WO2012057278A1 - Radiation imaging system and radiation imaging method - Google Patents

Radiation imaging system and radiation imaging method Download PDF

Info

Publication number
WO2012057278A1
WO2012057278A1 PCT/JP2011/074840 JP2011074840W WO2012057278A1 WO 2012057278 A1 WO2012057278 A1 WO 2012057278A1 JP 2011074840 W JP2011074840 W JP 2011074840W WO 2012057278 A1 WO2012057278 A1 WO 2012057278A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
radiation
dose
imaging
image
Prior art date
Application number
PCT/JP2011/074840
Other languages
French (fr)
Japanese (ja)
Inventor
村越 大
裕康 石井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012057278A1 publication Critical patent/WO2012057278A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4464Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being mounted to ceiling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/547Control of apparatus or devices for radiation diagnosis involving tracking of position of the device or parts of the device

Definitions

  • the present invention relates to a radiation imaging system and a radiation imaging method.
  • X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance.
  • X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
  • a subject In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured.
  • each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector.
  • an X-ray image detector there is a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit in addition to a combination of an X-ray intensifying screen and a film, a stimulable phosphor (accumulating phosphor), and so on. Widely used.
  • FPD Flat Panel Detector
  • automatic exposure is used to stabilize the density of the image obtained by the X-ray image detector with respect to the required exposure amount that varies depending on the subject, or to prevent excessive exposure of the subject due to excessive exposure. Control is taking place.
  • the automatic exposure control generally, the dose of X-rays transmitted through the subject is detected by a dose detector, and the X-ray irradiation is stopped when the dose detected by the dose detector reaches a preset threshold dose. .
  • the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
  • an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object.
  • Imaging research is actively conducted.
  • a first diffraction grating phase type grating or absorption type grating
  • a specific distance Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating.
  • the Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the arranged subject and the X-ray.
  • the X-ray Talbot interferometer detects moiré fringes generated by superimposing the first image of the first diffraction grating and the second diffraction grating, and obtains subject phase information by analyzing changes in the moiré fringes caused by the subject.
  • a fringe scanning method is known. According to this fringe scanning method, the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating.
  • a distribution (differential image of phase shift) is obtained, and a phase contrast image of the subject can be obtained based on this angular distribution.
  • Patent Document 1 describes that the above automatic exposure control is performed in the X-ray phase imaging by the fringe scanning method using the first and second diffraction gratings.
  • the moire fringes from the X-ray phase contrast image become shorter as the period of the moire fringes becomes shorter. It may be difficult to remove the influence of the image quality, and the image quality may deteriorate. Therefore, it is preferable that the period of the moire fringes is long.
  • Patent Document 1 does not particularly describe the position of the dose detector, but generally the dose detector is disposed behind the X-ray image detector. In that case, in the X-ray phase imaging based on the fringe scanning method using the first and second diffraction gratings, the dose detector is positioned downstream of the second diffraction grating, and thus on the light receiving portion of the dose detector. In this case, moire fringes are formed.
  • This moire fringe moves with the scanning of the second diffraction grating, and when the period of the moire fringe becomes longer than the dimension of the light receiving part of the dose detector in the periodic direction, when the dark part of the moire fringe overlaps the light receiving part, When the dark part does not overlap the light receiving part, the dose of X-rays incident on the dose detector per unit time varies greatly.
  • the above automatic exposure control extends or shortens the X-ray irradiation time so as to cancel the fluctuation of the X-ray dose incident on the light receiving unit of the dose detector per unit time.
  • the variation in the irradiation dose between photographings causes a change in the signal value of each pixel separately from the scanning of the second diffraction grating.
  • the change in the signal value that should originally be obtained by scanning the second diffraction grating is attenuated
  • the change in the signal value that should be originally obtained by scanning the second diffraction grating is emphasized.
  • the X-ray phase imaging by the fringe scanning method using the first and second diffraction gratings detects the phase information of the subject from the change in the signal value of each pixel accompanying the scanning of the second diffraction grating.
  • a change in the signal value of each pixel due to a factor different from the scanning of the second diffraction grating reduces the detection accuracy of the phase information of the subject.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to generate a highly accurate radiation phase contrast image by appropriate exposure control.
  • a plurality of first gratings and a plurality of phases having a period substantially coincident with a pattern period of a radiation image formed by radiation passing through the first grating and having phases different from each other with respect to the radiation image A second grating placed at a relative position; a radiation image detector for detecting the radiation image masked by the second grating; and the second grating in a traveling direction of the radiation passing through the second grating.
  • a dose detection unit that detects the amount of incident radiation and a control unit that controls exposure, and the control unit is configured to perform a plurality of times in which the second grating is placed at different relative positions.
  • the exposure is controlled to continue until the dose detected by the dose detection unit reaches a preset threshold dose, and the second and subsequent shootings are performed in the first shooting.
  • Radiographic system for controlling to continue the exposure until the exposure time required has elapsed.
  • the exposure is continued until the dose detected downstream of the second grating reaches a preset threshold dose in the traveling direction of the radiation passing through the second grating, and the second and subsequent imaging is performed. Then, the radiation imaging method which continues exposure until the exposure time required in the said 1st imaging
  • the exposure control is performed based on the dose detected by the dose detector, and in the second and subsequent shootings, exposure control is performed based on the exposure time required for the first shooting.
  • FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention
  • FIG. 2 shows a control block of the radiation imaging system of FIG.
  • the X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject (patient) H in a standing position, and is disposed opposite to the X-ray source 11 that emits X-rays to the subject H, and the X-ray source 11.
  • An imaging unit 12 that detects X-rays transmitted through the subject H from the X-ray source 11 and generates image data, and controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12 based on the operation of the operator.
  • it is roughly divided into a console 13 that generates a phase contrast image by calculating the image data acquired by the photographing unit 12.
  • the X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling.
  • the photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
  • the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18.
  • the X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion of the X-ray that does not contribute to imaging of the inspection area of the subject H.
  • the X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated.
  • the colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
  • the X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of.
  • a motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
  • the standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction.
  • the holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c.
  • the driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
  • the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. .
  • the detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like.
  • the X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
  • the console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like.
  • the control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
  • the input device 21 for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used.
  • an X-ray tube voltage or an X-ray dose detected by a dose detector described later can be used.
  • X-ray imaging conditions such as a threshold dose, imaging timing, and the like are input.
  • the monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
  • the imaging unit 12 includes a flat panel detector (FPD) 30 made of a semiconductor circuit, a first absorption type grating 31 and a second absorption type for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging.
  • FPD flat panel detector
  • An absorption grating 32 and a dose detector 35 are provided.
  • the FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11.
  • the first and second absorption gratings 31 and 32 are disposed between the FPD 30 and the X-ray source 11.
  • the dose detector 35 is disposed behind the FPD 30 and is located downstream of the subject H, and detects the dose of X-rays transmitted through the subject H.
  • the X-ray light receiving unit of the dose detector 35 for example, a combination of a phosphor and a photomultiplier tube, an ion chamber, an X-ray detector using a semiconductor circuit, or the like is used.
  • the imaging unit 12 changes the relative positional relationship of the second absorption type grating 32 with respect to the first absorption type grating 31 by translating the second absorption type grating 32 in the vertical direction (x direction).
  • a scanning mechanism 33 is provided.
  • the scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
  • FIG. 3 shows a configuration of a radiation image detector included in the radiation imaging system of FIG.
  • the FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41.
  • a scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13.
  • the scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
  • Each pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and stores the converted electric charges in a capacitor (not shown) connected to an electrode below the conversion layer. It can be configured as a direct conversion type element.
  • Each pixel 40 is connected to a thin film transistor (TFT) switch (not shown), and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46.
  • TFT thin film transistor
  • Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it.
  • the X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
  • the readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory (all not shown).
  • the integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter.
  • the A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit.
  • the correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory.
  • correction processing by the correction circuit correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
  • 4 and 5 show an imaging unit of the radiation imaging system of FIG.
  • the first absorption-type grating 31 includes a substrate 31a and a plurality of X-ray shielding portions 31b arranged on the substrate 31a.
  • the second absorption type grating 32 includes a substrate 32a and a plurality of X-ray shielding portions 32b arranged on the substrate 32a.
  • the substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays.
  • Each of the X-ray shielding portions 31b and 32b is in one direction in a plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (in the illustrated example, the y direction orthogonal to the x direction and the z direction). It is comprised by the linear member extended
  • a material of each X-ray shielding part 31b, 32b a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable.
  • These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
  • X-ray shielding portion 31b is in a plane perpendicular to the optical axis A of the X-ray, at a predetermined period p 1 in a direction (x-direction) orthogonal to the one direction, are arranged at a predetermined interval d 1 from each other ing.
  • X-ray shielding portion 32b in the plane orthogonal to the optical axis A of the X-ray, at a predetermined period p 2 in a direction (x-direction) orthogonal to the one direction, at a predetermined interval d 2 from each other Are arranged.
  • the first and second absorption gratings 31 and 32 do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings.
  • the slit portions may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
  • the first and second absorption gratings 31 and 32 are configured to geometrically project the X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, most of the X-rays included in the irradiated X-rays can be obtained at the slit portion. It is configured to pass through without being diffracted while maintaining straightness. For example, when tungsten is used as the rotary anode 18a described above and the tube voltage is 50 kV, the effective wavelength of X-ray is about 0.4 mm. In this case, if the distances d 1 and d 2 are about 1 to 10 ⁇ m, most of the X-rays are geometrically projected without being diffracted at the slit portion.
  • the X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam having the X-ray focal point 18b as a light emission point, and therefore a projected image projected through the first absorption grating 31 (hereinafter referred to as a projection image).
  • the projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b.
  • the grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic pattern of the bright part of the G1 image at the position of the second absorption type grating 32.
  • the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
  • the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the imaging unit 12 of the present X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting, and the G1 image of the first absorption grating 31 is the first. because at every position of the rear absorption type grating 31 similarly obtained, the distance L 2, can be set independently of the Talbot distance.
  • the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating.
  • the grating pitch p 1 of 31, the grating pitch p 2, X-ray wavelength of the second absorption-type grating 32 (effective wavelength) lambda, and using the positive integer m, is expressed by the following equation (2).
  • Expression (2) is an expression that represents the Talbot interference distance when the X-ray irradiated from the X-ray source 11 is a cone beam. “Atsushi Momose, et al., Japan Journal of Applied Physics, Vol. 47, No. 10, October 2008, page 8077 ”.
  • Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, the distance L 2, the value of the range that satisfies the following equation (5) Set to.
  • the X-ray shielding portions 31b and 32b preferably shield (absorb) X-rays completely in order to generate a periodic pattern image with high contrast.
  • the materials having excellent X-ray absorption properties gold, platinum, etc.
  • the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b it is preferable to increase the thickness much as possible.
  • the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays.
  • the thicknesses h 1 and h 2 are 30 ⁇ m or more in terms of gold (Au). It is preferable that
  • the X-rays irradiated from the X-ray source 11 are cone beams
  • the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are too thick, the X-rays incident obliquely enter the slit portion.
  • vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 31b and 32b becomes narrow. Therefore, in view of the field of view secured to define the upper limit of the thickness h 1, h 2.
  • the effective visual field length V in the x direction is 10 cm.
  • the thickness h 1 may be 100 ⁇ m or less and the thickness h 2 may be 120 ⁇ m or less.
  • an intensity-modulated image is formed by superimposing the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 and is captured by the FPD 30. .
  • the pattern period p 1 ′ of the G1 image at the position of the second absorption grating 32 and the substantial grating pitch p 2 ′ (substantial pitch after production) of the second absorption grating 32 are manufacturing errors. Some differences occur due to or placement errors. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
  • the period T of the moire fringes is expressed by the following equation (8).
  • the arrangement pitch P in the x direction of the pixels 40 needs to be at least not an integral multiple of the moire period T, and it is necessary to satisfy the following equation (9) (where n Is a positive integer).
  • the arrangement pitch P of the pixels 40 of the FPD 30 is a value determined by design (generally about 100 ⁇ m) and is difficult to change, the magnitude relationship between the arrangement pitch P and the moire period T is adjusted. Adjusts the positions of the first and second absorption gratings 31 and 32 and changes the moire period T by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the G1 image. It is preferable to do.
  • FIG. 6 shows a method of changing the moire cycle T.
  • the moire period T can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A.
  • a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided.
  • the substantial grating pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ / cos ⁇ ”.
  • the moire cycle T changes (FIG. 6A).
  • the change of the moire period T is such that either one of the first and second absorption type gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. It can be performed by inclining.
  • a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided.
  • the second absorption type grating 32 is inclined by the angle ⁇ by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ ⁇ cos ⁇ ”.
  • the moire cycle T changes (FIG. 6B).
  • the moire period T can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A.
  • the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32.
  • a relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided.
  • the G1 image of the first absorption type grating 31 projected onto the position of the second absorption type grating 32.
  • the pattern period of “p 1 ′” ⁇ “p 1 ′ ⁇ (L 1 + L 2 + ⁇ ) / (L 1 + L 2 )” changes, and as a result, the moire period T changes (FIG. 6C).
  • imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed.
  • the change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the moiré period T is constituted by an actuator such as a piezoelectric element. Is possible.
  • the moire fringes detected by the FPD 30 are modulated by the subject H.
  • This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire fringes detected by the FPD 30.
  • FIG. 7 shows one X-ray refracted according to the phase shift distribution ⁇ (x) of the subject H in the x direction.
  • Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do.
  • Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
  • phase shift distribution ⁇ (x) of the subject H is expressed by the following equation (11), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
  • the G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H. become.
  • This amount of displacement ⁇ x is approximately expressed by the following equation (12) based on the small X-ray refraction angle ⁇ .
  • the refraction angle ⁇ is expressed by Expression (13) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x) of the subject H.
  • the amount of displacement ⁇ x is expressed by the following equation with the phase shift amount ⁇ of the signal output from each pixel 40 of the FPD 30 (the phase shift amount of the signal of each pixel 40 with and without the subject H): It is related as shown in (14).
  • phase shift amount ⁇ of the signal of each pixel 40 the refraction angle ⁇ is obtained from the equation (14), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (13).
  • a phase shift distribution ⁇ (x) of the subject H that is, a phase contrast image of the subject H can be generated.
  • the phase shift amount ⁇ is calculated using a fringe scanning method described below.
  • the fringe scanning method imaging is performed while one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner relative to the other in the x direction (that is, the phase of both grating periods is changed). Shoot while changing).
  • the second absorption type grating 32 is moved by the scanning mechanism 33 described above, but the first absorption type grating 31 may be moved.
  • the moire fringes move, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2 ⁇ ), the moire fringes return to their original positions.
  • Such a change in moire fringes is obtained by photographing the moire fringes with the FPD 30 while moving the second absorption grating 32 by an integer of the grating pitch p 2, and from each of the photographed plural fringe images, The signal is acquired and processed by the processing unit 22 to obtain the phase shift amount ⁇ of the signal of each pixel 40.
  • FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
  • the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present.
  • x is a coordinate in the x direction of the pixel 40
  • a 0 is the intensity of the incident X-ray
  • An is a value corresponding to the contrast of the signal value of the pixel 40 (where n is a positive value). Is an integer).
  • ⁇ (x) represents the refraction angle ⁇ as a function of the coordinate x of the pixel 40.
  • arg [] means the extraction of the declination, and corresponds to the phase shift amount ⁇ of the signal of each pixel 40. Accordingly, the refraction angle ⁇ (x) is obtained by calculating the phase shift amount ⁇ of the signal of each pixel 40 from the M signal values obtained at each pixel 40 based on the equation (17).
  • FIG. 9 shows a signal of one pixel of the radiation image detector that changes with the fringe scanning.
  • the M signal values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption grating 32.
  • a broken line in FIG. 9 indicates a change in signal value when the subject H does not exist, and a solid line in FIG. 9 indicates a change in signal value when the subject H exists.
  • the phase difference between the two waveforms corresponds to the phase shift amount ⁇ of the signal of each pixel 40.
  • the phase shift is obtained by integrating the refraction angle ⁇ (x) along the x-axis.
  • a distribution ⁇ (x) is obtained.
  • the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution ⁇ (x , Y).
  • the above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the phase contrast image in the storage unit 23.
  • the change of the M signal values of each pixel 40 for calculating the phase shift amount ⁇ needs to be brought about by the scanning of the second absorption type grating 32.
  • the X-ray irradiation dose irradiated from the X-ray source 11 to the imaging unit 12 is required to be substantially constant during imaging.
  • FIG. 10 shows an imaging flow by the X-ray imaging system 10.
  • the control device 20 sends a control signal instructing the start of X-ray irradiation to the X-ray source control unit 17.
  • the X-ray source control unit 17 that has received this control signal controls the high voltage generator 16 so as to start supplying power to the X-ray tube 18. Thereby, irradiation of the subject H with X-rays is started (step S1).
  • the dose detector 35 detects the cumulative X-ray dose incident on the light receiving unit from the start of X-ray irradiation.
  • a threshold dose is set in consideration of a necessary exposure amount that differs depending on the subject H.
  • the dose detector 35 sends a control signal indicating that the threshold dose has been reached to the control device 20 (step S2).
  • the control device 20 that has received the control signal sent from the dose detector 35 sends a control signal for instructing to stop the X-ray irradiation to the X-ray source control unit 17.
  • the X-ray source control unit 17 that has received this control signal controls the high voltage generator 16 so as to stop the supply of power to the X-ray tube 18. Thereby, irradiation of the subject H with X-rays is stopped (step S3).
  • the control device 20 sends an exposure time T 0 required for the first imaging, that is, a control signal that instructs the X-ray source controller 17 to stop irradiation after sending a control signal that instructs the X-ray source controller 17 to start X-ray irradiation. Is measured and stored.
  • the control device 20 sends a control signal instructing the start of X-ray irradiation to the X-ray source control unit 17.
  • the X-ray source control unit 17 that has received this control signal controls the high voltage generator 16 so as to start supplying power to the X-ray tube 18. Thereby, irradiation of the subject H with X-rays is started (step S4).
  • the moire fringes move with the scanning of the second absorption type grating 32, and the dose depends on the degree of overlap between the light receiving part of the dose detector 35 and the dark part of the moire fringes.
  • the dose incident on the light receiving portion of the detector 35 per unit time changes. Therefore, the time required for the dose detected by the dose detector 35 to reach the above threshold dose in each of the second and subsequent imaging is the dose detected by the dose detector 35 in the first imaging. It differs from the exposure time T 0 it took to reach the dose. Therefore, in each of the second and subsequent shootings, when exposure control is performed based on the dose detected by the dose detector 35, the exposure time varies between the shootings, and as a result, the irradiation dose varies. It will be.
  • the control device 20 measures the elapsed time T after sending a control signal instructing the X-ray source control unit 17 to start X-ray irradiation, and the elapsed time T is stored in the first time.
  • a control signal for instructing to stop X-ray irradiation is sent to the X-ray source control unit 17 (step S5).
  • the X-ray source control unit 17 that has received this control signal controls the high voltage generator 16 so as to stop the supply of power to the X-ray tube 18. Thereby, irradiation of the subject H with X-rays is stopped (step S6).
  • the exposure control is performed based on the dose detected by the dose detector 35, in the second and subsequent shot, the exposure based on the exposure time T 0 required for the first shooting
  • the control By performing the control, a necessary exposure amount that is different depending on the subject H is secured, and variations in irradiation dose between photographings are prevented. Thereby, a highly accurate radiation phase contrast image can be generated.
  • the dose incident on the light receiving part per unit time is the latter In many cases, the time required to reach the threshold dose is shorter in the latter case.
  • the dark portion of the moire fringes There is a possibility that the dose of X-rays incident on the pixel 40 of the overlapping FPD 30 is insufficient, and the S / N of the signal of the pixel is lowered.
  • the subject H is allowed within a range in which the pixels 40 of the FPD 30 are not saturated under the assumption that the dark part of the moire fringes does not overlap the light receiving part of the dose detector 35. It is preferable to set the threshold dose slightly higher within the range of the exposure dose. Further, it is preferable that the readout circuit 43 is configured to be designed or set so that the inputs of the integration amplifier circuit, the A / D converter and the like are not saturated with respect to the saturation output of the pixel 40 of the FPD 30.
  • the X-ray dose incident on the pixel 40 is ensured even in the pixel 40 where the dark part of the moire fringe overlaps, including the second and subsequent imaging, and the S / N of the signal of the pixel is prevented from decreasing. it can.
  • X_line 18 is supplied by the opening and closing of the collimator 19a, and X-ray
  • the irradiation and stop of the line may be switched, or a disk-shaped (or slit-shaped) shutter plate in which openings and shields are alternately formed is provided at the exit of the X-ray source 11, and this is irradiated with X-rays.
  • X-ray irradiation and stop may be switched by rotating (or translating) so as to be synchronized with the timing. According to this, it is possible to keep the X-ray tube 18 in a stable state and more reliably prevent variations in irradiation dose.
  • the above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20.
  • the phase contrast image of the subject H is displayed on the monitor 24.
  • exposure control is performed based on the dose detected by the dose detector 35 in the first imaging, and the first imaging in the second and subsequent imaging.
  • the photographing unit 12 can be downsized (thinned).
  • both the first and second gratings are absorption type.
  • the present invention is not limited to this.
  • the present invention is also useful when the refraction angle ⁇ is calculated by performing fringe scanning on the Talbot interference image.
  • the first grating is not limited to the absorption type grating but may be a phase type grating.
  • the method of analyzing the moire fringes formed by superimposing the X-ray image of the first grating and the second grating is not limited to the above-described fringe scanning method. For example, “J. Opt. Soc. Am. .72, No. 1 (1982) p. 156 ", and various methods using moire fringes, such as a method using Fourier transform / inverse Fourier transform, are also applicable.
  • the X-ray imaging system 10 has been described as one that stores or displays an image of the phase shift distribution ⁇ as a phase contrast image, as described above, the phase shift distribution ⁇ is a phase determined from the refraction angle ⁇ .
  • the differential amount of the shift distribution ⁇ is integrated, and the differential amount of the refraction angle ⁇ and the phase shift distribution ⁇ is also related to the phase change of the X-ray by the subject. Therefore, an image having the refraction angle ⁇ as an image and an image having the differential amount of the phase shift ⁇ are also included in the phase contrast image.
  • the dose detector 35 is disposed behind the FPD 30, but the dose detector 35 may be disposed between the second absorption grating 32 and the FPD 30. Furthermore, the X-ray image detector itself may have a configuration equivalent to that of the dose detector 35. As a specific mode, an X-ray image detector having a configuration disclosed in Japanese Patent Application Laid-Open No. 2004-130058 is disclosed. Can be used, thereby eliminating the dose detector 35. As shown in FIG. 11, the X-ray image detector includes a pixel (photoelectric conversion element) 47 for detecting a dose, in addition to a plurality of pixels 40 for capturing moire fringes.
  • the pixel 47 is connected to a readout circuit 48 different from the group of the pixels 40 and is configured to always output charges according to the amount of incident light without switching.
  • the charge read from the pixel 47 is amplified by the read circuit 48, and the output is added by an adder (not shown), so that it enters the pixel 47 from the start of X-ray irradiation in the first imaging. A cumulative x-ray dose is detected.
  • FIG. 12 shows an imaging flow in a modification of the radiation imaging system 10.
  • pre-photographing is performed a plurality of times with a constant exposure time in a state where the subject H is not arranged.
  • the initial position of the second absorption type grating 32 in the plurality of times of photographing performed with the subject H being arranged based on the change in the dose detected by the dose detector 35 during the plurality of times of pre-imaging. Is set.
  • pre-shooting is performed a plurality of times (steps SS1 to SS6).
  • the control device 22 stores the dose detected by the dose detector 35 in each pre-imaging, and determines the pre-imaging in which the minimum dose is detected. Then, the position (k min ) of the second absorption grating 32 in the pre-imaging in which the minimum dose is detected is set to the position of the second absorption grating 32 in the plurality of imaging performed in the state where the subject H is arranged. The initial position is set (step SS7). In pre-photographing in which the minimum dose is detected among a plurality of pre-photographings with a constant exposure time, it can be said that the light receiving part of the dose detector 35 overlaps with the dark part of the moire fringes or the overlap is large.
  • the subject H is placed, the second absorption grating 32 is placed at the initial position ( kmin ), and exposure is continued until the dose detected by the dose detector 35 reaches a preset threshold dose.
  • the first shooting is performed (steps S1 to S3).
  • the exposure is continued until the exposure time required for the first imaging elapses, and the second and subsequent imaging is performed. (Steps S4 to S6).
  • the dose in the first imaging, the dose is detected in the state where the dark part of the moire fringes overlaps the light receiving unit of the dose detection unit 35. Therefore, including the second and subsequent imaging, Even in the pixel 40 of the FPD 30 in which the dark portion overlaps, the dose of X-rays incident on the pixel is ensured, and the S / N of the signal of the pixel can be prevented from decreasing.
  • the threshold dose is always set higher under the assumption that the dark part of the moire fringes does not overlap the light receiving part of the dose detector 35. It becomes.
  • the initial position of the second absorption grating 32 in a plurality of times of imaging performed with the subject H being arranged is preferably the first position in the pre-imaging in which the minimum dose is detected among the plurality of times of pre-imaging.
  • the present invention is not limited to this.
  • the position of the second absorption type grating 32 in the pre-photographing in which a substantially intermediate dose is detected among the changes in the dose detected in a plurality of pre-photographing can be set as the initial position. Further, it is possible to reduce a decrease in S / N of the signal of the pixel 40 where the dark portions of the moire fringes overlap.
  • FIG. 13 shows an imaging flow in another modification of the radiation imaging system 10.
  • pre-photographing is performed a plurality of times with a constant exposure time in a state where the subject H is not arranged. Then, the threshold dose with respect to the dose detected by the dose detector 35 is corrected based on the change in the dose detected by the dose detector 35 during a plurality of pre-imaging operations.
  • pre-shooting is performed a plurality of times (steps SS1 to SS6).
  • the control device 22 stores the dose detected by the dose detector 35 in each pre-imaging, obtains the difference ⁇ between the minimum dose and the dose detected in the first pre-imaging, and the difference ⁇ is large.
  • the threshold dose is corrected so that the threshold dose relative to the dose detected by the dose detector 35 increases (step SS7). It can be said that the larger the difference ⁇ is, the larger the overlap between the light receiving part of the dose detector 35 and the bright part of the moire fringes in the first pre-imaging.
  • the correction amount of the threshold dose according to the difference ⁇ is appropriately determined within a range in which the pixel 40 of the FPD 30 is not saturated.
  • the first shooting is continuously performed (steps S1 to S3).
  • the exposure is continued until the exposure time required for the first imaging elapses, and the second and subsequent imaging is performed. (Steps S4 to S6).
  • the threshold dose is corrected according to the degree of overlap between the light receiving unit of the dose detection unit 35 and the dark part of the moire fringes in the first imaging, and therefore includes the second and subsequent imaging. Even in the pixel 40 of the FPD 30 where dark portions of moire fringes overlap, the dose of X-rays incident on the pixel is ensured, and the S / N of the signal of the pixel can be prevented from decreasing. In the first imaging, more appropriate exposure control is possible as compared to the case where the threshold dose is always set higher under the assumption that the dark part of the moire fringes does not overlap the light receiving part of the dose detector 35. It becomes.
  • FIG. 14 shows an imaging method in another modification of the X-ray imaging system 10.
  • dose detection is performed according to the degree of overlap between the light receiving portion of the dose detector 35 and the dark portion of the moire fringe in the first imaging, that is, the relative positional relationship between the dose detector 35 and the moire fringe.
  • the X-ray dose incident on the light receiving unit of the detector 35 per unit time is changed, but the change of the X-ray dose incident on the light receiving unit of the dose detector 35 is suppressed. Also good.
  • the period T of moire fringes is made smaller than the dimension W of the light receiving part of the dose detector 35 in the period direction.
  • the period T of moiré fringes is changed by, for example, the relative rotation mechanism 50, the relative tilt mechanism 51, or the relative movement mechanism 52 described above.
  • a plurality of bright parts and dark parts of moire fringes overlap the light receiving part of the dose detector 35, and these bright parts and dark parts are averaged to detect a dose. Therefore, the X-ray dose incident on the dose detector 35 per unit time is substantially constant regardless of the relative positional relationship between the dose detector 35 and the moire fringes. Accordingly, it is possible to determine an appropriate exposure time based on the dose detected by the dose detector 35 without performing multiple pre-photographing, and that the dose is insufficient in the pixels 40 where the dark portions of the moire fringes overlap. Can be avoided.
  • FIG. 15 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • a mammography apparatus 80 shown in FIG. 15 is an apparatus that captures an X-ray image (phase contrast image) of a breast B as a subject.
  • the mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81.
  • An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
  • the X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12.
  • the X-ray source 11 and the imaging unit 12 are arranged to face each other.
  • the compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
  • the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10, description thereof will be omitted.
  • FIG. 16 shows a modification of the radiation imaging system of FIG.
  • the first absorption type lattice 31 is accommodated in a lattice accommodation portion 91 connected to the arm member 81.
  • the imaging unit 92 includes an FPD 30, a second absorption grating 32, a scanning mechanism 33, and a dose detector 35.
  • the dose detector 35 is disposed behind the FPD 30.
  • the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
  • the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 90 can also be applied to the X-ray imaging system 10 described above. Is possible.
  • FIG. 17 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • the X-ray imaging system 100 is different from the X-ray imaging system 10 described above in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • the focal point of the X-ray focal point 18b when the distance from the X-ray source 11 to the FPD 30 is a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b.
  • the blur of the G1 image due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is lowered. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall.
  • the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
  • the multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction).
  • the extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32.
  • the multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
  • the lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following formula (18), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
  • Expression (18) indicates that the projection image (G1 image) of the X-rays emitted from the small focus light sources dispersedly formed by the multi-slit 103 by the first absorption type grating 31 is the second absorption type grating 32. This is a geometric condition for matching (overlapping) in position.
  • the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (19).
  • the G1 images based on the plurality of small focus light sources formed by the multi slit 103 are superimposed, thereby improving the image quality of the phase contrast image without decreasing the X-ray intensity. Can be improved.
  • the multi slit 103 described above can be applied to any of the X-ray imaging systems described above.
  • FIG. 18 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • phase contrast image a high-contrast image (phase contrast image) of an X-ray weakly absorbing object that has been difficult to draw
  • an absorption image is referred to corresponding to the phase contrast image.
  • it is effective to supplement the portion that could not be represented by the absorption image with the information of the phase contrast image by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing.
  • capturing an absorption image separately from the phase contrast image makes it difficult to superimpose images due to the shift in the shooting position between the phase contrast image capture and the absorption image capture. Increasing the burden on the subject.
  • the small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in the fields of cancer and cardiovascular diseases.
  • this X-ray imaging system uses an arithmetic processing unit 190 that can generate an absorption image and a small-angle scattered image from a plurality of images acquired for a phase contrast image. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • the absorption image generation unit 192 generates an absorption image by averaging the pixel data I k (x, y) obtained for each pixel with respect to k and calculating an average value as shown in FIG. To do.
  • the average value may be calculated by simply averaging the pixel data I k (x, y) with respect to k. However, when M is small, the error increases, so that the pixel data I k ( After fitting x, y) with a sine wave, an average value of the fitted sine wave may be obtained.
  • the generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel data I k (x, y) with respect to k can be used as long as the amount corresponds to the average value.
  • the small angle scattered image generation unit 193 generates a small angle scattered image by calculating and imaging the amplitude value of the pixel data I k (x, y) obtained for each pixel.
  • the amplitude value may be calculated by obtaining the difference between the maximum value and the minimum value of the pixel data I k (x, y).
  • M is small
  • the error increases, so that the pixel data After fitting I k (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained.
  • the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
  • an absorption image and a small angle scattered image are generated from a plurality of images acquired for the phase contrast image of the subject. There is no deviation, and it is possible to superimpose the phase contrast image with the absorption image and the small-angle scattered image, and the burden on the subject is reduced as compared with the case of separately shooting for the absorption image and the small-angle scattered image. be able to.
  • the radiation used in the present invention is not limited to X-rays, and X rays such as ⁇ rays and ⁇ rays can be used. It is also possible to use radiation other than lines.
  • the present specification includes a period substantially matching the pattern period of the radiation image formed by the first grating and the radiation that has passed through the first grating, and the radiation.
  • a second grating placed at a plurality of relative positions different from each other in phase with respect to the image, a radiation image detector for detecting the radiation image masked by the second grating, and the second grating.
  • a dose detection unit that is positioned downstream of the second grating in the radiation traveling direction and detects an incident radiation dose; and a control unit that controls exposure, wherein the control unit includes the second grating In a plurality of photographings placed at the relative positions different from each other, in the first photographing, the exposure is controlled to continue until the dose detected by the dose detection unit reaches a preset threshold dose, and the second and subsequent times.
  • the shadow radiographic system for controlling to continue the exposure until the exposure time has elapsed taken in the first imaging is disclosed.
  • the radiation imaging system disclosed in the present specification is configured such that the control unit performs the pre-imaging a plurality of times when the second grating is placed at different relative positions with a constant exposure time.
  • a relative position of the second grating in the first imaging is determined based on a change in dose detected by the detection unit.
  • the radiographic system disclosed in the present specification is configured so that the control unit detects a minimum dose among changes detected by the dose detection unit when the pre-imaging is performed a plurality of times.
  • the relative position of the second grating in photographing is set as the relative position of the second grating in the first photographing.
  • the radiation imaging system disclosed in the present specification is configured such that the control unit performs the pre-imaging a plurality of times when the second grating is placed at different relative positions with a constant exposure time.
  • the threshold dose is corrected based on a change in dose detected by the detector.
  • the dose detected by the dose detection unit in the first pre-imaging when the plurality of pre-imaging is performed is smaller than the minimum dose in the change.
  • the pattern period of the radiation image masked by the second grating is shorter than the dimension of the light receiving unit of the dose detection unit with respect to the periodic direction.
  • At least one of a relative posture and a relative position of the second grating with respect to the first grating is changed, and the masking is performed by the second grating.
  • a change mechanism for changing the pattern period of the radiation image is further provided.
  • the changing mechanism has at least one of the first grating and the second grating around an optical axis of radiation irradiated on the first grating. Rotate one.
  • the changing mechanism is configured so that at least one of the first grating and the second grating with respect to an optical axis of radiation irradiated on the first grating. Tilt one of them.
  • the changing mechanism includes at least one of the first grating and the second grating along an optical axis of radiation irradiated on the first grating. Move one.
  • the dose detection unit is disposed between the second grating and the radiation image detector.
  • the dose detection unit is provided in the radiographic image detector.
  • the dose detection unit is disposed behind the radiographic image detector.
  • the radiation imaging system disclosed in this specification calculates a distribution of refraction angles of radiation incident on the radiation image detector from a plurality of radiation images acquired by the radiation image detector. And a calculation unit for generating a phase contrast image of the subject based on the distribution of the subject.
  • the radiation imaging system disclosed in this specification further includes a radiation source that irradiates radiation toward the first grating.
  • the present specification uses a first grating and a second grating having a period that substantially matches a pattern period of a radiation image formed by radiation that has passed through the first grating.
  • a radiation imaging method in which the second grating is placed at relative positions different from each other in phase with respect to the radiation image, and the radiation image masked by the second grating is detected for each imaging.
  • the first imaging the exposure is continued until the dose detected downstream of the second grating in the traveling direction of the radiation passing through the second grating reaches a preset threshold dose
  • a radiation imaging method is disclosed in which exposure is continued until the exposure time required for the first imaging has elapsed.
  • the radiographic method disclosed in the present specification performs a plurality of pre-photographs by placing the second grating at relative positions different from each other with respect to the radiographic image with a constant exposure time.
  • the relative position of the second grating in the first imaging is determined based on the change in the dose detected downstream of the second grating.
  • the radiography method disclosed in the present specification provides the second radiography in the pre-imaging in which a minimum dose is detected among changes in the dose detected when the pre-imaging is performed a plurality of times.
  • the relative position of the grating be the relative position of the second grating in the first imaging.
  • the radiographic method disclosed in this specification performs a plurality of pre-photographing operations by placing the second grating at relative positions different from each other in phase with respect to the radiographic image with a constant exposure time.
  • the threshold dose is corrected based on a change in dose detected downstream of the second grating.
  • the pattern period of the radiation image masked by the second grating is detected by a light receiving unit of a dose detector that detects a dose downstream of the second grating.
  • the imaging is performed a plurality of times with a dimension shorter than the dimension in the periodic direction.
  • At least one of a relative posture and a relative position of the second grating with respect to the first grating is changed, and the masking by the second grating is performed. Change the pattern period of the radiation image.
  • the exposure control is performed based on the dose detected by the dose detector, and in the second and subsequent shootings, exposure control is performed based on the exposure time required for the first shooting.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mathematical Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

High-precision phase contrast radiological images are generated by appropriate exposure control. A radiation imaging system (10) is provided with: a first grid (31); a second grid (32) having periods that substantially match the pattern periods of a radiological image formed by radiation that has passed through the first grid, and disposed in a plurality of relative positions where the phases differ to each other with respect to the radiological image; a radiation image detector (30) that detects the radiation image masked by the second grid; a dose detection unit (35) that is positioned downstream from the second grid, and that detects the dose of incident radiation; and a control unit (20) that controls exposure. The control unit (20) controls exposure such that, in a plurality of exposures in which the second grid (32) is disposed in the relative positions that differ to each other, exposure continues in the first exposure until the dose of radiation detected by the dose detection unit (35) reaches a preset threshold amount, and such that exposure continues in the second exposure onward until the exposure time required in the first exposure has elapsed.

Description

放射線撮影システム及び放射線撮影方法Radiographic system and radiographic method
 本発明は、放射線撮影システム及び放射線撮影方法に関する。 The present invention relates to a radiation imaging system and a radiation imaging method.
 X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被写体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。 X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance. X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
 一般的なX線撮影システムでは、X線を放射するX線源とX線画像を検出するX線画像検出器との間に被写体を配置して、被写体の透過像を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する被写体を構成する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器に入射する。この結果、被写体のX線透過像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体(蓄積性蛍光体)のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。また、被写体によって異なる必要露光量に対して、X線画像検出器により得られる画像の濃度を安定させるため、あるいは必要以上に露光されることによる被写体の過度の被爆を防止するために、自動露光制御が行われている。自動露光制御では、一般に、被写体を透過したX線の線量が線量検出器で検出され、線量検出器で検出される線量が予め設定された閾値線量に達したところでX線の照射が停止される。 In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured. In this case, each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector. As an X-ray image detector, there is a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit in addition to a combination of an X-ray intensifying screen and a film, a stimulable phosphor (accumulating phosphor), and so on. Widely used. In addition, automatic exposure is used to stabilize the density of the image obtained by the X-ray image detector with respect to the required exposure amount that varies depending on the subject, or to prevent excessive exposure of the subject due to excessive exposure. Control is taking place. In the automatic exposure control, generally, the dose of X-rays transmitted through the subject is detected by a dose detector, and the X-ray irradiation is stopped when the dose detected by the dose detector reaches a preset threshold dose. .
 しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなり、生体軟部組織やソフトマテリアルなどでは、X線吸収能の差が小さく、従ってX線透過像としての十分な画像の濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が小さいため、画像のコントラストが得られにくい。 However, the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
 このような問題を背景に、近年、被写体によるX線の強度変化に代えて、被写体によるX線の位相変化(角度変化)に基づいた画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。一般に、X線が物体に入射したとき、X線の強度よりも位相のほうが高い相互作用を示すことが知られている。このため、位相差を利用したX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を得ることができる。このようなX線位相イメージングの一種として、近年、2枚の透過回折格子(位相型格子及び吸収型格子)とX線画像検出器とからなるX線タルボ干渉計を用いたX線撮影システムが考案されている(例えば、特許文献1参照)。 Against the background of such problems, in recent years, an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object. Imaging research is actively conducted. In general, it is known that when X-rays are incident on an object, the interaction is higher in phase than in X-ray intensity. For this reason, in the X-ray phase imaging using the phase difference, a high-contrast image can be obtained even for a weakly absorbing object having a low X-ray absorption capability. As a kind of such X-ray phase imaging, in recent years, an X-ray imaging system using an X-ray Talbot interferometer comprising two transmission diffraction gratings (phase grating and absorption grating) and an X-ray image detector has been proposed. It has been devised (for example, see Patent Document 1).
 X線タルボ干渉計は、被写体の背後に第1の回折格子(位相型格子あるいは吸収型格子)を配置し、第1の回折格子の格子ピッチとX線波長で決まる特定距離(タルボ干渉距離)だけ下流に第2の回折格子(吸収型格子)を配置し、その背後にX線画像検出器を配置することにより構成される。上記タルボ干渉距離とは、第1の回折格子を通過したX線が、タルボ干渉効果によって自己像を形成する距離であり、この自己像は、X線源と第1の回折格子との間に配置された被写体とX線との相互作用(位相変化)により変調を受ける。 In the X-ray Talbot interferometer, a first diffraction grating (phase type grating or absorption type grating) is arranged behind a subject, and a specific distance (Talbot interference distance) determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating. The Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the arranged subject and the X-ray.
 X線タルボ干渉計では、第1の回折格子の自己像と第2の回折格子との重ね合わせにより生じるモアレ縞を検出し、被写体によるモアレ縞の変化を解析することによって被写体の位相情報を取得する。モアレ縞の解析方法としては、例えば縞走査法が知られている。この縞走査法によると、第1の回折格子に対して第2の回折格子を、第1の回折格子の面にほぼ平行で、かつ第1の回折格子の格子方向(条帯方向)にほぼ垂直な方向に、格子ピッチを等分割した走査ピッチで並進移動させながら複数回の撮影を行い、X線画像検出器で得られる各画素の信号値の変化から、被写体で屈折したX線の角度分布(位相シフトの微分像)を取得し、この角度分布に基づいて被写体の位相コントラスト画像を得ることができる。 The X-ray Talbot interferometer detects moiré fringes generated by superimposing the first image of the first diffraction grating and the second diffraction grating, and obtains subject phase information by analyzing changes in the moiré fringes caused by the subject. To do. As a method for analyzing moire fringes, for example, a fringe scanning method is known. According to this fringe scanning method, the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating. The angle of X-rays refracted by the subject from a change in the signal value of each pixel obtained by the X-ray image detector, which is taken multiple times while being translated in the vertical direction at a scanning pitch obtained by equally dividing the lattice pitch. A distribution (differential image of phase shift) is obtained, and a phase contrast image of the subject can be obtained based on this angular distribution.
 そして、特許文献1には、第1及び第2の回折格子を用いた縞走査法によるX線位相イメージングにおいて、上記の自動露光制御を行うことが記載されている。 Patent Document 1 describes that the above automatic exposure control is performed in the X-ray phase imaging by the fringe scanning method using the first and second diffraction gratings.
国際公開第08/102598号International Publication No. 08/102598
 第1及び第2の回折格子を用いた縞走査法によるX線位相イメージングにおいて、第1の回折格子を通過したX線が形成する放射線像は、上記の通り、第2の回折格子が重ね合わされることによって、第2の回折格子の下流のX線画像検出器の受像面上でモアレ縞を形成している。よって、X線画像検出器で検出される画像にはモアレ縞が含まれるが、医療診断や非破壊検査において、最終的にはモアレ縞の影響が除去されたX線位相コントラスト画像が提示されることが好ましい。しかし、第1及び第2の回折格子の格子ピッチの誤差、第2の回折格子の走査誤差、等の程度によっては、モアレ縞の周期が短くなるのに伴ってX線位相コントラスト画像からモアレ縞の影響を除去することが困難となり、画質が低下する場合がある。そのため、モアレ縞の周期は長いほうが好ましい。 In X-ray phase imaging by the fringe scanning method using the first and second diffraction gratings, the radiation image formed by the X-rays that have passed through the first diffraction grating is superimposed on the second diffraction grating as described above. Thus, moire fringes are formed on the image receiving surface of the X-ray image detector downstream of the second diffraction grating. Therefore, although the image detected by the X-ray image detector includes moire fringes, an X-ray phase contrast image from which the influence of moire fringes has been finally removed is presented in medical diagnosis and non-destructive inspection. It is preferable. However, depending on the degree of the grating pitch error of the first and second diffraction gratings, the scanning error of the second diffraction grating, etc., the moire fringes from the X-ray phase contrast image become shorter as the period of the moire fringes becomes shorter. It may be difficult to remove the influence of the image quality, and the image quality may deteriorate. Therefore, it is preferable that the period of the moire fringes is long.
 特許文献1には、線量検出器の位置について特に記載されていないが、一般に、線量検出器はX線画像検出器の裏に配置される。その場合、第1及び第2の回折格子を用いた縞走査法によるX線位相イメージングにおいては、線量検出器は第2の回折格子の下流に位置することになり、線量検出器の受光部上においてもモアレ縞が形成される。このモアレ縞は第2の回折格子の走査に伴って移動し、モアレ縞の周期が周期方向に関する線量検出器の受光部の寸法よりも長くなると、モアレ縞の暗部が受光部に重なるときと、暗部が受光部に重ならないときとで、線量検出器に単位時間当たりに入射するX線の線量が大きく変動する。 Patent Document 1 does not particularly describe the position of the dose detector, but generally the dose detector is disposed behind the X-ray image detector. In that case, in the X-ray phase imaging based on the fringe scanning method using the first and second diffraction gratings, the dose detector is positioned downstream of the second diffraction grating, and thus on the light receiving portion of the dose detector. In this case, moire fringes are formed. This moire fringe moves with the scanning of the second diffraction grating, and when the period of the moire fringe becomes longer than the dimension of the light receiving part of the dose detector in the periodic direction, when the dark part of the moire fringe overlaps the light receiving part, When the dark part does not overlap the light receiving part, the dose of X-rays incident on the dose detector per unit time varies greatly.
 上記の自動露光制御は、線量検出器の受光部に単位時間当たりに入射するX線の線量の変動をキャンセルするように、X線の照射時間を延長あるいは短縮する。結果、撮影間の照射線量にバラツキが発生し、撮影間の照射線量のバラツキは第2の回折格子の走査とは別に各画素の信号値に変化をもたらす。例えば、線量検出器の受光部と同位相でモアレ縞の暗部が重なるX線画像検出器の画素では、第2の回折格子の走査によって本来得られるはずの信号値の変化が減弱され、また、線量検出器の受光部と逆位相でモアレ縞の暗部が重なるX線画像検出器の画素では、第2の回折格子の走査によって本来得られるはずの信号値の変化が強調される。 The above automatic exposure control extends or shortens the X-ray irradiation time so as to cancel the fluctuation of the X-ray dose incident on the light receiving unit of the dose detector per unit time. As a result, there is a variation in the irradiation dose between photographings, and the variation in the irradiation dose between photographings causes a change in the signal value of each pixel separately from the scanning of the second diffraction grating. For example, in the pixel of the X-ray image detector in which the dark portion of the moire fringe has the same phase as the light receiving unit of the dose detector, the change in the signal value that should originally be obtained by scanning the second diffraction grating is attenuated, In the pixel of the X-ray image detector in which the dark portion of the moire fringe overlaps with the light receiving portion of the dose detector in an opposite phase, the change in the signal value that should be originally obtained by scanning the second diffraction grating is emphasized.
 第1及び第2の回折格子を用いた縞走査法によるX線位相イメージングは、上記の通り、第2の回折格子の走査に伴う各画素の信号値の変化から被写体の位相情報を検出するものであり、第2の回折格子の走査とは別の要因による各画素の信号値の変化は、被写体の位相情報の検出精度を低下させる。 As described above, the X-ray phase imaging by the fringe scanning method using the first and second diffraction gratings detects the phase information of the subject from the change in the signal value of each pixel accompanying the scanning of the second diffraction grating. Thus, a change in the signal value of each pixel due to a factor different from the scanning of the second diffraction grating reduces the detection accuracy of the phase information of the subject.
 本発明は、上述した事情に鑑みなされたものであり、適切な露光制御により、高精度な放射線位相コントラスト画像を生成することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to generate a highly accurate radiation phase contrast image by appropriate exposure control.
 (1)第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有し、前記放射線像に対して互いに位相の異なる複数の相対位置に置かれる第2の格子と、前記第2の格子によってマスキングされる前記放射線像を検出する放射線画像検出器と、前記第2の格子を通過する放射線の進行方向に前記第2の格子の下流に位置し、入射する放射線量を検出する線量検出部と、露光を制御する制御部と、を備え、前記制御部は、前記第2の格子が互いに異なる前記相対位置に置かれる複数回の撮影において、1回目の撮影では、前記線量検出部によって検出される線量が予め設定された閾値線量に達するまで露光を継続するよう制御し、2回目以降の撮影では、前記1回目の撮影において要した露光時間が経過するまで露光を継続するよう制御する放射線撮影システム。
 (2)第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有する第2の格子と、を用い、前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回の撮影を行い、撮影毎に前記第2の格子によってマスキングされた前記放射線像を検出する放射線撮影方法であって、1回目の撮影においては、前記第2の格子を通過する放射線の進行方向に前記第2の格子の下流において検出される線量が予め設定された閾値線量に達するまで露光を継続し、2回目以降の撮影では、前記1回目の撮影において要した露光時間が経過するまで露光を継続する放射線撮影方法。
(1) A plurality of first gratings and a plurality of phases having a period substantially coincident with a pattern period of a radiation image formed by radiation passing through the first grating and having phases different from each other with respect to the radiation image A second grating placed at a relative position; a radiation image detector for detecting the radiation image masked by the second grating; and the second grating in a traveling direction of the radiation passing through the second grating. A dose detection unit that detects the amount of incident radiation and a control unit that controls exposure, and the control unit is configured to perform a plurality of times in which the second grating is placed at different relative positions. In the first shooting, the exposure is controlled to continue until the dose detected by the dose detection unit reaches a preset threshold dose, and the second and subsequent shootings are performed in the first shooting. Radiographic system for controlling to continue the exposure until the exposure time required has elapsed.
(2) using the first grating and the second grating having a period substantially matching the pattern period of the radiation image formed by the radiation that has passed through the first grating; Is taken at a relative position with a phase different from each other with respect to the radiographic image, and the radiographic image masked by the second grating is detected for each radiographing. In this imaging, the exposure is continued until the dose detected downstream of the second grating reaches a preset threshold dose in the traveling direction of the radiation passing through the second grating, and the second and subsequent imaging is performed. Then, the radiation imaging method which continues exposure until the exposure time required in the said 1st imaging | photography has passed.
 本発明によれば、1回目の撮影では、線量検出器によって検出される線量に基づいて露光制御が行われ、2回目以降の撮影では、1回目の撮影に要した露光時間に基づいて露光制御が行われることにより、被写体によって異なる必要露光量が確保されると共に、撮影間の照射線量のバラツキが防止される。それにより、高精度な放射線位相コントラスト画像を生成することができる。 According to the present invention, in the first shooting, exposure control is performed based on the dose detected by the dose detector, and in the second and subsequent shootings, exposure control is performed based on the exposure time required for the first shooting. As a result, the necessary exposure amount that varies depending on the subject is ensured, and variations in the irradiation dose during photographing are prevented. Thereby, a highly accurate radiation phase contrast image can be generated.
本発明の実施形態を説明するための放射線撮影システムの一例の構成を示す模式図である。It is a schematic diagram which shows the structure of an example of the radiography system for describing embodiment of this invention. 図1の放射線撮影システムの制御ブロック図である。It is a control block diagram of the radiography system of FIG. 図1の放射線撮影システムの放射線画像検出器の構成を示す模式図である。It is a schematic diagram which shows the structure of the radiographic image detector of the radiography system of FIG. 図1の放射線撮影システムの撮影部の斜視図である。It is a perspective view of the imaging part of the radiography system of FIG. 図1の放射線撮影システムの撮影部の側面図である。It is a side view of the imaging part of the radiography system of FIG. 第1及び第2の格子の重ね合わせによるモアレ縞の周期を変更するための機構を示す模式図である。It is a schematic diagram which shows the mechanism for changing the period of the moire fringe by superimposition of the 1st and 2nd grating | lattice. 被写体による放射線の屈折を説明するための模式図である。It is a schematic diagram for demonstrating the refraction | bending of the radiation by a to-be-photographed object. 縞走査法を説明するための模式図である。It is a schematic diagram for demonstrating the fringe scanning method. 縞走査に伴う放射線画像検出器の画素の信号を示すグラフである。It is a graph which shows the signal of the pixel of the radiographic image detector accompanying a fringe scanning. 図1の放射線撮影システムによる撮影方法を示すフローチャートである。It is a flowchart which shows the imaging method by the radiography system of FIG. 図1の放射線撮影システムの変形例に関し、その放射線画像検出器の構成を示す模式図である。It is a schematic diagram which shows the structure of the radiographic image detector regarding the modification of the radiography system of FIG. 図1の放射線撮影システムの変形例に関し、その撮影方法を示すフローチャートである。It is a flowchart which shows the imaging | photography method regarding the modification of the radiography system of FIG. 図1の放射線撮影システムの他の変形例に関し、その撮影方法を示すフローチャートである。It is a flowchart which shows the imaging | photography method regarding the other modification of the radiography system of FIG. 図1の放射線撮影システムの他の変形例に関し、その撮影方法を示す模式図である。It is a schematic diagram which shows the imaging | photography method regarding the other modification of the radiography system of FIG. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 図15の放射線撮影システムの変形例の構成を示す模式図である。It is a schematic diagram which shows the structure of the modification of the radiography system of FIG. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 本発明の実施形態を説明するための放射線撮影システムの他の例に関し、放射線画像を生成する演算部の構成を示すブロック図である。It is a block diagram which shows the structure of the calculating part which produces | generates a radiographic image regarding the other example of the radiography system for describing embodiment of this invention. 図18の放射線撮影システムの演算部の処理を説明するための放射線画像検出器の画素の信号を示すグラフである。It is a graph which shows the signal of the pixel of the radiographic image detector for demonstrating the process of the calculating part of the radiography system of FIG.
 図1は、本発明の実施形態を説明するための放射線撮影システムの一例の構成を示し、図2は、図1の放射線撮影システムの制御ブロックを示す。 FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention, and FIG. 2 shows a control block of the radiation imaging system of FIG.
 X線撮影システム10は、被写体(患者)Hを立位状態で撮影するX線診断装置であって、被写体HにX線を放射するX線源11と、X線源11に対向配置され、X線源11から被写体Hを透過したX線を検出して画像データを生成する撮影部12と、操作者の操作に基づいてX線源11の曝射動作や撮影部12の撮影動作を制御するとともに、撮影部12により取得された画像データを演算処理して位相コントラスト画像を生成するコンソール13とに大別される。 The X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject (patient) H in a standing position, and is disposed opposite to the X-ray source 11 that emits X-rays to the subject H, and the X-ray source 11. An imaging unit 12 that detects X-rays transmitted through the subject H from the X-ray source 11 and generates image data, and controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12 based on the operation of the operator. At the same time, it is roughly divided into a console 13 that generates a phase contrast image by calculating the image data acquired by the photographing unit 12.
 X線源11は、天井から吊り下げられたX線源保持装置14により上下方向(x方向)に移動自在に保持されている。撮影部12は、床上に設置された立位スタンド15により上下方向に移動自在に保持されている。 The X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling. The photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
 X線源11は、X線源制御部17の制御に基づき、高電圧発生器16から印加される高電圧に応じてX線を発生するX線管18と、X線管18から発せられたX線のうち、被写体Hの検査領域の撮影に寄与しない部分を遮蔽するように照射野を制限する可動式のコリメータ19aを備えたコリメータユニット19とから構成されている。X線管18は、陽極回転型であり、電子放出源(陰極)としてのフィラメント(図示せず)から電子線を放出して、所定の速度で回転する回転陽極18aに衝突させることによりX線を発生する。この回転陽極18aの電子線の衝突部分がX線焦点18bとなる。 Based on the control of the X-ray source control unit 17, the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18. The X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion of the X-ray that does not contribute to imaging of the inspection area of the subject H. The X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
 X線源保持装置14は、天井に設置された天井レール(図示せず)により水平方向(z方向)に移動自在に構成された台車部14aと、上下方向に連結された複数の支柱部14bとからなる。台車部14aには、支柱部14bを伸縮させて、X線源11の上下方向に関する位置を変更するモータ(図示せず)が設けられている。 The X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of. A motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
 立位スタンド15は、床に設置された本体15aに、撮影部12を保持する保持部15bが上下方向に移動自在に取り付けられている。保持部15bは、上下方向に離間して配置された2つのプーリ15cの間に掛架された無端ベルト15dに接続され、プーリ15cを回転させるモータ(図示せず)により駆動される。このモータの駆動は、操作者の設定操作に基づき、後述するコンソール13の制御装置20により制御される。 The standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction. The holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c. The driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
 また、立位スタンド15には、プーリ15c又は無端ベルト15dの移動量を計測することにより、撮影部12の上下方向に関する位置を検出するポテンショメータ等の位置センサ(図示せず)が設けられている。この位置センサの検出値は、ケーブル等によりX線源保持装置14に供給される。X線源保持装置14は、供給された検出値に基づいて支柱部14bを伸縮させ、撮影部12の上下動に追従するようにX線源11を移動させる。 Further, the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. . The detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like. The X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
 コンソール13には、CPU、ROM、RAM等からなる制御装置20が設けられている。制御装置20には、操作者が撮影指示やその指示内容を入力する入力装置21と、撮影部12により取得された画像データを演算処理してX線画像を生成する演算処理部22と、X線画像を記憶する記憶部23と、X線画像等を表示するモニタ24と、X線撮影システム10の各部と接続されるインターフェース(I/F)25とがバス26を介して接続されている。 The console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like. The control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
 入力装置21としては、例えば、スイッチ、タッチパネル、マウス、キーボード等を用いることが可能であり、入力装置21の操作により、X線管電圧や後述する線量検出器で検出されるX線の線量に対する閾値線量等のX線撮影条件、撮影タイミング等が入力される。モニタ24は、液晶ディスプレイ等からなり、制御装置20の制御により、X線撮影条件等の文字やX線画像を表示する。 As the input device 21, for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used. By the operation of the input device 21, an X-ray tube voltage or an X-ray dose detected by a dose detector described later can be used. X-ray imaging conditions such as a threshold dose, imaging timing, and the like are input. The monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
 撮影部12には、半導体回路からなるフラットパネル検出器(FPD)30、被写体HによるX線の位相変化(角度変化)を検出し位相イメージングを行うための第1の吸収型格子31及び第2の吸収型格子32、そして線量検出器35が設けられている。 The imaging unit 12 includes a flat panel detector (FPD) 30 made of a semiconductor circuit, a first absorption type grating 31 and a second absorption type for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging. An absorption grating 32 and a dose detector 35 are provided.
 FPD30は、検出面がX線源11から照射されるX線の光軸Aに直交するように配置されている。詳しくは後述するが、第1及び第2の吸収型格子31,32は、FPD30とX線源11との間に配置されている。 The FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11. Although described in detail later, the first and second absorption gratings 31 and 32 are disposed between the FPD 30 and the X-ray source 11.
 線量検出器35は、FPD30の裏に配置され、被写体Hの下流に位置しており、被写体Hを透過したX線の線量を検出する。線量検出器35のX線受光部としては、例えば、蛍光体と光電子倍増管との組み合わせや、イオンチェンバーや、半導体回路を用いたX線検出器などが用いられる。 The dose detector 35 is disposed behind the FPD 30 and is located downstream of the subject H, and detects the dose of X-rays transmitted through the subject H. As the X-ray light receiving unit of the dose detector 35, for example, a combination of a phosphor and a photomultiplier tube, an ion chamber, an X-ray detector using a semiconductor circuit, or the like is used.
 また、撮影部12には、第2の吸収型格子32を上下方向(x方向)に並進移動させることにより、第1の吸収型格子31に対する第2の吸収型格子32の相対位置関係を変化させる走査機構33が設けられている。この走査機構33は、例えば、圧電素子等のアクチュエータにより構成される。 The imaging unit 12 changes the relative positional relationship of the second absorption type grating 32 with respect to the first absorption type grating 31 by translating the second absorption type grating 32 in the vertical direction (x direction). A scanning mechanism 33 is provided. The scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
 図3は、図1の放射線撮影システムに含まれる放射線画像検出器の構成を示す。 FIG. 3 shows a configuration of a radiation image detector included in the radiation imaging system of FIG.
 放射線画像検出器としてのFPD30は、X線を電荷に変換して蓄積する複数の画素40がアクティブマトリクス基板上にxy方向に2次元配列されてなる受像部41と、受像部41からの電荷の読み出しタイミングを制御する走査回路42と、各画素40に蓄積された電荷を読み出し、電荷を画像データに変換して記憶する読み出し回路43と、画像データをコンソール13のI/F25を介して演算処理部22に送信するデータ送信回路44とから構成されている。なお、走査回路42と各画素40とは、行毎に走査線45によって接続されており、読み出し回路43と各画素40とは、列毎に信号線46によって接続されている。 The FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41. A scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13. And a data transmission circuit 44 for transmission to the unit 22. The scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
 各画素40は、アモルファスセレン等の変換層(図示せず)でX線を電荷に直接変換し、変換された電荷を変換層の下部の電極に接続されたキャパシタ(図示せず)に蓄積する直接変換型の素子として構成することができる。各画素40には、薄膜トランジスタ(TFT:Thin Film Transistor)スイッチ(図示せず)が接続され、TFTスイッチのゲート電極が走査線45、ソース電極がキャパシタ、ドレイン電極が信号線46に接続される。TFTスイッチが走査回路42からの駆動パルスによってON状態になると、キャパシタに蓄積された電荷が信号線46に読み出される。 Each pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and stores the converted electric charges in a capacitor (not shown) connected to an electrode below the conversion layer. It can be configured as a direct conversion type element. Each pixel 40 is connected to a thin film transistor (TFT) switch (not shown), and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46. When the TFT switch is turned on by the drive pulse from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 46.
 なお、各画素40は、テルビウム賦活酸化ガドリニウム(GdS:Tb)、タリウム賦活ヨウ化セシウム(CsI:Tl)等からなるシンチレータ(図示せず)でX線を一旦可視光に変換し、変換された可視光をフォトダイオード(図示せず)で電荷に変換して蓄積する間接変換型のX線検出素子として構成することも可能である。また、X線画像検出器としては、TFTパネルをベースとしたFPDに限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした各種のX線画像検出器を用いることも可能である。 Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it. The X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
 読み出し回路43は、積分アンプ回路、A/D変換器、補正回路、及び画像メモリ(いずれも図示せず)により構成されている。積分アンプ回路は、各画素40から信号線46を介して出力された電荷を積分して電圧信号(画像信号)に変換して、A/D変換器に入力する。A/D変換器は、入力された画像信号をデジタルの画像データに変換して補正回路に入力する。補正回路は、画像データに対して、オフセット補正、ゲイン補正、及びリニアリティ補正を行い、補正後の画像データを画像メモリに記憶させる。なお、補正回路による補正処理として、X線の露光量や露光分布(いわゆるシェーディング)の補正や、FPD30の制御条件(駆動周波数や読み出し期間)に依存するパターンノイズ(例えば、TFTスイッチのリーク信号)の補正等を含めてもよい。 The readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory (all not shown). The integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter. The A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit. The correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory. As correction processing by the correction circuit, correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
 図4及び図5は、図1の放射線撮影システムの撮影部を示す。 4 and 5 show an imaging unit of the radiation imaging system of FIG.
 第1の吸収型格子31は、基板31aと、この基板31aに配置された複数のX線遮蔽部31bとから構成されている。同様に、第2の吸収型格子32は、基板32aと、この基板32aに配置された複数のX線遮蔽部32bとから構成されている。基板31a,32aは、いずれもX線を透過させるガラス等のX線透過性部材により形成されている。 The first absorption-type grating 31 includes a substrate 31a and a plurality of X-ray shielding portions 31b arranged on the substrate 31a. Similarly, the second absorption type grating 32 includes a substrate 32a and a plurality of X-ray shielding portions 32b arranged on the substrate 32a. The substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays.
 X線遮蔽部31b,32bは、いずれもX線源11から照射されるX線の光軸Aに直交する面内の一方向(図示の例では、x方向及びz方向に直交するy方向)に延伸した線状の部材で構成される。各X線遮蔽部31b,32bの材料としては、X線吸収性に優れるものが好ましく、例えば、金、白金等の重金属であることが好ましい。これらのX線遮蔽部31b,32bは、金属メッキ法や蒸着法によって形成することが可能である。 Each of the X-ray shielding portions 31b and 32b is in one direction in a plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (in the illustrated example, the y direction orthogonal to the x direction and the z direction). It is comprised by the linear member extended | stretched. As a material of each X-ray shielding part 31b, 32b, a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable. These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
 X線遮蔽部31bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の周期pで、互いに所定の間隔dを空けて配列されている。同様に、X線遮蔽部32bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の周期pで、互いに所定の間隔dを空けて配列されている。このような第1及び第2の吸収型格子31,32は、入射X線に位相差を与えるものでなく、強度差を与えるものであるため、振幅型格子とも称される。なお、スリット部(上記間隔d,dの領域)は空隙でなくてもよく、例えば、高分子や軽金属などのX線低吸収材で該空隙を充填してもよい。 X-ray shielding portion 31b is in a plane perpendicular to the optical axis A of the X-ray, at a predetermined period p 1 in a direction (x-direction) orthogonal to the one direction, are arranged at a predetermined interval d 1 from each other ing. Similarly, X-ray shielding portion 32b, in the plane orthogonal to the optical axis A of the X-ray, at a predetermined period p 2 in a direction (x-direction) orthogonal to the one direction, at a predetermined interval d 2 from each other Are arranged. Since the first and second absorption gratings 31 and 32 do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings. Note that the slit portions (regions having the distances d 1 and d 2 ) may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
 第1及び第2の吸収型格子31,32は、タルボ干渉効果の有無に係らず、スリット部を通過したX線を幾何学的に投影するように構成されている。具体的には、間隔d,dを、X線源11から照射されるX線の実効波長より十分大きな値とすることで、照射X線に含まれる大部分のX線をスリット部で回折させずに、直進性を保ったまま通過するように構成する。例えば、前述の回転陽極18aとしてタングステンを用い、管電圧を50kVとした場合には、X線の実効波長は、約0.4Åである。この場合には、間隔d,dを、1~10μm程度とすれば、スリット部で大部分のX線が回折されずに幾何学的に投影される。 The first and second absorption gratings 31 and 32 are configured to geometrically project the X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, most of the X-rays included in the irradiated X-rays can be obtained at the slit portion. It is configured to pass through without being diffracted while maintaining straightness. For example, when tungsten is used as the rotary anode 18a described above and the tube voltage is 50 kV, the effective wavelength of X-ray is about 0.4 mm. In this case, if the distances d 1 and d 2 are about 1 to 10 μm, most of the X-rays are geometrically projected without being diffracted at the slit portion.
 X線源11から放射されるX線は、平行ビームではなく、X線焦点18bを発光点としたコーンビームであるため、第1の吸収型格子31を通過して射影される投影像(以下、この投影像をG1像と称する)は、X線焦点18bからの距離に比例して拡大される。第2の吸収型格子32の格子ピッチpは、そのスリット部が、第2の吸収型格子32の位置におけるG1像の明部の周期パターンとほぼ一致するように決定されている。すなわち、X線焦点18bから第1の吸収型格子31までの距離をL、第1の吸収型格子31から第2の吸収型格子32までの距離をLとした場合に、格子ピッチpは、次式(1)の関係を満たすように決定される。 The X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam having the X-ray focal point 18b as a light emission point, and therefore a projected image projected through the first absorption grating 31 (hereinafter referred to as a projection image). The projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b. The grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic pattern of the bright part of the G1 image at the position of the second absorption type grating 32. That is, when the distance from the X-ray focal point 18b to the first absorption grating 31 is L 1 and the distance from the first absorption grating 31 to the second absorption grating 32 is L 2 , the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1の吸収型格子31から第2の吸収型格子32までの距離Lは、タルボ干渉計では、第1の回折格子の格子ピッチとX線波長とで決まるタルボ干渉距離に制約されるが、本X線撮影システム10の撮影部12では、第1の吸収型格子31が入射X線を回折させずに投影させる構成であって、第1の吸収型格子31のG1像が、第1の吸収型格子31の後方のすべての位置で相似的に得られるため、該距離Lを、タルボ干渉距離と無関係に設定することができる。 In the Talbot interferometer, the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The imaging unit 12 of the present X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting, and the G1 image of the first absorption grating 31 is the first. because at every position of the rear absorption type grating 31 similarly obtained, the distance L 2, can be set independently of the Talbot distance.
 上記のように撮影部12は、タルボ干渉計を構成するものではないが、第1の吸収型格子31でX線を回折したと仮定した場合のタルボ干渉距離Zは、第1の吸収型格子31の格子ピッチp、第2の吸収型格子32の格子ピッチp、X線波長(実効波長)λ、及び正の整数mを用いて、次式(2)で表される。 As described above, the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating. the grating pitch p 1 of 31, the grating pitch p 2, X-ray wavelength of the second absorption-type grating 32 (effective wavelength) lambda, and using the positive integer m, is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)は、X線源11から照射されるX線がコーンビームである場合のタルボ干渉距離を表す式であり、「Atsushi Momose, et al., Japanese Journal of Applied Physics, Vol.47, No.10, 2008年10月, 8077頁」により知られている。 Expression (2) is an expression that represents the Talbot interference distance when the X-ray irradiated from the X-ray source 11 is a cone beam. “Atsushi Momose, et al., Japan Journal of Applied Physics, Vol. 47, No. 10, October 2008, page 8077 ”.
 本X線撮影システム10では、上記距離Lを、m=1の場合の最小のタルボ干渉距離Zより短い値に設定することで、撮影部12の薄型化を図っている。すなわち、上記距離Lは、次式(3)を満たす範囲の値に設定される。 In the present X-ray imaging system 10, the imaging unit 12 is thinned by setting the distance L 2 to a value shorter than the minimum Talbot interference distance Z when m = 1. That is, the distance L 2 is set to a value in the range satisfying the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、X線源11から照射されるX線が実質的に平行ビームとみなせる場合のタルボ干渉距離Zは次式(4)となり、上記距離Lを、次式(5)を満たす範囲の値に設定する。 Incidentally, Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, the distance L 2, the value of the range that satisfies the following equation (5) Set to.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 X線遮蔽部31b,32bは、コントラストの高い周期パターン像を生成するために、X線を完全に遮蔽(吸収)することが好ましいが、上記したX線吸収性に優れる材料(金、白金等)を用いたとしても、吸収されずに透過するX線が少なからず存在する。このため、X線の遮蔽性を高めるためには、X線遮蔽部31b,32bのそれぞれの厚みh,hを、可能な限り厚くすることが好ましい。例えば、X線管18の管電圧が50kVの場合に、照射X線の90%以上を遮蔽することが好ましく、この場合には、厚みh,hは、金(Au)換算で30μm以上であることが好ましい。 The X-ray shielding portions 31b and 32b preferably shield (absorb) X-rays completely in order to generate a periodic pattern image with high contrast. However, the materials having excellent X-ray absorption properties (gold, platinum, etc.) ), There are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b, it is preferable to increase the thickness much as possible. For example, when the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays. In this case, the thicknesses h 1 and h 2 are 30 μm or more in terms of gold (Au). It is preferable that
 しかし、X線源11から照射されるX線がコーンビームである場合に、X線遮蔽部31b,32bの厚みh,hを厚くし過ぎると、斜めに入射するX線がスリット部を通過しにくくなり、いわゆるケラレが生じて、X線遮蔽部31b,32bの延伸方向(条帯方向)に直交する方向(x方向)の有効視野が狭くなるといった問題がある。このため、視野確保の観点から、厚みh,hの上限を規定する。FPD30の検出面におけるx方向の有効視野の長さVを確保するには、X線焦点18bからFPD30の検出面までの距離をLとすると、厚みh,hは、図5に示す幾何学的関係から、次式(6)及び(7)を満たすように設定する必要がある。 However, when the X-rays irradiated from the X-ray source 11 are cone beams, if the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are too thick, the X-rays incident obliquely enter the slit portion. There is a problem that it becomes difficult to pass, so-called vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 31b and 32b becomes narrow. Therefore, in view of the field of view secured to define the upper limit of the thickness h 1, h 2. In order to secure the effective field length V in the x direction on the detection surface of the FPD 30, assuming that the distance from the X-ray focal point 18 b to the detection surface of the FPD 30 is L, the thicknesses h 1 and h 2 are shown in FIG. From the scientific relationship, it is necessary to set so as to satisfy the following expressions (6) and (7).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 例えば、d=2.5μm、d=3.0μmであり、通常の病院での撮影を想定して、L=2mとした場合には、x方向の有効視野の長さVとして10cmの長さを確保するには、厚みhは100μm以下、厚みhは120μm以下とすればよい。 For example, when d 1 = 2.5 μm and d 2 = 3.0 μm, and assuming L = 2 m assuming normal hospital imaging, the effective visual field length V in the x direction is 10 cm. In order to ensure the length, the thickness h 1 may be 100 μm or less and the thickness h 2 may be 120 μm or less.
 以上のように構成された撮影部12では、第1の吸収型格子31のG1像と第2の吸収型格子32との重ね合わせにより、強度変調された像が形成され、FPD30によって撮像される。第2の吸収型格子32の位置におけるG1像のパターン周期p’と、第2の吸収型格子32の実質的な格子ピッチp’(製造後の実質的なピッチ)とは、製造誤差や配置誤差により若干の差異が生じる。このうち、配置誤差とは、第1及び第2の吸収型格子31,32が、相対的に傾斜や回転、両者の間隔が変化することによりx方向への実質的なピッチが変化することを意味している。 In the imaging unit 12 configured as described above, an intensity-modulated image is formed by superimposing the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 and is captured by the FPD 30. . The pattern period p 1 ′ of the G1 image at the position of the second absorption grating 32 and the substantial grating pitch p 2 ′ (substantial pitch after production) of the second absorption grating 32 are manufacturing errors. Some differences occur due to or placement errors. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
 G1像のパターン周期p’と格子ピッチp’との微小な差異により、画像コントラストはモアレ縞となる。このモアレ縞の周期Tは、次式(8)で表される。 Due to the minute difference between the pattern period p 1 ′ of the G1 image and the grating pitch p 2 ′, the image contrast becomes moire fringes. The period T of the moire fringes is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 このモアレ縞をFPD30で検出するため、画素40のx方向に関する配列ピッチPは、少なくともモアレ周期Tの整数倍でないことが必要であり、次式(9)を満たす必要がある(ここで、nは正の整数である)。 In order to detect the moire fringes by the FPD 30, the arrangement pitch P in the x direction of the pixels 40 needs to be at least not an integral multiple of the moire period T, and it is necessary to satisfy the following equation (9) (where n Is a positive integer).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、(9)式を満たす範囲において、配列ピッチPがモアレ周期Tより大きくてもモアレ縞を検出することは可能であるが、配列ピッチPはモアレ周期Tより小さいことが好ましく、次式(10)を満たすことが好ましい。これは、良質な位相コントラスト画像を得るためには、後述する位相コントラスト画像の生成過程において、モアレ縞が高いコントラストで検出されていることが好ましいためである。 Further, it is possible to detect moire fringes even if the arrangement pitch P is larger than the moire period T within the range satisfying the expression (9), but the arrangement pitch P is preferably smaller than the moire period T. 10) is preferably satisfied. This is because, in order to obtain a high-quality phase contrast image, moire fringes are preferably detected with high contrast in the phase contrast image generation process described later.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 FPD30の画素40の配列ピッチPは、設計的に定められた値(一般的に100μm程度)であり変更することが困難であるため、配列ピッチPとモアレ周期Tとの大小関係を調整するには、第1及び第2の吸収型格子31,32の位置調整を行い、G1像のパターン周期p’と格子ピッチp’との少なくともいずれか一方を変更することによりモアレ周期Tを変更することが好ましい。 Since the arrangement pitch P of the pixels 40 of the FPD 30 is a value determined by design (generally about 100 μm) and is difficult to change, the magnitude relationship between the arrangement pitch P and the moire period T is adjusted. Adjusts the positions of the first and second absorption gratings 31 and 32 and changes the moire period T by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the G1 image. It is preferable to do.
 図6に、モアレ周期Tを変更する方法を示す。 FIG. 6 shows a method of changing the moire cycle T.
 モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aを中心として相対的に回転させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aを中心として相対的に回転させる相対回転機構50を設ける。この相対回転機構50により、第2の吸収型格子32を角度θだけ回転させると、x方向に関する実質的な格子ピッチは、「p’」→「p’/cosθ」と変化し、この結果、モアレ周期Tが変化する(FIG.6A)。 The moire period T can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A. For example, a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided. When the second absorption type grating 32 is rotated by the angle θ by the relative rotation mechanism 50, the substantial grating pitch in the x direction changes from “p 2 ′” → “p 2 ′ / cos θ”. As a result, the moire cycle T changes (FIG. 6A).
 別の例として、モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させる相対傾斜機構51を設ける。この相対傾斜機構51により、第2の吸収型格子32を角度αだけ傾斜させると、x方向に関する実質的な格子ピッチは、「p’」→「p’×cosα」と変化し、この結果、モアレ周期Tが変化する(FIG.6B)。 As another example, the change of the moire period T is such that either one of the first and second absorption type gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. It can be performed by inclining. For example, a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided. Provide. When the second absorption type grating 32 is inclined by the angle α by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” → “p 2 ′ × cos α”. As a result, the moire cycle T changes (FIG. 6B).
 更に別の例として、モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を光軸Aの方向に沿って相対的に移動させることにより行うことができる。例えば、第1の吸収型格子31と第2の吸収型格子32との間の距離Lを変更するように、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aの方向に沿って相対的に移動させる相対移動機構52を設ける。この相対移動機構52により、第2の吸収型格子32を光軸Aに移動量δだけ移動させると、第2の吸収型格子32の位置に投影される第1の吸収型格子31のG1像のパターン周期は、「p’」→「p’×(L+L+δ)/(L+L)」と変化し、この結果、モアレ周期Tが変化する(FIG.6C)。 As another example, the moire period T can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A. For example, with respect to the first absorption type grating 31, the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32. A relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided. When the second absorption type grating 32 is moved to the optical axis A by the movement amount δ by the relative movement mechanism 52, the G1 image of the first absorption type grating 31 projected onto the position of the second absorption type grating 32. The pattern period of “p 1 ′” → “p 1 ′ × (L 1 + L 2 + δ) / (L 1 + L 2 )” changes, and as a result, the moire period T changes (FIG. 6C).
 本X線撮影システム10において、撮影部12は、上述のようにタルボ干渉計ではなく、距離Lを自由に設定することができるため、相対移動機構52のように距離Lの変更によりモアレ周期Tを変更する機構を、好適に採用することができる。モアレ周期Tを変更するための第1及び第2の吸収型格子31,32の上記変更機構(相対回転機構50、相対傾斜機構51、及び相対移動機構52)は、圧電素子等のアクチュエータにより構成することが可能である。 In the X-ray imaging system 10, imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed. The change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the moiré period T is constituted by an actuator such as a piezoelectric element. Is possible.
 X線源11と第1の吸収型格子31との間に被写体Hを配置した場合には、FPD30により検出されるモアレ縞は、被写体Hにより変調を受ける。この変調量は、被写体Hによる屈折効果によって偏向したX線の角度に比例する。したがって、FPD30で検出されたモアレ縞を解析することによって、被写体Hの位相コントラスト画像を生成することができる。 When the subject H is disposed between the X-ray source 11 and the first absorption type grating 31, the moire fringes detected by the FPD 30 are modulated by the subject H. This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire fringes detected by the FPD 30.
 次に、モアレ縞の解析方法について説明する。 Next, a method for analyzing moire fringes will be described.
 図7は、被写体Hのx方向に関する位相シフト分布Φ(x)に応じて屈折される1つのX線を示す。 FIG. 7 shows one X-ray refracted according to the phase shift distribution Φ (x) of the subject H in the x direction.
 符号55は、被写体Hが存在しない場合に直進するX線の経路を示しており、この経路55を進むX線は、第1及び第2の吸収型格子31,32を通過してFPD30に入射する。符号56は、被写体Hが存在する場合に、被写体Hにより屈折されて偏向したX線の経路を示している。この経路56を進むX線は、第1の吸収型格子31を通過した後、第2の吸収型格子32より遮蔽される。 Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do. Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
 被写体Hの位相シフト分布Φ(x)は、被写体Hの屈折率分布をn(x,z)、zをX線の進む方向として、次式(11)で表される。 The phase shift distribution Φ (x) of the subject H is expressed by the following equation (11), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 第1の吸収型格子31から第2の吸収型格子32の位置に投射されたG1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に次式(12)で表される。 The G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. become. This amount of displacement Δx is approximately expressed by the following equation (12) based on the small X-ray refraction angle φ.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 ここで、屈折角φは、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(13)で表される。 Here, the refraction angle φ is expressed by Expression (13) using the X-ray wavelength λ and the phase shift distribution Φ (x) of the subject H.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 このように、被写体HでのX線の屈折によるG1像の変位量Δxは、被写体Hの位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、FPD30の各画素40から出力される信号の位相ズレ量ψ(被写体Hがある場合とない場合とでの各画素40の信号の位相のズレ量)に、次式(14)のように関連している。 Thus, the displacement amount Δx of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution Φ (x) of the subject H. The amount of displacement Δx is expressed by the following equation with the phase shift amount ψ of the signal output from each pixel 40 of the FPD 30 (the phase shift amount of the signal of each pixel 40 with and without the subject H): It is related as shown in (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 したがって、各画素40の信号の位相ズレ量ψを求めることにより、式(14)から屈折角φが求まり、式(13)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。本X線撮影システム10では、上記位相ズレ量ψを、下記に示す縞走査法を用いて算出する。 Therefore, by obtaining the phase shift amount ψ of the signal of each pixel 40, the refraction angle φ is obtained from the equation (14), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (13). Is integrated with respect to x, a phase shift distribution Φ (x) of the subject H, that is, a phase contrast image of the subject H can be generated. In the present X-ray imaging system 10, the phase shift amount ψ is calculated using a fringe scanning method described below.
 縞走査法では、第1及び第2の吸収型格子31,32の一方を他方に対して相対的にx方向にステップ的に並進移動させながら撮影を行う(すなわち、両者の格子周期の位相を変化させながら撮影を行う)。本X線撮影システム10では、前述の走査機構33により第2の吸収型格子32を移動させているが、第1の吸収型格子31を移動させてもよい。第2の吸収型格子32の移動に伴って、モアレ縞が移動し、並進距離(x方向への移動量)が、第2の吸収型格子32の格子周期の1周期(格子ピッチp)に達すると(すなわち、位相変化が2πに達すると)、モアレ縞は元の位置に戻る。このようなモアレ縞の変化を、格子ピッチpを整数分の1ずつ第2の吸収型格子32を移動させながら、FPD30でモアレ縞を撮影し、撮影した複数の縞画像から各画素40の信号を取得し、演算処理部22で演算処理することにより、各画素40の信号の位相ズレ量ψを得る。 In the fringe scanning method, imaging is performed while one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner relative to the other in the x direction (that is, the phase of both grating periods is changed). Shoot while changing). In the X-ray imaging system 10, the second absorption type grating 32 is moved by the scanning mechanism 33 described above, but the first absorption type grating 31 may be moved. As the second absorption type grating 32 moves, the moire fringes move, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2π), the moire fringes return to their original positions. Such a change in moire fringes is obtained by photographing the moire fringes with the FPD 30 while moving the second absorption grating 32 by an integer of the grating pitch p 2, and from each of the photographed plural fringe images, The signal is acquired and processed by the processing unit 22 to obtain the phase shift amount ψ of the signal of each pixel 40.
 図8は、格子ピッチpをM(2以上の整数)個に分割した走査ピッチ(p/M)ずつ第2の吸収型格子32を移動させる様子を模式的に示す。 FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
 走査機構33は、k=0,1,2,・・・,M-1のM個の各走査位置に、第2の吸収型格子32を順に並進移動させる。なお、同図では、第2の吸収型格子32の初期位置を、被写体Hが存在しない場合における第2の吸収型格子32の位置でのG1像の暗部が、X線遮蔽部32bにほぼ一致する位置(k=0)としているが、この初期位置は、k=0,1,2,・・・,M-1のうちいずれの位置としてもよい。 The scanning mechanism 33 translates the second absorption type grating 32 in order to M scanning positions of k = 0, 1, 2,..., M−1. In the same figure, the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present. The initial position is k = 0, 1, 2,..., M−1.
 まず、k=0の位置では、主として、被写体Hにより屈折されなかったX線が第2の吸収型格子32を通過する。次に、k=1,2,・・・と順に第2の吸収型格子32を移動させていくと、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されなかったX線の成分が減少する一方で、被写体Hにより屈折されたX線の成分が増加する。特に、k=M/2では、主として、被写体Hにより屈折されたX線のみが第2の吸収型格子32を通過する。k=M/2を超えると、逆に、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されたX線の成分が減少する一方で、被写体Hにより屈折されなかったX線の成分が増加する。 First, at the position of k = 0, X-rays that are not refracted by the subject H mainly pass through the second absorption type grating 32. Next, when the second absorption grating 32 is moved in order of k = 1, 2,..., The X-rays passing through the second absorption grating 32 are not refracted by the subject H. While the line component decreases, the X-ray component refracted by the subject H increases. In particular, at k = M / 2, mainly only the X-rays refracted by the subject H pass through the second absorption type grating 32. When k = M / 2 is exceeded, on the contrary, the X-ray component that is refracted by the subject H decreases in the X-rays that pass through the second absorption grating 32, while the X-ray that is not refracted by the subject H. The line component increases.
 k=0,1,2,・・・,M-1の各位置で、FPD30により撮影を行うと、各画素40について、M個の信号値(画素データ)が得られる。以下に、このM個の信号値から各画素40の信号の位相ズレ量ψを算出する方法を説明する。第2の吸収型格子32の位置kにおける各画素40の信号値をI(x)と標記すると、I(x)は、次式(15)で表される。 When shooting is performed by the FPD 30 at each position of k = 0, 1, 2,..., M−1, M signal values (pixel data) are obtained for each pixel 40. Hereinafter, a method of calculating the phase shift amount ψ of the signal of each pixel 40 from the M signal values will be described. When the signal value of each pixel 40 at the position k of the second absorption type grating 32 is denoted as I k (x), I k (x) is expressed by the following equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ここで、xは、画素40のx方向に関する座標であり、Aは入射X線の強度であり、Aは画素40の信号値のコントラストに対応する値である(ここで、nは正の整数である)。また、φ(x)は、上記屈折角φを画素40の座標xの関数として表したものである。 Here, x is a coordinate in the x direction of the pixel 40, A 0 is the intensity of the incident X-ray, and An is a value corresponding to the contrast of the signal value of the pixel 40 (where n is a positive value). Is an integer). Φ (x) represents the refraction angle φ as a function of the coordinate x of the pixel 40.
 次いで、次式(16)の関係式を用いると、上記屈折角φ(x)は、次式(17)のように表される。 Next, using the relational expression of the following expression (16), the refraction angle φ (x) is expressed as the following expression (17).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 ここで、arg[ ]は、偏角の抽出を意味しており、各画素40の信号の位相ズレ量ψに対応する。したがって、各画素40で得られたM個の信号値から、式(17)に基づいて各画素40の信号の位相ズレ量ψを算出することにより、屈折角φ(x)が求められる。 Here, arg [] means the extraction of the declination, and corresponds to the phase shift amount ψ of the signal of each pixel 40. Accordingly, the refraction angle φ (x) is obtained by calculating the phase shift amount ψ of the signal of each pixel 40 from the M signal values obtained at each pixel 40 based on the equation (17).
 図9は、縞走査に伴って変化する放射線画像検出器の一つの画素の信号を示す。 FIG. 9 shows a signal of one pixel of the radiation image detector that changes with the fringe scanning.
 各画素40で得られたM個の信号値は、第2の吸収型格子32の位置kに対して、格子ピッチpの周期で周期的に変化する。図9中の破線は、被写体Hが存在しない場合の信号値の変化を示しており、図9中の実線は、被写体Hが存在する場合の信号値の変化を示している。この両者の波形の位相差が各画素40の信号の位相ズレ量ψに対応する。 The M signal values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption grating 32. A broken line in FIG. 9 indicates a change in signal value when the subject H does not exist, and a solid line in FIG. 9 indicates a change in signal value when the subject H exists. The phase difference between the two waveforms corresponds to the phase shift amount ψ of the signal of each pixel 40.
 そして、屈折角φ(x)は、上記式(13)で示したように微分位相値に対応する値であるため、屈折角φ(x)をx軸に沿って積分することにより、位相シフト分布Φ(x)が得られる。なお、上記の説明では、画素40のy方向に関するy座標を考慮していないが、各y座標について同様の演算を行うことにより、x方向及びy方向における2次元的な位相シフト分布Φ(x,y)が得られる。 Since the refraction angle φ (x) is a value corresponding to the differential phase value as shown in the above equation (13), the phase shift is obtained by integrating the refraction angle φ (x) along the x-axis. A distribution Φ (x) is obtained. In the above description, the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution Φ (x , Y).
 以上の演算は、演算処理部22により行われ、演算処理部22は、位相コントラスト画像を記憶部23に記憶させる。 The above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the phase contrast image in the storage unit 23.
 以上の演算において、位相ズレ量ψを算出するための各画素40のM個の信号値の変化は、第2の吸収型格子32の走査によってもたらされる必要がある。そのためには、X線源11から撮影部12に照射されるX線の照射線量が撮影間でほぼ一定していることが求められる。 In the above calculation, the change of the M signal values of each pixel 40 for calculating the phase shift amount ψ needs to be brought about by the scanning of the second absorption type grating 32. For this purpose, the X-ray irradiation dose irradiated from the X-ray source 11 to the imaging unit 12 is required to be substantially constant during imaging.
 図10は、X線撮影システム10による撮影フローを示す。 FIG. 10 shows an imaging flow by the X-ray imaging system 10.
 本X線撮影システム10においては、第2の吸収型格子32がk=0の位置(図8参照)に置かれる1回目の撮影では、線量検出器35によって検出される線量に基づいて露光制御が行われる。そして、第2の吸収型格子32がK=1,2・・・,M-1の各位置(図8参照)に置かれる2回目以降の撮影では、1回目の撮影に要した露光時間に基づいて露光制御が行われる。 In the X-ray imaging system 10, in the first imaging in which the second absorption grating 32 is placed at the position of k = 0 (see FIG. 8), exposure control is performed based on the dose detected by the dose detector 35. Is done. In the second and subsequent photographing in which the second absorption type grating 32 is placed at each position of K = 1, 2,..., M−1 (see FIG. 8), the exposure time required for the first photographing is obtained. Based on this, exposure control is performed.
 まず、1回目の撮影では、制御装置20が、X線の照射開始を指示する制御信号をX線源制御部17に送出する。この制御信号を受信したX線源制御部17は、X線管18への電力の供給を開始するように高電圧発生器16を制御する。それにより、被写体HへのX線の照射が開始される(ステップS1)。 First, in the first imaging, the control device 20 sends a control signal instructing the start of X-ray irradiation to the X-ray source control unit 17. The X-ray source control unit 17 that has received this control signal controls the high voltage generator 16 so as to start supplying power to the X-ray tube 18. Thereby, irradiation of the subject H with X-rays is started (step S1).
 線量検出器35は、X線の照射開始から受光部に入射する累積のX線の線量を検出する。線量検出器35によって検出される線量に対して、例えば被写体Hによって異なる必要露光量を考慮して、閾値線量が予め設定される。線量検出器35は、検出したX線の線量が閾値線量に達したところで、閾値線量に達したことを表す制御信号を制御装置20に送出する(ステップS2)。 The dose detector 35 detects the cumulative X-ray dose incident on the light receiving unit from the start of X-ray irradiation. For the dose detected by the dose detector 35, for example, a threshold dose is set in consideration of a necessary exposure amount that differs depending on the subject H. When the detected X-ray dose reaches the threshold dose, the dose detector 35 sends a control signal indicating that the threshold dose has been reached to the control device 20 (step S2).
 線量検出器35から送出された制御信号を受信した制御装置20は、X線の照射停止を指示する制御信号をX線源制御部17に送出する。この制御信号を受信したX線源制御部17は、X線管18への電力の供給を停止するように高電圧発生器16を制御する。それにより、被写体HへのX線の照射が停止される(ステップS3)。 The control device 20 that has received the control signal sent from the dose detector 35 sends a control signal for instructing to stop the X-ray irradiation to the X-ray source control unit 17. The X-ray source control unit 17 that has received this control signal controls the high voltage generator 16 so as to stop the supply of power to the X-ray tube 18. Thereby, irradiation of the subject H with X-rays is stopped (step S3).
 制御装置20は、1回目の撮影に要した露光時間T、即ち、X線源制御部17に対してX線の照射開始を指示する制御信号を送出してから照射停止を指示する制御信号を送出するまでの時間を計測しており、これを記憶する。 The control device 20 sends an exposure time T 0 required for the first imaging, that is, a control signal that instructs the X-ray source controller 17 to stop irradiation after sending a control signal that instructs the X-ray source controller 17 to start X-ray irradiation. Is measured and stored.
 次いで、2回目以降の撮影では、制御装置20は、X線の照射開始を指示する制御信号をX線源制御部17に送出する。この制御信号を受信したX線源制御部17は、X線管18への電力の供給を開始するように高電圧発生器16を制御する。それにより、被写体HへのX線の照射が開始される(ステップS4)。 Next, in the second and subsequent imaging, the control device 20 sends a control signal instructing the start of X-ray irradiation to the X-ray source control unit 17. The X-ray source control unit 17 that has received this control signal controls the high voltage generator 16 so as to start supplying power to the X-ray tube 18. Thereby, irradiation of the subject H with X-rays is started (step S4).
 ここで、2回目以降の撮影においては、第2の吸収型格子32の走査に伴いモアレ縞が移動し、線量検出器35の受光部とモアレ縞の暗部との重なりの程度に応じて、線量検出器35の受光部に単位時間当たりに入射する線量が変化する。よって、2回目以降の各撮影において、線量検出器35により検出される線量が上記の閾値線量に達するまでに要する時間は、1回目の撮影において線量検出器35により検出される線量が上記の閾値線量に達するまでに要した露光時間Tと相違する。そのため、2回目以降の各撮影において、その都度、線量検出器35により検出される線量に基づいて露光制御を行った場合には、露光時間が撮影間でバラツキ、結果、照射線量にバラツキが生じることとなる。 Here, in the second and subsequent imaging, the moire fringes move with the scanning of the second absorption type grating 32, and the dose depends on the degree of overlap between the light receiving part of the dose detector 35 and the dark part of the moire fringes. The dose incident on the light receiving portion of the detector 35 per unit time changes. Therefore, the time required for the dose detected by the dose detector 35 to reach the above threshold dose in each of the second and subsequent imaging is the dose detected by the dose detector 35 in the first imaging. It differs from the exposure time T 0 it took to reach the dose. Therefore, in each of the second and subsequent shootings, when exposure control is performed based on the dose detected by the dose detector 35, the exposure time varies between the shootings, and as a result, the irradiation dose varies. It will be.
 そこで、制御装置20は、X線源制御部17に対してX線の照射開始を指示する制御信号を送出してからの経過時間Tを計測し、経過時間Tが、記憶している1回目の撮影に要した露光時間Tに達したところで、X線の照射停止を指示する制御信号をX線源制御部17に送出する(ステップS5)。この制御信号を受信したX線源制御部17は、X線管18への電力の供給を停止するように高電圧発生器16を制御する。それにより、被写体HへのX線の照射が停止される(ステップS6)。 Therefore, the control device 20 measures the elapsed time T after sending a control signal instructing the X-ray source control unit 17 to start X-ray irradiation, and the elapsed time T is stored in the first time. When the exposure time T 0 required for imaging is reached, a control signal for instructing to stop X-ray irradiation is sent to the X-ray source control unit 17 (step S5). The X-ray source control unit 17 that has received this control signal controls the high voltage generator 16 so as to stop the supply of power to the X-ray tube 18. Thereby, irradiation of the subject H with X-rays is stopped (step S6).
 このように、1回目の撮影では、線量検出器35によって検出される線量に基づいて露光制御が行われ、2回目以降の撮影では、1回目の撮影に要した露光時間Tに基づいて露光制御が行われることにより、被写体Hによって異なる必要露光量が確保されると共に、撮影間の照射線量のバラツキが防止される。それにより、高精度な放射線位相コントラスト画像を生成することができる。 Thus, in the first imaging, the exposure control is performed based on the dose detected by the dose detector 35, in the second and subsequent shot, the exposure based on the exposure time T 0 required for the first shooting By performing the control, a necessary exposure amount that is different depending on the subject H is secured, and variations in irradiation dose between photographings are prevented. Thereby, a highly accurate radiation phase contrast image can be generated.
 ここで、線量検出器35の受光部にモアレ縞の暗部が重なっている場合と、受光部にモアレ縞の暗部が重なっていない場合とで、受光部に単位時間当たりに入射する線量は後者の場合に多くなり、閾値線量に達するまでに要する時間は後者の場合に短くなる。1回目の撮影において、線量検出器35の受光部にモアレ縞の暗部が重なっておらず、その状態で露光時間Tが定められると、2回目以降の撮影も含めて、モアレ縞の暗部が重なるFPD30の画素40に入射するX線の線量が不足し、その画素の信号のS/Nが低下する可能性がある。 Here, when the dark part of the moire fringes overlaps the light receiving part of the dose detector 35 and when the dark part of the moire fringes does not overlap the light receiving part, the dose incident on the light receiving part per unit time is the latter In many cases, the time required to reach the threshold dose is shorter in the latter case. In the first shooting, not overlapping dark moire fringes on the light receiving portion of the dose detector 35, when the exposure time T 0 in this state is determined, including the second and subsequent shot, the dark portion of the moire fringes There is a possibility that the dose of X-rays incident on the pixel 40 of the overlapping FPD 30 is insufficient, and the S / N of the signal of the pixel is lowered.
 そこで、1回目の撮影においては線量検出器35の受光部にモアレ縞の暗部が重なっていないとの想定のもと、FPD30の画素40が飽和することのない範囲で、かつ被写体Hに許容される被爆量の範囲で、閾値線量を若干高めに設定することが好ましい。また、FPD30の画素40の飽和出力に対し、読み出し回路43は、積分アンプ回路、A/D変換器等の各入力が飽和しないように設計あるいは設定可能に構成することが好ましい。それにより、2回目以降の撮影も含めて、モアレ縞の暗部が重なる画素40においても、その画素に入射するX線の線量が確保され、その画素の信号のS/Nが低下することを防止できる。 Therefore, in the first imaging, the subject H is allowed within a range in which the pixels 40 of the FPD 30 are not saturated under the assumption that the dark part of the moire fringes does not overlap the light receiving part of the dose detector 35. It is preferable to set the threshold dose slightly higher within the range of the exposure dose. Further, it is preferable that the readout circuit 43 is configured to be designed or set so that the inputs of the integration amplifier circuit, the A / D converter and the like are not saturated with respect to the saturation output of the pixel 40 of the FPD 30. As a result, the X-ray dose incident on the pixel 40 is ensured even in the pixel 40 where the dark part of the moire fringe overlaps, including the second and subsequent imaging, and the S / N of the signal of the pixel is prevented from decreasing. it can.
 なお、X線管18への電力の供給の開始及び停止によってX線の照射と停止を切り替えるものとして説明したが、X線管18への電力の供給は継続しつつ、コリメータ19aの開閉によってX線の照射と停止を切り替えてもよいし、開口部と遮蔽部とを交互に形成した円盤状(又はスリット状)のシャッター板をX線源11の出射口に設け、これをX線の照射タイミングに同期するように回転(又は並進)させることにより、X線の照射と停止を切り替えてもよい。それによれば、X線管18を安定した状態に保ち、照射線量のバラツキをより確実に防止することができる。 In addition, although demonstrated as what switches irradiation and a stop of X-ray | X_line by the start and stop of supply of the electric power to the X-ray tube 18, X-ray | X_line 18 is supplied by the opening and closing of the collimator 19a, and X-ray | X_line 18 is supplied. The irradiation and stop of the line may be switched, or a disk-shaped (or slit-shaped) shutter plate in which openings and shields are alternately formed is provided at the exit of the X-ray source 11, and this is irradiated with X-rays. X-ray irradiation and stop may be switched by rotating (or translating) so as to be synchronized with the timing. According to this, it is possible to keep the X-ray tube 18 in a stable state and more reliably prevent variations in irradiation dose.
 上記の縞走査、及び位相コントラスト画像の生成処理は、入力装置21から操作者により撮影指示がなされた後、制御装置20の制御に基づいて各部が連係動作し、自動的に行われ、最終的に被写体Hの位相コントラスト画像がモニタ24に表示される。 The above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20. The phase contrast image of the subject H is displayed on the monitor 24.
 以上、説明したように、本X線撮影システム10によれば、1回目の撮影では、線量検出器35によって検出される線量に基づいて露光制御が行われ、2回目以降の撮影では、1回目の撮影に要した露光時間Tに基づいて露光制御が行われることにより、被写体Hによって異なる必要露光量が確保されると共に、撮影間の照射線量のバラツキが防止される。それにより、高精度な放射線位相コントラスト画像を生成することができる。 As described above, according to the present X-ray imaging system 10, exposure control is performed based on the dose detected by the dose detector 35 in the first imaging, and the first imaging in the second and subsequent imaging. By performing the exposure control based on the exposure time T 0 required for the imaging, a necessary exposure amount that varies depending on the subject H is ensured, and variations in the irradiation dose between the imaging are prevented. Thereby, a highly accurate radiation phase contrast image can be generated.
 また、本X線撮影システム10によれば、第1の吸収型格子31で殆どのX線を回折させずに、第2の吸収型格子32に線形的に投影するため、照射X線には、高い空間的可干渉性は要求されず、X線源11として医療分野で用いられている一般的なX線源を用いることができる。そして、第1の吸収型格子31から第2の吸収型格子32までの距離Lを任意の値とすることができ、該距離Lを、タルボ干渉計での最小のタルボ干渉距離より小さく設定することができるため、撮影部12を小型化(薄型化)することができる。更に、本X線撮影システムでは、第1の吸収型格子31からの投影像(G1像)には、照射X線のほぼすべての波長成分が寄与し、モアレ縞のコントラストが向上するため、位相コントラスト画像の検出感度を向上させることができる。 Further, according to the present X-ray imaging system 10, since most of the X-rays are linearly projected onto the second absorption grating 32 without being diffracted by the first absorption grating 31, High spatial coherence is not required, and a general X-ray source used in the medical field as the X-ray source 11 can be used. The distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned). Furthermore, in this X-ray imaging system, almost all wavelength components of irradiated X-rays contribute to the projection image (G1 image) from the first absorption type grating 31 and the contrast of moire fringes is improved. Contrast image detection sensitivity can be improved.
 なお、本X線撮影システム10は、第1の格子の投影像に対して縞走査を行って屈折角φを演算するものであって、そのため、第1及び第2の格子がいずれも吸収型格子であるものとして説明したが、本発明はこれに限定されるものではない。上述のとおり、タルボ干渉像に対して縞走査を行って屈折角φを演算する場合にも、本発明は有用である。よって、第1の格子は、吸収型格子に限らず位相型格子であってもよい。また、第1の格子のX線像と第2の格子との重ね合わせによって形成されるモアレ縞の解析方法は、前述した縞走査法に限られず、例えば「J. Opt. Soc. Am. Vol.72,No.1 (1982) p.156」により知られているフーリエ変換/フーリエ逆変換を用いた方法など、モアレ縞を利用した種々の方法も適用可能である。 Note that the X-ray imaging system 10 performs a fringe scan on the projection image of the first grating to calculate the refraction angle φ. Therefore, both the first and second gratings are absorption type. Although described as being a lattice, the present invention is not limited to this. As described above, the present invention is also useful when the refraction angle φ is calculated by performing fringe scanning on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating. In addition, the method of analyzing the moire fringes formed by superimposing the X-ray image of the first grating and the second grating is not limited to the above-described fringe scanning method. For example, “J. Opt. Soc. Am. .72, No. 1 (1982) p. 156 ", and various methods using moire fringes, such as a method using Fourier transform / inverse Fourier transform, are also applicable.
 また、本X線撮影システム10は、位相シフト分布Φを画像としたものを位相コントラスト画像として記憶ないし表示するものとして説明したが、上記のとおり、位相シフト分布Φは、屈折角φより求まる位相シフト分布Φの微分量を積分したものであって、屈折角φ及び位相シフト分布Φの微分量もまた被写体によるX線の位相変化に関連している。よって、屈折角φを画像としたもの、また、位相シフトΦの微分量を画像としたものも位相コントラスト画像に含まれる。 Further, although the X-ray imaging system 10 has been described as one that stores or displays an image of the phase shift distribution Φ as a phase contrast image, as described above, the phase shift distribution Φ is a phase determined from the refraction angle φ. The differential amount of the shift distribution Φ is integrated, and the differential amount of the refraction angle φ and the phase shift distribution Φ is also related to the phase change of the X-ray by the subject. Therefore, an image having the refraction angle φ as an image and an image having the differential amount of the phase shift Φ are also included in the phase contrast image.
 また、本X線撮影システム10においては、線量検出器35がFPD30の裏に配置されているが、第2の吸収型格子32とFPD30との間に線量検出器35を配置することもできる。更に、線量検出器35と同等の構成をX線画像検出器自体が有していてもよく、具体的な態様としては、特開2004-130058号公報に開示された構成のX線画像検出器を用いることができ、それによって線量検出器35を排することができる。このX線画像検出器は、図11に示すように、モアレ縞を撮影するための複数の画素40とは別に、線量を検出するための画素(光電変換素子)47を備えている。画素47は、画素40の群とは異なる読み出し回路48に接続され、スイッチッチングなしに、入射光量に応じて電荷を常に出力することができるよう構成されている。画素47から読み出された電荷は、読み出し回路48において増幅され、その出力を加算器(不図示)で加算していくことによって、1回目の撮影においてX線の照射開始から画素47に入射する累積のX線の線量が検出される。 In the present X-ray imaging system 10, the dose detector 35 is disposed behind the FPD 30, but the dose detector 35 may be disposed between the second absorption grating 32 and the FPD 30. Furthermore, the X-ray image detector itself may have a configuration equivalent to that of the dose detector 35. As a specific mode, an X-ray image detector having a configuration disclosed in Japanese Patent Application Laid-Open No. 2004-130058 is disclosed. Can be used, thereby eliminating the dose detector 35. As shown in FIG. 11, the X-ray image detector includes a pixel (photoelectric conversion element) 47 for detecting a dose, in addition to a plurality of pixels 40 for capturing moire fringes. The pixel 47 is connected to a readout circuit 48 different from the group of the pixels 40 and is configured to always output charges according to the amount of incident light without switching. The charge read from the pixel 47 is amplified by the read circuit 48, and the output is added by an adder (not shown), so that it enters the pixel 47 from the start of X-ray irradiation in the first imaging. A cumulative x-ray dose is detected.
 図12は、放射線撮影システム10の変形例における撮影フローを示す。 FIG. 12 shows an imaging flow in a modification of the radiation imaging system 10.
 本変形例においては、被写体Hが配置されていない状態で、露光時間を一定として複数回のプレ撮影が行われる。そして、複数回のプレ撮影の際に線量検出器35によって検出される線量の変化に基づいて、被写体Hが配置された状態で行われる複数回の撮影における第2の吸収型格子32の初期位置が設定される。 In this modification, pre-photographing is performed a plurality of times with a constant exposure time in a state where the subject H is not arranged. The initial position of the second absorption type grating 32 in the plurality of times of photographing performed with the subject H being arranged based on the change in the dose detected by the dose detector 35 during the plurality of times of pre-imaging. Is set.
 まず、被写体Hが配置されていない状態で、露光時間を一定とし、第2の吸収型格子32をk=0,1,2・・・,M-1の各位置(図8参照)に置いて複数回のプレ撮影が行われる(ステップSS1~SS6)。 First, in a state where the subject H is not arranged, the exposure time is constant, and the second absorption grating 32 is placed at each position of k = 0, 1, 2,..., M−1 (see FIG. 8). Thus, pre-shooting is performed a plurality of times (steps SS1 to SS6).
 制御装置22は、各プレ撮影において線量検出器35によって検出される線量を記憶し、それらなかで最小の線量が検出されたプレ撮影を判定する。そして、最小の線量が検出されたプレ撮影における第2の吸収型格子32の位置(kmin)を、被写体Hが配置された状態で行われる複数回の撮影における第2の吸収型格子32の初期位置に設定する(ステップSS7)。露光時間を一定とした複数回のプレ撮影のなかで最小の線量が検出されたプレ撮影では、線量検出器35の受光部にモアレ縞の暗部が重なっているか、あるいは重なりが大きいといえる。 The control device 22 stores the dose detected by the dose detector 35 in each pre-imaging, and determines the pre-imaging in which the minimum dose is detected. Then, the position (k min ) of the second absorption grating 32 in the pre-imaging in which the minimum dose is detected is set to the position of the second absorption grating 32 in the plurality of imaging performed in the state where the subject H is arranged. The initial position is set (step SS7). In pre-photographing in which the minimum dose is detected among a plurality of pre-photographings with a constant exposure time, it can be said that the light receiving part of the dose detector 35 overlaps with the dark part of the moire fringes or the overlap is large.
 次いで、被写体Hが配置され、第2の吸収型格子32が上記の初期位置(kmin)に置かれ、線量検出器35によって検出される線量が予め設定された閾値線量に達するまで露光を継続して1回目の撮影が行われる(ステップS1~S3)。そして、第2の吸収型格子32を所定の走査ピッチ(p/M)ずつ移動させながら、1回目の撮影に要した露光時間が経過するまで露光を継続して2回目以降の撮影が行われる(ステップS4~S6)。 Next, the subject H is placed, the second absorption grating 32 is placed at the initial position ( kmin ), and exposure is continued until the dose detected by the dose detector 35 reaches a preset threshold dose. Thus, the first shooting is performed (steps S1 to S3). Then, while moving the second absorption type grating 32 by a predetermined scanning pitch (p 2 / M), the exposure is continued until the exposure time required for the first imaging elapses, and the second and subsequent imaging is performed. (Steps S4 to S6).
 本変形例によれば、1回目の撮影において、線量検出部35の受光部にモアレ縞の暗部が重なった状態で線量の検出がなされるので、2回目以降の撮影も含めて、モアレ縞の暗部が重なるFPD30の画素40においても、その画素に入射するX線の線量が確保され、その画素の信号のS/Nが低下することを防止できる。そして、1回目の撮影において線量検出器35の受光部にモアレ縞の暗部が重なっていないとの想定のもとで常に閾値線量を高めに設定する場合に比べて、より適切な露光制御が可能となる。 According to this modification, in the first imaging, the dose is detected in the state where the dark part of the moire fringes overlaps the light receiving unit of the dose detection unit 35. Therefore, including the second and subsequent imaging, Even in the pixel 40 of the FPD 30 in which the dark portion overlaps, the dose of X-rays incident on the pixel is ensured, and the S / N of the signal of the pixel can be prevented from decreasing. In the first imaging, more appropriate exposure control is possible as compared with the case where the threshold dose is always set higher under the assumption that the dark part of the moire fringes does not overlap the light receiving part of the dose detector 35. It becomes.
 なお、被写体Hが配置された状態で行われる複数回の撮影における第2の吸収型格子32の初期位置は、好ましくは、複数回のプレ撮影のうち最小の線量が検出されたプレ撮影における第2の吸収型格子32の位置であるが、これに限られるものではない。例えば、複数回のプレ撮影において検出される線量の変化のなかで略中間の線量が検出されたプレ撮影における第2の吸収型格子32の位置を初期位置とすることもでき、その場合にも、モアレ縞の暗部が重なる画素40の信号のS/Nの低下を軽減できる。 Note that the initial position of the second absorption grating 32 in a plurality of times of imaging performed with the subject H being arranged is preferably the first position in the pre-imaging in which the minimum dose is detected among the plurality of times of pre-imaging. However, the present invention is not limited to this. For example, the position of the second absorption type grating 32 in the pre-photographing in which a substantially intermediate dose is detected among the changes in the dose detected in a plurality of pre-photographing can be set as the initial position. Further, it is possible to reduce a decrease in S / N of the signal of the pixel 40 where the dark portions of the moire fringes overlap.
 図13は、放射線撮影システム10の他の変形例における撮影フローを示す。 FIG. 13 shows an imaging flow in another modification of the radiation imaging system 10.
 本変形例においては、被写体Hが配置されていない状態で、露光時間を一定として複数回のプレ撮影が行われる。そして、複数回のプレ撮影の際に線量検出器35によって検出される線量の変化に基づいて、線量検出器35によって検出される線量に対する閾値線量が補正される。 In this modification, pre-photographing is performed a plurality of times with a constant exposure time in a state where the subject H is not arranged. Then, the threshold dose with respect to the dose detected by the dose detector 35 is corrected based on the change in the dose detected by the dose detector 35 during a plurality of pre-imaging operations.
 まず、被写体Hが配置されていない状態で、露光時間を一定とし、第2の吸収型格子32をk=0,1,2・・・,M-1の各位置(図8参照)に置いて複数回のプレ撮影が行われる(ステップSS1~SS6)。 First, in a state where the subject H is not arranged, the exposure time is constant, and the second absorption grating 32 is placed at each position of k = 0, 1, 2,..., M−1 (see FIG. 8). Thus, pre-shooting is performed a plurality of times (steps SS1 to SS6).
 制御装置22は、各プレ撮影において線量検出器35によって検出される線量を記憶し、それらのうち最小の線量と1回目のプレ撮影で検出された線量との差分Δを求め、差分Δが大きいほど線量検出器35によって検出される線量に対する閾値線量が大きくなるよう、閾値線量を補正する(ステップSS7)。差分Δが大きいほど、1回目のプレ撮影において、線量検出器35の受光部とモアレ縞の明部との重なりが大きいといえる。なお、差分Δに応じた閾値線量の補正量は、FPD30の画素40が飽和することのない範囲で適宜定められる。 The control device 22 stores the dose detected by the dose detector 35 in each pre-imaging, obtains the difference Δ between the minimum dose and the dose detected in the first pre-imaging, and the difference Δ is large. The threshold dose is corrected so that the threshold dose relative to the dose detected by the dose detector 35 increases (step SS7). It can be said that the larger the difference Δ is, the larger the overlap between the light receiving part of the dose detector 35 and the bright part of the moire fringes in the first pre-imaging. The correction amount of the threshold dose according to the difference Δ is appropriately determined within a range in which the pixel 40 of the FPD 30 is not saturated.
 次いで、被写体Hが配置され、第2の吸収型格子32が上記の初期位置(k=0)に置かれ、線量検出器35によって検出される線量が予め設定された閾値線量に達するまで露光を継続して1回目の撮影が行われる(ステップS1~S3)。そして、第2の吸収型格子32を所定の走査ピッチ(p/M)ずつ移動させながら、1回目の撮影に要した露光時間が経過するまで露光を継続して2回目以降の撮影が行われる(ステップS4~S6)。 Next, the subject H is placed, the second absorption grating 32 is placed at the initial position (k = 0), and exposure is performed until the dose detected by the dose detector 35 reaches a preset threshold dose. The first shooting is continuously performed (steps S1 to S3). Then, while moving the second absorption type grating 32 by a predetermined scanning pitch (p 2 / M), the exposure is continued until the exposure time required for the first imaging elapses, and the second and subsequent imaging is performed. (Steps S4 to S6).
 本変形例によれば、1回目の撮影における線量検出部35の受光部とモアレ縞の暗部との重なりの程度に応じて、閾値線量が補正されているので、2回目以降の撮影も含めて、モアレ縞の暗部が重なるFPD30の画素40においても、その画素に入射するX線の線量が確保され、その画素の信号のS/Nが低下することを防止できる。そして、1回目の撮影においては線量検出器35の受光部にモアレ縞の暗部が重なっていないとの想定のもと常に閾値線量を高めに設定する場合に比べて、より適切な露光制御が可能となる。 According to this modification, the threshold dose is corrected according to the degree of overlap between the light receiving unit of the dose detection unit 35 and the dark part of the moire fringes in the first imaging, and therefore includes the second and subsequent imaging. Even in the pixel 40 of the FPD 30 where dark portions of moire fringes overlap, the dose of X-rays incident on the pixel is ensured, and the S / N of the signal of the pixel can be prevented from decreasing. In the first imaging, more appropriate exposure control is possible as compared to the case where the threshold dose is always set higher under the assumption that the dark part of the moire fringes does not overlap the light receiving part of the dose detector 35. It becomes.
 図14は、X線撮影システム10の他の変形例における撮影方法を示す。 FIG. 14 shows an imaging method in another modification of the X-ray imaging system 10.
 前述した変形例は、いずれも、1回目の撮影における線量検出器35の受光部とモアレ縞の暗部との重なりの程度、つまりは線量検出器35とモアレ縞との相対位置関係によって、線量検出器35の受光部に単位時間当たりに入射するX線の線量が変化することに対処するものであるが、線量検出器35の受光部に入射するX線の線量の変化を抑制するようにしてもよい。 In all of the above-described modifications, dose detection is performed according to the degree of overlap between the light receiving portion of the dose detector 35 and the dark portion of the moire fringe in the first imaging, that is, the relative positional relationship between the dose detector 35 and the moire fringe. The X-ray dose incident on the light receiving unit of the detector 35 per unit time is changed, but the change of the X-ray dose incident on the light receiving unit of the dose detector 35 is suppressed. Also good.
 本変形例では、モアレ縞の周期Tを、周期方向に関する線量検出器35の受光部の寸法Wよりも小さくしている。モアレ縞の周期Tは、例えば上記の相対回転機構50や相対傾斜機構51や相対移動機構52によって変更される。この場合、モアレ縞の複数の明部及び暗部が線量検出器35の受光部に重なり、これらの明部及び暗部が平均化されて線量の検出がなされる。よって、線量検出器35に単位時間当たりに入射するX線の線量は、線量検出器35とモアレ縞との相対位置関係によらずほぼ一定する。それにより、複数回のプレ撮影を行うことなく、線量検出器35によって検出される線量に基づいて適切な露光時間を定めることができ、モアレ縞の暗部が重なる画素40において線量が不足することを回避できる。 In this modification, the period T of moire fringes is made smaller than the dimension W of the light receiving part of the dose detector 35 in the period direction. The period T of moiré fringes is changed by, for example, the relative rotation mechanism 50, the relative tilt mechanism 51, or the relative movement mechanism 52 described above. In this case, a plurality of bright parts and dark parts of moire fringes overlap the light receiving part of the dose detector 35, and these bright parts and dark parts are averaged to detect a dose. Therefore, the X-ray dose incident on the dose detector 35 per unit time is substantially constant regardless of the relative positional relationship between the dose detector 35 and the moire fringes. Accordingly, it is possible to determine an appropriate exposure time based on the dose detected by the dose detector 35 without performing multiple pre-photographing, and that the dose is insufficient in the pixels 40 where the dark portions of the moire fringes overlap. Can be avoided.
 図15は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 15 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 図15に示すマンモグラフィ装置80は、被検体として乳房BのX線画像(位相コントラスト画像)を撮影する装置である。マンモグラフィ装置80は、基台(図示せず)に対して旋回可能に連結されたアーム部材81の一端に配設されたX線源収納部82と、アーム部材81の他端に配設された撮影台83と、撮影台83に対して上下方向に移動可能に構成された圧迫板84とを備える。 A mammography apparatus 80 shown in FIG. 15 is an apparatus that captures an X-ray image (phase contrast image) of a breast B as a subject. The mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81. An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
 X線源収納部82にはX線源11が収納されており、撮影台83には撮影部12が収納されている。X線源11と撮影部12とは、互いに対向するように配置されている。圧迫板84は、移動機構(図示せず)により移動し、撮影台83との間で乳房Bを挟み込んで圧迫する。この圧迫状態で、上記したX線撮影が行われる。 The X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12. The X-ray source 11 and the imaging unit 12 are arranged to face each other. The compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
 なお、X線源11及び撮影部12は、前述したX線撮影システム10のものと同様の構成であるため、各構成要素には、X線撮影システム10と同一の符号を付している。その他の構成及び作用については、X線撮影システム10と同様であるため説明は省略する。 Since the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10, description thereof will be omitted.
 図16は、図15の放射線撮影システムの変形例を示す。 FIG. 16 shows a modification of the radiation imaging system of FIG.
 図16に示すマンモグラフィ装置90は、第1の吸収型格子31がX線源11と圧迫板84との間に配設されている点が前述したマンモグラフィ装置80と異なる。第1の吸収型格子31は、アーム部材81に接続された格子収納部91に収納されている。撮影部92は、FPD30、第2の吸収型格子32、走査機構33、及び線量検出器35により構成されている。線量検出器35は、FPD30の裏に配置されている。 16 differs from the above-described mammography apparatus 80 in that the first absorption grating 31 is disposed between the X-ray source 11 and the compression plate 84. The mammography apparatus 90 illustrated in FIG. The first absorption type lattice 31 is accommodated in a lattice accommodation portion 91 connected to the arm member 81. The imaging unit 92 includes an FPD 30, a second absorption grating 32, a scanning mechanism 33, and a dose detector 35. The dose detector 35 is disposed behind the FPD 30.
 このように、被検体(乳房)Bが第1の吸収型格子31と第2の吸収型格子32との間に位置する場合であっても、第2の吸収型格子32の位置に形成される第1の吸収型格子31の投影像(G1像)が被検体Bにより変形する。したがって、この場合でも、被検体Bに起因して変調されたモアレ縞をFPD30により検出することができる。すなわち、本マンモグラフィ装置90でも前述した原理で被検体Bの位相コントラスト画像を得ることができる。 Thus, even when the subject (breast) B is located between the first absorption type grating 31 and the second absorption type grating 32, it is formed at the position of the second absorption type grating 32. The projection image (G1 image) of the first absorption type grating 31 is deformed by the subject B. Therefore, even in this case, the moiré fringes modulated due to the subject B can be detected by the FPD 30. That is, the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
 そして、本マンモグラフィ装置90では、第1の吸収型格子31による遮蔽により、線量がほぼ半減したX線が被検体Bに照射されることになるため、被検体Bの被曝量を、前述したマンモグラフィ装置80の場合の約半分に低減することができる。なお、本マンモグラフィ装置90のように、第1の吸収型格子31と第2の吸収型格子32との間に被検体を配置することは、前述したX線撮影システム10にも適用することが可能である。 In the present mammography apparatus 90, the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 90 can also be applied to the X-ray imaging system 10 described above. Is possible.
 図17は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 17 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 X線撮影システム100は、X線源101のコリメータユニット102に、マルチスリット103を配設した点が、前述したX線撮影システム10と異なる。その他の構成については、前述したX線撮影システム10と同一であるので説明は省略する。 The X-ray imaging system 100 is different from the X-ray imaging system 10 described above in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
 前述したX線撮影システム10では、X線源11からFPD30までの距離を、一般的な病院の撮影室で設定されるような距離(1m~2m)とした場合に、X線焦点18bの焦点サイズ(一般的に0.1mm~1mm程度)によるG1像のボケが影響し、位相コントラスト画像の画質の低下をもたらす恐れがある。そこで、X線焦点18bの直後にピンホールを設置して実効的に焦点サイズを小さくすることが考えられるが、実効的な焦点サイズを縮小するためにピンホールの開口面積を小さくすると、X線強度が低下してしまう。本X線撮影システム100においては、この課題を解決するために、X線焦点18bの直後にマルチスリット103を配置する。 In the X-ray imaging system 10 described above, when the distance from the X-ray source 11 to the FPD 30 is a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b. The blur of the G1 image due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is lowered. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall. In the present X-ray imaging system 100, in order to solve this problem, the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
 マルチスリット103は、撮影部12に設けられた第1及び第2の吸収型格子31,32と同様な構成の吸収型格子(第3の吸収型格子)であり、一方向(y方向)に延伸した複数のX線遮蔽部が、第1及び第2の吸収型格子31,32のX線遮蔽部31b,32bと同一方向(x方向)に周期的に配列されている。このマルチスリット103は、X線焦点18bから放射される放射線を部分的に遮蔽することにより、x方向に所定のピッチで配列した多数の小焦点光源(分散光源)を形成することを目的としている。 The multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction). The extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32. The multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
 このマルチスリット103の格子ピッチpは、マルチスリット103から第1の吸収型格子31までの距離をLとして、次式(18)を満たすように設定する必要がある。 The lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following formula (18), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 上記式(18)は、マルチスリット103により分散形成された各小焦点光源から射出されたX線の第1の吸収型格子31による投影像(G1像)が、第2の吸収型格子32の位置で一致する(重なり合う)ための幾何学的な条件である。 Expression (18) indicates that the projection image (G1 image) of the X-rays emitted from the small focus light sources dispersedly formed by the multi-slit 103 by the first absorption type grating 31 is the second absorption type grating 32. This is a geometric condition for matching (overlapping) in position.
 また、実質的にマルチスリット103の位置がX線焦点位置となるため、第2の吸収型格子32の格子ピッチpは、次式(19)の関係を満たすように決定される。 In addition, since the position of the multi slit 103 is substantially the X-ray focal position, the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (19).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 このように、本X線撮影システム100では、マルチスリット103により形成される複数の小焦点光源に基づくG1像が重ね合わせられることにより、X線強度を低下させずに、位相コントラスト画像の画質を向上させることができる。以上説明したマルチスリット103は、前述したいずれのX線撮影システムにおいても適用可能である。 As described above, in the present X-ray imaging system 100, the G1 images based on the plurality of small focus light sources formed by the multi slit 103 are superimposed, thereby improving the image quality of the phase contrast image without decreasing the X-ray intensity. Can be improved. The multi slit 103 described above can be applied to any of the X-ray imaging systems described above.
 図18は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 18 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 前述した各X線撮影システムによれば、これまで描出が難しかったX線弱吸収物体の高コントラストな画像(位相コントラスト画像)が得られるが、更に、位相コントラスト画像と対応して吸収画像が参照できることは読影の助けになる。例えば、吸収画像と位相コントラスト画像を重み付けや階調、周波数処理などの適当な処理によって重ね合わせることにより吸収画像で表現できなかった部分を位相コントラスト画像の情報で補うことは有効である。しかし、位相コントラスト画像とは別に吸収画像を撮影することは、位相コントラスト画像の撮影と吸収画像の撮影の間の撮影肢位のズレによって良好な重ね合わせを困難にするのに加え、撮影回数が増えることにより被検者の負担となる。また、近年、位相コントラスト画像や吸収画像の他に、小角散乱画像が注目されている。小角散乱画像は、被検体組織内部の微細構造に起因する組織性状を表現可能であり、例えば、ガンや循環器疾患といった分野での新しい画像診断のための表現方法として期待されている。 According to each X-ray imaging system described above, a high-contrast image (phase contrast image) of an X-ray weakly absorbing object that has been difficult to draw can be obtained. In addition, an absorption image is referred to corresponding to the phase contrast image. What you can do will help you interpret. For example, it is effective to supplement the portion that could not be represented by the absorption image with the information of the phase contrast image by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing. However, capturing an absorption image separately from the phase contrast image makes it difficult to superimpose images due to the shift in the shooting position between the phase contrast image capture and the absorption image capture. Increasing the burden on the subject. In recent years, small-angle scattered images have attracted attention in addition to phase contrast images and absorption images. The small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in the fields of cancer and cardiovascular diseases.
 そこで、本X線撮影システムは、位相コントラスト画像のために取得した複数枚の画像から、吸収画像や小角散乱画像を生成することも可能とする演算処理部190を用いる。なお、その他の構成については、前述したX線撮影システム10と同一であるので説明は省略する。演算処理部190は、位相コントラスト画像生成部191、吸収画像生成部192、小角散乱画像生成部193が構成されている。これらは、いずれもk=0,1,2,・・・,M-1のM個の各走査位置で得られる画像データに基づいて演算処理を行う。このうち、位相コントラスト画像生成部191は、前述の手順に従って位相コントラスト画像を生成する。 Therefore, this X-ray imaging system uses an arithmetic processing unit 190 that can generate an absorption image and a small-angle scattered image from a plurality of images acquired for a phase contrast image. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted. The arithmetic processing unit 190 includes a phase contrast image generation unit 191, an absorption image generation unit 192, and a small angle scattered image generation unit 193. These all perform arithmetic processing based on image data obtained at M scanning positions of k = 0, 1, 2,..., M−1. Among these, the phase contrast image generation unit 191 generates a phase contrast image according to the above-described procedure.
 吸収画像生成部192は、画素ごとに得られる画素データI(x,y)を、図19に示すように、kについて平均化して平均値を算出して画像化することにより吸収画像を生成する。なお、平均値の算出は、画素データI(x,y)をkについて単純に平均化することにより行なっても良いが、Mが小さい場合には誤差が大きくなるため、画素データI(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の平均値を求めるようにしてもよい。また、吸収画像の生成には、平均値に限られず、平均値に対応する量であれば、画素データI(x,y)をkについて加算した加算値等を用いることが可能である。 The absorption image generation unit 192 generates an absorption image by averaging the pixel data I k (x, y) obtained for each pixel with respect to k and calculating an average value as shown in FIG. To do. The average value may be calculated by simply averaging the pixel data I k (x, y) with respect to k. However, when M is small, the error increases, so that the pixel data I k ( After fitting x, y) with a sine wave, an average value of the fitted sine wave may be obtained. The generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel data I k (x, y) with respect to k can be used as long as the amount corresponds to the average value.
 小角散乱画像生成部193は、画素ごとに得られる画素データI(x,y)の振幅値を算出して画像化することにより小角散乱画像を生成する。なお、振幅値の算出は、画素データI(x,y)の最大値と最小値との差を求めることによって行なっても良いが、Mが小さい場合には誤差が大きくなるため、画素データI(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の振幅値を求めるようにしても良い。また、小角散乱画像の生成には、振幅値に限られず、平均値を中心としたばらつきに対応する量として、分散値や標準偏差等を用いることが可能である。 The small angle scattered image generation unit 193 generates a small angle scattered image by calculating and imaging the amplitude value of the pixel data I k (x, y) obtained for each pixel. The amplitude value may be calculated by obtaining the difference between the maximum value and the minimum value of the pixel data I k (x, y). However, when M is small, the error increases, so that the pixel data After fitting I k (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained. In addition, the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
 本X線撮影システムによれば、被写体の位相コントラスト画像のために取得した複数枚の画像から吸収画像や小角散乱画像を生成するので、吸収画像や小角散乱画像の撮影の間の撮影肢位のズレが生じず、位相コントラスト画像と吸収画像や小角散乱画像との良好な重ね合わせが可能となるとともに、吸収画像や小角散乱画像のために別途撮影を行う場合に比べて被写体の負担を軽減することができる。 According to the present X-ray imaging system, an absorption image and a small angle scattered image are generated from a plurality of images acquired for the phase contrast image of the subject. There is no deviation, and it is possible to superimpose the phase contrast image with the absorption image and the small-angle scattered image, and the burden on the subject is reduced as compared with the case of separately shooting for the absorption image and the small-angle scattered image. be able to.
 なお、前述した各X線撮影システムでは、放射線として一般的なX線を用いる場合について説明したが、本発明に用いられる放射線はX線に限られるものではなく、α線、γ線等のX線以外の放射線を用いることも可能である。 In each of the X-ray imaging systems described above, the case where general X-rays are used as radiation has been described. However, the radiation used in the present invention is not limited to X-rays, and X rays such as α rays and γ rays can be used. It is also possible to use radiation other than lines.
 以上、説明したように、本明細書には、第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有し、前記放射線像に対して互いに位相の異なる複数の相対位置に置かれる第2の格子と、前記第2の格子によってマスキングされる前記放射線像を検出する放射線画像検出器と、前記第2の格子を通過する放射線の進行方向に前記第2の格子の下流に位置し、入射する放射線量を検出する線量検出部と、露光を制御する制御部と、を備え、前記制御部は、前記第2の格子が互いに異なる前記相対位置に置かれる複数回の撮影において、1回目の撮影では、前記線量検出部によって検出される線量が予め設定された閾値線量に達するまで露光を継続するよう制御し、2回目以降の撮影では、前記1回目の撮影において要した露光時間が経過するまで露光を継続するよう制御する放射線撮影システムが開示されている。 As described above, the present specification includes a period substantially matching the pattern period of the radiation image formed by the first grating and the radiation that has passed through the first grating, and the radiation. A second grating placed at a plurality of relative positions different from each other in phase with respect to the image, a radiation image detector for detecting the radiation image masked by the second grating, and the second grating. A dose detection unit that is positioned downstream of the second grating in the radiation traveling direction and detects an incident radiation dose; and a control unit that controls exposure, wherein the control unit includes the second grating In a plurality of photographings placed at the relative positions different from each other, in the first photographing, the exposure is controlled to continue until the dose detected by the dose detection unit reaches a preset threshold dose, and the second and subsequent times. of The shadow radiographic system for controlling to continue the exposure until the exposure time has elapsed taken in the first imaging is disclosed.
 また、本明細書に開示された放射線撮影システムは、前記制御部が、露光時間を一定として前記第2の格子が互いに異なる前記相対位置に置かれる複数回のプレ撮影を行った際に前記線量検出部によって検出される線量の変化に基づいて、前記1回目の撮影における前記第2の格子の相対位置を定める。 Further, the radiation imaging system disclosed in the present specification is configured such that the control unit performs the pre-imaging a plurality of times when the second grating is placed at different relative positions with a constant exposure time. A relative position of the second grating in the first imaging is determined based on a change in dose detected by the detection unit.
 また、本明細書に開示された放射線撮影システムは、前記制御部が、前記複数回のプレ撮影を行った際に前記線量検出部によって検出される変化のなかで最小の線量が検出されるプレ撮影での前記第2の格子の相対位置を、前記1回目の撮影における前記第2の格子の相対位置とする。 Further, the radiographic system disclosed in the present specification is configured so that the control unit detects a minimum dose among changes detected by the dose detection unit when the pre-imaging is performed a plurality of times. The relative position of the second grating in photographing is set as the relative position of the second grating in the first photographing.
 また、本明細書に開示された放射線撮影システムは、前記制御部が、露光時間を一定として前記第2の格子が互いに異なる前記相対位置に置かれる複数回のプレ撮影を行った際に前記線量検出部によって検出される線量の変化に基づいて、前記閾値線量を補正する。 In addition, the radiation imaging system disclosed in the present specification is configured such that the control unit performs the pre-imaging a plurality of times when the second grating is placed at different relative positions with a constant exposure time. The threshold dose is corrected based on a change in dose detected by the detector.
 また、本明細書に開示された放射線撮影システムは、前記複数回のプレ撮影を行った際の1回目のプレ撮影において前記線量検出部によって検出される線量が、その変化における最小の線量よりも大きい程、前記制御部が、前記閾値線量を大きくする。 Further, in the radiographic system disclosed in this specification, the dose detected by the dose detection unit in the first pre-imaging when the plurality of pre-imaging is performed is smaller than the minimum dose in the change. The larger the value is, the larger the control unit increases the threshold dose.
 また、本明細書に開示された放射線撮影システムは、前記第2の格子によってマスキングされた前記放射線像のパターン周期が、その周期方向に関する前記線量検出部の受光部の寸法より短い。 Also, in the radiation imaging system disclosed in this specification, the pattern period of the radiation image masked by the second grating is shorter than the dimension of the light receiving unit of the dose detection unit with respect to the periodic direction.
 また、本明細書に開示された放射線撮影システムは、前記第1の格子に対する前記第2の格子の相対姿勢及び相対位置の少なくともいずれか一方を変化させ、前記第2の格子によってマスキングされた前記放射線像のパターン周期を変更する変更機構を更に備える。 Further, in the radiographic system disclosed in this specification, at least one of a relative posture and a relative position of the second grating with respect to the first grating is changed, and the masking is performed by the second grating. A change mechanism for changing the pattern period of the radiation image is further provided.
 また、本明細書に開示された放射線撮影システムは、前記変更機構が、前記第1の格子に照射される放射線の光軸まわりに、前記第1の格子及び前記第2の格子の少なくともいずれか一方を回転させる。 Further, in the radiation imaging system disclosed in this specification, the changing mechanism has at least one of the first grating and the second grating around an optical axis of radiation irradiated on the first grating. Rotate one.
 また、本明細書に開示された放射線撮影システムは、前記変更機構が、前記第1の格子に照射される放射線の光軸に対して、前記第1の格子及び前記第2の格子の少なくともいずれか一方を傾斜させる。 Further, in the radiation imaging system disclosed in this specification, the changing mechanism is configured so that at least one of the first grating and the second grating with respect to an optical axis of radiation irradiated on the first grating. Tilt one of them.
 また、本明細書に開示された放射線撮影システムは、前記変更機構が、前記第1の格子に照射される放射線の光軸に沿って前記第1の格子及び前記第2の格子の少なくともいずれか一方を移動させる。 Further, in the radiation imaging system disclosed in this specification, the changing mechanism includes at least one of the first grating and the second grating along an optical axis of radiation irradiated on the first grating. Move one.
 また、本明細書に開示された放射線撮影システムは、前記線量検出部が、前記第2の格子と前記放射線画像検出器との間に配置されている。 Further, in the radiation imaging system disclosed in this specification, the dose detection unit is disposed between the second grating and the radiation image detector.
 また、本明細書に開示された放射線撮影システムは、前記線量検出部が、前記放射線画像検出器に設けられている。 In the radiographic system disclosed in this specification, the dose detection unit is provided in the radiographic image detector.
 また、本明細書に開示された放射線撮影システムは、前記線量検出部が、前記放射線画像検出器の裏に配置されている。 Further, in the radiographic system disclosed in this specification, the dose detection unit is disposed behind the radiographic image detector.
 また、本明細書に開示された放射線撮影システムは、前記放射線画像検出器で取得される複数の放射線画像から、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、被写体の位相コントラスト画像を生成する演算部を更に備える。 The radiation imaging system disclosed in this specification calculates a distribution of refraction angles of radiation incident on the radiation image detector from a plurality of radiation images acquired by the radiation image detector. And a calculation unit for generating a phase contrast image of the subject based on the distribution of the subject.
 また、本明細書に開示された放射線撮影システムは、前記第1の格子に向けて放射線を照射する放射線源を更に備える。 The radiation imaging system disclosed in this specification further includes a radiation source that irradiates radiation toward the first grating.
 また、本明細書には、第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有する第2の格子と、を用い、前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回の撮影を行い、撮影毎に前記第2の格子によってマスキングされた前記放射線像を検出する放射線撮影方法であって、1回目の撮影においては、前記第2の格子を通過する放射線の進行方向に前記第2の格子の下流において検出される線量が予め設定された閾値線量に達するまで露光を継続し、2回目以降の撮影では、前記1回目の撮影において要した露光時間が経過するまで露光を継続する放射線撮影方法が開示されている。 Further, the present specification uses a first grating and a second grating having a period that substantially matches a pattern period of a radiation image formed by radiation that has passed through the first grating. A radiation imaging method in which the second grating is placed at relative positions different from each other in phase with respect to the radiation image, and the radiation image masked by the second grating is detected for each imaging. In the first imaging, the exposure is continued until the dose detected downstream of the second grating in the traveling direction of the radiation passing through the second grating reaches a preset threshold dose, In the second and subsequent imaging, a radiation imaging method is disclosed in which exposure is continued until the exposure time required for the first imaging has elapsed.
 また、本明細書に開示された放射線撮影方法は、露光時間を一定として前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回のプレ撮影を行い、その際に前記第2の格子の下流において検出される線量の変化に基づいて、前記1回目の撮影における前記第2の格子の相対位置を定める。 Further, the radiographic method disclosed in the present specification performs a plurality of pre-photographs by placing the second grating at relative positions different from each other with respect to the radiographic image with a constant exposure time. The relative position of the second grating in the first imaging is determined based on the change in the dose detected downstream of the second grating.
 また、本明細書に開示された放射線撮影方法は、前記複数回のプレ撮影を行った際に検出される前記線量の変化のなかで最小の線量が検出されるプレ撮影での前記第2の格子の相対位置を、前記1回目の撮影における前記第2の格子の相対位置とする。 Further, the radiography method disclosed in the present specification provides the second radiography in the pre-imaging in which a minimum dose is detected among changes in the dose detected when the pre-imaging is performed a plurality of times. Let the relative position of the grating be the relative position of the second grating in the first imaging.
 また、本明細書に開示された放射線撮影方法は、露光時間を一定として前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回のプレ撮影を行い、その際に前記第2の格子の下流において検出される線量の変化に基づいて、前記閾値線量を補正する。 Further, the radiographic method disclosed in this specification performs a plurality of pre-photographing operations by placing the second grating at relative positions different from each other in phase with respect to the radiographic image with a constant exposure time. The threshold dose is corrected based on a change in dose detected downstream of the second grating.
 また、本明細書に開示された放射線撮影方法は、前記複数回のプレ撮影を行った際の1回目のプレ撮影において検出される前記線量が、その変化における最小の線量よりも大きい程、前記閾値線量を大きくする。 Further, in the radiographic method disclosed in the present specification, as the dose detected in the first pre-imaging at the time of performing the plurality of pre-imaging is larger than the minimum dose in the change, Increase the threshold dose.
 また、本明細書に開示された放射線撮影方法は、前記第2の格子によってマスキングされた前記放射線像のパターン周期を、前記第2の格子の下流において線量を検出する線量検出器の受光部の周期方向に関する寸法より短くして、前記複数回の撮影を行う。 Further, in the radiographic method disclosed in the present specification, the pattern period of the radiation image masked by the second grating is detected by a light receiving unit of a dose detector that detects a dose downstream of the second grating. The imaging is performed a plurality of times with a dimension shorter than the dimension in the periodic direction.
 また、本明細書に開示された放射線撮影方法は、前記第1の格子に対する前記第2の格子の相対姿勢及び相対位置の少なくともいずれか一方を変化させ、前記第2の格子によってマスキングされた前記放射線像のパターン周期を変更する。 Further, in the radiographic method disclosed in this specification, at least one of a relative posture and a relative position of the second grating with respect to the first grating is changed, and the masking by the second grating is performed. Change the pattern period of the radiation image.
 本発明によれば、1回目の撮影では、線量検出器によって検出される線量に基づいて露光制御が行われ、2回目以降の撮影では、1回目の撮影に要した露光時間に基づいて露光制御が行われることにより、被写体によって異なる必要露光量が確保されると共に、撮影間の照射線量のバラツキが防止される。それにより、高精度な放射線位相コントラスト画像を生成することができる。 According to the present invention, in the first shooting, exposure control is performed based on the dose detected by the dose detector, and in the second and subsequent shootings, exposure control is performed based on the exposure time required for the first shooting. As a result, the necessary exposure amount that varies depending on the subject is ensured, and variations in the irradiation dose during photographing are prevented. Thereby, a highly accurate radiation phase contrast image can be generated.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年10月27日出願の日本特許出願(特願2010-241098)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2010-241098) filed on Oct. 27, 2010, the contents of which are incorporated herein by reference.
10   X線撮影システム
11   X線源
12   撮影部
13   コンソール
20   制御装置
30   FPD
31   第1の吸収型格子
32   第2の吸収型格子
33   走査機構
35   線量検出器
40   画素
DESCRIPTION OF SYMBOLS 10 X-ray imaging system 11 X-ray source 12 Imaging part 13 Console 20 Control apparatus 30 FPD
31 First Absorption Type Grating 32 Second Absorption Type Grating 33 Scanning Mechanism 35 Dose Detector 40 Pixel

Claims (22)

  1.  第1の格子と、
     前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有し、前記放射線像に対して互いに位相の異なる複数の相対位置に置かれる第2の格子と、
     前記第2の格子によってマスキングされる前記放射線像を検出する放射線画像検出器と、
     前記第2の格子を通過する放射線の進行方向に前記第2の格子より下流に位置し、入射する放射線量を検出する線量検出部と、
     露光を制御する制御部と、
     を備え、
     前記制御部は、前記第2の格子が互いに異なる前記相対位置に置かれる複数回の撮影において、1回目の撮影では、前記線量検出部によって検出される線量が予め設定された閾値線量に達するまで露光を継続するよう制御し、2回目以降の撮影では、前記1回目の撮影において要した露光時間が経過するまで露光を継続するよう制御する放射線撮影システム。
    A first lattice;
    A second grating having a period substantially coincident with a pattern period of a radiation image formed by radiation passing through the first grating and being placed at a plurality of relative positions different from each other in phase with respect to the radiation image; When,
    A radiation image detector for detecting the radiation image masked by the second grating;
    A dose detection unit that is located downstream of the second grating in the traveling direction of the radiation passing through the second grating and detects the amount of incident radiation;
    A control unit for controlling exposure;
    With
    In the plurality of imaging operations in which the second grating is placed at the relative positions different from each other, the control unit is configured to perform a first imaging until the dose detected by the dose detection unit reaches a preset threshold dose. A radiation imaging system that controls to continue exposure and controls to continue exposure until an exposure time required for the first imaging has elapsed in the second and subsequent imaging.
  2.  請求項1に記載の放射線撮影システムであって、
     前記制御部は、露光時間を一定として前記第2の格子が互いに異なる前記相対位置に置かれる複数回のプレ撮影を行った際に前記線量検出部によって検出される線量の変化に基づいて、前記1回目の撮影における前記第2の格子の相対位置を定める放射線撮影システム。
    The radiation imaging system according to claim 1,
    The control unit, based on a change in dose detected by the dose detection unit when performing a plurality of pre-imaging in which the second grating is placed at the relative position different from each other with a constant exposure time, A radiation imaging system for determining a relative position of the second grating in the first imaging.
  3.  請求項2に記載の放射線撮影システムであって、
     前記制御部は、前記複数回のプレ撮影を行った際に前記線量検出部によって検出される変化のなかで最小の線量が検出されるプレ撮影での前記第2の格子の相対位置を、前記1回目の撮影における前記第2の格子の相対位置とする放射線撮影システム。
    The radiographic system according to claim 2,
    The control unit is configured to determine a relative position of the second grating in the pre-imaging in which a minimum dose is detected among changes detected by the dose detection unit when the plurality of pre-imaging is performed. A radiation imaging system having a relative position of the second grating in the first imaging.
  4.  請求項1に記載の放射線撮影システムであって、
     前記制御部は、露光時間を一定として前記第2の格子が互いに異なる前記相対位置に置かれる複数回のプレ撮影を行った際に前記線量検出部によって検出される線量の変化に基づいて、前記閾値線量を補正する放射線撮影システム。
    The radiation imaging system according to claim 1,
    The control unit, based on a change in dose detected by the dose detection unit when performing a plurality of pre-imaging in which the second grating is placed at the relative position different from each other with a constant exposure time, A radiography system that corrects the threshold dose.
  5.  請求項4に記載の放射線撮影システムであって、
     前記制御部は、前記複数回のプレ撮影を行った際の1回目のプレ撮影において前記線量検出部によって検出される線量が、その変化における最小の線量よりも大きい程、前記閾値線量を大きくする放射線撮影システム。
    The radiation imaging system according to claim 4,
    The control unit increases the threshold dose as the dose detected by the dose detection unit in the first pre-shooting when the plurality of pre-shoots is performed is larger than the minimum dose in the change. Radiography system.
  6.  請求項1に記載の放射線撮影システムであって、
     前記第2の格子によってマスキングされた前記放射線像のパターン周期が、その周期方向に関する前記線量検出部の受光部の寸法より短い放射線撮影システム。
    The radiation imaging system according to claim 1,
    A radiation imaging system in which a pattern period of the radiation image masked by the second grating is shorter than a dimension of a light receiving unit of the dose detection unit with respect to the periodic direction.
  7.  請求項6に記載の放射線撮影システムであって、
     前記第1の格子に対する前記第2の格子の相対姿勢及び相対位置の少なくともいずれか一方を変化させ、前記第2の格子によってマスキングされた前記放射線像のパターン周期を変更する変更機構を更に備える放射線撮影システム。
    The radiographic system according to claim 6,
    Radiation further comprising a changing mechanism for changing a pattern period of the radiation image masked by the second grating by changing at least one of a relative posture and a relative position of the second grating with respect to the first grating. Shooting system.
  8.  請求項7に記載の放射線撮影システムであって、
     前記変更機構は、前記第1の格子に照射される放射線の光軸まわりに、前記第1の格子及び前記第2の格子の少なくともいずれか一方を回転させる放射線撮影システム。
    The radiation imaging system according to claim 7,
    The change mechanism is a radiation imaging system in which at least one of the first grating and the second grating is rotated around an optical axis of radiation applied to the first grating.
  9.  請求項7に記載の放射線撮影システムであって、
     前記変更機構は、前記第1の格子に照射される放射線の光軸に対して、前記第1の格子及び前記第2の格子の少なくともいずれか一方を傾斜させる放射線撮影システム。
    The radiation imaging system according to claim 7,
    The change mechanism is a radiation imaging system in which at least one of the first grating and the second grating is inclined with respect to an optical axis of radiation applied to the first grating.
  10.  請求項7に記載の放射線撮影システムであって、
     前記変更機構は、前記第1の格子に照射される放射線の光軸に沿って前記第1の格子及び前記第2の格子の少なくともいずれか一方を移動させる放射線撮影システム。
    The radiation imaging system according to claim 7,
    The change mechanism is a radiation imaging system that moves at least one of the first grating and the second grating along an optical axis of radiation applied to the first grating.
  11.  請求項1に記載の放射線撮影システムであって、
     前記線量検出部は、前記第2の格子と前記放射線画像検出器との間に配置されている放射線撮影システム。
    The radiation imaging system according to claim 1,
    The dose detection unit is a radiation imaging system arranged between the second grating and the radiation image detector.
  12.  請求項1に記載の放射線撮影システムであって、
     前記線量検出部は、前記放射線画像検出器に設けられている放射線撮影システム。
    The radiation imaging system according to claim 1,
    The dose detection unit is a radiation imaging system provided in the radiation image detector.
  13.  請求項1に記載の放射線撮影システムであって、
     前記線量検出部は、前記放射線画像検出器の裏に配置されている放射線撮影システム。
    The radiation imaging system according to claim 1,
    The dose detection unit is a radiation imaging system arranged behind the radiation image detector.
  14.  請求項1から13のいずれか一項に記載の放射線撮影システムであって、
     前記放射線画像検出器で取得される複数の放射線画像から、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、被写体の位相コントラスト画像を生成する演算部を更に備える放射線撮影システム。
    The radiographic system according to any one of claims 1 to 13,
    A distribution of refraction angles of radiation incident on the radiation image detector is calculated from a plurality of radiation images acquired by the radiation image detector, and a phase contrast image of a subject is generated based on the distribution of refraction angles. A radiation imaging system further comprising a calculation unit.
  15.  請求項1から14のいずれか一項に記載の放射線撮影システムであって
     前記第1の格子に向けて放射線を照射する放射線源を更に備える放射線撮影システム。
    The radiation imaging system according to any one of claims 1 to 14, further comprising a radiation source that irradiates radiation toward the first grating.
  16.  第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有する第2の格子と、を用い、前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回の撮影を行い、撮影毎に前記第2の格子によってマスキングされた前記放射線像を検出する放射線撮影方法であって、
     1回目の撮影においては、前記第2の格子を通過する放射線の進行方向に前記第2の格子の下流において検出される線量が予め設定された閾値線量に達するまで露光を継続し、
     2回目以降の撮影では、前記1回目の撮影において要した露光時間が経過するまで露光を継続する放射線撮影方法。
    A first grating and a second grating having a period that substantially matches a pattern period of a radiation image formed by radiation that has passed through the first grating, and the second grating is the radiation. A radiographic method for performing imaging a plurality of times at relative positions different from each other in phase with respect to an image, and detecting the radiographic image masked by the second grating for each imaging,
    In the first imaging, the exposure is continued until the dose detected downstream of the second grating in the traveling direction of the radiation passing through the second grating reaches a preset threshold dose,
    In the second and subsequent imaging, the radiation imaging method in which exposure is continued until the exposure time required in the first imaging has elapsed.
  17.  請求項16に記載の放射線撮影方法であって、
     露光時間を一定として前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回のプレ撮影を行い、その際に前記第2の格子の下流において検出される線量の変化に基づいて、前記1回目の撮影における前記第2の格子の相対位置を定める放射線撮影方法。
    A radiography method according to claim 16, comprising:
    The exposure time is constant, the second grating is placed at relative positions different from each other in phase with respect to the radiation image, and a plurality of pre-images are taken, and the dose detected downstream of the second grating at that time A radiation imaging method for determining a relative position of the second grating in the first imaging based on a change.
  18.  請求項17に記載の放射線撮影方法であって、
     前記複数回のプレ撮影を行った際に検出される前記線量の変化のなかで最小の線量が検出されるプレ撮影での前記第2の格子の相対位置を、前記1回目の撮影における前記第2の格子の相対位置とする放射線撮影方法。
    The radiography method according to claim 17, comprising:
    The relative position of the second grating in the pre-imaging in which the minimum dose is detected among the changes in the dose detected when the plurality of pre-imaging is performed is the first position in the first imaging. A radiography method in which the relative position of two grids is set.
  19.  請求項16に記載の放射線撮影方法であって、
     露光時間を一定として前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回のプレ撮影を行い、その際に前記第2の格子の下流において検出される線量の変化に基づいて、前記閾値線量を補正する放射線撮影方法。
    A radiography method according to claim 16, comprising:
    The exposure time is constant, the second grating is placed at relative positions different from each other in phase with respect to the radiation image, and a plurality of pre-images are taken, and the dose detected downstream of the second grating at that time A radiography method for correcting the threshold dose based on a change.
  20.  請求項19に記載の放射線撮影方法であって、
     前記複数回のプレ撮影を行った際の1回目のプレ撮影において検出される前記線量が、その変化における最小の線量よりも大きい程、前記閾値線量を大きくする放射線撮影方法。
    The radiographic method according to claim 19, comprising:
    A radiation imaging method in which the threshold dose is increased as the dose detected in the first pre-imaging when the plurality of pre-imaging is performed is larger than a minimum dose in the change.
  21.  請求項16に記載の放射線撮影方法であって、
     前記第2の格子によってマスキングされた前記放射線像のパターン周期を、前記第2の格子の下流において線量を検出する線量検出器の受光部の周期方向に関する寸法より短くして、前記複数回の撮影を行う放射線撮影方法。
    A radiography method according to claim 16, comprising:
    The patterning period of the radiation image masked by the second grating is made shorter than the dimension in the period direction of the light receiving unit of the dose detector that detects the dose downstream of the second grating, and the plurality of times of imaging. Radiography method to do.
  22.  請求項21に記載の放射線撮影方法であって、
     前記第1の格子に対する前記第2の格子の相対姿勢及び相対位置の少なくともいずれか一方を変化させ、前記第2の格子によってマスキングされた前記放射線像のパターン周期を変更する放射線撮影方法。
    The radiation imaging method according to claim 21,
    A radiation imaging method for changing a pattern period of the radiation image masked by the second grating by changing at least one of a relative posture and a relative position of the second grating with respect to the first grating.
PCT/JP2011/074840 2010-10-27 2011-10-27 Radiation imaging system and radiation imaging method WO2012057278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-241098 2010-10-27
JP2010241098A JP2014014379A (en) 2010-10-27 2010-10-27 Radiographic system and radiographic method

Publications (1)

Publication Number Publication Date
WO2012057278A1 true WO2012057278A1 (en) 2012-05-03

Family

ID=45993981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074840 WO2012057278A1 (en) 2010-10-27 2011-10-27 Radiation imaging system and radiation imaging method

Country Status (2)

Country Link
JP (1) JP2014014379A (en)
WO (1) WO2012057278A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10779776B2 (en) 2015-12-01 2020-09-22 Koninklijke Philips N.V. Apparatus for X-ray imaging an object
US11980494B2 (en) 2019-02-28 2024-05-14 Koninklijke Philips N.V. System, method and computer program for acquiring phase imaging data of an object

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6750310B2 (en) 2016-05-30 2020-09-02 コニカミノルタ株式会社 Talbot photography device
JP7110697B2 (en) * 2017-09-01 2022-08-02 株式会社島津製作所 X-ray imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173856A (en) * 2002-11-26 2004-06-24 Canon Inc Digital x-ray tomography apparatus
WO2004058070A1 (en) * 2002-12-26 2004-07-15 Atsushi Momose X-ray imaging system and imaging method
JP2004209152A (en) * 2003-01-08 2004-07-29 Konica Minolta Holdings Inc X-ray image radiographing apparatus
JP2010240063A (en) * 2009-04-02 2010-10-28 Shimadzu Corp Radiographic apparatus
JP2011206490A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Radiographic system and radiographic method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173856A (en) * 2002-11-26 2004-06-24 Canon Inc Digital x-ray tomography apparatus
WO2004058070A1 (en) * 2002-12-26 2004-07-15 Atsushi Momose X-ray imaging system and imaging method
JP2004209152A (en) * 2003-01-08 2004-07-29 Konica Minolta Holdings Inc X-ray image radiographing apparatus
JP2010240063A (en) * 2009-04-02 2010-10-28 Shimadzu Corp Radiographic apparatus
JP2011206490A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Radiographic system and radiographic method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10779776B2 (en) 2015-12-01 2020-09-22 Koninklijke Philips N.V. Apparatus for X-ray imaging an object
US11980494B2 (en) 2019-02-28 2024-05-14 Koninklijke Philips N.V. System, method and computer program for acquiring phase imaging data of an object

Also Published As

Publication number Publication date
JP2014014379A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP5331940B2 (en) Radiation imaging system and radiation image generation method
JP5150713B2 (en) Radiation image detection device, radiation imaging device, radiation imaging system
JP5343065B2 (en) Radiography system
JP5238786B2 (en) Radiography apparatus and radiation imaging system
JP2012090945A (en) Radiation detection device, radiographic apparatus, and radiographic system
JP2012090944A (en) Radiographic system and radiographic method
JP5783987B2 (en) Radiography equipment
JP2012115576A (en) Radiological image detection apparatus, radiographic apparatus and radiographic system
JP2012200567A (en) Radiographic system and radiographic method
JP2012024339A (en) Radiation imaging system and collimator unit
JP2012095865A (en) Radiographic apparatus and radiographic system
JP2012120653A (en) Radiographic apparatus and radiographic system
JP2012115577A (en) Radiographic system
WO2012057047A1 (en) Radiation imaging system
JP2011206490A (en) Radiographic system and radiographic method
WO2012169426A1 (en) Radiography system
WO2012057278A1 (en) Radiation imaging system and radiation imaging method
JP2012125423A (en) Radiation image detection apparatus, radiographic imaging apparatus, and radiographic imaging system
WO2012070661A1 (en) Radiographic image detection apparatus, radiography apparatus, and radiography system
JP2012115621A (en) Radiological image detection apparatus, radiographic apparatus and radiographic system
JP2014155509A (en) Radiographic system
JP2012120650A (en) Radiographic system and method for generating radiation phase contrast image
WO2012056992A1 (en) Radiograph detection device, radiography device, radiography system
WO2012057046A1 (en) Radiography device and radiography system
JP2011206280A (en) Radiographic imaging method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP