WO2012057046A1 - Radiography device and radiography system - Google Patents
Radiography device and radiography system Download PDFInfo
- Publication number
- WO2012057046A1 WO2012057046A1 PCT/JP2011/074365 JP2011074365W WO2012057046A1 WO 2012057046 A1 WO2012057046 A1 WO 2012057046A1 JP 2011074365 W JP2011074365 W JP 2011074365W WO 2012057046 A1 WO2012057046 A1 WO 2012057046A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grating
- radiation
- image
- ray
- detector
- Prior art date
Links
- 238000002601 radiography Methods 0.000 title claims description 17
- 238000003384 imaging method Methods 0.000 claims abstract description 139
- 230000005855 radiation Effects 0.000 claims abstract description 129
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 12
- 238000010521 absorption reaction Methods 0.000 claims description 154
- 230000007246 mechanism Effects 0.000 claims description 38
- 230000008859 change Effects 0.000 claims description 30
- 230000003287 optical effect Effects 0.000 claims description 29
- 238000009826 distribution Methods 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 230000010363 phase shift Effects 0.000 description 26
- 238000000034 method Methods 0.000 description 24
- 238000001514 detection method Methods 0.000 description 20
- LFEUVBZXUFMACD-UHFFFAOYSA-H lead(2+);trioxido(oxo)-$l^{5}-arsane Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-][As]([O-])([O-])=O.[O-][As]([O-])([O-])=O LFEUVBZXUFMACD-UHFFFAOYSA-H 0.000 description 19
- 238000010586 diagram Methods 0.000 description 14
- 238000012937 correction Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- 230000014509 gene expression Effects 0.000 description 9
- 238000009607 mammography Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 239000010931 gold Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- -1 terbium activated gadolinium oxide Chemical class 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-M argininate Chemical compound [O-]C(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-M 0.000 description 1
- 210000001188 articular cartilage Anatomy 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/484—Diagnostic techniques involving phase contrast X-ray imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4291—Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/542—Control of apparatus or devices for radiation diagnosis involving control of exposure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4035—Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
- A61B6/4452—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
- A61B6/4464—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being mounted to ceiling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/502—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
Definitions
- the present invention relates to a radiation imaging apparatus and a radiation imaging system.
- X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance.
- X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
- a subject In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured.
- each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector.
- an X-ray image detector there is a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit in addition to a combination of an X-ray intensifying screen and a film, a stimulable phosphor (accumulating phosphor), and so on. Widely used.
- FPD Flat Panel Detector
- automatic exposure is used to stabilize the density of the image obtained by the X-ray image detector with respect to the required exposure amount that varies depending on the subject, or to prevent excessive exposure of the subject due to excessive exposure. Control is taking place.
- the automatic exposure control generally, the dose of X-rays transmitted through the subject is detected by a dose detector, and the X-ray irradiation is stopped when the dose detected by the dose detector reaches a preset threshold dose. .
- the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
- an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object.
- Imaging research is actively conducted.
- a first diffraction grating phase type grating or absorption type grating
- a specific distance Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
- the second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating.
- the Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the arranged subject and the X-ray.
- the X-ray Talbot interferometer detects moiré fringes generated by superimposing the first image of the first diffraction grating and the second diffraction grating, and obtains subject phase information by analyzing changes in the moiré fringes caused by the subject.
- a fringe scanning method is known. According to this fringe scanning method, the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating.
- a distribution (differential image of phase shift) is obtained, and a phase contrast image of the subject can be obtained based on this angular distribution.
- Patent Document 1 describes that the above automatic exposure control is performed in the X-ray phase imaging by the fringe scanning method using the first and second diffraction gratings.
- the moire fringes from the X-ray phase contrast image become shorter as the period of the moire fringes becomes shorter. It may be difficult to remove the influence of the image quality, and the image quality may deteriorate. Therefore, it is preferable that the period of the moire fringes is long.
- Patent Document 1 does not particularly describe the position of the dose detector, but generally the dose detector is disposed behind the X-ray image detector.
- the dose detector in the X-ray phase imaging based on the fringe scanning method using the first and second diffraction gratings, the dose detector is positioned downstream of the second diffraction grating, and thus on the light receiving portion of the dose detector.
- moire fringes are formed. As shown in FIG. 18, this moire fringe moves with the scanning of the second diffraction grating (FIG.
- the dose of X-rays incident on the dose detector per unit time varies greatly depending on whether the dark part of the moire fringes overlaps the light receiving part or when the dark part does not overlap the light receiving part.
- the above automatic exposure control extends or shortens the X-ray irradiation time so as to cancel the fluctuation of the X-ray dose incident on the light receiving unit of the dose detector per unit time.
- the variation in the irradiation dose between photographings causes a change in the signal value of each pixel separately from the scanning of the second diffraction grating.
- the X-ray phase imaging by the fringe scanning method using the first and second diffraction gratings detects the phase information of the subject from the change in the signal value of each pixel accompanying the scanning of the second diffraction grating.
- a change in the signal value of each pixel due to a factor different from the scanning of the second diffraction grating reduces the detection accuracy of the phase information of the subject.
- the present invention has been made in view of the above-described circumstances, and an object thereof is to generate a highly accurate radiation phase contrast image by appropriate exposure control.
- a radiation imaging apparatus comprising: a radiation image detector; and a dose detector that is located upstream of the grating pattern in a traveling direction of radiation passing through the grating pattern and detects an incident radiation dose.
- the dose detector by arranging the dose detector upstream of the lattice pattern, the dose detector detects the dose without being affected by the moire fringes formed by superimposing the radiation image and the lattice pattern. be able to. Thereby, appropriate exposure control can be performed, and a highly accurate radiation phase contrast image can be generated.
- FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention
- FIG. 2 shows a control block of the radiation imaging system of FIG.
- the X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject (patient) H in a standing position, and is disposed opposite to the X-ray source 11 that emits X-rays to the subject H, and the X-ray source 11.
- An imaging unit 12 that detects X-rays transmitted through the subject H from the X-ray source 11 and generates image data, and controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12 based on the operation of the operator.
- it is roughly divided into a console 13 that generates a phase contrast image by calculating the image data acquired by the photographing unit 12.
- the X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling.
- the photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
- the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18.
- the X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion that does not contribute to the inspection area of the subject H.
- the X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
- the X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of.
- a motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
- the standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction.
- the holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c.
- the driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
- the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. .
- the detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like.
- the X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
- the console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like.
- the control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
- the input device 21 for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used.
- an X-ray tube voltage or an X-ray dose detected by a dose detector described later can be used.
- X-ray imaging conditions such as a threshold dose, imaging timing, and the like are input.
- the monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
- the imaging unit 12 includes a flat panel detector (FPD) 30 made of a semiconductor circuit, a first absorption type grating 31 and a second absorption type for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging.
- FPD flat panel detector
- An absorption grating 32 and a dose detector 35 are provided.
- the FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11.
- the first and second absorption gratings 31 and 32 are disposed between the FPD 30 and the X-ray source 11.
- the dose detector 35 is arranged between the first absorption type grating 31 and the second absorption type grating 32 and is located downstream of the subject H, as will be described in detail later.
- the dose detector 35 detects the X-ray dose transmitted through the subject H, and sends a signal indicating that the threshold dose has been reached to the control device 20 when the detected dose reaches the threshold dose. Receiving this signal, the control device 20 sends a control signal instructing to stop the irradiation of X-rays to the X-ray source control unit 17, and the X-ray control unit 17 receiving this control signal sends the control signal to the X-ray tube 18.
- the high voltage generator 16 is controlled to stop the supply of power.
- X-ray light receiving element of the dose detector 35 for example, a combination of a phosphor and a photomultiplier tube, an ion chamber, an X-ray detector using a semiconductor circuit, or the like is used.
- X-ray irradiation and stop may be switched by opening and closing the collimator 19, or a disk shape (or slit) in which openings and shields are alternately formed.
- X-ray irradiation and stop may be switched by providing a shutter plate of the shape) at the emission port of the X-ray source 11 and rotating (or translating) it in synchronization with the X-ray irradiation timing. According to this, it is possible to keep the X-ray tube 18 in a stable state and more reliably prevent variations in irradiation dose.
- the imaging unit 12 changes the relative positional relationship of the second absorption type grating 32 with respect to the first absorption type grating 31 by translating the second absorption type grating 32 in the vertical direction (x direction).
- a scanning mechanism 33 is provided.
- the scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
- FIG. 3 shows a configuration of a radiation image detector included in the radiation imaging system of FIG.
- the FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41.
- a scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13.
- the scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
- Each pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and stores the converted electric charges in a capacitor (not shown) connected to an electrode below the conversion layer. It can be configured as a direct conversion type element.
- Each pixel 40 is connected to a thin film transistor (TFT) switch (not shown), and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46.
- TFT thin film transistor
- Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it.
- the X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
- the readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory (all not shown).
- the integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter.
- the A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit.
- the correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory.
- correction processing by the correction circuit correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
- 4 and 5 show an imaging unit of the radiation imaging system of FIG.
- the first absorption-type grating 31 includes a substrate 31a and a plurality of X-ray shielding portions 31b arranged on the substrate 31a.
- the second absorption type grating 32 includes a substrate 32a and a plurality of X-ray shielding portions 32b arranged on the substrate 32a.
- the substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays.
- Each of the X-ray shielding portions 31b and 32b is in one direction in a plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (in the illustrated example, the y direction orthogonal to the x direction and the z direction). It is comprised by the linear member extended
- a material of each X-ray shielding part 31b, 32b a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable.
- These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
- the X-ray shielding part 31b has a predetermined interval d 1 with a constant period (lattice pitch) p 1 in a direction (x direction) orthogonal to the one direction in a plane orthogonal to the optical axis A of X-rays. It is arranged in a space.
- X-ray shielding portion 32b in the plane orthogonal to the optical axis A of the X-ray, in the direction predetermined period (x-direction) (grating pitch) p 2 perpendicular to the one direction, from each other a predetermined distance They are arranged with d 2 in between.
- the first and second absorption gratings 31 and 32 do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings.
- the slit portions may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
- the first and second absorption gratings 31 and 32 are configured to geometrically project the X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the peak wavelength of X-rays emitted from the X-ray source 11, most of the X-rays included in the irradiated X-rays are slit at the slit portion. It is configured to pass through without being diffracted while maintaining straightness. For example, when tungsten is used as the rotary anode 18a described above and the tube voltage is 50 kV, the peak wavelength of the X-ray is about 0.4 mm. In this case, if the distances d 1 and d 2 are about 1 to 10 ⁇ m, most of the X-rays are geometrically projected without being diffracted at the slit portion.
- the X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam having the X-ray focal point 18b as a light emission point, and therefore a projected image projected through the first absorption grating 31 (hereinafter referred to as a projection image).
- the projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b.
- the grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic pattern of the bright part of the G1 image at the position of the second absorption type grating 32.
- the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
- the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
- the imaging unit 12 of the present X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting, and the G1 image of the first absorption grating 31 is the first. because at every position of the rear absorption type grating 31 similarly obtained, the distance L 2, can be set independently of the Talbot distance.
- the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating.
- the grating pitch p 1 of 31, the grating pitch p 2, X-ray wavelength of the second absorption-type grating 32 (peak wavelength) lambda, and using the positive integer m, is expressed by the following equation (2).
- Expression (2) is an expression that represents the Talbot interference distance when the X-ray irradiated from the X-ray source 11 is a cone beam. “Atsushi Momose, et al., Japan Journal of Applied Physics, Vol. 47, No. 10, October 2008, page 8077 ”.
- Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, the distance L 2, the value of the range that satisfies the following equation (5) Set to.
- the X-ray shielding portions 31b and 32b preferably completely shield (absorb) X-rays in order to generate a periodic pattern image with high contrast, but the above-described materials (gold, platinum) having excellent X-ray absorption properties Etc.), there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b, it is preferable to increase the thickness much as possible. For example, when the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays. In this case, the thicknesses h 1 and h 2 are 30 ⁇ m or more in terms of gold (Au). It is preferable that
- the X-rays irradiated from the X-ray source 11 are cone beams
- the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are too thick, the X-rays incident obliquely enter the slit portion.
- vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 31b and 32b becomes narrow. Therefore, in view of the field of view secured to define the upper limit of the thickness h 1, h 2.
- the effective visual field length V in the x direction is 10 cm.
- the thickness h 1 may be 100 ⁇ m or less and the thickness h 2 may be 120 ⁇ m or less.
- an intensity-modulated image is formed by superimposing the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 and is captured by the FPD 30. .
- the pattern period p 1 ′ of the G1 image at the position of the second absorption grating 32 and the substantial grating pitch p 2 ′ (substantial pitch after production) of the second absorption grating 32 are manufacturing errors. Some differences occur due to or placement errors. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
- the period T of the moire fringes is expressed by the following equation (8).
- the arrangement pitch P in the x direction of the pixels 40 needs to be at least not an integral multiple of the moire period T, and it is necessary to satisfy the following equation (9) (where n Is a positive integer).
- the arrangement pitch P of the pixels 40 of the FPD 30 is a value determined by design (generally about 100 ⁇ m) and is difficult to change, the magnitude relationship between the arrangement pitch P and the moire period T is adjusted. Adjusts the positions of the first and second absorption gratings 31 and 32 and changes the moire period T by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the G1 image. It is preferable to do.
- FIG. 6 shows a method of changing the moire cycle T.
- the moire period T can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A.
- a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided.
- the substantial grating pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ / cos ⁇ ”.
- the moire cycle T changes (FIG. 6A).
- the change of the moire period T is such that either one of the first and second absorption type gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. It can be performed by inclining.
- a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided.
- the second absorption type grating 32 is inclined by the angle ⁇ by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ ⁇ cos ⁇ ”.
- the moire cycle T changes (FIG. 6B).
- the moire period T can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A.
- the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32.
- a relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided.
- the G1 image of the first absorption type grating 31 projected onto the position of the second absorption type grating 32.
- the pattern period of “p 1 ′” ⁇ “p 1 ′ ⁇ (L 1 + L 2 + ⁇ ) / (L 1 + L 2 )” changes, and as a result, the moire period T changes (FIG. 6C).
- imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed.
- the change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the moiré period T is constituted by an actuator such as a piezoelectric element. Is possible.
- the moire fringes detected by the FPD 30 are modulated by the subject H.
- This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire fringes detected by the FPD 30.
- FIG. 7 shows one X-ray refracted according to the phase shift distribution ⁇ (x) of the subject H in the x direction.
- the dose detector 35 is not shown.
- Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do.
- Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
- phase shift distribution ⁇ (x) of the subject H is expressed by the following equation (11), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
- the G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H. become.
- This amount of displacement ⁇ x is approximately expressed by the following equation (12) based on the small X-ray refraction angle ⁇ .
- the refraction angle ⁇ is expressed by Expression (13) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
- the displacement amount ⁇ x of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x) of the subject H.
- the amount of displacement ⁇ x is expressed by the following equation with the phase shift amount ⁇ of the signal output from each pixel 40 of the FPD 30 (the phase shift amount of the signal of each pixel 40 with and without the subject H): It is related as shown in (14).
- phase shift amount ⁇ of the signal of each pixel 40 the refraction angle ⁇ is obtained from the equation (14), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (13).
- a phase shift distribution ⁇ (x) of the subject H that is, a phase contrast image of the subject H can be generated.
- the phase shift amount ⁇ is calculated using a fringe scanning method described below.
- the fringe scanning method imaging is performed while one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner relative to the other in the x direction (that is, the phase of both grating periods is changed). Shoot while changing).
- the second absorption type grating 32 is moved by the scanning mechanism 33 described above, but the first absorption type grating 31 may be moved.
- the moire fringes move, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2 ⁇ ), the moire fringes return to their original positions.
- a fringe image is photographed with the FPD 30 while moving the second absorption grating 32 by an integer of the grating pitch p 2 , and each pixel 40 is captured from the plural fringe images photographed.
- the signal is acquired and processed by the processing unit 22 to obtain the phase shift amount ⁇ of the signal of each pixel 40.
- FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
- the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present.
- x is a coordinate in the x direction of the pixel 40
- a 0 is the intensity of the incident X-ray
- An is a value corresponding to the contrast of the signal value of the pixel 40 (where n is a positive value). Is an integer).
- ⁇ (x) represents the refraction angle ⁇ as a function of the coordinate x of the pixel 40.
- arg [] means the extraction of the declination, and corresponds to the phase shift amount ⁇ of the signal of each pixel 40. Accordingly, the refraction angle ⁇ (x) is obtained by calculating the phase shift amount ⁇ of the signal of each pixel 40 from the M signal values obtained at each pixel 40 based on the equation (17).
- FIG. 9 shows a signal of one pixel of the radiation image detector that changes with the fringe scanning.
- the M signal values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption grating 32.
- a broken line in FIG. 9 indicates a change in signal value when the subject H does not exist, and a solid line in FIG. 9 indicates a change in signal value when the subject H exists.
- the phase difference between the two waveforms corresponds to the phase shift amount ⁇ of the signal of each pixel 40.
- the phase shift is obtained by integrating the refraction angle ⁇ (x) along the x-axis.
- a distribution ⁇ (x) is obtained.
- the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution ⁇ (x , Y). The above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the phase contrast image in the storage unit 23.
- the change of the M signal values of each pixel 40 for calculating the phase shift amount ⁇ needs to be brought about by the scanning of the second absorption type grating 32.
- the X-ray irradiation dose irradiated from the X-ray source 11 to the imaging unit 12 is required to be substantially constant during imaging.
- the present X-ray imaging system 10 during each imaging, automatic exposure control is performed to stop X-ray irradiation when the X-ray dose detected by the dose detector 35 reaches a preset threshold dose.
- the irradiation dose is kept almost constant.
- the dose detector 35 is disposed between the first absorption type grating 31 and the second absorption type grating 32 and is located upstream of the second absorption type grating 32. Therefore, the G1 image on the light receiving unit of the dose detector 35 does not move even by scanning the second absorption grating 32, and the dose of X-rays incident on the dose detector 35 per unit time is constant. Therefore, the time until the dose detected by the dose detector 35 reaches the above threshold dose is constant between imagings, and variations in irradiation dose between imagings are prevented.
- the G1 image formed by the X-rays that have passed through the first absorption type grating 31 is superimposed on the second absorption type grating 32 so that it is downstream of the second absorption type grating 32. Moire fringes are formed on the image receiving surface of the FPD 30.
- the dose detector 35 is located upstream of the second absorption-type grating 32, and the G1 image on the light receiving portion of the dose detector 35 does not have moire fringes, and the pattern period thereof is the first absorption.
- the order is ⁇ m.
- the size of the light receiving part of the dose detector 35 is generally on the order of cm.
- the light receiving part of the dose detector 35 is overlapped with countless bright parts and dark parts in the G1 image, and these are averaged and detected. Is done. Accordingly, even when the first absorption-type grating 31 is scanned instead of the second absorption-type grating 32 and the G1 image moves as the first absorption-type grating 31 is scanned, the dose detector 35 has a unit. The dose of X-rays incident per hour is almost constant. Therefore, the irradiation time of X-rays until the dose detected by the dose detector 35 reaches the above threshold dose is substantially constant between imaging, and variation in irradiation dose between imaging is prevented.
- the moire fringes formed downstream of the second absorption grating 32 do not affect the dose detection in the dose detector 35 disposed upstream of the second absorption grating 32. Therefore, the period T of the moire fringes can be made longer than, for example, the size of the light receiving part of the dose detector 35 by the relative rotation mechanism 50, the relative tilt mechanism 51, and the relative movement mechanism 52 described above. As a result, the influence of moire fringes can be sufficiently removed from the X-ray phase contrast image, and the image quality of the X-ray phase contrast image can be improved.
- FIG. 10 shows an example of the arrangement of the light receiving parts of the dose detector 35.
- the light receiving portions of the dose detector 35 are preferably distributed in a plane perpendicular to the optical axis A of X-rays, and particularly preferably substantially symmetric with respect to the optical axis A.
- a plurality of light receiving portions 35a may be provided, and these light receiving portions 35a may be arranged in a distributed manner in a plane perpendicular to the optical axis A of the X-ray, and may be arranged at positions that are substantially symmetrical with respect to the optical axis A.
- one light receiving unit 35a can be distributed in a plane perpendicular to the optical axis A of the X-ray and is substantially symmetrical with respect to the optical axis A.
- the light receiving portion 35a has a frame shape surrounding the optical axis A (FIG. 10E).
- a plurality of light receiving portions 35a can be provided, and these light receiving portions 35a may be arranged in a distributed manner in a plane orthogonal to the optical axis A of the X-ray. It is preferable to arrange at a position that is substantially symmetrical with respect to A (FIG. 10F).
- FIG. 10F As described above, by distributing the light receiving portions of the dose detector 35 in a plane orthogonal to the optical axis A of the X-ray, stable dose detection can be performed for each imaging.
- the dose detector 35 is preferably disposed between the first absorption type grating 31 and the second absorption type grating 32, and more preferably, is disposed adjacent to the second absorption type grating 32.
- the above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20.
- the phase contrast image of the subject H is displayed on the monitor 24.
- the dose detector 35 is disposed upstream of the second grating 32, and is formed by superimposing the G1 image and the second grating 32.
- the dose detector 35 can detect the dose without being affected by the moire fringes. Thereby, appropriate exposure control can be performed, and a highly accurate radiation phase contrast image can be generated.
- the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned).
- the above-described X-ray imaging system 10 calculates the refraction angle ⁇ by performing fringe scanning on the projection image of the first grating, and therefore the first and second gratings absorb both.
- the present invention is not limited to this.
- the present invention is also useful when the refraction angle ⁇ is calculated by performing fringe scanning on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating.
- the method of analyzing the moire fringes formed by superimposing the X-ray image of the first grating and the second grating is not limited to the above-described fringe scanning method. For example, “J. Opt. Soc. Am. Vol” .72, No. 1 (1982) p.156 ”, various methods using Moire fringes, such as a method using Fourier transform / inverse Fourier transform known in the art.
- the X-ray imaging system 10 has been described as one that stores or displays an image of the phase shift distribution ⁇ as a phase contrast image, as described above, the phase shift distribution ⁇ is a phase determined from the refraction angle ⁇ .
- the differential amount of the shift distribution ⁇ is integrated, and the differential amount of the refraction angle ⁇ and the phase shift distribution ⁇ is also related to the phase change of the X-ray by the subject. Therefore, an image having the refraction angle ⁇ as an image and an image having the differential amount of the phase shift ⁇ are also included in the phase contrast image.
- phase differential image (a differential amount of the phase shift distribution ⁇ ) may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject.
- This phase differential image reflects the phase unevenness of the detection system (including phase shift due to moire, grid nonuniformity, refraction of the dose detector, etc.).
- a phase differential image is created from a group of images acquired by shooting (main shooting) in the presence of a subject, and the phase differential image obtained by pre-shooting is subtracted from this to correct phase irregularity in the measurement system.
- a phase differential image can be obtained.
- FIG. 11 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
- a mammography apparatus 80 shown in FIG. 11 is an apparatus that captures an X-ray image (phase contrast image) of a breast B as a subject.
- the mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81.
- An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
- the X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12.
- the X-ray source 11 and the imaging unit 12 are arranged to face each other.
- the compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
- the same reference numerals as those of the first embodiment are given to the respective components. Since other configurations and operations are the same as those in the first embodiment, description thereof will be omitted.
- FIG. 12 shows a modification of the radiation imaging system of FIG.
- the mammography apparatus 90 shown in FIG. 12 is different from the mammography apparatus 80 described above in that the first absorption type grating 31 is disposed between the X-ray source 11 and the compression plate 84.
- the first absorption type lattice 31 is accommodated in a lattice accommodation portion 91 connected to the arm member 81.
- the imaging unit 92 includes an FPD 30, a second absorption grating 32, a scanning mechanism 33, and a dose detector 35.
- the dose detector 35 is disposed between the subject B and the second absorption grating 32.
- the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
- the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 90 can also be applied to the X-ray imaging system 10 described above. Is possible.
- FIG. 13 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
- the X-ray imaging system 100 differs from the X-ray imaging system 10 of the first embodiment in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
- the focal point of the X-ray focal point 18b when the distance from the X-ray source 11 to the FPD 30 is a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b.
- the blur of the G1 image due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is lowered. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall.
- the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
- the multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction).
- the extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32.
- the multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
- the lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following formula (18), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
- the above formula (18) indicates that the projection image (G1 image) of the X-rays emitted from the respective point light sources dispersedly formed by the multi slit 103 by the first absorption type grating 31 is the position of the second absorption type grating 32. This is a geometric condition for matching (overlapping).
- the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (19).
- the G1 images based on the plurality of point light sources formed by the multi-slit 103 are superimposed, thereby improving the image quality of the phase contrast image without reducing the X-ray intensity. be able to.
- the multi slit 103 described above can be applied to any of the X-ray imaging systems described above.
- FIG. 14 shows the configuration of the radiation image detector in relation to another example of the radiation imaging system for explaining the embodiment of the present invention.
- the second absorption type grating 32 is provided independently of the FPD 30, but the X-ray image detector itself has the second absorption type grating 32 or an equivalent configuration. You may do it.
- the second absorption type grating can be eliminated by using an X-ray image detector having a configuration disclosed in Japanese Patent Laid-Open No. 2009-133823.
- This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges, and a charge collection electrode that collects electric charges converted in the conversion layer,
- the charge collecting electrode 121 of the pixel 120 is configured by arranging a plurality of linear electrode groups 122 to 127 formed by electrically connecting linear electrodes arranged at a constant period so that their phases are different from each other. Has been.
- the pixels 120 are two-dimensionally arranged at a constant pitch along the x direction and the y direction, and each pixel 120 has a charge collection for collecting the charges converted by the conversion layer that converts the X-rays into charges.
- An electrode 121 is formed.
- the charge collection electrode 121 includes first to sixth linear electrode groups 122 to 127, and the phase of the arrangement period of the linear electrodes of each linear electrode group is shifted by ⁇ / 3.
- the phase of the first linear electrode group 122 is 0, the phase of the second linear electrode group 123 is ⁇ / 3, the phase of the third linear electrode group 124 is 2 ⁇ / 3, The phase of the fourth linear electrode group 125 is ⁇ , the phase of the fifth linear electrode group 126 is 4 ⁇ / 3, and the phase of the sixth linear electrode group 127 is 5 ⁇ / 3.
- the relationship between 1 ′ and the arrangement pitch P of the pixels 120 in the x direction is similar to the second absorption grating 32 of the X-ray imaging system 10 described above, and the period T of the moire fringes represented by the equation (8). Therefore, it is necessary to satisfy the formula (9), and it is preferable to satisfy the formula (10).
- each pixel 120 is provided with a switch group 128 for reading out the charges collected by the charge collecting electrode 121.
- the switch group 128 includes TFT switches provided in the first to sixth linear electrode groups 121 to 126, respectively.
- the second absorption type grating 32 is not required from the imaging unit 12, and a plurality of images can be obtained by one imaging. Since a phase component fringe image can be acquired, physical scanning for fringe scanning becomes unnecessary, and the scanning mechanism 33 can be eliminated. Thereby, it is possible to reduce the cost and further reduce the thickness of the photographing unit.
- the dose detector 35 can be disposed between the subject H and the first absorption type grating 31 or between the first absorption type grating 31 and the X-ray image detector.
- the detector 35 is preferably arranged between the first absorption grating 31 and the X-ray image detector, more preferably the X-ray image detection described above. Placed adjacent to the vessel. It should be noted that the structure of the charge collecting electrode may be replaced with another structure described in Japanese Patent Application Laid-Open No. 2009-133823.
- FIG. 15 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
- the phase contrast image obtained by the fringe scanning is an X-ray refraction component in the periodic array direction (x direction) of the X-ray shielding portions of the first and second absorption gratings 31 and 32.
- the refractive component in the extending direction (y direction) of the X-ray shielding part is not included. For this reason, there is a portion that cannot be depicted depending on the shape and orientation of the subject H. For example, when the direction of the load surface of the articular cartilage is matched with the y direction, it is considered that the peripheral tissue of the cartilage (such as tendons and ligaments) having a shape perpendicular to the load surface is insufficiently depicted.
- the peripheral tissue of the cartilage such as tendons and ligaments
- the first and second absorption gratings 31 and 32 are centered on a virtual line (X-ray optical axis A) orthogonal to the center of the grating surface of the first and second absorption gratings 31 and 32. It is also possible to provide a lattice rotation mechanism 105 that rotates integrally from the first direction and sets the second direction to generate a phase contrast image in each of the first direction and the second direction. Is preferred.
- the first and second absorption gratings 31 and 32 are rotated by 90 °, and the first direction and the second direction are orthogonal to each other. As long as the direction intersects, the rotation angle of the first and second absorption gratings 31 and 32 is not limited to 90 °. Further, the grating rotating mechanism 105 may be configured to rotate only the first and second absorption type gratings 31 and 32 separately from the FPD 30, or the first and second absorption type gratings 31. , 32 and the FPD 30 may be rotated together.
- the multi-slit 103 when the multi-slit 103 is provided, the multi-slit 103 and the collimator 109 or the radiation source formed integrally with them is rotated so that the rotation coincides with the first and second absorption gratings 31 and 32. . Furthermore, the generation of phase contrast images in the first and second orientations using the grating rotation mechanism 105 can be applied to any of the X-ray imaging systems described above.
- FIG. 16 shows a configuration of a calculation unit of another example of the radiation imaging system for explaining the embodiment of the present invention.
- phase contrast image a high-contrast image (phase contrast image) of an X-ray weakly absorbing object that has been difficult to draw
- an absorption image is referred to corresponding to the phase contrast image.
- it is effective to supplement the portion that could not be represented by the absorption image with the information of the phase contrast image by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing.
- capturing an absorption image separately from the phase contrast image makes it difficult to superimpose images due to the shift in the shooting position between the phase contrast image capture and the absorption image capture. Increasing the burden on the subject.
- the small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in the fields of cancer and cardiovascular diseases.
- this X-ray imaging system uses an arithmetic processing unit 190 that can generate an absorption image and a small-angle scattered image from a plurality of images acquired for a phase contrast image.
- the absorption image generation unit 192 generates an absorption image by averaging the pixel data I k (x, y) obtained for each pixel with respect to k and calculating an average value as shown in FIG. To do.
- the average value may be calculated by simply averaging the pixel data I k (x, y) with respect to k. However, when M is small, the error increases, so that the pixel data I k ( After fitting x, y) with a sine wave, an average value of the fitted sine wave may be obtained.
- the generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel data I k (x, y) with respect to k can be used as long as the amount corresponds to the average value.
- an absorption image may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject.
- This absorption image reflects the transmittance unevenness of the detection system (including information such as the transmittance unevenness of the grid and the influence of the absorption of the dose detector). Therefore, a correction coefficient map for correcting the transmittance unevenness of the detection system can be created from this image.
- Absorption of the subject in which an absorption image is created from a group of images obtained by shooting in the state of the subject (main shooting), and the above-described correction coefficient is applied to each pixel, thereby correcting the transmittance unevenness of the detection system. An image can be obtained.
- the small angle scattered image generation unit 193 generates a small angle scattered image by calculating and imaging the amplitude value of the pixel data I k (x, y) obtained for each pixel.
- the amplitude value may be calculated by obtaining the difference between the maximum value and the minimum value of the pixel data I k (x, y).
- M is small
- the error increases, so that the pixel data After fitting I k (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained.
- the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
- a small angle scattered image may be created from an image group obtained by photographing (pre-photographing) in the absence of a subject.
- This small-angle scattered image reflects the amplitude value unevenness of the detection system (including information such as grid pitch non-uniformity, aperture ratio non-uniformity, and non-uniformity due to relative displacement between grids). . Therefore, a correction coefficient map for correcting the amplitude irregularity of the detection system can be created from this image.
- a small-angle scattered image is created from a group of images acquired by shooting (main shooting) in the presence of the subject, and the amplitude value unevenness of the detection system is corrected by applying the correction coefficient described above to each pixel.
- a small-angle scattered image can be obtained.
- an absorption image and a small angle scattered image are generated from a plurality of images acquired for the phase contrast image of the subject. No deviation occurs, and the phase contrast image can be satisfactorily superimposed with the absorption image or the small-angle scattered image.
- the radiation used in the present invention is not limited to X-rays, but other than X-rays such as ⁇ -rays and ⁇ -rays. It is also possible to use other radiation.
- the present specification includes a first grating and a grating pattern having a period substantially matching the pattern period of a radiation image formed by radiation that has passed through the first grating;
- a radiation image detector for detecting the radiation image masked by the grating pattern;
- a dose detector for detecting an incident radiation dose positioned upstream of the grating pattern in a traveling direction of radiation passing through the grating pattern;
- a radiation imaging apparatus comprising:
- the dose detector is disposed between the first grating and the grating pattern.
- the pattern period of the radiation image masked by the lattice pattern is longer than the dimension of the light receiving unit of the dose detector with respect to the period direction.
- the radiographic apparatus disclosed in the specification changes at least one of a relative posture and a relative position of the lattice pattern with respect to the first lattice, and the radiation image masked by the second lattice. And a change mechanism for changing the pattern period.
- the changing mechanism causes at least one of the first grating and the grating pattern to be arranged around an optical axis of radiation irradiated to the first grating. Rotate.
- the change mechanism has at least one of the first grating and the grating pattern with respect to an optical axis of radiation applied to the first grating. Tilt.
- the changing mechanism may change at least one of the first grating and the grating pattern along an optical axis of radiation irradiated on the first grating. Move.
- the light receiving units of the dose detector are provided in a distributed manner in a plane orthogonal to the optical axis of the radiation irradiated on the first grating.
- the grating pattern is placed at a plurality of relative positions having different phases from each other with respect to the radiation image.
- the lattice pattern is a second lattice, and the second lattice is moved, and the second lattice is moved.
- a scanning mechanism is further provided that places a grating at the plurality of relative positions with respect to the radiation image.
- the dose detector is disposed adjacent to the second grating.
- the lattice pattern is provided in the radiation image detector.
- the radiological image detector includes a conversion layer that converts radiation into electric charge, and a charge collection electrode that collects electric charge converted in the conversion layer, for each pixel.
- the charge collection electrode includes a plurality of linear electrode groups having a period substantially matching the pattern period of the radiation image, and the plurality of linear electrode groups are arranged so that their phases are different from each other.
- the lattice pattern is constituted by each of the plurality of linear electrode groups.
- the dose detector is provided adjacent to the radiation image detector.
- the first grating is an absorption grating.
- the first grating is a phase-type grating.
- the radiation imaging apparatus disclosed in this specification further includes a radiation source that irradiates radiation toward the first grating.
- the present specification discloses a radiation imaging system including any one of the above-described radiation imaging apparatuses and a control unit that performs exposure control based on the dose detected by the dose detector.
- the lattice pattern is placed at a plurality of relative positions having different phases with respect to the radiation image, and the radiation image detector has the lattice pattern different from each other.
- the radiation image masked by the lattice pattern is detected, and the dose detected by the dose detector is constant between the imaging steps. The exposure is controlled so that
- the radiation imaging system disclosed in this specification calculates a distribution of refraction angles of radiation incident on the radiation image detector from a radiation image acquired by the radiation image detector of the radiation detector, A calculation unit is further provided for generating a phase contrast image of the subject based on the distribution of the refraction angles.
- the dose detector by arranging the dose detector upstream of the lattice pattern, the dose detector detects the dose without being affected by the moire fringes formed by superimposing the radiation image and the lattice pattern. be able to. Thereby, appropriate exposure control can be performed, and a highly accurate radiation phase contrast image can be generated.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
The present invention generates a high-precision radiation phase contrast image by appropriate exposure control. An X-ray imaging system (10) comprises: a first grid (31); a second grating (32) having a period that substantially matches the pattern period of a radiation picture formed by radiation that passes through the first grating; a radiation image detector (30) for detecting the radiation picture masked by the second grating; a dose detector (35) for detecting the incident radiation dose, the dose detector being positioned upstream from the second grating; and a controller (22) for controlling exposure on the basis of the dose detected by the dose detector.
Description
本発明は、放射線撮影装置及び放射線撮影システムに関する。
The present invention relates to a radiation imaging apparatus and a radiation imaging system.
X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被写体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。
X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance. X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
一般的なX線撮影システムでは、X線を放射するX線源とX線画像を検出するX線画像検出器との間に被写体を配置して、被写体の透過像を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する被写体を構成する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器に入射する。この結果、被写体のX線透過像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体(蓄積性蛍光体)のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。また、被写体によって異なる必要露光量に対して、X線画像検出器により得られる画像の濃度を安定させるため、あるいは必要以上に露光されることによる被写体の過度の被爆を防止するために、自動露光制御が行われている。自動露光制御では、一般に、被写体を透過したX線の線量が線量検出器で検出され、線量検出器で検出される線量が予め設定された閾値線量に達したところでX線の照射が停止される。
In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured. In this case, each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector. As an X-ray image detector, there is a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit in addition to a combination of an X-ray intensifying screen and a film, a stimulable phosphor (accumulating phosphor), and so on. Widely used. In addition, automatic exposure is used to stabilize the density of the image obtained by the X-ray image detector with respect to the required exposure amount that varies depending on the subject, or to prevent excessive exposure of the subject due to excessive exposure. Control is taking place. In the automatic exposure control, generally, the dose of X-rays transmitted through the subject is detected by a dose detector, and the X-ray irradiation is stopped when the dose detected by the dose detector reaches a preset threshold dose. .
しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなり、生体軟部組織やソフトマテリアルなどでは、X線吸収能の差が小さく、従ってX線透過像としての十分な画像の濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が小さいため、画像のコントラストが得られにくい。
However, the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
このような問題を背景に、近年、被写体によるX線の強度変化に代えて、被写体によるX線の位相変化(角度変化)に基づいた画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。一般に、X線が物体に入射したとき、X線の強度よりも位相のほうが高い相互作用を示すことが知られている。このため、位相差を利用したX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を得ることができる。このようなX線位相イメージングの一種として、近年、2枚の透過回折格子(位相型格子及び吸収型格子)とX線画像検出器とからなるX線タルボ干渉計を用いたX線撮影システムが考案されている(例えば、特許文献1参照)。
Against the background of such problems, in recent years, an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object. Imaging research is actively conducted. In general, it is known that when X-rays are incident on an object, the interaction is higher in phase than in X-ray intensity. For this reason, in the X-ray phase imaging using the phase difference, a high-contrast image can be obtained even for a weakly absorbing object having a low X-ray absorption capability. As a kind of such X-ray phase imaging, in recent years, an X-ray imaging system using an X-ray Talbot interferometer comprising two transmission diffraction gratings (phase grating and absorption grating) and an X-ray image detector has been proposed. It has been devised (for example, see Patent Document 1).
X線タルボ干渉計は、被写体の背後に第1の回折格子(位相型格子あるいは吸収型格子)を配置し、第1の回折格子の格子ピッチとX線波長で決まる特定距離(タルボ干渉距離)だけ下流に第2の回折格子(吸収型格子)を配置し、その背後にX線画像検出器を配置することにより構成される。上記タルボ干渉距離とは、第1の回折格子を通過したX線が、タルボ干渉効果によって自己像を形成する距離であり、この自己像は、X線源と第1の回折格子との間に配置された被写体とX線との相互作用(位相変化)により変調を受ける。
In the X-ray Talbot interferometer, a first diffraction grating (phase type grating or absorption type grating) is arranged behind a subject, and a specific distance (Talbot interference distance) determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating. The Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the arranged subject and the X-ray.
X線タルボ干渉計では、第1の回折格子の自己像と第2の回折格子との重ね合わせにより生じるモアレ縞を検出し、被写体によるモアレ縞の変化を解析することによって被写体の位相情報を取得する。モアレ縞の解析方法としては、たとえば、縞走査法が知られている。この縞走査法によると、第1の回折格子に対して第2の回折格子を、第1の回折格子の面にほぼ平行で、かつ第1の回折格子の格子方向(条帯方向)にほぼ垂直な方向に、格子ピッチを等分割した走査ピッチで並進移動させながら複数回の撮影を行い、X線画像検出器で得られる各画素の信号値の変化から、被写体で屈折したX線の角度分布(位相シフトの微分像)を取得し、この角度分布に基づいて被写体の位相コントラスト画像を得ることができる。
The X-ray Talbot interferometer detects moiré fringes generated by superimposing the first image of the first diffraction grating and the second diffraction grating, and obtains subject phase information by analyzing changes in the moiré fringes caused by the subject. To do. As a method for analyzing moire fringes, for example, a fringe scanning method is known. According to this fringe scanning method, the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating. The angle of X-rays refracted by the subject from a change in the signal value of each pixel obtained by the X-ray image detector, which is taken multiple times while being translated in the vertical direction at a scanning pitch obtained by equally dividing the lattice pitch. A distribution (differential image of phase shift) is obtained, and a phase contrast image of the subject can be obtained based on this angular distribution.
そして、特許文献1には、第1及び第2の回折格子を用いた縞走査法によるX線位相イメージングにおいて、上記の自動露光制御を行うことが記載されている。
Patent Document 1 describes that the above automatic exposure control is performed in the X-ray phase imaging by the fringe scanning method using the first and second diffraction gratings.
第1及び第2の回折格子を用いた縞走査法によるX線位相イメージングにおいて、第1の回折格子を通過したX線が形成する放射線像は、上記の通り、第2の回折格子が重ね合わされることによって、第2の回折格子の下流のX線画像検出器の受像面上でモアレ縞を形成する。よって、X線画像検出器で検出される画像にはモアレ縞が含まれるが、医療診断や非破壊検査において、最終的にはモアレ縞の影響が除去されたX線位相コントラスト画像が提示されることが好ましい。しかし、第1及び第2の回折格子の格子ピッチの誤差、第2の回折格子の走査誤差、等の程度によっては、モアレ縞の周期が短くなるのに伴ってX線位相コントラスト画像からモアレ縞の影響を除去することが困難となり、画質が低下する場合がある。そのため、モアレ縞の周期は長いほうが好ましい。
In X-ray phase imaging by the fringe scanning method using the first and second diffraction gratings, the radiation image formed by the X-rays that have passed through the first diffraction grating is superimposed on the second diffraction grating as described above. As a result, moire fringes are formed on the image receiving surface of the X-ray image detector downstream of the second diffraction grating. Therefore, although the image detected by the X-ray image detector includes moire fringes, an X-ray phase contrast image from which the influence of moire fringes has been finally removed is presented in medical diagnosis and non-destructive inspection. It is preferable. However, depending on the degree of the grating pitch error of the first and second diffraction gratings, the scanning error of the second diffraction grating, etc., the moire fringes from the X-ray phase contrast image become shorter as the period of the moire fringes becomes shorter. It may be difficult to remove the influence of the image quality, and the image quality may deteriorate. Therefore, it is preferable that the period of the moire fringes is long.
特許文献1には、線量検出器の位置について特に記載されていないが、一般に、線量検出器はX線画像検出器の裏に配置される。その場合、第1及び第2の回折格子を用いた縞走査法によるX線位相イメージングにおいては、線量検出器は第2の回折格子の下流に位置することになり、線量検出器の受光部上においてもモアレ縞が形成される。図18に示すように、このモアレ縞は第2の回折格子の走査に伴って移動し(FIG.18A)、モアレ縞の周期が周期方向に関する線量検出器の受光部の寸法よりも長くなると、モアレ縞の暗部が受光部に重なるときと、暗部が受光部に重ならないときとで、線量検出器に単位時間当たりに入射するX線の線量が大きく変動する。
Patent Document 1 does not particularly describe the position of the dose detector, but generally the dose detector is disposed behind the X-ray image detector. In that case, in the X-ray phase imaging based on the fringe scanning method using the first and second diffraction gratings, the dose detector is positioned downstream of the second diffraction grating, and thus on the light receiving portion of the dose detector. In this case, moire fringes are formed. As shown in FIG. 18, this moire fringe moves with the scanning of the second diffraction grating (FIG. 18A), and when the period of the moire fringes becomes longer than the dimension of the light receiving part of the dose detector in the period direction, The dose of X-rays incident on the dose detector per unit time varies greatly depending on whether the dark part of the moire fringes overlaps the light receiving part or when the dark part does not overlap the light receiving part.
上記の自動露光制御は、線量検出器の受光部に単位時間当たりに入射するX線の線量の変動をキャンセルするように、X線の照射時間を延長あるいは短縮する。結果、撮影間の照射線量にバラツキが発生し、撮影間の照射線量のバラツキは第2の回折格子の走査とは別に各画素の信号値に変化をもたらす。例えば、照射線量が一定の場合に第2の回折格子の走査によって本来得られるはずの信号値の変化に対して、線量検出器の受光部と同位相でモアレ縞の暗部が重なるX線画像検出器の画素Aでは、その信号値の変化が減弱され(FIG.18B)、また、線量検出器の受光部と逆位相でモアレ縞の暗部が重なるX線画像検出器の画素Bでは、その信号値の変化が強調される(FIG.18C)。
The above automatic exposure control extends or shortens the X-ray irradiation time so as to cancel the fluctuation of the X-ray dose incident on the light receiving unit of the dose detector per unit time. As a result, there is a variation in the irradiation dose between photographings, and the variation in the irradiation dose between photographings causes a change in the signal value of each pixel separately from the scanning of the second diffraction grating. For example, X-ray image detection in which the dark part of moire fringes overlaps with the light receiving part of the dose detector for the change in signal value that should be originally obtained by scanning the second diffraction grating when the irradiation dose is constant In the pixel A of the detector, the change in the signal value is attenuated (FIG. 18B), and in the pixel B of the X-ray image detector in which the dark part of the moire fringes overlaps with the light receiving part of the dose detector, the signal The change in value is emphasized (FIG. 18C).
第1及び第2の回折格子を用いた縞走査法によるX線位相イメージングは、上記の通り、第2の回折格子の走査に伴う各画素の信号値の変化から被写体の位相情報を検出するものであり、第2の回折格子の走査とは別の要因による各画素の信号値の変化は、被写体の位相情報の検出精度を低下させる。
As described above, the X-ray phase imaging by the fringe scanning method using the first and second diffraction gratings detects the phase information of the subject from the change in the signal value of each pixel accompanying the scanning of the second diffraction grating. Thus, a change in the signal value of each pixel due to a factor different from the scanning of the second diffraction grating reduces the detection accuracy of the phase information of the subject.
本発明は、上述した事情に鑑みなされたものであり、適切な露光制御により、高精度な放射線位相コントラスト画像を生成することを目的とする。
The present invention has been made in view of the above-described circumstances, and an object thereof is to generate a highly accurate radiation phase contrast image by appropriate exposure control.
第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有する格子パターンと、前記格子パターンによってマスキングされた前記放射線像を検出する放射線画像検出器と、前記格子パターンを通過する放射線の進行方向に前記格子パターンより上流に位置し、入射する放射線量を検出する線量検出器と、を備える放射線撮影装置。
Detecting a first grating, a grating pattern having a period substantially matching a pattern period of a radiation image formed by radiation that has passed through the first grating, and the radiation image masked by the grating pattern A radiation imaging apparatus comprising: a radiation image detector; and a dose detector that is located upstream of the grating pattern in a traveling direction of radiation passing through the grating pattern and detects an incident radiation dose.
本発明によれば、線量検出器を格子パターンの上流に配置することによって、放射線像と格子パターンとの重ね合わせによって形成されるモアレ縞の影響を受けることなく、線量検出器において線量を検出することができる。それにより、適切な露光制御を可能とし、高精度な放射線位相コントラスト画像を生成することができる。
According to the present invention, by arranging the dose detector upstream of the lattice pattern, the dose detector detects the dose without being affected by the moire fringes formed by superimposing the radiation image and the lattice pattern. be able to. Thereby, appropriate exposure control can be performed, and a highly accurate radiation phase contrast image can be generated.
図1は、本発明の実施形態を説明するための放射線撮影システムの一例の構成を示し、図2は、図1の放射線撮影システムの制御ブロックを示す。
FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention, and FIG. 2 shows a control block of the radiation imaging system of FIG.
X線撮影システム10は、被写体(患者)Hを立位状態で撮影するX線診断装置であって、被写体HにX線を放射するX線源11と、X線源11に対向配置され、X線源11から被写体Hを透過したX線を検出して画像データを生成する撮影部12と、操作者の操作に基づいてX線源11の曝射動作や撮影部12の撮影動作を制御するとともに、撮影部12により取得された画像データを演算処理して位相コントラスト画像を生成するコンソール13とに大別される。
The X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject (patient) H in a standing position, and is disposed opposite to the X-ray source 11 that emits X-rays to the subject H, and the X-ray source 11. An imaging unit 12 that detects X-rays transmitted through the subject H from the X-ray source 11 and generates image data, and controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12 based on the operation of the operator. At the same time, it is roughly divided into a console 13 that generates a phase contrast image by calculating the image data acquired by the photographing unit 12.
X線源11は、天井から吊り下げられたX線源保持装置14により上下方向(x方向)に移動自在に保持されている。撮影部12は、床上に設置された立位スタンド15により上下方向に移動自在に保持されている。
The X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling. The photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
X線源11は、X線源制御部17の制御に基づき、高電圧発生器16から印加される高電圧に応じてX線を発生するX線管18と、X線管18から発せられたX線のうち、被写体Hの検査領域に寄与しない部分を遮蔽するように照射野を制限する可動式のコリメータ19aを備えたコリメータユニット19とから構成されている。X線管18は、陽極回転型であり、電子放出源(陰極)としてのフィラメント(図示せず)から電子線を放出して、所定の速度で回転する回転陽極18aに衝突させることによりX線を発生する。この回転陽極18aの電子線の衝突部分がX線焦点18bとなる。
Based on the control of the X-ray source control unit 17, the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18. The X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion that does not contribute to the inspection area of the subject H. The X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
X線源保持装置14は、天井に設置された天井レール(図示せず)により水平方向(z方向)に移動自在に構成された台車部14aと、上下方向に連結された複数の支柱部14bとからなる。台車部14aには、支柱部14bを伸縮させて、X線源11の上下方向に関する位置を変更するモータ(図示せず)が設けられている。
The X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of. A motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
立位スタンド15は、床に設置された本体15aに、撮影部12を保持する保持部15bが上下方向に移動自在に取り付けられている。保持部15bは、上下方向に離間して配置された2つのプーリ15cの間に掛架された無端ベルト15dに接続され、プーリ15cを回転させるモータ(図示せず)により駆動される。このモータの駆動は、操作者の設定操作に基づき、後述するコンソール13の制御装置20により制御される。
The standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction. The holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c. The driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
また、立位スタンド15には、プーリ15c又は無端ベルト15dの移動量を計測することにより、撮影部12の上下方向に関する位置を検出するポテンショメータ等の位置センサ(図示せず)が設けられている。この位置センサの検出値は、ケーブル等によりX線源保持装置14に供給される。X線源保持装置14は、供給された検出値に基づいて支柱部14bを伸縮させ、撮影部12の上下動に追従するようにX線源11を移動させる。
Further, the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. . The detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like. The X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
コンソール13には、CPU、ROM、RAM等からなる制御装置20が設けられている。制御装置20には、操作者が撮影指示やその指示内容を入力する入力装置21と、撮影部12により取得された画像データを演算処理してX線画像を生成する演算処理部22と、X線画像を記憶する記憶部23と、X線画像等を表示するモニタ24と、X線撮影システム10の各部と接続されるインターフェース(I/F)25とがバス26を介して接続されている。
The console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like. The control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
入力装置21としては、例えば、スイッチ、タッチパネル、マウス、キーボード等を用いることが可能であり、入力装置21の操作により、X線管電圧や後述する線量検出器で検出されるX線の線量に対する閾値線量等のX線撮影条件、撮影タイミング等が入力される。モニタ24は、液晶ディスプレイ等からなり、制御装置20の制御により、X線撮影条件等の文字やX線画像を表示する。
As the input device 21, for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used. By the operation of the input device 21, an X-ray tube voltage or an X-ray dose detected by a dose detector described later can be used. X-ray imaging conditions such as a threshold dose, imaging timing, and the like are input. The monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
撮影部12には、半導体回路からなるフラットパネル検出器(FPD)30、被写体HによるX線の位相変化(角度変化)を検出し位相イメージングを行うための第1の吸収型格子31及び第2の吸収型格子32、そして線量検出器35が設けられている。
The imaging unit 12 includes a flat panel detector (FPD) 30 made of a semiconductor circuit, a first absorption type grating 31 and a second absorption type for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging. An absorption grating 32 and a dose detector 35 are provided.
FPD30は、検出面がX線源11から照射されるX線の光軸Aに直交するように配置されている。詳しくは後述するが、第1及び第2の吸収型格子31,32は、FPD30とX線源11との間に配置されている。
The FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11. Although described in detail later, the first and second absorption gratings 31 and 32 are disposed between the FPD 30 and the X-ray source 11.
線量検出器35は、詳しくは後述するが、第1の吸収型格子31と第2の吸収型格子32との間に配置され、被写体Hの下流に位地している。線量検出器35は、被写体Hを透過したX線の線量を検出し、検出した線量が上記の閾値線量に達したところで、閾値線量に達したことを表す信号を制御装置20に送出する。この信号を受信した制御装置20は、X線の照射停止を指示する制御信号をX線源制御部17に送出し、この制御信号を受信したX線制御部17は、X線管18への電力の供給を停止するように高電圧発生器16を制御する。それにより、被写体HのX線の照射が停止される。線量検出器35のX線受光素子としては、例えば、蛍光体と光電子倍増管との組み合わせや、イオンチェンバーや、半導体回路を用いたX線検出器などが用いられる。なお、X線管18への電力の供給は継続しつつ、コリメータ19の開閉によってX線の照射と停止を切り替えてもよいし、開口部と遮蔽部とを交互に形成した円盤状(又はスリット状)のシャッター板をX線源11の出射口に設け、これをX線の照射タイミングに同期するように回転(又は並進)させることにより、X線の照射と停止を切り替えてもよい。それによれば、X線管18を安定した状態に保ち、照射線量のバラツキをより確実に防止することができる。
The dose detector 35 is arranged between the first absorption type grating 31 and the second absorption type grating 32 and is located downstream of the subject H, as will be described in detail later. The dose detector 35 detects the X-ray dose transmitted through the subject H, and sends a signal indicating that the threshold dose has been reached to the control device 20 when the detected dose reaches the threshold dose. Receiving this signal, the control device 20 sends a control signal instructing to stop the irradiation of X-rays to the X-ray source control unit 17, and the X-ray control unit 17 receiving this control signal sends the control signal to the X-ray tube 18. The high voltage generator 16 is controlled to stop the supply of power. Thereby, irradiation of the subject H with X-rays is stopped. As the X-ray light receiving element of the dose detector 35, for example, a combination of a phosphor and a photomultiplier tube, an ion chamber, an X-ray detector using a semiconductor circuit, or the like is used. In addition, while the supply of power to the X-ray tube 18 is continued, X-ray irradiation and stop may be switched by opening and closing the collimator 19, or a disk shape (or slit) in which openings and shields are alternately formed. X-ray irradiation and stop may be switched by providing a shutter plate of the shape) at the emission port of the X-ray source 11 and rotating (or translating) it in synchronization with the X-ray irradiation timing. According to this, it is possible to keep the X-ray tube 18 in a stable state and more reliably prevent variations in irradiation dose.
また、撮影部12には、第2の吸収型格子32を上下方向(x方向)に並進移動させることにより、第1の吸収型格子31に対する第2の吸収型格子32の相対位置関係を変化させる走査機構33が設けられている。この走査機構33は、例えば、圧電素子等のアクチュエータにより構成される。
The imaging unit 12 changes the relative positional relationship of the second absorption type grating 32 with respect to the first absorption type grating 31 by translating the second absorption type grating 32 in the vertical direction (x direction). A scanning mechanism 33 is provided. The scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
図3は、図1の放射線撮影システムに含まれる放射線画像検出器の構成を示す。
FIG. 3 shows a configuration of a radiation image detector included in the radiation imaging system of FIG.
放射線画像検出器としてのFPD30は、X線を電荷に変換して蓄積する複数の画素40がアクティブマトリクス基板上にxy方向に2次元配列されてなる受像部41と、受像部41からの電荷の読み出しタイミングを制御する走査回路42と、各画素40に蓄積された電荷を読み出し、電荷を画像データに変換して記憶する読み出し回路43と、画像データをコンソール13のI/F25を介して演算処理部22に送信するデータ送信回路44とから構成されている。なお、走査回路42と各画素40とは、行毎に走査線45によって接続されており、読み出し回路43と各画素40とは、列毎に信号線46によって接続されている。
The FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41. A scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13. And a data transmission circuit 44 for transmission to the unit 22. The scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
各画素40は、アモルファスセレン等の変換層(図示せず)でX線を電荷に直接変換し、変換された電荷を変換層の下部の電極に接続されたキャパシタ(図示せず)に蓄積する直接変換型の素子として構成することができる。各画素40には、薄膜トランジスタ(TFT:Thin Film Transistor)スイッチ(図示せず)が接続され、TFTスイッチのゲート電極が走査線45、ソース電極がキャパシタ、ドレイン電極が信号線46に接続される。TFTスイッチが走査回路42からの駆動パルスによってON状態になると、キャパシタに蓄積された電荷が信号線46に読み出される。
Each pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and stores the converted electric charges in a capacitor (not shown) connected to an electrode below the conversion layer. It can be configured as a direct conversion type element. Each pixel 40 is connected to a thin film transistor (TFT) switch (not shown), and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46. When the TFT switch is turned on by the drive pulse from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 46.
なお、各画素40は、テルビウム賦活酸化ガドリニウム(Gd2O2S:Tb)、タリウム賦活ヨウ化セシウム(CsI:Tl)等からなるシンチレータ(図示せず)でX線を一旦可視光に変換し、変換された可視光をフォトダイオード(図示せず)で電荷に変換して蓄積する間接変換型のX線検出素子として構成することも可能である。また、X線画像検出器としては、TFTパネルをベースとしたFPDに限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした各種のX線画像検出器を用いることも可能である。
Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it. The X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
読み出し回路43は、積分アンプ回路、A/D変換器、補正回路、及び画像メモリ(いずれも図示せず)により構成されている。積分アンプ回路は、各画素40から信号線46を介して出力された電荷を積分して電圧信号(画像信号)に変換して、A/D変換器に入力する。A/D変換器は、入力された画像信号をデジタルの画像データに変換して補正回路に入力する。補正回路は、画像データに対して、オフセット補正、ゲイン補正、及びリニアリティ補正を行い、補正後の画像データを画像メモリに記憶させる。なお、補正回路による補正処理として、X線の露光量や露光分布(いわゆるシェーディング)の補正や、FPD30の制御条件(駆動周波数や読み出し期間)に依存するパターンノイズ(例えば、TFTスイッチのリーク信号)の補正等を含めてもよい。
The readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory (all not shown). The integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter. The A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit. The correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory. As correction processing by the correction circuit, correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
図4及び図5は、図1の放射線撮影システムの撮影部を示す。
4 and 5 show an imaging unit of the radiation imaging system of FIG.
第1の吸収型格子31は、基板31aと、この基板31aに配置された複数のX線遮蔽部31bとから構成されている。同様に、第2の吸収型格子32は、基板32aと、この基板32aに配置された複数のX線遮蔽部32bとから構成されている。基板31a,32aは、いずれもX線を透過させるガラス等のX線透過性部材により形成されている。
The first absorption-type grating 31 includes a substrate 31a and a plurality of X-ray shielding portions 31b arranged on the substrate 31a. Similarly, the second absorption type grating 32 includes a substrate 32a and a plurality of X-ray shielding portions 32b arranged on the substrate 32a. The substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays.
X線遮蔽部31b,32bは、いずれもX線源11から照射されるX線の光軸Aに直交する面内の一方向(図示の例では、x方向及びz方向に直交するy方向)に延伸した線状の部材で構成される。各X線遮蔽部31b,32bの材料としては、X線吸収性に優れるものが好ましく、例えば、金、白金等の重金属であることが好ましい。これらのX線遮蔽部31b,32bは、金属メッキ法や蒸着法によって形成することが可能である。
Each of the X-ray shielding portions 31b and 32b is in one direction in a plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (in the illustrated example, the y direction orthogonal to the x direction and the z direction). It is comprised by the linear member extended | stretched. As a material of each X-ray shielding part 31b, 32b, a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable. These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
X線遮蔽部31bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の周期(格子ピッチ)p1で、互いに所定の間隔d1を空けて配列されている。同様に、X線遮蔽部32bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の周期(格子ピッチ)p2で、互いに所定の間隔d2を空けて配列されている。このような第1及び第2の吸収型格子31,32は、入射X線に位相差を与えるものでなく、強度差を与えるものであるため、振幅型格子とも称される。なお、スリット部(上記間隔d1,d2の領域)は空隙でなくてもよく、例えば、高分子や軽金属などのX線低吸収材で該空隙を充填してもよい。
The X-ray shielding part 31b has a predetermined interval d 1 with a constant period (lattice pitch) p 1 in a direction (x direction) orthogonal to the one direction in a plane orthogonal to the optical axis A of X-rays. It is arranged in a space. Similarly, X-ray shielding portion 32b, in the plane orthogonal to the optical axis A of the X-ray, in the direction predetermined period (x-direction) (grating pitch) p 2 perpendicular to the one direction, from each other a predetermined distance They are arranged with d 2 in between. Since the first and second absorption gratings 31 and 32 do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings. Note that the slit portions (regions having the distances d 1 and d 2 ) may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
第1及び第2の吸収型格子31,32は、タルボ干渉効果の有無に係らず、スリット部を通過したX線を幾何学的に投影するように構成されている。具体的には、間隔d1,d2を、X線源11から照射されるX線のピーク波長より十分大きな値とすることで、照射X線に含まれる大部分のX線をスリット部で回折させずに、直進性を保ったまま通過するように構成する。例えば、前述の回転陽極18aとしてタングステンを用い、管電圧を50kVとした場合には、X線のピーク波長は、約0.4Åである。この場合には、間隔d1,d2を、1~10μm程度とすれば、スリット部で大部分のX線が回折されずに幾何学的に投影される。
The first and second absorption gratings 31 and 32 are configured to geometrically project the X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the peak wavelength of X-rays emitted from the X-ray source 11, most of the X-rays included in the irradiated X-rays are slit at the slit portion. It is configured to pass through without being diffracted while maintaining straightness. For example, when tungsten is used as the rotary anode 18a described above and the tube voltage is 50 kV, the peak wavelength of the X-ray is about 0.4 mm. In this case, if the distances d 1 and d 2 are about 1 to 10 μm, most of the X-rays are geometrically projected without being diffracted at the slit portion.
X線源11から放射されるX線は、平行ビームではなく、X線焦点18bを発光点としたコーンビームであるため、第1の吸収型格子31を通過して射影される投影像(以下、この投影像をG1像と称する)は、X線焦点18bからの距離に比例して拡大される。第2の吸収型格子32の格子ピッチp2は、そのスリット部が、第2の吸収型格子32の位置におけるG1像の明部の周期パターンとほぼ一致するように決定されている。すなわち、X線焦点18bから第1の吸収型格子31までの距離をL1、第1の吸収型格子31から第2の吸収型格子32までの距離をL2とした場合に、格子ピッチp2は、次式(1)の関係を満たすように決定される。
The X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam having the X-ray focal point 18b as a light emission point, and therefore a projected image projected through the first absorption grating 31 (hereinafter referred to as a projection image). The projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b. The grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic pattern of the bright part of the G1 image at the position of the second absorption type grating 32. That is, when the distance from the X-ray focal point 18b to the first absorption grating 31 is L 1 and the distance from the first absorption grating 31 to the second absorption grating 32 is L 2 , the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
第1の吸収型格子31から第2の吸収型格子32までの距離L2は、タルボ干渉計では、第1の回折格子の格子ピッチとX線波長とで決まるタルボ干渉距離に制約されるが、本X線撮影システム10の撮影部12では、第1の吸収型格子31が入射X線を回折させずに投影させる構成であって、第1の吸収型格子31のG1像が、第1の吸収型格子31の後方のすべての位置で相似的に得られるため、該距離L2を、タルボ干渉距離と無関係に設定することができる。
In the Talbot interferometer, the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The imaging unit 12 of the present X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting, and the G1 image of the first absorption grating 31 is the first. because at every position of the rear absorption type grating 31 similarly obtained, the distance L 2, can be set independently of the Talbot distance.
上記のように撮影部12は、タルボ干渉計を構成するものではないが、第1の吸収型格子31でX線を回折したと仮定した場合のタルボ干渉距離Zは、第1の吸収型格子31の格子ピッチp1、第2の吸収型格子32の格子ピッチp2、X線波長(ピーク波長)λ、及び正の整数mを用いて、次式(2)で表される。
As described above, the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating. the grating pitch p 1 of 31, the grating pitch p 2, X-ray wavelength of the second absorption-type grating 32 (peak wavelength) lambda, and using the positive integer m, is expressed by the following equation (2).
式(2)は、X線源11から照射されるX線がコーンビームである場合のタルボ干渉距離を表す式であり、「Atsushi Momose, et al., Japanese Journal of Applied Physics, Vol.47, No.10, 2008年10月, 8077頁」により知られている。
Expression (2) is an expression that represents the Talbot interference distance when the X-ray irradiated from the X-ray source 11 is a cone beam. “Atsushi Momose, et al., Japan Journal of Applied Physics, Vol. 47, No. 10, October 2008, page 8077 ”.
本X線撮影システム10では、上記距離L2を、m=1の場合の最小のタルボ干渉距離Zより短い値に設定することで、撮影部12の薄型化を図っている。すなわち、上記距離L2は、次式(3)を満たす範囲の値に設定される。
In the present X-ray imaging system 10, the imaging unit 12 is thinned by setting the distance L 2 to a value shorter than the minimum Talbot interference distance Z when m = 1. That is, the distance L 2 is set to a value in the range satisfying the following equation (3).
なお、X線源11から照射されるX線が実質的に平行ビームとみなせる場合のタルボ干渉距離Zは次式(4)となり、上記距離L2を、次式(5)を満たす範囲の値に設定する。
Incidentally, Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, the distance L 2, the value of the range that satisfies the following equation (5) Set to.
X線遮蔽部31b,32bは、コントラストの高い周期パターン像を生成するためには、X線を完全に遮蔽(吸収)することが好ましいが、上記したX線吸収性に優れる材料(金、白金等)を用いたとしても、吸収されずに透過するX線が少なからず存在する。このため、X線の遮蔽性を高めるためには、X線遮蔽部31b,32bのそれぞれの厚みh1,h2を、可能な限り厚くすることが好ましい。例えば、X線管18の管電圧が50kVの場合に、照射X線の90%以上を遮蔽することが好ましく、この場合には、厚みh1,h2は、金(Au)換算で30μm以上であることが好ましい。
The X-ray shielding portions 31b and 32b preferably completely shield (absorb) X-rays in order to generate a periodic pattern image with high contrast, but the above-described materials (gold, platinum) having excellent X-ray absorption properties Etc.), there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b, it is preferable to increase the thickness much as possible. For example, when the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays. In this case, the thicknesses h 1 and h 2 are 30 μm or more in terms of gold (Au). It is preferable that
しかし、X線源11から照射されるX線がコーンビームである場合に、X線遮蔽部31b,32bの厚みh1,h2を厚くし過ぎると、斜めに入射するX線がスリット部を通過しにくくなり、いわゆるケラレが生じて、X線遮蔽部31b,32bの延伸方向(条帯方向)に直交する方向(x方向)の有効視野が狭くなるといった問題がある。このため、視野確保の観点から、厚みh1,h2の上限を規定する。FPD30の検出面におけるx方向の有効視野の長さVを確保するには、X線焦点18bからFPD30の検出面までの距離をLとすると、厚みh1,h2は、図5に示す幾何学的関係から、次式(6)及び(7)を満たすように設定する必要がある。
However, when the X-rays irradiated from the X-ray source 11 are cone beams, if the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are too thick, the X-rays incident obliquely enter the slit portion. There is a problem that it becomes difficult to pass, so-called vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 31b and 32b becomes narrow. Therefore, in view of the field of view secured to define the upper limit of the thickness h 1, h 2. In order to secure the effective field length V in the x direction on the detection surface of the FPD 30, assuming that the distance from the X-ray focal point 18 b to the detection surface of the FPD 30 is L, the thicknesses h 1 and h 2 are shown in FIG. From the scientific relationship, it is necessary to set so as to satisfy the following expressions (6) and (7).
例えば、d1=2.5μm、d2=3.0μmであり、通常の病院での撮影を想定して、L=2mとした場合には、x方向の有効視野の長さVとして10cmの長さを確保するには、厚みh1は100μm以下、厚みh2は120μm以下とすればよい。
For example, when d 1 = 2.5 μm and d 2 = 3.0 μm, and assuming L = 2 m assuming normal hospital imaging, the effective visual field length V in the x direction is 10 cm. In order to ensure the length, the thickness h 1 may be 100 μm or less and the thickness h 2 may be 120 μm or less.
以上のように構成された撮影部12では、第1の吸収型格子31のG1像と第2の吸収型格子32との重ね合わせにより、強度変調された像が形成され、FPD30によって撮像される。第2の吸収型格子32の位置におけるG1像のパターン周期p1’と、第2の吸収型格子32の実質的な格子ピッチp2’(製造後の実質的なピッチ)とは、製造誤差や配置誤差により若干の差異が生じる。このうち、配置誤差とは、第1及び第2の吸収型格子31,32が、相対的に傾斜や回転、両者の間隔が変化することによりx方向への実質的なピッチが変化することを意味している。
In the imaging unit 12 configured as described above, an intensity-modulated image is formed by superimposing the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 and is captured by the FPD 30. . The pattern period p 1 ′ of the G1 image at the position of the second absorption grating 32 and the substantial grating pitch p 2 ′ (substantial pitch after production) of the second absorption grating 32 are manufacturing errors. Some differences occur due to or placement errors. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
G1像のパターン周期p1’と格子ピッチp2’との微小な差異により、画像コントラストはモアレ縞となる。このモアレ縞の周期Tは、次式(8)で表される。
Due to the minute difference between the pattern period p 1 ′ of the G1 image and the grating pitch p 2 ′, the image contrast becomes moire fringes. The period T of the moire fringes is expressed by the following equation (8).
このモアレ縞をFPD30で検出するため、画素40のx方向に関する配列ピッチPは、少なくともモアレ周期Tの整数倍でないことが必要であり、次式(9)を満たす必要がある(ここで、nは正の整数である)。
In order to detect the moire fringes by the FPD 30, the arrangement pitch P in the x direction of the pixels 40 needs to be at least not an integral multiple of the moire period T, and it is necessary to satisfy the following equation (9) (where n Is a positive integer).
また、(9)式を満たす範囲において、配列ピッチPがモアレ周期Tより大きくてもモアレ縞を検出することは可能であるが、配列ピッチPはモアレ周期Tより小さいことが好ましく、次式(10)を満たすことが好ましい。これは、良質な位相コントラスト画像を得るためには、後述する位相コントラスト画像の生成過程において、モアレ縞が高いコントラストで検出されていることが好ましいためである。
Further, it is possible to detect moire fringes even if the arrangement pitch P is larger than the moire period T within the range satisfying the expression (9), but the arrangement pitch P is preferably smaller than the moire period T. 10) is preferably satisfied. This is because, in order to obtain a high-quality phase contrast image, moire fringes are preferably detected with high contrast in the phase contrast image generation process described later.
FPD30の画素40の配列ピッチPは、設計的に定められた値(一般的に100μm程度)であり変更することが困難であるため、配列ピッチPとモアレ周期Tとの大小関係を調整するには、第1及び第2の吸収型格子31,32の位置調整を行い、G1像のパターン周期p1’と格子ピッチp2’との少なくともいずれか一方を変更することによりモアレ周期Tを変更することが好ましい。
Since the arrangement pitch P of the pixels 40 of the FPD 30 is a value determined by design (generally about 100 μm) and is difficult to change, the magnitude relationship between the arrangement pitch P and the moire period T is adjusted. Adjusts the positions of the first and second absorption gratings 31 and 32 and changes the moire period T by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the G1 image. It is preferable to do.
図6に、モアレ周期Tを変更する方法を示す。
FIG. 6 shows a method of changing the moire cycle T.
モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aを中心として相対的に回転させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aを中心として相対的に回転させる相対回転機構50を設ける。この相対回転機構50により、第2の吸収型格子32を角度θだけ回転させると、x方向に関する実質的な格子ピッチは、「p2’」→「p2’/cosθ」と変化し、この結果、モアレ周期Tが変化する(FIG.6A)。
The moire period T can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A. For example, a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided. When the second absorption type grating 32 is rotated by the angle θ by the relative rotation mechanism 50, the substantial grating pitch in the x direction changes from “p 2 ′” → “p 2 ′ / cos θ”. As a result, the moire cycle T changes (FIG. 6A).
別の例として、モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させる相対傾斜機構51を設ける。この相対傾斜機構51により、第2の吸収型格子32を角度αだけ傾斜させると、x方向に関する実質的な格子ピッチは、「p2’」→「p2’×cosα」と変化し、この結果、モアレ周期Tが変化する(FIG.6B)。
As another example, the change of the moire period T is such that either one of the first and second absorption type gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. It can be performed by inclining. For example, a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided. Provide. When the second absorption type grating 32 is inclined by the angle α by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” → “p 2 ′ × cos α”. As a result, the moire cycle T changes (FIG. 6B).
更に別の例として、モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を光軸Aの方向に沿って相対的に移動させることにより行うことができる。例えば、第1の吸収型格子31と第2の吸収型格子32との間の距離L2を変更するように、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aの方向に沿って相対的に移動させる相対移動機構52を設ける。この相対移動機構52により、第2の吸収型格子32を光軸Aに移動量δだけ移動させると、第2の吸収型格子32の位置に投影される第1の吸収型格子31のG1像のパターン周期は、「p1’」→「p1’×(L1+L2+δ)/(L1+L2)」と変化し、この結果、モアレ周期Tが変化する(FIG.6C)。
As another example, the moire period T can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A. For example, with respect to the first absorption type grating 31, the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32. A relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided. When the second absorption type grating 32 is moved to the optical axis A by the movement amount δ by the relative movement mechanism 52, the G1 image of the first absorption type grating 31 projected onto the position of the second absorption type grating 32. The pattern period of “p 1 ′” → “p 1 ′ × (L 1 + L 2 + δ) / (L 1 + L 2 )” changes, and as a result, the moire period T changes (FIG. 6C).
本X線撮影システム10において、撮影部12は、上述のようにタルボ干渉計ではなく、距離L2を自由に設定することができるため、相対移動機構52のように距離L2の変更によりモアレ周期Tを変更する機構を、好適に採用することができる。モアレ周期Tを変更するための第1及び第2の吸収型格子31,32の上記変更機構(相対回転機構50、相対傾斜機構51、及び相対移動機構52)は、圧電素子等のアクチュエータにより構成することが可能である。
In the X-ray imaging system 10, imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed. The change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the moiré period T is constituted by an actuator such as a piezoelectric element. Is possible.
X線源11と第1の吸収型格子31との間に被写体Hを配置した場合には、FPD30により検出されるモアレ縞は、被写体Hにより変調を受ける。この変調量は、被写体Hによる屈折効果によって偏向したX線の角度に比例する。したがって、FPD30で検出されたモアレ縞を解析することによって、被写体Hの位相コントラスト画像を生成することができる。
When the subject H is disposed between the X-ray source 11 and the first absorption type grating 31, the moire fringes detected by the FPD 30 are modulated by the subject H. This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire fringes detected by the FPD 30.
次に、モアレ縞の解析方法について説明する。
Next, a method for analyzing moire fringes will be described.
図7は、被写体Hのx方向に関する位相シフト分布Φ(x)に応じて屈折される1つのX線を示す。なお、線量検出器35の図示は省略している。
FIG. 7 shows one X-ray refracted according to the phase shift distribution Φ (x) of the subject H in the x direction. The dose detector 35 is not shown.
符号55は、被写体Hが存在しない場合に直進するX線の経路を示しており、この経路55を進むX線は、第1及び第2の吸収型格子31,32を通過してFPD30に入射する。符号56は、被写体Hが存在する場合に、被写体Hにより屈折されて偏向したX線の経路を示している。この経路56を進むX線は、第1の吸収型格子31を通過した後、第2の吸収型格子32より遮蔽される。
Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do. Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
被写体Hの位相シフト分布Φ(x)は、被写体Hの屈折率分布をn(x,z)、zをX線の進む方向として、次式(11)で表される。
The phase shift distribution Φ (x) of the subject H is expressed by the following equation (11), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
第1の吸収型格子31から第2の吸収型格子32の位置に投射されたG1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に次式(12)で表される。
The G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. become. This amount of displacement Δx is approximately expressed by the following equation (12) based on the small X-ray refraction angle φ.
ここで、屈折角φは、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(13)で表される。
Here, the refraction angle φ is expressed by Expression (13) using the X-ray wavelength λ and the phase shift distribution Φ (x) of the subject H.
このように、被写体HでのX線の屈折によるG1像の変位量Δxは、被写体Hの位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、FPD30の各画素40から出力される信号の位相ズレ量ψ(被写体Hがある場合とない場合とでの各画素40の信号の位相のズレ量)に、次式(14)のように関連している。
Thus, the displacement amount Δx of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution Φ (x) of the subject H. The amount of displacement Δx is expressed by the following equation with the phase shift amount ψ of the signal output from each pixel 40 of the FPD 30 (the phase shift amount of the signal of each pixel 40 with and without the subject H): It is related as shown in (14).
したがって、各画素40の信号の位相ズレ量ψを求めることにより、式(14)から屈折角φが求まり、式(13)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。本X線撮影システム10では、上記位相ズレ量ψを、下記に示す縞走査法を用いて算出する。
Therefore, by obtaining the phase shift amount ψ of the signal of each pixel 40, the refraction angle φ is obtained from the equation (14), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (13). Is integrated with respect to x, a phase shift distribution Φ (x) of the subject H, that is, a phase contrast image of the subject H can be generated. In the present X-ray imaging system 10, the phase shift amount ψ is calculated using a fringe scanning method described below.
縞走査法では、第1及び第2の吸収型格子31,32の一方を他方に対して相対的にx方向にステップ的に並進移動させながら撮影を行う(すなわち、両者の格子周期の位相を変化させながら撮影を行う)。本X線撮影システム10では、前述の走査機構33により第2の吸収型格子32を移動させているが、第1の吸収型格子31を移動させてもよい。第2の吸収型格子32の移動に伴って、モアレ縞が移動し、並進距離(x方向への移動量)が、第2の吸収型格子32の格子周期の1周期(格子ピッチp2)に達すると(すなわち、位相変化が2πに達すると)、モアレ縞は元の位置に戻る。このようなモアレ縞の変化を、格子ピッチp2を整数分の1ずつ第2の吸収型格子32を移動させながら、FPD30で縞画像を撮影し、撮影した複数の縞画像から各画素40の信号を取得し、演算処理部22で演算処理することにより、各画素40の信号の位相ズレ量ψを得る。
In the fringe scanning method, imaging is performed while one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner relative to the other in the x direction (that is, the phase of both grating periods is changed). Shoot while changing). In the X-ray imaging system 10, the second absorption type grating 32 is moved by the scanning mechanism 33 described above, but the first absorption type grating 31 may be moved. As the second absorption type grating 32 moves, the moire fringes move, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2π), the moire fringes return to their original positions. With such a change in moire fringes, a fringe image is photographed with the FPD 30 while moving the second absorption grating 32 by an integer of the grating pitch p 2 , and each pixel 40 is captured from the plural fringe images photographed. The signal is acquired and processed by the processing unit 22 to obtain the phase shift amount ψ of the signal of each pixel 40.
図8は、格子ピッチp2をM(2以上の整数)個に分割した走査ピッチ(p2/M)ずつ第2の吸収型格子32を移動させる様子を模式的に示す。
FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
走査機構33は、k=0,1,2,・・・,M-1のM個の各走査位置に、第2の吸収型格子32を順に並進移動させる。なお、同図では、第2の吸収型格子32の初期位置を、被写体Hが存在しない場合における第2の吸収型格子32の位置でのG1像の暗部が、X線遮蔽部32bにほぼ一致する位置(k=0)としているが、この初期位置は、k=0,1,2,・・・,M-1のうちいずれの位置としてもよい。
The scanning mechanism 33 translates the second absorption type grating 32 in order to M scanning positions of k = 0, 1, 2,..., M−1. In the same figure, the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present. The initial position is k = 0, 1, 2,..., M−1.
まず、k=0の位置では、主として、被写体Hにより屈折されなかったX線が第2の吸収型格子32を通過する。次に、k=1,2,・・・と順に第2の吸収型格子32を移動させていくと、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されなかったX線の成分が減少する一方で、被写体Hにより屈折されたX線の成分が増加する。特に、k=M/2では、主として、被写体Hにより屈折されたX線のみが第2の吸収型格子32を通過する。k=M/2を超えると、逆に、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されたX線の成分が減少する一方で、被写体Hにより屈折されなかったX線の成分が増加する。
First, at the position of k = 0, X-rays that are not refracted by the subject H mainly pass through the second absorption type grating 32. Next, when the second absorption grating 32 is moved in order of k = 1, 2,..., The X-rays passing through the second absorption grating 32 are not refracted by the subject H. While the line component decreases, the X-ray component refracted by the subject H increases. In particular, at k = M / 2, mainly only the X-rays refracted by the subject H pass through the second absorption type grating 32. When k = M / 2 is exceeded, on the contrary, the X-ray component that is refracted by the subject H decreases in the X-rays that pass through the second absorption grating 32, while the X-ray that is not refracted by the subject H. The line component increases.
k=0,1,2,・・・,M-1の各位置で、FPD30により撮影を行うと、各画素40について、M個の信号値(画素データ)が得られる。以下に、このM個の信号値から各画素40の信号の位相ズレ量ψを算出する方法を説明する。第2の吸収型格子32の位置kにおける各画素40の信号値をIk(x)と標記すると、Ik(x)は、次式(15)で表される。
When shooting is performed by the FPD 30 at each position of k = 0, 1, 2,..., M−1, M signal values (pixel data) are obtained for each pixel 40. Hereinafter, a method of calculating the phase shift amount ψ of the signal of each pixel 40 from the M signal values will be described. When the signal value of each pixel 40 at the position k of the second absorption type grating 32 is denoted as I k (x), I k (x) is expressed by the following equation (15).
ここで、xは、画素40のx方向に関する座標であり、A0は入射X線の強度であり、Anは画素40の信号値のコントラストに対応する値である(ここで、nは正の整数である)。また、φ(x)は、上記屈折角φを画素40の座標xの関数として表したものである。
Here, x is a coordinate in the x direction of the pixel 40, A 0 is the intensity of the incident X-ray, and An is a value corresponding to the contrast of the signal value of the pixel 40 (where n is a positive value). Is an integer). Φ (x) represents the refraction angle φ as a function of the coordinate x of the pixel 40.
次いで、次式(16)の関係式を用いると、上記屈折角φ(x)は、次式(17)のように表される。
Next, using the relational expression of the following expression (16), the refraction angle φ (x) is expressed as the following expression (17).
ここで、arg[ ]は、偏角の抽出を意味しており、各画素40の信号の位相ズレ量ψに対応する。したがって、各画素40で得られたM個の信号値から、式(17)に基づいて各画素40の信号の位相ズレ量ψを算出することにより、屈折角φ(x)が求められる。
Here, arg [] means the extraction of the declination, and corresponds to the phase shift amount ψ of the signal of each pixel 40. Accordingly, the refraction angle φ (x) is obtained by calculating the phase shift amount ψ of the signal of each pixel 40 from the M signal values obtained at each pixel 40 based on the equation (17).
図9は、縞走査に伴って変化する放射線画像検出器の一つの画素の信号を示す。
FIG. 9 shows a signal of one pixel of the radiation image detector that changes with the fringe scanning.
各画素40で得られたM個の信号値は、第2の吸収型格子32の位置kに対して、格子ピッチp2の周期で周期的に変化する。図9中の破線は、被写体Hが存在しない場合の信号値の変化を示しており、図9中の実線は、被写体Hが存在する場合の信号値の変化を示している。この両者の波形の位相差が各画素40の信号の位相ズレ量ψに対応する。
The M signal values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption grating 32. A broken line in FIG. 9 indicates a change in signal value when the subject H does not exist, and a solid line in FIG. 9 indicates a change in signal value when the subject H exists. The phase difference between the two waveforms corresponds to the phase shift amount ψ of the signal of each pixel 40.
そして、屈折角φ(x)は、上記式(13)で示したように微分位相値に対応する値であるため、屈折角φ(x)をx軸に沿って積分することにより、位相シフト分布Φ(x)が得られる。なお、上記の説明では、画素40のy方向に関するy座標を考慮していないが、各y座標について同様の演算を行うことにより、x方向及びy方向における2次元的な位相シフト分布Φ(x,y)が得られる。以上の演算は、演算処理部22により行われ、演算処理部22は、位相コントラスト画像を記憶部23に記憶させる。
Since the refraction angle φ (x) is a value corresponding to the differential phase value as shown in the above equation (13), the phase shift is obtained by integrating the refraction angle φ (x) along the x-axis. A distribution Φ (x) is obtained. In the above description, the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution Φ (x , Y). The above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the phase contrast image in the storage unit 23.
以上の演算において、位相ズレ量ψを算出するための各画素40のM個の信号値の変化は、第2の吸収型格子32の走査によってもたらされる必要がある。そのためには、X線源11から撮影部12に照射されるX線の照射線量が撮影間でほぼ一定していることが求められる。
In the above calculation, the change of the M signal values of each pixel 40 for calculating the phase shift amount ψ needs to be brought about by the scanning of the second absorption type grating 32. For this purpose, the X-ray irradiation dose irradiated from the X-ray source 11 to the imaging unit 12 is required to be substantially constant during imaging.
本X線撮影システム10においては、撮影毎に、線量検出器35で検出されるX線の線量が予め設定された閾値線量に達したところでX線の照射を停止する自動露光制御により、撮影間の照射線量がほぼ一定に保たれる。線量検出器35は、第1の吸収型格子31と第2の吸収型格子32との間に配置され、第2の吸収型格子32の上流に位置している。そのため、線量検出器35の受光部上におけるG1像は、第2の吸収型格子32の走査によっても移動せず、線量検出器35に単位時間当たりに入射するX線の線量は一定する。そこで、線量検出器35によって検出される線量が上記の閾値線量に達するまでの時間が撮影間で一定し、撮影間の照射線量のバラツキが防止される。
In the present X-ray imaging system 10, during each imaging, automatic exposure control is performed to stop X-ray irradiation when the X-ray dose detected by the dose detector 35 reaches a preset threshold dose. The irradiation dose is kept almost constant. The dose detector 35 is disposed between the first absorption type grating 31 and the second absorption type grating 32 and is located upstream of the second absorption type grating 32. Therefore, the G1 image on the light receiving unit of the dose detector 35 does not move even by scanning the second absorption grating 32, and the dose of X-rays incident on the dose detector 35 per unit time is constant. Therefore, the time until the dose detected by the dose detector 35 reaches the above threshold dose is constant between imagings, and variations in irradiation dose between imagings are prevented.
また、上記の通り、第1の吸収型格子31を通過したX線によって形成されるG1像は、第2の吸収型格子32が重ね合わされることによって、第2の吸収型格子32の下流のFPD30の受像面上においてはモアレ縞を形成する。一方、線量検出器35は第2の吸収型格子32の上流に位置しており、線量検出器35の受光部上におけるG1像はモアレ縞とはならず、そのパターン周期は、第1の吸収型格子31の格子ピッチp1に対応してμmオーダーとなる。線量検出器35の受光部のサイズは、一般的にはcmオーダーであり、よって、線量検出器35の受光部にはG1像における無数の明部及び暗部が重なり、それらが平均化されて検出される。従って、第2の吸収型格子32に替えて第1の吸収型格子31が走査され、第1の吸収型格子31の走査に伴ってG1像が移動する場合にも、線量検出器35に単位時間当たりに入射するX線の線量はほぼ一定する。そこで、線量検出器35によって検出される線量が上記の閾値線量に達するまでのX線の照射時間は撮影間でほぼ一定し、撮影間の照射線量のバラツキが防止される。
In addition, as described above, the G1 image formed by the X-rays that have passed through the first absorption type grating 31 is superimposed on the second absorption type grating 32 so that it is downstream of the second absorption type grating 32. Moire fringes are formed on the image receiving surface of the FPD 30. On the other hand, the dose detector 35 is located upstream of the second absorption-type grating 32, and the G1 image on the light receiving portion of the dose detector 35 does not have moire fringes, and the pattern period thereof is the first absorption. Corresponding to the grating pitch p 1 of the mold grating 31, the order is μm. The size of the light receiving part of the dose detector 35 is generally on the order of cm. Therefore, the light receiving part of the dose detector 35 is overlapped with countless bright parts and dark parts in the G1 image, and these are averaged and detected. Is done. Accordingly, even when the first absorption-type grating 31 is scanned instead of the second absorption-type grating 32 and the G1 image moves as the first absorption-type grating 31 is scanned, the dose detector 35 has a unit. The dose of X-rays incident per hour is almost constant. Therefore, the irradiation time of X-rays until the dose detected by the dose detector 35 reaches the above threshold dose is substantially constant between imaging, and variation in irradiation dose between imaging is prevented.
また、第2の吸収型格子32の下流に形成されるモアレ縞は、第2の吸収型格子32の上流に配置された線量検出器35における線量の検出に対して何ら影響を及ぼさない。よって、上記の相対回転機構50や相対傾斜機構51や相対移動機構52によって、モアレ縞の周期Tを、例えば線量検出器35の受光部の寸法より長くすることができる。それにより、X線位相コントラスト画像からモアレ縞の影響を十分に除去することが可能となり、X線位相コントラスト画像の画質を向上させることができる。
In addition, the moire fringes formed downstream of the second absorption grating 32 do not affect the dose detection in the dose detector 35 disposed upstream of the second absorption grating 32. Therefore, the period T of the moire fringes can be made longer than, for example, the size of the light receiving part of the dose detector 35 by the relative rotation mechanism 50, the relative tilt mechanism 51, and the relative movement mechanism 52 described above. As a result, the influence of moire fringes can be sufficiently removed from the X-ray phase contrast image, and the image quality of the X-ray phase contrast image can be improved.
図10は、線量検出器35の受光部の配置の一例を示す。
FIG. 10 shows an example of the arrangement of the light receiving parts of the dose detector 35.
線量検出器35の受光部は、X線の光軸Aに直交する面内において分布していることが好ましく、光軸Aに関して略対称であることが特に好ましい。例えば、複数の受光部35aを設け、これらの受光部35aをX線の光軸Aに直交する面内において分散して配置すればよく、光軸Aに関して略対称となる位置に配置することが好ましい(FIG.10A~D)。また、線量検出器として面積線量計を用いる場合には、一つの受光部35aであっても、X線の光軸Aに直交する面内において分布させることができ、光軸Aに関して略対称となるように、例えば受光部35aを、光軸Aを囲む枠状とすることが好ましい(FIG.10E)。なお、面積線量計を用いる場合にも、複数の受光部35aを設けることができ、これらの受光部35aをX線の光軸Aに直交する面内において分散して配置すればよく、光軸Aに関して略対称となる位置に配置することが好ましい(FIG.10F)。このように、線量検出器35の受光部をX線の光軸Aに直交する面内において分布させることにより、撮影毎に安定した線量検出が可能となる。
The light receiving portions of the dose detector 35 are preferably distributed in a plane perpendicular to the optical axis A of X-rays, and particularly preferably substantially symmetric with respect to the optical axis A. For example, a plurality of light receiving portions 35a may be provided, and these light receiving portions 35a may be arranged in a distributed manner in a plane perpendicular to the optical axis A of the X-ray, and may be arranged at positions that are substantially symmetrical with respect to the optical axis A. Preferred (FIG. 10A to D). When an area dosimeter is used as a dose detector, even one light receiving unit 35a can be distributed in a plane perpendicular to the optical axis A of the X-ray and is substantially symmetrical with respect to the optical axis A. For example, it is preferable that the light receiving portion 35a has a frame shape surrounding the optical axis A (FIG. 10E). Even when an area dosimeter is used, a plurality of light receiving portions 35a can be provided, and these light receiving portions 35a may be arranged in a distributed manner in a plane orthogonal to the optical axis A of the X-ray. It is preferable to arrange at a position that is substantially symmetrical with respect to A (FIG. 10F). As described above, by distributing the light receiving portions of the dose detector 35 in a plane orthogonal to the optical axis A of the X-ray, stable dose detection can be performed for each imaging.
なお、上記の第1及び第2の吸収型格子31,32を用いた縞走査法によるX線位相イメージングでは、第2の吸収型格子32より上流にある物体でのX線の屈折が検出され、第2の吸収型格子32より上流に配置される線量検出器35でのX線の屈折は、被写体HでのX線の屈折と区別なく検出される。そして、線量検出器35と第2の吸収型格子32との距離が大きくなる程、線量検出器35でのX線の屈折によるG1像の変位量は大きくなり、このG1像の変位量は、上記式(14)で示した通り、各画素40の信号の位相ズレ量ψに関連する。そこで、線量検出器35は、好ましくは、第1の吸収型格子31と第2の吸収型格子32との間に配置され、更に好ましくは、第2の吸収型格子32に隣接して配置される。
In the X-ray phase imaging based on the fringe scanning method using the first and second absorption gratings 31 and 32, X-ray refraction at an object upstream of the second absorption grating 32 is detected. The refraction of X-rays at the dose detector 35 disposed upstream of the second absorption grating 32 is detected without distinction from the refraction of X-rays at the subject H. As the distance between the dose detector 35 and the second absorption grating 32 increases, the displacement amount of the G1 image due to the refraction of X-rays at the dose detector 35 increases. As shown in the above equation (14), this is related to the phase shift amount ψ of the signal of each pixel 40. Therefore, the dose detector 35 is preferably disposed between the first absorption type grating 31 and the second absorption type grating 32, and more preferably, is disposed adjacent to the second absorption type grating 32. The
上記の縞走査、及び位相コントラスト画像の生成処理は、入力装置21から操作者により撮影指示がなされた後、制御装置20の制御に基づいて各部が連係動作し、自動的に行われ、最終的に被写体Hの位相コントラスト画像がモニタ24に表示される。
The above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20. The phase contrast image of the subject H is displayed on the monitor 24.
以上、説明したように、本X線撮影システム10によれば、線量検出器35を第2の格子32の上流に配置することによって、G1像と第2の格子32との重ね合わせによって形成されるモアレ縞の影響を受けることなく、線量検出器35において線量を検出することができる。それにより、適切な露光制御を可能とし、高精度な放射線位相コントラスト画像を生成することができる。
As described above, according to the present X-ray imaging system 10, the dose detector 35 is disposed upstream of the second grating 32, and is formed by superimposing the G1 image and the second grating 32. The dose detector 35 can detect the dose without being affected by the moire fringes. Thereby, appropriate exposure control can be performed, and a highly accurate radiation phase contrast image can be generated.
また、第1の吸収型格子31で殆どのX線を回折させずに、第2の吸収型格子32に幾何学的に投影するため、照射X線には、高い空間的可干渉性は要求されず、X線源11として医療分野で用いられている一般的なX線源を用いることができる。そして、第1の吸収型格子31から第2の吸収型格子32までの距離L2を任意の値とすることができ、該距離L2を、タルボ干渉計での最小のタルボ干渉距離より小さく設定することができるため、撮影部12を小型化(薄型化)することができる。更に、本X線撮影システムでは、第1の吸収型格子31からの投影像(G1像)には、照射X線のほぼすべての波長成分が寄与し、モアレ縞のコントラストが向上するため、位相コントラスト画像の検出感度を向上させることができる。
Further, since most of the X-rays are not diffracted by the first absorption type grating 31 and geometrically projected onto the second absorption type grating 32, high spatial coherence is required for the irradiated X-rays. Instead, a general X-ray source used in the medical field can be used as the X-ray source 11. The distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned). Furthermore, in this X-ray imaging system, almost all wavelength components of irradiated X-rays contribute to the projection image (G1 image) from the first absorption type grating 31 and the contrast of moire fringes is improved. Contrast image detection sensitivity can be improved.
なお、上述したX線撮影システム10は、第1の格子の投影像に対して縞走査を行って屈折角φを演算するものであって、そのため、第1及び第2の格子がいずれも吸収型格子であるものとして説明したが、本発明はこれに限定されるものではない。上述のとおり、タルボ干渉像に対して縞走査を行って屈折角φを演算する場合にも、本発明は有用である。よって、第1の格子は、吸収型格子に限らず位相型格子であってもよい。また、第1の格子のX線像と第2の格子との重ね合わせによって形成されるモアレ縞の解析方法は、前述した縞走査法に限られず、例えば「J. Opt. Soc. Am. Vol.72,No.1 (1982) p.156」により知られているフーリエ変換/フーリエ逆変換を用いた方法など、モアレ縞を利用した種々の方法も適用可能である。
Note that the above-described X-ray imaging system 10 calculates the refraction angle φ by performing fringe scanning on the projection image of the first grating, and therefore the first and second gratings absorb both. Although described as a mold lattice, the present invention is not limited to this. As described above, the present invention is also useful when the refraction angle φ is calculated by performing fringe scanning on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating. Further, the method of analyzing the moire fringes formed by superimposing the X-ray image of the first grating and the second grating is not limited to the above-described fringe scanning method. For example, “J. Opt. Soc. Am. Vol” .72, No. 1 (1982) p.156 ”, various methods using Moire fringes, such as a method using Fourier transform / inverse Fourier transform known in the art.
また、本X線撮影システム10は、位相シフト分布Φを画像としたものを位相コントラスト画像として記憶ないし表示するものとして説明したが、上記のとおり、位相シフト分布Φは、屈折角φより求まる位相シフト分布Φの微分量を積分したものであって、屈折角φ及び位相シフト分布Φの微分量もまた被写体によるX線の位相変化に関連している。よって、屈折角φを画像としたもの、また、位相シフトΦの微分量を画像としたものも位相コントラスト画像に含まれる。
Further, although the X-ray imaging system 10 has been described as one that stores or displays an image of the phase shift distribution Φ as a phase contrast image, as described above, the phase shift distribution Φ is a phase determined from the refraction angle φ. The differential amount of the shift distribution Φ is integrated, and the differential amount of the refraction angle φ and the phase shift distribution Φ is also related to the phase change of the X-ray by the subject. Therefore, an image having the refraction angle φ as an image and an image having the differential amount of the phase shift Φ are also included in the phase contrast image.
また、被写体がない状態で撮影(プレ撮影)して取得される画像群から位相微分像(位相シフト分布Φの微分量)を作成するようにしてもよい。この位相微分像は、検出系の位相ムラを反映している(モアレによる位相ズレ、グリッドの不均一性、線量検出器の屈折等が含まれている)。そして、被写体がある状態で撮影(メイン撮影)して取得される画像群から位相微分像を作成し、これからプレ撮影で得られた位相微分像を引くことで、測定系の位相ムラを補正した位相微分像を得ることが出来る。
Further, a phase differential image (a differential amount of the phase shift distribution Φ) may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject. This phase differential image reflects the phase unevenness of the detection system (including phase shift due to moire, grid nonuniformity, refraction of the dose detector, etc.). Then, a phase differential image is created from a group of images acquired by shooting (main shooting) in the presence of a subject, and the phase differential image obtained by pre-shooting is subtracted from this to correct phase irregularity in the measurement system. A phase differential image can be obtained.
図11は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
FIG. 11 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
図11に示すマンモグラフィ装置80は、被検体として乳房BのX線画像(位相コントラスト画像)を撮影する装置である。マンモグラフィ装置80は、基台(図示せず)に対して旋回可能に連結されたアーム部材81の一端に配設されたX線源収納部82と、アーム部材81の他端に配設された撮影台83と、撮影台83に対して上下方向に移動可能に構成された圧迫板84とを備える。
A mammography apparatus 80 shown in FIG. 11 is an apparatus that captures an X-ray image (phase contrast image) of a breast B as a subject. The mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81. An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
X線源収納部82にはX線源11が収納されており、撮影台83には撮影部12が収納されている。X線源11と撮影部12とは、互いに対向するように配置されている。圧迫板84は、移動機構(図示せず)により移動し、撮影台83との間で乳房Bを挟み込んで圧迫する。この圧迫状態で、上記したX線撮影が行われる。
The X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12. The X-ray source 11 and the imaging unit 12 are arranged to face each other. The compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
なお、X線源11及び撮影部12は、上記第1実施形態のものと同様の構成であるため、各構成要素には、第1実施形態と同一の符号を付している。その他の構成及び作用については、上記第1実施形態と同様であるため説明は省略する。
Since the X-ray source 11 and the imaging unit 12 have the same configuration as that of the first embodiment, the same reference numerals as those of the first embodiment are given to the respective components. Since other configurations and operations are the same as those in the first embodiment, description thereof will be omitted.
図12は、図11の放射線撮影システムの変形例を示す。
FIG. 12 shows a modification of the radiation imaging system of FIG.
図12に示すマンモグラフィ装置90は、第1の吸収型格子31がX線源11と圧迫板84との間に配設されている点が前述したマンモグラフィ装置80と異なる。第1の吸収型格子31は、アーム部材81に接続された格子収納部91に収納されている。撮影部92は、FPD30、第2の吸収型格子32、走査機構33、及び線量検出器35により構成されている。図示の例において、線量検出器35は、被検体Bと第2の吸収型格子32との間に配置されている。
The mammography apparatus 90 shown in FIG. 12 is different from the mammography apparatus 80 described above in that the first absorption type grating 31 is disposed between the X-ray source 11 and the compression plate 84. The first absorption type lattice 31 is accommodated in a lattice accommodation portion 91 connected to the arm member 81. The imaging unit 92 includes an FPD 30, a second absorption grating 32, a scanning mechanism 33, and a dose detector 35. In the illustrated example, the dose detector 35 is disposed between the subject B and the second absorption grating 32.
このように、被検体(乳房)Bが第1の吸収型格子31と第2の吸収型格子32との間に位置する場合であっても、第2の吸収型格子32の位置に形成される第1の吸収型格子31の投影像(G1像)が被検体Bにより変形する。したがって、この場合でも、被検体Bに起因して変調されたモアレ縞をFPD30により検出することができる。すなわち、本マンモグラフィ装置90でも前述した原理で被検体Bの位相コントラスト画像を得ることができる。
Thus, even when the subject (breast) B is located between the first absorption type grating 31 and the second absorption type grating 32, it is formed at the position of the second absorption type grating 32. The projection image (G1 image) of the first absorption type grating 31 is deformed by the subject B. Therefore, even in this case, the moiré fringes modulated due to the subject B can be detected by the FPD 30. That is, the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
そして、本マンモグラフィ装置90では、第1の吸収型格子31による遮蔽により、線量がほぼ半減したX線が被検体Bに照射されることになるため、被検体Bの被曝量を、前述したマンモグラフィ装置80の場合の約半分に低減することができる。なお、本マンモグラフィ装置90のように、第1の吸収型格子31と第2の吸収型格子32との間に被検体を配置することは、前述したX線撮影システム10にも適用することが可能である。
In the present mammography apparatus 90, the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 90 can also be applied to the X-ray imaging system 10 described above. Is possible.
図13は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
FIG. 13 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
X線撮影システム100は、X線源101のコリメータユニット102に、マルチスリット103を配設した点が、上記第1実施形態のX線撮影システム10と異なる。その他の構成については、前述したX線撮影システム10と同一であるので説明は省略する。
The X-ray imaging system 100 differs from the X-ray imaging system 10 of the first embodiment in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
前述したX線撮影システム10では、X線源11からFPD30までの距離を、一般的な病院の撮影室で設定されるような距離(1m~2m)とした場合に、X線焦点18bの焦点サイズ(一般的に0.1mm~1mm程度)によるG1像のボケが影響し、位相コントラスト画像の画質の低下をもたらす恐れがある。そこで、X線焦点18bの直後にピンホールを設置して実効的に焦点サイズを小さくすることが考えられるが、実効的な焦点サイズを縮小するためにピンホールの開口面積を小さくすると、X線強度が低下してしまう。本X線撮影システム100においては、この課題を解決するために、X線焦点18bの直後にマルチスリット103を配置する。
In the X-ray imaging system 10 described above, when the distance from the X-ray source 11 to the FPD 30 is a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b. The blur of the G1 image due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is lowered. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall. In the present X-ray imaging system 100, in order to solve this problem, the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
マルチスリット103は、撮影部12に設けられた第1及び第2の吸収型格子31,32と同様な構成の吸収型格子(第3の吸収型格子)であり、一方向(y方向)に延伸した複数のX線遮蔽部が、第1及び第2の吸収型格子31,32のX線遮蔽部31b,32bと同一方向(x方向)に周期的に配列されている。このマルチスリット103は、X線焦点18bから放射される放射線を部分的に遮蔽することにより、x方向に所定のピッチで配列した多数の小焦点光源(分散光源)を形成することを目的としている。
The multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction). The extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32. The multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
このマルチスリット103の格子ピッチp3は、マルチスリット103から第1の吸収型格子31までの距離をL3として、次式(18)を満たすように設定する必要がある。
The lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following formula (18), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
上記式(18)は、マルチスリット103により分散形成された各点光源から射出されたX線の第1の吸収型格子31による投影像(G1像)が、第2の吸収型格子32の位置で一致する(重なり合う)ための幾何学的な条件である。
The above formula (18) indicates that the projection image (G1 image) of the X-rays emitted from the respective point light sources dispersedly formed by the multi slit 103 by the first absorption type grating 31 is the position of the second absorption type grating 32. This is a geometric condition for matching (overlapping).
また、実質的にマルチスリット103の位置がX線焦点位置となるため、第2の吸収型格子32の格子ピッチp2は、次式(19)の関係を満たすように決定される。
In addition, since the position of the multi slit 103 is substantially the X-ray focal position, the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (19).
このように、本X線撮影システムでは、マルチスリット103により形成される複数の点光源に基づくG1像が重ね合わせられることにより、X線強度を低下させずに、位相コントラスト画像の画質を向上させることができる。以上説明したマルチスリット103は、前述したいずれのX線撮影システムにおいても適用可能である。
As described above, in the present X-ray imaging system, the G1 images based on the plurality of point light sources formed by the multi-slit 103 are superimposed, thereby improving the image quality of the phase contrast image without reducing the X-ray intensity. be able to. The multi slit 103 described above can be applied to any of the X-ray imaging systems described above.
図14は、本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その放射線画像検出器の構成を示す。
FIG. 14 shows the configuration of the radiation image detector in relation to another example of the radiation imaging system for explaining the embodiment of the present invention.
前述したX線撮影システム10では、第2の吸収型格子32がFPD30とは独立して設けられているが、第2の吸収型格子32あるいはそれと同等の構成をX線画像検出器自体が有していてもよい。具体的な実施態様としては、特開2009-133823号公報に開示された構成のX線画像検出器を用いることにより、第2の吸収型格子を排することができる。このX線画像検出器は、X線を電荷に変換する変換層と、変換層において変換された電荷を収集する電荷収集電極とを備えた直接変換型のX線画像検出器であって、各画素120の電荷収集電極121が、一定の周期で配列された線状電極を互いに電気的に接続してなる複数の線状電極群122~127を、互いに位相が異なるように配置することにより構成されている。
In the X-ray imaging system 10 described above, the second absorption type grating 32 is provided independently of the FPD 30, but the X-ray image detector itself has the second absorption type grating 32 or an equivalent configuration. You may do it. As a specific embodiment, the second absorption type grating can be eliminated by using an X-ray image detector having a configuration disclosed in Japanese Patent Laid-Open No. 2009-133823. This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges, and a charge collection electrode that collects electric charges converted in the conversion layer, The charge collecting electrode 121 of the pixel 120 is configured by arranging a plurality of linear electrode groups 122 to 127 formed by electrically connecting linear electrodes arranged at a constant period so that their phases are different from each other. Has been.
画素120は、x方向及びy方向に沿って一定のピッチで2次元配列されており、各画素120には、X線を電荷に変換する変換層によって変換された電荷を収集するための電荷収集電極121が形成されている。電荷収集電極121は、第1~第6の線状電極群122~127から構成されており、各線状電極群の線状電極の配列周期の位相がπ/3ずつずれている。具体的には、第1の線状電極群122の位相を0とすると、第2の線状電極群123の位相はπ/3、第3の線状電極群124の位相は2π/3、第4の線状電極群125の位相はπ、第5の線状電極群126の位相は4π/3、第6の線状電極群127の位相は5π/3である。
The pixels 120 are two-dimensionally arranged at a constant pitch along the x direction and the y direction, and each pixel 120 has a charge collection for collecting the charges converted by the conversion layer that converts the X-rays into charges. An electrode 121 is formed. The charge collection electrode 121 includes first to sixth linear electrode groups 122 to 127, and the phase of the arrangement period of the linear electrodes of each linear electrode group is shifted by π / 3. Specifically, when the phase of the first linear electrode group 122 is 0, the phase of the second linear electrode group 123 is π / 3, the phase of the third linear electrode group 124 is 2π / 3, The phase of the fourth linear electrode group 125 is π, the phase of the fifth linear electrode group 126 is 4π / 3, and the phase of the sixth linear electrode group 127 is 5π / 3.
第1~第6の線状電極群122~127はそれぞれ、y方向に延伸した線状電極をx方向に所定のピッチp2で周期的に配列したものである。この線状電極の配列ピッチp2の実質的なピッチp2’(製造後の実質的なピッチ)と、電荷収集電極121の位置(X線画像検出器の位置)におけるG1像のパターン周期p1’と、x方向に関する画素120の配列ピッチPとの関係は、前述したX線撮影システム10の第2の吸収型格子32と同様に、式(8)で表されるモアレ縞の周期Tに基づき、式(9)を満たす必要があり、更には、式(10)を満たすことが好ましい。
Linear electrode groups 122-127 of the first through sixth, respectively, in which the linear electrodes extend in the y-direction and periodically arranged at a predetermined pitch p 2 in the x-direction. The pattern period p of the G1 image at the substantial pitch p 2 ′ (substantial pitch after manufacture) of the arrangement pitch p 2 of the linear electrodes and the position of the charge collection electrode 121 (position of the X-ray image detector). The relationship between 1 ′ and the arrangement pitch P of the pixels 120 in the x direction is similar to the second absorption grating 32 of the X-ray imaging system 10 described above, and the period T of the moire fringes represented by the equation (8). Therefore, it is necessary to satisfy the formula (9), and it is preferable to satisfy the formula (10).
更に、各画素120には、電荷収集電極121により収集された電荷を読み出すためのスイッチ群128が設けられている。スイッチ群128は、第1~第6の線状電極群121~126のそれぞれに設けられたTFTスイッチからなる。第1~第6の線状電極群121~126により収集された電荷を、スイッチ群128を制御してそれぞれ個別に読み出すことによって、一度の撮影により、互いに位相の異なる6種類の縞画像を取得することができ、この6種類の縞画像に基づいて位相コントラスト画像を生成することができる。
Further, each pixel 120 is provided with a switch group 128 for reading out the charges collected by the charge collecting electrode 121. The switch group 128 includes TFT switches provided in the first to sixth linear electrode groups 121 to 126, respectively. By collecting the charges collected by the first to sixth linear electrode groups 121 to 126 individually by controlling the switch group 128, six types of fringe images having different phases can be obtained by one imaging. A phase contrast image can be generated based on these six types of fringe images.
このように構成されたX線画像検出器を、例えば前述したX線撮影システム10に適用した場合に、撮影部12から第2の吸収型格子32が不要となり、更に、一度の撮影で複数の位相成分の縞画像を取得することができるため、縞走査のための物理的な走査が不要となり、走査機構33も排することができる。それにより、コスト削減とともに、撮影部のさらなる薄型化を図ることができる。この場合に、線量検出器35は、被写体Hと第1の吸収型格子31との間、あるいは第1の吸収型格子31と上記のX線画像検出器との間に配置され得るが、線量検出器35でのX線の屈折の影響を考慮して、好ましくは、第1の吸収型格子31と上記のX線画像検出器との間に配置され、更に好ましくは上記のX線画像検出器に隣接して配置される。なお、電荷収集電極の構成には、上記構成に代えて、特開2009-133823号公報に記載のその他の構成を用いることも可能である。
For example, when the X-ray image detector configured as described above is applied to the X-ray imaging system 10 described above, the second absorption type grating 32 is not required from the imaging unit 12, and a plurality of images can be obtained by one imaging. Since a phase component fringe image can be acquired, physical scanning for fringe scanning becomes unnecessary, and the scanning mechanism 33 can be eliminated. Thereby, it is possible to reduce the cost and further reduce the thickness of the photographing unit. In this case, the dose detector 35 can be disposed between the subject H and the first absorption type grating 31 or between the first absorption type grating 31 and the X-ray image detector. Considering the influence of X-ray refraction at the detector 35, it is preferably arranged between the first absorption grating 31 and the X-ray image detector, more preferably the X-ray image detection described above. Placed adjacent to the vessel. It should be noted that the structure of the charge collecting electrode may be replaced with another structure described in Japanese Patent Application Laid-Open No. 2009-133823.
図15は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
FIG. 15 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
前述したX線撮影システム10において、縞走査により得られる位相コントラスト画像は、第1及び第2の吸収型格子31,32のX線遮蔽部の周期配列方向(x方向)のX線の屈折成分に基づくものであり、X線遮蔽部の延伸方向(y方向)の屈折成分は含まれていない。このため、被検体Hの形状と向きによっては描出できない部位が存在する。例えば、関節軟骨の荷重面の方向をy方向に合わせると、荷重面に垂直な形状を有する軟骨周辺組織(腱や靭帯など)は描出が不十分になると考えられる。被写体Hを動かすことにより、描出が不十分な部位を再度撮影することは可能ではあるが、被検体H及び術者の負担が増えることに加え、再度撮影した画像との位置再現性を担保することが難しいといった問題がある。
In the X-ray imaging system 10 described above, the phase contrast image obtained by the fringe scanning is an X-ray refraction component in the periodic array direction (x direction) of the X-ray shielding portions of the first and second absorption gratings 31 and 32. And the refractive component in the extending direction (y direction) of the X-ray shielding part is not included. For this reason, there is a portion that cannot be depicted depending on the shape and orientation of the subject H. For example, when the direction of the load surface of the articular cartilage is matched with the y direction, it is considered that the peripheral tissue of the cartilage (such as tendons and ligaments) having a shape perpendicular to the load surface is insufficiently depicted. By moving the subject H, it is possible to recapture a region that is not sufficiently depicted, but in addition to increasing the burden on the subject H and the operator, the position reproducibility with the recaptured image is ensured. There is a problem that it is difficult.
そこで、第1及び第2の吸収型格子31,32の格子面の中心に直交する仮想線(X線の光軸A)を中心として、第1及び第2の吸収型格子31,32を、第1の向きから一体的に回転させて、第2の向きとする格子回転機構105を設け、第1の向きと第2の向きとのそれぞれにおいて位相コントラスト画像を生成するように構成することも好適である。
Accordingly, the first and second absorption gratings 31 and 32 are centered on a virtual line (X-ray optical axis A) orthogonal to the center of the grating surface of the first and second absorption gratings 31 and 32. It is also possible to provide a lattice rotation mechanism 105 that rotates integrally from the first direction and sets the second direction to generate a phase contrast image in each of the first direction and the second direction. Is preferred.
なお、図示の例では、第1及び第2の吸収型格子31,32を90°回転させ、第1の向きと第2の向きとが直交しているが、第1の向きと第2の向きとが交差する限りにおいて第1及び第2の吸収型格子31,32の回転角度は90°に限られるものではない。また、この格子回転機構105は、FPD30とは別に第1及び第2の吸収型格子31,32のみを一体的に回転させるものであってもよいし、第1及び第2の吸収型格子31,32とともにFPD30を一体的に回転させるものであってもよい。更に、マルチスリット103を備える場合は、第1及び第2の吸収型格子31,32と回転が一致するように、マルチスリット103及びコリメータ109、若しくはこれらが一体で形成された放射線源を回転させる。更に、格子回転機構105を用いた第1及び第2の向きにおける位相コントラスト画像の生成は、前述したいずれのX線撮影システムにおいても適用可能である。
In the illustrated example, the first and second absorption gratings 31 and 32 are rotated by 90 °, and the first direction and the second direction are orthogonal to each other. As long as the direction intersects, the rotation angle of the first and second absorption gratings 31 and 32 is not limited to 90 °. Further, the grating rotating mechanism 105 may be configured to rotate only the first and second absorption type gratings 31 and 32 separately from the FPD 30, or the first and second absorption type gratings 31. , 32 and the FPD 30 may be rotated together. Further, when the multi-slit 103 is provided, the multi-slit 103 and the collimator 109 or the radiation source formed integrally with them is rotated so that the rotation coincides with the first and second absorption gratings 31 and 32. . Furthermore, the generation of phase contrast images in the first and second orientations using the grating rotation mechanism 105 can be applied to any of the X-ray imaging systems described above.
図16は、本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その演算部の構成を示す。
FIG. 16 shows a configuration of a calculation unit of another example of the radiation imaging system for explaining the embodiment of the present invention.
前述した各X線撮影システムによれば、これまで描出が難しかったX線弱吸収物体の高コントラストな画像(位相コントラスト画像)が得られるが、更に、位相コントラスト画像と対応して吸収画像が参照できることは読影の助けになる。例えば、吸収画像と位相コントラスト画像を重み付けや階調、周波数処理などの適当な処理によって重ね合わせることにより吸収画像で表現できなかった部分を位相コントラスト画像の情報で補うことは有効である。しかし、位相コントラスト画像とは別に吸収画像を撮影することは、位相コントラスト画像の撮影と吸収画像の撮影の間の撮影肢位のズレによって良好な重ね合わせを困難にするのに加え、撮影回数が増えることにより被検者の負担となる。また、近年、位相コントラスト画像や吸収画像の他に、小角散乱画像が注目されている。小角散乱画像は、被検体組織内部の微細構造に起因する組織性状を表現可能であり、例えば、ガンや循環器疾患といった分野での新しい画像診断のための表現方法として期待されている。
According to each X-ray imaging system described above, a high-contrast image (phase contrast image) of an X-ray weakly absorbing object that has been difficult to draw can be obtained. In addition, an absorption image is referred to corresponding to the phase contrast image. What you can do will help you interpret. For example, it is effective to supplement the portion that could not be represented by the absorption image with the information of the phase contrast image by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing. However, capturing an absorption image separately from the phase contrast image makes it difficult to superimpose images due to the shift in the shooting position between the phase contrast image capture and the absorption image capture. Increasing the burden on the subject. In recent years, small-angle scattered images have attracted attention in addition to phase contrast images and absorption images. The small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in the fields of cancer and cardiovascular diseases.
そこで、本X線撮影システムは、位相コントラスト画像のために取得した複数枚の画像から、吸収画像や小角散乱画像を生成することも可能とする演算処理部190を用いる。演算処理部190は、位相コントラスト画像生成部191、吸収画像生成部192、小角散乱画像生成部193が構成されている。これらは、いずれもk=0,1,2,・・・,M-1のM個の各走査位置で得られる画像データに基づいて演算処理を行う。このうち、位相コントラスト画像生成部191は、前述の手順に従って位相コントラスト画像を生成する。
Therefore, this X-ray imaging system uses an arithmetic processing unit 190 that can generate an absorption image and a small-angle scattered image from a plurality of images acquired for a phase contrast image. The arithmetic processing unit 190 includes a phase contrast image generation unit 191, an absorption image generation unit 192, and a small angle scattered image generation unit 193. These all perform arithmetic processing based on image data obtained at M scanning positions of k = 0, 1, 2,..., M−1. Among these, the phase contrast image generation unit 191 generates a phase contrast image according to the above-described procedure.
吸収画像生成部192は、画素ごとに得られる画素データIk(x,y)を、図17に示すように、kについて平均化して平均値を算出して画像化することにより吸収画像を生成する。なお、平均値の算出は、画素データIk(x,y)をkについて単純に平均化することにより行なっても良いが、Mが小さい場合には誤差が大きくなるため、画素データIk(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の平均値を求めるようにしてもよい。また、吸収画像の生成には、平均値に限られず、平均値に対応する量であれば、画素データIk(x,y)をkについて加算した加算値等を用いることが可能である。
The absorption image generation unit 192 generates an absorption image by averaging the pixel data I k (x, y) obtained for each pixel with respect to k and calculating an average value as shown in FIG. To do. The average value may be calculated by simply averaging the pixel data I k (x, y) with respect to k. However, when M is small, the error increases, so that the pixel data I k ( After fitting x, y) with a sine wave, an average value of the fitted sine wave may be obtained. The generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel data I k (x, y) with respect to k can be used as long as the amount corresponds to the average value.
なお、被写体がない状態で撮影(プレ撮影)して取得される画像群から、吸収像を作成するようにしてもよい。この吸収像は、検出系の透過率ムラを反映している(グリッドの透過率ムラ、線量検出器の吸収の影響等の情報が含まれている)。そこで、この画像から、検出系の透過率ムラを補正するための補正係数マップを作成することが出来る。被写体がある状態で撮影(メイン撮影)して取得される画像群から、吸収像を作成し、前述の補正係数を各画素にかけることで、検出系の透過率ムラを補正した、被写体の吸収像を得ることが出来る。
Note that an absorption image may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject. This absorption image reflects the transmittance unevenness of the detection system (including information such as the transmittance unevenness of the grid and the influence of the absorption of the dose detector). Therefore, a correction coefficient map for correcting the transmittance unevenness of the detection system can be created from this image. Absorption of the subject, in which an absorption image is created from a group of images obtained by shooting in the state of the subject (main shooting), and the above-described correction coefficient is applied to each pixel, thereby correcting the transmittance unevenness of the detection system. An image can be obtained.
小角散乱画像生成部193は、画素ごとに得られる画素データIk(x,y)の振幅値を算出して画像化することにより小角散乱画像を生成する。なお、振幅値の算出は、画素データIk(x,y)の最大値と最小値との差を求めることによって行なっても良いが、Mが小さい場合には誤差が大きくなるため、画素データIk(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の振幅値を求めるようにしても良い。また、小角散乱画像の生成には、振幅値に限られず、平均値を中心としたばらつきに対応する量として、分散値や標準偏差等を用いることが可能である。
The small angle scattered image generation unit 193 generates a small angle scattered image by calculating and imaging the amplitude value of the pixel data I k (x, y) obtained for each pixel. The amplitude value may be calculated by obtaining the difference between the maximum value and the minimum value of the pixel data I k (x, y). However, when M is small, the error increases, so that the pixel data After fitting I k (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained. In addition, the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
なお、被写体がない状態で撮影(プレ撮影)して取得される画像群から、小角散乱画像を作成するようにしてもよい。この小角散乱画像は、検出系の振幅値ムラを反映している(グリッドのピッチ不均一性、開口率不均一性、グリッド間の相対位置ズレによる不均一性等の情報が含まれている)。そこで、この画像から、検出系の振幅値ムラを補正するための補正係数マップを作成することが出来る。被写体がある状態で撮影(メイン撮影)して取得される画像群から、小角散乱画像を作成し、前述の補正係数を各画素にかけることで、検出系の振幅値ムラを補正した、被写体の小角散乱画像を得ることが出来る。
It should be noted that a small angle scattered image may be created from an image group obtained by photographing (pre-photographing) in the absence of a subject. This small-angle scattered image reflects the amplitude value unevenness of the detection system (including information such as grid pitch non-uniformity, aperture ratio non-uniformity, and non-uniformity due to relative displacement between grids). . Therefore, a correction coefficient map for correcting the amplitude irregularity of the detection system can be created from this image. A small-angle scattered image is created from a group of images acquired by shooting (main shooting) in the presence of the subject, and the amplitude value unevenness of the detection system is corrected by applying the correction coefficient described above to each pixel. A small-angle scattered image can be obtained.
本X線撮影システムによれば、被写体の位相コントラスト画像のために取得した複数枚の画像から吸収画像や小角散乱画像を生成するので、吸収画像や小角散乱画像の撮影の間の撮影肢位のズレが生じず、位相コントラスト画像と吸収画像や小角散乱画像との良好な重ね合わせが可能となる。
According to the present X-ray imaging system, an absorption image and a small angle scattered image are generated from a plurality of images acquired for the phase contrast image of the subject. No deviation occurs, and the phase contrast image can be satisfactorily superimposed with the absorption image or the small-angle scattered image.
前述の各X線撮影システムでは、放射線として一般的なX線を用いる場合について説明したが、本発明に用いられる放射線はX線に限られるものではなく、α線、γ線等のX線以外の放射線を用いることも可能である。
In each of the above-described X-ray imaging systems, the case where general X-rays are used as radiation has been described. However, the radiation used in the present invention is not limited to X-rays, but other than X-rays such as α-rays and γ-rays. It is also possible to use other radiation.
以上、説明したように、本明細書には、第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有する格子パターンと、前記格子パターンによってマスキングされた前記放射線像を検出する放射線画像検出器と、前記格子パターンを通過する放射線の進行方向に前記格子パターンより上流に位置し、入射する放射線量を検出する線量検出器と、を備える放射線撮影装置。
As described above, the present specification includes a first grating and a grating pattern having a period substantially matching the pattern period of a radiation image formed by radiation that has passed through the first grating; A radiation image detector for detecting the radiation image masked by the grating pattern; a dose detector for detecting an incident radiation dose positioned upstream of the grating pattern in a traveling direction of radiation passing through the grating pattern; A radiation imaging apparatus comprising:
また、本明細書に開示された放射線撮影装置は、前記線量検出器が、前記第1の格子と前記格子パターンとの間に配置されている。
Also, in the radiographic apparatus disclosed in this specification, the dose detector is disposed between the first grating and the grating pattern.
また、本明細書に開示された放射線撮影装置は、前記格子パターンによってマスキングされた前記放射線像のパターン周期が、その周期方向に関する前記線量検出器の受光部の寸法より長い。
Also, in the radiation imaging apparatus disclosed in this specification, the pattern period of the radiation image masked by the lattice pattern is longer than the dimension of the light receiving unit of the dose detector with respect to the period direction.
また、本明細書に開示された放射線撮影装置は、前記第1の格子に対する前記格子パターンの相対姿勢及び相対位置の少なくともいずれか一方を変化させ、前記第2の格子によってマスキングされた前記放射線像のパターン周期を変化させる変更機構を更に備える。
Further, the radiographic apparatus disclosed in the specification changes at least one of a relative posture and a relative position of the lattice pattern with respect to the first lattice, and the radiation image masked by the second lattice. And a change mechanism for changing the pattern period.
また、本明細書に開示された放射線撮影装置は、前記変更機構が、前記第1の格子に照射される放射線の光軸まわりに、前記第1の格子及び前記格子パターンの少なくともいずれか一方を回転させる。
Further, in the radiation imaging apparatus disclosed in this specification, the changing mechanism causes at least one of the first grating and the grating pattern to be arranged around an optical axis of radiation irradiated to the first grating. Rotate.
また、本明細書に開示された放射線撮影装置は、前記変更機構が、前記第1の格子に照射される放射線の光軸に対して、前記第1の格子及び前記格子パターンの少なくともいずれか一方を傾斜させる。
Further, in the radiographic apparatus disclosed in this specification, the change mechanism has at least one of the first grating and the grating pattern with respect to an optical axis of radiation applied to the first grating. Tilt.
また、本明細書に開示された放射線撮影装置は、前記変更機構が、前記第1の格子に照射される放射線の光軸に沿って前記第1の格子及び前記格子パターンの少なくともいずれか一方を移動させる。
Further, in the radiation imaging apparatus disclosed in this specification, the changing mechanism may change at least one of the first grating and the grating pattern along an optical axis of radiation irradiated on the first grating. Move.
また、本明細書に開示された放射線撮影装置は、前記線量検出器の受光部が、前記第1の格子に照射される放射線の光軸に直交する面内において分布して設けられている。
Further, in the radiographic apparatus disclosed in this specification, the light receiving units of the dose detector are provided in a distributed manner in a plane orthogonal to the optical axis of the radiation irradiated on the first grating.
また、本明細書に開示された放射線撮影装置は、前記格子パターンが、前記放射線像に対して互いに位相の異なる複数の相対位置に置かれる。
Also, in the radiation imaging apparatus disclosed in this specification, the grating pattern is placed at a plurality of relative positions having different phases from each other with respect to the radiation image.
また、本明細書に開示された放射線撮影装置は、前記格子パターンが、第2の格子であって、前記第1の格子及び前記第2の格子のいずれか一方を移動させ、前記第2の格子を前記放射線像に対して前記複数の相対位置に置く走査機構を更に備える。
Further, in the radiation imaging apparatus disclosed in this specification, the lattice pattern is a second lattice, and the second lattice is moved, and the second lattice is moved. A scanning mechanism is further provided that places a grating at the plurality of relative positions with respect to the radiation image.
また、本明細書に開示された放射線撮影装置は、前記線量検出器が、前記第2の格子に隣接して配置される。
Also, in the radiographic apparatus disclosed in this specification, the dose detector is disposed adjacent to the second grating.
また、本明細書に開示された放射線撮影装置は、前記格子パターンが、前記放射線画像検出器に設けられている。
Further, in the radiation imaging apparatus disclosed in this specification, the lattice pattern is provided in the radiation image detector.
また、本明細書に開示された放射線撮影装置は、前記放射線画像検出器が、放射線を電荷に変換する変換層と、前記変換層において変換された電荷を収集する電荷収集電極と、を画素毎に備え、前記電荷収集電極は、前記放射線像のパターン周期に実質的に一致する周期を有する線状電極群を複数含み、前記複数の線状電極群は、互いに位相が異なるように配列されており、前記格子パターンは、前記複数の線状電極群の各々により構成されている。
Further, in the radiation imaging apparatus disclosed in this specification, the radiological image detector includes a conversion layer that converts radiation into electric charge, and a charge collection electrode that collects electric charge converted in the conversion layer, for each pixel. The charge collection electrode includes a plurality of linear electrode groups having a period substantially matching the pattern period of the radiation image, and the plurality of linear electrode groups are arranged so that their phases are different from each other. The lattice pattern is constituted by each of the plurality of linear electrode groups.
また、本明細書に開示された放射線撮影装置は、前記線量検出器が、前記放射線画像検出器に隣接して設けられている。
Further, in the radiation imaging apparatus disclosed in this specification, the dose detector is provided adjacent to the radiation image detector.
また、本明細書に開示された放射線撮影装置は、前記第1の格子が、吸収型格子である。
Also, in the radiation imaging apparatus disclosed in this specification, the first grating is an absorption grating.
また、本明細書に開示された放射線撮影装置は、前記第1の格子が、位相型格子である。
Also, in the radiation imaging apparatus disclosed in this specification, the first grating is a phase-type grating.
また、本明細書に開示された放射線撮影装置は、前記第1の格子に向けて放射線を照射する放射線源を更に備える。
The radiation imaging apparatus disclosed in this specification further includes a radiation source that irradiates radiation toward the first grating.
また、本明細書には、上記いずれかの放射線撮影装置と、前記線量検出器で検出される線量に基づいて露光制御する制御部と、を備える放射線撮影システムが開示されている。
Further, the present specification discloses a radiation imaging system including any one of the above-described radiation imaging apparatuses and a control unit that performs exposure control based on the dose detected by the dose detector.
また、本明細書に開示された放射線撮影システムは、前記格子パターンが、前記放射線像に対して互いに位相の異なる複数の相対位置に置かれ、前記放射線画像検出器が、前記格子パターンが互いに異なる前記相対位置に置かれる各撮影ステップにおいて、前記格子パターンによってマスキングされる前記放射線像を検出し、前記制御部が、前記各撮影ステップの間で、前記線量検出器で検出される線量が一定となるように露光制御する。
Further, in the radiation imaging system disclosed in this specification, the lattice pattern is placed at a plurality of relative positions having different phases with respect to the radiation image, and the radiation image detector has the lattice pattern different from each other. In each imaging step placed at the relative position, the radiation image masked by the lattice pattern is detected, and the dose detected by the dose detector is constant between the imaging steps. The exposure is controlled so that
また、本明細書に開示された放射線撮影システムは、前記放射線検出器の前記放射線画像検出器で取得される放射線画像から、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、被写体の位相コントラスト画像を生成する演算部を更に備える。
Further, the radiation imaging system disclosed in this specification calculates a distribution of refraction angles of radiation incident on the radiation image detector from a radiation image acquired by the radiation image detector of the radiation detector, A calculation unit is further provided for generating a phase contrast image of the subject based on the distribution of the refraction angles.
本発明によれば、線量検出器を格子パターンの上流に配置することによって、放射線像と格子パターンとの重ね合わせによって形成されるモアレ縞の影響を受けることなく、線量検出器において線量を検出することができる。それにより、適切な露光制御を可能とし、高精度な放射線位相コントラスト画像を生成することができる。
According to the present invention, by arranging the dose detector upstream of the lattice pattern, the dose detector detects the dose without being affected by the moire fringes formed by superimposing the radiation image and the lattice pattern. be able to. Thereby, appropriate exposure control can be performed, and a highly accurate radiation phase contrast image can be generated.
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2010年10月28日出願の日本特許出願(特願2010-242779)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2010-242779) filed on Oct. 28, 2010, the contents of which are incorporated herein by reference.
本出願は、2010年10月28日出願の日本特許出願(特願2010-242779)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2010-242779) filed on Oct. 28, 2010, the contents of which are incorporated herein by reference.
10 X線撮影システム
11 X線源
12 撮影部
13 コンソール
30 FPD
31 第1の吸収型格子
32 第2の吸収型格子
33 走査機構
35 線量検出器
40 画素 10X-ray imaging system 11 X-ray source 12 Imaging unit 13 Console 30 FPD
31 FirstAbsorption Type Grating 32 Second Absorption Type Grating 33 Scanning Mechanism 35 Dose Detector 40 Pixel
11 X線源
12 撮影部
13 コンソール
30 FPD
31 第1の吸収型格子
32 第2の吸収型格子
33 走査機構
35 線量検出器
40 画素 10
31 First
Claims (20)
- 第1の格子と、
前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有する格子パターンと、
前記格子パターンによってマスキングされた前記放射線像を検出する放射線画像検出器と、
前記格子パターンを通過する放射線の進行方向に前記格子パターンより上流に位置し、入射する放射線量を検出する線量検出器と、
を備える放射線撮影装置。 A first lattice;
A grating pattern having a period substantially matching a pattern period of a radiation image formed by radiation that has passed through the first grating;
A radiation image detector for detecting the radiation image masked by the lattice pattern;
A dose detector that is located upstream of the grating pattern in the traveling direction of the radiation passing through the grating pattern and detects the amount of incident radiation;
A radiographic apparatus comprising: - 請求項1に記載された放射線撮影装置であって、
前記線量検出器は、前記第1の格子と前記格子パターンとの間に配置されている放射線撮影装置。 The radiographic apparatus according to claim 1,
The dose detector is a radiographic apparatus arranged between the first grating and the grating pattern. - 請求項1又は請求項2に記載された放射線撮影装置であって、
前記格子パターンによってマスキングされた前記放射線像のパターン周期が、その周期方向に関する前記線量検出器の受光部の寸法より長い放射線撮影装置。 The radiographic apparatus according to claim 1 or 2, wherein
A radiation imaging apparatus, wherein a pattern period of the radiation image masked by the lattice pattern is longer than a dimension of a light receiving unit of the dose detector with respect to the period direction. - 請求項1から3のいずれか一項に記載の放射線撮影装置であって、
前記第1の格子に対する前記格子パターンの相対姿勢及び相対位置の少なくともいずれか一方を変化させ、前記第2の格子によってマスキングされた前記放射線像のパターン周期を変更する変更機構をさらに備える放射線撮影装置。 The radiographic apparatus according to any one of claims 1 to 3,
A radiation imaging apparatus further comprising: a changing mechanism that changes a pattern period of the radiation image masked by the second grating by changing at least one of a relative posture and a relative position of the grating pattern with respect to the first grating. . - 請求項4に記載の放射線撮影装置であって、
前記変更機構は、前記第1の格子に照射される放射線の光軸まわりに、前記第1の格子及び前記格子パターンの少なくともいずれか一方を回転させる放射線撮影装置。 The radiographic apparatus according to claim 4,
The change mechanism is a radiation imaging apparatus that rotates at least one of the first grating and the grating pattern around an optical axis of radiation applied to the first grating. - 請求項4に記載の放射線撮影装置であって、
前記変更機構は、前記第1の格子に照射される放射線の光軸に対して、前記第1の格子及び前記格子パターンの少なくともいずれか一方を傾斜させる放射線撮影装置。 The radiographic apparatus according to claim 4,
The change mechanism is a radiation imaging apparatus that tilts at least one of the first grating and the grating pattern with respect to an optical axis of radiation applied to the first grating. - 請求項4に記載の放射線撮影装置であって、
前記変更機構は、前記第1の格子に照射される放射線の光軸に沿って前記第1の格子及び前記格子パターンの少なくともいずれか一方を移動させる放射線撮影装置。 The radiographic apparatus according to claim 4,
The change mechanism is a radiation imaging apparatus that moves at least one of the first grating and the grating pattern along an optical axis of radiation applied to the first grating. - 請求項1から7のいずれか一項に記載の放射線撮影装置であって、
前記線量検出器の受光部は、前記第1の格子に照射される放射線の光軸に直交する面内において分布して設けられている放射線撮影装置。 The radiographic apparatus according to any one of claims 1 to 7,
The light-receiving unit of the dose detector is a radiation imaging apparatus provided in a distributed manner in a plane orthogonal to the optical axis of radiation applied to the first grating. - 請求項1から8のいずれか一項に記載の放射線撮影装置であって、
前記格子パターンは、前記放射線像に対して互いに位相の異なる複数の相対位置に置かれる放射線撮影装置。 The radiographic apparatus according to any one of claims 1 to 8,
The radiographic apparatus in which the lattice pattern is placed at a plurality of relative positions whose phases are different from each other with respect to the radiation image. - 請求項9に記載された放射線撮影装置であって、
前記格子パターンは、第2の格子であって、
前記第1の格子及び前記第2の格子のいずれか一方を移動させ、前記第2の格子を前記放射線像に対して前記複数の相対位置に置く走査機構をさらに備える放射線撮影装置。 The radiographic apparatus according to claim 9, wherein
The lattice pattern is a second lattice,
A radiation imaging apparatus further comprising: a scanning mechanism that moves one of the first grating and the second grating and places the second grating at the plurality of relative positions with respect to the radiation image. - 請求項10に記載された放射線撮影装置であって、
前記線量検出器は、前記第2の格子に隣接して配置される放射線撮影装置。 The radiographic apparatus according to claim 10, wherein
The dose detector is a radiation imaging apparatus arranged adjacent to the second grating. - 請求項9に記載された放射線撮影装置であって、
前記格子パターンは、前記放射線画像検出器に設けられている放射線撮影装置。 The radiographic apparatus according to claim 9, wherein
The grid pattern is a radiation imaging apparatus provided in the radiation image detector. - 請求項12に記載された放射線撮影装置であって、
前記放射線画像検出器は、放射線を電荷に変換する変換層と、前記変換層において変換された電荷を収集する電荷収集電極と、を画素毎に備え、
前記電荷収集電極は、前記放射線像のパターン周期に実質的に一致する周期を有する線状電極群を複数含み、
前記複数の線状電極群は、互いに位相が異なるように配列されており、
前記格子パターンは、前記複数の線状電極群の各々により構成されている放射線撮影装置。 The radiographic apparatus according to claim 12, comprising:
The radiation image detector includes, for each pixel, a conversion layer that converts radiation into charges, and a charge collection electrode that collects charges converted in the conversion layer,
The charge collection electrode includes a plurality of linear electrode groups having a period substantially matching the pattern period of the radiation image,
The plurality of linear electrode groups are arranged so that their phases are different from each other,
The grid pattern is a radiation imaging apparatus configured by each of the plurality of linear electrode groups. - 請求項12又は請求項13に記載された放射線撮影装置であって、
前記線量検出器は、前記放射線画像検出器に隣接して設けられている放射線撮影装置。 A radiographic apparatus according to claim 12 or claim 13, wherein
The dose detector is a radiation imaging apparatus provided adjacent to the radiation image detector. - 請求項1から14のいずれか一項に記載された放射線撮影装置であって、
前記第1の格子は、吸収型格子である放射線撮影装置。 The radiographic apparatus according to any one of claims 1 to 14,
The radiographic apparatus wherein the first grating is an absorption grating. - 請求項1から14のいずれか一項に記載された放射線撮影装置であって、
前記第1の格子は、位相型格子である放射線撮影装置。 The radiographic apparatus according to any one of claims 1 to 14,
The radiographic apparatus wherein the first grating is a phase type grating. - 請求項1から16のいずれか一項に記載された放射線撮影装置であって、
前記第1の格子に向けて放射線を照射する放射線源をさらに備える放射線撮影装置。 The radiographic apparatus according to any one of claims 1 to 16, wherein
A radiation imaging apparatus further comprising a radiation source that irradiates radiation toward the first grating. - 請求項1から17のいずれか一項に記載の放射線撮影装置と、
前記線量検出器で検出される線量に基づいて露光制御する制御部と、
を備える放射線撮影システム。 A radiation imaging apparatus according to any one of claims 1 to 17,
A control unit for controlling exposure based on a dose detected by the dose detector;
A radiography system comprising: - 請求項18に記載の放射線撮影システムであって、
前記格子パターンは、前記放射線像に対して互いに位相の異なる複数の相対位置に置かれ、
前記放射線画像検出器は、前記格子パターンが互いに異なる前記相対位置に置かれる各撮影ステップにおいて、前記格子パターンによってマスキングされる前記放射線像を検出し、
前記制御部は、前記各撮影ステップの間で、前記線量検出器で検出される線量が一定となるように露光制御する放射線撮影システム。 The radiation imaging system according to claim 18,
The grating pattern is placed at a plurality of relative positions with different phases with respect to the radiation image,
The radiological image detector detects the radiographic image masked by the grid pattern in each imaging step in which the grid pattern is placed at the relative position different from each other,
The said control part is a radiography system which controls exposure so that the dose detected by the said dose detector becomes fixed between each said imaging step. - 請求項19に記載の放射線撮影システムであって、
前記放射線検出器の前記放射線画像検出器で取得される放射線画像から、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、被写体の位相コントラスト画像を生成する演算部をさらに備える放射線撮影システム。 The radiation imaging system according to claim 19,
The distribution of the refraction angle of the radiation incident on the radiation image detector is calculated from the radiation image acquired by the radiation image detector of the radiation detector, and the phase contrast image of the subject is calculated based on the distribution of the refraction angle. A radiation imaging system further comprising a calculation unit for generating the.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-242779 | 2010-10-28 | ||
JP2010242779A JP2014014380A (en) | 2010-10-28 | 2010-10-28 | Radiographic apparatus and radiographic system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012057046A1 true WO2012057046A1 (en) | 2012-05-03 |
Family
ID=45993756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/074365 WO2012057046A1 (en) | 2010-10-28 | 2011-10-21 | Radiography device and radiography system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014014380A (en) |
WO (1) | WO2012057046A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104274195A (en) * | 2013-07-08 | 2015-01-14 | 西门子公司 | Selecting Measurement Fields for an X-Ray Examination |
JP7493527B2 (en) | 2019-02-28 | 2024-05-31 | コーニンクレッカ フィリップス エヌ ヴェ | System, method and computer program for acquiring phase imaging data of a subject - Patents.com |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004058070A1 (en) * | 2002-12-26 | 2004-07-15 | Atsushi Momose | X-ray imaging system and imaging method |
JP2008545981A (en) * | 2005-06-06 | 2008-12-18 | パウル・シェラー・インスティトゥート | Interferometer for quantitative phase contrast imaging and tomography using an incoherent polychromatic X-ray source |
-
2010
- 2010-10-28 JP JP2010242779A patent/JP2014014380A/en active Pending
-
2011
- 2011-10-21 WO PCT/JP2011/074365 patent/WO2012057046A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004058070A1 (en) * | 2002-12-26 | 2004-07-15 | Atsushi Momose | X-ray imaging system and imaging method |
JP2008545981A (en) * | 2005-06-06 | 2008-12-18 | パウル・シェラー・インスティトゥート | Interferometer for quantitative phase contrast imaging and tomography using an incoherent polychromatic X-ray source |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104274195A (en) * | 2013-07-08 | 2015-01-14 | 西门子公司 | Selecting Measurement Fields for an X-Ray Examination |
US9706974B2 (en) | 2013-07-08 | 2017-07-18 | Siemens Aktiengesellschaft | Selecting measurement fields for an X-ray examination |
JP7493527B2 (en) | 2019-02-28 | 2024-05-31 | コーニンクレッカ フィリップス エヌ ヴェ | System, method and computer program for acquiring phase imaging data of a subject - Patents.com |
Also Published As
Publication number | Publication date |
---|---|
JP2014014380A (en) | 2014-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5331940B2 (en) | Radiation imaging system and radiation image generation method | |
JP5150713B2 (en) | Radiation image detection device, radiation imaging device, radiation imaging system | |
JP5702586B2 (en) | Radiography system | |
JP5343065B2 (en) | Radiography system | |
JP5238786B2 (en) | Radiography apparatus and radiation imaging system | |
JP2012090944A (en) | Radiographic system and radiographic method | |
JP2012090945A (en) | Radiation detection device, radiographic apparatus, and radiographic system | |
JP2011224329A (en) | Radiation imaging system and method | |
JP2012095865A (en) | Radiographic apparatus and radiographic system | |
JP2012115576A (en) | Radiological image detection apparatus, radiographic apparatus and radiographic system | |
JP2012024339A (en) | Radiation imaging system and collimator unit | |
JP2012200567A (en) | Radiographic system and radiographic method | |
US20140286477A1 (en) | Radiation photographing apparatus | |
WO2012057047A1 (en) | Radiation imaging system | |
JP2012115577A (en) | Radiographic system | |
JP2011206490A (en) | Radiographic system and radiographic method | |
WO2012169426A1 (en) | Radiography system | |
JP2012125423A (en) | Radiation image detection apparatus, radiographic imaging apparatus, and radiographic imaging system | |
WO2012057278A1 (en) | Radiation imaging system and radiation imaging method | |
WO2012070661A1 (en) | Radiographic image detection apparatus, radiography apparatus, and radiography system | |
WO2012169427A1 (en) | Radiography system | |
JP2012115621A (en) | Radiological image detection apparatus, radiographic apparatus and radiographic system | |
WO2012056992A1 (en) | Radiograph detection device, radiography device, radiography system | |
JP2011206188A (en) | Radiographic system and method | |
WO2012057046A1 (en) | Radiography device and radiography system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11836180 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11836180 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |