in image quality. In view of this, a method has been proposed in which the phase information of the subject is acquired by one shooting by using Fourier transform and inverse Fourier transform (see, for example, Patent Document 2). In this method, the frequency domain including the fundamental frequency component of the moire fringe is separated from the spatial frequency spectrum obtained by Fourier transforming the moire fringe, and the phase shift is differentiated by performing the inverse Fourier transform on the separated frequency domain. Get a statue. This eliminates the need for a moving mechanism that moves the lattice with high accuracy during a plurality of shootings, thereby improving the shooting workflow and simplifying the apparatus. In addition, it is possible to eliminate the deterioration in image quality caused by the movement of the subject between each photographing. However, when the fundamental frequency component of the moire fringe is separated, a high frequency component equal to or higher than the fundamental frequency band of the moire fringe or the fundamental frequency component is cut by a filter or the like. For this reason, the differential image of the phase shift reconstructed by the inverse Fourier transform has no cut frequency component, so that the resolution is inferior to the fringe scanning method.
 また、第2の回折格子を用いることなく、G1像の周期パターンのピッチよりも小さい画素ピッチの検出器を用いてG1像の周期パターンを検出し、この周期パターンの変調を解析することによって、被写体の位相情報を取得するようにしたX線撮影システムも提案されている(特許文献3参照)。 Further, by detecting the periodic pattern of the G1 image using a detector having a pixel pitch smaller than the pitch of the periodic pattern of the G1 image without using the second diffraction grating, and analyzing the modulation of the periodic pattern, An X-ray imaging system that acquires phase information of an object has also been proposed (see Patent Document 3).
国際公開第04/058070号International Publication No. 04/058070 国際公開第10/050483号International Publication No. 10/0504843 日本国特開2007-203063号公報Japanese Laid-Open Patent Publication No. 2007-203063
 特許文献1から特許文献3に記載されたX線撮影システムでは、X線画像検出器とは別に第1の回折格子が設けられている。このため、例えば、特許文献3に記載のX線撮影システムを被写体の撮影に実際に用いるためには、まず、G1像を生成する第1の回折格子と、G1像の周期パターンを検出するX線画像検出器の相対的な位置合わせを高精度に行わなくてはならない。しかし、G1の周期パターンは数μm程度と非常に小さく、高精度な位置調整は煩雑である。 In the X-ray imaging systems described in Patent Document 1 to Patent Document 3, a first diffraction grating is provided separately from the X-ray image detector. For this reason, for example, in order to actually use the X-ray imaging system described in Patent Document 3 for imaging a subject, first, a first diffraction grating for generating a G1 image and an X pattern for detecting a periodic pattern of the G1 image are detected. The relative alignment of the line image detector must be performed with high accuracy. However, the periodic pattern of G1 is as small as about several μm, and highly accurate position adjustment is complicated.
 また、実際に被写体の撮影ができるようになったとしても、その後、撮影回数を重ねるうちに、X線撮影システムに伝わる振動や、第1の回折格子と検出器との熱膨張率の違いによって、一度合わせた第1の回折格子とX線画像検出器の位置関係が変わってしまうことがある。このため、定期的に、第1の回折格子とX線画像検出器の位置合わせを行わなければならない。 Even if the subject can actually be photographed, the vibrations transmitted to the X-ray imaging system and the difference in the thermal expansion coefficient between the first diffraction grating and the detector as the number of times of photographing is increased. In some cases, the positional relationship between the first diffraction grating and the X-ray image detector once combined may be changed. For this reason, it is necessary to periodically align the first diffraction grating and the X-ray image detector.
 X線位相イメージングにおいては、被写体がないときと被写体があるときに生じるG1像の周期パターンの変調という微細な変化を解析することによって、被写体の位相情報を取得する。このため、被写体がないときの撮影と、被写体があるときの撮影の間に、第1の回折格子とX線画像検出器の相対的な位置関係がずれてしまうと、適切な周期パターンの変調を得ることができず、位相情報の精度に大きく影響を与えてしまう。 In X-ray phase imaging, phase information of a subject is acquired by analyzing a minute change of modulation of the periodic pattern of the G1 image that occurs when there is no subject and when there is a subject. For this reason, if the relative positional relationship between the first diffraction grating and the X-ray image detector deviates between the shooting when there is no subject and the shooting when there is a subject, an appropriate periodic pattern modulation is performed. Cannot be obtained, greatly affecting the accuracy of the phase information.
 本発明は、上述した事情に鑑みなされたものであり、第1の回折格子とX線画像検出器に例示される放射線画像検出器の位置ずれを低減し、得られる被写体の位相情報の精度を高めることを目的とする。 The present invention has been made in view of the above-described circumstances, and reduces the positional deviation of the radiation image detector exemplified by the first diffraction grating and the X-ray image detector, and improves the accuracy of the obtained phase information of the subject. The purpose is to increase.
 通過する放射線によって周期的強度分布を含む放射線像を形成する格子部と、上記放射線を検出して電荷を蓄積する複数の画素が行列状に配列され、上記周期的強度分布に基づく周期パターンを含む上記放射線像を取得する検出部と、を備え、上記格子部は、上記検出部に固定され、上記格子部は、上記放射線を透過させる支持体と、上記放射線を吸収する遮蔽部材とで形成され、上記支持体が、上記検出部に固定されるとともに、その検出部を上記放射線の入射側から支持し、上記遮蔽部材は、上記支持体内に形成された放射線画像検出器。 A lattice unit that forms a radiation image including a periodic intensity distribution by passing radiation and a plurality of pixels that detect the radiation and accumulate charges are arranged in a matrix and include a periodic pattern based on the periodic intensity distribution A detection unit that acquires the radiation image, and the lattice unit is fixed to the detection unit, and the lattice unit is formed of a support that transmits the radiation and a shielding member that absorbs the radiation. The support is fixed to the detection unit, and the detection unit is supported from the radiation incident side, and the shielding member is a radiation image detector formed in the support.
 本発明によれば、放射線画像検出器自体に、格子として機能する遮蔽部材を一体的に組み込むようにしたため、これを何度も位置合わせする必要がない。更に、この遮蔽部材と、検出部の位置ずれも低減されるため、得られる被写体位相情報の精度を高めることができる。また、この遮蔽部材を位置調整する機構が不要となるため、放射線撮影システムの構成が簡易となる。 According to the present invention, since the shielding member functioning as a grating is integrally incorporated in the radiation image detector itself, it is not necessary to align it many times. Further, since the positional deviation between the shielding member and the detection unit is reduced, the accuracy of the obtained subject phase information can be increased. Further, since a mechanism for adjusting the position of the shielding member is not required, the configuration of the radiation imaging system is simplified.
本発明の実施形態を説明するための放射線撮影システムの一例の構成を示す模式図である。It is a schematic diagram which shows the structure of an example of the radiography system for describing embodiment of this invention. 図1の放射線撮影システムの制御ブロック図である。It is a control block diagram of the radiography system of FIG. 図1の放射線撮影システムの撮影部の斜視図である。It is a perspective view of the imaging part of the radiography system of FIG. 図1の放射線撮影システムの撮影部の側面図である。It is a side view of the imaging part of the radiography system of FIG. 図1の放射線撮影システムの放射線画像検出器の構成を示す模式図である。It is a schematic diagram which shows the structure of the radiographic image detector of the radiography system of FIG. 被写体による放射線の屈折を説明するための模式図である。It is a schematic diagram for demonstrating the refraction | bending of the radiation by a to-be-photographed object. 図1の放射線撮影システムにおける周期的強度分布の解析方法の一例を示す模式図である。It is a schematic diagram which shows an example of the analysis method of periodic intensity distribution in the radiography system of FIG. 図5の放射線画像検出器の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the radiographic image detector of FIG. 図5の放射線画像検出器の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the radiographic image detector of FIG. 図1の放射線撮影システムの放射線画像検出器の他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiographic image detector of the radiography system of FIG. 図10の放射線画像検出器を用いたモアレの解析方法の一例を示す模式図である。It is a schematic diagram which shows an example of the analysis method of a moire using the radiographic image detector of FIG. 図10の放射線画像検出器を用いたモアレの解析方法の他の例を示す模式図である。It is a schematic diagram which shows the other example of the analysis method of a moire using the radiographic image detector of FIG. 図10の放射線画像検出器の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the radiographic image detector of FIG. 図1の放射線撮影システムの放射線画像検出器の更に他の例を示す模式図である。It is a schematic diagram which shows the further another example of the radiographic image detector of the radiography system of FIG. 図14の放射線画像検出器の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the radiographic image detector of FIG. 図14の放射線画像検出器の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the radiographic image detector of FIG. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 図1の放射線撮影システムの放射線画像検出器の更に他の例を示す模式図である。It is a schematic diagram which shows the further another example of the radiographic image detector of the radiography system of FIG.
 図1は、本発明の実施形態を説明するための放射線撮影システムの一例の構成を示し、図2は、図1の放射線撮影システムの制御ブロックを示す。 FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention, and FIG. 2 shows a control block of the radiation imaging system of FIG.
 X線撮影システム10は、被写体HにX線を放射するX線源11と、X線源11に対向配置され、X線源11から被写体Hを透過したX線を検出して画像データを生成する撮影部12と、操作者の操作に基づいてX線源11の曝射動作や撮影部12の撮影動作を制御するとともに、撮影部12により取得された画像データを演算処理して位相コントラスト画像を生成するコンソール13とに大別される。 The X-ray imaging system 10 generates an image data by detecting an X-ray source 11 that emits X-rays to the subject H and an X-ray source 11 that is disposed opposite to the X-ray source 11 and transmits the subject H from the X-ray source 11. The imaging unit 12 that controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12 based on the operation of the operator, and the image data acquired by the imaging unit 12 is arithmetically processed to obtain a phase contrast image And the console 13 for generating
 X線源11は、天井から吊り下げられたX線源保持装置14により上下方向(x方向)に移動自在に保持されている。撮影部12は、床上に設置された立位スタンド15により上下方向に移動自在に保持されている。 The X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling. The photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
 X線源11は、X線源制御部17と、X線源制御部17の制御に基づき、高電圧発生器16から印加される高電圧に応じてX線を発生するX線管18と、X線管18から発せられたX線のうち、被写体Hの検査領域に寄与しない部分を遮蔽するように照射野を制限する可動式のコリメータ19aを有するコリメータユニット19と、を含んで構成されている。X線管18は、陽極回転型であり、電子放出源(陰極)としてのフィラメント(図示せず)から電子線を放出して、所定の速度で回転する回転陽極18aにこれを衝突させることによりX線を発生する。この回転陽極18aの電子線の衝突部分がX線焦点18bとなる。 The X-ray source 11 includes an X-ray source control unit 17, an X-ray tube 18 that generates X-rays according to a high voltage applied from the high voltage generator 16 based on the control of the X-ray source control unit 17, A collimator unit 19 having a movable collimator 19a that limits the irradiation field so as to shield a portion of the X-rays emitted from the X-ray tube 18 that does not contribute to the inspection region of the subject H. Yes. The X-ray tube 18 is an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides it with a rotating anode 18a rotating at a predetermined speed. X-rays are generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
 X線源保持装置14は、天井に設置された天井レール(図示せず)により水平方向(z方向)に移動自在に構成された台車部14aと、上下方向に連結された複数の支柱部14bとを有する。台車部14aには、支柱部14bを伸縮させて、X線源11の上下方向に関する位置を変更するモータ(図示せず)が設けられている。 The X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. And have. A motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
 立位スタンド15では、床に設置された本体15aに、撮影部12を保持する保持部15bが上下方向に移動自在に取り付けられている。保持部15bは、上下方向に離間して配置された2つのプーリ15cの間に掛架された無端ベルト15dに接続され、プーリ15cを回転させるモータ(図示せず)により駆動される。このモータの駆動は、操作者の設定操作に基づき、後述するコンソール13の制御装置20により制御される。 In the standing stand 15, a holding part 15b for holding the photographing part 12 is attached to a main body 15a installed on the floor so as to be movable in the vertical direction. The holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c. The driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
 また、立位スタンド15には、プーリ15cの回転量又は無端ベルト15dの移動量を計測することにより、撮影部12の上下方向に関する位置を検出するポテンショメータ等の位置センサ(図示せず)が設けられている。この位置センサの検出値は、ケーブル等によりX線源保持装置14に供給される。X線源保持装置14は、供給された検出値に基づいて支柱部14bを伸縮させ、撮影部12の上下動に追従するようにX線源11を移動させる。 The standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the amount of rotation of the pulley 15c or the amount of movement of the endless belt 15d. It has been. The detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like. The X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
 コンソール13には、CPU、ROM、RAM等からなる制御装置20が設けられている。制御装置20には、操作者が撮影指示やその指示内容を入力する入力装置21と、撮影部12により取得された画像データを演算処理してX線画像を生成する演算処理部22と、X線画像を記憶する記憶部23と、X線画像等を表示するモニタ24と、X線撮影システム10の各部と接続されるインターフェース(I/F)25とがバス26を介して接続されている。 The console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like. The control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
 入力装置21としては、例えば、スイッチ、タッチパネル、マウス、キーボード等を用いることが可能であり、入力装置21の操作により、X線管電圧やX線照射時間等のX線撮影条件、撮影タイミング等が入力される。モニタ24は、液晶ディスプレイ等からなり、制御装置20の制御により、X線撮影条件等の文字やX線画像を表示する。 As the input device 21, for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used. By operating the input device 21, X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, and the like. Is entered. The monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
 撮影部12は、被写体HによるX線の位相変化(角度変化)を検出し位相イメージングを行うための吸収型格子部31が一体的に設けられたX線画像検出器30を含んで構成される。 The imaging unit 12 includes an X-ray image detector 30 that is integrally provided with an absorption grating unit 31 for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging. .
 図3及び図4は、X線画像検出器30の構成を模式的に示す。 3 and 4 schematically show the configuration of the X-ray image detector 30. FIG.
 X線画像検出器30は、通過するX線によって周期的強度分布を含むX線像を形成する吸収型格子部31と、X線を検出して電荷を蓄積する複数の画素40が行列状に配列され、その周期的強度分布に基づく周期パターンを含むX線像を取得するセンサ部41とを含んで構成される。X線画像検出器30において、センサ部41の検出面がX線源11から照射されるX線の光軸Aに直交するように配置されている。 The X-ray image detector 30 includes an absorption lattice portion 31 that forms an X-ray image including a periodic intensity distribution by passing X-rays, and a plurality of pixels 40 that detect X-rays and accumulate charges in a matrix. And a sensor unit 41 that acquires an X-ray image including a periodic pattern based on the periodic intensity distribution. In the X-ray image detector 30, the detection surface of the sensor unit 41 is disposed so as to be orthogonal to the optical axis A of X-rays emitted from the X-ray source 11.
 吸収型格子部31は、センサ部41に固定される。また、吸収型格子部31は、センサ部41よりもX線入射側に設けられ、センサ部41とX線源11との間に設けられる。 The absorption type lattice part 31 is fixed to the sensor part 41. Further, the absorption type grating unit 31 is provided on the X-ray incident side with respect to the sensor unit 41, and is provided between the sensor unit 41 and the X-ray source 11.
 吸収型格子部31は、X線を透過させる基板部31aと、X線を吸収するX線遮蔽部材31bとで形成される。 The absorptive lattice portion 31 is formed of a substrate portion 31a that transmits X-rays and an X-ray shielding member 31b that absorbs X-rays.
 基板部31aは、センサ部41に固定され、X線を透過させるシリコン基板等のX線透過性材料(放射線低吸収材料)により形成されている。また、基板部31aは、センサ部41をX線の入射側から支持する。 The substrate unit 31a is fixed to the sensor unit 41 and is formed of an X-ray transmissive material (low radiation absorption material) such as a silicon substrate that transmits X-rays. The substrate unit 31a supports the sensor unit 41 from the X-ray incident side.
 X線遮蔽部材31bは、基板部31a内に形成され、各々、X線源11から照射されるX線の光軸Aに直交する面内の一方向(図示の例では、x方向及びz方向に直交するy方向)に延伸した線状部材で構成される。X線遮蔽部材31bの材料としては、X線吸収性に優れるもの(放射線高吸収材料)が好ましく、例えば、金、白金等の重金属であることが好ましい。なお、X線遮蔽部材31bは、上記の材料を用い、金属メッキ法や蒸着法によって形成することができる。X線遮蔽部材31bの製造方法については後述する。 The X-ray shielding member 31b is formed in the substrate portion 31a, and is in one direction in the plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (in the illustrated example, the x direction and the z direction). It is comprised by the linear member extended | stretched in the y direction orthogonal to. As a material of the X-ray shielding member 31b, a material excellent in X-ray absorption (radiation high absorption material) is preferable, and for example, a heavy metal such as gold or platinum is preferable. Note that the X-ray shielding member 31b can be formed by the metal plating method or the vapor deposition method using the above-described material. A method for manufacturing the X-ray shielding member 31b will be described later.
 X線遮蔽部材31bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定のピッチpで、互いに所定の間隔dを空けて平行に配列されている。X線遮蔽部材31bは、入射するX線に位相差を与えるものでなく、入射するX線に強度差を与えるものであるため、振幅型格子とも称される。 X-ray shielding member 31b is in a plane perpendicular to the optical axis A of the X-ray, at a pitch p 1 constant in the direction (x-direction) orthogonal to the one direction, parallel at a predetermined distance d 1 from each other It is arranged. Since the X-ray shielding member 31b does not give a phase difference to incident X-rays but gives an intensity difference to incident X-rays, it is also called an amplitude type grating.
 X線遮蔽部材31bは、タルボ干渉効果の有無に係らず、スリット部を通過したX線を幾何学的に投影するように構成されている。具体的には、間隔dを、X線源11から照射されるX線の実効波長より十分大きな値とすることで、照射X線に含まれる大部分のX線をスリット部で回折させずに、直進性を保ったまま通過するように構成する。例えば、前述の回転陽極18aとしてタングステンを用い、管電圧を50kVとした場合には、X線のピーク波長は、約0.4Åである。この場合には、間隔dを、1~10μm程度とすれば、スリット部で大部分のX線が回折されずに幾何学的に投影される。 The X-ray shielding member 31b is configured to geometrically project X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the interval d 1 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, most of the X-rays included in the irradiated X-rays are not diffracted by the slit portion. In addition, it is configured to pass while maintaining straightness. For example, when tungsten is used as the rotary anode 18a described above and the tube voltage is 50 kV, the peak wavelength of the X-ray is about 0.4 mm. In this case, if the distance d 1 is about 1 to 10 μm, most of the X-rays are geometrically projected without being diffracted by the slit portion.
 X線源11から放射されるX線は、平行ビームではなく、X線焦点18bを発光点としたコーンビームであるため、X線遮蔽部材31bを通過して射影される投影像(以下、この投影像をG1像と称する)は、X線焦点18bからの距離に比例して拡大される。 The X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam with the X-ray focal point 18b as a light emitting point, and therefore a projection image projected through the X-ray shielding member 31b (hereinafter referred to as this image). The projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b.
 X線遮蔽部材31bからセンサ部41までの距離Lは、タルボ干渉計では、回折格子の格子ピッチとX線波長とで決まるタルボ干渉距離に制約されるが、本X線撮影システム10においては、X線遮蔽部材31bが入射X線を回折させずに投影させる構成であって、X線遮蔽部材31bのG1像が、X線遮蔽部材31bの後方のすべての位置で相似的に得られるため、距離Lを、タルボ干渉距離と無関係に設定することができる。従って、距離Lを、タルボ干渉距離よりも小さく設定し、X線画像検出器30を薄型化することができる。 Distance L 2 from X-ray shield member 31b to the sensor unit 41, the Talbot interferometer, but is constrained to Talbot distance determined by the grating pitch and the X-ray wavelength of the diffraction grating, in the X-ray imaging system 10 Since the X-ray shielding member 31b projects incident X-rays without diffracting, the G1 image of the X-ray shielding member 31b is obtained similarly at all positions behind the X-ray shielding member 31b. , the distance L 2, can be set independently of the Talbot distance. Accordingly, the distance L 2, is set to be smaller than the Talbot interference distance, the X-ray image detector 30 can be made thinner.
 X線遮蔽部材31bは、コントラストの高い周期パターン像を生成するためには、X線を完全に遮蔽(吸収)することが好ましいが、上記したX線吸収性に優れる材料(金、白金等)を用いたとしても、吸収されずに透過するX線が少なからず存在する。このため、X線の遮蔽性を高めるためには、X線遮蔽部材31bの厚みhを、可能な限り厚くすることが好ましい。例えば、X線管18の管電圧が50kVの場合に、照射X線の90%以上を遮蔽することが好ましく、この場合には、厚みhは、金(Au)換算で30μm以上であることが好ましい。 The X-ray shielding member 31b preferably completely shields (absorbs) X-rays in order to generate a periodic pattern image with high contrast. However, the X-ray shielding member 31b is excellent in X-ray absorption (such as gold and platinum). Even if is used, there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the thickness h 1 of the X-ray shielding member 31b, it is preferable to be thick as possible. For example, when the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays. In this case, the thickness h 1 is 30 μm or more in terms of gold (Au). Is preferred.
 一方、X線遮蔽部材31bの厚みhを厚くし過ぎると、斜めに入射するX線がスリット部を通過しにくくなり、いわゆるケラレが生じて、X線遮蔽部材31bの延伸方向(条帯方向)に直交する方向(x方向)の有効視野が狭くなるといった問題がある。このため、視野確保の観点から、厚みhの上限を規定する。X線画像検出器30のセンサ部41の検出面におけるx方向の有効視野の長さVを確保するには、X線焦点18bからX線画像検出器30の検出面までの距離をLとすると、厚みhは、図4に示す幾何学的関係から、次式(1)を満たすように設定する必要がある。 On the other hand, if too thick a thickness h 1 of the X-ray shielding member 31b, X-rays incident obliquely is less likely to pass through the slit portion, so-called vignetting occurs, the extending direction (strip direction of the X-ray shielding member 31b There is a problem that the effective field of view in the direction (x direction) orthogonal to () becomes narrow. Therefore, in view of the field of view secured to define the upper limit of the thickness h 1. In order to secure the effective field length V in the x direction on the detection surface of the sensor unit 41 of the X-ray image detector 30, let L be the distance from the X-ray focal point 18 b to the detection surface of the X-ray image detector 30. The thickness h 1 needs to be set so as to satisfy the following expression (1) from the geometrical relationship shown in FIG.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば、d=2.5μmであり、通常の病院での撮影を想定し、L=2mとした場合には、x方向の有効視野の長さVとして10cmの長さを確保するには、厚みhは100μm以下とすればよい。 For example, when d 1 = 2.5 μm, assuming imaging in a normal hospital, and L = 2 m, in order to ensure a length of 10 cm as the effective field length V in the x direction, the thickness h 1 may be set to 100μm or less.
 また、X線遮蔽部材31bの開口率は0.2~0.6(=20~60%)特に0.3~0.5(=30~50%)が望ましい。また、X線遮蔽部材31bのピッチpとしては、検出したい位相角度分解能θ[rad]とし、X線遮蔽部材31bから被写体までの距離LH(mm)とすると、次式(2)を満たすように設定される。 The aperture ratio of the X-ray shielding member 31b is preferably 0.2 to 0.6 (= 20 to 60%), particularly 0.3 to 0.5 (= 30 to 50%). Further, if the pitch p 1 of the X-ray shielding member 31b is the phase angle resolution θ [rad] to be detected and the distance L H (mm) from the X-ray shielding member 31b to the subject, the following equation (2) is satisfied. Is set as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 例えば、検出する位相角度分解能θを0.1μradとし、画素40と被写体までの距離をL=10mmとすると、X線遮蔽部材31bのピッチpは3.28μm以下とすればよい。 For example, if the phase angle resolution θ to be detected is 0.1 μrad, and the distance between the pixel 40 and the subject is L H = 10 mm, the pitch p 1 of the X-ray shielding member 31b may be 3.28 μm or less.
 以上の構成において、X線遮蔽部材31bのG1像がセンサ部41によって撮像される。次に、X線画像検出器30の構成について説明する。 In the above configuration, the G1 image of the X-ray shielding member 31b is captured by the sensor unit 41. Next, the configuration of the X-ray image detector 30 will be described.
 図5は、X線画像検出器30の構成を模式的に示す。FIG.5Aは、X線画像検出器30の正面図の模式図であり、FIG.5Bは、FIG.5Aのv-v線断面図の模式図である。 FIG. 5 schematically shows the configuration of the X-ray image detector 30. FIG. 5A is a schematic diagram of a front view of the X-ray image detector 30, and FIG. 5B is shown in FIG. 5A is a schematic diagram of a cross-sectional view taken along line vv of 5A. FIG.
 X線画像検出器30は、上述の吸収型格子部31と、X線を検出して電荷を蓄積する複数の画素40がxy方向に2次元配列されたセンサ部41と、各画素40に蓄積された電荷の読み出しタイミングを制御する走査回路42と、各画素40から順次読み出された信号を画像データに変換して記憶する信号処理回路43と、画像データをコンソール13のI/F25を介して演算処理部22に送信するデータ送信回路44と、を有する。(FIG.5A)。 The X-ray image detector 30 includes the above-described absorption-type grating unit 31, a sensor unit 41 in which a plurality of pixels 40 that detect X-rays and accumulate electric charges are two-dimensionally arranged in the xy direction, and accumulate in each pixel 40. A scanning circuit 42 for controlling the read timing of the read charges, a signal processing circuit 43 for converting and storing signals sequentially read from the respective pixels 40 into image data, and the image data via the I / F 25 of the console 13. And a data transmission circuit 44 for transmitting to the arithmetic processing unit 22. (FIG. 5A).
 X線画像検出器30は、CMOS(Complementary Metal Oxide Semiconductor)センサなどの固体撮像素子をベースに構成することができる。センサ部41は、は、シリコン基板などの半導体基板48と、この半導体基板48に形成されるフォトダイオード等の複数の画素40と、各画素40に蓄積された電荷を読み出す複数の読み出し回路(図示せず)と、センサ部41を走査回路42と信号処理回路43を接続するための配線部47と、X線の露光によって、画素40の分光感度に適合する波長の蛍光を発するシンチレータ49を有する(FIG.5B)。 The X-ray image detector 30 can be configured based on a solid-state imaging device such as a CMOS (Complementary Metal Oxide Semiconductor) sensor. The sensor unit 41 includes a semiconductor substrate 48 such as a silicon substrate, a plurality of pixels 40 such as photodiodes formed on the semiconductor substrate 48, and a plurality of readout circuits that read out charges accumulated in each pixel 40 (FIG. (Not shown), a wiring unit 47 for connecting the sensor unit 41 to the scanning circuit 42 and the signal processing circuit 43, and a scintillator 49 that emits fluorescence having a wavelength suitable for the spectral sensitivity of the pixel 40 by X-ray exposure. (FIG. 5B).
 配線部47は、単結晶シリコン等からなる半導体基板に形成され、画素40に蓄積された電荷を読み出すために行列状に設けられた複数の走査線45と、複数の信号線46を有する。配線部47は、z方向において、吸収型格子部31の基板部31aと画素40の間に設けられる(FIG.5B)。 The wiring portion 47 is formed on a semiconductor substrate made of single crystal silicon or the like, and includes a plurality of scanning lines 45 and a plurality of signal lines 46 provided in a matrix for reading out the electric charges accumulated in the pixels 40. The wiring part 47 is provided between the substrate part 31a of the absorption lattice part 31 and the pixel 40 in the z direction (FIG. 5B).
 走査線45は2次元状に配列された画素40の画素行の間の領域の上方に形成されている。すなわち、走査線45は、センサ部41の厚さ方向(z方向)において、画素40と重ならない。言い換えれば、X線の入射側からの平面視において、走査線45が隣り合う画素40の間に形成されている。また、センサ部41の厚さ方向(X線遮蔽部材31bの厚さ方向)(z方向)において、X線遮蔽部材31bは一部の走査線45と画素40の行方向(y方向)全体にわたって重なっている。全ての走査線45に対してX線遮蔽部材31bが重なっているわけではないが、X線の入射側からの平面視において、周期的に走査線45に対してX線遮蔽部材31bが重なっている。図示の例では、X線遮蔽部材31bの配列方向(x方向)において、隣り合うX線遮蔽部材31bの間に少なくとも2つ以上の画素40が含まれるように、X線遮蔽部材31bの間隔dが設定される。 The scanning line 45 is formed above the region between the pixel rows of the pixels 40 that are two-dimensionally arranged. That is, the scanning line 45 does not overlap the pixel 40 in the thickness direction (z direction) of the sensor unit 41. In other words, the scanning line 45 is formed between the adjacent pixels 40 in a plan view from the X-ray incident side. Further, in the thickness direction of the sensor unit 41 (thickness direction of the X-ray shielding member 31b) (z direction), the X-ray shielding member 31b extends over the entire row direction (y direction) of some scanning lines 45 and pixels 40. overlapping. Although the X-ray shielding member 31b does not overlap all the scanning lines 45, the X-ray shielding member 31b periodically overlaps the scanning lines 45 in a plan view from the X-ray incident side. Yes. In the illustrated example, in the arrangement direction (x direction) of the X-ray shielding members 31b, the distance d between the X-ray shielding members 31b so that at least two pixels 40 are included between the adjacent X-ray shielding members 31b. 1 is set.
 なお、X線遮蔽部材31bと重なる走査線45は、センサ部41の厚さ方向に直交する方向(X線遮蔽部材31bの配列方向)(x方向)の幅が、対応するX線遮蔽部材31bの幅よりも小さいことが好ましい。 Note that the scanning line 45 overlapping the X-ray shielding member 31b has an X-ray shielding member 31b whose width in the direction orthogonal to the thickness direction of the sensor unit 41 (the arrangement direction of the X-ray shielding members 31b) (x direction) corresponds. It is preferable that the width is smaller.
 信号線46は2次元状に配列された画素40の画素列の間の領域の上方に設けられている。すなわち、X線の入射側からの平面視において、信号線46が隣り合う画素40の間に形成されている。 The signal line 46 is provided above the region between the pixel columns of the pixels 40 arranged in a two-dimensional manner. That is, the signal line 46 is formed between the adjacent pixels 40 in a plan view from the X-ray incident side.
 シンチレータ49は、画素40に対して配線部47とは反対側に設けられる(FIG.5B)。シンチレータ49には、例えば、テルビウム賦活酸化ガドリニウム(Gd2S:Tb)などの粒状シンチレータや、タリウム賦活ヨウ化セシウム(CsI:Tl)などの柱状シンチレータが用いられる。なお、画素40の間隔を数μm以下にする場合には、シンチレータとしてGdSiO:Ce,BiGe12,GdS:Pr,LuSiO:Ce,Lu0.4Gd1.6SiO:Ceなどの単結晶シンチレータを用いるとよい。十数μm~2μm程度の結晶サイズを持つ粒状シンチレータや柱状シンチレータの様に結晶界面での光の反射、散乱等がないためである。単結晶シンチレータは大面積を有する1枚のシンチレータとして構成できないこともあるが、タイル状に複数枚の単結晶シンチレータを配置して面積を大きくしても良い。また、整数枚並べた単結晶シンチレータの発光面積と、画素40のうち画像用画素として用いられる画素の総画素面積がほぼ一致するようにしても良い。なお、シンチレータ間の隙間を有効画素とは異なる位置になるようにすることが好適である。例えば、配線部47や画素40のうち暗補正用画素等として用いられる暗補正画素エリアやICからの配線をパッケージ外部に取り出すためのエリア等が好適である。また、なお、センサ部41は、単結晶シンチレータと画素40の郡の組が一つで構成されてもよく、単結晶シンチレータと画素40の群の組が複数用意され、これらが配列された構成としてもよい。 The scintillator 49 is provided on the side opposite to the wiring portion 47 with respect to the pixel 40 (FIG. 5B). As the scintillator 49, for example, a granular scintillator such as terbium activated gadolinium oxide (Gd 2 O 2 S: Tb) or a columnar scintillator such as thallium activated cesium iodide (CsI: Tl) is used. When the interval between the pixels 40 is several μm or less, the scintillator is Gd 2 SiO 5 : Ce, Bi 4 Ge 3 O 12 , Gd 2 O 2 S: Pr, Lu 2 SiO 5 : Ce, Lu 0.4 Gd. 1.6 A single crystal scintillator such as SiO 5 : Ce may be used. This is because there is no reflection or scattering of light at the crystal interface unlike granular scintillators and columnar scintillators having a crystal size of about a dozen μm to 2 μm. Although the single crystal scintillator may not be configured as a single scintillator having a large area, a plurality of single crystal scintillators may be arranged in a tile shape to increase the area. Further, the light emission area of the single crystal scintillators arranged in an integer number and the total pixel area of the pixels used as image pixels among the pixels 40 may be substantially matched. It is preferable that the gap between the scintillators is located at a position different from the effective pixel. For example, a dark correction pixel area used as a dark correction pixel or the like in the wiring portion 47 or the pixel 40, an area for taking out the wiring from the IC, etc. are suitable. In addition, the sensor unit 41 may be composed of a single group of single crystal scintillators and pixels 40, or a plurality of groups of single crystal scintillators and pixels 40 are prepared and arranged. It is good.
 X線画像検出器30において、X線は、吸収型格子部31側から入射され、配線部47等を透過した後、シンチレータ49に入射する。シンチレータ49に入射したX線は、シンチレータ49によって蛍光として発生する。発生した蛍光が、画素40に電荷として蓄積される。蓄積された電荷は、走査回路42により設定されたタイミングに基づいて、読み出され、信号処理回路43によって画像データに変換される(FIG.5B)。 In the X-ray image detector 30, the X-rays are incident from the absorption type grating unit 31 side, pass through the wiring unit 47 and the like, and then enter the scintillator 49. X-rays incident on the scintillator 49 are generated as fluorescence by the scintillator 49. The generated fluorescence is accumulated as charges in the pixel 40. The accumulated charges are read out based on the timing set by the scanning circuit 42 and converted into image data by the signal processing circuit 43 (FIG. 5B).
 次に、G1像の解析方法について説明する。 Next, a method for analyzing the G1 image will be described.
 図6は、被写体Hのx方向に関する位相シフト分布Φ(x)に応じて屈折される1つのX線を示す。 FIG. 6 shows one X-ray refracted according to the phase shift distribution Φ (x) of the subject H in the x direction.
 符号55は、被写体Hが存在しない場合に直進するX線の経路を示しており、この経路55を進むX線は、吸収型格子部31の基板部31aを通過して画素40に入射する。符号56は、被写体Hが存在する場合に、被写体Hにより屈折されて偏向したX線の経路を示している。この経路56を進むX線は、吸収型格子部31のX線遮蔽部材31bにより遮蔽される。 Reference numeral 55 denotes an X-ray path that goes straight when the subject H does not exist, and the X-ray that travels along this path 55 passes through the substrate part 31 a of the absorption grating part 31 and enters the pixel 40. Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along the path 56 are shielded by the X-ray shielding member 31 b of the absorption type lattice unit 31.
 被写体Hの位相シフト分布Φ(x)は、被写体Hの屈折率分布をn(x,z)、zをX線の進む方向として、次式(3)で表される。 The phase shift distribution Φ (x) of the subject H is expressed by the following equation (3), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 X線遮蔽部材31bを通過して画素40の位置に投射されたG1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。すなわち、G1像のx方向に関するパターン周期p’もまた、G1像の変移に応じてx方向に変移することになる。 The G1 image projected through the X-ray shielding member 31b and projected to the position of the pixel 40 is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of the X-ray at the subject H. That is, the pattern period p 1 ′ in the x direction of the G1 image also changes in the x direction in accordance with the change in the G1 image.
 G1像の変位量Δxは、X線の屈折角φ(x)が微小であることに基づいて、近似的に次式(4)で表される。 The displacement amount Δx of the G1 image is approximately expressed by the following equation (4) based on the small X-ray refraction angle φ (x).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、屈折角φ(x)は、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(5)で表される。 Here, the refraction angle φ (x) is expressed by Expression (5) using the X-ray wavelength λ and the phase shift distribution Φ (x) of the subject H.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 このように、被写体HでのX線の屈折によるG1像の変位量Δxは、被写体Hの位相シフト分布Φ(x)に関連している。 Thus, the displacement amount Δx of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution Φ (x) of the subject H.
 そして、G1像の変位量Δxは、各画素40から出力される信号の位相ズレ量ψ(被写体Hがある場合とない場合とにおける信号の位相ズレ量)に、次式(6)のように関連している。 The displacement amount Δx of the G1 image is expressed by the following equation (6) based on the phase shift amount ψ of the signal output from each pixel 40 (the phase shift amount of the signal with and without the subject H). Related.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 したがって、各画素40から出力される信号の位相ズレ量ψを求めることにより、式(4)及び式(6)から屈折角φが求まり、式(5)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。以下、上記の位相ズレ量ψの算出方法について説明する。 Accordingly, by obtaining the phase shift amount ψ of the signal output from each pixel 40, the refraction angle φ is obtained from the equations (4) and (6), and the phase shift distribution Φ (x) is obtained using the equation (5). Therefore, the phase shift distribution Φ (x) of the subject H, that is, the phase contrast image of the subject H can be generated by integrating this with respect to x. Hereinafter, a method of calculating the phase shift amount ψ will be described.
 図7は、センサ部41の各画素40から出力される信号を模式的に示す。 FIG. 7 schematically shows a signal output from each pixel 40 of the sensor unit 41.
 x方向に隣り合う複数の画素40を単位とし、単位毎に、1単位を構成する複数の画素40の画素値Iを補間する。図示の例では、複数の画素40の画素値を正弦曲線により補間したものであり、正弦曲線による補間は3点あれば足りるため、互いに隣り合う3つの画素40を単位としている。 A plurality of pixels 40 adjacent in the x direction are used as a unit, and the pixel value I of the plurality of pixels 40 constituting one unit is interpolated for each unit. In the illustrated example, the pixel values of a plurality of pixels 40 are interpolated by a sine curve, and three points need only be interpolated by the sine curve.
 被写体Hが存在しない場合の信号曲線(FIG.7A)と、被写体Hが存在する場合の信号曲線(FIG.7B)との両者の波形の位相差が、単位画素(一単位の画素群に対応する画素)の位相ズレ量ψに対応する。 The phase difference between the waveforms of the signal curve (FIG. 7A) when the subject H does not exist and the signal curve (FIG. 7B) when the subject H exists corresponds to a unit pixel (one unit pixel group). This corresponds to the phase shift amount ψ of the pixel to be processed.
 屈折角φ(x)は、式(5)で示したように位相シフト分布Φ(x)の微分値に対応する値であるため、屈折角φ(x)をx軸に沿って積分することにより、位相シフト分布Φ(x)が得られる。なお、上記の説明では、画素40のy方向に関するy座標を考慮していないが、各y座標について同様の演算を行うことにより、x方向及びy方向における2次元的な位相シフト分布Φ(x,y)が得られる。 Since the refraction angle φ (x) is a value corresponding to the differential value of the phase shift distribution Φ (x) as shown in the equation (5), the refraction angle φ (x) is integrated along the x-axis. Thus, the phase shift distribution Φ (x) is obtained. In the above description, the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution Φ (x , Y).
 以上の処理を経て、演算処理部22は、位相シフト分布Φ(x,y)を画像化した位相コントラスト画像を記憶部23に記憶させる。上述した位相コントラスト画像の生成処理は、入力装置21から操作者により撮影指示がなされた後、制御装置20の制御に基づいて各部が連係動作して自動的に行われ、最終的に被写体Hの位相コントラスト画像がモニタ24に表示される。 Through the above processing, the arithmetic processing unit 22 causes the storage unit 23 to store a phase contrast image obtained by imaging the phase shift distribution Φ (x, y). The above-described phase contrast image generation processing is automatically performed by the respective units operating in conjunction with each other under the control of the control device 20 after an imaging instruction is given from the input device 21 by the operator. A phase contrast image is displayed on the monitor 24.
 図8及び図9は、X線撮影システム10のX線画像検出器30の製造方法の一例を示す模式図である。 8 and 9 are schematic views showing an example of a method for manufacturing the X-ray image detector 30 of the X-ray imaging system 10.
 まず、実質的に画素40と配線部47が形成された固体撮像装置を用意する。次いで、X線低吸収材料で形成される支持基板51を、配線部47の上に形成する。そして、レジスト膜52を支持基板51の上に形成する。 First, a solid-state imaging device in which pixels 40 and wiring portions 47 are substantially formed is prepared. Next, a support substrate 51 made of an X-ray low absorption material is formed on the wiring portion 47. Then, a resist film 52 is formed on the support substrate 51.
 なお、半導体基板48に形成された画素40は、この時点では、外部に露出していない。 Note that the pixels 40 formed on the semiconductor substrate 48 are not exposed to the outside at this time.
 また、レジスト膜52としては、ネガ型とポジ型のいずれも用いることができるが、本例では、ポジ型のレジスト膜を用いた場合について説明する。 In addition, as the resist film 52, either a negative type or a positive type can be used. In this example, a case where a positive type resist film is used will be described.
 次いで、マスク53を介してレジスト膜52を、矢印の方向から、使用するレジストに適した波長の電磁波で露光する(FIG.8A)。これにより、マスク53によって遮光された部分以外の部分を硬化し、耐エッチング性を付与する。各マスク53で構成されるマスクパターンは、X線遮蔽部材31bが形成される部分に対応する。そして、矢印の方向から見ると、X線遮蔽部材31bと重なる走査線45は、対応するマスク53に隠れる。 Next, the resist film 52 is exposed with an electromagnetic wave having a wavelength suitable for the resist to be used from the direction of the arrow through the mask 53 (FIG. 8A). Thereby, portions other than the portion shielded by the mask 53 are cured, and etching resistance is imparted. The mask pattern formed by each mask 53 corresponds to a portion where the X-ray shielding member 31b is formed. When viewed from the direction of the arrow, the scanning line 45 overlapping the X-ray shielding member 31 b is hidden by the corresponding mask 53.
 次いで、マスクパターンを除去した後、現像を行い、レジスト膜52のうちマスク53によって遮光された部分を除去した後、洗浄する(FIG.8B)。 Next, after removing the mask pattern, development is performed, and the portion of the resist film 52 that is shielded from light by the mask 53 is removed, followed by washing (FIG. 8B).
 次いで、画素40が形成されている半導体基板48を研磨して、画素40を外部に露出する(FIG.8C)。 Next, the semiconductor substrate 48 on which the pixels 40 are formed is polished to expose the pixels 40 to the outside (FIG. 8C).
 次いで、支持基板51のうち、エッチングによりマスクパターンに対応する部分を除去する。これにより、支持基板51にはX線遮蔽部材31bを充填するための複数の溝が形成されるとともに、吸収型格子部31の基板部31aが形成される(FIG.9A)。 Next, a portion of the support substrate 51 corresponding to the mask pattern is removed by etching. As a result, a plurality of grooves for filling the X-ray shielding member 31b are formed in the support substrate 51, and the substrate portion 31a of the absorption lattice portion 31 is formed (FIG. 9A).
 次いで、レジスト膜52を除去した後、金属メッキ処理等により、X線高吸収材料を支持基板51に形成された複数の溝を充填する。これにより、吸収型格子部31のX線遮蔽部材31bが形成される(FIG.9B)。 Next, after removing the resist film 52, a plurality of grooves formed in the support substrate 51 is filled with an X-ray high absorption material by metal plating or the like. Thereby, the X-ray shielding member 31b of the absorption type lattice part 31 is formed (FIG. 9B).
 そして、画素40とシンチレータ49を光学的に接合する。シンチレータ49は、直接蒸着により形成してもよいし、画素40に対して接着層等を介して貼り合わせてもよい(FIG.9C)。 Then, the pixel 40 and the scintillator 49 are optically joined. The scintillator 49 may be formed by direct vapor deposition, or may be bonded to the pixel 40 via an adhesive layer or the like (FIG. 9C).
 以上、X線画像検出器30の製造方法によれば、センサ部41に固定された支持基板51に複数の溝を形成し、これらの溝を充填してX線遮蔽部材31bを設けるようにしている。このため、センサ部41と吸収型格子部31を別々に作成し、後から画素40とX線遮蔽部材31bを位置合わせするよりも精度よく、X線画像検出器30を製造することができる。 As described above, according to the method of manufacturing the X-ray image detector 30, a plurality of grooves are formed in the support substrate 51 fixed to the sensor unit 41, and the X-ray shielding member 31b is provided by filling these grooves. Yes. For this reason, it is possible to manufacture the X-ray image detector 30 with higher accuracy than separately preparing the sensor unit 41 and the absorption type grating unit 31 and aligning the pixel 40 and the X-ray shielding member 31b later.
 また、支持基板51を形成した後に、画素40が形成された半導体基板48を研磨するようにしたため、支持基板51により半導体基板48を研磨するための耐久性をあげることができる。なお、支持基板51は、X線低吸収材料であることが望ましい。例えば、樹脂やSiなどである。更に、支持基板51の熱膨張率が画素40を形成している層と近い物質であることが望ましい。例えば、この層が単結晶Siを用いて構成される場合は、単結晶Siや窒化珪素Si、a-Si、p-Si等である。また、この層が化合物半導体のSiCを用いて構成される場合には、AlN等である。更に、この層が、ガラス基板上に形成されたTFTとなる場合には、SiCやAlN等である。 Further, since the semiconductor substrate 48 on which the pixels 40 are formed is polished after the support substrate 51 is formed, durability for polishing the semiconductor substrate 48 with the support substrate 51 can be increased. The support substrate 51 is preferably an X-ray low absorption material. For example, resin or Si. Further, it is desirable that the thermal expansion coefficient of the support substrate 51 is a material close to that of the layer forming the pixel 40. For example, when this layer is formed using single crystal Si, it is single crystal Si, silicon nitride Si 3 N 4 , a-Si, p-Si, or the like. When this layer is formed using SiC of a compound semiconductor, it is AlN or the like. Furthermore, when this layer is a TFT formed on a glass substrate, it is SiC, AlN, or the like.
 以上、説明したように、X線撮影システム10のX線画像検出器30によれば、X線画像検出器30に格子として機能する吸収型格子部31をセンサ部41に一体的に組み込むようにしたため、これを何度も位置合わせする必要がなくなる。更に、吸収型格子部31と、センサ部41の位置ずれも低減されるため、被写体の位相情報を取得する放射線位相イメージングにおいて、位相情報の精度を高めることができる。また、X線画像検出器30の構成が簡易となる。 As described above, according to the X-ray image detector 30 of the X-ray imaging system 10, the absorption type grating unit 31 that functions as a grating is integrated into the sensor unit 41 in the X-ray image detector 30. Therefore, it is not necessary to align this many times. Furthermore, since the positional deviation between the absorption type grating unit 31 and the sensor unit 41 is also reduced, the accuracy of the phase information can be increased in the radiation phase imaging for acquiring the phase information of the subject. Further, the configuration of the X-ray image detector 30 is simplified.
 また、X線遮蔽部材31bで殆どのX線を回折させずに、センサ部41に幾何学的に投影するため、照射X線には、高い空間的可干渉性は要求されず、X線源11として医療分野で用いられている一般的なX線源を用いることができる。 In addition, since most X-rays are not diffracted by the X-ray shielding member 31b and geometrically projected onto the sensor unit 41, the irradiated X-rays are not required to have high spatial coherence, and the X-ray source 11 may be a general X-ray source used in the medical field.
 そして、X線遮蔽部材31bからセンサ部41までの距離Lを任意の値とすることができ、該距離Lを、タルボ干渉計での最小のタルボ干渉距離より小さく設定することができるため、X線画像検出器30を小型化(薄型化)することができる。更に、本X線撮影システムでは、X線遮蔽部材31bからの投影像(G1像)には、照射X線のほぼすべての波長成分が寄与し、G1像のコントラストが向上するため、位相コントラスト画像の検出感度を向上させることができる。 Then, the distance L 2 from X-ray shield member 31b to the sensor unit 41 can be any value, the distance L 2, it is possible to set smaller than the minimum Talbot interference distance in Talbot interferometer The X-ray image detector 30 can be downsized (thinned). Furthermore, in this X-ray imaging system, almost all wavelength components of irradiated X-rays contribute to the projected image (G1 image) from the X-ray shielding member 31b, and the contrast of the G1 image is improved. Detection sensitivity can be improved.
 また、シンチレータ49の主発光領域を画素40に近づけるように配置したため、画素40付近でシンチレータ49の発光が行われ、感度が向上する。 In addition, since the main light emitting region of the scintillator 49 is arranged so as to be close to the pixel 40, the scintillator 49 emits light in the vicinity of the pixel 40, and sensitivity is improved.
 また、走査線45をX線遮蔽部材31bと重なるように配置したため、走査線45によるX線の吸収を低減することができる。 Further, since the scanning line 45 is arranged so as to overlap the X-ray shielding member 31b, X-ray absorption by the scanning line 45 can be reduced.
 なお、X線画像検出器30では、X線遮蔽部材31bと走査線45の一部が、X線遮蔽部材31bの厚さ方向(z方向)で重なるようにしているが、これに限られない。例えば、複数のX線遮蔽部材31bがy方向で配列され、X線遮蔽部材31bと信号線46の一部がX線遮蔽部材31bの厚さ方向で重なるようにしてもよい。 In the X-ray image detector 30, the X-ray shielding member 31b and a part of the scanning line 45 are overlapped in the thickness direction (z direction) of the X-ray shielding member 31b. . For example, a plurality of X-ray shielding members 31b may be arranged in the y direction, and a part of the X-ray shielding member 31b and the signal line 46 may overlap in the thickness direction of the X-ray shielding member 31b.
 X線遮蔽部材31bと信号線46が重なるようにすれば、ノイズの低減が図られる点で好ましい。 It is preferable that the X-ray shielding member 31b and the signal line 46 overlap each other in terms of noise reduction.
 また、X線遮蔽部材31bの配列方向のX線遮蔽部材31bの幅よりも、配線部47の走査線45(又は信号線46)の幅を小さくしたため、X線遮蔽部材31b以外によるX線のケラレを防ぐことができる。 Further, since the width of the scanning line 45 (or the signal line 46) of the wiring portion 47 is made smaller than the width of the X-ray shielding member 31b in the arrangement direction of the X-ray shielding member 31b, X-rays other than the X-ray shielding member 31b are used. Vignetting can be prevented.
 なお、X線画像検出器30の製造方法としては、上記の方法以外の方法や順番を採用してもよい。 In addition, as a manufacturing method of the X-ray image detector 30, methods and orders other than the above methods may be adopted.
 なお、上述したX線画像検出器30は、X線遮蔽部材31bが吸収型格子であるものとして説明したが、本発明はこれに限定されるものではない。上述のとおり、タルボ干渉像の周期パターンであっても、X線画像検出器30の画素40の配列ピッチとの関係で画像にG1像を解析することができ、その場合にも本発明は有用である。よって、格子は、吸収型格子に限らず位相型格子であってもよい。 In the X-ray image detector 30 described above, the X-ray shielding member 31b is described as an absorption type grating, but the present invention is not limited to this. As described above, even if the periodic pattern of the Talbot interference image, the G1 image can be analyzed in relation to the arrangement pitch of the pixels 40 of the X-ray image detector 30, and the present invention is also useful in that case. It is. Therefore, the grating is not limited to the absorption type grating but may be a phase type grating.
 また、位相シフト分布Φを画像化したものを位相コントラスト画像として記憶ないし表示するものとして説明したが、位相シフト分布Φは、屈折角φより求まる位相シフト分布Φの微分量を積分したものであって、屈折角φ及び位相シフト分布Φの微分量もまた被写体によるX線の位相変化に関連している。よって、屈折角φを画像化したもの、また、位相シフトの微分量を画像化したものも位相コントラスト画像に含まれる。 In addition, although the image obtained by imaging the phase shift distribution Φ is described as being stored or displayed as a phase contrast image, the phase shift distribution Φ is obtained by integrating the differential amount of the phase shift distribution Φ obtained from the refraction angle φ. Thus, the differential amount of the refraction angle φ and the phase shift distribution Φ is also related to the X-ray phase change by the subject. Therefore, an image of the refraction angle φ and an image of the differential amount of the phase shift are also included in the phase contrast image.
 また、被写体がない状態で撮影(プレ撮影)して取得される画像に対して、上述の位相コントラスト画像の生成処理を行い、位相コントラスト画像を取得するようにしてもよい。この位相コントラスト画像は、例えば、X線遮蔽部材31bの不均一性等によって生じる位相ムラ(初期位相のズレ)を反映している。このプレ撮影における位相コントラスト画像を、被写体がある状態で撮影(メイン撮影)して取得される位相コントラスト画像から減算することで、撮影部12の位相ムラを補正した位相コントラスト画像を得ることが出来る。 Further, the above-described phase contrast image generation processing may be performed on an image acquired by shooting (pre-shooting) in the absence of a subject to acquire a phase contrast image. This phase contrast image reflects, for example, phase unevenness (initial phase shift) caused by non-uniformity of the X-ray shielding member 31b or the like. By subtracting the phase contrast image in the pre-photographing from the phase contrast image obtained by photographing (main photographing) in the presence of the subject, a phase contrast image in which the phase unevenness of the photographing unit 12 is corrected can be obtained. .
 図10は、X線画像検出器30の他の例を示す。 FIG. 10 shows another example of the X-ray image detector 30.
 X線画像検出器50は、X線画像検出器30と異なり、X線遮蔽部材31bの厚さ方向において、吸収型格子部31のX線遮蔽部材31bと全ての走査線45が重なっている。すなわち、各X線遮蔽部材31bと各走査線45は1対1で対応して重なっている。 The X-ray image detector 50 differs from the X-ray image detector 30 in that all the scanning lines 45 overlap the X-ray shielding member 31b of the absorption type grating portion 31 in the thickness direction of the X-ray shielding member 31b. That is, each X-ray shielding member 31b and each scanning line 45 are overlapped in a one-to-one correspondence.
 このため、G1像を直接解析することができないため、G1像のx方向に関するパターン周期p’と、画素40のx方向に関する配列ピッチPとの微小な差異により発生する、モアレを解析することによって、位相コントラスト画像を取得する。 For this reason, since the G1 image cannot be directly analyzed, the moire generated due to the minute difference between the pattern period p 1 ′ in the x direction of the G1 image and the arrangement pitch P in the x direction of the pixels 40 is analyzed. To obtain a phase contrast image.
 ここで、画素40の配列ピッチPは、周期p’のG1像の周期パターンを検出(解像)するに必要なピッチである1/2p’よりも小さい。 Here, the arrangement pitch P of the pixels 40, less than 'is 1 / 2p 1 pitch required to detect a periodic pattern of G1 image (resolution)' period p 1.
 画像に生じるモアレのx方向に関するモアレの周期Tは、次式(7)で表される。 The moire period T in the x direction of moire generated in the image is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 X線源11と吸収型格子部31(X線遮蔽部材31b)との間に被写体Hを配置すると、X線画像検出器50の画素40により検出される画像に生じるモアレは、被写体Hにより変調を受ける。この変調量は、被写体Hによる屈折効果によって偏向したX線の角度に比例する。したがって、このモアレを解析することによって、被写体Hの位相コントラスト画像を生成することができる。 When the subject H is disposed between the X-ray source 11 and the absorption type grating unit 31 (X-ray shielding member 31b), moire generated in an image detected by the pixel 40 of the X-ray image detector 50 is modulated by the subject H. Receive. This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, a phase contrast image of the subject H can be generated by analyzing this moire.
 ここで、G1像の周期p’とモアレの周期Tに着目する。X線遮蔽部材31bから画素40の位置に投射されたG1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位する。そして、G1像のx方向に関するパターン周期p’と画素40のx方向に関する配列ピッチPとの微小な差異により画像に生じるモアレもまた、G1像の変移に応じてx方向に変移する。 Here, attention is paid to the period p 1 ′ of the G1 image and the period T of the moire. The G1 image projected from the X-ray shielding member 31b to the position of the pixel 40 is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of the X-ray by the subject H. The moire generated in the image due to a minute difference between the pattern period p 1 ′ in the x direction of the G1 image and the arrangement pitch P in the x direction of the pixels 40 also changes in the x direction in accordance with the change in the G1 image.
 そして、G1像の変位量Δxが周期p’に達すると、モアレが元の状態にもどることから、モアレの変位量ΔXは、G1像の変位量Δxを用いて、次式(8)で表される。 When the displacement amount Δx of the G1 image reaches the period p 1 ′, the moire returns to the original state. Therefore, the displacement amount ΔX of the moire is expressed by the following equation (8) using the displacement amount Δx of the G1 image. expressed.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 この変位量ΔXは、X線画像検出器50の各画素40から出力される信号の位相ズレ量ψ(被写体Hがある場合とない場合とにおける信号の位相ズレ量)に、次式(9)のように関連している。 This displacement amount ΔX is expressed by the following equation (9) based on the phase shift amount ψ of the signal output from each pixel 40 of the X-ray image detector 50 (the phase shift amount of the signal with and without the subject H). Are related.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 したがって、各画素40から出力される信号の位相ズレ量ψを求めることにより、式(4)、式(8)及び式(9)から屈折角φが求まり、上述の式(5)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。 Accordingly, by obtaining the phase shift amount ψ of the signal output from each pixel 40, the refraction angle φ is obtained from the equations (4), (8), and (9), and the above equation (5) is used. Since the differential amount of the phase shift distribution Φ (x) is obtained, by integrating this with respect to x, the phase shift distribution Φ (x) of the subject H, that is, the phase contrast image of the subject H can be generated.
 以下、上記の位相ズレ量ψの算出方法について説明する。 Hereinafter, a method for calculating the phase shift amount ψ will be described.
 図11は、X線画像検出器50の各画素40から出力される信号を模式的に示す。 FIG. 11 schematically shows a signal output from each pixel 40 of the X-ray image detector 50.
 x方向に隣り合う複数の画素40を単位とし、単位毎に、1単位を構成する複数の画素40の画素値Iを補間する。図示の例では、複数の画素40の画素値を正弦曲線により補間したものであり、正弦曲線による補間は3点あれば足りるため、互いに隣り合う3つの画素40を単位としている。 A plurality of pixels 40 adjacent in the x direction are used as a unit, and the pixel value I of the plurality of pixels 40 constituting one unit is interpolated for each unit. In the illustrated example, the pixel values of a plurality of pixels 40 are interpolated by a sine curve, and three points need only be interpolated by the sine curve.
 G1像の周期パターンのx方向に関する周期p’と画素40のx方向に関する配列ピッチPとが画像にモアレを生じさせる関係にあることから、信号曲線は、モアレの周期Tで周期的に変化する。G1像がx方向に変移すると、それに伴って、モアレもまたx方向に変移し、モアレに対応する信号曲線の位相が変化する。G1像の変位量Δxが、その周期パターンの周期p’に達すると、モアレの変位量ΔXは、そのモアレの周期Tとなり、モアレ及び信号曲線は元の状態に戻る。 Since the period p 1 ′ in the x direction of the periodic pattern of the G1 image and the arrangement pitch P in the x direction of the pixels 40 are in a relationship that causes moire in the image, the signal curve changes periodically with the period T of moire. To do. When the G1 image changes in the x direction, the moire also changes in the x direction, and the phase of the signal curve corresponding to the moire changes. When the displacement amount Δx of the G1 image reaches the period p 1 ′ of the periodic pattern, the moire displacement amount ΔX becomes the moire period T, and the moire and signal curve return to the original state.
 被写体Hが存在しない場合の信号曲線(FIG.7A)と、被写体Hが存在する場合の信号曲線(FIG.7B)との両者の波形の位相差が、その単位を構成する各画素40の信号の位相ズレ量ψに対応する。 The phase difference between the waveforms of the signal curve (FIG. 7A) when the subject H is not present and the signal curve (FIG. 7B) when the subject H is present is the signal of each pixel 40 constituting the unit. This corresponds to the phase shift amount ψ.
 屈折角φ(x)は、式(5)で示したように位相シフト分布Φ(x)の微分値に対応する値であるため、屈折角φ(x)をx軸に沿って積分することにより、位相シフト分布Φ(x)が得られる。なお、上記の説明では、画素40のy方向に関するy座標を考慮していないが、各y座標について同様の演算を行うことにより、x方向及びy方向における2次元的な位相シフト分布Φ(x,y)が得られる。 Since the refraction angle φ (x) is a value corresponding to the differential value of the phase shift distribution Φ (x) as shown in the equation (5), the refraction angle φ (x) is integrated along the x-axis. Thus, the phase shift distribution Φ (x) is obtained. In the above description, the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution Φ (x , Y).
 以上の処理を経て、演算処理部22は、位相シフト分布Φ(x,y)を画像化した位相コントラスト画像を記憶部23に記憶させる。上述した位相コントラスト画像の生成処理は、入力装置21から操作者により撮影指示がなされた後、制御装置20の制御に基づいて各部が連係動作して自動的に行われ、最終的に被写体Hの位相コントラスト画像がモニタ24に表示される。 Through the above processing, the arithmetic processing unit 22 causes the storage unit 23 to store a phase contrast image obtained by imaging the phase shift distribution Φ (x, y). The above-described phase contrast image generation processing is automatically performed by the respective units operating in conjunction with each other under the control of the control device 20 after an imaging instruction is given from the input device 21 by the operator. A phase contrast image is displayed on the monitor 24.
 図12は、X線画像検出器50を用いた、モアレの解析方法の他の例を示す。 FIG. 12 shows another example of a moire analysis method using the X-ray image detector 50.
 本例においては、フーリエ変換及び逆フーリエ変換を用いて、モアレを解析する。X線遮蔽部材31bの周期パターンの周期とX線画像検出器50の画素40の配列ピッチとの干渉によって形成されるモアレは次式(10)で表すことができ、式(10)は次式(11)に書き換えることができる。 In this example, moire is analyzed using Fourier transform and inverse Fourier transform. The moire formed by the interference between the period of the periodic pattern of the X-ray shielding member 31b and the arrangement pitch of the pixels 40 of the X-ray image detector 50 can be expressed by the following expression (10). (11) can be rewritten.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式(10)において、a(x,y)はバックグラウンドを表し、b(x,y)はモアレの基本周期に対応した空間周波数成分の振幅を表し、(f0x、0y)はモアレの基本周期を表す。また式(11)において、c(x,y)は次式(12)で表される。 In equation (10), a (x, y) represents the background, b (x, y) represents the amplitude of the spatial frequency component corresponding to the fundamental period of moire, and (f 0x, f 0y ) represents the moire. Represents the basic period. In the formula (11), c (x, y) is represented by the following formula (12).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 従って、c(x,y)又はc(x,y)の成分を取り出すことによって屈折角φ(x,y)の情報を得ることができる。ここで、式(11)はフーリエ変換によって次式(13)となる。 Therefore, information on the refraction angle φ (x, y) can be obtained by extracting the component of c (x, y) or c * (x, y). Here, Formula (11) becomes following Formula (13) by Fourier-transform.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 式(13)において、F(f,f)、A(f,f)、C(f,f)は、それぞれf(x,y)、a(x,y)、c(x,y)に対する2次元のフーリエ変換である。 In the formula (13), F (f x , f y), A (f x, f y), C (f x, f y) , respectively f (x, y), a (x, y), c It is a two-dimensional Fourier transform for (x, y).
 X線遮蔽部材31bのような1次元格子を使用した場合に、モアレの空間周波数スペクトルには、少なくとも、A(f,f)に由来するピークと、これを挟んでC(f,f)及びC(f,f)に由来するモアレの基本周期に対応した空間周波数成分のピークとの3つのピークが生じる。A(f,f)に由来するピークは原点に、また、C(f,f)及びC(f,f)に由来するピークは(±f0x,±f0y)(複合同順)の位置に生じる。 When using the one-dimensional lattice such as X-ray shielding member 31b, the spatial frequency spectrum of the moire, at least, a peak derived from A (f x, f y), the sandwich so C (f x, Three peaks are generated, including the peak of the spatial frequency component corresponding to the fundamental period of moire derived from f y ) and C * (f x , f y ). A (f x, f y) peak derived from the origin, also, C (f x, f y ) and C * (f x, f y ) peak derived from the (± f 0x, ± f 0y ) It occurs at the position of (combined same order).
 モアレの空間周波数スペクトルから屈折角φ(x、y)を得るには、モアレの基本周期に対応する空間周波数成分のピーク周波数を含む領域Rを切り出し、ピーク周波数が周波数空間の原点に重なるように切り出した領域Rを移動させ、逆フーリエ変換を行う。そして、逆フーリエ変換によって得られる複素数情報から屈折角φ(x,y)を得ることができる。 In order to obtain the refraction angle φ (x, y) from the moire spatial frequency spectrum, the region R including the peak frequency of the spatial frequency component corresponding to the fundamental period of moire is cut out so that the peak frequency overlaps the origin of the frequency space. The extracted region R is moved and inverse Fourier transform is performed. Then, the refraction angle φ (x, y) can be obtained from the complex number information obtained by the inverse Fourier transform.
 図13は、図10のX線画像検出器50の製造方法を示す。 FIG. 13 shows a manufacturing method of the X-ray image detector 50 of FIG.
 図13に示すように、X線画像検出器50の製造方法は、マスクパターンを別途用意していない点で、図8及び図9に示す製造方法と異なる。 As shown in FIG. 13, the manufacturing method of the X-ray image detector 50 is different from the manufacturing method shown in FIGS. 8 and 9 in that a mask pattern is not separately prepared.
 まず、すでに画素40が2次元状に配列されたセンサ部41と配線部47が形成された固体撮像装置を用意する。このとき、配線部47の走査線45は、画素40の画素行の間の領域の上方に設けられている。 First, a solid-state imaging device is prepared in which a sensor unit 41 and a wiring unit 47 in which pixels 40 are already arranged in a two-dimensional manner are formed. At this time, the scanning line 45 of the wiring portion 47 is provided above the region between the pixel rows of the pixels 40.
 次いで、X線低吸収材料により形成される支持基板51を、配線部47の上に形成する。そして、配線部47の上に、レジスト膜52を形成する。 Next, a support substrate 51 formed of an X-ray low absorption material is formed on the wiring portion 47. Then, a resist film 52 is formed on the wiring part 47.
 なお、半導体基板48に形成された画素40は、この時点では、外部に露出していない。 Note that the pixels 40 formed on the semiconductor substrate 48 are not exposed to the outside at this time.
 また、レジスト膜52としては、ネガ型とポジ型のいずれも用いることができる。本例では、ポジ型のレジスト膜を用いた場合について説明する。 Also, as the resist film 52, either a negative type or a positive type can be used. In this example, a case where a positive resist film is used will be described.
 そして、半導体基板48側から、レジスト膜52を、矢印の方向から(配線部47側から)、X線等で露光する。このとき、配線部47の走査線45が画素40を避けて設けられているため、各走査線45がマスクパターンを構成するマスクとして機能する。このような自己整合型(Self Alignment)の方法によりX線遮蔽部材31bを形成すべき場所を決定することが出来る。 Then, from the semiconductor substrate 48 side, the resist film 52 is exposed with X-rays or the like from the direction of the arrow (from the wiring portion 47 side). At this time, since the scanning lines 45 of the wiring portion 47 are provided avoiding the pixels 40, each scanning line 45 functions as a mask constituting a mask pattern. The location where the X-ray shielding member 31b is to be formed can be determined by such a self-alignment method.
 なお、マスクを形成するために各走査線45はX線の透過率が低いことが好ましい。このため、走査線45は厚さ方向に厚めに製造しておくことが好ましい。一方、マスクとして機能させない信号線46は、走査線45よりも薄く形成することが好ましい。また、走査線45は厚く製造されているため配線抵抗が低くすることができ、画素40からの読出配線などの、配線抵抗が低いことが望まれる配線に用いることが好適である。 In order to form a mask, each scanning line 45 preferably has a low X-ray transmittance. For this reason, it is preferable to manufacture the scanning line 45 thickly in the thickness direction. On the other hand, the signal line 46 that does not function as a mask is preferably formed thinner than the scanning line 45. Further, since the scanning line 45 is manufactured to be thick, the wiring resistance can be lowered, and it is preferable to use it for a wiring that requires a low wiring resistance, such as a readout wiring from the pixel 40.
 以下、レジスト膜52の現像工程から以降は、X線画像検出器30の製造方法と同じであるため記載を省略する。 Hereinafter, since the resist film 52 development process is the same as the manufacturing method of the X-ray image detector 30, description thereof is omitted.
 以上、X線画像検出器50の製造方法によれば、配線部47の走査線45をマスクパターンとして代用したため、マスクパターンを改めて用いることなく、基板部31aに溝を形成することができる。 As described above, according to the manufacturing method of the X-ray image detector 50, since the scanning line 45 of the wiring part 47 is used as a mask pattern, a groove can be formed in the substrate part 31a without using the mask pattern again.
 図14は、X線画像検出器30の更に他の例を示す。 FIG. 14 shows still another example of the X-ray image detector 30.
 X線画像検出器60は、有機CMOSセンサをベースに構成されている点がX線画像検出器30と異なり、有機光電変換材料を用いた光電変換素子で画素40を2次元状に配列した検出部61を含んで構成される。 The X-ray image detector 60 is different from the X-ray image detector 30 in that the X-ray image detector 60 is configured based on an organic CMOS sensor, and the detection is performed by two-dimensionally arranging the pixels 40 with a photoelectric conversion element using an organic photoelectric conversion material. The unit 61 is configured.
 複数の画素40は、上部電極膜64、下部電極膜63及び、これらの間に配置された光電変換膜62を有している。この光電変換膜62は有機光電変換膜により構成されている。 The plurality of pixels 40 include an upper electrode film 64, a lower electrode film 63, and a photoelectric conversion film 62 disposed therebetween. The photoelectric conversion film 62 is composed of an organic photoelectric conversion film.
 光電変換膜62は、例えば特開2009-32854号公報に記載された有機光電変換材料を用いている。光電変換膜62は、シンチレータ49から発せられた光を吸収し、吸収した光に応じた電荷を発生する。このように有機光電変換材料を含む光電変換膜62であれば、可視域にシャープな吸収スペクトルを持ち、シンチレータ49による発光以外の電磁波が光電変換膜62に吸収されることがほとんどなく、ノイズを効果的に抑制することができる。 For the photoelectric conversion film 62, for example, an organic photoelectric conversion material described in JP2009-32854A is used. The photoelectric conversion film 62 absorbs light emitted from the scintillator 49 and generates electric charges according to the absorbed light. In this way, the photoelectric conversion film 62 including the organic photoelectric conversion material has a sharp absorption spectrum in the visible region, and electromagnetic waves other than light emitted by the scintillator 49 are hardly absorbed by the photoelectric conversion film 62, and noise is generated. It can be effectively suppressed.
 光電変換膜62の有機光電変換材料は、シンチレータ49で発光した光を最も効率良く吸収するために、その吸収ピーク波長が、シンチレータ49の発光ピーク波長と近いほど好ましい。有機光電変換材料の吸収ピーク波長とシンチレータ49の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければシンチレータ49から発された光を十分に吸収することが可能である。具体的には、有機光電変換材料の吸収ピーク波長と、シンチレータ49の放射線に対する発光ピーク波長との差が、10nm以内であることが好ましく、5nm以内であることがより好ましい。 The organic photoelectric conversion material of the photoelectric conversion film 62 is preferably such that its absorption peak wavelength is closer to the emission peak wavelength of the scintillator 49 in order to absorb light emitted by the scintillator 49 most efficiently. Ideally, the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the scintillator 49, but if the difference between the two is small, the light emitted from the scintillator 49 can be sufficiently absorbed. . Specifically, the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength with respect to the radiation of the scintillator 49 is preferably within 10 nm, and more preferably within 5 nm.
 このような条件を満たすことが可能な有機光電変換材料としては、例えば、アリーリデン系有機化合物、キナクリドン系有機化合物、及びフタロシアニン系有機化合物が挙げられる。例えばキナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、シンチレータ49の材料としてCsI:Tlを用いれば、上記ピーク波長の差を5nm以内にすることが可能となり、光電変換膜62で発生する電荷量をほぼ最大にすることができる。 Examples of organic photoelectric conversion materials that can satisfy such conditions include arylidene organic compounds, quinacridone organic compounds, and phthalocyanine organic compounds. For example, since the absorption peak wavelength in the visible region of quinacridone is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI: Tl is used as the material of the scintillator 49, the difference between the peak wavelengths can be made within 5 nm. The amount of charge generated in the photoelectric conversion film 62 can be substantially maximized.
 なお、画素40は、上部電極膜64、下部電極膜63と、これらの間に配置された光電変換膜62を含む有機層により構成するようにしてもよい。この有機層は、より具体的には、電磁波を吸収する部位、光電変換部位、電子輸送部位、正孔輸送部位、電子ブロッキング部位、正孔ブロッキング部位、結晶化防止部位、電極、及び層間接触改良部位等の積み重ね若しくは混合により形成することができる。 Note that the pixel 40 may be configured by an organic layer including an upper electrode film 64, a lower electrode film 63, and a photoelectric conversion film 62 disposed therebetween. More specifically, this organic layer is a part that absorbs electromagnetic waves, a photoelectric conversion part, an electron transport part, a hole transport part, an electron blocking part, a hole blocking part, a crystallization preventing part, an electrode, and an interlayer contact improvement. It can be formed by stacking or mixing parts.
 光電変換膜62の厚みは、シンチレータ49からの光を吸収する点では膜厚は大きいほど好ましいが、電荷分離に寄与しない割合を考慮すると、30nm以上300nm以下が好ましく、より好ましくは、50nm以上250nm以下、特に好ましくは80nm以上200nm以下である。 The thickness of the photoelectric conversion film 62 is preferably as large as possible in terms of absorbing light from the scintillator 49, but considering the ratio that does not contribute to charge separation, it is preferably 30 nm to 300 nm, more preferably 50 nm to 250 nm. Hereinafter, it is particularly preferably 80 nm or more and 200 nm or less.
 上部電極膜64は、シンチレータ49により生じた光を光電変換膜62に入射させる必要があるため、少なくともシンチレータ49の発光波長に対して透明な導電性材料で構成することが好ましい。具体的には、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO;Transparent Conducting Oxide)を用いることが好ましい。 The upper electrode film 64 is preferably made of a conductive material that is transparent at least with respect to the emission wavelength of the scintillator 49 because light generated by the scintillator 49 needs to enter the photoelectric conversion film 62. Specifically, it is preferable to use a transparent conductive oxide (TCO) that has a high visible light transmittance and a low resistance value.
 なお、上部電極膜64としてAuなどの金属薄膜を用いることもできるが、透過率を90%以上得ようとすると抵抗値が増大し易いため、TCOの方が好ましい。例えば、ITO、IZO、AZO、FTO、SnO2、TiO2、ZnO2等を好ましく用いることができ、プロセス簡易性、低抵抗性、透明性の観点からはITOが最も好ましい。 Although a metal thin film such as Au can be used as the upper electrode film 64, the resistance value tends to increase if an attempt is made to obtain a transmittance of 90% or more, so the TCO is preferred. For example, ITO, IZO, AZO, FTO, SnO2, TiO2, and ZnO2 can be preferably used, and ITO is most preferable from the viewpoint of process simplicity, low resistance, and transparency.
 なお、上部電極膜64は、全ての画素40で共通の一枚構成としてもよいし、画素40毎に分割してあっても良い。 It should be noted that the upper electrode film 64 may have a single configuration common to all the pixels 40 or may be divided for each pixel 40.
 また、上部電極膜64の厚みは、例えば、30nm以上300nm以下とすることができる。 Also, the thickness of the upper electrode film 64 can be, for example, 30 nm or more and 300 nm or less.
 下部電極膜63は、画素40毎に分割された薄膜である。下部電極膜63は、透明又は不透明の導電性材料で構成することができ、アルミニウム、銀等を好適に用いることができる。下部電極膜63の厚みは、例えば、30nm以上300nm以下とすることができる。 The lower electrode film 63 is a thin film divided for each pixel 40. The lower electrode film 63 can be made of a transparent or opaque conductive material, and aluminum, silver, or the like can be suitably used. The thickness of the lower electrode film 63 can be, for example, 30 nm or more and 300 nm or less.
 上述した有機光電変換材料を用いた光電変換素子の構成は、例えば、特開2009-32854号公報の記載が参考となる。 For the configuration of the photoelectric conversion element using the organic photoelectric conversion material described above, for example, the description in JP-A-2009-32854 is helpful.
 以上のように、X線画像検出器60によれば、画素40に有機光電変換材料を用いた光電変換膜62を設けるようにしたため、位相コントラスト画像のノイズを低減することができる。 As described above, according to the X-ray image detector 60, since the photoelectric conversion film 62 using the organic photoelectric conversion material is provided in the pixel 40, noise in the phase contrast image can be reduced.
 図15及び図16は、図14のX線画像検出器60の製造方法を示す。 15 and 16 show a method for manufacturing the X-ray image detector 60 of FIG.
 まず、シリコン基板等の支持基板51に各画素40用の読み出し回路(図示せず)を形成した後、複数の走査線45や複数の信号線46を有する配線部47を支持基板51上に形成する。また、この配線部47の支持基板51とは反対側の面に下部電極膜63を形成する(FIG.15A)。下部電極膜63は読み出し回路と接続されている。 First, after a readout circuit (not shown) for each pixel 40 is formed on a support substrate 51 such as a silicon substrate, a wiring portion 47 having a plurality of scanning lines 45 and a plurality of signal lines 46 is formed on the support substrate 51. To do. Further, a lower electrode film 63 is formed on the surface of the wiring portion 47 opposite to the support substrate 51 (FIG. 15A). The lower electrode film 63 is connected to the readout circuit.
 次いで、X線画像検出器30の製造方法と同様に、下部電極膜63が設けられていない側にX線遮蔽部材31bを有する吸収型格子部31を形成する(FIG.15B)。このとき、X線低吸収材料により形成される支持体をシリコン基板上に形成しても良いが、シリコン基板自体を支持体としてエッチング等により溝を形成した上で金属メッキ処理等によりX線遮蔽部材31bを形成する。 Next, similarly to the manufacturing method of the X-ray image detector 30, the absorption type lattice portion 31 having the X-ray shielding member 31b is formed on the side where the lower electrode film 63 is not provided (FIG. 15B). At this time, the support formed of the low X-ray absorption material may be formed on the silicon substrate. However, the groove is formed by etching or the like using the silicon substrate itself as the support and then X-ray shielding is performed by metal plating or the like. The member 31b is formed.
 次いで、下部電極膜63上に光電変換膜62を形成する(FIG.15C)。 Next, a photoelectric conversion film 62 is formed on the lower electrode film 63 (FIG. 15C).
 次いで、光電変換膜62上に上部電極膜64を形成し、上部電極膜64上に保護膜65を形成する(FIG.16A)。 Next, the upper electrode film 64 is formed on the photoelectric conversion film 62, and the protective film 65 is formed on the upper electrode film 64 (FIG. 16A).
 そして、画素40と別途製造したシンチレータ49を光学的に接合する。シンチレータ49は、保護膜65上に直接蒸着してもよいし、保護膜65とは別に接着層を設けて、保護膜65にシンチレータ49を貼り合わせてもよい(FIG.16B)。 Then, the pixel 40 and a separately manufactured scintillator 49 are optically bonded. The scintillator 49 may be directly deposited on the protective film 65, or an adhesive layer may be provided separately from the protective film 65, and the scintillator 49 may be bonded to the protective film 65 (FIG. 16B).
 図17は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 17 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 図17に示すマンモグラフィシステム170は、被検体として乳房BのX線画像(位相コントラスト画像)を撮影する装置である。マンモグラフィシステム170は、基台(図示せず)に対して旋回可能に連結されたアーム部材81の一端に配設されたX線源収納部82と、アーム部材81の他端に配設された撮影台83と、撮影台83に対して上下方向に移動可能に構成された圧迫板84とを備える。 A mammography system 170 shown in FIG. 17 is an apparatus that captures an X-ray image (phase contrast image) of a breast B as a subject. The mammography system 170 is disposed at one end of an arm member 81 that is pivotably connected to a base (not shown), and disposed at the other end of the arm member 81. An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
 X線源収納部82にはX線源11が収納されており、撮影台83には撮影部12が収納されている。X線源11と撮影部12とは、互いに対向するように配置されている。圧迫板84は、移動機構(図示せず)により移動し、撮影台83との間で乳房Bを挟み込んで圧迫する。この圧迫状態で、上記したX線撮影が行われる。 The X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12. The X-ray source 11 and the imaging unit 12 are arranged to face each other. The compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
 なお、X線源11及び撮影部12は、前述したX線撮影システム10のものと同様の構成であるため、各構成要素には、X線撮影システム10と同一の符号を付している。その他の構成及び作用については、前述したX線撮影システム10と同様であるため説明は省略する。 Since the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
 図18は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 18 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 X線撮影システム180は、X線源101のコリメータユニット102に、マルチスリット103を配設した点が、上記第1実施形態のX線撮影システム10と異なる。その他の構成については、前述したX線撮影システム10と同一であるので説明は省略する。 The X-ray imaging system 180 is different from the X-ray imaging system 10 of the first embodiment in that the multi-slit 103 is disposed in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
 前述したX線撮影システム10では、X線源11からX線画像検出器30までの距離を、一般的な病院の撮影室で設定されるような距離(1m~2m)とした場合に、X線焦点18bの焦点サイズ(一般的に0.1mm~1mm程度)によるG1像のボケが影響し、位相コントラスト画像の画質の低下をもたらす恐れがある。そこで、X線焦点18bの直後にピンホールを設置して実効的に焦点サイズを小さくすることが考えられるが、実効的な焦点サイズを縮小するためにピンホールの開口面積を小さくすると、X線強度が低下してしまう。本X線撮影システム100においては、この課題を解決するために、X線焦点18bの直後にマルチスリット103を配置する。 In the X-ray imaging system 10 described above, when the distance from the X-ray source 11 to the X-ray image detector 30 is set to a distance (1 m to 2 m) set in a general hospital imaging room, X The blur of the G1 image due to the focal size of the line focal point 18b (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is deteriorated. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall. In the present X-ray imaging system 100, in order to solve this problem, the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
 マルチスリット103は、X線遮蔽部材31bと同様に吸収型格子であり、一方向(y方向)に延伸した複数のX線遮蔽部材が、吸収型格子部31のX線遮蔽部材31bと同一方向(x方向)に周期的に配列されている。このマルチスリット103は、X線焦点18bから放射される放射線を部分的に遮蔽することにより、x方向に関する実効的な焦点サイズを縮小して、x方向に多数の点光源(分散光源)を形成することを目的としている。 The multi slit 103 is an absorptive grating like the X-ray shielding member 31b, and a plurality of X-ray shielding members extending in one direction (y direction) are in the same direction as the X-ray shielding member 31b of the absorptive grating part 31. They are periodically arranged in the (x direction). The multi-slit 103 partially shields the radiation emitted from the X-ray focal point 18b, thereby reducing the effective focal size in the x direction and forming a large number of point light sources (dispersed light sources) in the x direction. The purpose is to do.
 このマルチスリット103の格子ピッチpは、マルチスリット103からX線遮蔽部材31bまでの距離をLとして、実質的にマルチスリット103の位置がX線焦点位置となるため、次式(14)を満たすように設定する必要がある。 Grating pitch p 3 of the multi-slit 103, the distance from the multi-slit 103 to the X-ray shielding member 31b as L 3, the position of the substantially multi-slit 103 is X-ray focal position, the following equation (14) It is necessary to set to satisfy.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 式(14)は、マルチスリット103により分散形成された各点光源から射出されたX線のX線遮蔽部材31bによる投影像(G1像)が、画素40の位置で一致する(重なり合う)ための幾何学的な条件である。 Expression (14) is for the projection image (G1 image) of the X-rays emitted from the respective point light sources dispersedly formed by the multi-slit 103 to coincide with each other at the position of the pixel 40 (overlapping). It is a geometric condition.
 このように、本X線撮影システム180では、マルチスリット103により形成される複数の点光源に基づくG1像が重ね合わせられることにより、X線強度を低下させずに、位相コントラスト画像の画質を向上させることができる。以上説明したマルチスリット103は、前述したいずれのX線撮影システムにおいても適用可能である。 As described above, in the present X-ray imaging system 180, G1 images based on a plurality of point light sources formed by the multi-slit 103 are superimposed, thereby improving the image quality of the phase contrast image without reducing the X-ray intensity. Can be made. The multi slit 103 described above can be applied to any of the X-ray imaging systems described above.
 図19は、図1の放射線撮影システムの放射線画像検出器の更に他の例を示す模式図である。 FIG. 19 is a schematic diagram showing still another example of the radiation image detector of the radiation imaging system of FIG.
 上述のX線画像検出器30のX線遮蔽部材31bでは、X線遮蔽部材31bの周期配列方向が直線状(すなわち、格子面が平面状)となるように構成されている。これに代えて、図13に示すように、X線画像検出器70は、X線遮蔽部材31bの格子面を曲面状に凹面化した吸収型格子部110を用いている。これに合わせて、X線画像検出器70では、G1像の検出面が円筒面状となっている。つまり、X線画像検出器70によるG1像の検出面は、X線焦点18bを通りy方向に延びる直線を中心軸とする円筒面状とする。 The X-ray shielding member 31b of the above-described X-ray image detector 30 is configured such that the periodic arrangement direction of the X-ray shielding member 31b is linear (that is, the lattice plane is planar). Instead, as shown in FIG. 13, the X-ray image detector 70 uses an absorption type grating unit 110 in which the grating surface of the X-ray shielding member 31 b is concaved into a curved surface. Accordingly, in the X-ray image detector 70, the G1 image detection surface is cylindrical. That is, the detection surface of the G1 image by the X-ray image detector 70 is a cylindrical surface having a straight line extending in the y direction passing through the X-ray focal point 18b as a central axis.
 吸収型格子部110は、X線透過性で形成され、かつ湾曲した基板部110aの表面に、複数のX線遮蔽部材110bが所定のピッチpで周期的に配列されている。各X線遮蔽部材110bは、X線吸収性に優れる材料で形成され、かつy方向に直線状に延伸しており、吸収型格子部110の格子面は、X線焦点18bを通りX線遮蔽部材110bの延伸方向に延びる直線を中心軸とする円筒面に沿った形状となっている。 Absorption grating 110 is formed by X-ray transparent, and the curved surface of the substrate portion 110a, a plurality of X-ray shielding member 110b is periodically arranged at a predetermined pitch p 1. Each X-ray shielding member 110b is formed of a material excellent in X-ray absorption and extends linearly in the y direction, and the lattice plane of the absorption type grating portion 110 passes through the X-ray focal point 18b and is X-ray shielded. It has a shape along a cylindrical surface with a straight line extending in the extending direction of the member 110b as the central axis.
 なお、この吸収型格子部110における、複数のX線遮蔽部材110bは、X線画像検出器70を光軸Aに垂直な面となるように展開すると、X線遮蔽部材110bが所定のピッチで略平行となるものであり、複数のX線遮蔽部材110bが所定のピッチpで平行に配列されていることに含まれるものとする。 In addition, when the X-ray image detector 70 is deployed so that the X-ray image detector 70 becomes a surface perpendicular to the optical axis A, the X-ray shielding members 110b in the absorption type grating unit 110 are arranged at a predetermined pitch. are those substantially parallel, and a plurality of X-ray shielding member 110b is included that are arranged parallel to at a predetermined pitch p 1.
 X線画像検出器70の画素ピッチは、このX線画像検出器70に形成されるG1像のパターン周期の周期との関係において、画像にモアレを生じさせるピッチとされている。 The pixel pitch of the X-ray image detector 70 is a pitch that causes moire in the image in relation to the pattern period of the G1 image formed in the X-ray image detector 70.
 X線遮蔽部材110bの格子面を円筒面状とすることにより、X線焦点18bから照射されるX線は、被写体Hが存在しない場合、すべて格子面に垂直に入射することになるため、X線遮蔽部材110bの厚みhの上限の制約が緩和され、上記式(1)を考慮する必要がなくなる。 By making the lattice plane of the X-ray shielding member 110b cylindrical, the X-rays irradiated from the X-ray focal point 18b are all incident perpendicularly to the lattice plane when the subject H is not present. is relaxed the line shielding members 110b limit constraints thickness h 1 of is not necessary to consider the above-mentioned formula (1).
 以上、上述した各X線撮影システムでは従来例と比較して以下の特徴がある。 As described above, each X-ray imaging system described above has the following features compared to the conventional example.
 まず、X線画像検出器に設けられた高精細な画素40の配列自体が、第2の回折格子を兼ねているため、第1の回折格子のG1像を直接検出できる。このため、従来例の第2の回折格子が不要となる。そのため、第2の回折格子でのX線の減衰が無くなるため、X線を有効利用でき患者のX線被曝を大幅に低減できる。 First, since the array of high-definition pixels 40 provided in the X-ray image detector also serves as the second diffraction grating, the G1 image of the first diffraction grating can be directly detected. For this reason, the second diffraction grating of the conventional example becomes unnecessary. For this reason, since the attenuation of X-rays in the second diffraction grating is eliminated, X-rays can be used effectively and the patient's X-ray exposure can be greatly reduced.
 また、第1の回折格子をセンサ部41に対して一体的に組み込んでいるため、従来例のように、第1の回折格子と画素の相対的な位置ずれなどが無く、高精度な位置調整を繰り返す必要が無い。 In addition, since the first diffraction grating is integrated with the sensor unit 41, there is no relative displacement between the first diffraction grating and the pixel as in the conventional example, and the position adjustment is highly accurate. There is no need to repeat.
 更に、第1の回折格子と同等以下のピッチを有する数μm程度の高精細なX線画像検出器を用いる場合には、フーリエ変換及び逆フーリエ変換を用いて1回の撮影で被写体の位相情報を取得する方法であっても、モアレの基本周波数成分が人体構造などの被写体構造よりも高周波であるため、基本周波数成分を含む周波数領域を分離して逆フーリエ変換により位相シフトの微分像を再構成しても被写体構造の解像度劣化は問題ないレベルに抑えることができる。よって、1回の撮影であっても人体構造の観察に十分な解像度を得ることができ、かつ縞走査法のような複数回の撮影間の被写体のブレや格子移動精度による画質劣化もない高精度な位相コントラスト画像を得ることができる。 Further, when using a high-definition X-ray image detector of about several μm having a pitch equal to or smaller than that of the first diffraction grating, the phase information of the subject can be obtained by one imaging using Fourier transform and inverse Fourier transform. Even in this method, since the fundamental frequency component of moire is higher than that of a subject structure such as a human body structure, the frequency domain including the fundamental frequency component is separated and the differential image of the phase shift is reproduced by inverse Fourier transform. Even if configured, the resolution degradation of the subject structure can be suppressed to a problem-free level. Therefore, it is possible to obtain sufficient resolution for observing the human body structure even with a single shot, and there is no image quality degradation due to subject blurring and grid movement accuracy during multiple shots, such as the fringe scanning method. An accurate phase contrast image can be obtained.
 以上、説明した、各X線撮影システムでは、放射線として一般的なX線を用いる場合について説明したが、本発明に用いられる放射線はX線に限られるものではなく、α線、γ線等のX線以外の放射線を用いることも可能である。 As described above, in each X-ray imaging system described above, the case where general X-rays are used as radiation has been described. However, the radiation used in the present invention is not limited to X-rays, such as α-rays and γ-rays. It is also possible to use radiation other than X-rays.
 なお、X線を検出する方法としてシンチレータ49の発光を光電変換する間接変換型の放射線検出器を例に挙げて説明したがこれに限られない。例えば、a-Se等の半導体層でX線光子を電荷に変換する直接変換型の放射線検出器を用いることも可能である。直接変換型はシンチレータの発光の散乱等によるボケがなく、間接変換型より解像度の高い画像を得ることが可能である。 Although an indirect conversion type radiation detector that photoelectrically converts the light emitted from the scintillator 49 has been described as an example of a method for detecting X-rays, the present invention is not limited thereto. For example, it is possible to use a direct conversion type radiation detector that converts X-ray photons into electric charges in a semiconductor layer such as a-Se. The direct conversion type has no blur due to scattering of light emitted from the scintillator, and an image with higher resolution than the indirect conversion type can be obtained.
 更に、放射線画像検出器として、CMOS(Complementary Metal Oxide Semiconductor)センサを例に挙げて説明したがこれに限られる物ではない。例えば、モアレが検出できる程度の高精細であれば、CCD(Charge Coupled Device)センサやTFT(Thin Film Transistor)センサを採用することも可能である。現状、a-Siで形成されたTFTセンサでは、CMOSセンサやCCDセンサを用いた放射線画像検出器よりも画素のサイズは大きくなりやすいものの、素子構造の変更やa-Siよりも移動度の高いp-SiやCGS(Continuous Grain Silicon、連続粒界結晶シリコン)やZnOに代表される多結晶系やIGZO(In-Ga-Zn-O)に代表されるアモルファス酸化物材料を用いたTFTセンサなどを使用することで、現状よりも高精細化することが可能である。TFTセンサを用いる場合には、TFTセンサの支持体となるガラス等の基板を、前述したようなエッチング加工により溝を形成し、溝を充填してX線遮蔽部材31bを形成すればよい。 Furthermore, as a radiation image detector, a CMOS (Complementary Metal Metal Oxide Semiconductor) sensor has been described as an example, but the present invention is not limited to this. For example, a CCD (Charge-Coupled Device) sensor or a TFT (Thin-Film-Transistor) sensor may be employed if the resolution is high enough to detect moiré. Currently, a TFT sensor made of a-Si has a higher pixel size than a radiation image detector using a CMOS sensor or a CCD sensor, but has a higher mobility than an element structure change or a-Si. TFT sensor using p-Si, CGS (Continuous Grain Silicon, continuous grain boundary crystal silicon), polycrystalline system represented by ZnO, and amorphous oxide material represented by IGZO (In-Ga-Zn-O) By using, it is possible to achieve higher definition than the current situation. When a TFT sensor is used, a groove such as a glass substrate serving as a support for the TFT sensor is formed by etching as described above, and the groove is filled to form the X-ray shielding member 31b.
 以上、説明したように、本明細書には、下記(1)~(20)の事項が開示されている。
 (1) 通過する放射線によって周期的強度分布を含む放射線像を形成する格子部と、
 上記放射線を検出して電荷を蓄積する複数の画素が行列状に配列され、上記周期的強度分布に基づく周期パターンを含む上記放射線像を取得する検出部と、を備え、上記格子部は、上記検出部に固定され、上記格子部は、上記放射線を透過させる支持体と、上記放射線を吸収する遮蔽部材とで形成され、上記支持体が、上記検出部に固定されるとともに、その検出部を上記放射線の入射側から支持し、上記遮蔽部材は、上記支持体内に形成された放射線画像検出器。
 (2) (1)に記載の放射線画像検出器であって、
 上記遮蔽部材は、通過する上記放射線を投影によって上記放射線像を形成する放射線画像検出器。
 (3) (1)又は(2)に記載の放射線画像検出器であって、
 上記遮蔽部材は、一定のピッチで互いに平行に配列された線状部材で構成され、入射する上記放射線に強度差を与える振幅型格子である放射線画像検出器。
 (4) (1)から(3)のいずれか一項に記載の放射線画像検出器であって、
 上記検出部は、上記放射線像を読み出すために行列状に設けられた複数の走査線及び複数の信号線を含む配線部を有し、
 その配線部は、上記遮蔽部材が形成された上記支持体と上記複数の画素の間に設けられた放射線画像検出器。
 (5) (4)に記載の放射線画像検出器であって、
 上記検出部は、上記複数の画素に対して上記配線部とは反対側に、上記放射線の露光によって上記複数の画素の分光感度に適合する波長の光を発する蛍光体を有する放射線画像検出器。
 (6) (4)又は(5)に記載の放射線画像検出器であって、
 上記支持体は、放射線低吸収材料で形成され、
 上記遮蔽部材は、上記支持体内に一定のピッチで形成された複数の線状の溝に充填した放射線高吸収材料で形成される放射線画像検出器。
 (7) (5)又は(6)に記載の放射線画像検出器であって、
 上記配線部を構成する上記複数の走査線及び複数の信号線は、上記検出部の厚さ方向において、上記複数の画素と重ならない放射線画像検出器。
 (8) (7)に記載の放射線画像検出器であって、
 上記遮蔽部材は、上記検出部の厚さ方向において、上記複数の走査線又は上記複数の信号線のいずれか一方の少なくとも一部と周期的に重なる放射線画像検出器。
 (9) (8)に記載の放射線画像検出器であって、
 上記遮蔽部材は、上記複数の信号線の少なくとも一部と周期的に重なる放射線画像検出器。
 (10) (8)又は(9)に記載の放射線画像検出器であって、
 上記遮蔽部材と重なる走査線又は信号線は、上記検出部の厚さ方向に直交する幅が、対応する遮蔽部材の幅より小さい放射線画像検出器。
 (11) (8)から(10)のいずれか一項に記載の放射線画像検出器であって、
 上記遮蔽部材が重なる走査線又は信号線のいずれか一方は、他方よりも厚く形成された放射線画像検出器。
 (12) (1)から(11)のいずれか一項に記載の放射線画像検出器であって、
 上記複数の画素は、上記周期的強度分布を解像可能なピッチに配列されており、上記周期パターンは上記周期的強度分布に対応する放射線画像検出器。
 (13) (1)から(11)のいずれか一項に記載の放射線画像検出器であって、
 上記複数の画素は、上記周期的強度分布の周期との関係でモアレを形成するピッチに配列されており、上記周期パターンはそのモアレに対応し、上記周期的強度分布の周期の1/2倍よりも小さい放射線画像検出器。
 (14) 上記放射線画像検出器がCMOS(Complementary Metal Oxide Semiconductor)センサを備える(1)から(13)のいずれか一項に記載の放射線画像検出器。
 (15) 上記複数の画素が有機光電変換膜を有する(14)に記載の放射線画像検出器。
 (16) (6)に記載の放射線画像検出器の製造方法であって、
 上記検出部上に、放射線低吸収材料で形成された上記支持体となる支持基板を形成し、
 一定のピッチで複数の線状の溝を上記支持基板に形成し、
 上記複数の線状の溝に放射線高吸収材料を充填することによって、上記遮蔽部材を形成する放射線画像検出器の製造方法。
 (17) (16)に記載の放射線画像検出器の製造方法であって、
 上記支持基板上にレジスト膜を形成し、
 上記検出部の厚さ方向において、上記遮蔽部材が重なる走査線又は信号線をマスクパターンとして、上記検出部側から上記レジスト膜を露光することで、上記レジスト膜の上記マスクパターンにより遮光された部分以外の部分を硬化し、耐エッチング性を付与し、上記支持基板のうち、上記マスクパターンに対応する部分をエッチングにより除去することで、上記支持基板に上記複数の線状の溝を形成する放射線画像検出器の製造方法。
 (18) (1)から(15)のいずれか一項に記載の放射線画像検出器と、
 上記遮蔽部材に入射する放射線の照射野に配置される被写体に起因して、上記放射線画像検出器によって取得される上記放射線像に生じる変調に基づいて、上記被写体の位相コントラスト画像を生成する演算処理部と、
 を備える放射線撮影システム。
 (19) (18)に記載の放射線撮影システムであって、
 上記演算処理部は、上記複数の画素のうち、互いに隣り合う3つ以上の画素を一組として、各組を構成する複数の画素の画素値を補間してなる強度変調信号の位相を演算し、上記被写体があるときと上記被写体がないときとのその強度変調信号の位相ズレ量に基づいて、上記被写体の位相コントラスト画像を生成する放射線撮影システム。
 (20) (18)に記載の放射線撮影システムであって、
 上記演算処理部は、上記放射線画像検出器によって取得される上記放射線像に対してフーリエ変換を行ってその放射線像の空間周波数スペクトルを取得し、上記空間周波数スペクトルのうちのモアレの基本周波数成分を含む空間周波数領域を上記空間周波数スペクトルから分離し、分離された上記空間周波数領域に対して逆フーリエ変換を行って部分位相コントラスト画像を生成する放射線撮影システム。
As described above, the following items (1) to (20) are disclosed in this specification.
(1) a lattice portion that forms a radiation image including a periodic intensity distribution by passing radiation;
A plurality of pixels for detecting the radiation and accumulating charges, arranged in a matrix and acquiring the radiation image including a periodic pattern based on the periodic intensity distribution, and the lattice unit includes the The lattice unit is fixed to the detection unit, and the lattice unit is formed of a support that transmits the radiation and a shielding member that absorbs the radiation. The support is fixed to the detection unit, and the detection unit is The radiation image detector is supported from the radiation incident side, and the shielding member is formed in the support body.
(2) The radiation image detector according to (1),
The shielding member is a radiation image detector that forms the radiation image by projecting the passing radiation.
(3) The radiation image detector according to (1) or (2),
The shielding member is a radiographic image detector which is an amplitude type grating which is composed of linear members arranged in parallel with each other at a constant pitch and gives an intensity difference to the incident radiation.
(4) The radiation image detector according to any one of (1) to (3),
The detection unit has a wiring unit including a plurality of scanning lines and a plurality of signal lines provided in a matrix for reading the radiation image,
The wiring portion is a radiation image detector provided between the support on which the shielding member is formed and the plurality of pixels.
(5) The radiation image detector according to (4),
The radiographic image detector, wherein the detection unit includes a phosphor that emits light having a wavelength suitable for spectral sensitivity of the plurality of pixels by exposure of the radiation on a side opposite to the wiring unit with respect to the plurality of pixels.
(6) The radiation image detector according to (4) or (5),
The support is formed of a radiation-absorbing material,
The said shielding member is a radiographic image detector formed with the radiation high absorption material with which the several linear groove | channel formed in the said support body with a fixed pitch was filled.
(7) The radiation image detector according to (5) or (6),
The radiation image detector in which the plurality of scanning lines and the plurality of signal lines constituting the wiring unit do not overlap with the plurality of pixels in the thickness direction of the detection unit.
(8) The radiation image detector according to (7),
The shielding member is a radiation image detector that periodically overlaps at least a part of one of the plurality of scanning lines or the plurality of signal lines in the thickness direction of the detection unit.
(9) The radiation image detector according to (8),
The shielding member is a radiation image detector that periodically overlaps at least a part of the plurality of signal lines.
(10) The radiation image detector according to (8) or (9),
The scanning line or signal line that overlaps the shielding member has a width that is perpendicular to the thickness direction of the detection unit and is smaller than the width of the corresponding shielding member.
(11) The radiation image detector according to any one of (8) to (10),
One of the scanning line and the signal line on which the shielding member overlaps is a radiation image detector formed thicker than the other.
(12) The radiation image detector according to any one of (1) to (11),
The plurality of pixels are arranged at a pitch capable of resolving the periodic intensity distribution, and the periodic pattern is a radiation image detector corresponding to the periodic intensity distribution.
(13) The radiological image detector according to any one of (1) to (11),
The plurality of pixels are arranged at a pitch that forms moire in relation to the period of the periodic intensity distribution, and the periodic pattern corresponds to the moire and is 1/2 times the period of the periodic intensity distribution. Smaller radiation image detector.
(14) The radiographic image detector according to any one of (1) to (13), wherein the radiographic image detector includes a CMOS (Complementary Metal Oxide Semiconductor) sensor.
(15) The radiation image detector according to (14), wherein the plurality of pixels include an organic photoelectric conversion film.
(16) A method for manufacturing a radiation image detector according to (6),
On the detection unit, a support substrate to be the support formed of a low radiation absorbing material is formed,
Forming a plurality of linear grooves on the support substrate at a constant pitch;
A method for manufacturing a radiation image detector, wherein the shielding member is formed by filling the plurality of linear grooves with a radiation-absorbing material.
(17) A method for manufacturing the radiation image detector according to (16),
Forming a resist film on the support substrate;
In the thickness direction of the detection portion, a portion of the resist film that is shielded from light by the mask pattern by exposing the resist film from the detection portion side using a scanning line or a signal line on which the shielding member overlaps as a mask pattern Radiation that forms the plurality of linear grooves on the support substrate by curing other portions, imparting etching resistance, and removing the portion of the support substrate corresponding to the mask pattern by etching Manufacturing method of image detector.
(18) The radiation image detector according to any one of (1) to (15),
Arithmetic processing for generating a phase contrast image of the subject based on the modulation generated in the radiation image acquired by the radiation image detector due to the subject arranged in the radiation field incident on the shielding member And
A radiography system comprising:
(19) The radiographic system according to (18),
The arithmetic processing unit calculates a phase of an intensity modulation signal obtained by interpolating pixel values of a plurality of pixels constituting each set, with three or more adjacent pixels among the plurality of pixels as a set. A radiation imaging system that generates a phase contrast image of the subject based on the phase shift amount of the intensity modulation signal when the subject is present and when the subject is absent.
(20) The radiographic system according to (18),
The arithmetic processing unit performs a Fourier transform on the radiation image acquired by the radiation image detector to acquire a spatial frequency spectrum of the radiation image, and obtains a fundamental frequency component of moire in the spatial frequency spectrum. A radiography system that separates a spatial frequency region including the spatial frequency spectrum from the spatial frequency spectrum and generates a partial phase contrast image by performing inverse Fourier transform on the separated spatial frequency region.
 上記放射線画像検出器及び放射線撮影システムは、医療診断における被写体の検査や、非破壊検査における対象物の検査等に用いると有用である。 The radiation image detector and the radiation imaging system are useful when used for inspection of a subject in medical diagnosis, inspection of an object in nondestructive inspection, and the like.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2011年09月30日出願の日本特許出願(特願2011-218506)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on September 30, 2011 (Japanese Patent Application No. 2011-218506), the contents of which are incorporated herein by reference.
10  X線撮影システム
11  X線源
12  撮影部
13  コンソール
30  X線画像検出器
31  吸収型格子
31a 基板部
31b X線遮蔽部材
40  画素
41  センサ部
DESCRIPTION OF SYMBOLS 10 X-ray imaging system 11 X-ray source 12 Imaging part 13 Console 30 X-ray image detector 31 Absorption-type grating 31a Substrate part 31b X-ray shielding member 40 Pixel 41 Sensor part

Claims (20)

  1.  通過する放射線によって周期的強度分布を含む放射線像を形成する格子部と、
     前記放射線を検出して電荷を蓄積する複数の画素が行列状に配列され、前記周期的強度分布に基づく周期パターンを含む前記放射線像を取得する検出部と、を備え、
     前記格子部は、前記検出部に固定され、
     前記格子部は、前記放射線を透過させる支持体と、前記放射線を吸収する遮蔽部材とで形成され、
     前記支持体が、前記検出部に固定されるとともに、該検出部を前記放射線の入射側から支持し、
     前記遮蔽部材は、前記支持体内に形成された放射線画像検出器。
    A grating portion that forms a radiation image including a periodic intensity distribution by passing radiation;
    A plurality of pixels for detecting the radiation and accumulating charges, arranged in a matrix, and including a detection unit that acquires the radiation image including a periodic pattern based on the periodic intensity distribution, and
    The lattice unit is fixed to the detection unit,
    The lattice portion is formed of a support that transmits the radiation and a shielding member that absorbs the radiation,
    The support is fixed to the detection unit, and the detection unit is supported from the incident side of the radiation,
    The shielding member is a radiation image detector formed in the support.
  2.  請求項1に記載の放射線画像検出器であって、
     前記遮蔽部材は、通過する前記放射線を投影によって前記放射線像を形成する放射線画像検出器。
    The radiological image detector according to claim 1,
    The shielding member is a radiation image detector that forms the radiation image by projecting the radiation passing therethrough.
  3.  請求項1又は請求項2に記載の放射線画像検出器であって、
     前記遮蔽部材は、一定のピッチで互いに平行に配列された線状部材で構成され、入射する前記放射線に強度差を与える振幅型格子である放射線画像検出器。
    The radiological image detector according to claim 1 or 2,
    The shielding member is a radiographic image detector which is composed of linear members arranged in parallel to each other at a constant pitch and is an amplitude type grating which gives an intensity difference to the incident radiation.
  4.  請求項1から請求項3のいずれか一項に記載の放射線画像検出器であって、
     前記検出部は、前記放射線像を読み出すために行列状に設けられた複数の走査線及び複数の信号線を含む配線部を有し、
     該配線部は、前記遮蔽部材が形成された前記支持体と前記複数の画素の間に設けられた放射線画像検出器。
    The radiation image detector according to any one of claims 1 to 3,
    The detection unit includes a wiring unit including a plurality of scanning lines and a plurality of signal lines provided in a matrix for reading the radiation image,
    The wiring portion is a radiation image detector provided between the support on which the shielding member is formed and the plurality of pixels.
  5.  請求項4に記載の放射線画像検出器であって、
     前記検出部は、前記複数の画素に対して前記配線部とは反対側に、前記放射線の露光によって前記複数の画素の分光感度に適合する波長の光を発する蛍光体を有する放射線画像検出器。
    The radiological image detector according to claim 4,
    The detection unit is a radiological image detector including a phosphor that emits light having a wavelength suitable for a spectral sensitivity of the plurality of pixels by exposure of the radiation on a side opposite to the wiring unit with respect to the plurality of pixels.
  6.  請求項4又は請求項5に記載の放射線画像検出器であって、
     前記支持体は、放射線低吸収材料で形成され、
     前記遮蔽部材は、前記支持体内に一定のピッチで形成された複数の線状の溝に充填した放射線高吸収材料で形成される放射線画像検出器。
    The radiological image detector according to claim 4 or 5, wherein
    The support is formed of a radiation-absorbing material;
    The said shielding member is a radiographic image detector formed with the radiation high absorption material with which the several linear groove | channel formed in the said support body with a fixed pitch was filled.
  7.  請求項5又は請求項6に記載の放射線画像検出器であって、
     前記配線部を構成する前記複数の走査線及び複数の信号線は、前記検出部の厚さ方向において、前記複数の画素と重ならない放射線画像検出器。
    The radiological image detector according to claim 5 or 6,
    The plurality of scanning lines and the plurality of signal lines constituting the wiring unit are radiation image detectors that do not overlap the plurality of pixels in the thickness direction of the detection unit.
  8.  請求項7に記載の放射線画像検出器であって、
     前記遮蔽部材は、前記検出部の厚さ方向において、前記複数の走査線又は前記複数の信号線のいずれか一方の少なくとも一部と周期的に重なる放射線画像検出器。
    The radiological image detector according to claim 7,
    The shielding member is a radiological image detector that periodically overlaps at least a part of either one of the plurality of scanning lines or the plurality of signal lines in the thickness direction of the detection unit.
  9.  請求項8に記載の放射線画像検出器であって、
     前記遮蔽部材は、前記複数の信号線の少なくとも一部と周期的に重なる放射線画像検出器。
    The radiation image detector according to claim 8, comprising:
    The shielding member is a radiation image detector that periodically overlaps at least a part of the plurality of signal lines.
  10.  請求項8又は請求項9に記載の放射線画像検出器であって、
     前記遮蔽部材と重なる走査線又は信号線は、前記検出部の厚さ方向に直交する幅が、対応する遮蔽部材の幅より小さい放射線画像検出器。
    The radiological image detector according to claim 8 or 9, wherein
    The scanning line or signal line that overlaps the shielding member is a radiation image detector having a width that is perpendicular to the thickness direction of the detection unit and that is smaller than the width of the corresponding shielding member.
  11.  請求項8から請求項10のいずれか一項に記載の放射線画像検出器であって、
     前記遮蔽部材が重なる走査線又は信号線のいずれか一方は、他方よりも厚く形成された放射線画像検出器。
    The radiographic image detector according to any one of claims 8 to 10,
    One of the scanning line and the signal line on which the shielding member overlaps is a radiation image detector formed thicker than the other.
  12.  請求項1から請求項11のいずれか一項に記載の放射線画像検出器であって、
     前記複数の画素は、前記周期的強度分布を解像可能なピッチに配列されており、前記周期パターンは前記周期的強度分布に対応する放射線画像検出器。
    The radiation image detector according to any one of claims 1 to 11,
    The plurality of pixels are arranged at a pitch capable of resolving the periodic intensity distribution, and the periodic pattern is a radiation image detector corresponding to the periodic intensity distribution.
  13.  請求項1から請求項11のいずれか一項に記載の放射線画像検出器であって、
     前記複数の画素は、前記周期的強度分布の周期との関係でモアレを形成するピッチに配列されており、前記周期パターンは該モアレに対応し、前記周期的強度分布の周期の1/2倍よりも小さい放射線画像検出器。
    The radiation image detector according to any one of claims 1 to 11,
    The plurality of pixels are arranged at a pitch that forms moire in relation to the period of the periodic intensity distribution, and the periodic pattern corresponds to the moire and is 1/2 times the period of the periodic intensity distribution. Smaller radiation image detector.
  14.  前記放射線画像検出器がCMOS(Complementary Metal Oxide Semiconductor)センサを備える請求項1から請求項13のいずれか一項に記載の放射線画像検出器。 The radiological image detector according to any one of claims 1 to 13, wherein the radiological image detector includes a CMOS (Complementary Metal Oxide Semiconductor) sensor.
  15.  前記複数の画素が有機光電変換膜を有する請求項14に記載の放射線画像検出器。 The radiation image detector according to claim 14, wherein the plurality of pixels have an organic photoelectric conversion film.
  16.  請求項6に記載の放射線画像検出器の製造方法であって、
     前記検出部上に、放射線低吸収材料で形成された前記支持体となる支持基板を形成し、
     一定のピッチで複数の線状の溝を前記支持基板に形成し、
     前記複数の線状の溝に放射線高吸収材料を充填することによって、前記遮蔽部材を形成する放射線画像検出器の製造方法。
    It is a manufacturing method of the radiographic image detector according to claim 6,
    On the detection unit, a support substrate to be the support formed of a low radiation absorbing material is formed,
    Forming a plurality of linear grooves on the support substrate at a constant pitch;
    A method of manufacturing a radiation image detector, wherein the shielding member is formed by filling the plurality of linear grooves with a radiation-absorbing material.
  17.  請求項16に記載の放射線画像検出器の製造方法であって、
     前記支持基板上にレジスト膜を形成し、
     前記検出部の厚さ方向において、前記遮蔽部材が重なる走査線又は信号線をマスクパターンとして、前記検出部側から前記レジスト膜を露光することで、前記レジスト膜の前記マスクパターンにより遮光された部分以外の部分を硬化し、耐エッチング性を付与し、
     前記支持基板のうち、前記マスクパターンに対応する部分をエッチングにより除去することで、前記支持基板に前記複数の線状の溝を形成する放射線画像検出器の製造方法。
    It is a manufacturing method of the radiographic image detector according to claim 16,
    Forming a resist film on the support substrate;
    In the thickness direction of the detection unit, a portion shielded from light by the mask pattern of the resist film by exposing the resist film from the detection unit side using a scanning line or a signal line on which the shielding member overlaps as a mask pattern Curing other parts, giving etching resistance,
    The manufacturing method of the radiographic image detector which forms the several linear groove | channel in the said support substrate by removing the part corresponding to the said mask pattern among the said support substrates by an etching.
  18.  請求項1から請求項15のいずれか一項に記載の放射線画像検出器と、
     前記遮蔽部材に入射する放射線の照射野に配置される被写体に起因して、前記放射線画像検出器によって取得される前記放射線像に生じる変調に基づいて、前記被写体の位相コントラスト画像を生成する演算処理部と、
     を備える放射線撮影システム。
    The radiation image detector according to any one of claims 1 to 15,
    Arithmetic processing for generating a phase contrast image of the subject based on the modulation generated in the radiation image acquired by the radiation image detector due to the subject arranged in the radiation field incident on the shielding member And
    A radiography system comprising:
  19.  請求項18に記載の放射線撮影システムであって、
     前記演算処理部は、前記複数の画素のうち、互いに隣り合う3つ以上の画素を一組として、各組を構成する複数の画素の画素値を補間してなる強度変調信号の位相を演算し、前記被写体があるときと前記被写体がないときとの該強度変調信号の位相ズレ量に基づいて、前記被写体の位相コントラスト画像を生成する放射線撮影システム。
    The radiation imaging system according to claim 18,
    The arithmetic processing unit calculates a phase of an intensity modulation signal formed by interpolating pixel values of a plurality of pixels constituting each set, with three or more pixels adjacent to each other as a set among the plurality of pixels. A radiation imaging system for generating a phase contrast image of the subject based on a phase shift amount of the intensity modulation signal when the subject is present and when the subject is absent.
  20.  請求項18に記載の放射線撮影システムであって、
     前記演算処理部は、前記放射線画像検出器によって取得される前記放射線像に対してフーリエ変換を行って該放射線像の空間周波数スペクトルを取得し、前記空間周波数スペクトルのうちのモアレの基本周波数成分を含む空間周波数領域を前記空間周波数スペクトルから分離し、分離された前記空間周波数領域に対して逆フーリエ変換を行って部分位相コントラスト画像を生成する放射線撮影システム。
    The radiation imaging system according to claim 18,
    The arithmetic processing unit performs a Fourier transform on the radiation image acquired by the radiation image detector to acquire a spatial frequency spectrum of the radiation image, and obtains a fundamental frequency component of moire in the spatial frequency spectrum. A radiation imaging system that separates a spatial frequency region including the spatial frequency spectrum from the spatial frequency spectrum and generates a partial phase contrast image by performing an inverse Fourier transform on the separated spatial frequency region.
PCT/JP2012/071074 2011-09-30 2012-08-21 Radiographic image detector, method of manufacturing same, and radiography system employing radiographic image detector WO2013047011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-218506 2011-09-30
JP2011218506A JP2014238265A (en) 2011-09-30 2011-09-30 Radiation image detector and manufacturing method of the same, and radiation photographing system using radiation image detector

Publications (1)

Publication Number Publication Date
WO2013047011A1 true WO2013047011A1 (en) 2013-04-04

Family

ID=47995061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071074 WO2013047011A1 (en) 2011-09-30 2012-08-21 Radiographic image detector, method of manufacturing same, and radiography system employing radiographic image detector

Country Status (2)

Country Link
JP (1) JP2014238265A (en)
WO (1) WO2013047011A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300324B2 (en) * 2015-03-26 2018-03-28 株式会社大一商会 Game machine
JPWO2017145578A1 (en) * 2016-02-22 2018-12-20 ソニー株式会社 Imaging device, imaging display system, and display device
JP6692237B2 (en) * 2016-07-19 2020-05-13 株式会社日立製作所 Radiation detector

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285541A (en) * 1990-11-22 1992-10-09 Planmed Oy Method and device for radiographing
US5812629A (en) * 1997-04-30 1998-09-22 Clauser; John F. Ultrahigh resolution interferometric x-ray imaging
JP2002071819A (en) * 2000-08-31 2002-03-12 Toshiba Corp Detector unit, radio-computed tomograph and method of manufacturing for radio-computed tomograph
WO2004058070A1 (en) * 2002-12-26 2004-07-15 Atsushi Momose X-ray imaging system and imaging method
JP2006259264A (en) * 2005-03-17 2006-09-28 New Industry Research Organization Manufacturing method for x-ray phase type diffraction grating and amplitude type diffraction grating used for x-ray talbot interferometer
JP2007203063A (en) * 2006-02-01 2007-08-16 Siemens Ag Focus-detector system for x-ray apparatus
JP2007203061A (en) * 2006-02-01 2007-08-16 Siemens Ag Focus-detector system for x-ray apparatus
WO2008096691A1 (en) * 2007-02-07 2008-08-14 Konica Minolta Medical & Graphic, Inc. X-ray imaging element and method, and x-ray imaging device
JP2009133823A (en) * 2007-10-31 2009-06-18 Fujifilm Corp Radiation image detector and phase contrast radiation imaging apparatus
WO2010050483A1 (en) * 2008-10-29 2010-05-06 キヤノン株式会社 X-ray imaging device and x-ray imaging method
JP2010253157A (en) * 2009-04-28 2010-11-11 Konica Minolta Medical & Graphic Inc X-ray interferometer imaging apparatus and x-ray interferometer imaging method
JP2011095248A (en) * 2009-09-30 2011-05-12 Fujifilm Corp Portable radiographic image capturing device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285541A (en) * 1990-11-22 1992-10-09 Planmed Oy Method and device for radiographing
US5812629A (en) * 1997-04-30 1998-09-22 Clauser; John F. Ultrahigh resolution interferometric x-ray imaging
JP2002071819A (en) * 2000-08-31 2002-03-12 Toshiba Corp Detector unit, radio-computed tomograph and method of manufacturing for radio-computed tomograph
WO2004058070A1 (en) * 2002-12-26 2004-07-15 Atsushi Momose X-ray imaging system and imaging method
JP2006259264A (en) * 2005-03-17 2006-09-28 New Industry Research Organization Manufacturing method for x-ray phase type diffraction grating and amplitude type diffraction grating used for x-ray talbot interferometer
JP2007203063A (en) * 2006-02-01 2007-08-16 Siemens Ag Focus-detector system for x-ray apparatus
JP2007203061A (en) * 2006-02-01 2007-08-16 Siemens Ag Focus-detector system for x-ray apparatus
WO2008096691A1 (en) * 2007-02-07 2008-08-14 Konica Minolta Medical & Graphic, Inc. X-ray imaging element and method, and x-ray imaging device
JP2009133823A (en) * 2007-10-31 2009-06-18 Fujifilm Corp Radiation image detector and phase contrast radiation imaging apparatus
WO2010050483A1 (en) * 2008-10-29 2010-05-06 キヤノン株式会社 X-ray imaging device and x-ray imaging method
JP2010253157A (en) * 2009-04-28 2010-11-11 Konica Minolta Medical & Graphic Inc X-ray interferometer imaging apparatus and x-ray interferometer imaging method
JP2011095248A (en) * 2009-09-30 2011-05-12 Fujifilm Corp Portable radiographic image capturing device

Also Published As

Publication number Publication date
JP2014238265A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
JP5331940B2 (en) Radiation imaging system and radiation image generation method
JP5475925B2 (en) Radiation imaging apparatus and image processing method
US20120163554A1 (en) Radiological image detection apparatus, radiographic apparatus and radiographic system
JP2011218147A (en) Radiographic system
WO2012005179A1 (en) Radiographic imaging system and image processing method of same
JP2012061300A (en) Radiographic system and image processing method for the same
JP5783987B2 (en) Radiography equipment
JP2012200567A (en) Radiographic system and radiographic method
JP2012090945A (en) Radiation detection device, radiographic apparatus, and radiographic system
JP2012095865A (en) Radiographic apparatus and radiographic system
WO2012169426A1 (en) Radiography system
JP2011206490A (en) Radiographic system and radiographic method
WO2013047011A1 (en) Radiographic image detector, method of manufacturing same, and radiography system employing radiographic image detector
WO2012169427A1 (en) Radiography system
JP2012125423A (en) Radiation image detection apparatus, radiographic imaging apparatus, and radiographic imaging system
WO2012070661A1 (en) Radiographic image detection apparatus, radiography apparatus, and radiography system
JP2012110395A (en) Radiographic system
WO2012056992A1 (en) Radiograph detection device, radiography device, radiography system
WO2012070662A1 (en) Radiographic image detection apparatus, radiography apparatus, and radiography system
JP2012120650A (en) Radiographic system and method for generating radiation phase contrast image
WO2012147749A1 (en) Radiography system and radiography method
WO2012057046A1 (en) Radiography device and radiography system
JP2012228369A (en) Radiographic system, and radiographic method
JP2011206489A (en) Radiographic system and radiographic method
JP2012228361A (en) Radiographic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP