WO2012169427A1 - Radiography system - Google Patents

Radiography system Download PDF

Info

Publication number
WO2012169427A1
WO2012169427A1 PCT/JP2012/064128 JP2012064128W WO2012169427A1 WO 2012169427 A1 WO2012169427 A1 WO 2012169427A1 JP 2012064128 W JP2012064128 W JP 2012064128W WO 2012169427 A1 WO2012169427 A1 WO 2012169427A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ray
radiation
grating
detector
Prior art date
Application number
PCT/JP2012/064128
Other languages
French (fr)
Japanese (ja)
Inventor
温之 橋本
村越 大
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012169427A1 publication Critical patent/WO2012169427A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Definitions

  • the present invention relates to a radiation imaging system.
  • X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance.
  • X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
  • a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured.
  • each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ),
  • the light is incident on the X-ray image detector.
  • an X-ray transmission image of the subject is detected and imaged by the X-ray image detector.
  • X-ray image detectors include a combination of an X-ray intensifying screen and film, a stimulable phosphor (accumulating phosphor), and a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit. Widely used.
  • the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
  • phase contrast image an image based on the phase change of the X-ray by the subject instead of the change of the X-ray intensity by the subject. It is actively done. In general, it is known that when X-rays are incident on an object, the interaction is higher in phase than in X-ray intensity. For this reason, in the X-ray phase imaging using the phase difference, a high-contrast image can be obtained even for a weakly absorbing object having a low X-ray absorption capability.
  • a first diffraction grating (phase type grating or absorption type grating) is arranged behind the subject, and a specific distance (Talbot interference determined by the grating pitch of the first diffraction grating and the X-ray wavelength is set.
  • a second diffraction grating (absorption type grating) is arranged downstream by a distance), and an X-ray image detector is arranged behind the second diffraction grating.
  • the Talbot interference distance is a distance at which the X-rays that have passed through the first diffraction grating form a self-image that exhibits a periodic intensity distribution due to the Talbot interference effect. Are modulated by the interaction (phase change) between the subject and the X-rays arranged between the diffraction gratings.
  • the moire generated by the superposition of the self-image of the first diffraction grating and the second diffraction grating is detected, and the periodic pattern appearing in the image corresponding to the moire is modulated by the subject.
  • the phase information of the object is acquired.
  • a fringe scanning method is known as a method for analyzing a periodic pattern appearing in an image.
  • the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating.
  • X-rays refracted by the subject from a change in signal value for each corresponding pixel between a plurality of image data obtained by performing a plurality of times of imaging while translating in a vertical direction with a scanning pitch obtained by equally dividing the lattice pitch.
  • Angle distribution (differential image of phase shift) can be obtained, and a phase contrast image of the subject can be obtained based on this angle distribution.
  • the movement of the lattice between a plurality of times of photographing and the moving mechanism that requires high accuracy are unnecessary, so that the photographing workflow can be improved and the apparatus can be simplified.
  • the first and second diffraction gratings need to be correspondingly large in order to expand the field of view.
  • the first and second diffraction gratings typically need to be configured with a high aspect ratio with a grating pitch on the order of ⁇ m, so that it is very difficult to manufacture a large size and high accuracy. is there. Therefore, an X-ray imaging system in which each of the first and second diffraction gratings and the X-ray image detector is divided into a plurality of grating modules or a plurality of detector modules has been proposed (See Patent Document 3).
  • the self-image of the first diffraction grating is detected using a detector having a pixel pitch smaller than the period of the periodic intensity distribution of the self-image of the first diffraction grating without using the second diffraction grating.
  • An X-ray imaging system has also been proposed in which phase information of a subject is acquired by analyzing the modulation of the periodic intensity distribution of the self-image (see Patent Document 4).
  • the X-ray imaging system described in Patent Document 4 detects a self-image of the first diffraction grating using a detector having a pixel pitch smaller than the period of the periodic intensity distribution of the self-image of the first diffraction grating.
  • the phase information is obtained by analyzing this, and the spatial resolution is excellent because the pixel pitch is small. Further, since the second diffraction grating is not interposed, the accuracy of the phase information can be improved.
  • a detector with a small pixel pitch is limited to a relatively small size, and the field of view is limited. Further, when the size of the detector is increased, typically, the S / N tends to decrease, and there is a concern that the accuracy of the phase information may decrease due to the decrease in S / N.
  • the detector is divided into a plurality of detector modules as in the X-ray imaging system described in Patent Document 3, it is possible to achieve a large pixel pitch and excellent S / N. A size detector can be obtained.
  • phase information of the subject cannot be obtained accurately.
  • This is not limited to a case where a plurality of detector modules are connected and configured, and is also applicable to a case where a plurality of grating modules are connected to form the first diffraction grating and the second diffraction grating.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to improve the accuracy of phase information in radiation phase imaging that acquires phase information of a subject using Fourier transform and inverse Fourier transform.
  • An imaging unit that acquires a radiation image including a periodic pattern modulated by a subject arranged in a radiation field, and an arithmetic processing unit that generates a phase contrast image of the subject based on the periodic pattern included in the radiation image
  • the imaging unit includes, by radiation passing therethrough, one or more gratings that form a radiation image including a periodic intensity distribution that is a basis of the periodic pattern included in the radiation image, and the radiation image
  • a radiation image detector for detecting, and at least one of the lattice and the elements of the radiation image detector is divided into a plurality of modules, and the arithmetic processing unit includes: The radiation image corresponding to at least a part of a boundary between modules in at least one of the elements divided into modules.
  • Partial phase contrast image generation that separates a spatial frequency region including the fundamental frequency component of the included periodic pattern from the spatial frequency spectrum and generates a partial phase contrast image by performing an inverse Fourier transform on the separated spatial frequency region
  • a combination processing for combining the plurality of partial phase contrast images generated by the partial phase contrast image generation processing to generate a phase contrast image of the subject.
  • the present invention by dividing the grating and the radiographic image detector into a plurality of modules, it is possible to obtain a large-size grating without reducing the accuracy thereof. Can be obtained in a large size without reducing its S / N, and the field of view can be easily enlarged.
  • the radiographic image acquired by the radiographic image detector is divided into partial X-ray images corresponding to the boundaries between the modules in the module-divided elements, and the periodic pattern is analyzed for each partial X-ray image to analyze the subject.
  • the phase shift distribution By acquiring the phase shift distribution, non-uniformity in the period and orientation of the periodic pattern between the partial X-ray images caused by the relative positional deviation of each of the modules of this element relative to the other elements is obtained.
  • the influence on the phase shift distribution can be eliminated or reduced, and the accuracy of the obtained phase shift distribution of the subject can be increased.
  • FIG. 1 It is a schematic diagram which shows the structure of an example of the radiography system for describing embodiment of this invention. It is a control block diagram of the radiography system of FIG. It is a perspective view which shows the structure of the imaging
  • FIG. 6 is a schematic diagram illustrating an example of dividing an image acquired by the radiological image detector of FIG. 5 into partial images and processing for generating a phase contrast image from the divided partial images. It is a schematic diagram which shows the other example which divides the image acquired by the radiographic image detector of FIG. 5 into a partial image. It is a schematic diagram which shows the other example which divides the image acquired by the radiographic image detector of FIG. 5 into a partial image. It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. It is a schematic diagram which shows an example which classifies the image acquired by the radiographic image detector of the radiography system of FIG. 12 into a partial image.
  • FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention
  • FIG. 2 shows a control block of the radiation imaging system of FIG.
  • the X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject H in a standing position, and is disposed opposite to the X-ray source 11 that radiates X-rays to the subject H, and the X-ray source 11.
  • 11 controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12 based on the operation of the operator, and detects the X-ray transmitted through the subject H from 11 and generates image data. It is broadly divided into a console 13 that generates a phase contrast image by calculating the image data acquired by the imaging unit 12.
  • the X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling.
  • the photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
  • the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18.
  • the X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion that does not contribute to the inspection area of the subject H.
  • the X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
  • the X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of.
  • a motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
  • the standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction.
  • the holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c.
  • the driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
  • the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. .
  • the detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like.
  • the X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
  • the console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like.
  • the control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
  • the input device 21 for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used.
  • X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, etc. Is entered.
  • the monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
  • the imaging unit 12 is provided with an X-ray image detector 30 and a first absorption-type grating 31 and a second absorption-type grating 32 for detecting phase change of the X-ray caused by the subject H and performing phase imaging. .
  • the X-ray image detector 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11.
  • the first and second absorption type gratings 31 and 32 are disposed between the X-ray image detector 30 and the X-ray source 11.
  • the first absorption type grating 31 is configured by connecting a plurality of first grating modules 33
  • the second absorption type grating 32 is also configured by connecting a plurality of second grating modules 36. ing.
  • the first absorption type grating 31 includes four first grating modules 33 arranged in the x and y directions in a plane orthogonal to the optical axis A, and adjacent to each other. 33 are connected to each other.
  • the second absorption type grating 32 five second grating modules 36 are arranged in the x direction and the y direction in a plane orthogonal to the optical axis A, and adjacent second grating modules 36 are connected to each other. Configured.
  • the arrangement of the first grating modules 33 in the first absorption type grating 31 and the arrangement of the second grating modules 36 in the second absorption type grating 32 are not limited to the above example, and the x direction or the y direction. It may be a one-dimensional array.
  • Each of the first lattice modules 33 includes a substrate 34 and a plurality of X-ray shielding portions 35 disposed on the substrate 34.
  • Each of the second grating modules 36 includes a substrate 37 and a plurality of X-ray shielding portions 38 disposed on the substrate 37.
  • the substrates 34 and 37 are each formed of an X-ray transmissive member such as silicon, glass, or resin that transmits X-rays.
  • the X-ray shielding portions 35 and 38 are linear members extending in one direction (y direction in the illustrated example) in a plane perpendicular to the optical axis A of the X-rays emitted from the X-ray source 11. Composed.
  • As a material of each X-ray shielding part 35 and 38 what is excellent in X-ray absorptivity is preferable, for example, it is preferable that they are heavy metals, such as gold
  • These X-ray shielding portions 35 and 38 can be formed by a metal plating method or a vapor deposition method.
  • the X-ray shielding portions 35 are arranged in a plane orthogonal to the optical axis A of the X-rays at a predetermined interval p 1 in the direction orthogonal to the one direction (x direction) with a predetermined interval d 1. ing. Similarly, the X-ray shields 38 are spaced from each other at a predetermined interval d 2 in a direction orthogonal to the one direction (x direction) in a plane orthogonal to the optical axis A of X-rays with a constant period p 2. Are arranged. Such first and second absorption gratings 31 and 32 do not mainly give a phase difference to incident X-rays but give an intensity difference, and are also called amplitude gratings. Note that the slit portions (regions having the distances d 1 and d 2 ) may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
  • the first absorption type grating 31 is configured to geometrically project X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the interval d 1 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, most of the X-rays irradiated do not undergo diffraction at the slit portion.
  • a self-projected image hereinafter, this projected image is referred to as a self-image G1 can be formed behind the first absorption type grating 31.
  • the effective wavelength of X-ray is about 0.4 mm.
  • the distance d 1 is set to about 1 to 10 ⁇ m, the X-ray image formed by the X-rays that have passed through the slit portion is negligible for the diffraction effect.
  • a self-image G1 is formed behind.
  • the X-ray radiated from the X-ray source 11 is not a parallel beam but a cone beam with the X-ray focal point 18b as a light emission point, and the self-image G1 is at a distance from the X-ray focal point 18b.
  • the grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic intensity distribution of the self-image G 1 at the position of the second absorption type grating 32.
  • the first The lattice pitch p 1 of the absorption-type grating 31, the pitch p 1 ′ of the self-image G 1 at the position of the second absorption-type grating 32, and the lattice pitch p 2 of the second absorption-type grating 32 are expressed by the following equation (1). It is determined to satisfy.
  • the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the imaging unit 12 of the X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting the self-image G1 of the first absorption grating 31. because similarly obtained behind the position of the first absorption-type grating 31, the distance L 2, can be set independently of the Talbot distance.
  • the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating.
  • X-ray wavelength usually the effective wavelength of X-rays incident on first absorbing grating 31
  • positive integer m positive integer
  • Formula (2) is a formula that represents the Talbot interference distance when the X-rays emitted from the X-ray source 11 are cone beams. “Atsushi Momose, et al., Japan Journal of Applied Physics, Vol. 47, No. 10, October 2008, page 8077 ”and“ Timm Weitkamp, et al., Proc. Of SPIE, Vol. 6318, 2006, 63180S-1 ”can be easily derived.
  • the X-ray shields 35 and 38 preferably shield (absorb) X-rays completely in order to generate an X-ray image having a periodic intensity distribution with high contrast, but are excellent in the X-ray absorbability described above. Even if materials (gold, platinum, etc.) are used, there are not a few X-rays that are transmitted without being absorbed. For this reason, in order to improve the shielding property of X-rays, it is preferable to make the thicknesses h1 and h2 of the X-ray shielding portions 35 and 38 as thick as possible.
  • the X-ray shields 35 and 38 preferably shield 90% or more of the irradiated X-rays, and the thickness thereof is set according to the energy of the irradiated X-rays.
  • the thicknesses h 1 and h 2 are preferably 30 ⁇ m or more in terms of gold (Au).
  • the X-rays irradiated from the X-ray source 11 are cone beams
  • the thicknesses h 1 and h 2 of the X-ray shielding portions 35 and 38 are excessively increased, the X-rays incident obliquely enter the slit portion.
  • vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 35 and 38 becomes narrow.
  • the thickness h 1 and h 2 are preferably set so as to satisfy the following expressions (6) and (7) from the geometrical relationship shown in FIG.
  • the effective visual field length V in the x direction is 10 cm long.
  • the thickness h 1 may be 100 ⁇ m or less, and the thickness h 2 may be 120 ⁇ m or less.
  • the second absorption grating 32 is superimposed on the self-image G 1 of the first absorption grating 31, and the X-ray image detector 30 is arranged immediately after the second absorption grating 32.
  • An X-ray image is formed.
  • the period p 1 ′ of the periodic intensity distribution of the self-image G1 at the position of the second absorption type grating 32 and the substantial grating pitch p 2 ′ of the second absorption type grating 32 are due to manufacturing errors and arrangement errors. Some differences occur.
  • the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
  • Moire occurs due to a slight difference between the period p 1 ′ of the periodic intensity distribution of the self-image G1 and the grating pitch p 2 ′ of the second absorption grating 32.
  • the period T of the moire in the x direction is expressed by the following equation (8).
  • the pixel arrangement pitch required for resolving the moire period T with respect to the X-ray image detector 30 is increased. Restrictions are relaxed. Therefore, in this example, the X-ray image detector 30 has a relatively coarse pixel arrangement pitch, but a TFT (Thin) that can relatively easily constitute a large detector with a single module. An FPD based on a film transistor panel is used.
  • FIG. 5 schematically shows the configuration of the X-ray image detector 30.
  • the X-ray image detector 30 includes a plurality of pixels 40 that convert X-rays into electric charges and accumulate them on an insulating substrate such as a glass substrate, and a plurality of readout circuits that read out the electric charges accumulated in each pixel 40.
  • TFT switches (not shown) are two-dimensionally arranged in the xy direction, a scanning circuit 42 that controls the timing of reading charges from the image receiving section 41, and the charges read from each pixel 40.
  • the signal processing circuit 43 converts and stores the image data, and the data transmission circuit 44 transmits the image data to the arithmetic processing unit 22 via the I / F 25 of the console 13.
  • Each pixel 40 is a direct conversion type in which X-rays are directly converted into electric charges by a conversion layer (not shown) such as amorphous selenium and the converted electric charges are stored in a capacitor (not shown) connected to the lower electrode. It can comprise as an element of this.
  • a TFT switch is connected to each pixel 40, a gate electrode of the TFT switch is connected to the scanning line 45, a source electrode is connected to the capacitor, and a drain electrode is connected to the signal line 46. When the TFT switch is turned on by the drive pulse from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 46.
  • Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it.
  • a scintillator made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like.
  • Gd 2 O 2 S terbium activated gadolinium oxide
  • CsI cesium iodide
  • the signal processing circuit 43 includes an integrating amplifier circuit, an A / D converter, a correction circuit, and an image memory.
  • the integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter.
  • the A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit.
  • the correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory.
  • correction processing by the correction circuit correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise (for example, TFT) depending on the control conditions (drive frequency and readout period) of the X-ray image detector 30 are performed. Correction of the leak signal of the switch) may be included.
  • the X-ray image detector 30 is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used. .
  • the moiré period T in equation (8) is actually further enlarged by the distance from the second absorption grating 32 to the detection surface of the X-ray image detector 30, and therefore the detection surface of the X-ray image detector 30.
  • the upper moire period is T ′, and in order to detect this moire by the X-ray image detector 30, the arrangement pitch P of the pixels 40 in the x direction is at least on the detection surface of the X-ray image detector 30. Is not an integral multiple of the moire period T ′.
  • the arrangement pitch P is larger than the moire period T ′, but the arrangement pitch P is preferably smaller than the moire period T ′, and preferably satisfies the following equation (9). This is because, in order to obtain a high-quality phase contrast image, it is preferable that moire is detected with high contrast in the phase contrast image generation process described later.
  • the arrangement pitch P of the pixels 40 is a value determined by design (generally about 100 ⁇ m) and is difficult to change.
  • the magnitude relationship between the arrangement pitch P of the pixels 40 and the moire period T ′ is adjusted.
  • the positions of the first and second absorption gratings 31 and 32 are adjusted, and at least one of the period p 1 ′ of the self-image G1 and the grating pitch p 2 ′ of the second absorption grating 32 It is preferable to change the moire cycle T ′ by changing.
  • FIG. 6 schematically shows a method of changing the moire cycle T ′.
  • the moire period T ′ can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A.
  • a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided.
  • the substantial grating pitch in the x direction of the second absorption type grating 32 is changed from “p 2 ′” ⁇ “p 2 ′”. / Cos ⁇ ”, and as a result, the moire cycle T ′ changes (FIG. 6A).
  • the change of the moire period T ′ is such that one of the first and second absorption gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction.
  • a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided.
  • the substantial lattice pitch in the x direction of the second absorption type grating 32 is changed from “p 2 ′” ⁇ “p 2 ′”.
  • X cos ⁇ ” the moire cycle T ′ changes (FIG. 6B).
  • the moire period T ′ can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A.
  • the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32.
  • a relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided.
  • the period of G1 changes as “p 1 ′” ⁇ “p 1 ′ ⁇ (L 1 + L 2 + ⁇ ) / (L 1 + L 2 )”, and as a result, the moire period T ′ changes (FIG. 6C). .
  • imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed.
  • the change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption type gratings 31 and 32 for changing the moiré period T ′ is an actuator such as a piezoelectric element. Can be configured.
  • the arrangement pitch of the pixels 40 in the x direction and the moire period have been described. However, the same applies to the arrangement pitch of the pixels 40 and the moire period in the y direction, and the arrangement pitch of the pixels 40 in the y direction is the moire.
  • the period of the arrangement pitch of the pixels 40 and the period of the moire in the y direction is preferably reduced by a mechanism similar to the above-described changing mechanism (the relative rotation mechanism 50, the relative tilt mechanism 51, and the relative movement mechanism 52).
  • the relationship can also be adjusted.
  • the moire formed on the X-ray image detector 30 is modulated by the subject H.
  • This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H.
  • An image acquired by detecting the moire by the X-ray image detector 30 includes a periodic pattern corresponding to the moire, and by analyzing the periodic pattern, a phase contrast image of the subject H can be generated. it can.
  • FIG. 7 shows one X-ray refracted according to the phase shift distribution ⁇ (x) of the subject H in the x direction.
  • Reference numeral 55 indicates an X-ray path that goes straight when the subject H does not exist.
  • the X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and is an X-ray image.
  • the light enters the detector 30.
  • Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
  • phase shift distribution ⁇ (x) of the subject H is expressed by the following equation (10), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
  • the refraction angle ⁇ is expressed by the equation (11) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
  • the refraction angle ⁇ (x) is a value corresponding to the differential value of the phase shift distribution as shown in the equation (11)
  • the refraction angle ⁇ (x) is integrated along the x-axis to obtain the phase shift.
  • a distribution ⁇ (x) is obtained.
  • the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution ⁇ (x , Y).
  • the moire formed by the first and second absorption type gratings 31 and 32 that is, the periodic pattern of the image can be expressed by the following equation (12), and the equation (12) is expressed by the following equation (13). Can be rewritten.
  • a (x, y) represents the background
  • b (x, y) represents the amplitude of the spatial frequency component corresponding to the basic period of the periodic pattern
  • (f 0x, f 0y ) represents the period. Represents the basic period of the pattern.
  • c (x, y) is represented by the following formula (14).
  • equation (13) becomes the following equation (15) by Fourier transform.
  • F (f x , f y), A (f x, f y), C (f x, f y) respectively f (x, y), a (x, y), c It is a two-dimensional Fourier transform for (x, y).
  • the spatial frequency spectrum of the image at least, a peak derived from A (f x, f y) , this C (f x, f y) and C * (f x, f y ) 3 peaks and the peak of the spatial frequency component corresponding to the fundamental period of the periodic pattern from the results across.
  • a (f x, f y) peak derived from the origin also, C (f x, f y ) and C * (f x, f y ) peak derived from the ( ⁇ f 0x, ⁇ f 0y ) It occurs at the position of (combined same order).
  • a region including the peak frequency of the spatial frequency component corresponding to the basic period of the periodic pattern is cut out so that the peak frequency overlaps the origin of the frequency space.
  • the first absorption type grating 31 is configured by connecting a plurality of first grating modules 33
  • the second absorption type grating 32 is also configured by connecting a plurality of second grating modules 36. ing. Therefore, the relative positional relationship of each of the first grating modules 33 with respect to the second absorption grating 32 and the X-ray image detector 30 may be shifted, and similarly, the first absorption grating 31 and the X-ray image detection are performed. In some cases, the relative positional relationship of each of the second grating modules 36 with respect to the vessel 30 is shifted. Such a mismatch in the relative positional relationship appears as a shift in the period and direction of the periodic pattern in each part of the image acquired by the X-ray image detector 30.
  • the X-ray image acquired by the X-ray image detector 30 is divided into a plurality of partial X-ray images, and the periodic pattern is analyzed for each of these partial X-ray images.
  • FIG. 8 shows an example of X-ray image segmentation and phase contrast image generation processing based on the segmented partial X-ray image.
  • the example shown in FIG. 8 corresponds to all the boundaries between the first grating modules 33 in the first absorption type grating 31, and the X-ray image is a total of 16 partial X-ray images Img 1,1 of 4 ⁇ 4. , Img 2,1 ,..., Img 4,4 (FIG. 8A).
  • the boundary between the first grating modules 33 extends in the x-direction boundary lines Lx 1 , Lx 2 , Lx 3 (see FIG. 3) and the y-direction.
  • a boundary line Lx ′ 1 that is defined by the boundary lines Ly 1 , Ly 2 , Ly 3 (see FIG.
  • the periodic pattern is analyzed for each partial X-ray image obtained by dividing the X-ray image corresponding to the boundary between the first grating modules 33 in the first absorption type grating 31, and the phase shift distribution of the subject H is analyzed.
  • at least the period between the partial X-ray images caused by the displacement of the relative positions of the first grating module 33 with respect to the second absorption grating 32 and the X-ray image detector 30.
  • the influence of the non-uniformity of the pattern period and orientation on the phase shift distribution ⁇ of the subject H can be eliminated or reduced, and the accuracy of the obtained phase shift distribution ⁇ of the subject H can be improved.
  • the above processing is executed by the arithmetic processing unit 22, and the arithmetic processing unit 22 stores the phase contrast image obtained by imaging the phase shift distribution ⁇ (x, y) in the storage unit 23.
  • the above-described phase contrast image generation processing is automatically performed by the respective units operating in conjunction with each other under the control of the control device 20 after an imaging instruction is given from the input device 21 by the operator. A phase contrast image is displayed on the monitor 24.
  • FIG. 9 shows another example of X-ray image segmentation.
  • the example shown in FIG. 9 corresponds to all the boundaries between the first grating modules 33 in the first absorption type grating 31 and all the boundaries between the second grating modules 36 in the second absorption type grating 32.
  • the X-ray images are divided into partial X-ray images Img 1,1 , Img 2,1 ,..., Img 8,8 .
  • the boundaries between the first grating modules 33 are boundary lines Lx 1 , Lx 2 , Lx 3 extending in the x direction and boundary lines Ly 1 , extending in the y direction. It is defined by Ly 2 and Ly 3 .
  • the boundary between the second grating modules 36 extends in the boundary lines Lx 4 , Lx 5 , Lx 6 , Lx 7 (see FIG. 3) extending in the x direction, and the y direction. It is defined by the boundaries Ly 4 , Ly 5 , Ly 6 , Ly 7 (see FIG. 3).
  • Img 1,1 , Img 2,1 ,..., Img 8,8 corresponds to an image of an X-ray image formed by X-rays that have passed through the first grating module 33 1,1 and the second grating module 36 1,1 .
  • Img 2,1 corresponds to an image of an X-ray image formed by X-rays that have passed through the first grating module 33 1,1 and the second grating module 36 2,1 .
  • the first absorption grating 31 and the X-ray image detection are further performed.
  • the phase shift distribution ⁇ of the subject H Can be eliminated or reduced, and the accuracy of the obtained phase shift distribution ⁇ of the subject H can be further enhanced.
  • FIG. 10 shows another example of the division of the X-ray image.
  • the example shown in FIG. 10 corresponds to a part of the boundary between the first grating modules 33 in the first absorption type grating 31, and X-ray images are divided into 2 ⁇ 2 total of four partial X-ray images Img 1, 1 , Img 2 , 1 , Img 1 , 2 , Img 2 , 2 .
  • the boundary between the first grating modules 33 extends in the x-direction boundary lines Lx 1 , Lx 2 , Lx 3 (see FIG. 3) and the y-direction.
  • the radiation imaging system 10 it is made to correspond to the boundary between modules in an element divided into a plurality of modules such as the first absorption type grating 31 and the second absorption type grating 32.
  • the X-ray image is divided into partial X-ray images, and the periodic pattern is analyzed for each partial X-ray image to obtain the phase shift distribution ⁇ of the subject H, whereby each of the modules constituting the module-divided elements To eliminate or reduce the influence of the non-uniformity of the period and direction of the periodic pattern between the partial X-ray images caused by the relative positional relationship with respect to other elements on the phase shift distribution ⁇ of the subject H The accuracy of the obtained phase shift distribution ⁇ of the subject H can be improved.
  • the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned).
  • the X-ray image detector 30 is configured as a single module, but a plurality of detector modules are provided as in the first and second absorption gratings 31 and 32. It can also be divided into two parts. In that case, when the image acquired by the X-ray image detector 30 is divided into a plurality of partial images, the X-ray image detector 30 is classified according to part or all of the boundary between the detector modules. You may do it. According to this, the period and direction of the moire between partial X-ray images caused by the relative positional relationship of the detector modules with respect to the first absorption type grating 31 and the second absorption type grating 32 are not uniform. The influence of the aspect on the phase shift distribution ⁇ of the subject H can be eliminated or reduced.
  • the second grating is superimposed on the projection image of the first grating to generate moire, and therefore, the first and second gratings are both absorbing gratings.
  • the present invention is not limited to this.
  • the present invention is also useful when the moire is generated by superimposing the second grating on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating.
  • the image obtained by imaging the phase shift distribution ⁇ is described as being stored or displayed as a phase contrast image.
  • the phase shift distribution ⁇ is obtained by integrating the differential amount of the phase shift distribution ⁇ corresponding to the refraction angle ⁇ . Therefore, the differential amount of the refraction angle ⁇ and the phase shift distribution ⁇ is also related to the phase change of the X-ray by the subject. Therefore, an image of the refraction angle ⁇ and an image of the differential amount of the phase shift are also included in the phase contrast image.
  • phase differential image (differential amount of phase shift distribution) is created from moire obtained by photographing (pre-photographing) in the absence of a subject, and obtained by photographing (main photographing) in the presence of the subject. You may make it correct
  • the phase differential image obtained by the pre-imaging reflects the device-specific phase unevenness (for example, the grating pitch and thickness non-uniformity of the absorption grating 31).
  • the phase differential image acquired by the main imaging also includes the same type of device-specific phase unevenness as the pre-imaging, and acts as an offset of the phase differential signal. Therefore, by subtracting the phase differential image obtained by the pre-photographing from the phase differential image obtained by the main imaging, it is possible to obtain a phase contrast in which the phase unevenness specific to the apparatus is corrected.
  • FIG. 11 shows the configuration of another example of the radiation imaging system according to the present invention.
  • description is abbreviate
  • the arrangement pitch P of the pixels 40 of the X-ray image detector 30 is the period p 1 ′ of the periodic intensity distribution of the self-image G1 (the grating pitch p 1 of the first absorption type grating 31). ) And is not sufficient for resolving the periodic intensity distribution of the self-image G1, so that the moire that can be resolved by the X-ray image detector 30 is formed using the second absorption grating 32,
  • the phase contrast image is generated by analyzing the modulation of the periodic pattern of the image corresponding to the moire.
  • X-ray image detection capable of resolving the self-image G1 (the pixel arrangement pitch is sufficiently smaller than the period of the periodic intensity distribution of the self-image G1).
  • a periodic intensity distribution of the self-image G1 is detected by an X-ray image detector, and a phase contrast image is obtained by analyzing a periodic pattern of an image corresponding to the periodic intensity distribution of the self-image G1. Generated.
  • the imaging unit 61 is provided with an X-ray image detector 62 and a first absorption type grating 31.
  • the first absorption type grating 31 is configured by connecting a plurality of first grating modules 33
  • the X-ray image detector 62 is also configured by connecting a plurality of detector modules 63.
  • the first absorption type grating 31 includes four first grating modules 33 arranged in the x and y directions in a plane orthogonal to the optical axis A, and adjacent to each other. 33 are connected to each other.
  • the X-ray image detector 62 includes five detector modules 63 arranged in the x direction and y direction in a plane orthogonal to the optical axis A, and the adjacent detector modules 63 connected to each other. Yes.
  • Each detector module 63 has an image receiving unit in which a plurality of pixels that detect X-rays and accumulate electric charges are two-dimensionally arranged in the xy direction. Note that a scanning circuit that controls the readout timing of the charges accumulated in each pixel, a signal processing circuit that converts and stores signals read sequentially from each pixel into image data, and image data stored in the console 13 A data transmission circuit that transmits to the arithmetic processing unit 22 via F25 may be provided for each detector module 63, or may be provided in the X-ray image detector 62 so as to control the plurality of detector modules 63. It may be.
  • the plurality of pixels 40 are arranged at an arrangement pitch capable of resolving the periodic intensity distribution of the self-image G1 formed on the X-ray image detector 62.
  • the pixel arrangement pitch P is set to a pitch of 1/2 or less, preferably 1/5 or less of the period p 1 ′ of the periodic intensity distribution of the self-image G1, which is typically several ⁇ m.
  • An image receiving unit in which a plurality of pixels are arranged at such a minute arrangement pitch is a CCD (Charge Coupled Device) in which a readout circuit for reading out the electric charge accumulated in each pixel is formed on a semiconductor substrate made of single crystal silicon or the like.
  • CCD Charge Coupled Device
  • a solid-state imaging device such as a sensor or a complementary metal oxide semiconductor (CMOS) sensor can be used as a base.
  • CMOS complementary metal oxide semiconductor
  • an image receiving unit that is configured based on a TFT panel can also be used.
  • the self-image G1 of the first absorption grating 31 is formed on the X-ray image detector 62.
  • the periodic intensity distribution of the self-image G 1 formed on the X-ray image detector 62 depends on the subject H. Undergo modulation.
  • the image acquired by detecting the self-image G1 by the X-ray image detector 62 includes a periodic pattern corresponding to the periodic intensity distribution of the self-image G1, and the subject H is analyzed by analyzing the periodic pattern. Phase contrast images can be generated.
  • the phase contrast image In generating the phase contrast image, at least part of the boundary between the first grating modules 33 in the first absorption grating 31 and / or at least the boundary between the detector modules 63 in the X-ray image detector 62 is used.
  • the X-ray image acquired by the X-ray image detector 62 is divided into a plurality of partial X-ray images, and a periodic pattern is analyzed for each of these partial X-ray images.
  • FIG. 12 shows an example of the division of the X-ray image.
  • the example shown in FIG. 12 corresponds to all of the boundaries between the first grating modules 33 in the first absorption grating 31 and all of the boundaries between the detector modules 63 in the X-ray image detector 62.
  • the line image is divided into partial X-ray images Img 1,1 , Img 2,1 ,..., Img 8,8 .
  • the boundaries between the first grating modules 33 are boundary lines Lx 1 , Lx 2 , Lx 3 extending in the x direction and boundary lines Ly 1 , extending in the y direction. It is defined by Ly 2 and Ly 3 .
  • the boundaries between the detector modules 63 are boundary lines Lx 8 , Lx 9 , Lx 10 , Lx 11 (see FIG. 11) extending in the x direction, and a boundary line Ly extending in the y direction. 8 , Ly 9 , Ly 10 , Ly 11 (see FIG. 11).
  • Border Lx 1 ⁇ 3, Ly 1 ⁇ 3 of the X-ray image detector 62 is a projection onto the boundary Lx '1 ⁇ 3, Ly' 1 ⁇ 3, and the X-ray image detector 62 itself boundary line Lx 8 ⁇ 11, Ly 8 ⁇ 11 along with X-ray image the partial X-ray image Img 1,1, Img 2,1, ⁇ , are divided into Img 8, 8. That is, Img 1,1 corresponds to an image obtained by detecting an X-ray image formed on the detector module 63 1,1 by X-rays passing through the first grating module 33 1,1 .
  • Img 2,1 corresponds to an image acquired by detecting an X-ray image formed on the detector module 63 2,1 by X-rays passing through the first grating module 33 1,1 .
  • an X-ray image detector capable of resolving the periodic intensity distribution of the self-image G1 (the arrangement pitch of the pixels 40 is sufficiently smaller than the period of the periodic intensity distribution of the self-image G1).
  • the periodic intensity distribution of the self-image G1 is detected by the X-ray image detector 62, and the phase information is analyzed by analyzing the periodic pattern of the image corresponding to the periodic intensity distribution of the self-image G1. Since it is acquired and the arrangement pitch of the pixels 40 is minute, the spatial resolution is excellent. Further, since the second grating is not used, the accuracy of the obtained phase shift distribution ⁇ of the subject H can be improved.
  • An X-ray image detector with a small pixel arrangement pitch is limited to a relatively small size, and the S / N tends to decrease as the size increases.
  • the size can be increased to ensure a field of view, and the S / N reduction can be suppressed, and the accuracy of the obtained phase shift distribution ⁇ of the subject H can be improved. Can do.
  • FIG. 13 shows a modification of the X-ray imaging system 60 described above.
  • the imaging unit 71 includes an X-ray image detector 72 and the first absorption grating 31, and the X-ray image detector 72 connects a plurality of detector modules 73.
  • the arrangement pitch of the pixels in each detector module 73 is an arrangement of several ⁇ m, which is about the same as the period of the periodic intensity distribution of the self-image G1, so that moire is generated in relation to the periodic intensity distribution of the self-image G1. It is said to be a pitch.
  • the arrangement pitch P of the pixels is preferably greater than 'sequences pitch necessary to resolve periodic intensity distribution of the self image G1 exhibiting a periodic intensity distribution of 1 / 2p 1' period p 1.
  • the pixel arrangement pitch P is a value determined by design and difficult to change
  • the magnitude relationship between the pixel arrangement pitch P and the period p 1 ′ of the self-image G1 It is preferable to adjust the position of one absorption grating 31 by changing the period p 1 ′ of the self-image G1.
  • a mechanism similar to the above-described relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52 can be used.
  • the self-image G1 of the first absorption grating 31 is formed on the X-ray image detector 72.
  • the periodic intensity distribution of the self-image G 1 formed on the X-ray image detector 72 depends on the subject H. Undergo modulation.
  • the image acquired by detecting the self-image G1 by the X-ray image detector 72 has a moire (periodic pattern) according to the relationship between the period of the periodic intensity distribution of the self-image G1 and the arrangement pitch of the pixels. This moire is based on the periodic intensity distribution of the self-image G1. Therefore, a phase contrast image of the subject H can be generated by analyzing the moire.
  • the X-ray image acquired by the X-ray image detector 72 is divided into a plurality of partial X-ray images, and moire analysis is performed for each of these partial X-ray images.
  • FIG. 14 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • a mammography apparatus 80 shown in FIG. 14 is an apparatus that captures an X-ray image (phase contrast image) of the breast B as a subject.
  • the mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81.
  • An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
  • the X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12.
  • the X-ray source 11 and the imaging unit 12 are arranged to face each other.
  • the compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
  • the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • FIG. 15 shows a modification of the radiation imaging system of FIG.
  • the 15 is different from the mammography apparatus 80 described above in that the first absorption type grating 31 is disposed between the X-ray source 11 and the compression plate 84.
  • the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
  • the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80.
  • the subject is disposed between the first absorption type grating 31 and the second absorption type grating 32, in other words, the first absorption type grating 31 is attached to the subject.
  • the arrangement on the front side (X-ray source side) can be applied to any of the X-ray imaging systems described above.
  • FIG. 16 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • the X-ray imaging system 100 differs from the X-ray imaging system 10 of the first embodiment in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • the X-ray imaging system 10 when the distance from the X-ray source 11 to the X-ray image detector 30 is set to a distance (1 m to 2 m) set in a general hospital imaging room, X
  • the blurring of the self-image G1 due to the focal size of the line focal point 18b (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is degraded. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall.
  • the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
  • the multi slit 103 is an absorption type grating (third absorption type grating) having the same configuration as the first and second absorption type gratings 31 and 32, and a plurality of X-ray shields extending in one direction (y direction). Are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31 b and 32 b of the first and second absorption type gratings 31 and 32.
  • the multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
  • the lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following expression (17), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
  • Expression (17) indicates that the projection image (self-image G1) of the X-rays emitted from the small focus light sources dispersedly formed by the multi-slit 103 by the first absorption-type grating 31 is the second absorption-type grating 32. This is a geometric condition for matching (overlapping) in position.
  • the grating pitch of the first absorption grating 31 p1 and the lattice pitch p2 of the second absorption type lattice 32 are determined so as to satisfy the relationship of the following equation (18).
  • the self-images G1 formed by the plurality of small focus light sources formed by the multi-slits 103 are superimposed, so that the phase contrast image is not reduced without reducing the X-ray intensity. Image quality can be improved.
  • the multi slit 103 can be applied to any of the X-ray imaging systems described above.
  • FIG. 17 shows the configuration of the first and second gratings for another example of the radiation imaging system for explaining the embodiment of the present invention.
  • the first and second absorption gratings 31 and 32 are arranged such that the periodic arrangement direction of the X-ray shielding portions 31b and 32b is linear (that is, the grating surface is planar).
  • first and second absorption type gratings 110 and 111 having a substantially concave curved surface.
  • the X-ray image detector 112 having a cylindrical detection surface, and the detection surface of the X-ray image detector 112 has a straight line passing through the X-ray focal point 18b and extending in the y direction as a central axis. Cylindrical surface.
  • the first absorption type grating 110 is configured by connecting a plurality of first grating modules 33, and the first grating module 33 passes through the X-ray focal point 18b and extends in the extending direction (y Are arranged along a cylindrical surface whose center axis is an imaginary line extending in the direction).
  • the second absorption-type grating 111 is also configured by connecting a plurality of second grating modules 36, and the second grating module 36 passes through the X-ray focal point 18 b and has the X-ray shielding portion 38. They are arranged along a cylindrical surface having a virtual axis extending in the extending direction (y direction) as a central axis.
  • the grating surfaces can be easily formed into a substantially concave curved surface shape. Then, by making the grating surfaces of the first and second absorption gratings 110 and 111 substantially concave curved surfaces, the X-rays irradiated from the X-ray focal point 18 b since made incident substantially perpendicularly to the respective units, the upper limit of the limitation of the thickness h 2 of the thickness h 1 and the X-ray shielding portion 38 of the X-ray shielding portion 35 is reduced, the above expression (6) and (7) There is no need to consider.
  • the X-ray image detector 112 is also divided into a plurality of detector modules in the same manner as the first and second absorption type gratings 110 and 111, and these detector modules are arranged along the cylindrical surface. If arranged, the detection surface can be easily formed into a cylindrical surface.
  • the radiation used in the present invention is not limited to X-rays, but other than X-rays such as ⁇ -rays and ⁇ -rays. It is also possible to use other radiation.
  • radiographic imaging systems (1) to (9) are disclosed in this specification.
  • An imaging unit that acquires a radiographic image including a periodic pattern modulated by a subject arranged in a radiation irradiation field, and generates a phase contrast image of the subject based on the periodic pattern included in the radiographic image
  • An arithmetic processing unit wherein the imaging unit forms one or more gratings that form a radiation image including a periodic intensity distribution that is a basis of the periodic pattern included in the radiation image by passing radiation; and
  • a radiation image detector for detecting a radiation image, wherein at least one of the lattice and the elements of the radiation image detector is divided into a plurality of modules, and the arithmetic processing The unit is configured to correspond to at least a part of a boundary between modules in at least one of the elements divided into modules.
  • a line image is divided into a plurality of partial radiation images, and for each partial radiation image, a Fourier transform is performed on the partial radiation image to obtain a spatial frequency spectrum of the partial radiation image, and the partial radiation
  • a partial phase contrast that separates a spatial frequency region including a fundamental frequency component of a periodic pattern included in an image from the spatial frequency spectrum, and performs an inverse Fourier transform on the separated spatial frequency region to generate a partial phase contrast image.
  • a radiographic imaging system that executes a combining process of combining a plurality of partial phase contrast images generated by the partial phase contrast image generating process to generate a phase contrast image of the subject. .
  • the radiation imaging system according to (1) further including a first grating that forms a first radiation image including the periodic intensity distribution by passing radiation, wherein the radiation image detector includes A radiation imaging system for detecting a radiation image of 1.
  • the radiation image detector includes A radiation imaging system for detecting a radiation image of 1.
  • the radiation image detector is divided into a plurality of detector modules, and the arithmetic processing unit is at least detected by the radiation image detector.
  • a radiation imaging system that divides the radiation image into the plurality of partial radiation images in correspondence with at least a part of a boundary between the instrument modules.
  • the first grating is configured by being divided into a plurality of first grating modules, and the arithmetic processing unit includes at least the arithmetic processing unit.
  • a radiation imaging system that divides the radiation image into the plurality of partial radiation images in correspondence with at least a part of a boundary between first grating modules in a first grating.
  • the radiation image detector includes an array of a plurality of pixels that detect radiation and accumulate electric charges, and The pixels are arranged at a pitch of 1 ⁇ 2 or less of the period of the periodic intensity distribution of the first radiation image, and the periodic pattern included in the radiation image is the periodic pattern of the first radiation image.
  • Radiography system corresponding to intensity distribution.
  • the radiation image detector includes an array of a plurality of pixels that detect radiation and accumulate electric charges.
  • the pixels are arranged in a pitch that forms moire in relation to the period of the periodic intensity distribution of the first radiation image, and the periodic pattern included in the radiation image has a radiation imaging system corresponding to the moire. .
  • the radiation image detector includes a readout circuit that reads out the electric charges accumulated in the pixels, and the readout circuit is provided on a semiconductor substrate.
  • the said radiography system currently formed.
  • the second grating is configured to be divided into a plurality of second grating modules, and the arithmetic processing unit includes at least the second grating.
  • a radiation imaging system that divides the radiation image into the plurality of partial radiation images corresponding to at least a part of a boundary between the second grating modules in FIG.
  • the interference between the period of the periodic pattern of the radiographic image and the pixel pitch of the radiographic image detector causes moiré to occur in the image acquired by the radiographic image detector, and is based on the modulation of moiré caused by the subject.

Abstract

An x-ray imaging system (10) provided with an imaging unit (12) and a computing/processing unit (22), wherein: the imaging unit (12) has grids (31, 32) for using transmitting radioactive rays to generate an x-ray image including periodic intensity distribution, and an x-ray image detector (30) for detecting the x-ray image; and the grid (31) is configured by division into a plurality of modules (33). The computing/processing unit (22): divides the x-ray image into a plurality of sectional x-ray images (Imgm, n), according to the boundaries between the modules in the grid (31); for each of these sectional x-ray images, generates a sectional phase contrast image by analyzing the period pattern included in the sectional x-ray image using a Fourier transform and an inverse Fourier transform; and generates a phase contrast image of the imaging subject by bonding the obtained plurality of sectional phase contrast images.

Description

放射線撮影システムRadiography system
 本発明は、放射線撮影システムに関する。 The present invention relates to a radiation imaging system.
 X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被写体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。 X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance. X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
 一般的なX線撮影システムでは、X線を放射するX線源とX線画像を検出するX線画像検出器との間に被写体を配置して、被写体の透過像を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する被写体を構成する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器に入射する。この結果、被写体のX線透過像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体(蓄積性蛍光体)のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。 In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured. In this case, each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector. X-ray image detectors include a combination of an X-ray intensifying screen and film, a stimulable phosphor (accumulating phosphor), and a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit. Widely used.
 しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなり、生体軟部組織やソフトマテリアルなどでは、X線吸収能の差が小さく、従ってX線透過像としての十分な画像の濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が小さいため、画像のコントラストが得られにくい。 However, the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
 このような問題を背景に、近年、被写体によるX線の強度変化に代えて、被写体によるX線の位相変化に基づいた画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。一般に、X線が物体に入射したとき、X線の強度よりも位相のほうが高い相互作用を示すことが知られている。このため、位相差を利用したX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を得ることができる。このようなX線位相イメージングの一種として、近年、2枚の透過回折格子(位相型格子及び吸収型格子)とX線画像検出器とからなるX線タルボ干渉計を用いたX線撮影システムが考案されている(例えば、特許文献1参照)。 Against this background, research on X-ray phase imaging that obtains an image (hereinafter referred to as a phase contrast image) based on the phase change of the X-ray by the subject instead of the change of the X-ray intensity by the subject has recently been conducted. It is actively done. In general, it is known that when X-rays are incident on an object, the interaction is higher in phase than in X-ray intensity. For this reason, in the X-ray phase imaging using the phase difference, a high-contrast image can be obtained even for a weakly absorbing object having a low X-ray absorption capability. As a kind of such X-ray phase imaging, in recent years, an X-ray imaging system using an X-ray Talbot interferometer comprising two transmission diffraction gratings (phase grating and absorption grating) and an X-ray image detector has been proposed. It has been devised (for example, see Patent Document 1).
 上記のX線タルボ干渉計では、被写体の背後に第1の回折格子(位相型格子あるいは吸収型格子)を配置し、第1の回折格子の格子ピッチとX線波長で決まる特定距離(タルボ干渉距離)だけ下流に第2の回折格子(吸収型格子)を配置し、その背後にX線画像検出器を配置することにより構成される。上記タルボ干渉距離とは、第1の回折格子を通過したX線が、タルボ干渉効果によって、周期的強度分布を呈する自己像を形成する距離であり、この自己像は、X線源と第1の回折格子との間に配置された被写体とX線との相互作用(位相変化)により変調を受ける。 In the above X-ray Talbot interferometer, a first diffraction grating (phase type grating or absorption type grating) is arranged behind the subject, and a specific distance (Talbot interference determined by the grating pitch of the first diffraction grating and the X-ray wavelength is set. A second diffraction grating (absorption type grating) is arranged downstream by a distance), and an X-ray image detector is arranged behind the second diffraction grating. The Talbot interference distance is a distance at which the X-rays that have passed through the first diffraction grating form a self-image that exhibits a periodic intensity distribution due to the Talbot interference effect. Are modulated by the interaction (phase change) between the subject and the X-rays arranged between the diffraction gratings.
 そして上記のX線タルボ干渉計では、第1の回折格子の自己像と第2の回折格子との重ね合わせにより生じるモアレを検出し、モアレに対応して画像に現れる周期パターンの被写体による変調を解析することによって被写体の位相情報を取得する。画像に現れる周期パターンの解析方法としては、たとえば、縞走査法が知られている。この縞走査法によると、第1の回折格子に対して第2の回折格子を、第1の回折格子の面にほぼ平行で、かつ第1の回折格子の格子方向(条帯方向)にほぼ垂直な方向に、格子ピッチを等分割した走査ピッチで並進移動させながら複数回の撮影を行い、得られる複数の画像データ間で対応する画素毎の信号値の変化から、被写体で屈折したX線の角度分布(位相シフトの微分像)を取得し、この角度分布に基づいて被写体の位相コントラスト画像を得ることができる。 In the above X-ray Talbot interferometer, the moire generated by the superposition of the self-image of the first diffraction grating and the second diffraction grating is detected, and the periodic pattern appearing in the image corresponding to the moire is modulated by the subject. By analyzing, the phase information of the object is acquired. For example, a fringe scanning method is known as a method for analyzing a periodic pattern appearing in an image. According to this fringe scanning method, the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating. X-rays refracted by the subject from a change in signal value for each corresponding pixel between a plurality of image data obtained by performing a plurality of times of imaging while translating in a vertical direction with a scanning pitch obtained by equally dividing the lattice pitch. Angle distribution (differential image of phase shift) can be obtained, and a phase contrast image of the subject can be obtained based on this angle distribution.
 しかし、上記の縞走査法によると、複数回の撮影を行う必要があり、撮影中の被写体の移動、それによる画質の低下が懸念される。そこで、フーリエ変換及び逆フーリエ変換を用いることによって1回の撮影で被写体の位相情報を取得する方法が提案されている(例えば、特許文献2参照)。これは、周期パターン含む画像をフーリエ変換して得られる空間周波数スペクトルから周期パターンの基本周波数成分を含む周波数領域を分離し、分離された周波数領域に対して逆フーリエ変換を行うことによって位相シフトの微分像を取得するものである。それによれば、複数回の撮影の間の格子の移動と、高精度が要求されるその移動機構が不要であるため、撮影ワークフローの向上と装置の簡易化が可能になる。また、各撮影間の被写体の移動に起因する画質低下を解消することができる。 However, according to the above-described fringe scanning method, it is necessary to perform photographing a plurality of times, and there is a concern about the movement of the subject during photographing and the resulting deterioration in image quality. In view of this, a method has been proposed in which the phase information of the subject is acquired by one shooting by using Fourier transform and inverse Fourier transform (see, for example, Patent Document 2). This is done by separating the frequency domain containing the fundamental frequency component of the periodic pattern from the spatial frequency spectrum obtained by Fourier transforming the image containing the periodic pattern, and performing the inverse Fourier transform on the separated frequency domain. A differential image is acquired. According to this, the movement of the lattice between a plurality of times of photographing and the moving mechanism that requires high accuracy are unnecessary, so that the photographing workflow can be improved and the apparatus can be simplified. In addition, it is possible to eliminate the deterioration in image quality caused by the movement of the subject between each photographing.
 特許文献1及び2に記載されたX線撮影システムにおいて、視野を拡大するには第1及び第2の回折格子も相応に大きなものが必要となる。しかし、第1及び第2の回折格子は、典型的にはμmオーダーの格子ピッチで高アスペクト比に構成される必要があるため、大サイズで高精度なものを製造することは非常に困難である。そこで、第1及び第2の回折格子、並びにX線画像検出器の各々を、複数の格子モジュールないし複数の検出器モジュールに分割して構成するようにしたX線撮影システムも提案されている(特許文献3参照)。 In the X-ray imaging systems described in Patent Documents 1 and 2, the first and second diffraction gratings need to be correspondingly large in order to expand the field of view. However, the first and second diffraction gratings typically need to be configured with a high aspect ratio with a grating pitch on the order of μm, so that it is very difficult to manufacture a large size and high accuracy. is there. Therefore, an X-ray imaging system in which each of the first and second diffraction gratings and the X-ray image detector is divided into a plurality of grating modules or a plurality of detector modules has been proposed ( (See Patent Document 3).
 また、第2の回折格子を用いることなく、第1の回折格子の自己像の周期的強度分布の周期よりも小さい画素ピッチの検出器を用いて第1の回折格子の自己像を検出し、この自己像の周期的強度分布の変調を解析することによって、被写体の位相情報を取得するようにしたX線撮影システムも提案されている(特許文献4参照)。 In addition, the self-image of the first diffraction grating is detected using a detector having a pixel pitch smaller than the period of the periodic intensity distribution of the self-image of the first diffraction grating without using the second diffraction grating, An X-ray imaging system has also been proposed in which phase information of a subject is acquired by analyzing the modulation of the periodic intensity distribution of the self-image (see Patent Document 4).
国際公開第04/058070号International Publication No. 04/058070 国際公開第10/050483号International Publication No. 10/0504843 日本国特開2007‐203061号公報Japanese Unexamined Patent Publication No. 2007-203061 日本国特開2007‐203063号公報Japanese Laid-Open Patent Publication No. 2007-203063
 特許文献4に記載されたX線撮影システムは、第1の回折格子の自己像の周期的強度分布の周期よりも小さい画素ピッチの検出器を用いて第1の回折格子の自己像を検出し、これを解析して位相情報を取得しており、画素ピッチが小さいことから空間分解能に優れる。そして、第2の回折格子を介さないことから位相情報の精度の向上が図られる。しかしながら、画素ピッチが微小な検出器は、比較的小サイズのものに限られ、視野が制限される。また、検出器のサイズを大きくすると、典型的には、S/Nが低下する傾向にあり、S/Nの低下に起因して位相情報の精度が低下する懸念がある。 The X-ray imaging system described in Patent Document 4 detects a self-image of the first diffraction grating using a detector having a pixel pitch smaller than the period of the periodic intensity distribution of the self-image of the first diffraction grating. The phase information is obtained by analyzing this, and the spatial resolution is excellent because the pixel pitch is small. Further, since the second diffraction grating is not interposed, the accuracy of the phase information can be improved. However, a detector with a small pixel pitch is limited to a relatively small size, and the field of view is limited. Further, when the size of the detector is increased, typically, the S / N tends to decrease, and there is a concern that the accuracy of the phase information may decrease due to the decrease in S / N.
 そこで、特許文献3に記載されたX線撮影システムのように、検出器を複数の検出器モジュールに分割して構成するようにすれば、微細な画素ピッチで、かつS/Nに優れた大サイズの検出器を得ることができる。しかしながら、全ての検出器モジュールを第1の回折格子に対して全く同じ相対位置関係に配置することは非常に困難であり、このような相対位置関係の不一致は、画像における周期パターンの周期や向きのズレとして現れる。 Therefore, if the detector is divided into a plurality of detector modules as in the X-ray imaging system described in Patent Document 3, it is possible to achieve a large pixel pitch and excellent S / N. A size detector can be obtained. However, it is very difficult to arrange all the detector modules in exactly the same relative positional relationship with respect to the first diffraction grating, and such a mismatch in relative positional relationship is caused by the period and direction of the periodic pattern in the image. Appears as a misalignment.
 そして、画像における周期パターンの周期や向きが一様でない画像に対して、フーリエ変換及び逆フーリエ変換を用いて解析を行った場合に、被写体の位相情報を正確に得ることができない虞がある。これは、複数の検出器モジュールを連結して構成する場合に限られず、複数の格子モジュールを連結して第1の回折格子や第2の回折格子を構成する場合にも妥当する。 Further, when analysis is performed using Fourier transform and inverse Fourier transform on an image in which the period and direction of the periodic pattern in the image are not uniform, there is a possibility that the phase information of the subject cannot be obtained accurately. This is not limited to a case where a plurality of detector modules are connected and configured, and is also applicable to a case where a plurality of grating modules are connected to form the first diffraction grating and the second diffraction grating.
 本発明は、上述した事情に鑑みなされたものであり、フーリエ変換及び逆フーリエ変換を用いて被写体の位相情報を取得する放射線位相イメージングにおいて、位相情報の精度を高めることを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to improve the accuracy of phase information in radiation phase imaging that acquires phase information of a subject using Fourier transform and inverse Fourier transform.
 放射線照射野に配置される被写体によって変調を受けた周期パターンを含む放射線画像を取得する撮影部と、前記放射線画像に含まれる前記周期パターンに基づいて前記被写体の位相コントラスト画像を生成する演算処理部と、を備え、前記撮影部は、通過する放射線によって、前記放射線画像に含まれる前記周期パターンの基礎となる周期的強度分布を含む放射線像を形成する一つ以上の格子と、前記放射線像を検出する放射線画像検出器と、を有しており、前記格子及び前記放射線画像検出器の要素のうち少なくとも一つの要素は、複数のモジュールに分割されて構成されており、前記演算処理部は、モジュール分割された前記要素のうち少なくとも一つの要素におけるモジュール間の境界の少なくとも一部に対応させて前記放射線画像を複数の部分放射線画像に区分し、これらの部分放射線画像毎に、前記部分放射線画像に対してフーリエ変換を行って該部分放射線画像の空間周波数スペクトルを取得する変換処理と、前記部分放射線画像に含まれる周期パターンの基本周波数成分を含む空間周波数領域を前記空間周波数スペクトルから分離し、分離された前記空間周波数領域に対して逆フーリエ変換を行って部分位相コントラスト画像を生成する部分位相コントラスト画像生成処理と、を実行し、そして、前記部分位相コントラスト画像生成処理によって生成される複数の部分位相コントラスト画像を結合して前記被写体の位相コントラスト画像を生成する結合処理を実行する、放射線撮影システム。 An imaging unit that acquires a radiation image including a periodic pattern modulated by a subject arranged in a radiation field, and an arithmetic processing unit that generates a phase contrast image of the subject based on the periodic pattern included in the radiation image The imaging unit includes, by radiation passing therethrough, one or more gratings that form a radiation image including a periodic intensity distribution that is a basis of the periodic pattern included in the radiation image, and the radiation image A radiation image detector for detecting, and at least one of the lattice and the elements of the radiation image detector is divided into a plurality of modules, and the arithmetic processing unit includes: The radiation image corresponding to at least a part of a boundary between modules in at least one of the elements divided into modules. Is converted into a plurality of partial radiographic images, and for each partial radiographic image, a Fourier transform is performed on the partial radiographic image to obtain a spatial frequency spectrum of the partial radiographic image; Partial phase contrast image generation that separates a spatial frequency region including the fundamental frequency component of the included periodic pattern from the spatial frequency spectrum and generates a partial phase contrast image by performing an inverse Fourier transform on the separated spatial frequency region And a combination processing for combining the plurality of partial phase contrast images generated by the partial phase contrast image generation processing to generate a phase contrast image of the subject.
 本発明によれば、格子や放射線画像検出器を複数のモジュールに分割して構成することにより、格子については、その精度を低下させることなく大サイズのものを得ることができ、放射線画像検出器については、そのS/Nを低下させることなく大サイズのものを得ることができ、視野を容易に拡大することができる。 According to the present invention, by dividing the grating and the radiographic image detector into a plurality of modules, it is possible to obtain a large-size grating without reducing the accuracy thereof. Can be obtained in a large size without reducing its S / N, and the field of view can be easily enlarged.
 そして、放射線画像検出器によって取得される放射線画像を、モジュール分割された要素におけるモジュール間の境界に対応させて部分X線画像に区分し、部分X線画像毎に周期パターンを解析して被写体の位相シフト分布を取得することにより、この要素のモジュールの各々の他の要素に対する相対位置関係のズレに起因して生じる部分X線画像間の周期パターンの周期や向きの非一様性が被写体の位相シフト分布に与える影響を排除ないし低減し、得られる被写体の位相シフト分布の精度を高めることができる。 Then, the radiographic image acquired by the radiographic image detector is divided into partial X-ray images corresponding to the boundaries between the modules in the module-divided elements, and the periodic pattern is analyzed for each partial X-ray image to analyze the subject. By acquiring the phase shift distribution, non-uniformity in the period and orientation of the periodic pattern between the partial X-ray images caused by the relative positional deviation of each of the modules of this element relative to the other elements is obtained. The influence on the phase shift distribution can be eliminated or reduced, and the accuracy of the obtained phase shift distribution of the subject can be increased.
本発明の実施形態を説明するための放射線撮影システムの一例の構成を示す模式図である。It is a schematic diagram which shows the structure of an example of the radiography system for describing embodiment of this invention. 図1の放射線撮影システムの制御ブロック図である。It is a control block diagram of the radiography system of FIG. 図1の放射線撮影システムの撮影部の構成を示す斜視図である。It is a perspective view which shows the structure of the imaging | photography part of the radiography system of FIG. 図1の放射線撮影システムの撮影部の構成を示す側面図である。It is a side view which shows the structure of the imaging | photography part of the radiography system of FIG. 図3の撮影部に含まれる放射線画像検出器の構成を示す模式図である。It is a schematic diagram which shows the structure of the radiographic image detector contained in the imaging | photography part of FIG. 図5の放射線画像検出器によって取得される画像の周期パターンを変更するための機構を示す模式図である。It is a schematic diagram which shows the mechanism for changing the periodic pattern of the image acquired by the radiographic image detector of FIG. 被写体による放射線の屈折を説明するための模式図である。It is a schematic diagram for demonstrating the refraction | bending of the radiation by a to-be-photographed object. 図5の放射線画像検出器によって取得される画像を部分画像に区分する一例、及び区分された部分画像から位相コントラスト画像を生成する処理を示す模式図である。FIG. 6 is a schematic diagram illustrating an example of dividing an image acquired by the radiological image detector of FIG. 5 into partial images and processing for generating a phase contrast image from the divided partial images. 図5の放射線画像検出器によって取得される画像を部分画像に区分する他の例を示す模式図である。It is a schematic diagram which shows the other example which divides the image acquired by the radiographic image detector of FIG. 5 into a partial image. 図5の放射線画像検出器によって取得される画像を部分画像に区分する他の例を示す模式図である。It is a schematic diagram which shows the other example which divides the image acquired by the radiographic image detector of FIG. 5 into a partial image. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 図12の放射線撮影システムの放射線画像検出器によって取得される画像を部分画像に区分する一例を示す模式図である。It is a schematic diagram which shows an example which classifies the image acquired by the radiographic image detector of the radiography system of FIG. 12 into a partial image. 図12の放射線撮影システムの変形例の構成を示す模式図である。It is a schematic diagram which shows the structure of the modification of the radiography system of FIG. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 図14の放射線撮影システムの変形例を示す模式図である。It is a schematic diagram which shows the modification of the radiography system of FIG. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention.
 図1は、本発明の実施形態を説明するための放射線撮影システムの一例の構成を示し、図2は、図1の放射線撮影システムの制御ブロックを示す。 FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention, and FIG. 2 shows a control block of the radiation imaging system of FIG.
 X線撮影システム10は、被写体Hを立位状態で撮影するX線診断装置であって、被写体HにX線を放射するX線源11と、X線源11に対向配置され、X線源11から被写体Hを透過したX線を検出して画像データを生成する撮影部12と、操作者の操作に基づいてX線源11の曝射動作や撮影部12の撮影動作を制御するとともに、撮影部12により取得された画像データを演算処理して位相コントラスト画像を生成するコンソール13とに大別される。 The X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject H in a standing position, and is disposed opposite to the X-ray source 11 that radiates X-rays to the subject H, and the X-ray source 11. 11 controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12 based on the operation of the operator, and detects the X-ray transmitted through the subject H from 11 and generates image data. It is broadly divided into a console 13 that generates a phase contrast image by calculating the image data acquired by the imaging unit 12.
 X線源11は、天井から吊り下げられたX線源保持装置14により上下方向(x方向)に移動自在に保持されている。撮影部12は、床上に設置された立位スタンド15により上下方向に移動自在に保持されている。 The X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling. The photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
 X線源11は、X線源制御部17の制御に基づき、高電圧発生器16から印加される高電圧に応じてX線を発生するX線管18と、X線管18から発せられたX線のうち、被写体Hの検査領域に寄与しない部分を遮蔽するように照射野を制限する可動式のコリメータ19aを備えたコリメータユニット19とから構成されている。X線管18は、陽極回転型であり、電子放出源(陰極)としてのフィラメント(図示せず)から電子線を放出して、所定の速度で回転する回転陽極18aに衝突させることによりX線を発生する。この回転陽極18aの電子線の衝突部分がX線焦点18bとなる。 Based on the control of the X-ray source control unit 17, the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18. The X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion that does not contribute to the inspection area of the subject H. The X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
 X線源保持装置14は、天井に設置された天井レール(図示せず)により水平方向(z方向)に移動自在に構成された台車部14aと、上下方向に連結された複数の支柱部14bとからなる。台車部14aには、支柱部14bを伸縮させて、X線源11の上下方向に関する位置を変更するモータ(図示せず)が設けられている。 The X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of. A motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
 立位スタンド15は、床に設置された本体15aに、撮影部12を保持する保持部15bが上下方向に移動自在に取り付けられている。保持部15bは、上下方向に離間して配置された2つのプーリ15cの間に掛架された無端ベルト15dに接続され、プーリ15cを回転させるモータ(図示せず)により駆動される。このモータの駆動は、操作者の設定操作に基づき、後述するコンソール13の制御装置20により制御される。 The standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction. The holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c. The driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
 また、立位スタンド15には、プーリ15c又は無端ベルト15dの移動量を計測することにより、撮影部12の上下方向に関する位置を検出するポテンショメータ等の位置センサ(図示せず)が設けられている。この位置センサの検出値は、ケーブル等によりX線源保持装置14に供給される。X線源保持装置14は、供給された検出値に基づいて支柱部14bを伸縮させ、撮影部12の上下動に追従するようにX線源11を移動させる。 Further, the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. . The detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like. The X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
 コンソール13には、CPU、ROM、RAM等からなる制御装置20が設けられている。制御装置20には、操作者が撮影指示やその指示内容を入力する入力装置21と、撮影部12により取得された画像データを演算処理してX線画像を生成する演算処理部22と、X線画像を記憶する記憶部23と、X線画像等を表示するモニタ24と、X線撮影システム10の各部と接続されるインターフェース(I/F)25とがバス26を介して接続されている。 The console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like. The control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
 入力装置21としては、例えば、スイッチ、タッチパネル、マウス、キーボード等を用いることが可能であり、入力装置21の操作により、X線管電圧やX線照射時間等のX線撮影条件、撮影タイミング等が入力される。モニタ24は、液晶ディスプレイ等からなり、制御装置20の制御により、X線撮影条件等の文字やX線画像を表示する。 As the input device 21, for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used. By operating the input device 21, X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, etc. Is entered. The monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
 撮影部12には、X線画像検出器30、被写体HによるX線の位相変化を検出し位相イメージングを行うための第1の吸収型格子31及び第2の吸収型格子32が設けられている。 The imaging unit 12 is provided with an X-ray image detector 30 and a first absorption-type grating 31 and a second absorption-type grating 32 for detecting phase change of the X-ray caused by the subject H and performing phase imaging. .
 図3及び図4は、撮影部12の構成を模式的に示す。 3 and 4 schematically show the configuration of the photographing unit 12.
 X線画像検出器30は、検出面がX線源11から照射されるX線の光軸Aに直交するように配置されている。第1及び第2の吸収型格子31,32は、X線画像検出器30とX線源11との間に配置されている。 The X-ray image detector 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11. The first and second absorption type gratings 31 and 32 are disposed between the X-ray image detector 30 and the X-ray source 11.
 第1の吸収型格子31は、複数の第1の格子モジュール33を連結して構成されており、第2の吸収型格子32もまた、複数の第2の格子モジュール36が連結されて構成されている。図示の例では、第1の吸収型格子31は、第1の格子モジュール33が光軸Aに直交する面内においてx方向及びy方向にそれぞれ4つずつ配列され、隣り合う第1の格子モジュール33同士が連結されて、構成されている。第2の吸収型格子32は、第2の格子モジュール36が光軸Aに直交する面内においてx方向及びy方向にそれぞれ5つずつ配列され、隣り合う第2の格子モジュール36同士が連結されて、構成されている。なお、第1の吸収型格子31における第1の格子モジュール33の配列、及び第2の吸収型格子32における第2の格子モジュール36の配列は、上記の例に限らず、x方向又はy方向の一次元状の配列であってもよい。 The first absorption type grating 31 is configured by connecting a plurality of first grating modules 33, and the second absorption type grating 32 is also configured by connecting a plurality of second grating modules 36. ing. In the illustrated example, the first absorption type grating 31 includes four first grating modules 33 arranged in the x and y directions in a plane orthogonal to the optical axis A, and adjacent to each other. 33 are connected to each other. In the second absorption type grating 32, five second grating modules 36 are arranged in the x direction and the y direction in a plane orthogonal to the optical axis A, and adjacent second grating modules 36 are connected to each other. Configured. The arrangement of the first grating modules 33 in the first absorption type grating 31 and the arrangement of the second grating modules 36 in the second absorption type grating 32 are not limited to the above example, and the x direction or the y direction. It may be a one-dimensional array.
 第1の格子モジュール33の各々は、基板34と、この基板34に配置された複数のX線遮蔽部35とから構成されている。第2の格子モジュール36の各々は、基板37と、この基板37に配置された複数のX線遮蔽部38とから構成されている。基板34,37は、いずれもX線を透過させるシリコンやガラス、樹脂等のX線透過性部材により形成されている。 Each of the first lattice modules 33 includes a substrate 34 and a plurality of X-ray shielding portions 35 disposed on the substrate 34. Each of the second grating modules 36 includes a substrate 37 and a plurality of X-ray shielding portions 38 disposed on the substrate 37. The substrates 34 and 37 are each formed of an X-ray transmissive member such as silicon, glass, or resin that transmits X-rays.
 X線遮蔽部35,38は、いずれもX線源11から照射されるX線の光軸Aに直交する面内の一方向(図示の例では、y方向)に延伸した線状の部材で構成される。各X線遮蔽部35,38の材料としては、X線吸収性に優れるものが好ましく、例えば、金、白金等の重金属であることが好ましい。これらのX線遮蔽部35,38は、金属メッキ法や蒸着法によって形成することが可能である。 The X-ray shielding portions 35 and 38 are linear members extending in one direction (y direction in the illustrated example) in a plane perpendicular to the optical axis A of the X-rays emitted from the X-ray source 11. Composed. As a material of each X-ray shielding part 35 and 38, what is excellent in X-ray absorptivity is preferable, for example, it is preferable that they are heavy metals, such as gold | metal | money and platinum. These X-ray shielding portions 35 and 38 can be formed by a metal plating method or a vapor deposition method.
 X線遮蔽部35は、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の周期pで、互いに所定の間隔dを空けて配列されている。同様に、X線遮蔽部38は、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の周期pで、互いに所定の間隔dを空けて配列されている。このような第1及び第2の吸収型格子31,32は、入射X線に主として位相差を与えるものではなく、強度差を与えるものであるため、振幅型格子とも称される。なお、スリット部(上記間隔d,dの領域)は空隙でなくてもよく、例えば、高分子や軽金属などのX線低吸収材で該空隙を充填してもよい。 The X-ray shielding portions 35 are arranged in a plane orthogonal to the optical axis A of the X-rays at a predetermined interval p 1 in the direction orthogonal to the one direction (x direction) with a predetermined interval d 1. ing. Similarly, the X-ray shields 38 are spaced from each other at a predetermined interval d 2 in a direction orthogonal to the one direction (x direction) in a plane orthogonal to the optical axis A of X-rays with a constant period p 2. Are arranged. Such first and second absorption gratings 31 and 32 do not mainly give a phase difference to incident X-rays but give an intensity difference, and are also called amplitude gratings. Note that the slit portions (regions having the distances d 1 and d 2 ) may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
 第1の吸収型格子31は、タルボ干渉効果の有無に係らず、スリット部を通過したX線を幾何学的に投影するように構成されている。具体的には、間隔dを、X線源11から照射されるX線の実効波長より十分大きな値とすることで、照射X線の大部分のX線がスリット部での回折を受けずに、第1の吸収型格子31の後方に自己の投影像(以下、この投影像を自己像G1と称する)を形成するように構成することができる。例えば、前述の回転陽極18aのターゲット材料としてタングステンを用い、管電圧を50kVとした場合には、X線の実効波長は、約0.4Åである。この場合には、間隔dを、1~10μm程度とすれば、スリット部を通過したX線が形成するX線像は回折の効果を無視できる程度になり、第1の吸収型格子31の後方に自己像G1が形成される。 The first absorption type grating 31 is configured to geometrically project X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the interval d 1 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, most of the X-rays irradiated do not undergo diffraction at the slit portion. In addition, a self-projected image (hereinafter, this projected image is referred to as a self-image G1) can be formed behind the first absorption type grating 31. For example, when tungsten is used as the target material of the rotary anode 18a and the tube voltage is 50 kV, the effective wavelength of X-ray is about 0.4 mm. In this case, if the distance d 1 is set to about 1 to 10 μm, the X-ray image formed by the X-rays that have passed through the slit portion is negligible for the diffraction effect. A self-image G1 is formed behind.
 さて、一般的に、X線源11から放射されるX線は、平行ビームではなく、X線焦点18bを発光点としたコーンビームであるため、自己像G1はX線焦点18bからの距離に比例して拡大される。一方、第2の吸収型格子32の格子ピッチpは、そのスリット部が、第2の吸収型格子32の位置における自己像G1の周期的強度分布とほぼ一致するように決定されている。すなわち、X線焦点18bから第1の吸収型格子31までの距離をL、第1の吸収型格子31から第2の吸収型格子32までの距離をLとした場合に、第1の吸収型格子31の格子ピッチp、第2の吸収型格子32の位置における自己像G1のピッチp’、第2の吸収型格子32の格子ピッチpは、次式(1)の関係を満たすように決定される。 In general, the X-ray radiated from the X-ray source 11 is not a parallel beam but a cone beam with the X-ray focal point 18b as a light emission point, and the self-image G1 is at a distance from the X-ray focal point 18b. Scaled proportionally. On the other hand, the grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic intensity distribution of the self-image G 1 at the position of the second absorption type grating 32. That is, when the distance from the X-ray focal point 18b to the first absorption-type grating 31 is L 1 and the distance from the first absorption-type grating 31 to the second absorption-type grating 32 is L 2 , the first The lattice pitch p 1 of the absorption-type grating 31, the pitch p 1 ′ of the self-image G 1 at the position of the second absorption-type grating 32, and the lattice pitch p 2 of the second absorption-type grating 32 are expressed by the following equation (1). It is determined to satisfy.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1の吸収型格子31から第2の吸収型格子32までの距離Lは、タルボ干渉計では、第1の回折格子の格子ピッチとX線波長とで決まるタルボ干渉距離に制約されるが、本X線撮影システム10の撮影部12では、第1の吸収型格子31が入射X線を回折させずに投影させる構成であって、第1の吸収型格子31の自己像G1が、第1の吸収型格子31の後方の位置で相似的に得られるため、該距離Lを、タルボ干渉距離と無関係に設定することができる。 In the Talbot interferometer, the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The imaging unit 12 of the X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting the self-image G1 of the first absorption grating 31. because similarly obtained behind the position of the first absorption-type grating 31, the distance L 2, can be set independently of the Talbot distance.
 上記のように撮影部12は、タルボ干渉計を構成するものではないが、第1の吸収型格子31でX線を回折したと仮定した場合のタルボ干渉距離Zは、第1の吸収型格子31の格子ピッチp、第2の吸収型格子32の格子ピッチp、X線波長(通常は第1の吸収型格子31に入射するX線の実効波長)λ、及び正の整数mを用いて、次式(2)で表される。 As described above, the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating. 31 grating pitch p 1 , second absorbing grating 32 grating pitch p 2 , X-ray wavelength (usually the effective wavelength of X-rays incident on first absorbing grating 31) λ, and positive integer m. And is represented by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)は、X線源11から照射されるX線がコーンビームである場合のタルボ干渉距離を表す式であり、「Atsushi Momose, et al., Japanese Journal of Applied Physics, Vol.47, No.10, 2008年10月, 8077頁」や「Timm Weitkamp, et al., Proc. of SPIE, Vol.6318, 2006年, 63180S-1項」から、容易に導くことができる。 Formula (2) is a formula that represents the Talbot interference distance when the X-rays emitted from the X-ray source 11 are cone beams. “Atsushi Momose, et al., Japan Journal of Applied Physics, Vol. 47, No. 10, October 2008, page 8077 ”and“ Timm Weitkamp, et al., Proc. Of SPIE, Vol. 6318, 2006, 63180S-1 ”can be easily derived.
 本X線撮影システム10では、上記距離Lを、m=1の場合の最小のタルボ干渉距離Zより短い値に設定することで、撮影部12の薄型化を図っている。すなわち、上記距離Lは、次式(3)を満たす範囲の値に設定される。 In the present X-ray imaging system 10, the imaging unit 12 is thinned by setting the distance L 2 to a value shorter than the minimum Talbot interference distance Z when m = 1. That is, the distance L 2 is set to a value in the range satisfying the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、X線源11から照射されるX線が実質的に平行ビームとみなせる場合は、タルボ干渉距離Zは次式(4)となり、上記距離Lを、次式(5)を満たす範囲の値に設定することができる。 In the case where X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, Talbot interference distance Z by the following equation (4), and the distance L 2, the range satisfying the following equation (5) Can be set to a value.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ただし、必ずしも上記距離Lは、式(3)ないし式(5)を満たす必要はなく、例えば撮影部12の薄型化の要請がない場合などには、式(3)ないし式(5)から外れる範囲の値も採り得る。 However, not always the distance L 2 need not satisfy equation (3) through (5), for example, when there is no demand for thinning of the imaging unit 12, from the equation (3) to (5) Values outside the range can also be taken.
 X線遮蔽部35,38は、コントラストの高い周期的強度分布のX線像を生成するためには、X線を完全に遮蔽(吸収)することが好ましいが、上記したX線吸収性に優れる材料(金、白金等)を用いたとしても、吸収されずに透過するX線が少なからず存在する。このため、X線の遮蔽性を高めるためには、X線遮蔽部35,38のそれぞれの厚みh1,h2を、可能な限り厚くすることが好ましい。X線遮蔽部35,38は、照射X線の90%以上を遮蔽することが好ましく、その厚さは、照射X線のエネルギーに応じて設定される。例えば、X線管18のターゲット材料としてタングステンを用い、管電圧を50kVとした場合には、厚みh,hは、金(Au)換算で30μm以上であることが好ましい。 The X-ray shields 35 and 38 preferably shield (absorb) X-rays completely in order to generate an X-ray image having a periodic intensity distribution with high contrast, but are excellent in the X-ray absorbability described above. Even if materials (gold, platinum, etc.) are used, there are not a few X-rays that are transmitted without being absorbed. For this reason, in order to improve the shielding property of X-rays, it is preferable to make the thicknesses h1 and h2 of the X-ray shielding portions 35 and 38 as thick as possible. The X-ray shields 35 and 38 preferably shield 90% or more of the irradiated X-rays, and the thickness thereof is set according to the energy of the irradiated X-rays. For example, when tungsten is used as the target material of the X-ray tube 18 and the tube voltage is 50 kV, the thicknesses h 1 and h 2 are preferably 30 μm or more in terms of gold (Au).
 しかし、X線源11から照射されるX線がコーンビームである場合に、X線遮蔽部35,38の厚みh,hを厚くし過ぎると、斜めに入射するX線がスリット部を通過しにくくなり、いわゆるケラレが生じて、X線遮蔽部35,38の延伸方向(条帯方向)に直交する方向(x方向)の有効視野が狭くなるといった問題がある。このため、視野確保の観点から、厚みh,hを制限することが好ましい。具体的には、X線画像検出器30の検出面におけるx方向の有効視野の長さをV、X線焦点18bからX線画像検出器30の検出面までの距離をLとすると、厚みh,hは、図4に示す幾何学的関係から、次式(6)及び(7)を満たすように設定することが好ましい。 However, when the X-rays irradiated from the X-ray source 11 are cone beams, if the thicknesses h 1 and h 2 of the X-ray shielding portions 35 and 38 are excessively increased, the X-rays incident obliquely enter the slit portion. There is a problem that it becomes difficult to pass, so-called vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 35 and 38 becomes narrow. For this reason, it is preferable to limit the thicknesses h 1 and h 2 from the viewpoint of securing a visual field. Specifically, when the length of the effective visual field in the x direction on the detection surface of the X-ray image detector 30 is V, and the distance from the X-ray focal point 18b to the detection surface of the X-ray image detector 30 is L, the thickness h 1 and h 2 are preferably set so as to satisfy the following expressions (6) and (7) from the geometrical relationship shown in FIG.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 例えば、d=2.5μm、d=3.0μmとし、通常の病院に設置できる大きさとして、L=2mに設定した場合には、x方向の有効視野の長さVとして10cmの長さを確保するには、厚みhは100μm以下、厚みhは120μm以下とすればよい。 For example, when d 1 = 2.5 μm and d 2 = 3.0 μm and L = 2 m is set as a size that can be installed in a normal hospital, the effective visual field length V in the x direction is 10 cm long. In order to ensure the thickness, the thickness h 1 may be 100 μm or less, and the thickness h 2 may be 120 μm or less.
 以上の構成において、第1の吸収型格子31の自己像G1に第2の吸収型格子32が重ね合わされて、第2の吸収型格子32の直後に配置されたX線画像検出器30上にX線像が形成される。第2の吸収型格子32の位置における自己像G1の周期的強度分布の周期p’と、第2の吸収型格子32の実質的な格子ピッチp’とは、製造誤差や配置誤差により若干の差異が生じる。このうち、配置誤差とは、第1及び第2の吸収型格子31,32が、相対的に傾斜や回転、両者の間隔が変化することによりx方向への実質的なピッチが変化することを意味している。 In the above configuration, the second absorption grating 32 is superimposed on the self-image G 1 of the first absorption grating 31, and the X-ray image detector 30 is arranged immediately after the second absorption grating 32. An X-ray image is formed. The period p 1 ′ of the periodic intensity distribution of the self-image G1 at the position of the second absorption type grating 32 and the substantial grating pitch p 2 ′ of the second absorption type grating 32 are due to manufacturing errors and arrangement errors. Some differences occur. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
 自己像G1の周期的強度分布の周期p’と第2の吸収型格子32の格子ピッチp’との微小な差異により、モアレが発生する。このモアレのx方向に関する周期Tは、次式(8)で表される。 Moire occurs due to a slight difference between the period p 1 ′ of the periodic intensity distribution of the self-image G1 and the grating pitch p 2 ′ of the second absorption grating 32. The period T of the moire in the x direction is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 自己像G1の周期的強度分布の周期p1’に比べてモアレの周期Tは大きくなることから、これを解像するのに必要となる画素の配列ピッチの点で、X線画像検出器30に対する制約は緩和される。そこで、本例においては、X線画像検出器30として、画素の配列ピッチは比較的粗大であるが、単一のモジュールで大サイズの検出器を比較的容易に構成することのできるTFT(Thin Film Transistor)パネルをベースとしたFPDが用いられている。 Since the moire period T is larger than the period p1 ′ of the periodic intensity distribution of the self-image G1, the pixel arrangement pitch required for resolving the moire period T with respect to the X-ray image detector 30 is increased. Restrictions are relaxed. Therefore, in this example, the X-ray image detector 30 has a relatively coarse pixel arrangement pitch, but a TFT (Thin) that can relatively easily constitute a large detector with a single module. An FPD based on a film transistor panel is used.
 図5は、X線画像検出器30の構成を模式的に示す。 FIG. 5 schematically shows the configuration of the X-ray image detector 30.
 X線画像検出器30は、ガラス基板等の絶縁性基板上に、X線を電荷に変換して蓄積する複数の画素40、及び各画素40に蓄積された電荷を読み出す読み出し回路を構成する複数のTFTスイッチ(図示せず)がxy方向に2次元配列されてなる受像部41と、受像部41からの電荷の読み出しタイミングを制御する走査回路42と、各画素40から読み出された電荷を画像データに変換して記憶する信号処理回路43と、画像データをコンソール13のI/F25を介して演算処理部22に送信するデータ送信回路44とから構成されている。 The X-ray image detector 30 includes a plurality of pixels 40 that convert X-rays into electric charges and accumulate them on an insulating substrate such as a glass substrate, and a plurality of readout circuits that read out the electric charges accumulated in each pixel 40. TFT switches (not shown) are two-dimensionally arranged in the xy direction, a scanning circuit 42 that controls the timing of reading charges from the image receiving section 41, and the charges read from each pixel 40. The signal processing circuit 43 converts and stores the image data, and the data transmission circuit 44 transmits the image data to the arithmetic processing unit 22 via the I / F 25 of the console 13.
 各画素40は、アモルファスセレン等の変換層(図示せず)でX線を電荷に直接変換し、変換された電荷を下部の電極に接続されたキャパシタ(図示せず)に蓄積する直接変換型の素子として構成することができる。各画素40には、TFTスイッチが接続され、TFTスイッチのゲート電極が走査線45、ソース電極がキャパシタ、ドレイン電極が信号線46に接続される。TFTスイッチが走査回路42からの駆動パルスによってON状態になると、キャパシタに蓄積された電荷が信号線46に読み出される。 Each pixel 40 is a direct conversion type in which X-rays are directly converted into electric charges by a conversion layer (not shown) such as amorphous selenium and the converted electric charges are stored in a capacitor (not shown) connected to the lower electrode. It can comprise as an element of this. A TFT switch is connected to each pixel 40, a gate electrode of the TFT switch is connected to the scanning line 45, a source electrode is connected to the capacitor, and a drain electrode is connected to the signal line 46. When the TFT switch is turned on by the drive pulse from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 46.
 なお、各画素40は、テルビウム賦活酸化ガドリニウム(Gd2S:Tb)やタリウム賦活ヨウ化セシウム(CsI:Tl)等からなるシンチレータ(図示せず)でX線を一旦可視光に変換し、変換された可視光をフォトダイオード(図示せず)で電荷に変換して蓄積する間接変換型のX線検出素子として構成することも可能である。 Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it.
 信号処理回路43は、積分アンプ回路、A/D変換器、補正回路、及び画像メモリにより構成されている。積分アンプ回路は、各画素40から信号線46を介して出力された電荷を積分して電圧信号(画像信号)に変換して、A/D変換器に入力する。A/D変換器は、入力された画像信号をデジタルの画像データに変換して補正回路に入力する。補正回路は、画像データに対して、オフセット補正、ゲイン補正、及びリニアリティ補正を行い、補正後の画像データを画像メモリに記憶させる。なお、補正回路による補正処理として、X線の露光量や露光分布(いわゆるシェーディング)の補正や、X線画像検出器30の制御条件(駆動周波数や読み出し期間)に依存するパターンノイズ(例えば、TFTスイッチのリーク信号)の補正等を含めてもよい。 The signal processing circuit 43 includes an integrating amplifier circuit, an A / D converter, a correction circuit, and an image memory. The integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter. The A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit. The correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory. As correction processing by the correction circuit, correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise (for example, TFT) depending on the control conditions (drive frequency and readout period) of the X-ray image detector 30 are performed. Correction of the leak signal of the switch) may be included.
 なお、X線画像検出器30としては、TFTパネルをベースとしたFPDに限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした各種のX線画像検出器を用いることも可能である。 The X-ray image detector 30 is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used. .
 式(8)におけるモアレの周期Tは、実際には第2の吸収型格子32からX線画像検出器30の検出面までの距離によって更に拡大されるため、X線画像検出器30の検出面上でのモアレ周期をT’とし、このモアレを、X線画像検出器30で検出するためには、画素40のx方向に関する配列ピッチPは、少なくともX線画像検出器30の検出面上でのモアレ周期T’の整数倍ではないことが必要である。 The moiré period T in equation (8) is actually further enlarged by the distance from the second absorption grating 32 to the detection surface of the X-ray image detector 30, and therefore the detection surface of the X-ray image detector 30. The upper moire period is T ′, and in order to detect this moire by the X-ray image detector 30, the arrangement pitch P of the pixels 40 in the x direction is at least on the detection surface of the X-ray image detector 30. Is not an integral multiple of the moire period T ′.
 また、配列ピッチPがモアレ周期T’より大きくてもモアレを検出することは可能であるが、配列ピッチPはモアレ周期T’より小さいことが好ましく、次式(9)を満たすことが好ましい。これは、良質な位相コントラスト画像を得るためには、後述する位相コントラスト画像の生成過程において、モアレが高いコントラストで検出されていることが好ましいためである。 Further, it is possible to detect moire even if the arrangement pitch P is larger than the moire period T ′, but the arrangement pitch P is preferably smaller than the moire period T ′, and preferably satisfies the following equation (9). This is because, in order to obtain a high-quality phase contrast image, it is preferable that moire is detected with high contrast in the phase contrast image generation process described later.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 画素40の配列ピッチPは、設計的に定められた値(一般的に100μm程度)であり変更することが困難であるため、画素40の配列ピッチPとモアレ周期T’との大小関係を調整するには、第1及び第2の吸収型格子31,32の位置調整を行い、自己像G1の周期p’と第2の吸収型格子32の格子ピッチp’との少なくともいずれか一方を変更することによりモアレ周期T’を変更することが好ましい。 Since the arrangement pitch P of the pixels 40 is a value determined by design (generally about 100 μm) and is difficult to change, the magnitude relationship between the arrangement pitch P of the pixels 40 and the moire period T ′ is adjusted. For this purpose, the positions of the first and second absorption gratings 31 and 32 are adjusted, and at least one of the period p 1 ′ of the self-image G1 and the grating pitch p 2 ′ of the second absorption grating 32 It is preferable to change the moire cycle T ′ by changing.
 図6に、モアレ周期T’を変更する方法を模式的に示す。 FIG. 6 schematically shows a method of changing the moire cycle T ′.
 モアレ周期T’の変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aを中心として相対的に回転させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aを中心として相対的に回転させる相対回転機構50を設ける。この相対回転機構50により、第2の吸収型格子32を角度θだけ回転させると、第2の吸収型格子32のx方向に関する実質的な格子ピッチは、「p’」→「p’/cosθ」と変化し、この結果、モアレ周期T’が変化する(FIG.6A)。 The moire period T ′ can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A. For example, a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided. When the second absorption type grating 32 is rotated by the angle θ by the relative rotation mechanism 50, the substantial grating pitch in the x direction of the second absorption type grating 32 is changed from “p 2 ′” → “p 2 ′”. / Cos θ ”, and as a result, the moire cycle T ′ changes (FIG. 6A).
 別の例として、モアレ周期T’の変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させる相対傾斜機構51を設ける。この相対傾斜機構51により、第2の吸収型格子32を角度αだけ傾斜させると、第2の吸収型格子32のx方向に関する実質的な格子ピッチは、「p’」→「p’×cosα」と変化し、この結果、モアレ周期T’が変化する(FIG.6B)。 As another example, the change of the moire period T ′ is such that one of the first and second absorption gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. Can be performed by inclining. For example, a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided. Provide. When the second absorption type grating 32 is inclined by the angle α by the relative inclination mechanism 51, the substantial lattice pitch in the x direction of the second absorption type grating 32 is changed from “p 2 ′” → “p 2 ′”. X cos α ”, and as a result, the moire cycle T ′ changes (FIG. 6B).
 更に別の例として、モアレ周期T’の変更は、第1及び第2の吸収型格子31,32のいずれか一方を光軸Aの方向に沿って相対的に移動させることにより行うことができる。例えば、第1の吸収型格子31と第2の吸収型格子32との間の距離Lを変更するように、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aの方向に沿って相対的に移動させる相対移動機構52を設ける。この相対移動機構52により、第2の吸収型格子32を光軸Aに移動量δだけ移動させると、第2の吸収型格子32の位置に投影される第1の吸収型格子31の自己像G1の周期は、「p’」→「p’×(L+L+δ)/(L+L)」と変化し、この結果、モアレ周期T’が変化する(FIG.6C)。 As yet another example, the moire period T ′ can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A. . For example, with respect to the first absorption type grating 31, the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32. A relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided. When the second absorption type grating 32 is moved to the optical axis A by the movement amount δ by the relative movement mechanism 52, the self-image of the first absorption type grating 31 projected on the position of the second absorption type grating 32. The period of G1 changes as “p 1 ′” → “p 1 ′ × (L 1 + L 2 + δ) / (L 1 + L 2 )”, and as a result, the moire period T ′ changes (FIG. 6C). .
 本X線撮影システム10において、撮影部12は、上述のようにタルボ干渉計ではなく、距離Lを自由に設定することができるため、相対移動機構52のように距離Lの変更によりモアレ周期Tを変更する機構を、好適に採用することができる。モアレの周期T’を変更するための第1及び第2の吸収型格子31,32の上記変更機構(相対回転機構50、相対傾斜機構51、及び相対移動機構52)は、圧電素子等のアクチュエータにより構成することが可能である。なお、以上は、x方向に関する画素40の配列ピッチ及びモアレの周期について説明したが、y方向に関する画素40の配列ピッチ及びモアレの周期についても同様であり、y方向に関する画素40の配列ピッチはモアレの周期よりも小さいことが好ましく、上記変更機構(相対回転機構50、相対傾斜機構51、及び相対移動機構52)と同様の機構によって、y方向に関する画素40の配列ピッチとモアレの周期との大小関係についても調整することができる。 In the X-ray imaging system 10, imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed. The change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption type gratings 31 and 32 for changing the moiré period T ′ is an actuator such as a piezoelectric element. Can be configured. In the above, the arrangement pitch of the pixels 40 in the x direction and the moire period have been described. However, the same applies to the arrangement pitch of the pixels 40 and the moire period in the y direction, and the arrangement pitch of the pixels 40 in the y direction is the moire. The period of the arrangement pitch of the pixels 40 and the period of the moire in the y direction is preferably reduced by a mechanism similar to the above-described changing mechanism (the relative rotation mechanism 50, the relative tilt mechanism 51, and the relative movement mechanism 52). The relationship can also be adjusted.
 X線源11と第1の吸収型格子31との間に被写体Hを配置した場合に、X線画像検出器30上に形成されるモアレは、被写体Hにより変調を受ける。この変調量は、被写体Hによる屈折効果によって偏向したX線の角度に比例する。このモアレをX線画像検出器30によって検出して取得される画像には、モアレに対応する周期パターンが含まれ、この周期パターンを解析することによって、被写体Hの位相コントラスト画像を生成することができる。 When the subject H is arranged between the X-ray source 11 and the first absorption type grating 31, the moire formed on the X-ray image detector 30 is modulated by the subject H. This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. An image acquired by detecting the moire by the X-ray image detector 30 includes a periodic pattern corresponding to the moire, and by analyzing the periodic pattern, a phase contrast image of the subject H can be generated. it can.
 次に、画像の周期パターンの解析方法について説明する。 Next, a method for analyzing the periodic pattern of images will be described.
 図7は、被写体Hのx方向に関する位相シフト分布Φ(x)に応じて屈折される1つのX線を示す。 FIG. 7 shows one X-ray refracted according to the phase shift distribution Φ (x) of the subject H in the x direction.
 符号55は、被写体Hが存在しない場合に直進するX線の経路を示しており、この経路55を進むX線は、第1及び第2の吸収型格子31,32を通過してX線画像検出器30に入射する。符号56は、被写体Hが存在する場合に、被写体Hにより屈折されて偏向したX線の経路を示している。この経路56を進むX線は、第1の吸収型格子31を通過した後、第2の吸収型格子32より遮蔽される。 Reference numeral 55 indicates an X-ray path that goes straight when the subject H does not exist. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and is an X-ray image. The light enters the detector 30. Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
 被写体Hの位相シフト分布Φ(x)は、被写体Hの屈折率分布をn(x,z)、zをX線の進む方向として、次式(10)で表される。 The phase shift distribution Φ (x) of the subject H is expressed by the following equation (10), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 そして、屈折角φは、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(11)で表される。 The refraction angle φ is expressed by the equation (11) using the X-ray wavelength λ and the phase shift distribution Φ (x) of the subject H.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 屈折角φ(x)は、式(11)で示したように位相シフト分布の微分値に対応する値であるため、屈折角φ(x)をx軸に沿って積分することにより、位相シフト分布Φ(x)が得られる。なお、上記の説明では、画素40のy方向に関するy座標を考慮していないが、各y座標について同様の演算を行うことにより、x方向及びy方向における2次元的な位相シフト分布Φ(x,y)が得られる。 Since the refraction angle φ (x) is a value corresponding to the differential value of the phase shift distribution as shown in the equation (11), the refraction angle φ (x) is integrated along the x-axis to obtain the phase shift. A distribution Φ (x) is obtained. In the above description, the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution Φ (x , Y).
 ここで、第1及び第2の吸収型格子31、32によって形成されるモアレ、つまりは画像の周期パターンは次式(12)で表すことができ、式(12)は次式(13)に書き換えることができる。 Here, the moire formed by the first and second absorption type gratings 31 and 32, that is, the periodic pattern of the image can be expressed by the following equation (12), and the equation (12) is expressed by the following equation (13). Can be rewritten.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 式(12)において、a(x,y)はバックグラウンドを表し、b(x,y)は周期パターンの基本周期に対応した空間周波数成分の振幅を表し、(f0x、0y)は周期パターンの基本周期を表す。また式(13)において、c(x,y)は次式(14)で表される。 In Expression (12), a (x, y) represents the background, b (x, y) represents the amplitude of the spatial frequency component corresponding to the basic period of the periodic pattern, and (f 0x, f 0y ) represents the period. Represents the basic period of the pattern. In the formula (13), c (x, y) is represented by the following formula (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 従って、c(x,y)又はc(x,y)の成分を取り出すことによって屈折角φ(x,y)の情報を得ることができる。ここで、式(13)はフーリエ変換によって次式(15)となる。 Therefore, information on the refraction angle φ (x, y) can be obtained by extracting the component of c (x, y) or c * (x, y). Here, equation (13) becomes the following equation (15) by Fourier transform.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 式(15)において、F(f,f)、A(f,f)、C(f,f)は、それぞれf(x,y)、a(x,y)、c(x,y)に対する2次元のフーリエ変換である。 In the formula (15), F (f x , f y), A (f x, f y), C (f x, f y) , respectively f (x, y), a (x, y), c It is a two-dimensional Fourier transform for (x, y).
 第1及び第2の吸収型格子31,32のような1次元格子を使用した場合に、画像の空間周波数スペクトルには、少なくとも、A(f,f)に由来するピークと、これを挟んでC(f,f)及びC(f,f)に由来する周期パターンの基本周期に対応した空間周波数成分のピークとの3つのピークが生じる。A(f,f)に由来するピークは原点に、また、C(f,f)及びC(f,f)に由来するピークは(±f0x,±f0y)(複合同順)の位置に生じる。 When using the one-dimensional lattice such as the first and second absorption type gratings 31 and 32, the spatial frequency spectrum of the image, at least, a peak derived from A (f x, f y) , this C (f x, f y) and C * (f x, f y ) 3 peaks and the peak of the spatial frequency component corresponding to the fundamental period of the periodic pattern from the results across. A (f x, f y) peak derived from the origin, also, C (f x, f y ) and C * (f x, f y ) peak derived from the (± f 0x, ± f 0y ) It occurs at the position of (combined same order).
 画像の空間周波数スペクトルから屈折角φ(x、y)を得るには、周期パターンの基本周期に対応する空間周波数成分のピーク周波数を含む領域を切り出し、ピーク周波数が周波数空間の原点に重なるように切り出した領域を移動させ、逆フーリエ変換を行う。そして、逆フーリエ変換によって得られる複素数情報から屈折角φ(x,y)を得ることができる。 In order to obtain the refraction angle φ (x, y) from the spatial frequency spectrum of the image, a region including the peak frequency of the spatial frequency component corresponding to the basic period of the periodic pattern is cut out so that the peak frequency overlaps the origin of the frequency space. Move the clipped area and perform inverse Fourier transform. Then, the refraction angle φ (x, y) can be obtained from the complex number information obtained by the inverse Fourier transform.
 ここで、第1の吸収型格子31は複数の第1の格子モジュール33を連結して構成され、第2の吸収型格子32もまた、複数の第2の格子モジュール36を連結して構成されている。そのため、第2の吸収型格子32やX線画像検出器30に対する第1の格子モジュール33の各々の相対位置関係がズレる場合があり、同様に、第1の吸収型格子31やX線画像検出器30に対する第2の格子モジュール36の各々の相対位置関係がズレる場合がある。このような相対位置関係の不一致は、X線画像検出器30によって取得された画像の各部における周期パターンの周期や向きのズレとして現れる。そこで、第1の吸収型格子31における第1の格子モジュール33間の境界の少なくとも一部、及び/又は第2の吸収型格子32における第2の格子モジュール36間の境界の少なくとも一部に対応させて、X線画像検出器30によって取得されたX線画像を複数の部分X線画像に区分し、これらの部分X線画像毎に上記の周期パターンの解析を行う。 Here, the first absorption type grating 31 is configured by connecting a plurality of first grating modules 33, and the second absorption type grating 32 is also configured by connecting a plurality of second grating modules 36. ing. Therefore, the relative positional relationship of each of the first grating modules 33 with respect to the second absorption grating 32 and the X-ray image detector 30 may be shifted, and similarly, the first absorption grating 31 and the X-ray image detection are performed. In some cases, the relative positional relationship of each of the second grating modules 36 with respect to the vessel 30 is shifted. Such a mismatch in the relative positional relationship appears as a shift in the period and direction of the periodic pattern in each part of the image acquired by the X-ray image detector 30. Therefore, it corresponds to at least part of the boundary between the first grating modules 33 in the first absorption type grating 31 and / or at least part of the boundary between the second grating modules 36 in the second absorption type grating 32. Thus, the X-ray image acquired by the X-ray image detector 30 is divided into a plurality of partial X-ray images, and the periodic pattern is analyzed for each of these partial X-ray images.
 図8は、X線画像の区分の一例、及び区分された部分X線画像に基づく位相コントラスト画像の生成処理を示す。 FIG. 8 shows an example of X-ray image segmentation and phase contrast image generation processing based on the segmented partial X-ray image.
 図8に示す例は、第1の吸収型格子31における第1の格子モジュール33間の境界の全てに対応させて、X線画像を4×4の計16の部分X線画像Img1,1,Img2,1,・・・,Img4,4に区分したものである(FIG.8A)。具体的には、第1の吸収型格子31において、第1の格子モジュール33間の境界は、x方向に延びる境界線Lx,Lx,Lx(図3参照)、及びy方向に延びる境界線Ly,Ly,Ly(図3参照)によって定義され、これらの境界線Lx1~3,Ly1~3のX線画像検出器30上への投影である境界線Lx’1~3,Ly’1~3に沿ってX線画像を部分X線画像Img1,1,Img1,2,・・・,Img4,4に区分している。 The example shown in FIG. 8 corresponds to all the boundaries between the first grating modules 33 in the first absorption type grating 31, and the X-ray image is a total of 16 partial X-ray images Img 1,1 of 4 × 4. , Img 2,1 ,..., Img 4,4 (FIG. 8A). Specifically, in the first absorption type grating 31, the boundary between the first grating modules 33 extends in the x-direction boundary lines Lx 1 , Lx 2 , Lx 3 (see FIG. 3) and the y-direction. A boundary line Lx ′ 1 that is defined by the boundary lines Ly 1 , Ly 2 , Ly 3 (see FIG. 3) and is a projection of these boundary lines Lx 1 to 3 , Ly 1 to 3 onto the X-ray image detector 30. ~ 3, Ly '1 ~ moiety X-ray image along the 3 X-ray image Img 1,1, Img 1,2, ···, are divided into Img 4, 4.
 そして、区分された部分X線画像Img1,1,Img2,1,・・・,Img4,4毎に、上記の周期パターンの解析を行うことによって、部分位相シフト分布Φ1,1,Φ2,1,・・・,Φ4,4が得られる。そして、得られた部分位相シフト分布Φ1,1,Φ2,1,・・・,Φ4,4を結合することによって、被写体Hの位相シフト分布Φが得られる(FIG.8B)。 Then, by analyzing the periodic pattern for each of the divided partial X-ray images Img 1,1 , Img 2,1 ,..., Img 4,4 , partial phase shift distributions Φ 1,1 , Φ 2,1 ,..., Φ 4,4 are obtained. Then, by combining the obtained partial phase shift distributions Φ 1,1 , Φ 2,1 ,..., Φ 4,4 , the phase shift distribution Φ of the subject H is obtained (FIG. 8B).
 このように、第1の吸収型格子31における第1の格子モジュール33間の境界に対応させてX線画像を区分した部分X線画像毎に周期パターンを解析して、被写体Hの位相シフト分布Φを取得することにより、少なくとも、第2の吸収型格子32やX線画像検出器30に対する第1の格子モジュール33の各々の相対位置関係のズレに起因して生じる部分X線画像間の周期パターンの周期や向きの非一様性が被写体Hの位相シフト分布Φに与える影響を排除ないし低減し、得られる被写体Hの位相シフト分布Φの精度を高めることができる。 As described above, the periodic pattern is analyzed for each partial X-ray image obtained by dividing the X-ray image corresponding to the boundary between the first grating modules 33 in the first absorption type grating 31, and the phase shift distribution of the subject H is analyzed. By obtaining Φ, at least the period between the partial X-ray images caused by the displacement of the relative positions of the first grating module 33 with respect to the second absorption grating 32 and the X-ray image detector 30. The influence of the non-uniformity of the pattern period and orientation on the phase shift distribution Φ of the subject H can be eliminated or reduced, and the accuracy of the obtained phase shift distribution Φ of the subject H can be improved.
 以上の処理は演算処理部22によって実行され、演算処理部22は、位相シフト分布Φ(x,y)を画像化した位相コントラスト画像を記憶部23に記憶させる。上述した位相コントラスト画像の生成処理は、入力装置21から操作者により撮影指示がなされた後、制御装置20の制御に基づいて各部が連係動作して自動的に行われ、最終的に被写体Hの位相コントラスト画像がモニタ24に表示される。 The above processing is executed by the arithmetic processing unit 22, and the arithmetic processing unit 22 stores the phase contrast image obtained by imaging the phase shift distribution Φ (x, y) in the storage unit 23. The above-described phase contrast image generation processing is automatically performed by the respective units operating in conjunction with each other under the control of the control device 20 after an imaging instruction is given from the input device 21 by the operator. A phase contrast image is displayed on the monitor 24.
 図9は、X線画像の区分の他の例を示す。 FIG. 9 shows another example of X-ray image segmentation.
 図9に示す例は、第1の吸収型格子31における第1の格子モジュール33間の境界の全て、及び第2の吸収型格子32における第2の格子モジュール36間の境界の全てに対応させて、X線画像を部分X線画像Img1,1,Img2,1,・・・,Img8,8に区分したものである。 The example shown in FIG. 9 corresponds to all the boundaries between the first grating modules 33 in the first absorption type grating 31 and all the boundaries between the second grating modules 36 in the second absorption type grating 32. The X-ray images are divided into partial X-ray images Img 1,1 , Img 2,1 ,..., Img 8,8 .
 具体的には、第1の吸収型格子31において、第1の格子モジュール33間の境界は、x方向に延びる境界線Lx,Lx,Lx、及びy方向に延びる境界線Ly,Ly,Lyによって定義される。また、第2の吸収型格子32において、第2の格子モジュール36間の境界は、x方向に延びる境界線Lx,Lx,Lx,Lx(図3参照)、及びy方向に延びる境界線Ly,Ly,Ly,Ly(図3参照)によって定義される。これらの境界線Lx1~7,Ly1~7のX線画像検出器30上への投影である境界線Lx’1~7,Ly’1~7に沿ってX線画像を部分X線画像Img1,1,Img2,1,・・・,Img8,8に区分している。即ち、Img1,1は第1の格子モジュール331,1と第2の格子モジュール361,1とを通過したX線によって形成されるX線像の画像に相当する。また、Img2,1は第1の格子モジュール331,1と第2の格子モジュール362,1とを通過したX線によって形成されるX線像の画像に相当する。 Specifically, in the first absorption type grating 31, the boundaries between the first grating modules 33 are boundary lines Lx 1 , Lx 2 , Lx 3 extending in the x direction and boundary lines Ly 1 , extending in the y direction. It is defined by Ly 2 and Ly 3 . Further, in the second absorption type grating 32, the boundary between the second grating modules 36 extends in the boundary lines Lx 4 , Lx 5 , Lx 6 , Lx 7 (see FIG. 3) extending in the x direction, and the y direction. It is defined by the boundaries Ly 4 , Ly 5 , Ly 6 , Ly 7 (see FIG. 3). An X-ray image is converted into a partial X-ray image along the boundary lines Lx ′ 1 to 7 and Ly ′ 1 to 7 which are projections of these boundary lines Lx 1 to 7 and Ly 1 to 7 on the X-ray image detector 30. Img 1,1 , Img 2,1 ,..., Img 8,8 . That is, Img 1,1 corresponds to an image of an X-ray image formed by X-rays that have passed through the first grating module 33 1,1 and the second grating module 36 1,1 . Img 2,1 corresponds to an image of an X-ray image formed by X-rays that have passed through the first grating module 33 1,1 and the second grating module 36 2,1 .
 これによれば、第2の吸収型格子32やX線画像検出器30に対する第1の格子モジュール33の各々の相対位置関係のズレに加え、更に第1の吸収型格子31やX線画像検出器30に対する第2の格子モジュール36の各々の相対位置関係のズレに起因して生じる部分X線画像間の周期パターンの周期や向きの非一様性が被写体Hの位相シフト分布Φに与える影響を排除ないし低減することができ、得られる被写体Hの位相シフト分布Φの精度を一層高めることができる。 According to this, in addition to the displacement of the relative position of each of the first grating modules 33 with respect to the second absorption grating 32 and the X-ray image detector 30, the first absorption grating 31 and the X-ray image detection are further performed. Of non-uniformity of the period and direction of the periodic pattern between partial X-ray images caused by the relative positional deviation of each of the second grating modules 36 relative to the detector 30 on the phase shift distribution Φ of the subject H Can be eliminated or reduced, and the accuracy of the obtained phase shift distribution Φ of the subject H can be further enhanced.
 図10は、X線画像の区分の他の例を示す。 FIG. 10 shows another example of the division of the X-ray image.
 図10に示す例は、第1の吸収型格子31における第1の格子モジュール33間の境界の一部に対応させて、X線画像を2×2の計4の部分X線画像Img1,1,Img2,1,Img1,2,Img2,2に区分したものである。具体的には、第1の吸収型格子31において、第1の格子モジュール33間の境界は、x方向に延びる境界線Lx,Lx,Lx(図3参照)、及びy方向に延びる境界線Ly,Ly,Ly(図3参照)によって定義され、これらの境界線Lx1~3,Ly1~3のうちLx及びLyのX線画像検出器30上への投影である境界線Lx’,Ly’に沿ってX線画像を部分X線画像Img1,1,Img2,1,Img1,2,Img2,2に区分している。 The example shown in FIG. 10 corresponds to a part of the boundary between the first grating modules 33 in the first absorption type grating 31, and X-ray images are divided into 2 × 2 total of four partial X-ray images Img 1, 1 , Img 2 , 1 , Img 1 , 2 , Img 2 , 2 . Specifically, in the first absorption type grating 31, the boundary between the first grating modules 33 extends in the x-direction boundary lines Lx 1 , Lx 2 , Lx 3 (see FIG. 3) and the y-direction. Projection of Lx 2 and Ly 2 on the X-ray image detector 30 out of these boundary lines Lx 1 to 3 and Ly 1 to 3 defined by the boundary lines Ly 1 , Ly 2 , and Ly 3 (see FIG. 3) The X-ray images are divided into partial X-ray images Img 1,1 , Img 2,1 , Img 1,2 , Img 2,2 along the boundary lines Lx ′ 2 and Ly ′ 2 .
 これによれば、図8に示す例に比べて、部分X線画像への区分数を減らして解析プロセスの削減することができ、演算処理部22における処理の高速化を図ることができる。更に、離散フーリエ変換においては画像サイズと周波数分解能とが比例するという関係があるため、区分数を過度に多くして画像サイズを小さくしすぎるとフーリエ変換後の周波数分解能が下がり、得られる位相シフト部分布Φの精度が低下する場合があるが、このように区分数を適宜調整することにより、画像サイズと比例関係にある周波数分解能を確保し、得られる位相シフト分布Φの精度を確保することもできる。 According to this, as compared with the example shown in FIG. 8, it is possible to reduce the number of sections into partial X-ray images to reduce the analysis process, and to increase the processing speed in the arithmetic processing unit 22. Furthermore, since there is a relationship that the image size and frequency resolution are proportional in discrete Fourier transform, if the number of sections is excessively increased and the image size is decreased too much, the frequency resolution after Fourier transform is reduced and the resulting phase shift The accuracy of the partial distribution Φ may be reduced. By appropriately adjusting the number of sections in this way, a frequency resolution proportional to the image size is ensured, and the accuracy of the obtained phase shift distribution Φ is ensured. You can also.
 以上、説明したように、放射線撮影システム10によれば、第1の吸収型格子31や第2の吸収型格子32といった複数のモジュールに分割して構成された要素におけるモジュール間の境界に対応させてX線画像を部分X線画像に区分し、この部分X線画像毎に周期パターンを解析して被写体Hの位相シフト分布Φを取得することにより、モジュール分割された要素を構成するモジュールの各々の他の要素に対する相対位置関係のズレに起因して生じる部分X線画像間の周期パターンの周期や向きの非一様性が被写体Hの位相シフト分布Φに与える影響を排除ないし低減することができ、得られる被写体Hの位相シフト分布Φの精度を高めることができる。 As described above, according to the radiation imaging system 10, it is made to correspond to the boundary between modules in an element divided into a plurality of modules such as the first absorption type grating 31 and the second absorption type grating 32. The X-ray image is divided into partial X-ray images, and the periodic pattern is analyzed for each partial X-ray image to obtain the phase shift distribution Φ of the subject H, whereby each of the modules constituting the module-divided elements To eliminate or reduce the influence of the non-uniformity of the period and direction of the periodic pattern between the partial X-ray images caused by the relative positional relationship with respect to other elements on the phase shift distribution Φ of the subject H The accuracy of the obtained phase shift distribution Φ of the subject H can be improved.
 また、第1の吸収型格子31で殆どのX線を回折させずに、第2の吸収型格子32に幾何学的に投影するため、照射X線には、高い空間的可干渉性は要求されず、X線源11として医療分野で用いられている一般的なX線源を用いることができる。そして、第1の吸収型格子31から第2の吸収型格子32までの距離Lを任意の値とすることができ、該距離Lを、タルボ干渉計での最小のタルボ干渉距離より小さく設定することができるため、撮影部12を小型化(薄型化)することができる。更に、本X線撮影システムでは、第1の吸収型格子31からの投影像(自己像G1)には、照射X線のほぼすべての波長成分が寄与し、モアレのコントラストが向上するため、位相コントラスト画像の検出感度を向上させることができる。 Further, since most of the X-rays are not diffracted by the first absorption type grating 31 and geometrically projected onto the second absorption type grating 32, high spatial coherence is required for the irradiated X-rays. Instead, a general X-ray source used in the medical field can be used as the X-ray source 11. The distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned). Furthermore, in the present X-ray imaging system, almost all wavelength components of irradiated X-rays contribute to the projected image (self-image G1) from the first absorption grating 31, and the moire contrast is improved. Contrast image detection sensitivity can be improved.
 なお、上述したX線撮影システム10において、X線画像検出器30は単一のモジュールとして構成されているが、第1及び第2の吸収型格子31,32と同様に、複数の検出器モジュールに分割されて構成されることもできる。その場合に、X線画像検出器30によって取得される画像を複数の部分画像に区分する際に、X線画像検出器30における検出器モジュール間の境界の一部又は全部に対応させて区分するようにしてもよい。それによれば、第1の吸収型格子31や第2の吸収型格子32に対する検出器モジュールの各々の相対位置関係のズレに起因して生じる部分X線画像間のモアレの周期や向きの非一様性が被写体Hの位相シフト分布Φに与える影響を排除ないし低減することができる。 In the X-ray imaging system 10 described above, the X-ray image detector 30 is configured as a single module, but a plurality of detector modules are provided as in the first and second absorption gratings 31 and 32. It can also be divided into two parts. In that case, when the image acquired by the X-ray image detector 30 is divided into a plurality of partial images, the X-ray image detector 30 is classified according to part or all of the boundary between the detector modules. You may do it. According to this, the period and direction of the moire between partial X-ray images caused by the relative positional relationship of the detector modules with respect to the first absorption type grating 31 and the second absorption type grating 32 are not uniform. The influence of the aspect on the phase shift distribution Φ of the subject H can be eliminated or reduced.
 また、第1の格子の投影像に対して第2の格子を重ね合わせてモアレを生じさるものであって、そのため、第1及び第2の格子がいずれも吸収型格子であるものとして説明したが、本発明はこれに限定されるものではない。上述のとおり、タルボ干渉像に対して第2の格子を重ね合わせてモアレを生じさせる場合にも、本発明は有用である。よって、第1の格子は、吸収型格子に限らず位相型格子であってもよい。 In addition, the second grating is superimposed on the projection image of the first grating to generate moire, and therefore, the first and second gratings are both absorbing gratings. However, the present invention is not limited to this. As described above, the present invention is also useful when the moire is generated by superimposing the second grating on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating.
 また、位相シフト分布Φを画像化したものを位相コントラスト画像として記憶ないし表示するものとして説明したが、位相シフト分布Φは、屈折角φに対応する位相シフト分布Φの微分量を積分したものであって、屈折角φ及び位相シフト分布Φの微分量もまた被写体によるX線の位相変化に関連している。よって、屈折角φを画像化したもの、また、位相シフトの微分量を画像化したものも位相コントラスト画像に含まれる。 In addition, the image obtained by imaging the phase shift distribution Φ is described as being stored or displayed as a phase contrast image. The phase shift distribution Φ is obtained by integrating the differential amount of the phase shift distribution Φ corresponding to the refraction angle φ. Therefore, the differential amount of the refraction angle φ and the phase shift distribution Φ is also related to the phase change of the X-ray by the subject. Therefore, an image of the refraction angle φ and an image of the differential amount of the phase shift are also included in the phase contrast image.
 また、被写体がない状態で撮影(プレ撮影)して取得されるモアレから、位相微分像(位相シフト分布の微分量)を作成し、被写体がある状態で撮影(メイン撮影)して取得されるモアレから作成された位相微分像を補正するようにしてもよい。プレ撮影で取得される位相微分像は、装置固有の位相ムラ(例えば吸収型格子31の格子ピッチや厚さの不均一性等)を反映している。一方で、メイン撮影で取得される位相微分像にも、プレ撮影と同種の装置固有の位相ムラが含まれており、位相微分信号のオフセットとして作用している。従って、メイン撮影で得られた位相微分像からプレ撮影で得られた位相微分像を引くことで、装置固有の位相ムラを補正した位相コントラストを得ることができる。 Also, a phase differential image (differential amount of phase shift distribution) is created from moire obtained by photographing (pre-photographing) in the absence of a subject, and obtained by photographing (main photographing) in the presence of the subject. You may make it correct | amend the phase differential image produced from the moire. The phase differential image obtained by the pre-imaging reflects the device-specific phase unevenness (for example, the grating pitch and thickness non-uniformity of the absorption grating 31). On the other hand, the phase differential image acquired by the main imaging also includes the same type of device-specific phase unevenness as the pre-imaging, and acts as an offset of the phase differential signal. Therefore, by subtracting the phase differential image obtained by the pre-photographing from the phase differential image obtained by the main imaging, it is possible to obtain a phase contrast in which the phase unevenness specific to the apparatus is corrected.
 図11は、本発明に係る放射線撮影システムの他の例の構成を示す。なお、上述したX線撮影システム10と共通する要素には、共通の符号を付することによって説明を省略あるいは簡略する。 FIG. 11 shows the configuration of another example of the radiation imaging system according to the present invention. In addition, description is abbreviate | omitted or simplified by attaching | subjecting a common code | symbol to the element which is common in the X-ray imaging system 10 mentioned above.
 上述したX線撮影システム10において、X線画像検出器30の画素40の配列ピッチPは、自己像G1の周期的強度分布の周期p’(第1の吸収型格子31の格子ピッチp)よりも大きく、自己像G1の周期的強度分布を解像するには十分ではないため、第2の吸収型格子32を用いてX線画像検出器30により解像可能なモアレを形成し、このモアレに対応した画像の周期パターンの変調を解析して位相コントラスト画像を生成するように構成されている。これに対して、図11に示すX線撮影システム60においては、自己像G1を解像可能な(画素の配列ピッチが自己像G1の周期的強度分布の周期より十分に小さい)X線画像検出器が用いられており、自己像G1の周期的強度分布がX線画像検出器によって検出され、この自己像G1の周期的強度分布に対応した画像の周期パターンを解析することによって位相コントラスト画像が生成される。 In the X-ray imaging system 10 described above, the arrangement pitch P of the pixels 40 of the X-ray image detector 30 is the period p 1 ′ of the periodic intensity distribution of the self-image G1 (the grating pitch p 1 of the first absorption type grating 31). ) And is not sufficient for resolving the periodic intensity distribution of the self-image G1, so that the moire that can be resolved by the X-ray image detector 30 is formed using the second absorption grating 32, The phase contrast image is generated by analyzing the modulation of the periodic pattern of the image corresponding to the moire. On the other hand, in the X-ray imaging system 60 shown in FIG. 11, X-ray image detection capable of resolving the self-image G1 (the pixel arrangement pitch is sufficiently smaller than the period of the periodic intensity distribution of the self-image G1). A periodic intensity distribution of the self-image G1 is detected by an X-ray image detector, and a phase contrast image is obtained by analyzing a periodic pattern of an image corresponding to the periodic intensity distribution of the self-image G1. Generated.
 撮影部61には、X線画像検出器62及び第1の吸収型格子31が設けられている。第1の吸収型格子31は、複数の第1の格子モジュール33を連結して構成されており、X線画像検出器62もまた、複数の検出器モジュール63が連結されて構成されている。図示の例では、第1の吸収型格子31は、第1の格子モジュール33が光軸Aに直交する面内においてx方向及びy方向にそれぞれ4つずつ配列され、隣り合う第1の格子モジュール33同士が連結されて、構成されている。X線画像検出器62は、検出器モジュール63が光軸Aに直交する面内においてx方向及びy方向にそれぞれ5つずつ配列され、隣り合う検出器モジュール63同士が連結されて、構成されている。 The imaging unit 61 is provided with an X-ray image detector 62 and a first absorption type grating 31. The first absorption type grating 31 is configured by connecting a plurality of first grating modules 33, and the X-ray image detector 62 is also configured by connecting a plurality of detector modules 63. In the illustrated example, the first absorption type grating 31 includes four first grating modules 33 arranged in the x and y directions in a plane orthogonal to the optical axis A, and adjacent to each other. 33 are connected to each other. The X-ray image detector 62 includes five detector modules 63 arranged in the x direction and y direction in a plane orthogonal to the optical axis A, and the adjacent detector modules 63 connected to each other. Yes.
 各検出器モジュール63は、X線を検出して電荷を蓄積する複数の画素がxy方向に2次元配列されてなる受像部を有している。なお、各画素に蓄積された電荷の読み出しタイミングを制御する走査回路や、各画素から順次読み出された信号を画像データに変換して記憶する信号処理回路や、画像データをコンソール13のI/F25を介して演算処理部22に送信するデータ送信回路は、検出器モジュール63毎に設けられていてもよいし、複数の検出器モジュール63を統制するようにX線画像検出器62に設けられていてもよい。 Each detector module 63 has an image receiving unit in which a plurality of pixels that detect X-rays and accumulate electric charges are two-dimensionally arranged in the xy direction. Note that a scanning circuit that controls the readout timing of the charges accumulated in each pixel, a signal processing circuit that converts and stores signals read sequentially from each pixel into image data, and image data stored in the console 13 A data transmission circuit that transmits to the arithmetic processing unit 22 via F25 may be provided for each detector module 63, or may be provided in the X-ray image detector 62 so as to control the plurality of detector modules 63. It may be.
 複数の画素40は、X線画像検出器62上に形成される自己像G1の周期的強度分布を解像可能な配列ピッチで配列されている。具体的には、画素の配列ピッチPは、典型的に数μmである自己像G1の周期的強度分布の周期p’の1/2以下、好ましくは1/5以下のピッチとされる。そのような微小な配列ピッチに複数の画素が配列される受像部は、各画素に蓄積された電荷を読み出す読み出し回路が単結晶シリコン等からなる半導体基板に形成される、CCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサなどの固体撮像素子をベースに構成することができる。なお、受像部には、上記の画素の配列ピッチを満たす限りにおいて、TFTパネルをベースに構成されたものを用いることもできる。 The plurality of pixels 40 are arranged at an arrangement pitch capable of resolving the periodic intensity distribution of the self-image G1 formed on the X-ray image detector 62. Specifically, the pixel arrangement pitch P is set to a pitch of 1/2 or less, preferably 1/5 or less of the period p 1 ′ of the periodic intensity distribution of the self-image G1, which is typically several μm. An image receiving unit in which a plurality of pixels are arranged at such a minute arrangement pitch is a CCD (Charge Coupled Device) in which a readout circuit for reading out the electric charge accumulated in each pixel is formed on a semiconductor substrate made of single crystal silicon or the like. A solid-state imaging device such as a sensor or a complementary metal oxide semiconductor (CMOS) sensor can be used as a base. In addition, as long as the above-described pixel arrangement pitch is satisfied, an image receiving unit that is configured based on a TFT panel can also be used.
 以上の構成において、第1の吸収型格子31の自己像G1がX線画像検出器62上に形成される。そして、X線源11と第1の吸収型格子31との間に被写体Hを配置した場合に、X線画像検出器62上に形成される自己像G1の周期的強度分布は、被写体Hにより変調を受ける。この自己像G1をX線画像検出器62によって検出して取得される画像には、自己像G1の周期的強度分布に対応する周期パターンが含まれ、この周期パターンを解析することによって、被写体Hの位相コントラスト画像を生成することができる。 In the above configuration, the self-image G1 of the first absorption grating 31 is formed on the X-ray image detector 62. When the subject H is disposed between the X-ray source 11 and the first absorption type grating 31, the periodic intensity distribution of the self-image G 1 formed on the X-ray image detector 62 depends on the subject H. Undergo modulation. The image acquired by detecting the self-image G1 by the X-ray image detector 62 includes a periodic pattern corresponding to the periodic intensity distribution of the self-image G1, and the subject H is analyzed by analyzing the periodic pattern. Phase contrast images can be generated.
 位相コントラスト画像を生成するに際しては、第1の吸収型格子31における第1の格子モジュール33間の境界の少なくとも一部、及び/又はX線画像検出器62における検出器モジュール63間の境界の少なくとも一部に対応させて、X線画像検出器62によって取得されたX線画像を複数の部分X線画像に区分し、これらの部分X線画像毎に周期パターンの解析を行う。 In generating the phase contrast image, at least part of the boundary between the first grating modules 33 in the first absorption grating 31 and / or at least the boundary between the detector modules 63 in the X-ray image detector 62 is used. Corresponding to a part, the X-ray image acquired by the X-ray image detector 62 is divided into a plurality of partial X-ray images, and a periodic pattern is analyzed for each of these partial X-ray images.
 図12は、X線画像の区分の一例を示す。 FIG. 12 shows an example of the division of the X-ray image.
 図12に示す例は、第1の吸収型格子31における第1の格子モジュール33間の境界の全て、及びX線画像検出器62における検出器モジュール63間の境界の全てに対応させて、X線画像を部分X線画像Img1,1,Img2,1,・・・,Img8,8に区分したものである。 The example shown in FIG. 12 corresponds to all of the boundaries between the first grating modules 33 in the first absorption grating 31 and all of the boundaries between the detector modules 63 in the X-ray image detector 62. The line image is divided into partial X-ray images Img 1,1 , Img 2,1 ,..., Img 8,8 .
 具体的には、第1の吸収型格子31において、第1の格子モジュール33間の境界は、x方向に延びる境界線Lx,Lx,Lx、及びy方向に延びる境界線Ly,Ly,Lyによって定義される。また、X線画像検出器62において、検出器モジュール63間の境界は、x方向に延びる境界線Lx,Lx,Lx10,Lx11(図11参照)、及びy方向に延びる境界線Ly,Ly,Ly10,Ly11(図11参照)によって定義される。境界線Lx1~3,Ly1~3のX線画像検出器62上への投影である境界線Lx’1~3,Ly’1~3、及びX線画像検出器62自体の境界線Lx8~11,Ly8~11沿ってX線画像を部分X線画像Img1,1,Img2,1,・・・,Img8,8に区分している。即ち、Img1,1は第1の格子モジュール331,1を通過したX線によって検出器モジュール631,1上に形成されるX線像を検出して取得された画像に相当する。また、Img2,1は第1の格子モジュール331,1を通過したX線によって検出器モジュール632,1上に形成されるX線像を検出して取得される画像に相当する。 Specifically, in the first absorption type grating 31, the boundaries between the first grating modules 33 are boundary lines Lx 1 , Lx 2 , Lx 3 extending in the x direction and boundary lines Ly 1 , extending in the y direction. It is defined by Ly 2 and Ly 3 . In the X-ray image detector 62, the boundaries between the detector modules 63 are boundary lines Lx 8 , Lx 9 , Lx 10 , Lx 11 (see FIG. 11) extending in the x direction, and a boundary line Ly extending in the y direction. 8 , Ly 9 , Ly 10 , Ly 11 (see FIG. 11). Border Lx 1 ~ 3, Ly 1 ~ 3 of the X-ray image detector 62 is a projection onto the boundary Lx '1 ~ 3, Ly' 1 ~ 3, and the X-ray image detector 62 itself boundary line Lx 8 ~ 11, Ly 8 ~ 11 along with X-ray image the partial X-ray image Img 1,1, Img 2,1, ···, are divided into Img 8, 8. That is, Img 1,1 corresponds to an image obtained by detecting an X-ray image formed on the detector module 63 1,1 by X-rays passing through the first grating module 33 1,1 . Img 2,1 corresponds to an image acquired by detecting an X-ray image formed on the detector module 63 2,1 by X-rays passing through the first grating module 33 1,1 .
 区分された部分X線画像Img1,1,Img2,1,・・・,Img8,8毎に、上記の周期パターンの解析を行うことによって、部分位相シフト分布Φm,n(m=1~8,N=1~8)が得られ、得られた部分位相シフト分布Φm,nを結合することによって、被写体Hの位相シフト分布Φが得られる。 By analyzing the periodic pattern for each of the segmented partial X-ray images Img 1,1 , Img 2,1 ,..., Img 8,8 , partial phase shift distributions Φ m, n (m = 1 to 8, N = 1 to 8) are obtained, and the phase shift distribution Φ of the subject H is obtained by combining the obtained partial phase shift distributions Φ m, n .
 本X線撮影システム60によれば、自己像G1の周期的強度分布を解像可能な(画素40の配列ピッチが自己像G1の周期的強度分布の周期より十分に小さい)X線画像検出器62が用いられており、自己像G1の周期的強度分布がX線画像検出器62によって検出され、この自己像G1の周期的強度分布に対応した画像の周期パターンを解析することによって位相情報を取得しており、画素40の配列ピッチが微小であることから空間分解能に優れる。また、第2の格子を介さないことから、得られる被写体Hの位相シフト分布Φの精度を高めることができる。 According to this X-ray imaging system 60, an X-ray image detector capable of resolving the periodic intensity distribution of the self-image G1 (the arrangement pitch of the pixels 40 is sufficiently smaller than the period of the periodic intensity distribution of the self-image G1). 62 is used, the periodic intensity distribution of the self-image G1 is detected by the X-ray image detector 62, and the phase information is analyzed by analyzing the periodic pattern of the image corresponding to the periodic intensity distribution of the self-image G1. Since it is acquired and the arrangement pitch of the pixels 40 is minute, the spatial resolution is excellent. Further, since the second grating is not used, the accuracy of the obtained phase shift distribution Φ of the subject H can be improved.
 そして、画素の配列ピッチが微小なX線画像検出器は比較的小サイズのものに限られ、また、サイズが大きくなる程にS/Nが低下する傾向にあるが、複数を連結して一つのX線画像検出器62として構成することにより、サイズを大きくして視野を確保すると共に、S/Nの低下を抑制することができ、得られる被写体Hの位相シフト分布Φの精度を高めることができる。 An X-ray image detector with a small pixel arrangement pitch is limited to a relatively small size, and the S / N tends to decrease as the size increases. By configuring as one X-ray image detector 62, the size can be increased to ensure a field of view, and the S / N reduction can be suppressed, and the accuracy of the obtained phase shift distribution Φ of the subject H can be improved. Can do.
 更に、第1の吸収型格子31における第1の格子モジュール33間の境界、及びX線画像検出器62における検出器モジュール63間の境界に対応させてX線画像を区分した部分X線画像毎に周期パターンを解析して、被写体Hの位相シフト分布Φを取得することにより、X線画像検出器62に対する第1の格子モジュール33の各々の相対位置関係のズレ、更に第1の吸収型格子31に対する検出器モジュール63の各々の相対位置関係のズレに起因して生じる部分X線画像間の周期パターンの周期や向きの非一様性が被写体Hの位相シフト分布Φに与える影響を排除ないし低減することができ、得られる被写体Hの位相シフト分布Φの精度を高めることができる。 Further, for each partial X-ray image obtained by dividing the X-ray image corresponding to the boundary between the first grating modules 33 in the first absorption grating 31 and the boundary between the detector modules 63 in the X-ray image detector 62. By analyzing the periodic pattern and acquiring the phase shift distribution Φ of the subject H, the relative positional relationship of each of the first grating modules 33 with respect to the X-ray image detector 62 is further shifted, and further the first absorption grating The influence of the non-uniformity of the period and direction of the periodic pattern between the partial X-ray images caused by the deviation of the relative positional relationship of each of the detector modules 63 with respect to 31 on the phase shift distribution Φ of the subject H is eliminated. The accuracy of the obtained phase shift distribution Φ of the subject H can be increased.
 図13は、上述したX線撮影システム60の変形例を示す。 FIG. 13 shows a modification of the X-ray imaging system 60 described above.
 図13に示すX線撮影システム70において、撮影部71はX線画像検出器72及び第1の吸収型格子31によって構成されており、X線画像検出器72は複数の検出器モジュール73を連結して構成されている。そして、各検出器モジュール73における画素の配列ピッチは、自己像G1の周期的強度分布との関係でモアレを生じるように、自己像G1の周期的強度分布の周期と同程度の数μmの配列ピッチとされている。画素の配列ピッチPは、好ましくは、周期p’の周期的強度分布を呈する自己像G1の周期的強度分布を解像するに必要な配列ピッチである1/2p’よりも大きい。 In the X-ray imaging system 70 shown in FIG. 13, the imaging unit 71 includes an X-ray image detector 72 and the first absorption grating 31, and the X-ray image detector 72 connects a plurality of detector modules 73. Configured. The arrangement pitch of the pixels in each detector module 73 is an arrangement of several μm, which is about the same as the period of the periodic intensity distribution of the self-image G1, so that moire is generated in relation to the periodic intensity distribution of the self-image G1. It is said to be a pitch. The arrangement pitch P of the pixels is preferably greater than 'sequences pitch necessary to resolve periodic intensity distribution of the self image G1 exhibiting a periodic intensity distribution of 1 / 2p 1' period p 1.
 画素の配列ピッチPは、設計的に定められた値であり変更することが困難であるため、画素の配列ピッチPと自己像G1の周期p’との大小関係を調整するには、第1の吸収型格子31の位置調整を行い、自己像G1の周期p’を変更することにより調整することが好ましい。第1の吸収型格子31の位置調整には、例えば、上述した相対回転機構50、相対傾斜機構51、及び相対移動機構52(図6参照)と同様の機構を用いることができる。 Since the pixel arrangement pitch P is a value determined by design and difficult to change, in order to adjust the magnitude relationship between the pixel arrangement pitch P and the period p 1 ′ of the self-image G1, It is preferable to adjust the position of one absorption grating 31 by changing the period p 1 ′ of the self-image G1. For the position adjustment of the first absorption type grating 31, for example, a mechanism similar to the above-described relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52 (see FIG. 6) can be used.
 画素の配列ピッチPが上記の条件を満たす場合において、画像に生じるモアレのx方向に関する周期Tは、次式(16)で表される。 When the pixel arrangement pitch P satisfies the above condition, the period T in the x direction of moire generated in the image is expressed by the following equation (16).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 以上の構成において、第1の吸収型格子31の自己像G1がX線画像検出器72上に形成される。そして、X線源11と第1の吸収型格子31との間に被写体Hを配置した場合に、X線画像検出器72上に形成される自己像G1の周期的強度分布は、被写体Hにより変調を受ける。この自己像G1をX線画像検出器72によって検出して取得される画像には、上述のとおり、自己像G1の周期的強度分布の周期と画素の配列ピッチとの関係でモアレ(周期パターン)が生じ、このモアレは自己像G1の周期的強度分布を基礎とする。そこで、このモアレを解析することによって、被写体Hの位相コントラスト画像を生成することができる。 In the above configuration, the self-image G1 of the first absorption grating 31 is formed on the X-ray image detector 72. When the subject H is arranged between the X-ray source 11 and the first absorption type grating 31, the periodic intensity distribution of the self-image G 1 formed on the X-ray image detector 72 depends on the subject H. Undergo modulation. As described above, the image acquired by detecting the self-image G1 by the X-ray image detector 72 has a moire (periodic pattern) according to the relationship between the period of the periodic intensity distribution of the self-image G1 and the arrangement pitch of the pixels. This moire is based on the periodic intensity distribution of the self-image G1. Therefore, a phase contrast image of the subject H can be generated by analyzing the moire.
 位相コントラスト画像を生成するに際しては、第1の吸収型格子31における第1の格子モジュール33間の境界の少なくとも一部、及び/又はX線画像検出器72における検出器モジュール73間の境界の少なくとも一部に対応させて、X線画像検出器72によって取得されたX線画像を複数の部分X線画像に区分し、これらの部分X線画像毎にモアレの解析を行う。 In generating the phase contrast image, at least part of the boundary between the first grating modules 33 in the first absorption grating 31 and / or at least the boundary between the detector modules 73 in the X-ray image detector 72. Corresponding to a part, the X-ray image acquired by the X-ray image detector 72 is divided into a plurality of partial X-ray images, and moire analysis is performed for each of these partial X-ray images.
 本X線撮影システム70によれば、自己像G1の周期的強度分布の周期に比べてモアレの周期が大きくなることから、これを解像するのに必要となる画素の配列ピッチの点で、X線画像検出器に対する制約を緩和することができる。 According to the present X-ray imaging system 70, since the period of moire is larger than the period of the periodic intensity distribution of the self-image G1, in terms of the arrangement pitch of pixels necessary for resolving this, Restrictions on the X-ray image detector can be relaxed.
 図14は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 14 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 図14に示すマンモグラフィ装置80は、被検体として乳房BのX線画像(位相コントラスト画像)を撮影する装置である。マンモグラフィ装置80は、基台(図示せず)に対して旋回可能に連結されたアーム部材81の一端に配設されたX線源収納部82と、アーム部材81の他端に配設された撮影台83と、撮影台83に対して上下方向に移動可能に構成された圧迫板84とを備える。 A mammography apparatus 80 shown in FIG. 14 is an apparatus that captures an X-ray image (phase contrast image) of the breast B as a subject. The mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81. An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
 X線源収納部82にはX線源11が収納されており、撮影台83には撮影部12が収納されている。X線源11と撮影部12とは、互いに対向するように配置されている。圧迫板84は、移動機構(図示せず)により移動し、撮影台83との間で乳房Bを挟み込んで圧迫する。この圧迫状態で、上記したX線撮影が行われる。 The X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12. The X-ray source 11 and the imaging unit 12 are arranged to face each other. The compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
 なお、X線源11及び撮影部12は、前述したX線撮影システム10のものと同様の構成であるため、各構成要素には、X線撮影システム10と同一の符号を付している。その他の構成及び作用については、前述したX線撮影システム10と同様であるため説明は省略する。 Since the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
 図15は、図14の放射線撮影システムの変形例を示す。 FIG. 15 shows a modification of the radiation imaging system of FIG.
 図15に示すマンモグラフィ装置90は、第1の吸収型格子31がX線源11と圧迫板84との間に配設されている点が前述したマンモグラフィ装置80と異なる。 15 is different from the mammography apparatus 80 described above in that the first absorption type grating 31 is disposed between the X-ray source 11 and the compression plate 84.
 このように、被検体(乳房)Bが第1の吸収型格子31と第2の吸収型格子32との間に位置する場合であっても、第2の吸収型格子32の位置に形成される第1の吸収型格子31の自己像G1は被検体Bにより変調を受ける。したがって、この場合でも、被検体Bに起因して変調されたモアレを含むX線像をX線画像検出器30により検出することができる。すなわち、本マンモグラフィ装置90でも上述した原理で被検体Bの位相コントラスト画像を得ることができる。 Thus, even when the subject (breast) B is located between the first absorption type grating 31 and the second absorption type grating 32, it is formed at the position of the second absorption type grating 32. The self-image G1 of the first absorption grating 31 is modulated by the subject B. Therefore, even in this case, the X-ray image including the moire modulated due to the subject B can be detected by the X-ray image detector 30. That is, the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
 そして、本マンモグラフィ装置90では、第1の吸収型格子31による遮蔽により、線量がほぼ半減したX線が被検体Bに照射されることになるため、被検体Bの被曝量を、前述したマンモグラフィ装置80の場合の約半分に低減することができる。なお、本マンモグラフィ装置90のように、第1の吸収型格子31と第2の吸収型格子32との間に被検体を配置すること、換言すれば、第1の吸収型格子31を被検体の前側(X線源側)に配置することは、上述したいずれのX線撮影システムにも適用することが可能である。 In the present mammography apparatus 90, the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80. Note that, as in the mammography apparatus 90, the subject is disposed between the first absorption type grating 31 and the second absorption type grating 32, in other words, the first absorption type grating 31 is attached to the subject. The arrangement on the front side (X-ray source side) can be applied to any of the X-ray imaging systems described above.
 図16は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 16 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 X線撮影システム100は、X線源101のコリメータユニット102に、マルチスリット103を配設した点が、上記第1実施形態のX線撮影システム10と異なる。その他の構成については、前述したX線撮影システム10と同一であるので説明は省略する。 The X-ray imaging system 100 differs from the X-ray imaging system 10 of the first embodiment in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
 前述したX線撮影システム10では、X線源11からX線画像検出器30までの距離を、一般的な病院の撮影室で設定されるような距離(1m~2m)とした場合に、X線焦点18bの焦点サイズ(一般的に0.1mm~1mm程度)による自己像G1のボケが影響し、位相コントラスト画像の画質の低下をもたらす恐れがある。そこで、X線焦点18bの直後にピンホールを設置して実効的に焦点サイズを小さくすることが考えられるが、実効的な焦点サイズを縮小するためにピンホールの開口面積を小さくすると、X線強度が低下してしまう。本X線撮影システム100においては、この課題を解決するために、X線焦点18bの直後にマルチスリット103を配置する。 In the X-ray imaging system 10 described above, when the distance from the X-ray source 11 to the X-ray image detector 30 is set to a distance (1 m to 2 m) set in a general hospital imaging room, X The blurring of the self-image G1 due to the focal size of the line focal point 18b (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is degraded. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall. In the present X-ray imaging system 100, in order to solve this problem, the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
 マルチスリット103は、第1及び第2の吸収型格子31,32と同様な構成の吸収型格子(第3の吸収型格子)であり、一方向(y方向)に延伸した複数のX線遮蔽部が、第1及び第2の吸収型格子31,32のX線遮蔽部31b,32bと同一方向(x方向)に周期的に配列されている。このマルチスリット103は、X線焦点18bから放射される放射線を部分的に遮蔽することにより、x方向に所定のピッチで配列した多数の小焦点光源(分散光源)を形成することを目的としている。 The multi slit 103 is an absorption type grating (third absorption type grating) having the same configuration as the first and second absorption type gratings 31 and 32, and a plurality of X-ray shields extending in one direction (y direction). Are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31 b and 32 b of the first and second absorption type gratings 31 and 32. The multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
 このマルチスリット103の格子ピッチpは、マルチスリット103から第1の吸収型格子31までの距離をLとして、次式(17)を満たすように設定する必要がある。
Figure JPOXMLDOC01-appb-M000017
The lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following expression (17), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
Figure JPOXMLDOC01-appb-M000017
 式(17)は、マルチスリット103により分散形成された各小焦点光源から射出されたX線の第1の吸収型格子31による投影像(自己像G1)が、第2の吸収型格子32の位置で一致する(重なり合う)ための幾何学的な条件である。 Expression (17) indicates that the projection image (self-image G1) of the X-rays emitted from the small focus light sources dispersedly formed by the multi-slit 103 by the first absorption-type grating 31 is the second absorption-type grating 32. This is a geometric condition for matching (overlapping) in position.
 また、実質的にマルチスリット103の位置がX線焦点位置となるため、第2の吸収型格子32の位置での自己像G1のピッチp1’とすると、第1の吸収型格子31の格子ピッチp1、第2の吸収型格子32の格子ピッチp2は、次式(18)の関係を満たすように決定される。 In addition, since the position of the multi-slit 103 is substantially the X-ray focal position, if the pitch p1 ′ of the self-image G1 at the position of the second absorption grating 32 is assumed, the grating pitch of the first absorption grating 31 p1 and the lattice pitch p2 of the second absorption type lattice 32 are determined so as to satisfy the relationship of the following equation (18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 このように、本X線撮影システム100では、マルチスリット103により形成される複数の小焦点光源がそれぞれ形成する自己像G1が重ね合わせられることにより、X線強度を低下させずに、位相コントラスト画像の画質を向上させることができる。マルチスリット103は、上述したいずれのX線撮影システムにおいても適用可能である。 As described above, in the present X-ray imaging system 100, the self-images G1 formed by the plurality of small focus light sources formed by the multi-slits 103 are superimposed, so that the phase contrast image is not reduced without reducing the X-ray intensity. Image quality can be improved. The multi slit 103 can be applied to any of the X-ray imaging systems described above.
 図17は、本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その第1及び第2の格子の構成を示す。 FIG. 17 shows the configuration of the first and second gratings for another example of the radiation imaging system for explaining the embodiment of the present invention.
 前述したX線撮影システム10においては、第1及び第2の吸収型格子31,32は、X線遮蔽部31b,32bの周期配列方向が直線状(すなわち、格子面が平面状)となるように構成されているが、これに代えて、図19に示すように、格子面を略凹曲面状に構成した第1及び第2の吸収型格子110,111を用いることもできる。この場合に、検出面が円筒面状のX線画像検出器112を用いることが好ましく、X線画像検出器112の検出面は、X線焦点18bを通りy方向に延びる直線を中心軸とする円筒面状とする。 In the X-ray imaging system 10 described above, the first and second absorption gratings 31 and 32 are arranged such that the periodic arrangement direction of the X-ray shielding portions 31b and 32b is linear (that is, the grating surface is planar). However, instead of this, as shown in FIG. 19, it is also possible to use first and second absorption type gratings 110 and 111 having a substantially concave curved surface. In this case, it is preferable to use the X-ray image detector 112 having a cylindrical detection surface, and the detection surface of the X-ray image detector 112 has a straight line passing through the X-ray focal point 18b and extending in the y direction as a central axis. Cylindrical surface.
 第1の吸収型格子110は、複数の第1の格子モジュール33を連結して構成されており、第1の格子モジュール33は、X線焦点18bを通りX線遮蔽部35の延伸方向(y方向)に延びる仮想線を中心軸とする円筒面に沿って配列されている。同様に、第2の吸収型格子111もまた、複数の第2の格子モジュール36を連結して構成されており、第2の格子モジュール36は、X線焦点18bを通りX線遮蔽部38の延伸方向(y方向)に延びる仮想線を中心軸とする円筒面に沿って配列されている。 The first absorption type grating 110 is configured by connecting a plurality of first grating modules 33, and the first grating module 33 passes through the X-ray focal point 18b and extends in the extending direction (y Are arranged along a cylindrical surface whose center axis is an imaginary line extending in the direction). Similarly, the second absorption-type grating 111 is also configured by connecting a plurality of second grating modules 36, and the second grating module 36 passes through the X-ray focal point 18 b and has the X-ray shielding portion 38. They are arranged along a cylindrical surface having a virtual axis extending in the extending direction (y direction) as a central axis.
 このように、第1及び第2の吸収型格子110,111を、それぞれ複数の格子モジュールを連結して構成することで、それらの格子面を容易に略凹曲面状に構成することができる。そして、第1及び第2の吸収型格子110,111の格子面を略凹曲面状とすることにより、X線焦点18bから照射されるX線は、被検体Hが存在しない場合、格子面の各部に略垂直に入射することになるため、X線遮蔽部35の厚みhとX線遮蔽部38の厚みhとの上限の制約が緩和され、上記式(6)及び(7)を考慮する必要がない。 In this way, by configuring the first and second absorption type gratings 110 and 111 by connecting a plurality of grating modules, the grating surfaces can be easily formed into a substantially concave curved surface shape. Then, by making the grating surfaces of the first and second absorption gratings 110 and 111 substantially concave curved surfaces, the X-rays irradiated from the X-ray focal point 18 b since made incident substantially perpendicularly to the respective units, the upper limit of the limitation of the thickness h 2 of the thickness h 1 and the X-ray shielding portion 38 of the X-ray shielding portion 35 is reduced, the above expression (6) and (7) There is no need to consider.
 なお、X線画像検出器112についても、第1及び第2の吸収型格子110,111と同様に、複数の検出器モジュールに分割して構成し、それらの検出器モジュールを円筒面に沿って配列するようにすれば、その検出面を容易に円筒面状とすることができる。 The X-ray image detector 112 is also divided into a plurality of detector modules in the same manner as the first and second absorption type gratings 110 and 111, and these detector modules are arranged along the cylindrical surface. If arranged, the detection surface can be easily formed into a cylindrical surface.
 上述した各X線撮影システムでは、放射線として一般的なX線を用いる場合について説明したが、本発明に用いられる放射線はX線に限られるものではなく、α線、γ線等のX線以外の放射線を用いることも可能である。 In each X-ray imaging system described above, the case where general X-rays are used as radiation has been described. However, the radiation used in the present invention is not limited to X-rays, but other than X-rays such as α-rays and γ-rays. It is also possible to use other radiation.
 以上、説明したように、本明細書には、下記(1)~(9)の放射線撮影システムが開示されている。 As described above, the following radiographic imaging systems (1) to (9) are disclosed in this specification.
 (1) 放射線照射野に配置される被写体によって変調を受けた周期パターンを含む放射線画像を取得する撮影部と、前記放射線画像に含まれる前記周期パターンに基づいて前記被写体の位相コントラスト画像を生成する演算処理部と、を備え、前記撮影部は、通過する放射線によって、前記放射線画像に含まれる前記周期パターンの基礎となる周期的強度分布を含む放射線像を形成する一つ以上の格子と、前記放射線像を検出する放射線画像検出器と、を有しており、前記格子及び前記放射線画像検出器の要素のうち少なくとも一つの要素は、複数のモジュールに分割されて構成されており、前記演算処理部は、モジュール分割された前記要素のうち少なくとも一つの要素におけるモジュール間の境界の少なくとも一部に対応させて前記放射線画像を複数の部分放射線画像に区分し、これらの部分放射線画像毎に、前記部分放射線画像に対してフーリエ変換を行って該部分放射線画像の空間周波数スペクトルを取得する変換処理と、前記部分放射線画像に含まれる周期パターンの基本周波数成分を含む空間周波数領域を前記空間周波数スペクトルから分離し、分離された前記空間周波数領域に対して逆フーリエ変換を行って部分位相コントラスト画像を生成する部分位相コントラスト画像生成処理と、を実行し、そして、前記部分位相コントラスト画像生成処理によって生成される複数の部分位相コントラスト画像を結合して前記被写体の位相コントラスト画像を生成する結合処理を実行する、放射線撮影システム。
 (2) 上記(1)の放射線撮影システムであって、通過する放射線によって前記周期的強度分布を含む第1の放射線像を形成する第1の格子を備え、前記放射線画像検出器は、前記第1の放射線像を検出する放射線撮影システム。
 (3) 上記(2)の放射線撮影システムであって、前記放射線画像検出器は、複数の検出器モジュールに分割されて構成されており、前記演算処理部は、少なくとも前記放射線画像検出器における検出器モジュール間の境界の少なくとも一部に対応させて前記放射線画像を前記複数の部分放射線画像に区分する放射線撮影システム。
 (4) 上記(2)又は(3)の放射線撮影システムであって、前記第1の格子は、複数の第1の格子モジュールに分割されて構成されており、前記演算処理部は、少なくとも前記第1の格子における第1の格子モジュール間の境界の少なくとも一部に対応させて前記放射線画像を前記複数の部分放射線画像に区分する放射線撮影システム。
 (5) 上記(2)から(4)のいずれか一つの放射線撮影システムであって、前記放射線画像検出器は、放射線を検出して電荷を蓄積する複数の画素のアレイを有し、これらの画素は、前記第1の放射線像の前記周期的強度分布の周期の1/2以下のピッチに配列されており、前記放射線画像に含まれる周期パターンは、前記第1の放射線像の前記周期的強度分布に対応する放射線撮影システム。
 (6) 上記(2)から(4)のいずれか一つの放射線撮影システムであって、前記放射線画像検出器は、放射線を検出して電荷を蓄積する複数の画素のアレイを有し、これらの画素は、前記第1の放射線像の前記周期的強度分布の周期との関係でモアレを形成するピッチに配列されており、前記放射線画像に含まれる周期パターンは、前記モアレに対応する放射線撮影システム。
 (7) 上記(5)又は(6)の放射線撮影システムであって、前記放射線画像検出器は、前記各画素に蓄積された電荷を読み出す読み出し回路を有し、前記読み出し回路は、半導体基板に形成されている前記放射線撮影システム。
 (8) 上記(2)から(4)のいずれか一つの放射線撮影システムであって、前記第1の放射線像をマスキングしてモアレを含む第2の放射線像を形成する第2の格子を更に備え、前記放射線画像検出器は、前記第1の放射線像を検出するのに替えて、前記第2の放射線像を検出する放射線撮影システム。
 (9) 上記(8)の放射線撮影システムであって、前記第2の格子は、複数の第2の格子モジュールに分割されて構成されており、前記演算処理部は、少なくとも前記第2の格子における第2の格子モジュール間の境界の少なくとも一部に対応させて前記放射線画像を前記複数の部分放射線画像に区分する放射線撮影システム。
(1) An imaging unit that acquires a radiographic image including a periodic pattern modulated by a subject arranged in a radiation irradiation field, and generates a phase contrast image of the subject based on the periodic pattern included in the radiographic image An arithmetic processing unit, wherein the imaging unit forms one or more gratings that form a radiation image including a periodic intensity distribution that is a basis of the periodic pattern included in the radiation image by passing radiation; and A radiation image detector for detecting a radiation image, wherein at least one of the lattice and the elements of the radiation image detector is divided into a plurality of modules, and the arithmetic processing The unit is configured to correspond to at least a part of a boundary between modules in at least one of the elements divided into modules. A line image is divided into a plurality of partial radiation images, and for each partial radiation image, a Fourier transform is performed on the partial radiation image to obtain a spatial frequency spectrum of the partial radiation image, and the partial radiation A partial phase contrast that separates a spatial frequency region including a fundamental frequency component of a periodic pattern included in an image from the spatial frequency spectrum, and performs an inverse Fourier transform on the separated spatial frequency region to generate a partial phase contrast image. A radiographic imaging system that executes a combining process of combining a plurality of partial phase contrast images generated by the partial phase contrast image generating process to generate a phase contrast image of the subject. .
(2) The radiation imaging system according to (1), further including a first grating that forms a first radiation image including the periodic intensity distribution by passing radiation, wherein the radiation image detector includes A radiation imaging system for detecting a radiation image of 1.
(3) The radiation imaging system according to (2), wherein the radiation image detector is divided into a plurality of detector modules, and the arithmetic processing unit is at least detected by the radiation image detector. A radiation imaging system that divides the radiation image into the plurality of partial radiation images in correspondence with at least a part of a boundary between the instrument modules.
(4) In the radiation imaging system according to (2) or (3), the first grating is configured by being divided into a plurality of first grating modules, and the arithmetic processing unit includes at least the arithmetic processing unit. A radiation imaging system that divides the radiation image into the plurality of partial radiation images in correspondence with at least a part of a boundary between first grating modules in a first grating.
(5) The radiation imaging system according to any one of (2) to (4), wherein the radiation image detector includes an array of a plurality of pixels that detect radiation and accumulate electric charges, and The pixels are arranged at a pitch of ½ or less of the period of the periodic intensity distribution of the first radiation image, and the periodic pattern included in the radiation image is the periodic pattern of the first radiation image. Radiography system corresponding to intensity distribution.
(6) The radiation imaging system according to any one of (2) to (4), wherein the radiation image detector includes an array of a plurality of pixels that detect radiation and accumulate electric charges. The pixels are arranged in a pitch that forms moire in relation to the period of the periodic intensity distribution of the first radiation image, and the periodic pattern included in the radiation image has a radiation imaging system corresponding to the moire. .
(7) In the radiation imaging system according to (5) or (6), the radiation image detector includes a readout circuit that reads out the electric charges accumulated in the pixels, and the readout circuit is provided on a semiconductor substrate. The said radiography system currently formed.
(8) The radiation imaging system according to any one of (2) to (4), further including a second grating that masks the first radiation image to form a second radiation image including moire. And the radiographic image detector detects the second radiographic image instead of detecting the first radiographic image.
(9) In the radiographic system according to (8), the second grating is configured to be divided into a plurality of second grating modules, and the arithmetic processing unit includes at least the second grating. A radiation imaging system that divides the radiation image into the plurality of partial radiation images corresponding to at least a part of a boundary between the second grating modules in FIG.
 本発明によれば、放射線像の周期パターンの周期と放射線画像検出器の画素ピッチとの干渉によって、放射線画像検出器によって取得される画像にモアレを生じさせ、被写体に起因するモアレの変調に基づいて位相コントラスト画像を生成する。よって、放射線像の周期パターンを検出可能なほどに画素ピッチを小さくする必要がなく、S/Nを確保して位相情報の精度を高めることができる。 According to the present invention, the interference between the period of the periodic pattern of the radiographic image and the pixel pitch of the radiographic image detector causes moiré to occur in the image acquired by the radiographic image detector, and is based on the modulation of moiré caused by the subject. To generate a phase contrast image. Therefore, it is not necessary to reduce the pixel pitch so that the periodic pattern of the radiation image can be detected, and S / N can be ensured to improve the accuracy of the phase information.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年6月10日出願の日本特許出願(特願2011‐130709)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2011-130709) filed on June 10, 2011, the contents of which are incorporated herein by reference.
10  X線撮影システム
11  X線源
12  撮影部
13  コンソール
30  X線画像検出器
31  第1の吸収型格子
32  第2の吸収型格子
40  画素
DESCRIPTION OF SYMBOLS 10 X-ray imaging system 11 X-ray source 12 Imaging part 13 Console 30 X-ray image detector 31 1st absorption grating 32 2nd absorption grating 40 Pixel

Claims (9)

  1.  放射線照射野に配置される被写体によって変調を受けた周期パターンを含む放射線画像を取得する撮影部と、
     前記放射線画像に含まれる前記周期パターンに基づいて前記被写体の位相コントラスト画像を生成する演算処理部と、
     を備え、
     前記撮影部は、通過する放射線によって、前記放射線画像に含まれる前記周期パターンの基礎となる周期的強度分布を含む放射線像を形成する一つ以上の格子と、前記放射線像を検出する放射線画像検出器と、を有しており、
     前記格子及び前記放射線画像検出器の要素のうち少なくとも一つの要素は、複数のモジュールに分割されて構成されており、
     前記演算処理部は、モジュール分割された前記要素のうち少なくとも一つの要素におけるモジュール間の境界の少なくとも一部に対応させて前記放射線画像を複数の部分放射線画像に区分し、これらの部分放射線画像毎に、前記部分放射線画像に対してフーリエ変換を行って該部分放射線画像の空間周波数スペクトルを取得する変換処理と、前記部分放射線画像に含まれる周期パターンの基本周波数成分を含む空間周波数領域を前記空間周波数スペクトルから分離し、分離された前記空間周波数領域に対して逆フーリエ変換を行って部分位相コントラスト画像を生成する部分位相コントラスト画像生成処理と、を実行し、そして、前記部分位相コントラスト画像生成処理によって生成される複数の部分位相コントラスト画像を結合して前記被写体の位相コントラスト画像を生成する結合処理を実行する、放射線撮影システム。
    An imaging unit for acquiring a radiographic image including a periodic pattern modulated by a subject arranged in a radiation irradiation field;
    An arithmetic processing unit for generating a phase contrast image of the subject based on the periodic pattern included in the radiation image;
    With
    The imaging unit includes one or more gratings that form a radiation image including a periodic intensity distribution that is a basis of the periodic pattern included in the radiation image, and a radiation image detection that detects the radiation image. And
    At least one element of the grating and the elements of the radiation image detector is configured by being divided into a plurality of modules.
    The arithmetic processing unit divides the radiographic image into a plurality of partial radiographic images corresponding to at least a part of a boundary between modules in at least one of the elements divided into modules, and each of the partial radiographic images A spatial frequency region including a fundamental frequency component of a periodic pattern included in the partial radiation image, and a transformation process for performing a Fourier transform on the partial radiation image to obtain a spatial frequency spectrum of the partial radiation image. Performing a partial phase contrast image generation process for generating a partial phase contrast image by performing an inverse Fourier transform on the separated spatial frequency domain to generate a partial phase contrast image, and performing the partial phase contrast image generation process Combining the plurality of partial phase contrast images generated by Executing a binding process to generate a phase contrast image of the body, a radiation imaging system.
  2.  請求項1に記載の放射線撮影システムであって、
     通過する放射線によって前記周期的強度分布を含む第1の放射線像を形成する第1の格子を備え、
     前記放射線画像検出器は、前記第1の放射線像を検出する放射線撮影システム。
    The radiation imaging system according to claim 1,
    A first grating for forming a first radiation image including the periodic intensity distribution by passing radiation;
    The radiation image detector is a radiation imaging system that detects the first radiation image.
  3.  請求項2に記載の放射線撮影システムであって、
     前記放射線画像検出器は、複数の検出器モジュールに分割されて構成されており、
     前記演算処理部は、少なくとも前記放射線画像検出器における検出器モジュール間の境界の少なくとも一部に対応させて前記放射線画像を前記複数の部分放射線画像に区分する放射線撮影システム。
    The radiographic system according to claim 2,
    The radiation image detector is configured by being divided into a plurality of detector modules,
    The radiation processing system in which the arithmetic processing unit classifies the radiation image into the plurality of partial radiation images in correspondence with at least a part of a boundary between detector modules in the radiation image detector.
  4.  請求項2又は3に記載の放射線撮影システムであって、
     前記第1の格子は、複数の第1の格子モジュールに分割されて構成されており、
     前記演算処理部は、少なくとも前記第1の格子における第1の格子モジュール間の境界の少なくとも一部に対応させて前記放射線画像を前記複数の部分放射線画像に区分する放射線撮影システム。
    The radiographic system according to claim 2 or 3,
    The first lattice is divided into a plurality of first lattice modules,
    The arithmetic processing unit divides the radiographic image into the plurality of partial radiographic images in correspondence with at least a part of a boundary between first grid modules in the first grid.
  5.  請求項2から4のいずれか一項に記載の放射線撮影システムであって、
     前記放射線画像検出器は、放射線を検出して電荷を蓄積する複数の画素のアレイを有し、これらの画素は、前記第1の放射線像の前記周期的強度分布の周期の1/2以下のピッチに配列されており、
     前記放射線画像に含まれる周期パターンは、前記第1の放射線像の前記周期的強度分布に対応する放射線撮影システム。
    The radiographic system according to any one of claims 2 to 4,
    The radiation image detector has an array of a plurality of pixels that detect radiation and accumulate electric charge, and these pixels are equal to or less than ½ of the period of the periodic intensity distribution of the first radiation image. Arranged on the pitch,
    The periodic pattern included in the radiation image is a radiation imaging system corresponding to the periodic intensity distribution of the first radiation image.
  6.  請求項2から4のいずれか一項に記載の放射線撮影システムであって、
     前記放射線画像検出器は、放射線を検出して電荷を蓄積する複数の画素のアレイを有し、これらの画素は、前記第1の放射線像の前記周期的強度分布の周期との関係でモアレを形成するピッチに配列されており、
     前記放射線画像に含まれる周期パターンは、前記モアレに対応する放射線撮影システム。
    The radiographic system according to any one of claims 2 to 4,
    The radiation image detector has an array of a plurality of pixels that detect radiation and accumulate electric charges, and these pixels are moire in relation to the period of the periodic intensity distribution of the first radiation image. Arranged in the pitch to be formed,
    The periodic pattern included in the radiation image is a radiation imaging system corresponding to the moire.
  7.  請求項5又は6に記載の放射線撮影システムであって、
     前記放射線画像検出器は、前記各画素に蓄積された電荷を読み出す読み出し回路を有し、前記読み出し回路は、半導体基板に形成されている前記放射線撮影システム。
    The radiographic system according to claim 5 or 6,
    The radiation image detector includes a readout circuit that reads out charges accumulated in the pixels, and the readout circuit is formed on a semiconductor substrate.
  8.  請求項2から4のいずれか一項に記載の放射線撮影システムであって、
     前記第1の放射線像をマスキングしてモアレを含む第2の放射線像を形成する第2の格子を更に備え、
     前記放射線画像検出器は、前記第1の放射線像を検出するのに替えて、前記第2の放射線像を検出する放射線撮影システム。
    The radiographic system according to any one of claims 2 to 4,
    Further comprising a second grating for masking the first radiation image to form a second radiation image including moire,
    The radiographic image detector detects the second radiographic image instead of detecting the first radiographic image.
  9.  請求項8に記載の放射線撮影システムであって、
     前記第2の格子は、複数の第2の格子モジュールに分割されて構成されており、
     前記演算処理部は、少なくとも前記第2の格子における第2の格子モジュール間の境界の少なくとも一部に対応させて前記放射線画像を前記複数の部分放射線画像に区分する放射線撮影システム。
    The radiation imaging system according to claim 8,
    The second grating is configured by being divided into a plurality of second grating modules,
    The radiographic system that divides the radiographic image into the plurality of partial radiographic images in correspondence with at least a part of a boundary between second grid modules in the second grid.
PCT/JP2012/064128 2011-06-10 2012-05-31 Radiography system WO2012169427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011130709A JP2014155509A (en) 2011-06-10 2011-06-10 Radiographic system
JP2011-130709 2011-06-10

Publications (1)

Publication Number Publication Date
WO2012169427A1 true WO2012169427A1 (en) 2012-12-13

Family

ID=47295993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064128 WO2012169427A1 (en) 2011-06-10 2012-05-31 Radiography system

Country Status (2)

Country Link
JP (1) JP2014155509A (en)
WO (1) WO2012169427A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6688795B2 (en) * 2014-11-24 2020-04-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Detector and imaging system for x-ray phase contrast tomosynthesis imaging
KR101636438B1 (en) * 2015-03-18 2016-07-05 제이피아이헬스케어 주식회사 Phase-contrast X-ray imaging(PCXI) method using a single grid and the apparatus thereof
DE102016206559B3 (en) * 2016-04-19 2017-06-08 Siemens Healthcare Gmbh Method for correcting an X-ray image for effects of a scattered radiation grid, X-ray device, computer program and electronically readable data carrier
WO2020039654A1 (en) * 2018-08-22 2020-02-27 株式会社島津製作所 X-ray phase imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159482A (en) * 2000-11-24 2002-06-04 Konica Corp Method of phase-contrast x-ray imaging and phase- contrast x-ray imaging apparatus
JP2007203063A (en) * 2006-02-01 2007-08-16 Siemens Ag Focus-detector system for x-ray apparatus
JP2007203061A (en) * 2006-02-01 2007-08-16 Siemens Ag Focus-detector system for x-ray apparatus
WO2010050483A1 (en) * 2008-10-29 2010-05-06 キヤノン株式会社 X-ray imaging device and x-ray imaging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159482A (en) * 2000-11-24 2002-06-04 Konica Corp Method of phase-contrast x-ray imaging and phase- contrast x-ray imaging apparatus
JP2007203063A (en) * 2006-02-01 2007-08-16 Siemens Ag Focus-detector system for x-ray apparatus
JP2007203061A (en) * 2006-02-01 2007-08-16 Siemens Ag Focus-detector system for x-ray apparatus
WO2010050483A1 (en) * 2008-10-29 2010-05-06 キヤノン株式会社 X-ray imaging device and x-ray imaging method

Also Published As

Publication number Publication date
JP2014155509A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP5331940B2 (en) Radiation imaging system and radiation image generation method
JP5731214B2 (en) Radiation imaging system and image processing method thereof
JP2011218147A (en) Radiographic system
JP5783987B2 (en) Radiography equipment
JP2012090945A (en) Radiation detection device, radiographic apparatus, and radiographic system
JP2012090944A (en) Radiographic system and radiographic method
JP2012200567A (en) Radiographic system and radiographic method
JP2011224329A (en) Radiation imaging system and method
JP2011227041A (en) Diffraction grating and adjustment method thereof, and radiography system
JP2012024339A (en) Radiation imaging system and collimator unit
JP2012095865A (en) Radiographic apparatus and radiographic system
WO2012169426A1 (en) Radiography system
WO2012169427A1 (en) Radiography system
JP2011206490A (en) Radiographic system and radiographic method
JP2012125423A (en) Radiation image detection apparatus, radiographic imaging apparatus, and radiographic imaging system
WO2013047011A1 (en) Radiographic image detector, method of manufacturing same, and radiography system employing radiographic image detector
WO2012147749A1 (en) Radiography system and radiography method
JP2012120650A (en) Radiographic system and method for generating radiation phase contrast image
JP5610480B2 (en) Radiation image processing apparatus and method
JP2011206162A (en) Radiographic system and method
WO2012056992A1 (en) Radiograph detection device, radiography device, radiography system
JP2012228369A (en) Radiographic system, and radiographic method
JP2011206489A (en) Radiographic system and radiographic method
WO2012133553A1 (en) Radiography system and radiography method
WO2013084657A1 (en) Radiation imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP