WO2012070662A1 - Radiographic image detection apparatus, radiography apparatus, and radiography system - Google Patents

Radiographic image detection apparatus, radiography apparatus, and radiography system Download PDF

Info

Publication number
WO2012070662A1
WO2012070662A1 PCT/JP2011/077261 JP2011077261W WO2012070662A1 WO 2012070662 A1 WO2012070662 A1 WO 2012070662A1 JP 2011077261 W JP2011077261 W JP 2011077261W WO 2012070662 A1 WO2012070662 A1 WO 2012070662A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
image
radiation
ray
pitch
Prior art date
Application number
PCT/JP2011/077261
Other languages
French (fr)
Japanese (ja)
Inventor
村越 大
金子 泰久
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012070662A1 publication Critical patent/WO2012070662A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1838Diffraction gratings for use with ultraviolet radiation or X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4464Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being mounted to ceiling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • A61B6/0414Supports, e.g. tables or beds, for the body or parts of the body with compression means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/502Clinical applications involving diagnosis of breast, i.e. mammography

Definitions

  • the present invention relates to a radiation image detection apparatus, a radiation imaging apparatus, and a radiation imaging system that enable phase imaging of a subject using radiation such as X-rays.
  • X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance.
  • X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
  • a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects X-rays, and a transmission image of the subject is taken.
  • each X-ray emitted from the X-ray source toward the X-ray image detector is caused by a difference in characteristics (atomic number, density, thickness) of the substance existing on the path to the X-ray image detector.
  • After receiving a corresponding amount of attenuation (absorption) it enters each pixel of the X-ray image detector.
  • an X-ray absorption image of the subject is detected and imaged by the X-ray image detector.
  • a flat panel detector FPD: Flat Panel Detector
  • a semiconductor circuit is widely used in addition to a combination of an X-ray intensifying screen and a film and a stimulable phosphor.
  • the X-ray absorption ability is lower as a substance composed of an element having a smaller atomic number, a problem that a sufficient softness (contrast) of an X-ray absorption image cannot be obtained with a soft tissue or a soft material of a living body.
  • a sufficient softness (contrast) of an X-ray absorption image cannot be obtained with a soft tissue or a soft material of a living body.
  • most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and there is little difference in the amount of X-ray absorption between them, so that it is difficult to obtain a difference in light and shade.
  • phase contrast image X-ray phase imaging that obtains an image (hereinafter referred to as a phase contrast image) based on the X-ray phase change by the subject instead of the X-ray intensity change by the subject.
  • a first diffraction grating phase type grating or absorption type grating
  • a specific distance Talbot
  • the second diffraction grating is disposed downstream by the (interference distance)
  • the X-ray image detector is disposed behind the second diffraction grating.
  • the Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the placed subject and X-rays.
  • the phase of the subject is detected by detecting the moire caused by the superposition of the self-image of the first diffraction grating and the second diffraction grating, and analyzing the change in the moire caused by the subject. Get information.
  • a moire analysis method for example, a fringe scanning method is known.
  • the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating.
  • This is a method for obtaining (differential image of phase shift), and a phase contrast image of the subject can be obtained based on this angular distribution.
  • the X-ray grating used for the phase imaging as described above needs to have a size corresponding to, for example, a viewing angle of several tens of centimeters from the size of the measurement target.
  • a large number of modules in which the first grid, the second grid, and the X-ray image detector are integrated are necessary as a whole even if the individual module size is small. Realizes a large visual field size.
  • an X-ray grating particularly an absorption type grating, requires a high aspect ratio grating pattern in which the ratio of the thickness of the strip that shields X-rays is high with respect to the opening width of the grating.
  • the opening width of the lattice and the thickness of the stripe are preferably set according to the energy of X-rays used for imaging, but the energy region of X-rays as used in normal medical image diagnosis is 30 to 30. Considering that it is 120 keV, even if the strip is made of gold having high X-ray absorption, a thickness of 10 to 300 ⁇ m is required for a lattice opening width of several ⁇ m.
  • a method capable of forming a high aspect ratio lattice pattern there is an etching process in a photolithography technique.
  • a heavy metal pattern strip
  • a lattice pitch of several ⁇ m using deep etching.
  • in-plane uniformity on the order of submicron order is also required over a wide area corresponding to the visual field size. Manufacturing is very difficult.
  • a self-image (hereinafter referred to as a self-image G1) formed by X-rays that have passed through the first grating is periodically generated by the second grating.
  • the intensity modulation obtained as the moire formed by the superposition of the self-image G1 and the second grating moves.
  • the signal is detected by an X-ray image detector, and a phase contrast image is formed from the phase shift between the intensity modulation signal when the X-ray does not pass through the subject and the intensity modulation signal when the X-ray passes through the subject.
  • the frequency of the moire on the detection surface of the X-ray image detector and the frequency of the pixel period do not coincide with each other and do not have an integer multiple relationship with each other.
  • the phase shift of the intensity modulation signal with high sensitivity it is necessary to obtain the intensity modulation signal with high contrast, and for this purpose, it is necessary to make the moire frequency lower than the frequency of the pixel period.
  • the phase shift of the intensity modulation signal is obtained by comparing the intensity modulation signal formed from the moire image in the so-called pre-photographing when the subject is not present and the so-called main photographing when the subject is present.
  • the moire frequency fluctuates between pre-photographing and main-photographing, artifacts are generated and the image quality of the phase contrast image is degraded.
  • Patent Document 2 mentions artifacts, but does not mention specific countermeasures.
  • the moire frequency does not deviate from a suitable value range that does not match the pixel frequency (not an integer multiple). That is, in order to stably obtain a phase contrast image having an image quality suitable for image measurement, it is important that the moire frequency is stable.
  • the inventor of the present invention diligently researched and found new knowledge that the moire frequency can fluctuate greatly with respect to the ratio change between the arrangement pitch of the lattice pieces and the pixel pitch.
  • Such a change in the ratio between the arrangement pitch of the grating pieces and the pixel pitch is easily caused by, for example, a relative distance between the grating and the X-ray image detector due to vibration or temperature change, a relative rotation angle shift, and the like.
  • the image quality is degraded.
  • an object of the present invention is to provide a radiation image detector, a radiation imaging apparatus, and a radiation imaging system that can obtain a stable phase contrast image using a grating that can be manufactured stably.
  • a first grating having a plurality of strips arranged in a first direction, and a grating arranged so as to periodically mask a radiation image formed by radiation that has passed through the first grating.
  • a radiation image detector that detects the radiation image periodically masked by the lattice pattern using a plurality of pixels, and the first lattice is radiation that passes through the first lattice.
  • a plurality of first grid pieces arranged in the first direction in a plane intersecting the optical axis of the first grid piece, and the arrangement pitch of the first grid pieces in the first direction is the radiation image detection
  • a radiological image detection apparatus characterized by being at least twice the pixel pitch in the first direction of the vessel.
  • a radiation image detector that detects, using a plurality of pixels, the radiation image periodically masked by the second lattice, and the second lattice comprises: A plurality of second grating pieces arranged in at least the first direction in a plane intersecting the optical axis of the radiation passing through the first grating and the second grating, and the second grating An arrangement pitch of the pieces in the first direction is at least twice as large as a pixel pitch in the first direction of the radiological image detector.
  • a first grating having a plurality of strips arranged in a first direction and a plurality arranged in such a manner as to periodically mask a radiation image formed by radiation that has passed through the first grating.
  • a radiation image detector that detects the radiation image periodically masked by the second grating using a plurality of pixels, the first grating comprising: A plurality of first lattice pieces arranged in at least the first direction in a plane intersecting the optical axis of the radiation passing through the first lattice, and the first lattice piece includes the first lattice pieces.
  • the arrangement pitch in the direction is at least twice the pixel pitch in the first direction of the radiation image detector, and the second grating is at least the first in a plane intersecting the optical axis of the radiation.
  • a plurality of second grids arranged in a direction A radiation image detection apparatus including a piece, wherein an arrangement pitch of the second lattice pieces in the first direction is twice or more a pixel pitch of the radiation image detector in the first direction. .
  • a radiation imaging apparatus comprising: the radiation image detection apparatus according to any one of (1) to (3) above; and a radiation source that irradiates radiation toward the first grating.
  • a radiation imaging system comprising: an arithmetic processing unit that generates a phase contrast image of a subject based on a distribution of angles.
  • the present invention it is possible to stably manufacture a grating having a size corresponding to a required visual field size, and it is possible to stably produce a phase contrast without degrading the image quality of the phase contrast image due to the arrangement of the grating pieces. An image is obtained.
  • FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention
  • FIG. 2 shows a control block of the radiation imaging system of FIG.
  • the X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject H in a standing position, and the subject H is interposed between the X-ray source 11 that irradiates the subject H with X-rays and the X-ray source 11.
  • the radiographing unit 12 is disposed as opposed to the X-ray source 11 and detects X-rays transmitted through the subject H from the X-ray source 11 to generate image data.
  • the console 13 (FIG. 2) that controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12, and generates a phase contrast image by processing the image data acquired by the imaging unit 12. Broadly divided.
  • the X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling.
  • the photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
  • the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18.
  • the X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion that does not contribute to the inspection area of the subject H.
  • the X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
  • the X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of.
  • a motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
  • the standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction.
  • the holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c.
  • the driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
  • the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. .
  • the detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like.
  • the X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
  • the console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like.
  • the control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
  • the input device 21 for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used.
  • X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, etc. Is entered.
  • the monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
  • the imaging unit 12 includes a flat panel detector (FPD) 30 as a radiological image detector made of a semiconductor circuit, a first absorption grating 31 for detecting phase change of X-rays by the subject H and performing phase imaging, and a first absorption grating 31.
  • FPD flat panel detector
  • Two absorption gratings 32 are provided.
  • the imaging unit 12 includes scanning means 33 that relatively moves the first absorption grating 31 and the second absorption grating 32 by translating the second absorption grating 32 in the vertical direction (x direction). Is provided.
  • the FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11.
  • the first and second absorption gratings 31 and 32 are disposed between the FPD 30 and the X-ray source 11.
  • FIG. 3 shows a configuration of a radiation image detector included in the radiation imaging system of FIG.
  • the FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41.
  • a scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13.
  • the scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
  • Each pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and stores the converted electric charges in a capacitor (not shown) connected to an electrode below the conversion layer. It can be configured as a direct conversion type element.
  • a TFT switch (not shown) is connected to each pixel 40, and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46. When the TFT switch is turned on by the drive pulse from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 46.
  • Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it.
  • the X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
  • the readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory (all not shown).
  • the integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter.
  • the A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit.
  • the correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory.
  • correction processing by the correction circuit correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
  • FIG. 4 and 5 show the first and second absorption type gratings 31 and 32.
  • FIG. 4 and 5 show the first and second absorption type gratings 31 and 32.
  • the first absorption type grating 31 is configured by arranging a plurality of first grating pieces 311.
  • Each of the first grating pieces 311 includes a substrate 31a and a plurality of strips arranged on the substrate 31a. It has an X-ray shielding part 31b as a band.
  • the second absorptive grating 32 which is a grating pattern, is also configured by arranging a plurality of second grating pieces 321.
  • Each of the second grating pieces 321 is arranged on the substrate 32a and the substrate 32a. And a plurality of X-ray shielding portions 32b as a plurality of strips.
  • the substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays.
  • Both the first and second grating pieces 311 and 321 are arranged in the x direction as the first direction in a plane orthogonal to the optical axis A of the X-ray (in the xy plane).
  • Each of the X-ray shielding portions 31b and 32b is one direction in the plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (one of the x direction and the y direction). In the example, it is composed of a linear member extending in the y direction).
  • a material of each X-ray shielding part 31b, 32b a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable.
  • These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
  • the X-ray shielding part 31b has a constant lattice pitch p 1 in a direction orthogonal to the one direction (x direction as the first direction in the example of FIG. 4) in a plane orthogonal to the optical axis A of the X-ray. Are arranged at a predetermined interval d 1 from each other.
  • the X-ray shielding portion 32b in a plane perpendicular to the optical axis A of the X-ray, with grating pitch p 2 of the constant in the x-direction, are arranged at a predetermined interval d 2 from each other.
  • Such first and second absorption gratings 31 and 32 do not mainly give a phase difference to incident X-rays but give an intensity difference, and are also called amplitude gratings.
  • the slit portions may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
  • the first and second absorption type gratings 31 and 32 include a plurality of grating pieces 311 and 321, respectively, the grating pieces 311 are manufactured when the first and second absorption type gratings 31 and 32 are manufactured. , 321 units.
  • the first and second absorptive gratings 31 and 32 are required to have a so-called high aspect ratio in which the thickness of the X-ray shielding portion is large with respect to the opening width of the grating, and have a high degree of in-plane uniformity over an area corresponding to the field size.
  • it is difficult to stably manufacture the structure it is possible to manufacture in units of lattice areas having a small area by using the configuration of this example.
  • the mold lattices 31 and 32 can be easily manufactured and can be stably manufactured.
  • the first absorption type grating 31 is configured to geometrically project X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the interval d 1 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, most of the X-rays irradiated do not undergo diffraction at the slit portion.
  • a self-projected image hereinafter also referred to as a self-image G1 can be formed behind the first absorption grating 31.
  • the effective wavelength of X-ray is about 0.4 mm.
  • the distance d 1 is set to about 1 to 10 ⁇ m, the X-ray image formed by the X-rays that have passed through the slit portion is negligible for the diffraction effect.
  • a self-image G1 is formed behind.
  • the X-ray radiated from the X-ray source 11 is not a parallel beam but a cone beam with the X-ray focal point 18b as a light emission point, and the self-image G1 is at a distance from the X-ray focal point 18b.
  • the grating pitch p 2 of the second absorption type grating 32 is determined so that the slit part substantially coincides with the periodic pattern of the bright part of the self-image G 1 at the position of the second absorption type grating 32. ing.
  • the second The pitch p 1 ′, the first grating pitch p 1 , and the second grating pitch p 2 of the self-image G1 at the position of the absorption grating 32 are determined so as to satisfy the relationship of the following formula (1).
  • the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the imaging unit 12 of the X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting the self-image G1 of the first absorption grating 31. because similarly obtained behind the position of the first absorption-type grating 31, the distance L 2, can be set independently of the Talbot distance.
  • the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating.
  • X-ray wavelength usually the effective wavelength of X-rays incident on first absorbing grating 31
  • positive integer m positive integer
  • Expression (2) is an expression that represents the Talbot interference distance when the X-ray irradiated from the X-ray source 11 is a cone beam. “Atsushi Momose, et al., Japan Journal of Applied Physics, Vol. 47, No. 10, October 2008, page 8077 ”and“ Timm Weitkamp, et al., Proc. Of SPIE, Vol. 6318, 2006, 63180S-1 ”can be easily derived.
  • the X-ray shielding portions 31b and 32b preferably completely shield (absorb) X-rays in order to generate a periodic pattern image with high contrast, but the above-described materials (gold, platinum) having excellent X-ray absorption properties Etc.), there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b, it is preferable to increase the thickness much as possible.
  • the X-ray shielding portions 31b and 32b preferably shield 90% or more of the irradiated X-rays, and the thickness thereof is set according to the energy of the irradiated X-rays.
  • the thicknesses h 1 and h 2 are preferably 100 ⁇ m or more in terms of gold (Au).
  • the X-rays irradiated from the X-ray source 11 are cone beams
  • the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are too thick, the X-rays incident obliquely enter the slit portion.
  • vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 31b and 32b becomes narrow.
  • the thicknesses h 1 and h 2 are as shown in FIG. It is preferable to set so that following Formula (6) and (7) may be satisfy
  • the effective visual field length V in the x direction is 10 cm long.
  • the thickness h 1 may be 100 ⁇ m or less, and the thickness h 2 may be 120 ⁇ m or less.
  • a moiré is formed by superimposing the self-image G1 of the first absorption type grating 31 and the second absorption type grating 32, and is imaged by the FPD 30.
  • the pattern period p 1 ′ of the self-image G1 at the position of the second absorption type grating 32 and the substantial grating pitch p 2 ′ of the second absorption type grating 32 due to manufacturing errors and arrangement errors.
  • the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
  • Moire occurs due to a minute difference between the pattern period p 1 ′ of the self-image G1 and the grating pitch p 2 ′.
  • the moire period T is expressed by the following equation (8).
  • the moiré period T in the above equation (8) is actually further expanded by the distance from the second absorption type grating 32 to the detection surface of the FPD 30, so the moiré period on the detection surface of the FPD 30 is T ′.
  • the arrangement pitch P D x direction of the pixel 40 is required to be not an integral multiple of the moire cycle T 'on the detection surface of at least FPD 30, the following equation ( 9) must be satisfied (where n is a positive integer).
  • the arrangement pitch P D of the pixels 40 of FPD30 is the magnitude relation between it is difficult to change a design to a defined value (usually about 100 [mu] m), the arrangement pitch P D and the moire cycle T '
  • the positions of the first and second absorption gratings 31 and 32 are adjusted, and the moire pattern is changed by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the self-image G1. It is preferable to change the period T.
  • FIG. 6 shows a method of changing the moire cycle T ′.
  • the moire period T ′ can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A.
  • a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided.
  • the substantial grating pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ / cos ⁇ ”.
  • the moire cycle T ′ changes (FIG. 6A).
  • the change of the moire period T ′ is such that one of the first and second absorption gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction.
  • a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided.
  • the second absorption type grating 32 is inclined by the angle ⁇ by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ ⁇ cos ⁇ ”.
  • the moire cycle T ′ changes (FIG. 6B).
  • the moire period T ′ can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A.
  • the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32.
  • a relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided.
  • the pattern period of G1 changes as “p 1 ′” ⁇ “p 1 ′ ⁇ (L 1 + L 2 + ⁇ ) / (L 1 + L 2 )”, and as a result, the moire period T ′ changes (FIG. 6C). ).
  • imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T ′ can be suitably employed.
  • the change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption type gratings 31 and 32 for changing the moire period T ′ is an actuator such as a piezoelectric element. It is possible to configure.
  • the moire detected by the FPD 30 is modulated by the subject H.
  • This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire detected by the FPD 30.
  • FIG. 7 is a side view schematically showing the first and second absorption type gratings 31 and 32 and the FPD 30.
  • Adjacent first lattice pieces 311 and 311 are connected by adhesion, fusion, pressure bonding or the like.
  • the first lattice piece 311 shown in this example is an independent small piece having a substrate 31a and an X-ray shielding part 31b for each lattice piece 311, but the first lattice piece 311 has 1 It may be formed by sequentially exposing and etching each of a plurality of regions partitioned on a single substrate. Between the adjacent first grid pieces 311 and 311, a boundary portion 315 which is a joint of the grid pieces by adhesion, fusion, pressure bonding or the like is formed in a band shape in a plan view.
  • Adjacent second grid pieces 321 and 321 are also connected by adhesion, fusion, pressure bonding, or the like, similarly to the first grid pieces 311 and 311.
  • the second lattice piece 321 may also be formed by sequentially performing exposure, etching, and the like on each of a plurality of regions partitioned on one substrate.
  • a band-shaped boundary portion 325 is also formed between the adjacent second lattice pieces 312 and 312 in plan view.
  • boundary portions 315 and 325 of the first and second lattice pieces 311 and 321 are X-ray shielding regions using an X-ray shielding material, X-ray transmission is possible like glass and general adhesives. It may be a region, or may be a region in which an X-ray shielding part and an X-ray transmission part are mixed.
  • the boundary portions 315 and 325 in this example are grasped as band-like regions, but the boundary portions of the lattice pieces are not necessarily band-like.
  • the boundary portion is a strip shape.
  • the boundary portion may be a random shape such as an intermittent line shape instead of a strip shape.
  • boundary portions 315 and 325 Because of these boundary portions 315 and 325, the X-ray dose transmitted through each of the first absorption-type grating 31 and the second absorption-type grating 32 varies depending on where X-rays are transmitted.
  • Such boundary portions 315 and 325 have periodicity at a constant arrangement pitch according to the respective dimensions of the first and second lattice pieces 311 and 321. That is, the first and second gratings 31 and 32 are configured by arranging a plurality of grating pieces, respectively, in addition to the periodicity of the pitches p 1 and p 2 of the X-ray shielding portions 31b and 32b, The first and second grating pieces 311 and 321 have periodicity.
  • the arrangement pitch of the lattice pieces is added to the moire generating element detected by the FPD 30. That is, on the detection surface on which the pixels of the FPD 30 are arranged, the pattern period p 1 ′ of the self-image G1 of the first absorption grating 31, the grating pitch p 2 of the second absorption grating 32, the first and Depending on the relative relationship between the arrangement pitch of each of the second lattice pieces 311 and 321 and the arrangement pitch (pixel pitch) of the pixels 40 of the FPD 30 in the x direction, moiré of several types or a plurality of different periods is superimposed.
  • the arrangement pitch of the first and second grating pieces 311 and 321 on the detection surface of the FPD 30 is set so that each of the first and second grating pieces 311 and 321 has a parallel beam when the X-ray is a parallel beam.
  • the X-ray in this example is a cone beam whose irradiation range is expanded in proportion to the distance from the focal point 18b, and therefore the distance from the focal point 18b to each grating
  • the arrangement pitches P C1 and P C2 corrected by multiplying the actual arrangement pitches P B1 and P B2 by the magnification ratio, which is the ratio between the focal point 18b and the distance to the FPD 30, respectively, are the first and second gratings at the position of the FPD 30. It becomes the arrangement pitch of each of the pieces 311 and 321.
  • the enlargement factor used for correcting the arrangement pitch P B1 is L / L1 with reference to FIG. 5, and the enlargement factor used for correcting the arrangement pitch P B2 is L / (L1 + L2) with reference to FIG.
  • the self-image G1 and the grating pattern of the second absorption grating 32 are Moire due to overlaying cannot be obtained.
  • the image data of these boundary portions can be complemented based on the image data of the adjacent portions, the boundary portion 315 and the boundary portion 325 serve as detection surfaces of the FPD 30 in order to minimize the image range to be complemented.
  • the corrected arrangement pitches P C1 and P C2 are determined to be equal to each other.
  • the arrangement pitch P C1, P C2 can tolerate pitch difference of several ⁇ m or less by an assembly error or the like, the arrangement pitch P C1, P C2, the range the difference is less than a few ⁇ m Is almost equal within.
  • the small differences in such arrangement pitch P C1, P C2, also superimposed moire and arrangement pitch P C1 and the arrangement pitch P C2 is related to the detection surface of the FPD 30.
  • Moire frequency for the ratio of the pixel pitch P D and the arrangement pitch P C1 is possible to calculate analytically.
  • FIG. 8 shows the fluctuation characteristics of the moire frequency calculated analytically for the moire detected by the FPD 30.
  • Moire frequency shown in FIG. 8 is a frequency of the fundamental wave of the moire, half the sampling frequency f S by the detector pixel is a Nyquist frequency.
  • the array pitches P C1 and P C2 corrected with the enlargement ratio are used.
  • Figure 8 is a sequence pitch equal-determined one another of the first and second grating pieces 311, 321 marked with P C.
  • Moire generation elements detected by the FPD 30 include the respective grating pitches p 1 and p 2 of the first and second absorption type gratings 31 and 32, and the respective arrangements of the first and second grating pieces 311 and 321.
  • the grating pitch p 1, p 2 is about several [mu] m
  • the pixel pitch P D is about 100 ⁇ m for a large period difference of each other, detection of moire occurring in relation to these grating pitch and the pixel pitch The intensity is small enough not to affect the image measurement.
  • a typical example of such an image detector is a direct conversion type FPD.
  • the direct conversion type FPD the X-rays incident on the detector are directly converted into electric signals. Therefore, the direct conversion FPD is converted into an electric signal using a photoelectric conversion element such as a photodiode after being converted into light once by a scintillator or the like. It is generally known that there is less spatial blur in the signal detection process compared to a conversion type FPD, and a high spatial frequency response is exhibited over a high frequency.
  • each of the moire frequency component f m from the first-order fundamental wave to the fourth harmonic showing a variation characteristic of the ratio between the in arrangement pitch P C and the pixel pitch P D. More and more is the order of the moire frequency f m, the variation of the ratio between the in arrangement pitch P C and the pixel pitch P D increases. Further, there is more, the ratio of the pixel pitch P D when variations of the moire frequency f m is directed to converge arrangement pitch P C is increased at higher order.
  • Moire frequency of the fourth harmonic the arrangement pitch P C is directed to converge becomes more than 6 times the pixel pitch P D.
  • the moire frequency on the detection surface of the FPD 30 and the frequency of the pixel period do not coincide with each other based on the above equation (9) and are not in an integral multiple relationship with each other. Is requested. Further, in order to detect the phase shift of the intensity modulation signal with high sensitivity, it is necessary to obtain the intensity modulation signal with a high contrast. For this reason, it is necessary to make the moire frequency lower than the frequency of the pixel period. In order to satisfy such a condition, there is a range of suitable values for the moire frequency.
  • the phase contrast image is obtained from the amount of phase shift of the intensity modulation signal formed from the moire image between the pre-photographing without placing the subject and the main photographing with the subject, so the moire frequency As a result of fluctuations, artifacts occur. That is, in order to stably obtain a phase contrast image having an image quality suitable for image measurement, it is important that the moire frequency is stable.
  • the moire caused by the relationship between the arrangement pitch P C and the pixel pitch P D is likely to greatly change the frequency of the moiré detected by the FPD 30.
  • the moire frequency is out of the preferred range and does not satisfy Equation (9), and the intensity modulation signal cannot be detected, or the intensity modulation signal There is a possibility that the detection sensitivity of the phase shift is lowered.
  • the pixel pitch P D the ratio between the arrangement pitch P C and changes.
  • a moire of the spatial frequency corresponding to the ratio is generated.
  • the spatial frequency is dependent on the relative displacement between the X-ray focal point 18b and each of the first and second absorption gratings 31 and 32. It is very difficult to correct moire that fluctuates.
  • Figure 10 illustrates the dimensional relationship between the arrangement pitch P C and the pixel pitch P D schematically.
  • Arrangement pitch P C is preferably 8 or more times the pixel pitch P D in the x-direction, more preferably 10 times or more, more preferably is 100 times or more.
  • the arrangement pitch P C is response performance to the spatial frequency of the FPD 30, typically determined by MTF (Modulation Transfer Function), etc., it may be at least twice the pixel pitch P D.
  • MTF Modulation Transfer Function
  • the arrangement pitch P C where each array pitch of the first and second grating pieces 311 and 321 are equal, but showing the relationship between the pixel pitch P D, first and second If each pitch of the grating pieces 311 and 321 are different, their arrangement pitch, respectively, it may be at least twice the pixel pitch P D.
  • the dimension of the first absorption-type grating 31 in the direction along the optical axis A is h 1 , the distance between adjacent X-ray shielding portions 31 b and 31 b, that is, the opening width is d 1 , and the grating in the first absorption-type grating 31.
  • P B1 the actual pitch of the strip, and the distance between the first absorption type grating 31 and the X-ray focal point 18b and R 1, it is preferable to satisfy the expression (11).
  • the dimension of the second absorption type grating 32 in the direction along the optical axis A is h 2 , the distance between the adjacent X-ray shielding parts 32 b and 32 b, that is, the opening width is d 2 , and the second absorption type grating 32. It is preferable that Expression (12) is satisfied, where P B2 is the actual arrangement pitch of the lattice pieces and R 2 is the distance between the second absorption grating 32 and the X-ray focal point 18b.
  • the moire frequency can be stabilized against fluctuations in the ratio between the arrangement pitch and the pixel pitch.
  • FIG. 12 shows one X-ray refracted according to the phase shift distribution ⁇ (x) of the subject H in the x direction.
  • Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do.
  • Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
  • phase shift distribution ⁇ (x) of the subject H is expressed by the following formula (13), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
  • the self-image G1 projected from the first absorption grating 31 to the position of the second absorption grating 32 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H. It will be.
  • This amount of displacement ⁇ x is approximately expressed by the following equation (14) based on the small X-ray refraction angle ⁇ .
  • the refraction angle ⁇ is expressed by Expression (15) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x of the self-image G1 due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x) of the subject H.
  • the amount of displacement ⁇ x is expressed by the following equation with the phase shift amount ⁇ of the signal output from each pixel 40 of the FPD 30 (the phase shift amount of the signal of each pixel 40 with and without the subject H): It is related as shown in (16).
  • phase shift amount ⁇ of the signal of each pixel 40 the refraction angle ⁇ is obtained from the equation (16), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (15).
  • a phase shift distribution ⁇ (x) of the subject H that is, a phase contrast image of the subject H can be generated.
  • the phase shift amount ⁇ is calculated using a fringe scanning method described below.
  • one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner in the x direction relative to the other, that is, the phase between the two grating patterns is changed.
  • the second absorption type grating 32 is moved by the scanning means 33 described above, but the first absorption type grating 31 may be moved.
  • the moire moves, and the translational distance (movement amount in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ), That is, when the phase change reaches 2 ⁇ , the moire returns to the original position.
  • a fringe image is photographed by the FPD 30 while moving the second absorption type grating 32 by an integer of the grating pitch p 2 by such a change in moire, and the signal of each pixel 40 from the plurality of photographed stripe images.
  • the arithmetic processing unit 22 performs arithmetic processing to obtain the phase shift amount ⁇ of the signal of each pixel 40.
  • FIG. 13 schematically shows a state in which the second absorption type grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (integers of 2 or more).
  • the initial position of the second absorption type grating 32 is set such that the dark part of the self-image G1 at the position of the second absorption type grating 32 when the subject H does not exist is almost at the X-ray shielding part 32b.
  • x is a coordinate in the x direction of the pixel 40
  • a 0 is the intensity of the incident X-ray
  • An is a value corresponding to the contrast of the signal value of the pixel 40 (where n is a positive value). Is an integer).
  • ⁇ (x) represents the refraction angle ⁇ as a function of the coordinate x of the pixel 40.
  • arg [] means the extraction of the declination, and corresponds to the phase shift amount ⁇ of the signal of each pixel 40. Accordingly, the refraction angle ⁇ (x) is obtained by calculating the phase shift amount ⁇ of the signal of each pixel 40 from the M signal values obtained at each pixel 40 based on the equation (19).
  • FIG. 14 shows a signal of one pixel of the radiation image detector that changes with the fringe scanning.
  • the M signal values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption grating 32.
  • a broken line in FIG. 14 indicates a change in the signal value when the subject H does not exist, and a solid line in FIG. 14 indicates a change in the signal value when the subject H exists.
  • the phase difference between the two waveforms corresponds to the phase shift amount ⁇ of the signal of each pixel 40.
  • the phase shift is obtained by integrating the refraction angle ⁇ (x) along the x-axis.
  • a distribution ⁇ (x) is obtained.
  • the above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the phase contrast image in the storage unit 23.
  • the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution ⁇ (x , Y).
  • the above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the calculated phase shift distribution ⁇ (x, y) in the image storage unit 23 as a phase contrast image.
  • the above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20.
  • the phase contrast image of the subject H is displayed on the monitor 24.
  • the first and second absorption-type gratings 31, 32 are configured by arranging a plurality of grating pieces 311, 321 that are smaller than the visual field size, respectively, thereby forming the first and second absorption-type gratings 31, 32. 32 can be manufactured stably, and the fluctuation of the moire frequency that can be caused by the arrangement of the lattice pieces 311 and 321 is stabilized by defining the ratio between the arrangement pitch and the pixel pitch, so that the stable image quality can be obtained. It is possible to obtain a phase contrast image.
  • the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned).
  • both the first and second gratings are absorption type.
  • the present invention is not limited to this.
  • the refraction angle ⁇ is calculated by performing fringe scanning on the Talbot interference image, that is, the Talbot interferometer in which the distance between the first grating and the second grating is set to the Talbot distance.
  • the present invention is also useful when used. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating.
  • the analysis method of the moire formed by superimposing the X-ray image of the first grating and the second grating is not limited to the above-described fringe scanning method.
  • “J. Opt. Soc. Am. No. 1 (1982) p. 156 ” a method using Fourier transform / inverse Fourier transform, and various methods using moire can be applied.
  • the moire is directly analyzed by Fourier transform without acquiring an intensity modulation signal by scanning from the moire by the first and second gratings as in the fringe scanning method.
  • the stability of the moire frequency is important, and the same effect as described above can be obtained.
  • the X-ray imaging system 10 has been described as one that stores or displays an image of the phase shift distribution ⁇ as a phase contrast image
  • the phase shift distribution ⁇ corresponds to the refraction angle ⁇ as described above.
  • the differential amount of the phase shift distribution ⁇ is integrated, and the differential angle of the refraction angle ⁇ and the phase shift distribution ⁇ is also related to the phase change of the X-ray by the subject. Therefore, an image having the refraction angle ⁇ as an image and an image having the differential amount of the phase shift ⁇ are also included in the phase contrast image.
  • a phase differential image (differential amount of phase shift distribution ⁇ ) is created from a group of images acquired by shooting (pre-shooting) in the absence of a subject, and acquired by shooting (main shooting) in the presence of a subject.
  • a phase differential image created from a group of images may be corrected.
  • the phase differential image acquired by the pre-imaging reflects the phase unevenness inherent to the measurement system, for example, the grating pitch and thickness non-uniformity, and the grating scanning pitch error.
  • the phase differential image created from the group of images acquired by shooting in the presence of the subject (main shooting) also contains phase irregularities unique to the measurement system of the same type as pre-photographing. Acting as an offset. Accordingly, by subtracting the phase differential image obtained by the pre-photographing from the phase differential image obtained by the main imaging, a phase differential image in which the phase unevenness of the measurement system is corrected can be obtained.
  • FIG. 15 schematically shows a configuration example in which the lattice pieces are arranged in the y direction as the second direction in addition to the x direction as the first direction.
  • Both the first and second gratings are preferably configured to have grating pieces 131 arranged two-dimensionally in the x and y directions as shown in FIG.
  • the lattice pieces 131 are arranged in the x direction via the boundary portion 31cx, and are arranged in the y direction via the boundary portion 31cy. Since the lattice pieces are also arranged in the y direction in this way, the size of the lattice pieces in the y direction is short, so that the lattice can be easily manufactured in terms of in-plane uniformity required for the manufacture of the lattice. .
  • each of the first and second gratings is composed of a plurality of grating pieces, it is preferable to use the grating pieces arranged two-dimensionally as shown in FIG.
  • the first and second gratings are both constituted by a plurality of grating pieces.
  • the first grating or only the second grating is constituted by a plurality of grating pieces. It may be.
  • FIG. 16 shows another example of a radiation imaging apparatus for explaining an embodiment of the present invention.
  • a mammography apparatus 80 shown in FIG. 16 is an apparatus that captures an X-ray image (phase contrast image) of a breast B as a subject.
  • the mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81.
  • An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
  • the X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12.
  • the X-ray source 11 and the imaging unit 12 are arranged to face each other.
  • the compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
  • the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 described above are attached to the respective components. Yes. Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • FIG. 17 shows a modification of the radiation imaging apparatus of FIG.
  • the mammography apparatus 90 shown in FIG. 17 is different from the mammography apparatus 80 described above in that the first absorption type grating 31 is disposed between the X-ray source 11 and the compression plate 84.
  • the first absorption type lattice 31 is accommodated in a lattice accommodation portion 91 connected to the arm member 81.
  • the imaging unit 92 includes an FPD 30, a second absorption type grating 32, and a scanning mechanism 33.
  • the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
  • the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 90 can also be applied to the X-ray imaging system 10 described above. Is possible.
  • FIG. 18 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101.
  • the X-ray imaging system 100 shown in FIG. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • the focal point of the X-ray focal point 18b when the distance from the X-ray source 11 to the FPD 30 is a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b.
  • the blur of the self-image G1 due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is degraded. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall.
  • the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
  • the multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction).
  • the extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32.
  • the multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
  • the lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following equation (20), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
  • the projection image (self-image G1) of the X-rays emitted from the small focus light sources dispersedly formed by the multi-slit 103 by the first absorption type grating 31 is the second absorption type grating 32. This is a geometrical condition for matching (overlapping) at the positions.
  • the first absorption grating 31 is given by assuming that the pattern period of the self-image G1 at the position of the second absorption grating 32 is p 1 ′.
  • the lattice pitch p 1 of the second absorption lattice 32 and the lattice pitch p 2 of the second absorption lattice 32 are determined so as to satisfy the relationship of the following equation (21).
  • the X-ray irradiated from the X-ray source 11 is a cone beam
  • the distance is L ′
  • the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32 are determined so as to satisfy the following expressions (22) and (23). Is done.
  • the self-image G1 formed by each of the plurality of small focus light sources formed by the multi-slit 103 is superimposed, thereby improving the image quality of the phase contrast image without reducing the X-ray intensity.
  • the multi slit 103 described above can be applied to any of the above examples.
  • FIG. 19 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • the phase contrast image is based on the X-ray refraction component in the periodic array direction (x direction) of the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32.
  • stretching direction (y direction) of X-ray shielding part 31b, 32b is not reflected. That is, a part outline along a direction intersecting the x direction (or the y direction when orthogonal) is drawn as a phase contrast image based on a refractive component in the x direction via a lattice plane that is an xy plane.
  • a part contour that does not intersect the direction and extends along the x direction is not drawn as a phase contrast image in the x direction. That is, there is a part that cannot be drawn depending on the shape and orientation of the part to be the subject H.
  • the region contour in the vicinity of the load surface (yz surface) substantially along the y direction is Although it is sufficiently depicted, it is considered that rendering of the cartilage peripheral tissues (tendons, ligaments, etc.) that intersect the load surface and extend substantially along the x direction is insufficient.
  • the first line is centered on a virtual line (X-ray optical axis A) orthogonal to the center of the lattice plane of the first and second absorption gratings 31 and 32.
  • the second absorption gratings 31 and 32 are integrally rotated at an arbitrary angle from the first direction shown in FIG. 19A (the direction in which the X-ray shielding portions 31b and 32b extend are along the y direction).
  • a rotation mechanism 105 is provided that has a second direction (a direction in which the extending direction of the X-ray shielding portions 31b and 32b extends along the x direction) shown in FIG. 19B, and the first direction and the second direction.
  • FIG. 19A shows the first orientation of the first and second gratings 31 and 32 such that the extending direction of the X-ray shielding portions 31b and 32b is in the direction along the y direction.
  • the second of the first and second gratings 31 and 32 is rotated 90 degrees from the state of FIG. 19A and the extending direction of the X-ray shielding portions 31b and 32b is in the direction along the x direction.
  • the rotation angles of the first and second gratings are arbitrary.
  • a phase contrast image in each direction is generated by performing two or more rotation operations such as the third direction and the fourth direction. May be.
  • the first and second absorption gratings 31 and 32 are rotated by 90 °, and the first direction and the second direction are orthogonal to each other. As long as the direction intersects, the rotation angle of the first and second absorption gratings 31 and 32 is not limited to 90 °. Further, the grating rotating mechanism 105 may be configured to rotate only the first and second absorption type gratings 31 and 32 separately from the FPD 30, or the first and second absorption type gratings 31. , 32 and the FPD 30 may be rotated together.
  • the multi-slit 103 when the multi-slit 103 is provided, the multi-slit 103 and the collimator 109 or the radiation source formed integrally with them is rotated so that the rotation coincides with the first and second absorption gratings 31 and 32. . Furthermore, the generation of phase contrast images in the first and second orientations using the grating rotation mechanism 105 can be applied to any of the X-ray imaging systems described above.
  • FIG. 20 shows an example of a two-dimensional lattice in which X-ray shielding portions are arranged in two directions, the x direction and the y direction.
  • Each lattice piece 231 has an X-ray shielding part 31bx arranged in the x direction and an X-ray shielding part 31by arranged in the y direction.
  • the lattice pieces 231 are arranged in two directions, the x direction and the y direction, the arrangement pitch of the lattice pieces 231 in the x direction is more than twice the pixel pitch in the x direction, and the arrangement pitch of the lattice pieces 231 in the y direction. Is more than twice the pixel pitch in the y direction.
  • both the first and second gratings are two-dimensional gratings as shown in FIG. 20, the data of the first and second gratings in the relative movement in the x direction, and the y values of the first and second gratings. Data at the time of relative movement in the direction is obtained. That is, even if the lattice is not rotated around the z axis or the direction of the subject H is not changed, there is no direction that is insensitive as the refraction direction of the X-ray in the xy plane, and the image defect is direction-specific. It is possible to provide a diagnostic image that does not occur.
  • FIG. 21 shows the configuration of the first and second gratings for another example of the radiation imaging system for explaining the embodiment of the present invention.
  • the first and second absorption gratings 31 and 32 are arranged such that the periodic arrangement direction of the X-ray shielding portions 31b and 32b is linear (that is, the grating surface is planar).
  • first and second absorption type gratings 110 and 111 in which the grating surface is formed in a substantially concave curved surface shape.
  • the first absorption type grating 110 is configured by arranging a plurality of first grating pieces 110A, and each of the first grating pieces 110A is X-ray transmissive on the surface of the planar substrate 110a. , a plurality of X-ray shielding section 110b that extends linearly in the y direction are periodically arranged at a predetermined pitch p 1.
  • the first absorption type grating 110 includes a plurality of first gratings in the circumferential direction of the cylindrical surface with the imaginary line passing through the X-ray focal point 18b and extending in the extending direction (y direction) of the X-ray shielding part 110b as a central axis.
  • the pieces 110A are arranged, and the first lattice pieces 110A adjacent to each other in the circumferential direction are arranged, so that the lattice surface is formed in a substantially concave curved surface shape.
  • a boundary portion 110c is formed between the adjacent first lattice pieces 110A.
  • the second absorption type grating 111 is configured by arranging a plurality of second grating pieces 111A, and each of the second grating pieces 111A is an X-ray transparent and planar substrate 111a. on the surface of a plurality of X-ray shielding section 111b that extends linearly in the y direction are periodically arranged at a predetermined pitch p 2.
  • the second absorption type grating 111 includes a plurality of second gratings in the circumferential direction of the cylindrical surface with a virtual line passing through the X-ray focal point 18b and extending in the extending direction (y direction) of the X-ray shielding part 111b as a central axis.
  • the lattice surface is formed in a substantially concave curved surface shape.
  • a boundary 111c is formed between the adjacent second lattice pieces 111A.
  • the first and second absorption type gratings 110 and 111 by configuring the first and second absorption type gratings 110 and 111 by arranging a plurality of grating pieces, it is possible to easily configure the grating surfaces in a substantially concave curved surface shape. Then, by making the grating surfaces of the first and second absorption gratings 110 and 111 substantially concave curved surfaces, the X-rays irradiated from the X-ray focal point 18 b since made incident substantially perpendicularly to the respective units, the upper limit of the limitation of the thickness h 2 of the thickness h 1 and the X-ray shielding portion 111b of the X-ray shielding section 110b is reduced, the above expression (6) and (7) There is no need to consider.
  • the detection surface of the FPD 112 is also a cylinder whose central axis is a straight line that extends in the y direction through the X-ray focal point 18b. It is preferable to form a concave curved surface along the surface.
  • the first and second absorption gratings 110 and 111 and the FPD 112 can be applied to any of the X-ray imaging systems described above. Further, when the multi slit 103 is used, it is also preferable that the multi slit 103 is formed in a concave curved surface like the first and second absorption gratings 110 and 111.
  • FIG. 22 shows the configuration of the radiation image detector in relation to another example of the radiation imaging system for explaining the embodiment of the present invention.
  • the second absorption type grating 32 is provided independently of the FPD 30, but the X-ray image detector itself has the second absorption type grating 32 or an equivalent configuration. You may do it.
  • the second absorption type grating can be eliminated by using an X-ray image detector having a configuration disclosed in Japanese Patent Laid-Open No. 2009-133823.
  • This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges, and a charge collection electrode that collects electric charges converted in the conversion layer,
  • the charge collecting electrode 121 of the pixel 120 is configured by arranging a plurality of linear electrode groups 122 to 127 formed by electrically connecting linear electrodes arranged at a constant period so that their phases are different from each other. Has been.
  • the pixels 120 are two-dimensionally arranged at a constant pitch along the x direction and the y direction, and each pixel 120 has a charge collection for collecting the charges converted by the conversion layer that converts the X-rays into charges.
  • An electrode 121 is formed.
  • the charge collection electrode 121 includes first to sixth linear electrode groups 122 to 127, and the phase of the arrangement period of the linear electrodes of each linear electrode group is shifted by ⁇ / 3.
  • the phase of the first linear electrode group 122 is 0, the phase of the second linear electrode group 123 is ⁇ / 3, the phase of the third linear electrode group 124 is 2 ⁇ / 3, The phase of the fourth linear electrode group 125 is ⁇ , the phase of the fifth linear electrode group 126 is 4 ⁇ / 3, and the phase of the sixth linear electrode group 127 is 5 ⁇ / 3.
  • the relationship between the pixel pitch P D of 120 and the pixel pitch P D of Equation (9) is based on the moire period T expressed by Equation (8), similarly to the second absorption grating 32 of the X-ray imaging system 10 described above. It is necessary to satisfy
  • each pixel 120 is provided with a switch group 128 for reading out the charges collected by the charge collecting electrode 121.
  • the switch group 128 includes switches provided in the first to sixth linear electrode groups 121 to 126, respectively. By collecting the charges collected by the first to sixth linear electrode groups 121 to 126 individually by controlling the switch group 128, six types of fringe images having different phases can be obtained by one imaging. A phase contrast image can be generated based on these six types of fringe images.
  • the second absorption type grating 32 from the imaging unit 12 becomes unnecessary.
  • the first lattice 31 is configured by arranging a plurality of lattice pieces 311.
  • the scanning mechanism 33 can be eliminated. Thereby, it is possible to reduce the cost and further reduce the thickness of the photographing unit.
  • the structure of the charge collecting electrode may be replaced with another structure described in Japanese Patent Application Laid-Open No. 2009-133823.
  • the X-ray imaging system shown in FIG. 23 is formed by a first grating 131 that passes through the X-rays emitted from the X-ray source 11 and forms a periodic pattern image (self-image G1), and the first grating 131.
  • a second grating 132 that periodically masks the self-image G1; an X-ray image detector 240 that detects a moire formed by superposition of the self-image G1 and the second grating 132; and an X-ray image detector
  • a phase contrast image generation unit 260 that acquires a fringe image based on the moire detected by 240 and generates a phase contrast image based on the acquired fringe image.
  • the phase contrast image generation unit 260 constitutes part of the processing of the control device 20 in the console 13 (FIG. 2).
  • the X-ray source 11 emits X-rays toward the subject H, and has spatial coherence that can generate a Talbot interference effect when the first grating 131 is irradiated with X-rays. is there.
  • a microfocus X-ray tube or a plasma X-ray source having a small X-ray emission point size can be used.
  • a multi-slit for example, the multi-slit 103 described above
  • It can be used by being installed between the X-ray source 11 and the first grating 131.
  • the first grating 131 is desirably a so-called phase modulation type grating that gives a phase modulation of about 90 ° or about 180 ° with respect to the irradiated X-ray.
  • phase modulation type grating that gives a phase modulation of about 90 ° or about 180 ° with respect to the irradiated X-ray.
  • the X-ray shielding portion is gold
  • the necessary thickness h 1 in the above-described normal medical diagnostic X-ray energy region is about 1 ⁇ m to 10 ⁇ m.
  • an absorption type grating can be used as the first grating 131.
  • the second grating 132 is preferably an absorption grating.
  • the self-image G1 of the first grating 131 formed through the first grating 131 is , Enlarged in proportion to the distance from the X-ray source 11.
  • the grating pitch p 2 of the second grating 132 is substantially the same as the periodic pattern of the bright part of the self-image G 1 of the first grating 131 at the position of the second grating 132. To be decided.
  • the distance from the focal point of the X-ray source 11 to the first grating 131 is L 1
  • the distance from the grating 131 to the second grating 132 is L 2
  • the grating pitch p 2 of the second grating 132 is the above equation (1)
  • the multi slit 103 is used.
  • the distance from the first grating 131 to L 3 is determined so as to satisfy the relationship of the above formula (21).
  • the equation It replaces with (1) and Formula (21), and it determines so that the following Formula (24) and the following Formula (25) may be satisfy
  • p 2 p 1 when the first grating 131 is a phase modulation type grating or an absorption type grating that applies 90 ° phase modulation.
  • the X-ray image detector 240 detects, as an image signal, an image in which the self-image G1 of the first grating 131 formed by the X-rays incident on the first grating 131 is periodically masked by the second grating 132. To do.
  • the X-ray image detector 240 is a direct-conversion X-ray image detector that reads an image signal by scanning with linear reading light. X-ray image detector.
  • FIG. 24 schematically shows an external appearance (FIG. 24A), an xz plane cross section (FIG. 24B), and a yz plane cross section (FIG. 24C) of the X-ray image detector 240 of this example.
  • the X-ray image detector 240 of this example includes a first electrode layer 241 that transmits X-rays, and a recording photoconductive layer 242 that generates charges when irradiated with X-rays transmitted through the first electrode layer 241.
  • the charge transport layer 244 which acts as an insulator for charges of one polarity among the charges generated in the recording photoconductive layer 242, and acts as a conductor for charges of the other polarity, reading light
  • the photoconductive layer for reading 245 that generates an electric charge when irradiated with the first electrode layer 246 and the second electrode layer 246 are laminated in this order.
  • a power storage unit 243 that accumulates charges generated in the recording photoconductive layer 242 is formed. Note that each of the above layers is formed on the glass substrate 247 in order from the second electrode layer 246.
  • the first electrode layer 241 only needs to transmit X-rays.
  • Nesa film (SnO 2 ), ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), amorphous light-transmitting oxide film IDIXO (Idemitsu Indium X-metal Oxide; Idemitsu Kosan Co., Ltd.) having a thickness of 50 to 200 nm can be used, and Al or Au having a thickness of 100 nm can also be used.
  • the recording photoconductive layer 242 only needs to generate charge when irradiated with X-rays, and is excellent in that it has relatively high quantum efficiency and high dark resistance with respect to X-rays.
  • a material mainly composed of a-Se is used.
  • the thickness is suitably 10 ⁇ m or more and 1500 ⁇ m or less. In particular, when it is used for mammography, it is preferably 150 ⁇ m or more and 250 ⁇ m or less, and when used for general photographing, it is preferably 500 ⁇ m or more and 1200 ⁇ m or less.
  • the better for example, 102 Or more, preferably 103 or more
  • poly N-vinylcarbazole PVK
  • Organic compounds such as 4'-diamine (TPD) and discotic liquid crystal, or TPD polymer (polycarbonate, polystyrene, PVK) dispersion, semiconductor materials such as a-Se and As 2 Se 3 doped with 10 to 200 ppm of Cl Is appropriate.
  • a thickness of about 0.2 to 2 ⁇ m is appropriate.
  • the reading photoconductive layer 245 may be any material that exhibits conductivity when irradiated with reading light.
  • a photoconductive substance mainly composed of at least one of MgPc (Magnesium phthalocyanine), VoPc (phase II of Vanadyl phthalocyanine), CuPc (Cupper phthalocyanine), and the like is preferable.
  • a thickness of about 5 to 20 ⁇ m is appropriate.
  • the second electrode layer 246 includes a plurality of transparent linear electrodes 246a that transmit the reading light and a plurality of light shielding linear electrodes 246b that shield the reading light.
  • the transparent linear electrode 246a and the light-shielding linear electrode 246b extend linearly continuously from one end of the image forming area of the X-ray image detector 240 to the other end. Then, as shown in FIG. 24, the transparent linear electrodes 246a and the light shielding linear electrodes 246b are alternately arranged in parallel at predetermined intervals.
  • the transparent linear electrode 246a is made of a conductive material while transmitting reading light.
  • ITO, IZO, or IDIXO can be used as with the first electrode layer 241.
  • the thickness is about 100 to 200 nm.
  • the light shielding linear electrode 246b shields the reading light and is made of a conductive material.
  • a transparent conductive material for example, the above transparent conductive material and a color filter can be used in combination.
  • the thickness of the transparent conductive material is about 100 to 200 nm.
  • an image signal is read out using a pair of the adjacent transparent linear electrode 246a and the light shielding linear electrode 246b. That is, as shown in FIG. 24, an image signal of one pixel is read out by one set of the transparent linear electrode 246a and the light shielding linear electrode 246b.
  • the transparent linear electrode 246a and the light shielding linear electrode 246b are arranged so that one pixel is approximately 50 ⁇ m.
  • a linear reading light source 250 extending in a direction (x direction) orthogonal to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b. It has.
  • the linear reading light source 250 of this example includes a light source such as an LED (Light Emitting Diode) or LD (Laser Diode) and a predetermined optical system, and is parallel to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b.
  • the X-ray image detector 240 is irradiated with linear reading light having a width of approximately 10 ⁇ m in a random direction (y direction).
  • the linear reading light source 250 is moved in the extending direction (y direction) of the transparent linear electrode 246a and the light shielding linear electrode 246b by a predetermined moving mechanism (not shown).
  • the X-ray image detector 240 is scanned by the linear reading light emitted from the light source 250 and the image signal is read out. The operation of reading the image signal will be described in detail later.
  • the configuration including the X-ray source 11, the first grating 131, the second grating 132, and the X-ray image detector 240 is caused to function as a Talbot interferometer.
  • some conditions must be almost satisfied. The conditions will be described below.
  • “substantially satisfy” means that the energy of X-rays radiated from the X-ray source 11 under various conditions described later, that is, the wavelength has a width rather than a single one, and therefore has a width relative to the X-ray energy width. This means that there is a permissible width, and that performance such as image quality is inferior because it is not optimal, but in this example, there is a permissible width capable of obtaining at least a phase contrast image.
  • the grid surfaces of the first grating 131 and the second grating 132 must be parallel to the xy plane shown in FIG.
  • the distance Z 2 (Talbot interference distance Z) between the first grating 131 and the second grating 132 is the following when the first grating 131 is a phase modulation type grating that applies 90 ° phase modulation. Equation (26) should be nearly satisfied.
  • is the wavelength of X-rays (usually the effective wavelength of X-rays incident on the first grating 131)
  • m is 0 or a positive integer
  • p 1 is the grating pitch of the first grating 131
  • p 2 is the grating pitch of the second grating 132 described above.
  • the first grating 131 is a phase modulation type grating that applies 180 ° phase modulation
  • the following expression (27) must be substantially satisfied.
  • the first grating 131 is an absorption type grating
  • the following expression (28) must be substantially satisfied.
  • m ' is a positive integer.
  • the thicknesses h 1 and h 2 of the first and second gratings 131 and 132 also satisfy the expressions (6) and (7) described above with respect to the first and second absorption gratings 31 and 32. It is preferable to set so.
  • the first grating 131 and the second grating 132 are connected to the extending direction of the self-image G1 of the first grating 131 and the second grating 131.
  • the grating 132 is disposed so as to be relatively inclined with respect to the extending direction. Then, with respect to the first grating 131 and the second grating 132 arranged in this way, the main scanning direction (x direction in FIG. 24) of each pixel of the image signal detected by the X-ray image detector 240.
  • the main pixel size Dx and the sub-pixel size Dy in the sub-scanning direction have a relationship as shown in FIG.
  • the main pixel size Dx is determined by the arrangement pitch of the transparent linear electrodes 246a and the light shielding linear electrodes 246b of the X-ray image detector 240, and is set to 50 ⁇ m in this example.
  • the sub-pixel size Dy is determined by the width of the linear reading light irradiated to the X-ray image detector 240 by the linear reading light source 250, and is set to 10 ⁇ m in this example. .
  • a plurality of fringe images are acquired, and a phase contrast image is generated based on the plurality of fringe images. If the number of acquired fringe images is M, M subpixel sizes are obtained.
  • the first grating 131 is tilted with respect to the second grating 132 so that Dy becomes one image resolution D in the sub-scanning direction of the phase contrast image.
  • the pitch of the second grating 132 and the pattern period of the self-image G1 formed at the position of the second grating 132 by the first grating 131 are p 1 ′, second
  • the rotation angle ⁇ Is set so as to satisfy the following expression (29)
  • the image signal obtained by dividing the intensity modulation of n periods of the self-image G1 of the first grating 131 by M can be detected by each pixel of Dx ⁇ Dy obtained by dividing the image resolution D of the phase contrast image in the sub-scanning direction by M. become.
  • n 1
  • the phase of the self-image G1 of the first grating 131 and the second grating 132 is shifted by one period with respect to the length of the image resolution D in the sub-scanning direction. It will be.
  • the region that passes through the second grating 132 in one period of the self-image G1 of the first grating 131 changes over the length of the image resolution D in the sub-scanning direction, so that the first The intensity of the self-image G1 of the grating 131 is modulated in the sub-scanning direction.
  • M 5, but M may be 3 or more and may be other than 5.
  • n 1, but n may be an integer other than 1 as long as n is an integer other than 0. That is, when n is a negative integer, the rotation is opposite to that in the above-described example, and n may be an intensity modulation for n periods with n being an integer other than ⁇ 1.
  • n is a multiple of M, the phases of the self-image G1 of the first grating 131 and the second grating 132 are equal between one set of M sub-scanning direction pixels Dy, and M different numbers Since it is not a striped image, it is excluded.
  • the rotation angle ⁇ is about 5.7 °.
  • the actual rotation angle ⁇ ′ of the self-image G1 of the first grating 131 with respect to the second grating 132 is detected by, for example, the pitch of the moire by the self-image G1 of the first grating and the second grating 132. Can do.
  • , the actual rotation angle ⁇ ′ can be obtained by substituting P ′ p 1 ′ / cos ⁇ ′ into the above equation.
  • the moire pitch Pm may be obtained based on the image signal detected by the X-ray image detector 240.
  • the rotation angle ⁇ determined by the above equation (29) is compared with the actual rotation angle ⁇ ′, and the rotation angle of the first grating 131 is adjusted automatically or manually only by the difference. Good.
  • the phase contrast image generation unit 260 generates an X-ray phase contrast image based on image signals of M kinds of different fringe images detected by the X-ray image detector 240.
  • X-rays are emitted from the X-ray source 11. Then, the X-ray passes through the subject H and is then irradiated on the first grating 131.
  • the X-rays irradiated to the first grating 131 are diffracted by the first grating 131 to form a Talbot interference image at a predetermined distance from the first grating 131 in the optical axis direction of the X-ray.
  • the Talbot effect when a light wave passes through the first grating 131, a self-image G1 of the first grating 131 is formed at a predetermined distance from the first grating 131.
  • the first grating 131 is a phase modulation type grating that applies 90 ° phase modulation
  • the above equation (26) in the case of a 180 ° phase modulation type grating, the above equation (27), the case of an absorption type grating
  • the wavefront of the X-ray incident on the first grating 131 is distorted by the subject H, so that the self-image G1 of the first grating 131 is deformed accordingly.
  • the X-ray passes through the second grating 132.
  • the deformed self-image G1 of the first grating 131 forms a moire by being superimposed on the second grating 132, and is detected by the X-ray image detector 240 as an image signal reflecting the wavefront distortion. Is done.
  • the X-rays irradiated to the X-ray image detector 240 are transmitted through the first electrode layer 241 and irradiated to the recording photoconductive layer 242.
  • the X-ray irradiation generates a charge pair in the recording photoconductive layer 242, and the positive charge is combined with the negative charge charged in the first electrode layer 241 and disappears, and the negative charge is latent.
  • the image charges are accumulated in the power storage unit 243 formed at the interface between the recording photoconductive layer 242 and the charge transport layer 244 (FIG. 28B).
  • the linear reading light L1 emitted from the linear reading light source 250 is irradiated from the second electrode layer 246 side. .
  • the reading light L1 passes through the transparent linear electrode 246a and is applied to the reading photoconductive layer 245, and the positive charge generated in the reading photoconductive layer 245 by the irradiation of the reading light L1 passes through the charge transport layer 244.
  • the negative charge is combined with the positive charge charged on the light shielding linear electrode 246b through the charge amplifier 200 connected to the transparent linear electrode 246a.
  • the linear reading light source 250 moves in the sub-scanning direction to scan the X-ray image detector 240 with the linear reading light L1, and the above-described reading lines are irradiated with the linear reading light L1.
  • the image signals are sequentially detected by the action, and the detected image signals for each reading line are sequentially input and stored in the phase contrast image generation unit 260.
  • the phase contrast image generation unit 260 stores the stored image. Based on the signal, image signals of five different fringe images are acquired.
  • the image resolution D of the phase contrast image in the sub-scanning direction is divided into five, and the intensity modulation of one period of the self-image G1 of the first grating 131 is 5 Since the self-image G1 of the first grating 131 is tilted with respect to the second grating 132 so that the divided image signal can be detected, the image read from the first reading line as shown in FIG. The signal is acquired as the first fringe image signal M1, the image signal read from the second reading line is acquired as the second fringe image signal M2, and the image signal read from the third reading line is the third.
  • the image signal acquired as the fringe image signal M3 and read from the fourth reading line is acquired as the fourth fringe image signal M4, and the image signal read from the fifth reading line is the fifth fringe image signal. Acquired as M5 .
  • the first to fifth reading lines shown in FIG. 30 correspond to the sub-pixel size Dy shown in FIG.
  • FIG. 30 only the reading range of Dx ⁇ (Dy ⁇ 5) is shown, but the first to fifth fringe image signals are acquired in the same manner as described above for the other reading ranges. That is, as shown in FIG. 31, an image signal of a pixel row group composed of pixel rows (reading lines) every four pixel intervals in the sub-scanning direction is acquired, and one stripe image signal of one frame is acquired.
  • the image signal of the pixel row group of the first reading line is acquired to acquire the first stripe image signal of one frame
  • the image signal of the pixel row group of the second reading line is acquired to 1
  • the second stripe image signal of the frame is acquired
  • the image signal of the pixel row group of the third reading line is acquired
  • the third stripe image signal of one frame is acquired
  • the image of the pixel row group of the fourth reading line A signal is acquired to acquire a fourth stripe image signal of one frame
  • an image signal of a pixel row group of the fifth reading line is acquired, and a fifth stripe image signal of one frame is acquired.
  • the phase contrast image generation unit 260 generates a phase contrast image based on the first to fifth fringe image signals.
  • the method for generating the phase contrast image in this example is the same as that already described with reference to the equations (13) to (19), and thus the description thereof is omitted.
  • both the first grating 131 and the second grating 132 are configured as absorption gratings, regardless of the presence or absence of the Talbot interference effect.
  • the radiation that has passed through the slit portion may be geometrically projected.
  • illumination by a distance d 1 of the first grating 131 and a distance d 2 of the second grating 132, and sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, illumination Most of the X-rays can be configured to form the self-image G1 of the first grating behind the first grating 131 without being diffracted by the slit portion.
  • the effective wavelength of X-ray is about 0.4 mm.
  • an image in which the distance d 1 of the first grating 131 spacing d 2 of the second grating 132, be about 1 [mu] m ⁇ 10 [mu] m X-rays passing through the slit portion is formed ignore the effects of diffraction
  • the self-image G1 of the first grating 131 is geometrically projected behind the first grating 131 as much as possible.
  • the grating pitch p 1 of the first grating 131 for the relationship between the lattice pitch p 2 of the second grating 132, wherein when the first grating 131 described above is an absorption grating (1), further multi-slit Is used, the distance from the multi-slit 103 to the first grating 131 is L 3, which is the same as the equation (21) described above.
  • the inclination of the self-image G1 formed by the first grating 131 with respect to the second grating 132 is also the same as in the above example, and the generation of the phase contrast image is performed in the same manner as in the above example.
  • the extending direction of the second grating 132 is parallel to the y direction, and the extending direction of the self-image G1 of the first grating 131 is ⁇ relative to the y direction.
  • the extending direction of the self-image G1 of the first grating 131 is parallel to the y direction, and the extending direction of the second grating 132 is inclined by ⁇ with respect to the y direction. Good.
  • the X-ray image detector 240 a so-called optical reading type X-ray image detector in which an image signal is read out by scanning linear reading light emitted from the linear reading light source 250 is used.
  • the present invention is not limited to this.
  • a large number of TFT switches are arranged two-dimensionally, and image signals are read by turning on and off the TFT switches.
  • An X-ray image detector using a TFT switch or an X-ray image detector using a CMOS sensor may be used.
  • an X-ray image detector using a TFT switch includes, for example, a pixel electrode 271 and a pixel electrode 271 that collect charges photoelectrically converted in a semiconductor film by X-ray irradiation as shown in FIG.
  • a number of pixel circuits 270 each including a TFT switch 272 for reading out the collected charges as an image signal are arranged in a two-dimensional manner.
  • An X-ray image detector using a TFT switch is provided for each pixel circuit row, and is provided for each pixel circuit column and a large number of gate electrodes 273 from which a gate scanning signal for turning on and off the TFT switch 272 is output.
  • a plurality of data electrodes 274 from which the charge signal read from each pixel circuit 270 is output.
  • the detailed layer configuration of each pixel circuit 270 is the same as the layer configuration described in Japanese Patent Laid-Open No. 2002-26300.
  • one pixel circuit array corresponds to the main pixel size Dx described in the above example
  • the pixel circuit row corresponds to the sub-pixel size Dy described in the above example.
  • the main pixel size Dx and the sub-pixel size Dy can be set to 50 ⁇ m, for example.
  • the M pixel circuit rows have one image resolution D in the sub-scanning direction of the phase contrast image.
  • the self-image G 1 of the first grating 131 is tilted with respect to the second grating 132.
  • the specific rotation angle of the self-image G1 of the first grating 131 is calculated by the above equation (29) as in the above example.
  • the image signal read from the pixel circuit row connected to the first read line gate electrode G11 is acquired as the first stripe image signal M1, and the pixel circuit connected to the second read line gate electrode G12.
  • the image signal read from the row is acquired as the second stripe image signal M2, and the image signal read from the pixel circuit row connected to the third read line gate electrode G13 is the third stripe image signal M3.
  • the image signal read from the pixel circuit row connected to the fourth read line gate electrode G14 is acquired as the fourth stripe image signal M4 and connected to the fifth read line gate electrode G15.
  • the image signal read from the pixel circuit row is acquired as the fifth fringe image signal M5.
  • the method for generating the phase contrast image based on the first to fifth fringe image signals is the same as the above example.
  • the image resolution in the main scanning direction of the phase contrast image is 50 ⁇ m
  • a pixel circuit 280 that generates visible light upon receiving X-ray irradiation and photoelectrically converts the visible light to detect a charge signal is illustrated in FIG.
  • a plurality of two-dimensional arrays can be used.
  • the X-ray image detector using the CMOS sensor is provided for each pixel circuit row, and includes a large number of gate electrodes 282 that output a drive signal for driving a signal readout circuit included in the pixel circuit 280 and a reset.
  • An electrode 284 and a plurality of data electrodes 283 that are provided for each pixel circuit column and output a charge signal read from the signal reading circuit of each pixel circuit 280 are provided.
  • the gate electrode 282 and the reset electrode 284 are connected to a row selection scanning unit 285 that outputs a drive signal to the signal readout circuit, and the data electrode 283 performs predetermined processing on the charge signal output from each pixel circuit.
  • a signal processing unit 286 to be applied is connected.
  • each pixel circuit 280 includes a lower electrode 806 formed above the substrate 800 via an insulating film 803, a photoelectric conversion film 807 formed on the lower electrode 806, and a photoelectric conversion film 807.
  • An upper electrode 808 formed above, a protective film 809 formed on the upper electrode 808, and an X-ray conversion film 810 formed on the protective film 809 are provided.
  • the X-ray conversion film 810 is made of, for example, CsI: TI that emits light having a wavelength of 550 nm when irradiated with X-rays.
  • the thickness is preferably about 500 ⁇ m.
  • the upper electrode 808 is made of a conductive material that is transparent to the incident light because it is necessary to make light having a wavelength of 550 nm incident on the photoelectric conversion film 807.
  • the lower electrode 806 is a thin film divided for each pixel circuit 280 and is formed of a transparent or opaque conductive material.
  • the photoelectric conversion film 807 is formed of, for example, a photoelectric conversion material that absorbs light having a wavelength of 550 nm and generates a charge corresponding to the light.
  • a photoelectric conversion material for example, an organic semiconductor, an organic material containing an organic dye, a material in which an inorganic semiconductor crystal having a direct transition type band gap and a large absorption coefficient is used alone or in combination are used.
  • a charge accumulating portion 802 for accumulating the charges transferred to the lower electrode 806 corresponding to the lower electrode 806, and the charges accumulated in the charge accumulating portion 802.
  • a signal readout circuit 801 for converting the signal into a voltage signal and outputting it.
  • the charge storage portion 802 is electrically connected to the lower electrode 806 by a conductive material plug 804 formed through the insulating film 803.
  • the signal readout circuit 801 is configured by a known CMOS circuit.
  • One pixel circuit column corresponds to the main pixel size Dx described in the above example
  • one pixel circuit row corresponds to the sub pixel size Dy described in the above example.
  • the main pixel size Dx and the sub-pixel size Dy can be set to, for example, 10 ⁇ m in the case of an X-ray image detector using a CMOS sensor.
  • the M pixel circuit rows have one image resolution D in the sub-scanning direction of the phase contrast image.
  • the self-image G 1 of the first grating 131 is tilted with respect to the second grating 132.
  • a specific self-image G1 rotation angle of the first grating 131 is calculated by the above equation (29) as in the above example.
  • one pixel circuit 280 in FIG. An image signal obtained by dividing the intensity modulation of one period of the self-image G1 into five can be detected, that is, five stripes different from each other depending on five pixel circuit rows connected to the five gate electrodes 282 shown in FIG. Each image signal of the image can be detected.
  • one second grating 132 and the self-image G1 are shown corresponding to one pixel circuit array. However, in actuality, one pixel circuit array corresponds to one pixel circuit array. Many second gratings 132 and self-images G1 may exist, and FIG. 35 is not shown.
  • the image signal read from the pixel circuit row connected to the first read line gate electrode G11 is acquired as the first fringe image signal M1.
  • the image signal read from the pixel circuit row connected to the second read line gate electrode G12 is acquired as the second stripe image signal M2, and the pixel circuit connected to the third read line gate electrode G13.
  • the image signal read from the row is acquired as the third stripe image signal M3, and the image signal read from the pixel circuit row connected to the fourth read line gate electrode G14 is the fourth stripe image signal M4.
  • the image signal read from the pixel circuit row connected to the fifth read line gate electrode G15 is acquired as the fifth fringe image signal M5.
  • the method for generating the phase contrast image based on the first to fifth fringe image signals is the same as the above example.
  • the image resolution in the main scanning direction of the phase contrast image is 10 ⁇ m
  • the extending direction of the gate electrode and the data electrode of the X-ray image detector is not limited to the example shown in FIGS. 32 and 35.
  • the gate electrode is in the vertical direction on the paper surface and the data line is in the horizontal direction on the paper surface.
  • An X-ray image detector may be arranged.
  • the self-image G1 of the first grating 131 and the second grating 132 may be rotated by 90 ° with respect to the arrangement of the X-ray image detectors as shown in FIGS.
  • the image signals constituting the different fringe images are acquired as in the above example. be able to.
  • the periodic direction of the self-image G1 of the first grating 131 or the periodic direction of the second grating 132, and one of the directions in which the pixel circuits 270 and 280 of the X-ray image detector are arranged Do not necessarily match.
  • Configuration capable of acquiring image signals of pixels arranged in a direction parallel to the periodic direction of moire generated by the self-image G1 of the first grating 131 and the second grating 132, or in an intersecting direction other than the orthogonal direction If so, the relationship between the self-image G1 of the first grating 131 and the periodic direction of the second grating 132 and the arrangement direction of the pixel circuit 270 of the X-ray image detector may be any relationship.
  • an X-ray image detector using a TFT switch or an X-ray image detector using a CMOS sensor can be used.
  • these X-ray image detectors generally have pixels. Due to the square shape, when the present invention is applied, the resolution in the sub-scanning direction becomes worse than the resolution in the main scanning direction.
  • the resolution Dx is limited in the main scanning direction by the width of the linear electrode (direction perpendicular to the extending direction).
  • the resolution Dy is determined by the product of the width of the reading light of the linear reading light source 250 in the sub-scanning direction, the accumulation time of the charge amplifier 200 per line, and the moving speed of the linear reading light source 250.
  • Both the main and sub resolutions are typically several tens of ⁇ m, but it is possible to increase the sub scanning direction resolution while maintaining the main scanning direction resolution.
  • the X-ray image detector of the optical reading system can be realized by reducing the width of the linear reading light source 250 or reducing the moving speed, and has a more advantageous configuration.
  • FIG. 36 shows a schematic configuration of the X-ray imaging system of this example.
  • the X-ray imaging system has a grating 131 that passes X-rays emitted from the X-ray source 11 to form a periodic pattern image (self-image G1), and a self-image formed by the grating 131.
  • An X-ray image detector 340 that selectively detects G1; and a moving mechanism 333 that moves the X-ray image detector 340 relative to the grating 131 in a direction orthogonal to the extending direction of the linear electrodes; And a phase contrast image generation unit 260 that generates a phase contrast image based on the intensity modulation signal obtained from the output of the X-ray image detector 340 in accordance with the relative movement by the movement mechanism 333.
  • a multi-slit (for example, the multi-slit 103 described above) having a predetermined pitch can be installed between the X-ray source 11 and the first grating 131 and used.
  • the X-ray image detector 340 detects the self-image G1 of the grating 131 formed by the grating 131 by passing the X-rays through the grating 131, and the charge signal corresponding to the self-image G1 in a lattice shape to be described later. By accumulating in the divided charge accumulation layer, the self-image G1 is selectively detected in a region and output as an image signal.
  • the X-ray image detector 340 is a direct conversion type X-ray image detector that reads an image signal by scanning with a linear reading light. X-ray image detector.
  • FIG. 37 shows an appearance FIG. Of the X-ray image detector 340 of this example. 37A), an xz plane cross section (FIG. 37B), and a yz plane cross section (FIG. 37C) are schematically shown.
  • the X-ray image detector 340 in this example generates charges by receiving the first electrode layer 241 that transmits X-rays and the irradiation of X-rays that have transmitted through the first electrode layer 241.
  • the charges generated in the recording photoconductive layer 242 and the recording photoconductive layer 242 it acts as an insulator for charges of one polarity, and acts as a conductor for charges of the other polarity.
  • the charge storage layer 343, a reading photoconductive layer 245 that generates charges when irradiated with reading light, and a second electrode layer 246 are stacked in this order. Note that each of the above layers is formed on the glass substrate 247 in order from the second electrode layer 246.
  • the charge storage layer 343 may be any film that is insulative with respect to the polar charge to be stored, such as an acrylic organic resin, polyimide, BCB, PVA, acrylic, polyethylene, polycarbonate, polyetherimide, or the like, or As 2 S. 3 , sulfides such as Sb 2 S 3 and ZnS, oxides and fluorides. Furthermore, it is more preferable that it is insulative with respect to the charge of the polarity to be accumulated and that it is conductive with respect to the charge of the opposite polarity, and the product of mobility ⁇ life is 3 digits or more depending on the polarity of the charge. Substances with differences are preferred.
  • the dielectric constant thereof is a recording light. It is desirable to use a conductive layer 242 and a photoconductive layer for reading 245 having a dielectric constant that is 1/2 times or more and 2 times or less.
  • the charge storage layer 343 in this example is linearly divided so as to be parallel to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b of the second electrode layer 246. ing.
  • the charge storage layer 343 is divided at a pitch finer than the arrangement pitch of the transparent linear electrodes 246 a or the light shielding linear electrodes 246 b, and the arrangement pitch p 2 and the interval d 2 are different depending on the combination of the grating 131. It is determined so that imaging can be performed. That is, the charge storage layer 343 divided linearly as described above has a function of periodically masking the self-image G1 of the grating 131 in the same manner as the second grating 132 in each example described above. .
  • the arrangement pitch p 2 and the interval d 2 of the transparent linear electrodes 246a or the light shielding linear electrodes 246b are determined in the same manner as the lattice pitch p 2 and the interval d 2 related to the second grating 132 described above, and therefore the same reference numerals are used. It explains using.
  • the self-image G1 of the grating 131 formed through the grating 131 is expressed by the X-ray source. It is enlarged in proportion to the distance from 11. Then, in this embodiment, the arrangement pitch p 2 of the charge storage layer 343, the portion of the linear charge accumulation layer 343 is approximately the periodic pattern of the light area of the self image G1 of the grating 131 at the position of the charge accumulation layer 343 It is determined to match.
  • the grating pitch of the grating 131 is p 1
  • the distance from the focal point of the X-ray source 11 to the grating 131 is L 1
  • the grating When the distance from 131 to the detection surface of the X-ray image detector 340 is L 2 , the arrangement pitch p 2 of the charge storage layer 343 is expressed by the above equation (1), and when using the multi slit 103 described above, the multi pitch the distance from the slit 103 to grating 131 as L 3, is determined to satisfy the above equation (21).
  • the charge storage layer 343 is formed with a thickness of 2 ⁇ m or less in the stacking direction (z direction).
  • the charge storage layer 343 can be formed by resistance heating vapor deposition using, for example, the above-described material and a mask formed of a metal mask or a fiber having a hole in a metal plate. Further, it may be formed using photolithography.
  • an image signal is read out using a pair of the adjacent transparent linear electrode 246a and the light shielding linear electrode 246b. That is, as shown in FIG. 37, an image signal of one pixel is read out by one set of transparent linear electrode 246a and light shielding linear electrode 246b.
  • the transparent linear electrode 246a and the light shielding linear electrode 246b are arranged so that one pixel is approximately 50 ⁇ m.
  • a linear reading light source 250 extended in a direction (x direction) orthogonal to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b. It has.
  • a configuration including the X-ray source 11, the grating 131, and the X-ray image detector 340 having the charge storage layer 343 divided as described above is caused to function as a Talbot interferometer.
  • several conditions must be almost satisfied. The conditions will be described below.
  • the distance Z 2 (Talbot interference distance Z) between the grating 131 and the detection surface of the X-ray image detector 340 is equal to the above formula when the grating 131 is a phase modulation type grating that applies 90 ° phase modulation. (26) must be almost satisfied.
  • the above expression (27) must be substantially satisfied, and when the grating 131 is an absorption type grating, the above expression (28) must be substantially satisfied. I must.
  • the moving mechanism 333 changes the relative position between the grating 131 and the X-ray image detector 340 by translating the X-ray image detector 340 in a direction orthogonal to the extending direction of the linear electrode. It is something to be made.
  • the moving mechanism 333 is configured by an actuator such as a piezoelectric element, for example.
  • X-rays pass through the subject H and then irradiate the grating 131.
  • the X-rays irradiated on the grating 131 are diffracted by the grating 131 to form a Talbot interference image (self-image G1 of the grating 131) at a predetermined distance from the grating 131 in the optical axis direction of the X-ray.
  • the self-image G1 of the grating 131 is incident from the first electrode layer 241 side of the X-ray image detector 340 and is region-selectively stored by the divided charge storage layer 343 of the X-ray image detector 340.
  • An X-ray image detector 340 outputs the image signal.
  • the X-rays irradiated to the X-ray image detector 340 are transmitted through the first electrode layer 241 and irradiated to the recording photoconductive layer 242.
  • the X-ray irradiation generates a charge pair in the recording photoconductive layer 242, and the positive charge is combined with the negative charge charged in the first electrode layer 241 and disappears, and the negative charge is latent. It is stored in the charge storage layer 343 as an image charge (see FIG. 38B).
  • the charge storage layer 343 in this example is linearly divided at the arrangement pitch as described above, out of the charges generated according to the self-image G1 of the grating 131 in the recording photoconductive layer 242, Only charges in which the charge storage layer 343 exists immediately below are trapped and stored by the charge storage layer 343, and other charges pass between the linear charge storage layers 343 (hereinafter referred to as non-charge storage regions). Then, after passing through the reading photoconductive layer 245, it flows out to the transparent linear electrode 246a and the light shielding linear electrode 246b.
  • the self-image of the lattice 131 becomes the line of the electric charge accumulation layer 343.
  • the region is selectively stored in the charge storage layer 343. That is, the charge storage layer 343 of this example performs the same function as the second grating in phase imaging using two conventional gratings.
  • the linear reading light L1 emitted from the linear reading light source 250 is irradiated from the second electrode layer 246 side. Is done.
  • the reading light L1 passes through the transparent linear electrode 246a and is irradiated to the reading photoconductive layer 245, and the positive charge generated in the reading photoconductive layer 245 by the irradiation of the reading light L1 is a latent image in the charge storage layer 343.
  • the negative charge is combined with the positive charge charged to the light shielding linear electrode 246b through the charge amplifier 200 connected to the transparent linear electrode 246a while being combined with the charge.
  • the linear reading light source 250 moves in the sub-scanning direction (y direction)
  • the X-ray image detector 340 is scanned with the linear reading light L1, and the reading line irradiated with the linear reading light L1.
  • the image signal is sequentially detected by the above-described operation every time, and the detected image signal for each reading line is sequentially input to the phase contrast image generation unit 260 and stored.
  • the entire surface of the X-ray image detector 340 is scanned with the reading light L 1, and the image signal of the entire frame is stored in the phase contrast image generation unit 260.
  • the principle of the method for generating the phase contrast image in this example is the same as the content described with reference to the equations (13) to (19), and thus the description thereof is omitted.
  • the phase contrast image generation unit 260 generates a phase contrast image based on the plurality of fringe images.
  • the grating 131 may be configured to project incident X-rays without diffracting. According to this configuration, since the projected image projected through the grating 131 is obtained similarly at a position behind the grating 131, the distance Z 2 from the grating 131 to the detection surface of the X-ray image detector 340 is obtained. Can be set regardless of the Talbot interference distance.
  • the X-ray image detector 340 is translated by the moving mechanism 333, and X-ray images are captured at each position to acquire M fringe image signals.
  • the X-ray imaging system of the example is configured to be able to acquire M striped image signals by capturing one X-ray image without requiring the moving mechanism 333 as described above. That is, as described with reference to FIGS. 25 to 31 and the like described above, also in this example, as shown in FIGS. 25 to 27 and the like, the grating 131 and the X-ray image detector 340 are connected to each other.
  • the extending direction of the self-image G1 and the extending direction of the charge storage layer 343 of the X-ray image detector 340 are arranged so as to be relatively inclined.
  • the sub-pixel size Dy in the sub-scanning direction have a relationship as shown in FIG. In the same manner as the configuration and operation described with reference to FIGS. 25 to 31 and the like, after one radiographic image is taken, the entire surface of the X-ray image detector 340 is scanned with the reading light L1.
  • the image signal of the entire frame is stored in the phase contrast image generation unit 260, and the phase contrast image generation unit 260 acquires the image signals of five different fringe images based on the stored image signal. Based on the first to fifth fringe image signals, the phase contrast image generation unit 260 generates a phase contrast image in the same manner as in the above example.
  • the X-ray image detector 340 is provided with three layers of the recording photoconductive layer 242, the charge storage layer 343, and the reading photoconductive layer 245 between the electrodes.
  • this layer configuration is not necessarily required.
  • the transparent photoelectrode 246a and the light shielding electrode 246b of the second electrode layer are provided without providing the reading photoconductive layer 245.
  • a linear charge storage layer 343 may be provided so as to be in direct contact with the recording medium, and a recording photoconductive layer 242 may be provided on the charge storage layer 343.
  • the recording photoconductive layer 242 also functions as a reading photoconductive layer.
  • This structure is a structure in which the charge accumulation layer 343 is provided directly on the second electrode layer 246 without the reading photoconductive layer 245, and the linear charge accumulation layer 343 can be formed by vapor deposition.
  • the charge storage layer 343 can be easily formed.
  • a metal mask or the like is used to selectively form a linear pattern.
  • a step of setting a metal mask for forming the linear charge storage layer 343 by vapor deposition after vapor deposition of the reading photoconductive layer 245 is performed.
  • the reading photoconductive layer 245 is deteriorated or foreign matter is mixed in between the photoconductive layers by an operation in the air between the reading photoconductive layer 245 vapor deposition step and the recording photoconductive layer 242 vapor deposition step. May cause deterioration of quality.
  • the above-described reading photoconductive layer 245 is not provided, operations in the air after the photoconductive layer is deposited can be reduced, so that the above-described concern about quality deterioration can be reduced.
  • the X-rays irradiated to the X-ray image detector 340 are transmitted through the first electrode layer 241 and irradiated to the recording photoconductive layer 242.
  • the X-ray irradiation generates a charge pair in the recording photoconductive layer 242, and the positive charge is combined with the negative charge charged in the first electrode layer 241 and disappears, and the negative charge is latent.
  • the image charge is stored in the charge storage layer 343 (FIG. 41B). Note that since the linear charge storage layer 343 in contact with the second electrode layer 246 is an insulating film, charges that have reached the charge storage layer 343 are captured there and go to the second electrode layer 246. Can't, and stays accumulated.
  • the self-image G1 of the lattice 131 is stored in the charge storage layer 343 in a region-selective manner by overlapping with the linear pattern of the charge storage layer 343.
  • the linear reading light L1 emitted from the linear reading light source 250 is irradiated from the second electrode layer 246 side.
  • the reading light L1 passes through the transparent linear electrode 246a and is applied to the recording photoconductive layer 242 in the vicinity of the charge storage layer 343.
  • Positive charges generated by the irradiation of the reading light L1 are linear charge storage layer 343. Attracted to recombine.
  • the other negative charge is drawn to the transparent linear electrode 246a, and the light shielding linear electrode is connected to the positive charge charged in the transparent linear electrode 246a and the charge amplifier 200 connected to the transparent linear electrode 246a. It couple
  • a current flows through the charge amplifier 200, and this current is integrated and detected as an image signal.
  • the method for acquiring a plurality of fringe image signals and the method for generating a phase contrast image are the same as those in the above examples.
  • the charge storage layer 343 of the X-ray image detector 340 is formed to be completely separated into a linear shape.
  • the present invention is not limited to this, for example, as shown in FIG. You may make it form in a grid
  • FIG. 44 shows a configuration of a calculation unit regarding another example of the radiation imaging system for explaining the embodiment of the present invention.
  • phase contrast image a high-contrast image (phase contrast image) of an X-ray weakly absorbing object that has been difficult to draw
  • an absorption image is referred to corresponding to the phase contrast image.
  • it is effective to supplement the portion that could not be represented by the absorption image with the information of the phase contrast image by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing.
  • capturing an absorption image separately from the phase contrast image makes it difficult to superimpose images due to the shift in the shooting position between the phase contrast image capture and the absorption image capture. Increasing the burden on the subject.
  • the small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in the fields of cancer and cardiovascular diseases.
  • this X-ray imaging system uses an arithmetic processing unit 190 that can generate an absorption image and a small-angle scattered image from a plurality of images acquired for a phase contrast image.
  • the absorption image generation unit 192 generates an absorption image by averaging the pixel data I k (x, y) obtained for each pixel with respect to k and calculating an average value as shown in FIG. 45. To do.
  • the average value may be calculated by simply averaging the pixel data I k (x, y) with respect to k. However, when M is small, the error increases, so that the pixel data I k ( After fitting x, y) with a sine wave, an average value of the fitted sine wave may be obtained.
  • the generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel data I k (x, y) with respect to k can be used as long as the amount corresponds to the average value.
  • an absorption image may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject.
  • This absorption image reflects detection intensity unevenness of the detection system (including information such as grating transmittance unevenness, in-plane unevenness of irradiation X-ray intensity, and sensitivity unevenness of the X-ray image detector). Therefore, a correction coefficient map for correcting detection intensity unevenness of the detection system can be created from this image.
  • Absorption of the subject in which an absorption image is created from a group of images acquired by shooting in the presence of the subject (main shooting), and the detection coefficient unevenness of the detection system is corrected by applying the above correction coefficient to each pixel. An image can be obtained.
  • the small angle scattered image generation unit 193 generates a small angle scattered image by calculating and imaging the amplitude value of the pixel data I k (x, y) obtained for each pixel.
  • the amplitude value may be calculated by obtaining the difference between the maximum value and the minimum value of the pixel data I k (x, y).
  • M is small
  • the error increases, so that the pixel data After fitting I k (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained.
  • the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
  • an absorption image and a small angle scattered image are generated from a plurality of images acquired for the phase contrast image of the subject. No deviation occurs, and the phase contrast image can be satisfactorily superimposed with the absorption image or the small-angle scattered image.
  • the radiation used in the present invention is not limited to X-rays, but other than X-rays such as ⁇ -rays and ⁇ -rays. It is also possible to use other radiation.
  • the present invention is applied to an apparatus for medical diagnosis.
  • the present invention is not limited to medical diagnosis use, and can be applied to other radiation detection apparatuses for industrial use. .
  • the first grating having a plurality of strips arranged in the first direction and the radiation image formed by the radiation that has passed through the first grating have a period.
  • a radiological image detector that detects the radiographic image masked by the grid pattern using a plurality of pixels, wherein the first grid includes the first grid A plurality of first grating pieces arranged in the first direction in a plane intersecting an optical axis of radiation passing through one grating, and the arrangement of the first grating pieces in the first direction
  • the pitch is at least twice the pixel pitch in the first direction of the radiation image detector.
  • a first grating having a plurality of strips arranged in a first direction and a radiation image formed by radiation passing through the first grating are periodically masked.
  • a second grating having a plurality of strips arranged in a line, and a radiation image detector for detecting the radiation image masked by the second grating using a plurality of pixels and
  • the grating includes a plurality of second grating pieces arranged at least in the first direction in a plane intersecting an optical axis of radiation passing through the first grating and the second grating,
  • An arrangement pitch of the lattice pieces in the first direction is at least twice as large as a pixel pitch in the first direction of the radiological image detector.
  • a first grating having a plurality of strips arranged in a first direction and a radiation image formed by radiation passing through the first grating are periodically masked.
  • a second grating having a plurality of strips arranged in a line, and a radiation image detector for detecting the radiation image masked by the second grating using a plurality of pixels The grating includes a plurality of first grating pieces arranged in at least the first direction in a plane intersecting the optical axis of the radiation passing through the first grating, and the first grating piece includes the first grating pieces.
  • the arrangement pitch in the direction 1 is at least twice the pixel pitch in the first direction of the radiation image detector, and the second grating is at least in the plane intersecting the optical axis of the radiation.
  • a plurality of second array arranged in one direction The radiation image is characterized in that the arrangement pitch of the second grating pieces in the first direction is not less than twice the pixel pitch in the first direction of the radiation image detector.
  • a detection device is disclosed.
  • the arrangement pitch of the first grating pieces and the arrangement pitch of the second grating pieces are substantially equal.
  • the radiation passing through the first grating is a cone beam whose irradiation range is expanded in proportion to the distance from the radiation focus
  • the arrangement pitch is The value corrected based on the enlargement ratio, which is the ratio between the distance between the grating having the arrangement pitch and the radiation focus and the distance between the radiation image detector and the radiation focus.
  • the dimension of the grating in the direction along the optical axis of the radiation is h
  • the distance between the stripes of the grating is d
  • the first direction is along the circumferential direction of a cylindrical surface having an axis passing through the radiation focus.
  • the arrangement pitch is based on the fundamental frequency of moire detected by the radiographic image detector and the frequency of harmonic components up to at least the fourth order. Can be decided.
  • the arrangement pitch is 6 times or more the pixel pitch.
  • the arrangement pitch is 8 times or more the pixel pitch.
  • the arrangement pitch is 10 times or more the pixel pitch.
  • a band-shaped boundary portion is formed between adjacent lattice pieces.
  • the plurality of lattice pieces are also arranged in a second direction intersecting the first direction.
  • the first grating further includes a plurality of strips arranged in a second direction intersecting the first direction.
  • the present specification discloses a radiation imaging apparatus comprising the above-described radiation image detection apparatus and a radiation source that irradiates radiation toward the first grating.
  • the distribution of the refraction angle of the radiation incident on the radiation image detector is calculated from the above-described radiation imaging apparatus and the image detected by the radiation image detector of the radiation imaging apparatus,
  • a radiation imaging system including an arithmetic processing unit that generates a phase contrast image of a subject based on the distribution of refraction angles is disclosed.
  • the present invention it is possible to stably manufacture a grating having a size corresponding to a required visual field size, and it is possible to stably produce a phase contrast without degrading the image quality of the phase contrast image due to the arrangement of the grating pieces. An image is obtained.
  • X-ray imaging system 11 X-ray source (radiation source) 12 Imaging unit (radiation image detection device) 13 Console (control calculation means) 30 Flat panel detector (FPD) 31 First absorption type grating 31a Substrate 31b X-ray shielding part (strip) 32 Second absorption type grating 32a Substrate 32b X-ray shielding part (strip) 311 1st lattice piece 312 2nd lattice piece 315 Boundary portion 325 Boundary portion P B1 , P B2 arrangement pitch P C1 , P C2 arrangement pitch P D image pitch

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

Provided are a radiographic image detector, radiography apparatus, and radiography system with which phase contrast images of stable image quality can be obtained using gratings that can be stably produced. The radiography system is provided with a first grating (31) having multiple bands (31b) disposed in a first direction (x direction), a second grating (32) having multiple bands (32b) disposed so as to mask periodically the radiographic image formed by radiation passing through the first grating (31), and a radiographic image detector (30) that detects, using multiple pixels (40), the radiographic image masked by the second grating (32). The first and second gratings (31, 32) each contain multiple grating pieces (311, 321) disposed at least in the first direction, x, in a plane intersecting with the optical axis of the radiation and the pitch PC of grating piece (311, 321) arrangement in the x-direction is two or more times the pixel pitch PD of the radiographic image detector (30) in the x-direction.

Description

放射線画像検出装置、放射線撮影装置、及び放射線撮影システムRadiation image detection apparatus, radiation imaging apparatus, and radiation imaging system
 本発明は、X線等の放射線を用いた被写体の位相イメージングを可能とする放射線画像検出装置、放射線撮影装置、及び放射線撮影システムに関する。 The present invention relates to a radiation image detection apparatus, a radiation imaging apparatus, and a radiation imaging system that enable phase imaging of a subject using radiation such as X-rays.
 X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被検体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。 X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance. X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
 一般的なX線撮影システムでは、X線を放射するX線源とX線を検出するX線画像検出器との間に被検体を配置して、被検体の透過像を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器の各画素に入射する。この結果、被検体のX線吸収像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。 In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects X-rays, and a transmission image of the subject is taken. In this case, each X-ray emitted from the X-ray source toward the X-ray image detector is caused by a difference in characteristics (atomic number, density, thickness) of the substance existing on the path to the X-ray image detector. After receiving a corresponding amount of attenuation (absorption), it enters each pixel of the X-ray image detector. As a result, an X-ray absorption image of the subject is detected and imaged by the X-ray image detector. As an X-ray image detector, a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit is widely used in addition to a combination of an X-ray intensifying screen and a film and a stimulable phosphor.
 しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなるため、生体軟部組織やソフトマテリアルなどでは、X線吸収像としての十分な画像の濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が少ないため、濃淡差が得られにくい。 However, since the X-ray absorption ability is lower as a substance composed of an element having a smaller atomic number, a problem that a sufficient softness (contrast) of an X-ray absorption image cannot be obtained with a soft tissue or a soft material of a living body. There is. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and there is little difference in the amount of X-ray absorption between them, so that it is difficult to obtain a difference in light and shade.
 このような問題を背景に、近年、被検体によるX線の強度変化に代えて、被検体によるX線の位相変化に基づいた画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。一般に、X線が物体に入射したとき、X線の強度よりも位相のほうが高い相互作用を示すことが知られている。このため、位相差を利用したX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を得ることができる。このようなX線位相イメージングの一種として、近年、2枚の透過回折格子(位相型格子及び吸収型格子)とX線画像検出器とからなるX線タルボ干渉計を用いたX線撮影システムが考案されている(例えば、特許文献1参照)。 Against the background of such problems, in recent years, X-ray phase imaging that obtains an image (hereinafter referred to as a phase contrast image) based on the X-ray phase change by the subject instead of the X-ray intensity change by the subject is proposed. There is a lot of research. In general, it is known that when X-rays are incident on an object, the interaction is higher in phase than in X-ray intensity. For this reason, in the X-ray phase imaging using the phase difference, a high-contrast image can be obtained even for a weakly absorbing object having a low X-ray absorption capability. As a kind of such X-ray phase imaging, in recent years, an X-ray imaging system using an X-ray Talbot interferometer comprising two transmission diffraction gratings (phase grating and absorption grating) and an X-ray image detector has been proposed. It has been devised (for example, see Patent Document 1).
 上記のX線タルボ干渉計では、被検体の背後に第1の回折格子(位相型格子あるいは吸収型格子)を配置し、第1の回折格子の格子ピッチとX線波長で決まる特定距離(タルボ干渉距離)だけ下流に第2の回折格子(吸収型格子)を配置し、その背後にX線画像検出器を配置することにより構成される。上記タルボ干渉距離とは、第1の回折格子を通過したX線が、タルボ干渉効果によって自己像を形成する距離であり、この自己像は、X線源と第1の回折格子との間に配置された被検体とX線との相互作用(位相変化)により変調を受ける。 In the above X-ray Talbot interferometer, a first diffraction grating (phase type grating or absorption type grating) is arranged behind the subject, and a specific distance (Talbot) determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The second diffraction grating (absorption type grating) is disposed downstream by the (interference distance), and the X-ray image detector is disposed behind the second diffraction grating. The Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the placed subject and X-rays.
 そして上記のX線タルボ干渉計では、第1の回折格子の自己像と第2の回折格子との重ね合わせにより生じるモアレを検出し、被検体によるモアレの変化を解析することによって被検体の位相情報を取得する。モアレの解析方法としては、例えば、縞走査法が知られている。この縞走査法によると、第1の回折格子に対して第2の回折格子を、第1の回折格子の面にほぼ平行で、かつ第1の回折格子の格子方向(条帯方向)にほぼ垂直な方向に、格子ピッチを等分割した走査ピッチで並進移動させながら複数回の撮影を行い、X線画像検出器で得られる各画素値の変化から、被検体で屈折したX線の角度分布(位相シフトの微分像)を取得する方法であり、この角度分布に基づいて被検体の位相コントラスト画像を得ることができる。 In the above X-ray Talbot interferometer, the phase of the subject is detected by detecting the moire caused by the superposition of the self-image of the first diffraction grating and the second diffraction grating, and analyzing the change in the moire caused by the subject. Get information. As a moire analysis method, for example, a fringe scanning method is known. According to this fringe scanning method, the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating. An angle distribution of X-rays refracted by the subject from a change in each pixel value obtained by performing X-ray imaging while performing translational movement in the vertical direction at a scanning pitch equally divided by the lattice pitch. This is a method for obtaining (differential image of phase shift), and a phase contrast image of the subject can be obtained based on this angular distribution.
 上述のような位相イメージングに用いられるX線格子は、測定対象の大きさから、例えば視野角数十cmに対応する大きさが必要となる。この格子サイズに関し、特許文献2では、第1の格子、第2の格子、及びX線画像検出器が一体とされたモジュールを多数配列することにより、個々のモジュールサイズは小さくても全体として必要な大きさの視野サイズを実現している。 The X-ray grating used for the phase imaging as described above needs to have a size corresponding to, for example, a viewing angle of several tens of centimeters from the size of the measurement target. Regarding this grid size, in Patent Document 2, a large number of modules in which the first grid, the second grid, and the X-ray image detector are integrated are necessary as a whole even if the individual module size is small. Realizes a large visual field size.
日本国特開2008-200359号公報Japanese Unexamined Patent Publication No. 2008-200399 日本国特開2007-203061号公報Japanese Laid-Open Patent Publication No. 2007-203061
 ところで、X線格子、特に吸収型格子では、格子の開口幅に対して、X線を遮蔽する条帯の厚さの比率が高い、高アスペクト比の格子パターンが要求される。格子の開口幅や条帯の厚さは、撮影に供されるX線のエネルギーに応じて設定されることが好ましいが、通常の医療画像診断で用いられるようなX線のエネルギー領域が30~120keVであることを鑑みると、X線の吸収が高い金を用いて条帯を構成しても、数μmの格子開口幅に対し、10~300μmもの厚さが必要である。高アスペクト比の格子パターンを形成可能な方法としては、フォトリソグラフィの手法におけるエッチングプロセスなどがある。たとえば、基板上に金、白金などの重金属のパターン(条帯)が深いエッチングを用いて数μmの格子ピッチで形成される。格子パターンの製造には、このように高アスペクト比で形成することの困難さに加え、視野サイズ相応の広さにわたって、サブミクロンオーダーの面内均一性も要求されるので、格子の安定的な製造は非常に難しい。 Incidentally, an X-ray grating, particularly an absorption type grating, requires a high aspect ratio grating pattern in which the ratio of the thickness of the strip that shields X-rays is high with respect to the opening width of the grating. The opening width of the lattice and the thickness of the stripe are preferably set according to the energy of X-rays used for imaging, but the energy region of X-rays as used in normal medical image diagnosis is 30 to 30. Considering that it is 120 keV, even if the strip is made of gold having high X-ray absorption, a thickness of 10 to 300 μm is required for a lattice opening width of several μm. As a method capable of forming a high aspect ratio lattice pattern, there is an etching process in a photolithography technique. For example, a heavy metal pattern (strip) such as gold or platinum is formed on a substrate with a lattice pitch of several μm using deep etching. In addition to the difficulty of forming a high aspect ratio in this way, in addition to the difficulty of forming a lattice pattern in this way, in-plane uniformity on the order of submicron order is also required over a wide area corresponding to the visual field size. Manufacturing is very difficult.
 このため、小さいサイズの複数の格子片を配列して1枚の格子として用いることが考えられるが、格子片の配列ピッチとX線画像検出器の画素ピッチとの相関により測定に不要なモアレが生じうる。すなわち、格子片と格子片との継ぎ目が格子片の寸法に応じた周期の配列ピッチを有するため、この配列ピッチと画素ピッチとのそれぞれの周期性の重ね合わせにより、X線画像検出器において画像取得する際にモアレが生じうる。 For this reason, it is conceivable to arrange a plurality of small-sized lattice pieces to be used as a single lattice. However, there is a moire that is not necessary for measurement due to the correlation between the lattice pitch and the pixel pitch of the X-ray image detector. Can occur. That is, since the joint between the lattice pieces has an arrangement pitch with a period corresponding to the dimension of the lattice pieces, an image is obtained in the X-ray image detector by overlapping each periodicity of the arrangement pitch and the pixel pitch. Moire can occur during acquisition.
 また、上記のX線タルボ干渉計を用いたX線撮影システムでは、第1の格子を通過したX線によって形成される自己像(以下、自己像G1と称する)を第2の格子で周期的にマスクする。そして、第1、第2格子を格子パターンの配列方向に相対的に走査した際に、自己像G1と第2の格子の重ね合わせによって形成されるモアレが移動することに伴って得られる強度変調信号をX線画像検出器で検出し、更に、X線が被写体を通過しないときの強度変調信号と、X線が被写体を通過したときの強度変調信号との位相のズレから位相コントラスト画像を形成する。 In the X-ray imaging system using the above-described X-ray Talbot interferometer, a self-image (hereinafter referred to as a self-image G1) formed by X-rays that have passed through the first grating is periodically generated by the second grating. To mask. When the first and second gratings are relatively scanned in the arrangement direction of the grating pattern, the intensity modulation obtained as the moire formed by the superposition of the self-image G1 and the second grating moves. The signal is detected by an X-ray image detector, and a phase contrast image is formed from the phase shift between the intensity modulation signal when the X-ray does not pass through the subject and the intensity modulation signal when the X-ray passes through the subject. To do.
 上述のように複数の格子片が配列されて第1、第2の格子がそれぞれ構成される場合には、自己像G1、第2の格子との関係で生じるモアレに加え、格子片と画素とのそれぞれの周期によって生じるモアレも考慮しなくてはならない。すなわち、X線画像検出器の検出面には、自己像G1と第2の格子との関係で生じたモアレと、格子片と画素との関係で生じたモアレとが重畳する。 In the case where a plurality of grid pieces are arranged and the first and second grids are respectively configured as described above, in addition to the moire generated in relation to the self-image G1 and the second grid, Moire generated by each cycle must be taken into account. That is, the moire generated due to the relationship between the self-image G1 and the second grating and the moire generated due to the relationship between the lattice piece and the pixel are superimposed on the detection surface of the X-ray image detector.
 ここで、強度変調信号を検出するためには、X線画像検出器の検出面におけるモアレの周波数と画素周期の周波数とが一致せず、かつ互いに整数倍の関係にもないことが要請される。更に、強度変調信号の位相のズレを高感度に検出するためには、強度変調信号を高いコントラストで得る必要があり、このためには、画素周期の周波数よりもモアレ周波数を低くする必要がある。
 また、強度変調信号の位相のズレは、被写体がない時に撮影したいわゆるプレ撮影と、被写体がある時に撮影したいわゆる本撮影とのそれぞれにおけるモアレ画像から形成された強度変調信号の比較によって求められるため、プレ撮影時と本撮影時との間にモアレ周波数が変動することによってアーチファクトが発生し、位相コントラスト画像の画質が低下してしまう。
 なお、特許文献2ではアーチファクトに関して言及しているが、その具体的な対策については触れられていない。
Here, in order to detect the intensity modulation signal, it is required that the frequency of the moire on the detection surface of the X-ray image detector and the frequency of the pixel period do not coincide with each other and do not have an integer multiple relationship with each other. . Further, in order to detect the phase shift of the intensity modulation signal with high sensitivity, it is necessary to obtain the intensity modulation signal with high contrast, and for this purpose, it is necessary to make the moire frequency lower than the frequency of the pixel period. .
In addition, the phase shift of the intensity modulation signal is obtained by comparing the intensity modulation signal formed from the moire image in the so-called pre-photographing when the subject is not present and the so-called main photographing when the subject is present. When the moire frequency fluctuates between pre-photographing and main-photographing, artifacts are generated and the image quality of the phase contrast image is degraded.
Note that Patent Document 2 mentions artifacts, but does not mention specific countermeasures.
 上記のように、強度変調信号の位相ズレの検出原理から、モアレ周波数が、画素周波数と一致しない(整数倍でもない)好適な値の範囲から逸脱しないことが要請される。すなわち、画像測定に好適な画質の位相コントラスト画像を安定的に得るためには、モアレの周波数が安定していることが重要である。 As described above, from the principle of detecting the phase shift of the intensity modulation signal, it is required that the moire frequency does not deviate from a suitable value range that does not match the pixel frequency (not an integer multiple). That is, in order to stably obtain a phase contrast image having an image quality suitable for image measurement, it is important that the moire frequency is stable.
 本発明の発明者が鋭意研究したところ、格子片の配列ピッチと画素ピッチとの比率変化に対してモアレ周波数が大きく変動し得るという新たな知見が得られた。このような格子片の配列ピッチと画素ピッチとの比率変化は、たとえば振動や温度変化による格子とX線画像検出器との相対距離や相対回転角度のズレなどによって容易に生じ、位相コントラスト画像の画質を低下させてしまう。 The inventor of the present invention diligently researched and found new knowledge that the moire frequency can fluctuate greatly with respect to the ratio change between the arrangement pitch of the lattice pieces and the pixel pitch. Such a change in the ratio between the arrangement pitch of the grating pieces and the pixel pitch is easily caused by, for example, a relative distance between the grating and the X-ray image detector due to vibration or temperature change, a relative rotation angle shift, and the like. The image quality is degraded.
 以上から、本発明の目的は、安定して製造可能な格子を用いて、安定した画質の位相コントラスト画像が得られる放射線画像検出器、放射線撮影装置、及び放射線撮影システムを提供することにある。 As described above, an object of the present invention is to provide a radiation image detector, a radiation imaging apparatus, and a radiation imaging system that can obtain a stable phase contrast image using a grating that can be manufactured stably.
 (1) 第1の方向に配列された複数の条帯を有する第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像を周期的にマスクするように配列された格子パターンと、前記格子パターンによって周期的にマスクされた前記放射線像を複数の画素を用いて検出する放射線画像検出器と、を備え、前記第1の格子は、当該第1の格子を通過する放射線の光軸と交差する面内において少なくとも前記第1の方向に配列された複数の第1の格子片を含み、前記第1の格子片の前記第1の方向における配列ピッチは、前記放射線画像検出器の前記第1の方向における画素ピッチの2倍以上であることを特徴とする放射線画像検出装置。
 (2) 第1の方向に配列された複数の条帯を有する第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像を周期的にマスクするように配列された複数の条帯を有する第2の格子と、前記第2の格子によって周期的にマスクされた前記放射線像を複数の画素を用いて検出する放射線画像検出器と、を備え、前記第2の格子は、前記第1の格子及び当該第2の格子を通過する放射線の光軸と交差する面内において少なくとも前記第1の方向に配列された複数の第2の格子片を含み、前記第2の格子片の前記第1の方向における配列ピッチは、前記放射線画像検出器の前記第1の方向における画素ピッチの2倍以上であることを特徴とする放射線画像検出装置。
 (3) 第1の方向に配列された複数の条帯を有する第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像を周期的にマスクするように配列された複数の条帯を有する第2の格子と、前記第2の格子によって周期的にマスクされた前記放射線像を複数の画素を用いて検出する放射線画像検出器と、を備え、前記第1の格子は、当該第1の格子を通過する放射線の光軸に交差する面内において少なくとも前記第1の方向に配列された複数の第1の格子片を含み、前記第1の格子片の前記第1の方向における配列ピッチは、前記放射線画像検出器の前記第1の方向における画素ピッチの2倍以上であり、前記第2の格子は、前記放射線の光軸と交差する面内において少なくとも前記第1の方向に配列された複数の第2の格子片を含み、前記第2の格子片の前記第1の方向における配列ピッチは、前記放射線画像検出器の前記第1の方向における画素ピッチの2倍以上であることを特徴とする放射線画像検出装置。
 (4) 上記(1)から(3)のいずれか一つの放射線画像検出装置と、前記第1の格子に向けて放射線を照射する放射線源とを備えることを特徴とする放射線撮影装置。
 (5) 上記(4)の放射線撮影装置と、前記放射線撮影装置の前記放射線画像検出器により検出された画像から、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、被写体の位相コントラスト画像を生成する演算処理部と、を備えることを特徴とする放射線撮影システム。
(1) A first grating having a plurality of strips arranged in a first direction, and a grating arranged so as to periodically mask a radiation image formed by radiation that has passed through the first grating. A radiation image detector that detects the radiation image periodically masked by the lattice pattern using a plurality of pixels, and the first lattice is radiation that passes through the first lattice. A plurality of first grid pieces arranged in the first direction in a plane intersecting the optical axis of the first grid piece, and the arrangement pitch of the first grid pieces in the first direction is the radiation image detection A radiological image detection apparatus characterized by being at least twice the pixel pitch in the first direction of the vessel.
(2) A first grating having a plurality of strips arranged in a first direction and a plurality arranged in such a manner as to periodically mask a radiation image formed by radiation that has passed through the first grating. A radiation image detector that detects, using a plurality of pixels, the radiation image periodically masked by the second lattice, and the second lattice comprises: A plurality of second grating pieces arranged in at least the first direction in a plane intersecting the optical axis of the radiation passing through the first grating and the second grating, and the second grating An arrangement pitch of the pieces in the first direction is at least twice as large as a pixel pitch in the first direction of the radiological image detector.
(3) A first grating having a plurality of strips arranged in a first direction and a plurality arranged in such a manner as to periodically mask a radiation image formed by radiation that has passed through the first grating. And a radiation image detector that detects the radiation image periodically masked by the second grating using a plurality of pixels, the first grating comprising: A plurality of first lattice pieces arranged in at least the first direction in a plane intersecting the optical axis of the radiation passing through the first lattice, and the first lattice piece includes the first lattice pieces. The arrangement pitch in the direction is at least twice the pixel pitch in the first direction of the radiation image detector, and the second grating is at least the first in a plane intersecting the optical axis of the radiation. A plurality of second grids arranged in a direction A radiation image detection apparatus including a piece, wherein an arrangement pitch of the second lattice pieces in the first direction is twice or more a pixel pitch of the radiation image detector in the first direction. .
(4) A radiation imaging apparatus comprising: the radiation image detection apparatus according to any one of (1) to (3) above; and a radiation source that irradiates radiation toward the first grating.
(5) The distribution of the refraction angle of the radiation incident on the radiation image detector is calculated from the radiation imaging device of (4) above and the image detected by the radiation image detector of the radiation imaging device, and this refraction is calculated. A radiation imaging system comprising: an arithmetic processing unit that generates a phase contrast image of a subject based on a distribution of angles.
 本発明によれば、必要な視野サイズに対応する大きさの格子を安定的に製造できるとともに、格子片の配列に起因して位相コントラスト画像の画質が低下することなく、安定した画質の位相コントラスト画像が得られる。 According to the present invention, it is possible to stably manufacture a grating having a size corresponding to a required visual field size, and it is possible to stably produce a phase contrast without degrading the image quality of the phase contrast image due to the arrangement of the grating pieces. An image is obtained.
本発明の実施形態を説明するための放射線撮影システムの一例の構成を模式的に示す側面図である。It is a side view which shows typically the structure of an example of the radiography system for describing embodiment of this invention. 図1の放射線撮影システムの制御ブロック図である。It is a control block diagram of the radiography system of FIG. 図1の放射線撮影システムに含まれる放射線画像検出器の構成を示す模式図である。It is a schematic diagram which shows the structure of the radiographic image detector contained in the radiography system of FIG. 第1、第2の格子の斜視図である。It is a perspective view of the 1st, 2nd grating | lattice. 第1、第2の格子の側面図である。It is a side view of the 1st, 2nd grating | lattice. 第1及び第2の格子の相互作用による干渉縞(モアレ)の周期を変更するための機構を示す模式図である。It is a schematic diagram which shows the mechanism for changing the period of the interference fringe (moire) by interaction of the 1st and 2nd grating | lattice. 第1、第2の格子及びFPDを模式的に示す側面図である。It is a side view which shows the 1st, 2nd grating | lattice, and FPD typically. 画素ピッチと配列ピッチとの比に対するモアレ周波数の変動についての特性を示すグラフである。It is a graph which shows the characteristic about the fluctuation | variation of the moire frequency with respect to ratio of a pixel pitch and arrangement pitch. 高調波成分のモアレ周波数の変動特性を示すグラフである。It is a graph which shows the fluctuation | variation characteristic of the moire frequency of a harmonic component. 第1、第2の格子片の配列ピッチと画素ピッチとの寸法関係を示す模式図である。It is a schematic diagram which shows the dimensional relationship between the arrangement pitch of a 1st, 2nd lattice piece, and a pixel pitch. 配列ピッチの上限について幾何学的に示す模式図である。It is a schematic diagram geometrically showing the upper limit of the arrangement pitch. 被写体による放射線の屈折を説明するための模式図である。It is a schematic diagram for demonstrating the refraction | bending of the radiation by a to-be-photographed object. 縞走査法を説明するための模式図である。It is a schematic diagram for demonstrating the fringe scanning method. 縞走査に伴う放射線画像検出器の画素の信号を示すグラフである。It is a graph which shows the signal of the pixel of the radiographic image detector accompanying a fringe scanning. x方向及びy方向に配列された複数の格子片を有する格子を模式的に示す平面図である。It is a top view which shows typically the grating | lattice which has the some grating | lattice piece arranged in the x direction and the y direction. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 図16の放射線撮影システムの変形例の構成を示す模式図である。It is a schematic diagram which shows the structure of the modification of the radiography system of FIG. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 二次元格子を模式的に示す平面図である。It is a top view which shows a two-dimensional lattice typically. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その放射線画像検出器の構成を示す図である。It is a figure which shows the structure of the radiographic image detector regarding the other example of the radiography system for describing embodiment of this invention. 本発明の実施形態を説明するための放射線撮影システムの他の例の概略構成図である。It is a schematic block diagram of the other example of the radiography system for describing embodiment of this invention. 光読取方式の放射線画像検出器の概略構成を示す図である。It is a figure which shows schematic structure of the radiographic image detector of an optical reading system. 第1の格子、第2の格子及び放射線画像検出器の画素の配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the pixel of a 1st grating | lattice, a 2nd grating | lattice, and a radiographic image detector. 第2の格子に対する第1の格子の傾き角を設定する方法を説明するための図である。It is a figure for demonstrating the method to set the inclination-angle of the 1st grating | lattice with respect to a 2nd grating | lattice. 第2の格子に対する第1の格子の傾き角の調整方法を説明するための図である。It is a figure for demonstrating the adjustment method of the inclination-angle of the 1st grating | lattice with respect to a 2nd grating | lattice. 光読取方式の放射線画像検出器の記録の作用を説明するための図である。It is a figure for demonstrating the effect | action of recording of the radiographic image detector of an optical reading system. 光読取方式の放射線画像検出器の読取りの作用を説明するための図である。It is a figure for demonstrating the effect | action of the reading of the radiation image detector of an optical reading system. 光読取方式の放射線画像検出器から読み取られた画像信号に基づいて、複数の縞画像を取得する作用を説明するための図である。It is a figure for demonstrating the effect | action which acquires a some fringe image based on the image signal read from the radiographic image detector of an optical reading system. 光読取方式の放射線画像検出器から読み取られた画像信号に基づいて、複数の縞画像を取得する作用を説明するための図である。It is a figure for demonstrating the effect | action which acquires a some fringe image based on the image signal read from the radiographic image detector of an optical reading system. TFTスイッチを用いた放射線画像検出器と第1及び第2の格子との配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship between the radiographic image detector using a TFT switch, and the 1st and 2nd grating | lattice. CMOSセンサを用いた放射線画像検出器の概略構成を示す図である。It is a figure which shows schematic structure of the radiographic image detector using a CMOS sensor. CMOSセンサを用いた放射線画像検出器の1つの画素回路の構成を示す図である。It is a figure which shows the structure of one pixel circuit of the radiographic image detector using a CMOS sensor. CMOSセンサを用いた放射線画像検出器と第1及び第2の格子との配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship between the radiographic image detector using a CMOS sensor, and the 1st and 2nd grating | lattice. 本発明の実施形態を説明するための放射線撮影システムの他の例の概略構成図である。It is a schematic block diagram of the other example of the radiography system for describing embodiment of this invention. 放射線画像検出器の一実施形態の概略構成を示す図である。It is a figure which shows schematic structure of one Embodiment of a radiographic image detector. 放射線画像検出器の一実施形態の記録の作用を説明するための図である。It is a figure for demonstrating the effect | action of recording of one Embodiment of a radiographic image detector. 放射線画像検出器の一実施形態の読取りの作用を説明するための図である。It is a figure for demonstrating the effect | action of reading of one Embodiment of a radiographic image detector. 放射線画像検出器のその他の実施形態を示す図である。It is a figure which shows other embodiment of a radiographic image detector. 放射線画像検出器のその他の実施形態の記録の作用を説明するための図である。It is a figure for demonstrating the effect | action of recording of other embodiment of a radiographic image detector. 放射線画像検出器のその他の実施形態の読取りの作用を説明するための図である。It is a figure for demonstrating the effect | action of the reading of other embodiment of a radiographic image detector. 格子面を曲面状に凹面化した格子の一例を示す図である。It is a figure which shows an example of the grating | lattice which made the grating | lattice surface into the concave surface. 本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その演算処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic processing part regarding the other example of the radiography system for describing embodiment of this invention. 図44の放射線撮影システムの演算処理部における処理を説明するための放射線画像検出器の画素の信号を示すグラフである。It is a graph which shows the signal of the pixel of the radiographic image detector for demonstrating the process in the arithmetic processing part of the radiography system of FIG.
 図1は、本発明の実施形態を説明するための放射線撮影システムの一例の構成を示し、図2は、図1の放射線撮影システムの制御ブロックを示す。 FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention, and FIG. 2 shows a control block of the radiation imaging system of FIG.
 X線撮影システム10は、被写体Hを立位状態で撮影するX線診断装置であって、被写体HにX線を照射するX線源11と、X線源11との間に被写体Hを介在させた状態でX線源11に対向配置され、X線源11から被写体Hを透過したX線を検出して画像データを生成する放射線画像検出装置としての撮影部12と、操作者の操作に基づいてX線源11の曝射動作や撮影部12の撮影動作を制御するとともに、撮影部12により取得された画像データを演算処理して位相コントラスト画像を生成するコンソール13(図2)とに大別される。 The X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject H in a standing position, and the subject H is interposed between the X-ray source 11 that irradiates the subject H with X-rays and the X-ray source 11. In this state, the radiographing unit 12 is disposed as opposed to the X-ray source 11 and detects X-rays transmitted through the subject H from the X-ray source 11 to generate image data. Based on this, the console 13 (FIG. 2) that controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12, and generates a phase contrast image by processing the image data acquired by the imaging unit 12. Broadly divided.
 X線源11は、天井から吊り下げられたX線源保持装置14により上下方向(x方向)に移動自在に保持されている。
 撮影部12は、床上に設置された立位スタンド15により上下方向に移動自在に保持されている。
The X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling.
The photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
 X線源11は、X線源制御部17の制御に基づき、高電圧発生器16から印加される高電圧に応じてX線を発生するX線管18と、X線管18から発せられたX線のうち、被写体Hの検査領域に寄与しない部分を遮蔽するように照射野を制限する可動式のコリメータ19aを備えたコリメータユニット19とから構成されている。X線管18は、陽極回転型であり、電子放出源(陰極)としてのフィラメント(図示せず)から電子線を放出して、所定の速度で回転する回転陽極18aに衝突させることによりX線を発生する。この回転陽極18aの電子線の衝突部分がX線焦点18bとなる。 Based on the control of the X-ray source control unit 17, the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18. The X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion that does not contribute to the inspection area of the subject H. The X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
 X線源保持装置14は、天井に設置された天井レール(図示せず)により水平方向(z方向)に移動自在に構成された台車部14aと、上下方向に連結された複数の支柱部14bとからなる。台車部14aには、支柱部14bを伸縮させて、X線源11の上下方向に関する位置を変更するモータ(図示せず)が設けられている。 The X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of. A motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
 立位スタンド15は、床に設置された本体15aに、撮影部12を保持する保持部15bが上下方向に移動自在に取り付けられている。保持部15bは、上下方向に離間して配置された2つのプーリ15cの間に掛架された無端ベルト15dに接続され、プーリ15cを回転させるモータ(図示せず)により駆動される。このモータの駆動は、操作者の設定操作に基づき、後述するコンソール13の制御装置20により制御される。 The standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction. The holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c. The driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
 また、立位スタンド15には、プーリ15c又は無端ベルト15dの移動量を計測することにより、撮影部12の上下方向に関する位置を検出するポテンショメータ等の位置センサ(図示せず)が設けられている。この位置センサの検出値は、ケーブル等によりX線源保持装置14に供給される。X線源保持装置14は、供給された検出値に基づいて支柱部14bを伸縮させ、撮影部12の上下動に追従するようにX線源11を移動させる。 Further, the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. . The detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like. The X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
 コンソール13には、CPU、ROM、RAM等からなる制御装置20が設けられている。制御装置20には、操作者が撮影指示やその指示内容を入力する入力装置21と、撮影部12により取得された画像データを演算処理してX線画像を生成する演算処理部22と、X線画像を記憶する記憶部23と、X線画像等を表示するモニタ24と、X線撮影システム10の各部と接続されるインターフェース(I/F)25とがバス26を介して接続されている。 The console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like. The control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
 入力装置21としては、例えば、スイッチ、タッチパネル、マウス、キーボード等を用いることが可能であり、入力装置21の操作により、X線管電圧やX線照射時間等のX線撮影条件、撮影タイミング等が入力される。モニタ24は、液晶ディスプレイ等からなり、制御装置20の制御により、X線撮影条件等の文字やX線画像を表示する。 As the input device 21, for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used. By operating the input device 21, X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, etc. Is entered. The monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
 撮影部12は、半導体回路からなる放射線画像検出器としてのフラットパネル検出器(FPD)30、被写体HによるX線の位相変化を検出し位相イメージングを行うための第1の吸収型格子31及び第2の吸収型格子32を有する。 The imaging unit 12 includes a flat panel detector (FPD) 30 as a radiological image detector made of a semiconductor circuit, a first absorption grating 31 for detecting phase change of X-rays by the subject H and performing phase imaging, and a first absorption grating 31. Two absorption gratings 32 are provided.
 撮影部12には、第2の吸収型格子32を上下方向(x方向)に並進移動させることにより、第1の吸収型格子31及び第2の吸収型格子32を相対移動させる走査手段33が設けられている。 The imaging unit 12 includes scanning means 33 that relatively moves the first absorption grating 31 and the second absorption grating 32 by translating the second absorption grating 32 in the vertical direction (x direction). Is provided.
 FPD30は、検出面がX線源11から照射されるX線の光軸Aに直交するように配置されている。詳しくは後述するが、第1及び第2の吸収型格子31,32は、FPD30とX線源11との間に配置されている。 The FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11. Although described in detail later, the first and second absorption gratings 31 and 32 are disposed between the FPD 30 and the X-ray source 11.
 図3は、図1の放射線撮影システムに含まれる放射線画像検出器の構成を示す。 FIG. 3 shows a configuration of a radiation image detector included in the radiation imaging system of FIG.
 放射線画像検出器としてのFPD30は、X線を電荷に変換して蓄積する複数の画素40がアクティブマトリクス基板上にxy方向に2次元配列されてなる受像部41と、受像部41からの電荷の読み出しタイミングを制御する走査回路42と、各画素40に蓄積された電荷を読み出し、電荷を画像データに変換して記憶する読み出し回路43と、画像データをコンソール13のI/F25を介して演算処理部22に送信するデータ送信回路44とから構成されている。なお、走査回路42と各画素40とは、行毎に走査線45によって接続されており、読み出し回路43と各画素40とは、列毎に信号線46によって接続されている。 The FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41. A scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13. And a data transmission circuit 44 for transmission to the unit 22. The scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
 各画素40は、アモルファスセレン等の変換層(図示せず)でX線を電荷に直接変換し、変換された電荷を変換層の下部の電極に接続されたキャパシタ(図示せず)に蓄積する直接変換型の素子として構成することができる。各画素40には、TFTスイッチ(図示せず)が接続され、TFTスイッチのゲート電極が走査線45、ソース電極がキャパシタ、ドレイン電極が信号線46に接続される。TFTスイッチが走査回路42からの駆動パルスによってON状態になると、キャパシタに蓄積された電荷が信号線46に読み出される。 Each pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and stores the converted electric charges in a capacitor (not shown) connected to an electrode below the conversion layer. It can be configured as a direct conversion type element. A TFT switch (not shown) is connected to each pixel 40, and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46. When the TFT switch is turned on by the drive pulse from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 46.
 なお、各画素40は、テルビウム賦活酸化ガドリニウム(GdS:Tb)、タリウム賦活ヨウ化セシウム(CsI:Tl)等からなるシンチレータ(図示せず)でX線を一旦可視光に変換し、変換された可視光をフォトダイオード(図示せず)で電荷に変換して蓄積する間接変換型のX線検出素子として構成することも可能である。また、X線画像検出器としては、TFTパネルをベースとしたFPDに限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした各種のX線画像検出器を用いることも可能である。 Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it. The X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
 読み出し回路43は、積分アンプ回路、A/D変換器、補正回路、及び画像メモリ(いずれも図示せず)により構成されている。積分アンプ回路は、各画素40から信号線46を介して出力された電荷を積分して電圧信号(画像信号)に変換して、A/D変換器に入力する。A/D変換器は、入力された画像信号をデジタルの画像データに変換して補正回路に入力する。補正回路は、画像データに対して、オフセット補正、ゲイン補正、及びリニアリティ補正を行い、補正後の画像データを画像メモリに記憶させる。なお、補正回路による補正処理として、X線の露光量や露光分布(いわゆるシェーディング)の補正や、FPD30の制御条件(駆動周波数や読み出し期間)に依存するパターンノイズ(例えば、TFTスイッチのリーク信号)の補正等を含めてもよい。 The readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory (all not shown). The integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter. The A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit. The correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory. As correction processing by the correction circuit, correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
 図4及び図5は、第1及び第2の吸収型格子31,32を示す。 4 and 5 show the first and second absorption type gratings 31 and 32. FIG.
 第1の吸収型格子31は、複数の第1の格子片311が配列されて構成されており、第1の格子片311のそれぞれは、基板31aと、この基板31aに配置された複数の条帯としてのX線遮蔽部31bとを有して構成されている。格子パターンである第2の吸収型格子32もまた、複数の第2の格子片321が配列されて構成されており、第2の格子片321のそれぞれは、基板32aと、この基板32aに配置された複数の条帯としてのX線遮蔽部32bとを有して構成されている。基板31a,32aは、いずれもX線を透過させるガラス等のX線透過性部材により形成されている。第1、第2の格子片311,321はいずれも、X線の光軸Aと直交する面内(xy面内)において第1の方向としてのx方向に配列されている。 The first absorption type grating 31 is configured by arranging a plurality of first grating pieces 311. Each of the first grating pieces 311 includes a substrate 31a and a plurality of strips arranged on the substrate 31a. It has an X-ray shielding part 31b as a band. The second absorptive grating 32, which is a grating pattern, is also configured by arranging a plurality of second grating pieces 321. Each of the second grating pieces 321 is arranged on the substrate 32a and the substrate 32a. And a plurality of X-ray shielding portions 32b as a plurality of strips. The substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays. Both the first and second grating pieces 311 and 321 are arranged in the x direction as the first direction in a plane orthogonal to the optical axis A of the X-ray (in the xy plane).
 X線遮蔽部31b,32bは、いずれもX線源11から照射されるX線の光軸Aに直交する面内の一方向(x方向及びy方向のうち一方の方向であり、図4の例ではy方向)に延伸した線状の部材で構成される。各X線遮蔽部31b,32bの材料としては、X線吸収性に優れるものが好ましく、例えば、金、白金等の重金属であることが好ましい。これらのX線遮蔽部31b,32bは、金属メッキ法や蒸着法によって形成することが可能である。 Each of the X-ray shielding portions 31b and 32b is one direction in the plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (one of the x direction and the y direction). In the example, it is composed of a linear member extending in the y direction). As a material of each X-ray shielding part 31b, 32b, a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable. These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
 X線遮蔽部31bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(図4の例では第1の方向としてのx方向)に一定の格子ピッチpで、互いに所定の間隔dを空けて配列されている。同様に、X線遮蔽部32bも、X線の光軸Aに直交する面内において、x方向に一定の格子ピッチpで、互いに所定の間隔dを空けて配列されている。
 このような第1及び第2の吸収型格子31,32は、入射X線に主として位相差を与えるものではなく、強度差を与えるものであるため、振幅型格子とも称される。なお、スリット部(上記間隔d,dの領域)は空隙でなくてもよく、例えば、高分子や軽金属などのX線低吸収材で該空隙を充填してもよい。
The X-ray shielding part 31b has a constant lattice pitch p 1 in a direction orthogonal to the one direction (x direction as the first direction in the example of FIG. 4) in a plane orthogonal to the optical axis A of the X-ray. Are arranged at a predetermined interval d 1 from each other. Similarly, the X-ray shielding portion 32b, in a plane perpendicular to the optical axis A of the X-ray, with grating pitch p 2 of the constant in the x-direction, are arranged at a predetermined interval d 2 from each other.
Such first and second absorption gratings 31 and 32 do not mainly give a phase difference to incident X-rays but give an intensity difference, and are also called amplitude gratings. Note that the slit portions (regions having the distances d 1 and d 2 ) may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
 第1及び第2の吸収型格子31,32は、複数の格子片311,321をそれぞれ含んで構成されるので、第1及び第2の吸収型格子31,32の製造時には、各格子片311,321の単位で製造可能となる。第1及び第2の吸収型格子31,32は、格子の開口幅に対するX線遮蔽部の厚さが大きい、いわゆる高アスペクト比が要求され、かつ視野サイズ相応の広さにわたって高度な面内均一性が要求されるため、安定的に製造することは困難であったが、本例の構成とすることにより、狭い面積の格子辺単位で製造することができるので、第1及び第2の吸収型格子31,32の製造が容易となり、安定的に製造可能となる。 Since the first and second absorption type gratings 31 and 32 include a plurality of grating pieces 311 and 321, respectively, the grating pieces 311 are manufactured when the first and second absorption type gratings 31 and 32 are manufactured. , 321 units. The first and second absorptive gratings 31 and 32 are required to have a so-called high aspect ratio in which the thickness of the X-ray shielding portion is large with respect to the opening width of the grating, and have a high degree of in-plane uniformity over an area corresponding to the field size. However, since it is difficult to stably manufacture the structure, it is possible to manufacture in units of lattice areas having a small area by using the configuration of this example. The mold lattices 31 and 32 can be easily manufactured and can be stably manufactured.
 第1の吸収型格子31は、タルボ干渉効果の有無に係らず、スリット部を通過したX線を幾何学的に投影するように構成されている。具体的には、間隔dを、X線源11から照射されるX線の実効波長より十分大きな値とすることで、照射X線の大部分のX線がスリット部での回折を受けずに、第1の吸収型格子31の後方に自己の投影像(以下、この投影像も自己像G1と称する)を形成するように構成することができる。例えば、前述の回転陽極18aのターゲット材料としてタングステンを用い、管電圧を50kVとした場合には、X線の実効波長は、約0.4Åである。この場合には、間隔dを、1~10μm程度とすれば、スリット部を通過したX線が形成するX線像は回折の効果を無視できる程度になり、第1の吸収型格子31の後方に自己像G1が形成される。 The first absorption type grating 31 is configured to geometrically project X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the interval d 1 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, most of the X-rays irradiated do not undergo diffraction at the slit portion. In addition, a self-projected image (hereinafter also referred to as a self-image G1) can be formed behind the first absorption grating 31. For example, when tungsten is used as the target material of the rotary anode 18a and the tube voltage is 50 kV, the effective wavelength of X-ray is about 0.4 mm. In this case, if the distance d 1 is set to about 1 to 10 μm, the X-ray image formed by the X-rays that have passed through the slit portion is negligible for the diffraction effect. A self-image G1 is formed behind.
 さて、一般的に、X線源11から放射されるX線は、平行ビームではなく、X線焦点18bを発光点としたコーンビームであるため、自己像G1はX線焦点18bからの距離に比例して拡大される。一方、第2の吸収型格子32の格子ピッチpは、そのスリット部が、第2の吸収型格子32の位置における自己像G1の明部の周期パターンと実質的に一致するように決定されている。すなわち、X線焦点18bから第1の吸収型格子31までの距離をL、第1の吸収型格子31から第2の吸収型格子32までの距離をLとした場合に、第2の吸収型格子32の位置における自己像G1のピッチp’、第1の格子ピッチp、第2の格子ピッチpは、次式(1)の関係を満たすように決定される。 In general, the X-ray radiated from the X-ray source 11 is not a parallel beam but a cone beam with the X-ray focal point 18b as a light emission point, and the self-image G1 is at a distance from the X-ray focal point 18b. Scaled proportionally. On the other hand, the grating pitch p 2 of the second absorption type grating 32 is determined so that the slit part substantially coincides with the periodic pattern of the bright part of the self-image G 1 at the position of the second absorption type grating 32. ing. That is, when the distance from the X-ray focal point 18b to the first absorption-type grating 31 is L 1 and the distance from the first absorption-type grating 31 to the second absorption-type grating 32 is L 2 , the second The pitch p 1 ′, the first grating pitch p 1 , and the second grating pitch p 2 of the self-image G1 at the position of the absorption grating 32 are determined so as to satisfy the relationship of the following formula (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 第1の吸収型格子31から第2の吸収型格子32までの距離Lは、タルボ干渉計では、第1の回折格子の格子ピッチとX線波長とで決まるタルボ干渉距離に制約されるが、本X線撮影システム10の撮影部12では、第1の吸収型格子31が入射X線を回折させずに投影させる構成であって、第1の吸収型格子31の自己像G1が、第1の吸収型格子31の後方の位置で相似的に得られるため、該距離Lを、タルボ干渉距離と無関係に設定することができる。 In the Talbot interferometer, the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The imaging unit 12 of the X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting the self-image G1 of the first absorption grating 31. because similarly obtained behind the position of the first absorption-type grating 31, the distance L 2, can be set independently of the Talbot distance.
 上記のように撮影部12は、タルボ干渉計を構成するものではないが、第1の吸収型格子31でX線を回折したと仮定した場合のタルボ干渉距離Zは、第1の吸収型格子31の格子ピッチp、第2の吸収型格子32の格子ピッチp、X線波長(通常は第1の吸収型格子31に入射するX線の実効波長)λ、及び正の整数mを用いて、次式(2)で表される。 As described above, the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating. 31 grating pitch p 1 , second absorbing grating 32 grating pitch p 2 , X-ray wavelength (usually the effective wavelength of X-rays incident on first absorbing grating 31) λ, and positive integer m. And is represented by the following formula (2).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(2)は、X線源11から照射されるX線がコーンビームである場合のタルボ干渉距離を表す式であり、「Atsushi Momose, et al., Japanese Journal of Applied Physics, Vol.47, No.10, 2008年10月, 8077頁」や「Timm Weitkamp, et al., Proc. of SPIE, Vol.6318, 2006年, 63180S-1項」から、容易に導くことができる。 Expression (2) is an expression that represents the Talbot interference distance when the X-ray irradiated from the X-ray source 11 is a cone beam. “Atsushi Momose, et al., Japan Journal of Applied Physics, Vol. 47, No. 10, October 2008, page 8077 ”and“ Timm Weitkamp, et al., Proc. Of SPIE, Vol. 6318, 2006, 63180S-1 ”can be easily derived.
 本X線撮影システム10では、上記距離Lを、m=1の場合の最小のタルボ干渉距離Zより短い値に設定することで、撮影部12の薄型化を図っている。すなわち、上記距離Lは、次式(3)を満たす範囲の値に設定される。 In the present X-ray imaging system 10, the imaging unit 12 is thinned by setting the distance L 2 to a value shorter than the minimum Talbot interference distance Z when m = 1. That is, the distance L 2 is set to a value in the range satisfying the following equation (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、X線源11から照射されるX線が実質的に平行ビームとみなせる場合は、タルボ干渉距離Zは次式(4)となり、上記距離Lを、次式(5)を満たす範囲の値に設定することができる。 In the case where X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, Talbot interference distance Z by the following equation (4), and the distance L 2, the range satisfying the following equation (5) Can be set to a value.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 X線遮蔽部31b,32bは、コントラストの高い周期パターン像を生成するためには、X線を完全に遮蔽(吸収)することが好ましいが、上記したX線吸収性に優れる材料(金、白金等)を用いたとしても、吸収されずに透過するX線が少なからず存在する。このため、X線の遮蔽性を高めるためには、X線遮蔽部31b,32bのそれぞれの厚みh,hを、可能な限り厚くすることが好ましい。X線遮蔽部31b,32bは、照射X線の90%以上を遮蔽することが好ましく、その厚さは、照射X線のエネルギーに応じて設定される。例えば、X線管18のターゲット材料としてタングステンを用い、管電圧を50kVとした場合には、厚みh,hは、金(Au)換算で100μm以上であることが好ましい。 The X-ray shielding portions 31b and 32b preferably completely shield (absorb) X-rays in order to generate a periodic pattern image with high contrast, but the above-described materials (gold, platinum) having excellent X-ray absorption properties Etc.), there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b, it is preferable to increase the thickness much as possible. The X-ray shielding portions 31b and 32b preferably shield 90% or more of the irradiated X-rays, and the thickness thereof is set according to the energy of the irradiated X-rays. For example, when tungsten is used as the target material of the X-ray tube 18 and the tube voltage is 50 kV, the thicknesses h 1 and h 2 are preferably 100 μm or more in terms of gold (Au).
 しかし、X線源11から照射されるX線がコーンビームである場合に、X線遮蔽部31b,32bの厚みh,hを厚くし過ぎると、斜めに入射するX線がスリット部を通過しにくくなり、いわゆるケラレが生じて、X線遮蔽部31b,32bの延伸方向(条帯方向)に直交する方向(x方向)の有効視野が狭くなるといった問題がある。このため、視野確保の観点から、厚みh,hを制限することが好ましい。具体的には、FPD30の検出面におけるx方向の有効視野の長さV、X線焦点18bからFPD30の検出面までの距離をLとすると、厚みh,hは、図5に示す幾何学的関係から、次式(6)及び(7)を満たすように設定することが好ましい。 However, when the X-rays irradiated from the X-ray source 11 are cone beams, if the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are too thick, the X-rays incident obliquely enter the slit portion. There is a problem that it becomes difficult to pass, so-called vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 31b and 32b becomes narrow. For this reason, it is preferable to limit the thicknesses h 1 and h 2 from the viewpoint of securing a visual field. Specifically, if the length V of the effective visual field in the x direction on the detection surface of the FPD 30 and the distance from the X-ray focal point 18b to the detection surface of the FPD 30 are L, the thicknesses h 1 and h 2 are as shown in FIG. It is preferable to set so that following Formula (6) and (7) may be satisfy | filled from a scientific relationship.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 例えば、d=2.5μm、d=3.0μmとし、通常の病院に設置できる大きさとしてL=2mに設定した場合には、x方向の有効視野の長さVとして10cmの長さを確保するには、厚みhは100μm以下、厚みhは120μm以下とすればよい。 For example, when d 1 = 2.5 μm and d 2 = 3.0 μm and L = 2 m is set as a size that can be installed in a normal hospital, the effective visual field length V in the x direction is 10 cm long. In order to ensure the thickness, the thickness h 1 may be 100 μm or less, and the thickness h 2 may be 120 μm or less.
 以上のように構成された撮影部12では、第1の吸収型格子31の自己像G1と第2の吸収型格子32との重ね合わせによってモアレが形成され、FPD30によって撮像される。第2の吸収型格子32の位置における自己像G1のパターン周期p’と、第2の吸収型格子32の実質的な格子ピッチp’とは、製造誤差や配置誤差により若干の差異が生じる。このうち、配置誤差とは、第1及び第2の吸収型格子31,32が、相対的に傾斜や回転、両者の間隔が変化することによりx方向への実質的なピッチが変化することを意味している。 In the imaging unit 12 configured as described above, a moiré is formed by superimposing the self-image G1 of the first absorption type grating 31 and the second absorption type grating 32, and is imaged by the FPD 30. There is a slight difference between the pattern period p 1 ′ of the self-image G1 at the position of the second absorption type grating 32 and the substantial grating pitch p 2 ′ of the second absorption type grating 32 due to manufacturing errors and arrangement errors. Arise. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
 自己像G1のパターン周期p’と格子ピッチp’との微小な差異により、モアレが発生する。このモアレの周期Tは、次式(8)で表される。 Moire occurs due to a minute difference between the pattern period p 1 ′ of the self-image G1 and the grating pitch p 2 ′. The moire period T is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 上式(8)におけるモアレの周期Tは、実際には第2の吸収型格子32からFPD30の検出面までの距離によって更に拡大されるため、FPD30の検出面上でのモアレ周期をT’とし、このモアレをFPD30で検出するためには、画素40のx方向に関する配列ピッチPは、少なくともFPD30の検出面上でのモアレ周期T’の整数倍ではないことが必要であり、次式(9)を満たす必要がある(ここで、nは正の整数である)。 The moiré period T in the above equation (8) is actually further expanded by the distance from the second absorption type grating 32 to the detection surface of the FPD 30, so the moiré period on the detection surface of the FPD 30 is T ′. , in order to detect the moire FPD 30, the arrangement pitch P D x direction of the pixel 40 is required to be not an integral multiple of the moire cycle T 'on the detection surface of at least FPD 30, the following equation ( 9) must be satisfied (where n is a positive integer).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 また、式(9)を満たす範囲において、配列ピッチPがモアレ周期T’より大きくてもモアレを検出することは可能であるが、配列ピッチPはモアレ周期T’より小さいことが好ましく、次式(10)を満たすことが好ましい。これは、良質な位相コントラスト画像を得るためには、後述する位相コントラスト画像の生成過程において、モアレが高いコントラストで検出されていることが好ましいためである。 Further, in the range satisfying equation (9), 'it is possible to detect the moire be greater than the arrangement pitch P D moire cycle T' arrangement pitch P D moire cycle T preferably smaller than, It is preferable to satisfy the following formula (10). This is because, in order to obtain a high-quality phase contrast image, it is preferable that moire is detected with high contrast in the phase contrast image generation process described later.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 FPD30の画素40の配列ピッチPは、設計的に定められた値(一般的に100μm程度)であり変更することが困難であるため、配列ピッチPとモアレ周期T’との大小関係を調整するには、第1及び第2の吸収型格子31,32の位置調整を行い、自己像G1のパターン周期p’と格子ピッチp’との少なくともいずれか一方を変更することによりモアレ周期Tを変更することが好ましい。 The arrangement pitch P D of the pixels 40 of FPD30 is the magnitude relation between it is difficult to change a design to a defined value (usually about 100 [mu] m), the arrangement pitch P D and the moire cycle T ' For the adjustment, the positions of the first and second absorption gratings 31 and 32 are adjusted, and the moire pattern is changed by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the self-image G1. It is preferable to change the period T.
 図6に、モアレ周期T’を変更する方法を示す。 FIG. 6 shows a method of changing the moire cycle T ′.
 モアレ周期T’の変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aを中心として相対的に回転させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aを中心として相対的に回転させる相対回転機構50を設ける。この相対回転機構50により、第2の吸収型格子32を角度θだけ回転させると、x方向に関する実質的な格子ピッチは、「p’」→「p’/cosθ」と変化し、この結果、モアレ周期T’が変化する(FIG.6A)。 The moire period T ′ can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A. For example, a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided. When the second absorption type grating 32 is rotated by the angle θ by the relative rotation mechanism 50, the substantial grating pitch in the x direction changes from “p 2 ′” → “p 2 ′ / cos θ”. As a result, the moire cycle T ′ changes (FIG. 6A).
 別の例として、モアレ周期T’の変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させる相対傾斜機構51を設ける。この相対傾斜機構51により、第2の吸収型格子32を角度αだけ傾斜させると、x方向に関する実質的な格子ピッチは、「p’」→「p’×cosα」と変化し、この結果、モアレ周期T’が変化する(FIG.6B)。 As another example, the change of the moire period T ′ is such that one of the first and second absorption gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. Can be performed by inclining. For example, a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided. Provide. When the second absorption type grating 32 is inclined by the angle α by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” → “p 2 ′ × cos α”. As a result, the moire cycle T ′ changes (FIG. 6B).
 更に別の例として、モアレ周期T’の変更は、第1及び第2の吸収型格子31,32のいずれか一方を光軸Aの方向に沿って相対的に移動させることにより行うことができる。例えば、第1の吸収型格子31と第2の吸収型格子32との間の距離Lを変更するように、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aの方向に沿って相対的に移動させる相対移動機構52を設ける。この相対移動機構52により、第2の吸収型格子32を光軸Aに移動量δだけ移動させると、第2の吸収型格子32の位置に投影される第1の吸収型格子31の自己像G1のパターン周期は、「p’」→「p’×(L+L+δ)/(L+L)」と変化し、この結果、モアレ周期T’が変化する(FIG.6C)。 As yet another example, the moire period T ′ can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A. . For example, with respect to the first absorption type grating 31, the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32. A relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided. When the second absorption type grating 32 is moved to the optical axis A by the movement amount δ by the relative movement mechanism 52, the self-image of the first absorption type grating 31 projected on the position of the second absorption type grating 32. The pattern period of G1 changes as “p 1 ′” → “p 1 ′ × (L 1 + L 2 + δ) / (L 1 + L 2 )”, and as a result, the moire period T ′ changes (FIG. 6C). ).
 本X線撮影システム10において、撮影部12は、上述のようにタルボ干渉計ではなく、距離Lを自由に設定することができるため、相対移動機構52のように距離Lの変更によりモアレ周期T’を変更する機構を、好適に採用することができる。モアレ周期T’を変更するための第1及び第2の吸収型格子31,32の上記変更機構(相対回転機構50、相対傾斜機構51、及び相対移動機構52)は、圧電素子等のアクチュエータにより構成することが可能である。 In the X-ray imaging system 10, imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T ′ can be suitably employed. The change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption type gratings 31 and 32 for changing the moire period T ′ is an actuator such as a piezoelectric element. It is possible to configure.
 X線源11と第1の吸収型格子31との間に被写体Hを配置した場合には、FPD30により検出されるモアレは、被写体Hにより変調を受ける。この変調量は、被写体Hによる屈折効果によって偏向したX線の角度に比例する。したがって、FPD30で検出されたモアレを解析することによって、被写体Hの位相コントラスト画像を生成することができる。 When the subject H is arranged between the X-ray source 11 and the first absorption type grating 31, the moire detected by the FPD 30 is modulated by the subject H. This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire detected by the FPD 30.
 図7は、第1及び第2の吸収型格子31,32、並びにFPD30を模式的に示す側面図である。 FIG. 7 is a side view schematically showing the first and second absorption type gratings 31 and 32 and the FPD 30.
 隣り合う第1の格子片311,311は、接着、融着、圧着等によって連結されている。なお、本例で示した第1の格子片311は、格子片311毎に基板31a及びX線遮蔽部31bを有する互いに独立した小片とされているが、これら第1の格子片311は、1枚の基板上に区画された複数の領域のそれぞれに順次、露光及びエッチング等を施すことによって形成されていてもよい。隣り合う第1の格子片311,311の間には、接着、融着、圧着等による格子片の継ぎ目である境界部315が、平面視で帯状に形成されている。 Adjacent first lattice pieces 311 and 311 are connected by adhesion, fusion, pressure bonding or the like. Note that the first lattice piece 311 shown in this example is an independent small piece having a substrate 31a and an X-ray shielding part 31b for each lattice piece 311, but the first lattice piece 311 has 1 It may be formed by sequentially exposing and etching each of a plurality of regions partitioned on a single substrate. Between the adjacent first grid pieces 311 and 311, a boundary portion 315 which is a joint of the grid pieces by adhesion, fusion, pressure bonding or the like is formed in a band shape in a plan view.
 隣り合う第2の格子片321,321も、第1の格子片311,311と同様に接着、融着、圧着等によって連結されている。第2の格子片321もまた、1枚の基板上に区画された複数の領域のそれぞれに順次、露光及びエッチング等を施すことによって形成されていてもよい。隣り合う第2の格子片312,312のそれぞれの間にも、平面視で帯状の境界部325が形成されている。 Adjacent second grid pieces 321 and 321 are also connected by adhesion, fusion, pressure bonding, or the like, similarly to the first grid pieces 311 and 311. The second lattice piece 321 may also be formed by sequentially performing exposure, etching, and the like on each of a plurality of regions partitioned on one substrate. A band-shaped boundary portion 325 is also formed between the adjacent second lattice pieces 312 and 312 in plan view.
 第1、第2の格子片311,321のそれぞれの境界部315,325は、X線遮蔽材料を用いてX線遮蔽領域とされていても、ガラス及び一般の接着剤のようにX線透過領域とされていても、あるいはX線遮蔽部分とX線透過部分とが混在する領域とされていてもよい。本例の境界部315,325はそれぞれ帯状の領域として把握されるが、格子片の境界部が帯状であるとは限らない。例えば、1枚の基板上に区画された複数の領域に対する分割露光、分割エッチングによって複数の格子片が配列されていたり、接着によって複数の格子片が連結されている場合には、境界部は帯状に形成されうるが、融着、圧着などによって格子片が連結されている場合には、境界部が帯状ではなく、間断した線状などのランダムな形状とされる場合がある。 Even if the boundary portions 315 and 325 of the first and second lattice pieces 311 and 321 are X-ray shielding regions using an X-ray shielding material, X-ray transmission is possible like glass and general adhesives. It may be a region, or may be a region in which an X-ray shielding part and an X-ray transmission part are mixed. The boundary portions 315 and 325 in this example are grasped as band-like regions, but the boundary portions of the lattice pieces are not necessarily band-like. For example, when a plurality of lattice pieces are arranged by divided exposure and divided etching on a plurality of areas partitioned on a single substrate, or when a plurality of lattice pieces are connected by adhesion, the boundary portion is a strip shape. However, in the case where the lattice pieces are connected by fusion, pressure bonding, or the like, the boundary portion may be a random shape such as an intermittent line shape instead of a strip shape.
 これら境界部315,325のため、X線が透過する場所により、第1の吸収型格子31及び第2の吸収型格子32のそれぞれを透過するX線量にムラが生じる。このような境界部315,325はそれぞれ、第1及び第2の格子片311,321のそれぞれの寸法に応じた一定の配列ピッチで周期性を持つ。すなわち、第1、第2の格子31,32はそれぞれ、複数の格子片が配列されて構成されていることにより、X線遮蔽部31b,32bのピッチp,pの周期性に加え、第1、第2格子片311,321の周期性を持つ。 Because of these boundary portions 315 and 325, the X-ray dose transmitted through each of the first absorption-type grating 31 and the second absorption-type grating 32 varies depending on where X-rays are transmitted. Such boundary portions 315 and 325 have periodicity at a constant arrangement pitch according to the respective dimensions of the first and second lattice pieces 311 and 321. That is, the first and second gratings 31 and 32 are configured by arranging a plurality of grating pieces, respectively, in addition to the periodicity of the pitches p 1 and p 2 of the X-ray shielding portions 31b and 32b, The first and second grating pieces 311 and 321 have periodicity.
 このため、FPD30により検出されるモアレの発生要素には、格子片の配列ピッチが加わる。すなわち、FPD30の画素が配列された検出面には、第1の吸収型格子31の自己像G1のパターン周期p’と、第2の吸収型格子32の格子ピッチpと、第1及び第2の格子片311,321のそれぞれの配列ピッチと、FPD30の画素40のx方向における配列ピッチ(画素ピッチ)との相対関係により、数種類、あるいは複数の異なる周期のモアレが重畳される。 For this reason, the arrangement pitch of the lattice pieces is added to the moire generating element detected by the FPD 30. That is, on the detection surface on which the pixels of the FPD 30 are arranged, the pattern period p 1 ′ of the self-image G1 of the first absorption grating 31, the grating pitch p 2 of the second absorption grating 32, the first and Depending on the relative relationship between the arrangement pitch of each of the second lattice pieces 311 and 321 and the arrangement pitch (pixel pitch) of the pixels 40 of the FPD 30 in the x direction, moiré of several types or a plurality of different periods is superimposed.
 このときFPD30の検出面における第1及び第2の格子片311,321のそれぞれの配列ピッチは、X線が平行ビームである場合には、第1及び第2の格子片311,321のそれぞれの実際の配列ピッチPB1、PB2であるが、本例におけるX線は焦点18bからの距離に比例して照射範囲が拡大されるコーンビームであるため、焦点18bから各格子までの距離と、焦点18bとFPD30までの距離との比である拡大率を実際の配列ピッチPB1、PB2にそれぞれ乗じて補正した配列ピッチPC1,PC2が、FPD30の位置における第1及び第2の格子片311,321のそれぞれの配列ピッチとなる。配列ピッチPB1の補正に用いる拡大率は、図5を参照すると、L/L1であり、配列ピッチPB2の補正に用いる拡大率は、図5を参照すると、L/(L1+L2)である。 At this time, the arrangement pitch of the first and second grating pieces 311 and 321 on the detection surface of the FPD 30 is set so that each of the first and second grating pieces 311 and 321 has a parallel beam when the X-ray is a parallel beam. Although the actual arrangement pitches P B1 and P B2 , the X-ray in this example is a cone beam whose irradiation range is expanded in proportion to the distance from the focal point 18b, and therefore the distance from the focal point 18b to each grating, The arrangement pitches P C1 and P C2 corrected by multiplying the actual arrangement pitches P B1 and P B2 by the magnification ratio, which is the ratio between the focal point 18b and the distance to the FPD 30, respectively, are the first and second gratings at the position of the FPD 30. It becomes the arrangement pitch of each of the pieces 311 and 321. The enlargement factor used for correcting the arrangement pitch P B1 is L / L1 with reference to FIG. 5, and the enlargement factor used for correcting the arrangement pitch P B2 is L / (L1 + L2) with reference to FIG.
 ところで、FPD30により検出される画像において、第1、第2の格子片311,321のそれぞれの境界部315,325に相当する部分では、自己像G1と第2の吸収型格子32の格子パターンとの重ねあわせによるモアレが得られない。これらの境界部分の画像データを隣接する部分の画像データに基づいて補完することはできるが、補完する画像範囲を必要最低限にする上で、境界部315と境界部325とがFPD30の検出面において重なることが好ましい。このため、上記補正後の配列ピッチPC1,PC2は互いに等しく決められている。以下では、配列ピッチPC1,PC2のことを配列ピッチPと総称することがある。 By the way, in the image detected by the FPD 30, in the portions corresponding to the boundary portions 315 and 325 of the first and second grating pieces 311 and 321, the self-image G1 and the grating pattern of the second absorption grating 32 are Moire due to overlaying cannot be obtained. Although the image data of these boundary portions can be complemented based on the image data of the adjacent portions, the boundary portion 315 and the boundary portion 325 serve as detection surfaces of the FPD 30 in order to minimize the image range to be complemented. Are preferably overlapped. For this reason, the corrected arrangement pitches P C1 and P C2 are determined to be equal to each other. Hereinafter, it may be collectively referred to as the arrangement pitch P C that arrangement pitch P C1, P C2.
 なお、等しく決められた配列ピッチPC1,PC2には、製造誤差、組立誤差等による数μm以下のピッチ差を許容でき、配列ピッチPC1,PC2は、その差が数μm以下の範囲内でほぼ等しい。このような配列ピッチPC1,PC2の微小な差により、FPD30の検出面には配列ピッチPC1と配列ピッチPC2とが関係するモアレも重畳する。 Incidentally, equally-determined in the arrangement pitch P C1, P C2, manufacturing errors, can tolerate pitch difference of several μm or less by an assembly error or the like, the arrangement pitch P C1, P C2, the range the difference is less than a few μm Is almost equal within. The small differences in such arrangement pitch P C1, P C2, also superimposed moire and arrangement pitch P C1 and the arrangement pitch P C2 is related to the detection surface of the FPD 30.
 画素ピッチPと配列ピッチPC1との比に対するモアレ周波数は、解析的に計算することが可能である。図8は、FPD30により検出されるモアレについて解析的に計算されたモアレ周波数の変動特性を示す。図8に示したモアレ周波数は、モアレの基本波の周波数であり、検出器画素によるサンプリング周波数fの1/2がナイキスト周波数である。
 なお、図8の解析では、拡大率で補正された配列ピッチPC1,PC2を用いている。図8には、第1及び第2の格子片311,321の互いに等しく決められた配列ピッチをPと記した。
Moire frequency for the ratio of the pixel pitch P D and the arrangement pitch P C1 is possible to calculate analytically. FIG. 8 shows the fluctuation characteristics of the moire frequency calculated analytically for the moire detected by the FPD 30. Moire frequency shown in FIG. 8 is a frequency of the fundamental wave of the moire, half the sampling frequency f S by the detector pixel is a Nyquist frequency.
In the analysis of FIG. 8, the array pitches P C1 and P C2 corrected with the enlargement ratio are used. Figure 8 is a sequence pitch equal-determined one another of the first and second grating pieces 311, 321 marked with P C.
 図8から、配列ピッチPの値が画素ピッチPの値に近いとき、画素ピッチPと配列ピッチPとの比の微妙な変化に対してモアレ周波数fが大きく変動し、その比が2以上に大きくなると、モアレ周波数fの変動は収束に向かうことがわかる。このような配列ピッチPと画素ピッチPとの比の変化は、たとえば振動や温度変化による第1及び第2の吸収型格子31,32とFPD30との相対距離や相対回転角度のズレなどによって容易に生じ、位相コントラスト画像の画質を低下させてしまう。 From Figure 8, when the value of the arrangement pitch P C is close to the value of the pixel pitch P D, the moire frequency f m varies greatly with respect to subtle changes in the ratio of the pixel pitch P D and the arrangement pitch P C, the If the ratio is increased to 2 or more, variations of the moire frequency f m it can be seen that toward the convergence. Change in the ratio of such arrangement pitch P C and the pixel pitch P D is, for example, displacement of the relative distance and the relative rotation angle between the first and second absorption type gratings 31 and FPD30 due to vibration or a temperature change This easily occurs and degrades the image quality of the phase contrast image.
 FPD30により検出されるモアレの発生要素には、第1及び第2の吸収型格子31,32のそれぞれの格子ピッチp,p、第1及び第2の格子片311,321のそれぞれの配列ピッチPC1,PC2、及び画素ピッチPが含まれる。ここで、数μm程度である格子ピッチp,pと、100μm程度である画素ピッチPとは互いの周期差が大きいため、これら格子ピッチと画素ピッチとの関係で発生するモアレの検出強度は、画像測定に影響を与えない程度に小さい。 Moire generation elements detected by the FPD 30 include the respective grating pitches p 1 and p 2 of the first and second absorption type gratings 31 and 32, and the respective arrangements of the first and second grating pieces 311 and 321. pitch P C1, P C2, and includes a pixel pitch P D. Here, the grating pitch p 1, p 2 is about several [mu] m, the pixel pitch P D is about 100μm for a large period difference of each other, detection of moire occurring in relation to these grating pitch and the pixel pitch The intensity is small enough not to affect the image measurement.
 一方、格子ピッチp,pよりも大きい格子片の配列ピッチPに関しては、配列ピッチPと画素ピッチPとの関係でモアレが発生し、特に、配列ピッチPと画素ピッチPとが近いときには、強い強度のモアレが検出されうる。更には、図8のように、画素ピッチPと配列ピッチPとの比に対してモアレ周波数fも大きく変動するものと考えられる。 On the other hand, with respect to the arrangement pitch P C of larger lattice piece than the grating pitch p 1, p 2, moire is generated in relation to the arrangement pitch P C and the pixel pitch P D, in particular, the arrangement pitch P C and the pixel pitch P When D is close, strong moire can be detected. Furthermore, as shown in FIG. 8, it is considered that varies greatly even moire frequency f m with respect to the ratio between the arrangement pitch P C and the pixel pitch P D.
 また、図8に示した基本周波数を考慮するだけでは不十分な場合も存在する。すなわち、高周波まで空間周波数応答が高い画像検出器を用いる場合には、検出器の空間周波数帯域内に折り返すモアレの高調波をも考慮する必要がある。このような画像検出器の典型的な例としては、直接変換型のFPDがあげられる。直接変換型FPDでは、検出器に入射したX線を直接電気信号に変換するため、シンチレータ等で一旦光に変換したのちにフォトダイオード等の光電変換素子を用いて電気信号に変換する、いわゆる間接変換型のFPDに比較して、信号検出過程での空間的なボケが少なく、高周波にわたって高い空間周波数応答を呈すことが一般に知られている。 Also, there are cases where it is not sufficient to simply consider the fundamental frequency shown in FIG. That is, when an image detector having a high spatial frequency response up to a high frequency is used, it is necessary to consider the moire harmonics that fold back within the spatial frequency band of the detector. A typical example of such an image detector is a direct conversion type FPD. In the direct conversion type FPD, the X-rays incident on the detector are directly converted into electric signals. Therefore, the direct conversion FPD is converted into an electric signal using a photoelectric conversion element such as a photodiode after being converted into light once by a scintillator or the like. It is generally known that there is less spatial blur in the signal detection process compared to a conversion type FPD, and a high spatial frequency response is exhibited over a high frequency.
 図9は、第一次の基本波から第4次高調波までのそれぞれのモアレ周波数成分fの、配列ピッチPと画素ピッチPとの比に対する変動特性を示す。より高次のモアレ周波数fであるほど、画素ピッチPと配列ピッチPとの比に対する変動が大きくなる。また、より高次であるほど、モアレ周波数fの変動が収束に向かう際の画素ピッチPと配列ピッチPとの比が大きくなる。第4次高調波のモアレ周波数は、配列ピッチPが画素ピッチPの6倍以上になると収束に向かう。 9, each of the moire frequency component f m from the first-order fundamental wave to the fourth harmonic, showing a variation characteristic of the ratio between the in arrangement pitch P C and the pixel pitch P D. More and more is the order of the moire frequency f m, the variation of the ratio between the in arrangement pitch P C and the pixel pitch P D increases. Further, there is more, the ratio of the pixel pitch P D when variations of the moire frequency f m is directed to converge arrangement pitch P C is increased at higher order. Moire frequency of the fourth harmonic, the arrangement pitch P C is directed to converge becomes more than 6 times the pixel pitch P D.
 ところで、強度変調信号を検出するためには、上述の式(9)に基づいて、FPD30の検出面におけるモアレ周波数と画素周期の周波数とが一致せず、かつ互いに整数倍の関係にもないことが要請される。更に、強度変調信号の位相のズレを高感度に検出するためには、強度変調信号を高いコントラストで得る必要があり、このため、画素周期の周波数よりもモアレ周波数を低くする必要がある。このような条件を満たすべく、モアレ周波数には好適な値の範囲がある。 By the way, in order to detect an intensity modulation signal, the moire frequency on the detection surface of the FPD 30 and the frequency of the pixel period do not coincide with each other based on the above equation (9) and are not in an integral multiple relationship with each other. Is requested. Further, in order to detect the phase shift of the intensity modulation signal with high sensitivity, it is necessary to obtain the intensity modulation signal with a high contrast. For this reason, it is necessary to make the moire frequency lower than the frequency of the pixel period. In order to satisfy such a condition, there is a range of suitable values for the moire frequency.
 また、後述するように、位相コントラスト画像は、被写体を置かないプレ撮影時と被写体を置いた本撮影時とのモアレ画像から形成された強度変調信号の位相のズレ量から求められるため、モアレ周波数が変動することによってアーチファクトが発生してしまう。すなわち、画像測定に好適な画質の位相コントラスト画像を安定的に得るためには、モアレの周波数が安定していることが重要である。 Further, as will be described later, the phase contrast image is obtained from the amount of phase shift of the intensity modulation signal formed from the moire image between the pre-photographing without placing the subject and the main photographing with the subject, so the moire frequency As a result of fluctuations, artifacts occur. That is, in order to stably obtain a phase contrast image having an image quality suitable for image measurement, it is important that the moire frequency is stable.
 図8、図9に示したように、配列ピッチPと画素ピッチPとの関係で生じるモアレは、FPD30で検出されるモアレの周波数を大きく変動させる可能性がある。たとえば振動や温度変化等によって画素ピッチと配列ピッチとの比が変わると、モアレ周波数が好適な範囲から外れて式(9)を満たさず、強度変調信号の検出ができなくなったり、強度変調信号における位相のズレの検出感度が低くなるおそれがある。また、X線焦点18bと第1及び第2の吸収型格子31,32の相対位置が光軸方向にズレてFPD30の検出面上での像の拡大率が変化することにより、画素ピッチPと配列ピッチPとの比が変わる。このことによって、その比に応じた空間周波数のモアレが生じるが、このようにX線焦点18bと第1及び第2の吸収型格子31,32の各々との相対的なズレに応じて空間周波数が変動するモアレを補正することは非常に困難である。 8, as shown in FIG. 9, the moire caused by the relationship between the arrangement pitch P C and the pixel pitch P D is likely to greatly change the frequency of the moiré detected by the FPD 30. For example, if the ratio between the pixel pitch and the array pitch changes due to vibration, temperature change, etc., the moire frequency is out of the preferred range and does not satisfy Equation (9), and the intensity modulation signal cannot be detected, or the intensity modulation signal There is a possibility that the detection sensitivity of the phase shift is lowered. Further, since the relative position of the X-ray focal point 18b and the first and second absorption type gratings 31 is magnification of an image on the detection surface of FPD30 displaced in the optical axis direction is changed, the pixel pitch P D the ratio between the arrangement pitch P C and changes. As a result, a moire of the spatial frequency corresponding to the ratio is generated. Thus, the spatial frequency is dependent on the relative displacement between the X-ray focal point 18b and each of the first and second absorption gratings 31 and 32. It is very difficult to correct moire that fluctuates.
 図8、図9に示したモアレ周波数の変動特性から、画素ピッチPに対して配列ピッチPを大きくすることにより、モアレ周波数を安定させることが可能となる。 8, the variation characteristic of the moire frequency shown in FIG. 9, by increasing the arrangement pitch P C to the pixel pitch P D, it is possible to stabilize the moire frequency.
 図10は、配列ピッチPと画素ピッチPとの寸法関係を模式的に示す。本例では、FPD30の解像度、及び図9の第4次高調波までのモアレ周波数変動特性などを考慮して、配列ピッチPをx方向における画素ピッチPの6倍以上としている。配列ピッチPは、x方向における画素ピッチPの好ましくは8倍以上、より好ましくは10倍以上、更に好ましくは100倍以上とされる。ただし、配列ピッチPはFPD30の空間周波数に対する応答性能、典型的にはMTF(Modulation Transfer Function)等によって決められ、画素ピッチPの少なくとも2倍以上であればよい。 Figure 10 illustrates the dimensional relationship between the arrangement pitch P C and the pixel pitch P D schematically. In this example, the resolution of the FPD 30, and the like in consideration of the moiré frequency variation characteristic of up to the fourth harmonic in FIG. 9, the arrangement pitch P C by a more than six times the pixel pitch P D in the x-direction. Arrangement pitch P C is preferably 8 or more times the pixel pitch P D in the x-direction, more preferably 10 times or more, more preferably is 100 times or more. However, the arrangement pitch P C is response performance to the spatial frequency of the FPD 30, typically determined by MTF (Modulation Transfer Function), etc., it may be at least twice the pixel pitch P D.
 なお、図10には、第1及び第2の格子片311,321のそれぞれの配列ピッチが等しい場合の配列ピッチPと、画素ピッチPとの関係を示したが、第1及び第2の格子片311,321のそれぞれの配列ピッチが異なる場合、それらの配列ピッチがそれぞれ、画素ピッチPの2倍以上であればよい。 Incidentally, in FIG. 10, the arrangement pitch P C where each array pitch of the first and second grating pieces 311 and 321 are equal, but showing the relationship between the pixel pitch P D, first and second If each pitch of the grating pieces 311 and 321 are different, their arrangement pitch, respectively, it may be at least twice the pixel pitch P D.
 一方、配列ピッチには、X線のケラレを考慮して上限を設定することができる。図5を参照して式(6)及び式(7)について述べたが、ここでも同様に、図11に示す幾何学的関係から、以下の式(11)及び式(12)を規定する。 On the other hand, an upper limit can be set for the arrangement pitch in consideration of vignetting of X-rays. Although the formulas (6) and (7) have been described with reference to FIG. 5, the following formulas (11) and (12) are similarly defined from the geometrical relationship shown in FIG.
 光軸Aに沿った方向での第1の吸収型格子31の寸法をh、隣り合うX線遮蔽部31b,31bの間隔、すなわち開口幅をd、第1の吸収型格子31における格子片の実際の配列ピッチをPB1、第1の吸収型格子31とX線焦点18bとの間の距離をRとすると、式(11)を満たすことが好ましい。また、光軸Aに沿った方向での第2の吸収型格子32の寸法をh、隣り合うX線遮蔽部32b,32bの間隔、すなわち開口幅をd、第2の吸収型格子32における格子片の実際の配列ピッチをPB2、第2の吸収型格子32とX線焦点18bとの間の距離をRとすると、式(12)を満たすことが好ましい。 The dimension of the first absorption-type grating 31 in the direction along the optical axis A is h 1 , the distance between adjacent X-ray shielding portions 31 b and 31 b, that is, the opening width is d 1 , and the grating in the first absorption-type grating 31. P B1 the actual pitch of the strip, and the distance between the first absorption type grating 31 and the X-ray focal point 18b and R 1, it is preferable to satisfy the expression (11). Further, the dimension of the second absorption type grating 32 in the direction along the optical axis A is h 2 , the distance between the adjacent X-ray shielding parts 32 b and 32 b, that is, the opening width is d 2 , and the second absorption type grating 32. It is preferable that Expression (12) is satisfied, where P B2 is the actual arrangement pitch of the lattice pieces and R 2 is the distance between the second absorption grating 32 and the X-ray focal point 18b.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 上述のように配列ピッチを決めることにより、配列ピッチと画素ピッチとの比の変動に対して、モアレ周波数を安定させることができる。ここで、第1及び第2格子片311,321のそれぞれの配列ピッチPC1,PC2は、画素ピッチPの2倍以上となるように、画素ピッチPから離れた数値であればよいから、配列ピッチの厳密な寸法管理は不要である。したがって、第1及び第2格子片311,321をそれぞれ配列して構成された第1及び第2の吸収型格子31,32を容易に製造できる。 By determining the arrangement pitch as described above, the moire frequency can be stabilized against fluctuations in the ratio between the arrangement pitch and the pixel pitch. Here, each of the arrangement pitch P C1, P C2 of the first and second grating pieces 311 and 321, so that at least twice the pixel pitch P D, it may be a numerical value away from the pixel pitch P D Therefore, strict dimensional control of the arrangement pitch is unnecessary. Therefore, the first and second absorption type gratings 31 and 32 configured by arranging the first and second grating pieces 311 and 321 can be easily manufactured.
 次に、モアレの解析方法について説明する。 Next, the moire analysis method will be described.
 図12は、被写体Hのx方向に関する位相シフト分布Φ(x)に応じて屈折される1つのX線を示す。 FIG. 12 shows one X-ray refracted according to the phase shift distribution Φ (x) of the subject H in the x direction.
 符号55は、被写体Hが存在しない場合に直進するX線の経路を示しており、この経路55を進むX線は、第1及び第2の吸収型格子31,32を通過してFPD30に入射する。符号56は、被写体Hが存在する場合に、被写体Hにより屈折されて偏向したX線の経路を示している。この経路56を進むX線は、第1の吸収型格子31を通過した後、第2の吸収型格子32より遮蔽される。 Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do. Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
 被写体Hの位相シフト分布Φ(x)は、被写体Hの屈折率分布をn(x,z)、zをX線の進む方向として、次式(13)で表される。 The phase shift distribution Φ (x) of the subject H is expressed by the following formula (13), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 第1の吸収型格子31から第2の吸収型格子32の位置に投射された自己像G1は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に次式(14)で表される。 The self-image G1 projected from the first absorption grating 31 to the position of the second absorption grating 32 is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. It will be. This amount of displacement Δx is approximately expressed by the following equation (14) based on the small X-ray refraction angle φ.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ここで、屈折角φは、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(15)で表される。 Here, the refraction angle φ is expressed by Expression (15) using the X-ray wavelength λ and the phase shift distribution Φ (x) of the subject H.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 このように、被写体HでのX線の屈折による自己像G1の変位量Δxは、被写体Hの位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、FPD30の各画素40から出力される信号の位相ズレ量ψ(被写体Hがある場合とない場合とでの各画素40の信号の位相のズレ量)に、次式(16)のように関連している。 Thus, the displacement amount Δx of the self-image G1 due to the refraction of X-rays at the subject H is related to the phase shift distribution Φ (x) of the subject H. The amount of displacement Δx is expressed by the following equation with the phase shift amount ψ of the signal output from each pixel 40 of the FPD 30 (the phase shift amount of the signal of each pixel 40 with and without the subject H): It is related as shown in (16).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 したがって、各画素40の信号の位相ズレ量ψを求めることにより、式(16)から屈折角φが求まり、式(15)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。本X線撮影システム10では、上記位相ズレ量ψを、下記に示す縞走査法を用いて算出する。 Therefore, by obtaining the phase shift amount ψ of the signal of each pixel 40, the refraction angle φ is obtained from the equation (16), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (15). Is integrated with respect to x, a phase shift distribution Φ (x) of the subject H, that is, a phase contrast image of the subject H can be generated. In the present X-ray imaging system 10, the phase shift amount ψ is calculated using a fringe scanning method described below.
 縞走査法では、第1及び第2の吸収型格子31,32の一方を他方に対して相対的にx方向にステップ的に並進移動させながら、すなわち、両者の格子パターンの間の位相を変化させながら、撮影を行う。本X線撮影システム10では、前述の走査手段33により第2の吸収型格子32を移動させているが、第1の吸収型格子31を移動させてもよい。第2の吸収型格子32の移動に伴って、モアレが移動し、並進距離(x方向への移動量)が、第2の吸収型格子32の格子周期の1周期(格子ピッチp)、すなわち、位相変化が2πに達すると、モアレは元の位置に戻る。このようなモアレの変化を、格子ピッチpを整数分の1ずつ第2の吸収型格子32を移動させながら、FPD30で縞画像を撮影し、撮影した複数の縞画像から各画素40の信号を取得し、演算処理部22で演算処理することにより、各画素40の信号の位相ズレ量ψを得る。 In the fringe scanning method, one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner in the x direction relative to the other, that is, the phase between the two grating patterns is changed. While shooting. In the present X-ray imaging system 10, the second absorption type grating 32 is moved by the scanning means 33 described above, but the first absorption type grating 31 may be moved. With the movement of the second absorption type grating 32, the moire moves, and the translational distance (movement amount in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ), That is, when the phase change reaches 2π, the moire returns to the original position. A fringe image is photographed by the FPD 30 while moving the second absorption type grating 32 by an integer of the grating pitch p 2 by such a change in moire, and the signal of each pixel 40 from the plurality of photographed stripe images. And the arithmetic processing unit 22 performs arithmetic processing to obtain the phase shift amount ψ of the signal of each pixel 40.
 図13は、格子ピッチpをM(2以上の整数)個に分割した走査ピッチ(p/M)ずつ第2の吸収型格子32を移動させる様子を模式的に示す。 FIG. 13 schematically shows a state in which the second absorption type grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (integers of 2 or more).
 走査手段33は、k=0,1,2,・・・,M-1のM個の各走査位置に、第2の吸収型格子32を順に並進移動させる。なお、同図では、第2の吸収型格子32の初期位置を、被写体Hが存在しない場合における第2の吸収型格子32の位置での自己像G1の暗部が、X線遮蔽部32bにほぼ一致する位置(k=0)としているが、この初期位置は、k=0,1,2,・・・,M-1のうちいずれの位置としてもよい。 The scanning unit 33 sequentially translates the second absorption type grating 32 to M scanning positions where k = 0, 1, 2,..., M−1. In the figure, the initial position of the second absorption type grating 32 is set such that the dark part of the self-image G1 at the position of the second absorption type grating 32 when the subject H does not exist is almost at the X-ray shielding part 32b. Although the matching position (k = 0) is assumed, this initial position may be any position among k = 0, 1, 2,..., M−1.
 まず、k=0の位置では、主として、被写体Hにより屈折されなかったX線が第2の吸収型格子32を通過する。次に、k=1,2,・・・と順に第2の吸収型格子32を移動させていくと、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されなかったX線の成分が減少する一方で、被写体Hにより屈折されたX線の成分が増加する。特に、k=M/2では、主として、被写体Hにより屈折されたX線のみが第2の吸収型格子32を通過する。k=M/2を超えると、逆に、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されたX線の成分が減少する一方で、被写体Hにより屈折されなかったX線の成分が増加する。 First, at the position of k = 0, X-rays that are not refracted by the subject H mainly pass through the second absorption type grating 32. Next, when the second absorption grating 32 is moved in order of k = 1, 2,..., The X-rays passing through the second absorption grating 32 are not refracted by the subject H. While the line component decreases, the X-ray component refracted by the subject H increases. In particular, at k = M / 2, mainly only the X-rays refracted by the subject H pass through the second absorption type grating 32. When k = M / 2 is exceeded, on the contrary, the X-ray component that is refracted by the subject H decreases in the X-rays that pass through the second absorption grating 32, while the X-ray that is not refracted by the subject H. The line component increases.
 k=0,1,2,・・・,M-1の各位置で、FPD30により撮影を行うと、各画素40について、M個の信号値が得られる。以下に、このM個の信号値から各画素40の信号の位相ズレ量ψを算出する方法を説明する。第2の吸収型格子32の位置kにおける各画素40の信号値をI(x)と標記すると、I(x)は、次式(17)で表される。 When shooting is performed by the FPD 30 at each position of k = 0, 1, 2,..., M−1, M signal values are obtained for each pixel 40. Hereinafter, a method of calculating the phase shift amount ψ of the signal of each pixel 40 from the M signal values will be described. When the signal value of each pixel 40 at the position k of the second absorption type grating 32 is denoted as I k (x), I k (x) is expressed by the following equation (17).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 ここで、xは、画素40のx方向に関する座標であり、Aは入射X線の強度であり、Aは画素40の信号値のコントラストに対応する値である(ここで、nは正の整数である)。また、φ(x)は、上記屈折角φを画素40の座標xの関数として表したものである。 Here, x is a coordinate in the x direction of the pixel 40, A 0 is the intensity of the incident X-ray, and An is a value corresponding to the contrast of the signal value of the pixel 40 (where n is a positive value). Is an integer). Φ (x) represents the refraction angle φ as a function of the coordinate x of the pixel 40.
 次いで、次式(18)の関係式を用いると、上記屈折角φ(x)は、次式(19)のように表される。 Next, using the relational expression of the following expression (18), the refraction angle φ (x) is expressed as the following expression (19).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 ここで、arg[ ]は、偏角の抽出を意味しており、各画素40の信号の位相ズレ量ψに対応する。したがって、各画素40で得られたM個の信号値から、式(19)に基づいて各画素40の信号の位相ズレ量ψを算出することにより、屈折角φ(x)が求められる。 Here, arg [] means the extraction of the declination, and corresponds to the phase shift amount ψ of the signal of each pixel 40. Accordingly, the refraction angle φ (x) is obtained by calculating the phase shift amount ψ of the signal of each pixel 40 from the M signal values obtained at each pixel 40 based on the equation (19).
 図14は、縞走査に伴って変化する放射線画像検出器の一つの画素の信号を示す。 FIG. 14 shows a signal of one pixel of the radiation image detector that changes with the fringe scanning.
 各画素40で得られたM個の信号値は、第2の吸収型格子32の位置kに対して、格子ピッチpの周期で周期的に変化する。図14中の破線は、被写体Hが存在しない場合の信号値の変化を示しており、図14中の実線は、被写体Hが存在する場合の信号値の変化を示している。この両者の波形の位相差が各画素40の信号の位相ズレ量ψに対応する。 The M signal values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption grating 32. A broken line in FIG. 14 indicates a change in the signal value when the subject H does not exist, and a solid line in FIG. 14 indicates a change in the signal value when the subject H exists. The phase difference between the two waveforms corresponds to the phase shift amount ψ of the signal of each pixel 40.
 そして、屈折角φ(x)は、上記式(15)で示したように微分位相値に対応する値であるため、屈折角φ(x)をx軸に沿って積分することにより、位相シフト分布Φ(x)が得られる。 Since the refraction angle φ (x) is a value corresponding to the differential phase value as shown in the above equation (15), the phase shift is obtained by integrating the refraction angle φ (x) along the x-axis. A distribution Φ (x) is obtained.
 以上の演算は、演算処理部22により行われ、演算処理部22は、位相コントラスト画像を記憶部23に記憶させる。なお、上記の説明では、画素40のy方向に関するy座標を考慮していないが、各y座標について同様の演算を行うことにより、x方向及びy方向における2次元的な位相シフト分布Φ(x,y)が得られる。以上の演算は、演算処理部22により行われ、演算処理部22は、算出した位相シフト分布Φ(x,y)を、位相コントラスト画像として画像記憶部23に記憶させる。 The above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the phase contrast image in the storage unit 23. In the above description, the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution Φ (x , Y). The above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the calculated phase shift distribution Φ (x, y) in the image storage unit 23 as a phase contrast image.
 上記の縞走査、及び位相コントラスト画像の生成処理は、入力装置21から操作者により撮影指示がなされた後、制御装置20の制御に基づいて各部が連係動作し、自動的に行われ、最終的に被写体Hの位相コントラスト画像がモニタ24に表示される。 The above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20. The phase contrast image of the subject H is displayed on the monitor 24.
 上述のように、モアレ周波数が安定的とされているので、被写体Hが存在するときと存在しないときとのモアレの周波数が変動することによるアーチファクトが生じることを防止できる。以上から、視野サイズに対して小さい複数の格子片311,321をそれぞれ配列して第1及び第2の吸収型格子31,32を構成することにより、第1及び第2の吸収型格子31,32の安定した製造を可能とするとともに、格子片311,321の配列に起因して生じ得るモアレ周波数の変動を配列ピッチと画素ピッチとの比を規定することで安定化したので、安定した画質の位相コントラスト画像を得ることが可能となる。 As described above, since the moire frequency is stable, it is possible to prevent the occurrence of artifacts due to fluctuations in the moire frequency when the subject H exists and when the subject H does not exist. From the above, the first and second absorption- type gratings 31, 32 are configured by arranging a plurality of grating pieces 311, 321 that are smaller than the visual field size, respectively, thereby forming the first and second absorption- type gratings 31, 32. 32 can be manufactured stably, and the fluctuation of the moire frequency that can be caused by the arrangement of the lattice pieces 311 and 321 is stabilized by defining the ratio between the arrangement pitch and the pixel pitch, so that the stable image quality can be obtained. It is possible to obtain a phase contrast image.
 また、第1の吸収型格子31で殆どのX線を回折させずに、第2の吸収型格子32に幾何学的に投影するため、照射X線には、高い空間的可干渉性は要求されず、X線源11として医療分野で用いられている一般的なX線源を用いることができる。そして、第1の吸収型格子31から第2の吸収型格子32までの距離Lを任意の値とすることができ、該距離Lを、タルボ干渉計での最小のタルボ干渉距離より小さく設定することができるため、撮影部12を小型化(薄型化)することができる。更に、本X線撮影システムでは、第1の吸収型格子31からの投影像(自己像G1)には、照射X線のほぼすべての波長成分が寄与し、モアレのコントラストが向上するため、位相コントラスト画像の検出感度を向上させることができる。 Further, since most of the X-rays are not diffracted by the first absorption type grating 31 and geometrically projected onto the second absorption type grating 32, high spatial coherence is required for the irradiated X-rays. Instead, a general X-ray source used in the medical field can be used as the X-ray source 11. The distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned). Furthermore, in the present X-ray imaging system, almost all wavelength components of irradiated X-rays contribute to the projected image (self-image G1) from the first absorption grating 31, and the moire contrast is improved. Contrast image detection sensitivity can be improved.
 なお、本X線撮影システム10は、第1の格子の投影像に対して縞走査を行って屈折角φを演算するものであって、そのため、第1及び第2の格子がいずれも吸収型格子であるものとして説明したが、本発明はこれに限定されるものではない。上述のとおり、タルボ干渉像に対して縞走査を行って屈折角φを演算する場合、すなわち、第1の格子と第2の格子との間の距離がタルボ距離に設定されるタルボ干渉計を用いる場合にも、本発明は有用である。よって、第1の格子は、吸収型格子に限らず位相型格子であってもよい。 Note that the X-ray imaging system 10 performs a fringe scan on the projection image of the first grating to calculate the refraction angle φ. Therefore, both the first and second gratings are absorption type. Although described as being a lattice, the present invention is not limited to this. As described above, when the refraction angle φ is calculated by performing fringe scanning on the Talbot interference image, that is, the Talbot interferometer in which the distance between the first grating and the second grating is set to the Talbot distance. The present invention is also useful when used. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating.
 第1の格子のX線像と第2の格子との重ね合わせによって形成されるモアレの解析方法は、前述した縞走査法に限られず、例えば「J. Opt. Soc. Am. Vol.72,No.1 (1982) p.156」により知られているフーリエ変換/フーリエ逆変換を用いた方法など、モアレを利用した種々の方法も適用可能である。
 ここで、フーリエ変換法では、縞走査法のように第1、第2の格子によるモアレから走査によって強度変調信号を取得することなく、モアレを直接フーリエ変換で解析する。このようなフーリエ変換法においても、モアレ周波数の安定が重要であって、上述と同様の効果が得られる。
The analysis method of the moire formed by superimposing the X-ray image of the first grating and the second grating is not limited to the above-described fringe scanning method. For example, “J. Opt. Soc. Am. No. 1 (1982) p. 156 ”, a method using Fourier transform / inverse Fourier transform, and various methods using moire can be applied.
Here, in the Fourier transform method, the moire is directly analyzed by Fourier transform without acquiring an intensity modulation signal by scanning from the moire by the first and second gratings as in the fringe scanning method. Also in such a Fourier transform method, the stability of the moire frequency is important, and the same effect as described above can be obtained.
 また、本X線撮影システム10は、位相シフト分布Φを画像としたものを位相コントラスト画像として記憶ないし表示するものとして説明したが、上記のとおり、位相シフト分布Φは、屈折角φに対応する位相シフト分布Φの微分量を積分したものであって、屈折角φ及び位相シフト分布Φの微分量もまた被写体によるX線の位相変化に関連している。よって、屈折角φを画像としたもの、また、位相シフトΦの微分量を画像としたものも位相コントラスト画像に含まれる。 Further, although the X-ray imaging system 10 has been described as one that stores or displays an image of the phase shift distribution Φ as a phase contrast image, the phase shift distribution Φ corresponds to the refraction angle φ as described above. The differential amount of the phase shift distribution Φ is integrated, and the differential angle of the refraction angle φ and the phase shift distribution Φ is also related to the phase change of the X-ray by the subject. Therefore, an image having the refraction angle φ as an image and an image having the differential amount of the phase shift Φ are also included in the phase contrast image.
 また、被写体がない状態で撮影(プレ撮影)して取得される画像群から位相微分像(位相シフト分布Φの微分量)を作成し、被写体がある状態で撮影(メイン撮影)して取得される画像群から作成された位相微分像を補正するようにしてもよい。プレ撮影で取得される位相微分像は、測定系固有の位相ムラ、たとえば格子ピッチや厚さの不均一性、格子の走査ピッチの誤差等を反映している。一方で、被写体がある状態で撮影(メイン撮影)して取得される画像群から作成された位相微分像にも、プレ撮影と同種の測定系固有の位相ムラが含まれており、位相微分信号のオフセットとして作用している。したがって、メイン撮影で得られた位相微分像から、プレ撮影で得られた位相微分像を引くことで、測定系の位相ムラを補正した位相微分像を得ることが出来る。 Also, a phase differential image (differential amount of phase shift distribution Φ) is created from a group of images acquired by shooting (pre-shooting) in the absence of a subject, and acquired by shooting (main shooting) in the presence of a subject. A phase differential image created from a group of images may be corrected. The phase differential image acquired by the pre-imaging reflects the phase unevenness inherent to the measurement system, for example, the grating pitch and thickness non-uniformity, and the grating scanning pitch error. On the other hand, the phase differential image created from the group of images acquired by shooting in the presence of the subject (main shooting) also contains phase irregularities unique to the measurement system of the same type as pre-photographing. Acting as an offset. Accordingly, by subtracting the phase differential image obtained by the pre-photographing from the phase differential image obtained by the main imaging, a phase differential image in which the phase unevenness of the measurement system is corrected can be obtained.
 図15は、格子片が第1方向としてのx方向に加えて、第2の方向としてのy方向にも配列された構成例を模式的に示す。第1及び第2の格子がいずれも、図15のようにx方向及びy方向に二次元配列された格子片131を有して構成されていることが好ましい。格子片131は、x方向には境界部31cxを介して配列され、y方向には境界部31cyを介して配列されている。このように格子片がy方向にも配列されていることで、格子片のy方向の寸法が短いため、格子の製造に要求される面内均一性の点で、格子の製造が容易となる。複数の格子片で第1、第2の格子をそれぞれ構成する際には、図15のように格子片を2次元配列して用いることが好ましい。 FIG. 15 schematically shows a configuration example in which the lattice pieces are arranged in the y direction as the second direction in addition to the x direction as the first direction. Both the first and second gratings are preferably configured to have grating pieces 131 arranged two-dimensionally in the x and y directions as shown in FIG. The lattice pieces 131 are arranged in the x direction via the boundary portion 31cx, and are arranged in the y direction via the boundary portion 31cy. Since the lattice pieces are also arranged in the y direction in this way, the size of the lattice pieces in the y direction is short, so that the lattice can be easily manufactured in terms of in-plane uniformity required for the manufacture of the lattice. . When each of the first and second gratings is composed of a plurality of grating pieces, it is preferable to use the grating pieces arranged two-dimensionally as shown in FIG.
 なお、上記各例では、第1、第2の格子が共に複数の格子片で構成された例を示したが、第1の格子のみ、あるいは第2の格子のみが複数の格子片により構成されていてもよい。 In each of the above examples, the first and second gratings are both constituted by a plurality of grating pieces. However, only the first grating or only the second grating is constituted by a plurality of grating pieces. It may be.
 図16は、本発明の実施形態を説明するための放射線撮影装置の他の例を示す。 FIG. 16 shows another example of a radiation imaging apparatus for explaining an embodiment of the present invention.
 図16に示すマンモグラフィ装置80は、被検体として乳房BのX線画像(位相コントラスト画像)を撮影する装置である。マンモグラフィ装置80は、基台(図示せず)に対して旋回可能に連結されたアーム部材81の一端に配設されたX線源収納部82と、アーム部材81の他端に配設された撮影台83と、撮影台83に対して上下方向に移動可能に構成された圧迫板84とを備える。 A mammography apparatus 80 shown in FIG. 16 is an apparatus that captures an X-ray image (phase contrast image) of a breast B as a subject. The mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81. An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
 X線源収納部82にはX線源11が収納されており、撮影台83には撮影部12が収納されている。X線源11と撮影部12とは、互いに対向するように配置されている。圧迫板84は、移動機構(図示せず)により移動し、撮影台83との間で乳房Bを挟み込んで圧迫する。この圧迫状態で、上記したX線撮影が行われる。 The X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12. The X-ray source 11 and the imaging unit 12 are arranged to face each other. The compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
 なお、X線源11及び撮影部12は、前述したX線撮影システム10のものと同様の構成であるため、各構成要素には、前述したX線撮影システム10と同一の符号を付している。その他の構成及び作用については、前述したX線撮影システム10と同様であるため説明は省略する。 Since the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 described above are attached to the respective components. Yes. Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
 図17は、図16の放射線撮影装置の変形例を示す。 FIG. 17 shows a modification of the radiation imaging apparatus of FIG.
 図17に示すマンモグラフィ装置90は、第1の吸収型格子31がX線源11と圧迫板84との間に配設されている点が前述したマンモグラフィ装置80と異なる。第1の吸収型格子31は、アーム部材81に接続された格子収納部91に収納されている。撮影部92は、FPD30、第2の吸収型格子32、走査機構33により構成されている。 The mammography apparatus 90 shown in FIG. 17 is different from the mammography apparatus 80 described above in that the first absorption type grating 31 is disposed between the X-ray source 11 and the compression plate 84. The first absorption type lattice 31 is accommodated in a lattice accommodation portion 91 connected to the arm member 81. The imaging unit 92 includes an FPD 30, a second absorption type grating 32, and a scanning mechanism 33.
 このように、被検体(乳房)Bが第1の吸収型格子31と第2の吸収型格子32との間に位置する場合であっても、第2の吸収型格子32の位置に形成される第1の吸収型格子31の投影像(自己像G1)が被検体Bにより変形する。したがって、この場合でも、被検体Bに起因して変調されたモアレをFPD30により検出することができる。すなわち、本マンモグラフィ装置90でも前述した原理で被検体Bの位相コントラスト画像を得ることができる。 Thus, even when the subject (breast) B is located between the first absorption type grating 31 and the second absorption type grating 32, it is formed at the position of the second absorption type grating 32. The projected image (self-image G1) of the first absorption grating 31 is deformed by the subject B. Accordingly, even in this case, the moiré modulated due to the subject B can be detected by the FPD 30. That is, the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
 そして、本マンモグラフィ装置90では、第1の吸収型格子31による遮蔽により、線量がほぼ半減したX線が被検体Bに照射されることになるため、被検体Bの被曝量を、前述したマンモグラフィ装置80の場合の約半分に低減することができる。なお、本マンモグラフィ装置90のように、第1の吸収型格子31と第2の吸収型格子32との間に被検体を配置することは、前述したX線撮影システム10にも適用することが可能である。 In the present mammography apparatus 90, the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 90 can also be applied to the X-ray imaging system 10 described above. Is possible.
 図18は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 18 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 図18に示すX線撮影システム100は、X線源101のコリメータユニット102に、マルチスリット103を配設した点が、上記第1実施形態のX線撮影システム10と異なる。その他の構成については、前述したX線撮影システム10と同一であるので説明は省略する。 18 differs from the X-ray imaging system 10 of the first embodiment in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. The X-ray imaging system 100 shown in FIG. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
 前述したX線撮影システム10では、X線源11からFPD30までの距離を、一般的な病院の撮影室で設定されるような距離(1m~2m)とした場合に、X線焦点18bの焦点サイズ(一般的に0.1mm~1mm程度)による自己像G1のボケが影響し、位相コントラスト画像の画質の低下をもたらす恐れがある。そこで、X線焦点18bの直後にピンホールを設置して実効的に焦点サイズを小さくすることが考えられるが、実効的な焦点サイズを縮小するためにピンホールの開口面積を小さくすると、X線強度が低下してしまう。本X線撮影システム100においては、この課題を解決するために、X線焦点18bの直後にマルチスリット103を配置する。 In the X-ray imaging system 10 described above, when the distance from the X-ray source 11 to the FPD 30 is a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b. The blur of the self-image G1 due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is degraded. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall. In the present X-ray imaging system 100, in order to solve this problem, the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
 マルチスリット103は、撮影部12に設けられた第1及び第2の吸収型格子31,32と同様な構成の吸収型格子(第3の吸収型格子)であり、一方向(y方向)に延伸した複数のX線遮蔽部が、第1及び第2の吸収型格子31,32のX線遮蔽部31b,32bと同一方向(x方向)に周期的に配列されている。このマルチスリット103は、X線焦点18bから放射される放射線を部分的に遮蔽することにより、x方向に所定のピッチで配列した多数の小焦点光源(分散光源)を形成することを目的としている。 The multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction). The extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32. The multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
 このマルチスリット103の格子ピッチpは、マルチスリット103から第1の吸収型格子31までの距離をLとして、次式(20)を満たすように設定する必要がある。 The lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following equation (20), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 上式(20)は、マルチスリット103により分散形成された各小焦点光源から射出されたX線の第1の吸収型格子31による投影像(自己像G1)が、第2の吸収型格子32の位置で一致する(重なり合う)ための幾何学的な条件である。 In the above equation (20), the projection image (self-image G1) of the X-rays emitted from the small focus light sources dispersedly formed by the multi-slit 103 by the first absorption type grating 31 is the second absorption type grating 32. This is a geometrical condition for matching (overlapping) at the positions.
 また、実質的にマルチスリット103の位置がX線焦点位置となるため、第2の吸収型格子32の位置での自己像G1のパターン周期をp’とすると、第1の吸収型格子31の格子ピッチp、第2の吸収型格子32の格子ピッチpは、次式(21)の関係を満たすように決定される。 In addition, since the position of the multi-slit 103 is substantially the X-ray focal position, the first absorption grating 31 is given by assuming that the pattern period of the self-image G1 at the position of the second absorption grating 32 is p 1 ′. The lattice pitch p 1 of the second absorption lattice 32 and the lattice pitch p 2 of the second absorption lattice 32 are determined so as to satisfy the relationship of the following equation (21).
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 また、X線源11から照射されるX線がコーンビームである場合に、FPD30の検出面におけるx方向の有効視野の長さVを確保するには、マルチスリット103からFPD30の検出面までの距離をL’とすると、第1及び第2の吸収型格子31,32のX線遮蔽部31b,32bの厚みh,hは、次式(22)及び(23)を満たすように決定される。 Further, when the X-ray irradiated from the X-ray source 11 is a cone beam, in order to secure the effective field length V in the x direction on the detection surface of the FPD 30, from the multi slit 103 to the detection surface of the FPD 30. When the distance is L ′, the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32 are determined so as to satisfy the following expressions (22) and (23). Is done.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 このように、本例では、マルチスリット103により形成される複数の小焦点光源がそれぞれ形成する自己像G1が重ね合わせられることにより、X線強度を低下させずに、位相コントラスト画像の画質を向上させることができる。
 なお、以上説明したマルチスリット103は、上記いずれの例においても適用可能である。
Thus, in this example, the self-image G1 formed by each of the plurality of small focus light sources formed by the multi-slit 103 is superimposed, thereby improving the image quality of the phase contrast image without reducing the X-ray intensity. Can be made.
The multi slit 103 described above can be applied to any of the above examples.
 図19は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 19 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 前述したように、位相コントラスト画像は、第1及び第2の吸収型格子31,32のX線遮蔽部31b,32bの周期配列方向(x方向)のX線の屈折成分に基づくものとなる。このため、X線遮蔽部31b,32bの延伸方向(y方向)の屈折成分は反映されない。すなわち、xy面である格子面を介して、x方向に交差する方向(直交する場合はy方向)に沿った部位輪郭がx方向の屈折成分に基づく位相コントラスト画像として描出されるのであり、x方向に交差せずにx方向に沿っている部位輪郭はx方向の位相コントラスト画像として描出されない。すなわち、被写体Hとする部位の形状と向きによっては描出できない部位が存在する。例えば、膝等の関節軟骨の荷重面の方向を格子の面内方向であるx方向及びy方向のうちy方向に合わせると、y方向にほぼ沿った荷重面(yz面)近傍の部位輪郭は十分に描出されるが、荷重面に交差しx方向にほぼ沿って延びる軟骨周辺組織(腱や靭帯など)については描出が不十分になると考えられる。被写体Hを動かすことにより、描出が不十分な部位を再度撮影することは可能ではあるが、被写体H及び術者の負担が増えることに加え、再度撮影した画像との位置再現性を担保することが難しいといった問題がある。 As described above, the phase contrast image is based on the X-ray refraction component in the periodic array direction (x direction) of the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32. For this reason, the refraction | bending component of the extending | stretching direction (y direction) of X-ray shielding part 31b, 32b is not reflected. That is, a part outline along a direction intersecting the x direction (or the y direction when orthogonal) is drawn as a phase contrast image based on a refractive component in the x direction via a lattice plane that is an xy plane. A part contour that does not intersect the direction and extends along the x direction is not drawn as a phase contrast image in the x direction. That is, there is a part that cannot be drawn depending on the shape and orientation of the part to be the subject H. For example, when the direction of the load surface of an articular cartilage such as a knee is matched to the y direction of the x and y directions which are the in-plane directions of the lattice, the region contour in the vicinity of the load surface (yz surface) substantially along the y direction is Although it is sufficiently depicted, it is considered that rendering of the cartilage peripheral tissues (tendons, ligaments, etc.) that intersect the load surface and extend substantially along the x direction is insufficient. By moving the subject H, it is possible to re-photograph a part that is not sufficiently drawn, but in addition to increasing the burden on the subject H and the operator, ensuring position reproducibility with the re-captured image There is a problem that is difficult.
 そこで、他の例として、図19に示すように、第1及び第2の吸収型格子31,32の格子面の中心に直交する仮想線(X線の光軸A)を中心として、第1及び第2の吸収型格子31,32を、図19(a)に示す第1の向き(X線遮蔽部31b,32bの延伸方向がy方向に沿う方向)から一体的に任意の角度で回転させて、図19(b)に示す第2の向き(X線遮蔽部31b,32bの延伸方向がx方向に沿う方向)とする回転機構105を設け、第1の向きと第2の向きとのそれぞれにおいて位相コントラスト画像を生成するように構成することも好適である。こうすることで、上述した位置再現性の問題をなくせる。なお、図19(a)には、X線遮蔽部31b,32bの延伸方向がy方向に沿う方向となるような第1、第2格子31,32の第1の向きを示し、図19(b)には、図19(a)の状態から90度回転させ、X線遮蔽部31b,32bの延伸方向がx方向に沿う方向となるような第1、第2格子31,32の第2の向きを示したが、第1、第2の格子の回転角度は任意である。また、第1の向き及び第2の向きに加えて、第3の向き、第4の向きなど、2回以上の回転操作を行って、それぞれの向きでの位相コントラスト画像を生成するように構成してもよい。 Therefore, as another example, as shown in FIG. 19, the first line is centered on a virtual line (X-ray optical axis A) orthogonal to the center of the lattice plane of the first and second absorption gratings 31 and 32. The second absorption gratings 31 and 32 are integrally rotated at an arbitrary angle from the first direction shown in FIG. 19A (the direction in which the X-ray shielding portions 31b and 32b extend are along the y direction). Then, a rotation mechanism 105 is provided that has a second direction (a direction in which the extending direction of the X-ray shielding portions 31b and 32b extends along the x direction) shown in FIG. 19B, and the first direction and the second direction. It is also preferable to configure so that a phase contrast image is generated in each of the above. By doing so, the above-described problem of position reproducibility can be eliminated. FIG. 19A shows the first orientation of the first and second gratings 31 and 32 such that the extending direction of the X-ray shielding portions 31b and 32b is in the direction along the y direction. In b), the second of the first and second gratings 31 and 32 is rotated 90 degrees from the state of FIG. 19A and the extending direction of the X-ray shielding portions 31b and 32b is in the direction along the x direction. However, the rotation angles of the first and second gratings are arbitrary. Further, in addition to the first direction and the second direction, a phase contrast image in each direction is generated by performing two or more rotation operations such as the third direction and the fourth direction. May be.
 なお、図示の例では、第1及び第2の吸収型格子31,32を90°回転させ、第1の向きと第2の向きとが直交しているが、第1の向きと第2の向きとが交差する限りにおいて第1及び第2の吸収型格子31,32の回転角度は90°に限られるものではない。また、この格子回転機構105は、FPD30とは別に第1及び第2の吸収型格子31,32のみを一体的に回転させるものであってもよいし、第1及び第2の吸収型格子31,32とともにFPD30を一体的に回転させるものであってもよい。更に、マルチスリット103を備える場合は、第1及び第2の吸収型格子31,32と回転が一致するように、マルチスリット103及びコリメータ109、若しくはこれらが一体で形成された放射線源を回転させる。更に、格子回転機構105を用いた第1及び第2の向きにおける位相コントラスト画像の生成は、前述したいずれのX線撮影システムにおいても適用可能である。 In the illustrated example, the first and second absorption gratings 31 and 32 are rotated by 90 °, and the first direction and the second direction are orthogonal to each other. As long as the direction intersects, the rotation angle of the first and second absorption gratings 31 and 32 is not limited to 90 °. Further, the grating rotating mechanism 105 may be configured to rotate only the first and second absorption type gratings 31 and 32 separately from the FPD 30, or the first and second absorption type gratings 31. , 32 and the FPD 30 may be rotated together. Further, when the multi-slit 103 is provided, the multi-slit 103 and the collimator 109 or the radiation source formed integrally with them is rotated so that the rotation coincides with the first and second absorption gratings 31 and 32. . Furthermore, the generation of phase contrast images in the first and second orientations using the grating rotation mechanism 105 can be applied to any of the X-ray imaging systems described above.
 図20は、X線遮蔽部がx方向及びy方向の二方向に配列された二次元格子の例を示す。各格子片231は、x方向に配列されたX線遮蔽部31bxと、y方向に配列されたX線遮蔽部31byとを有する。格子片231は、x方向及びy方向の二方向に配列され、x方向における格子片231の配列ピッチは、x方向における画素ピッチの2倍以上であり、かつy方向における格子片231の配列ピッチは、y方向における画素ピッチの2倍以上となっている。第1及び第2の格子がいずれも、図20のような二次元格子であるとき、第1及び第2の格子のx方向の相対移動時のデータと、第1及び第2の格子のy方向の相対移動時のデータとが得られる。すなわち、格子をz軸を中心に回転させたり、被写体Hの向きを変えたりしなくても、xy面内でのX線の屈折方向として不感となる方向がなく、方向特異的に画像欠損が生じない診断画像の提供が可能となる。 FIG. 20 shows an example of a two-dimensional lattice in which X-ray shielding portions are arranged in two directions, the x direction and the y direction. Each lattice piece 231 has an X-ray shielding part 31bx arranged in the x direction and an X-ray shielding part 31by arranged in the y direction. The lattice pieces 231 are arranged in two directions, the x direction and the y direction, the arrangement pitch of the lattice pieces 231 in the x direction is more than twice the pixel pitch in the x direction, and the arrangement pitch of the lattice pieces 231 in the y direction. Is more than twice the pixel pitch in the y direction. When both the first and second gratings are two-dimensional gratings as shown in FIG. 20, the data of the first and second gratings in the relative movement in the x direction, and the y values of the first and second gratings. Data at the time of relative movement in the direction is obtained. That is, even if the lattice is not rotated around the z axis or the direction of the subject H is not changed, there is no direction that is insensitive as the refraction direction of the X-ray in the xy plane, and the image defect is direction-specific. It is possible to provide a diagnostic image that does not occur.
 図21は、本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その第1及び第2の格子の構成を示す。 FIG. 21 shows the configuration of the first and second gratings for another example of the radiation imaging system for explaining the embodiment of the present invention.
 前述したX線撮影システム10においては、第1及び第2の吸収型格子31,32は、X線遮蔽部31b,32bの周期配列方向が直線状(すなわち、格子面が平面状)となるように構成されているが、これに代えて、図21に示すように、格子面を略凹曲面状に構成した第1及び第2の吸収型格子110,111を用いることもできる。 In the X-ray imaging system 10 described above, the first and second absorption gratings 31 and 32 are arranged such that the periodic arrangement direction of the X-ray shielding portions 31b and 32b is linear (that is, the grating surface is planar). However, instead of this, as shown in FIG. 21, it is also possible to use first and second absorption type gratings 110 and 111 in which the grating surface is formed in a substantially concave curved surface shape.
 第1の吸収型格子110は、複数の第1の格子片110Aを配列して構成されており、第1の格子片110Aの各々は、X線透過性でかつ平面状の基板110aの表面に、y方向に直線状に延伸する複数のX線遮蔽部110bが所定のピッチpで周期的に配列されている。そして、第1の吸収型格子110は、X線焦点18bを通りX線遮蔽部110bの延伸方向(y方向)に延びる仮想線を中心軸とする円筒面の周方向に複数の第1の格子片110Aが配列され、周方向に隣り合う第1の格子片110A同士が配列されることによって、その格子面が略凹曲面状に構成されている。隣り合う第1の格子片110A同士の間には、境界部110cが形成されている。 The first absorption type grating 110 is configured by arranging a plurality of first grating pieces 110A, and each of the first grating pieces 110A is X-ray transmissive on the surface of the planar substrate 110a. , a plurality of X-ray shielding section 110b that extends linearly in the y direction are periodically arranged at a predetermined pitch p 1. The first absorption type grating 110 includes a plurality of first gratings in the circumferential direction of the cylindrical surface with the imaginary line passing through the X-ray focal point 18b and extending in the extending direction (y direction) of the X-ray shielding part 110b as a central axis. The pieces 110A are arranged, and the first lattice pieces 110A adjacent to each other in the circumferential direction are arranged, so that the lattice surface is formed in a substantially concave curved surface shape. A boundary portion 110c is formed between the adjacent first lattice pieces 110A.
 同様に、第2の吸収型格子111は、複数の第2の格子片111Aを配列して構成されており、第2の格子片111Aの各々は、X線透過性でかつ平面状の基板111aの表面に、y方向に直線状に延伸する複数のX線遮蔽部111bが所定のピッチpで周期的に配列されている。そして、第2の吸収型格子111は、X線焦点18bを通りX線遮蔽部111bの延伸方向(y方向)に延びる仮想線を中心軸とする円筒面の周方向に複数の第2の格子片111Aが配列され、周方向に隣り合う第1の格子片111A同士が配列されることによって、その格子面が略凹曲面状に構成されている。隣り合う第2の格子片111A同士の間には、境界部111cが形成されている。 Similarly, the second absorption type grating 111 is configured by arranging a plurality of second grating pieces 111A, and each of the second grating pieces 111A is an X-ray transparent and planar substrate 111a. on the surface of a plurality of X-ray shielding section 111b that extends linearly in the y direction are periodically arranged at a predetermined pitch p 2. The second absorption type grating 111 includes a plurality of second gratings in the circumferential direction of the cylindrical surface with a virtual line passing through the X-ray focal point 18b and extending in the extending direction (y direction) of the X-ray shielding part 111b as a central axis. When the pieces 111A are arranged and the first lattice pieces 111A adjacent in the circumferential direction are arranged, the lattice surface is formed in a substantially concave curved surface shape. A boundary 111c is formed between the adjacent second lattice pieces 111A.
 X線焦点18bから第1の吸収型格子110までの距離をL、第1の吸収型格子110から第2の吸収型格子111までの距離をLとした場合に、格子ピッチpは、上記式(1)の関係を満たすように決定される。 L 1 the distance from the X-ray focal point 18b to the first absorption grating 110, when the distance from the first absorption grating 110 to the second absorption grating 111 was L 2, the grating pitch p 2 are Are determined so as to satisfy the relationship of the above formula (1).
 このように、第1及び第2の吸収型格子110,111を、それぞれ複数の格子片を配列して構成することで、それらの格子面を容易に略凹曲面状に構成することができる。そして、第1及び第2の吸収型格子110,111の格子面を略凹曲面状とすることにより、X線焦点18bから照射されるX線は、被検体Hが存在しない場合、格子面の各部に略垂直に入射することになるため、X線遮蔽部110bの厚みhとX線遮蔽部111bの厚みhとの上限の制約が緩和され、上記式(6)及び(7)を考慮する必要がない。 As described above, by configuring the first and second absorption type gratings 110 and 111 by arranging a plurality of grating pieces, it is possible to easily configure the grating surfaces in a substantially concave curved surface shape. Then, by making the grating surfaces of the first and second absorption gratings 110 and 111 substantially concave curved surfaces, the X-rays irradiated from the X-ray focal point 18 b since made incident substantially perpendicularly to the respective units, the upper limit of the limitation of the thickness h 2 of the thickness h 1 and the X-ray shielding portion 111b of the X-ray shielding section 110b is reduced, the above expression (6) and (7) There is no need to consider.
 また、第1及び第2の吸収型格子110,111の格子面を凹曲面状とする場合に、第1及び第2の吸収型格子110,111のいずれか一方を、X線焦点18bを中心として、格子面に沿った方向に移動させることにより、前述の縞走査を行う。更に、第1及び第2の吸収型格子110,111の格子面を凹曲面状とする場合に、FPD112の検出面もまた、X線焦点18bを通りy方向に延びる直線を中心軸とする円筒面に沿った凹曲面状に形成することが好ましい。 Further, when the grating surfaces of the first and second absorption type gratings 110 and 111 are formed in a concave curved surface shape, one of the first and second absorption type gratings 110 and 111 is centered on the X-ray focal point 18b. As described above, the above-described fringe scanning is performed by moving in a direction along the lattice plane. Further, when the grating surfaces of the first and second absorption gratings 110 and 111 are formed in a concave curved surface, the detection surface of the FPD 112 is also a cylinder whose central axis is a straight line that extends in the y direction through the X-ray focal point 18b. It is preferable to form a concave curved surface along the surface.
 第1及び第2の吸収型格子110,111及びFPD112は、前述したいずれのX線撮影システムにおいても適用可能である。更に、マルチスリット103を用いる場合は、第1及び第2の吸収型格子110,111と同様に、マルチスリット103を凹曲面状に構成することも好適である。 The first and second absorption gratings 110 and 111 and the FPD 112 can be applied to any of the X-ray imaging systems described above. Further, when the multi slit 103 is used, it is also preferable that the multi slit 103 is formed in a concave curved surface like the first and second absorption gratings 110 and 111.
 図22は、本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その放射線画像検出器の構成を示す。 FIG. 22 shows the configuration of the radiation image detector in relation to another example of the radiation imaging system for explaining the embodiment of the present invention.
 前述したX線撮影システム10では、第2の吸収型格子32がFPD30とは独立して設けられているが、第2の吸収型格子32あるいはそれと同等の構成をX線画像検出器自体が有していてもよい。具体的な実施態様としては、特開2009-133823号公報に開示された構成のX線画像検出器を用いることにより、第2の吸収型格子を排することができる。このX線画像検出器は、X線を電荷に変換する変換層と、変換層において変換された電荷を収集する電荷収集電極とを備えた直接変換型のX線画像検出器であって、各画素120の電荷収集電極121が、一定の周期で配列された線状電極を互いに電気的に接続してなる複数の線状電極群122~127を、互いに位相が異なるように配置することにより構成されている。 In the X-ray imaging system 10 described above, the second absorption type grating 32 is provided independently of the FPD 30, but the X-ray image detector itself has the second absorption type grating 32 or an equivalent configuration. You may do it. As a specific embodiment, the second absorption type grating can be eliminated by using an X-ray image detector having a configuration disclosed in Japanese Patent Laid-Open No. 2009-133823. This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges, and a charge collection electrode that collects electric charges converted in the conversion layer, The charge collecting electrode 121 of the pixel 120 is configured by arranging a plurality of linear electrode groups 122 to 127 formed by electrically connecting linear electrodes arranged at a constant period so that their phases are different from each other. Has been.
 画素120は、x方向及びy方向に沿って一定のピッチで2次元配列されており、各画素120には、X線を電荷に変換する変換層によって変換された電荷を収集するための電荷収集電極121が形成されている。電荷収集電極121は、第1~第6の線状電極群122~127から構成されており、各線状電極群の線状電極の配列周期の位相がπ/3ずつずれている。具体的には、第1の線状電極群122の位相を0とすると、第2の線状電極群123の位相はπ/3、第3の線状電極群124の位相は2π/3、第4の線状電極群125の位相はπ、第5の線状電極群126の位相は4π/3、第6の線状電極群127の位相は5π/3である。 The pixels 120 are two-dimensionally arranged at a constant pitch along the x direction and the y direction, and each pixel 120 has a charge collection for collecting the charges converted by the conversion layer that converts the X-rays into charges. An electrode 121 is formed. The charge collection electrode 121 includes first to sixth linear electrode groups 122 to 127, and the phase of the arrangement period of the linear electrodes of each linear electrode group is shifted by π / 3. Specifically, when the phase of the first linear electrode group 122 is 0, the phase of the second linear electrode group 123 is π / 3, the phase of the third linear electrode group 124 is 2π / 3, The phase of the fourth linear electrode group 125 is π, the phase of the fifth linear electrode group 126 is 4π / 3, and the phase of the sixth linear electrode group 127 is 5π / 3.
 第1~第6の線状電極群122~127はそれぞれ、y方向に延伸した線状電極をx方向に所定のピッチpで周期的に配列したものである。この線状電極の配列ピッチpの実質的なピッチp’と、電荷収集電極121の位置(X線画像検出器の位置)における自己像G1のパターン周期p’と、x方向に関する画素120の画素ピッチPとの関係は、前述したX線撮影システム10の第2の吸収型格子32と同様に、式(8)で表されるモアレの周期Tに基づき、式(9)を満たす必要があり、更には、式(10)を満たすことが好ましい。 Linear electrode groups 122-127 of the first through sixth, respectively, in which the linear electrodes extend in the y-direction and periodically arranged at a predetermined pitch p 2 in the x-direction. The substantial pitch p 2 ′ of the arrangement pitch p 2 of the linear electrodes, the pattern period p 1 ′ of the self-image G1 at the position of the charge collection electrode 121 (position of the X-ray image detector), and the pixel in the x direction The relationship between the pixel pitch P D of 120 and the pixel pitch P D of Equation (9) is based on the moire period T expressed by Equation (8), similarly to the second absorption grating 32 of the X-ray imaging system 10 described above. It is necessary to satisfy | fill, Furthermore, it is preferable to satisfy | fill Formula (10).
 更に、各画素120には、電荷収集電極121により収集された電荷を読み出すためのスイッチ群128が設けられている。スイッチ群128は、第1~第6の線状電極群121~126のそれぞれに設けられたスイッチからなる。第1~第6の線状電極群121~126により収集された電荷を、スイッチ群128を制御してそれぞれ個別に読み出すことによって、一度の撮影により、互いに位相の異なる6種類の縞画像を取得することができ、この6種類の縞画像に基づいて位相コントラスト画像を生成することができる。 Further, each pixel 120 is provided with a switch group 128 for reading out the charges collected by the charge collecting electrode 121. The switch group 128 includes switches provided in the first to sixth linear electrode groups 121 to 126, respectively. By collecting the charges collected by the first to sixth linear electrode groups 121 to 126 individually by controlling the switch group 128, six types of fringe images having different phases can be obtained by one imaging. A phase contrast image can be generated based on these six types of fringe images.
 このように構成されたX線画像検出器を、例えば前述したX線撮影システム10に適用した場合に、撮影部12から第2の吸収型格子32が不要となる。本構成では、第1の格子31のみが、複数の格子片311が配列されて構成されている。本構成では、一度の撮影で複数の位相成分の縞画像を取得することができるため、縞走査のための物理的な走査が不要となり、走査機構33も排することができる。それにより、コスト削減とともに、撮影部のさらなる薄型化を図ることができる。なお、電荷収集電極の構成には、上記構成に代えて、特開2009-133823号公報に記載のその他の構成を用いることも可能である。 When the X-ray image detector configured in this way is applied to, for example, the X-ray imaging system 10 described above, the second absorption type grating 32 from the imaging unit 12 becomes unnecessary. In this configuration, only the first lattice 31 is configured by arranging a plurality of lattice pieces 311. In this configuration, since a fringe image of a plurality of phase components can be acquired by one shooting, physical scanning for fringe scanning becomes unnecessary, and the scanning mechanism 33 can be eliminated. Thereby, it is possible to reduce the cost and further reduce the thickness of the photographing unit. It should be noted that the structure of the charge collecting electrode may be replaced with another structure described in Japanese Patent Application Laid-Open No. 2009-133823.
 次に、本発明の実施形態を説明するための放射線撮影システムの他の例について説明する。 Next, another example of the radiation imaging system for describing the embodiment of the present invention will be described.
 図23に示すX線撮影システムは、X線源11から射出されたX線を通過させて周期パターン像(自己像G1)を形成する第1の格子131と、第1の格子131により形成された自己像G1を周期的にマスクする第2の格子132と、自己像G1と第2の格子132の重ね合わせにより形成されたモアレを検出するX線画像検出器240と、X線画像検出器240により検出されたモアレに基づいて縞画像を取得し、その取得した縞画像に基づいて位相コントラスト画像を生成する位相コントラスト画像生成部260とを備えている。なお、位相コントラスト画像生成部260は、コンソール13(図2)内の制御装置20の処理の一部を構成する。 The X-ray imaging system shown in FIG. 23 is formed by a first grating 131 that passes through the X-rays emitted from the X-ray source 11 and forms a periodic pattern image (self-image G1), and the first grating 131. A second grating 132 that periodically masks the self-image G1; an X-ray image detector 240 that detects a moire formed by superposition of the self-image G1 and the second grating 132; and an X-ray image detector And a phase contrast image generation unit 260 that acquires a fringe image based on the moire detected by 240 and generates a phase contrast image based on the acquired fringe image. The phase contrast image generation unit 260 constitutes part of the processing of the control device 20 in the console 13 (FIG. 2).
 X線源11は、被写体Hに向けてX線を射出するものであり、第1の格子131にX線を照射したとき、タルボ干渉効果を発生させうるだけの空間的干渉性を有するものである。たとえば、X線の発光点のサイズが小さいマイクロフォーカスX線管やプラズマX線源を利用することができる。また、通常の医療現場で用いられるような比較的X線の発光点(いわゆる焦点サイズ)の大きなX線源を用いる場合は、所定のピッチを有するマルチスリット(例えば、上述したマルチスリット103)をX線源11と第1の格子131との間に設置して使用することができる。 The X-ray source 11 emits X-rays toward the subject H, and has spatial coherence that can generate a Talbot interference effect when the first grating 131 is irradiated with X-rays. is there. For example, a microfocus X-ray tube or a plasma X-ray source having a small X-ray emission point size can be used. Further, when an X-ray source having a relatively large X-ray emission point (so-called focal spot size) as used in a normal medical field is used, a multi-slit (for example, the multi-slit 103 described above) having a predetermined pitch is used. It can be used by being installed between the X-ray source 11 and the first grating 131.
 第1の格子131は、照射されるX線に対して約90°又は約180°の位相変調を与える、いわゆる位相変調型格子であることが望ましく、たとえば、X線遮蔽部を金とした場合、上述の通常の医療診断用のX線エネルギー領域において必要な厚さhは1μm~10μm程度になる。また、第1の格子131として、吸収型格子を用いることもできる。一方、第2の格子132は、吸収型格子であることが望ましい。 The first grating 131 is desirably a so-called phase modulation type grating that gives a phase modulation of about 90 ° or about 180 ° with respect to the irradiated X-ray. For example, when the X-ray shielding portion is gold The necessary thickness h 1 in the above-described normal medical diagnostic X-ray energy region is about 1 μm to 10 μm. Further, an absorption type grating can be used as the first grating 131. On the other hand, the second grating 132 is preferably an absorption grating.
 ここで、X線源11から照射されるX線が、平行ビームではなく、コーンビームである場合には、第1の格子131を通過して形成される第1の格子131の自己像G1は、X線源11からの距離に比例して拡大される。そして、本例においては、第2の格子132の格子ピッチpは、そのスリット部が、第2の格子132の位置における第1の格子131の自己像G1の明部の周期パターンとほぼ一致するように決定される。すなわち、第1の格子131が90°の位相変調を与える位相変調型格子又は吸収型格子の場合には、X線源11の焦点から第1の格子131までの距離をL、第1の格子131から第2の格子132までの距離をLとした場合、第2の格子132の格子ピッチpは、上記の式(1)、上述のマルチスリット103を用いる場合は、マルチスリット103から第1の格子131までの距離をLとして、上記の式(21)の関係を満たすように決定される。また、第1の格子が180°の位相変調を与える位相変調型格子の場合は、自己像G1のピッチが第1の格子131の格子ピッチpの1/2になることを考慮すると、式(1)及び式(21)に替えて、下式(24)及び下式(25)を満たすように決定される。 Here, when the X-ray irradiated from the X-ray source 11 is not a parallel beam but a cone beam, the self-image G1 of the first grating 131 formed through the first grating 131 is , Enlarged in proportion to the distance from the X-ray source 11. In this example, the grating pitch p 2 of the second grating 132 is substantially the same as the periodic pattern of the bright part of the self-image G 1 of the first grating 131 at the position of the second grating 132. To be decided. That is, when the first grating 131 is a phase modulation type grating or an absorption type grating that applies 90 ° phase modulation, the distance from the focal point of the X-ray source 11 to the first grating 131 is L 1 , When the distance from the grating 131 to the second grating 132 is L 2 , the grating pitch p 2 of the second grating 132 is the above equation (1), and when using the multi slit 103 described above, the multi slit 103 is used. And the distance from the first grating 131 to L 3 is determined so as to satisfy the relationship of the above formula (21). Further, in the case where the first grating is a phase modulation type grating that applies 180 ° phase modulation, considering that the pitch of the self-image G1 is ½ of the grating pitch p 1 of the first grating 131, the equation It replaces with (1) and Formula (21), and it determines so that the following Formula (24) and the following Formula (25) may be satisfy | filled.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 なお、X線源11から照射されるX線が平行ビームである場合、第1の格子131が90°の位相変調を与える位相変調型格子又は吸収型格子の場合には、p=p、第1の格子が180°の位相変調を与える位相変調型格子の場合には、p=p/2を満たすように決定される。 When the X-rays emitted from the X-ray source 11 are parallel beams, p 2 = p 1 when the first grating 131 is a phase modulation type grating or an absorption type grating that applies 90 ° phase modulation. In the case where the first grating is a phase modulation type grating that applies phase modulation of 180 °, it is determined so as to satisfy p 2 = p 1/2 .
 X線画像検出器240は、第1の格子131に入射したX線によって形成される第1の格子131の自己像G1が第2の格子132によって周期的にマスクされた像を画像信号として検出するものである。このようなX線画像検出器240として、本例においては、直接変換型のX線画像検出器であって、線状の読取光によって走査されることによって画像信号が読み出される、いわゆる光読取方式のX線画像検出器を用いる。 The X-ray image detector 240 detects, as an image signal, an image in which the self-image G1 of the first grating 131 formed by the X-rays incident on the first grating 131 is periodically masked by the second grating 132. To do. In this example, the X-ray image detector 240 is a direct-conversion X-ray image detector that reads an image signal by scanning with linear reading light. X-ray image detector.
 図24は、本例のX線画像検出器240の外観(FIG.24A)、xz面断面(FIG.24B)、及びyz面断面(FIG.24C)を模式的に示す。 FIG. 24 schematically shows an external appearance (FIG. 24A), an xz plane cross section (FIG. 24B), and a yz plane cross section (FIG. 24C) of the X-ray image detector 240 of this example.
 本例のX線画像検出器240は、X線を透過する第1の電極層241、第1の電極層241を透過したX線の照射を受けることにより電荷を発生する記録用光導電層242、記録用光導電層242において発生した電荷のうち一方の極性の電荷に対しては絶縁体として作用し、かつ他方の極性の電荷に対しては導電体として作用する電荷輸送層244、読取光の照射を受けることにより電荷を発生する読取用光導電層245、及び第2の電極層246をこの順に積層してなるものである。記録用光導電層242と電荷輸送層244との界面近傍には、記録用光導電層242内で発生した電荷を蓄積する蓄電部243が形成される。なお、上記各層は、ガラス基板247上に第2の電極層246から順に形成されている。 The X-ray image detector 240 of this example includes a first electrode layer 241 that transmits X-rays, and a recording photoconductive layer 242 that generates charges when irradiated with X-rays transmitted through the first electrode layer 241. The charge transport layer 244, which acts as an insulator for charges of one polarity among the charges generated in the recording photoconductive layer 242, and acts as a conductor for charges of the other polarity, reading light The photoconductive layer for reading 245 that generates an electric charge when irradiated with the first electrode layer 246 and the second electrode layer 246 are laminated in this order. In the vicinity of the interface between the recording photoconductive layer 242 and the charge transport layer 244, a power storage unit 243 that accumulates charges generated in the recording photoconductive layer 242 is formed. Note that each of the above layers is formed on the glass substrate 247 in order from the second electrode layer 246.
 第1の電極層241としては、X線を透過するものであればよく、たとえば、ネサ皮膜(SnO)、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、アモルファス状光透過性酸化膜であるIDIXO(Idemitsu Indium X-metal Oxide ;出光興産(株))などを50~200nm厚にして用いることができ、また、100nm厚のAlやAuなども用いることもできる。 The first electrode layer 241 only needs to transmit X-rays. For example, Nesa film (SnO 2 ), ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), amorphous light-transmitting oxide film IDIXO (Idemitsu Indium X-metal Oxide; Idemitsu Kosan Co., Ltd.) having a thickness of 50 to 200 nm can be used, and Al or Au having a thickness of 100 nm can also be used.
 記録用光導電層242は、X線の照射を受けることにより電荷を発生するものであればよく、X線に対して比較的量子効率が高く、また暗抵抗が高いなどの点で優れているa-Seを主成分とするものを使用する。厚さは10μm以上1500μm以下が適切である。また、特にマンモグラフィ用途である場合には、150μm以上250μm以下であることが好ましく、一般撮影用途である場合には、500μm以上1200μm以下であることが好ましい。 The recording photoconductive layer 242 only needs to generate charge when irradiated with X-rays, and is excellent in that it has relatively high quantum efficiency and high dark resistance with respect to X-rays. A material mainly composed of a-Se is used. The thickness is suitably 10 μm or more and 1500 μm or less. In particular, when it is used for mammography, it is preferably 150 μm or more and 250 μm or less, and when used for general photographing, it is preferably 500 μm or more and 1200 μm or less.
 電荷輸送層244としては、たとえば、X線画像の記録の際に第1の電極層241に帯電する電荷の移動度と、その逆極性となる電荷の移動度の差が大きい程良く(例えば102以上、望ましくは103以上)、たとえば、ポリN-ビニルカルバゾール(PVK)、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-〔1,1’-ビフェニル〕-4,4'-ジアミン(TPD)やディスコティック液晶等の有機系化合物、或いはTPDのポリマー(ポリカーボネート、ポリスチレン、PVK)分散物,Clを10~200ppmドープしたa-Se、AsSe等の半導体物質が適当である。厚さは0.2~2μm程度が適切である。 As the charge transport layer 244, for example, the larger the difference between the mobility of charges charged in the first electrode layer 241 during recording of an X-ray image and the mobility of charges having the opposite polarity, the better (for example, 102 Or more, preferably 103 or more), for example, poly N-vinylcarbazole (PVK), N, N′-diphenyl-N, N′-bis (3-methylphenyl)-[1,1′-biphenyl] -4, Organic compounds such as 4'-diamine (TPD) and discotic liquid crystal, or TPD polymer (polycarbonate, polystyrene, PVK) dispersion, semiconductor materials such as a-Se and As 2 Se 3 doped with 10 to 200 ppm of Cl Is appropriate. A thickness of about 0.2 to 2 μm is appropriate.
 読取用光導電層245としては、読取光の照射を受けることにより導電性を呈するものであればよく、たとえば、a-Se、Se-Te、Se-As-Te、無金属フタロシアニン、金属フタロシアニン、MgPc(Magnesium phtalocyanine),VoPc(phaseII of Vanadyl phthalocyanine)、CuPc(Cupper phtalocyanine)などのうち少なくとも1つを主成分とする光導電性物質が好適である。厚さは5~20μm程度が適切である。 The reading photoconductive layer 245 may be any material that exhibits conductivity when irradiated with reading light. For example, a-Se, Se-Te, Se-As-Te, metal-free phthalocyanine, metal phthalocyanine, A photoconductive substance mainly composed of at least one of MgPc (Magnesium phthalocyanine), VoPc (phase II of Vanadyl phthalocyanine), CuPc (Cupper phthalocyanine), and the like is preferable. A thickness of about 5 to 20 μm is appropriate.
 第2の電極層246は、読取光を透過する複数の透明線状電極246aと読取光を遮光する複数の遮光線状電極246bとを有するものである。透明線状電極246aと遮光線状電極246bとは、X線画像検出器240の画像形成領域の一方の端部から他方の端部まで連続して直線状に延びるものである。そして、透明線状電極246aと遮光線状電極246bとは、図24に示すように、所定の間隔を空けて交互に平行に配列されている。 The second electrode layer 246 includes a plurality of transparent linear electrodes 246a that transmit the reading light and a plurality of light shielding linear electrodes 246b that shield the reading light. The transparent linear electrode 246a and the light-shielding linear electrode 246b extend linearly continuously from one end of the image forming area of the X-ray image detector 240 to the other end. Then, as shown in FIG. 24, the transparent linear electrodes 246a and the light shielding linear electrodes 246b are alternately arranged in parallel at predetermined intervals.
 透明線状電極246aは読取光を透過するとともに、導電性を有する材料から形成されている。たとえば、第1の電極層241と同様に、ITO、IZOやIDIXOを用いることができる。そして、その厚さは100~200nm程度である。 The transparent linear electrode 246a is made of a conductive material while transmitting reading light. For example, as with the first electrode layer 241, ITO, IZO, or IDIXO can be used. The thickness is about 100 to 200 nm.
 遮光線状電極246bは読取光を遮光するとともに、導電性を有する材料から形成されている。たとえば、上記の透明導電材料とカラーフィルターを組み合せて用いることができる。透明導電材料の厚さは100~200nm程度である。 The light shielding linear electrode 246b shields the reading light and is made of a conductive material. For example, the above transparent conductive material and a color filter can be used in combination. The thickness of the transparent conductive material is about 100 to 200 nm.
 そして、本例のX線画像検出器240においては、後で詳述するが、隣接する透明線状電極246aと遮光線状電極246bとの1組を用いて画像信号が読み出される。すなわち、図24に示すように、1組の透明線状電極246aと遮光線状電極246bとによって1画素の画像信号が読み出されることになる。本例においては、1画素が略50μmとなるように透明線状電極246aと遮光線状電極246bとが配置されている。 In the X-ray image detector 240 of this example, as will be described in detail later, an image signal is read out using a pair of the adjacent transparent linear electrode 246a and the light shielding linear electrode 246b. That is, as shown in FIG. 24, an image signal of one pixel is read out by one set of the transparent linear electrode 246a and the light shielding linear electrode 246b. In this example, the transparent linear electrode 246a and the light shielding linear electrode 246b are arranged so that one pixel is approximately 50 μm.
 そして、本例のX線撮影システムは、図24に示すように、透明線状電極246aと遮光線状電極246bの延伸方向に直交する方向(x方向)に延設された線状読取光源250を備えている。本例の線状読取光源250は、LED(Light EmittingDiode)やLD(Laser Diode)などの光源と所定の光学系とから構成され、透明線状電極246aと遮光線状電極246bの延伸方向に平行な方向(y方向)に略10μmの幅の線状の読取光をX線画像検出器240に照射するように構成されている。そして、この線状読取光源250は、所定の移動機構(図示省略)によって透明線状電極246a及び遮光線状電極246bの延伸方向(y方向)について移動するものであり、この移動により線状読取光源250から発せられた線状の読取光によってX線画像検出器240が走査されて画像信号が読み出される。画像信号の読取りの作用については後で詳述する。 In the X-ray imaging system of this example, as shown in FIG. 24, a linear reading light source 250 extending in a direction (x direction) orthogonal to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b. It has. The linear reading light source 250 of this example includes a light source such as an LED (Light Emitting Diode) or LD (Laser Diode) and a predetermined optical system, and is parallel to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b. The X-ray image detector 240 is irradiated with linear reading light having a width of approximately 10 μm in a random direction (y direction). The linear reading light source 250 is moved in the extending direction (y direction) of the transparent linear electrode 246a and the light shielding linear electrode 246b by a predetermined moving mechanism (not shown). The X-ray image detector 240 is scanned by the linear reading light emitted from the light source 250 and the image signal is read out. The operation of reading the image signal will be described in detail later.
 そして、本例では、X線源11、第1の格子131、第2の格子132及びX線画像検出器240を備える構成をタルボ干渉計として機能させる。そのためには、いくつかの条件をほぼ満たさねばならない。その条件について以下に説明する。ここで、ほぼ満たす、とは、後述の各種条件において、X線源11から放射されるX線のエネルギー、すなわち波長が単一ではなく幅を持っているために、X線のエネルギー幅に対して許容幅が存在すること、及び、最適ではないために画質等の性能は劣るが、本例において少なくとも位相コントラスト画像を得ることができる許容幅が存在する、ということを意味する。 In this example, the configuration including the X-ray source 11, the first grating 131, the second grating 132, and the X-ray image detector 240 is caused to function as a Talbot interferometer. For that purpose, some conditions must be almost satisfied. The conditions will be described below. Here, “substantially satisfy” means that the energy of X-rays radiated from the X-ray source 11 under various conditions described later, that is, the wavelength has a width rather than a single one, and therefore has a width relative to the X-ray energy width. This means that there is a permissible width, and that performance such as image quality is inferior because it is not optimal, but in this example, there is a permissible width capable of obtaining at least a phase contrast image.
 まず、第1の格子131と第2の格子132とのグリッド面が、図23に示すxy平面に平行であることが必要である。 First, the grid surfaces of the first grating 131 and the second grating 132 must be parallel to the xy plane shown in FIG.
 そして、更に、第1の格子131と第2の格子132との距離Z(タルボ干渉距離Z)は、第1の格子131が90°の位相変調を与える位相変調型格子である場合、次式(26)をほぼ満たさなければならない。 Further, the distance Z 2 (Talbot interference distance Z) between the first grating 131 and the second grating 132 is the following when the first grating 131 is a phase modulation type grating that applies 90 ° phase modulation. Equation (26) should be nearly satisfied.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 ただし、λはX線の波長(通常は第1の格子131に入射するX線の実効波長)、mは0か正の整数、pは上述した第1の格子131の格子ピッチ、pは上述した第2の格子132の格子ピッチである。 Where λ is the wavelength of X-rays (usually the effective wavelength of X-rays incident on the first grating 131), m is 0 or a positive integer, p 1 is the grating pitch of the first grating 131, and p 2. Is the grating pitch of the second grating 132 described above.
 また、第1の格子131が180°の位相変調を与える位相変調型格子である場合には、次式(27)をほぼ満たさなければならない。 Further, when the first grating 131 is a phase modulation type grating that applies 180 ° phase modulation, the following expression (27) must be substantially satisfied.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 また、第1の格子131が吸収型格子である場合には、次式(28)をほぼ満たさなければならない。ただし、m’は正の整数である。 Further, when the first grating 131 is an absorption type grating, the following expression (28) must be substantially satisfied. However, m 'is a positive integer.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 また、第1、第2の格子131,132のそれぞれの厚みh,hに関しても、第1、第2の吸収型格子31,32に関して上述した式(6)及び式(7)を満たすように設定することが好ましい。 Further, the thicknesses h 1 and h 2 of the first and second gratings 131 and 132 also satisfy the expressions (6) and (7) described above with respect to the first and second absorption gratings 31 and 32. It is preferable to set so.
 そして、更に本例のX線撮影システムにおいては、図25に示すように、第1の格子131と第2の格子132とが、第1の格子131の自己像G1の延伸方向と第2の格子132の延伸方向とが相対的に傾くように配置されるものである。そして、このように配置された第1の格子131と第2の格子132に対して、X線画像検出器240によって検出される画像信号の各画素の主走査方向(図24のx方向)の主画素サイズDxと副走査方向の副画素サイズDyとは、図25に示すような関係となる。 Further, in the X-ray imaging system of the present example, as shown in FIG. 25, the first grating 131 and the second grating 132 are connected to the extending direction of the self-image G1 of the first grating 131 and the second grating 131. The grating 132 is disposed so as to be relatively inclined with respect to the extending direction. Then, with respect to the first grating 131 and the second grating 132 arranged in this way, the main scanning direction (x direction in FIG. 24) of each pixel of the image signal detected by the X-ray image detector 240. The main pixel size Dx and the sub-pixel size Dy in the sub-scanning direction have a relationship as shown in FIG.
 主画素サイズDxは、上述したようにX線画像検出器240の透明線状電極246aと遮光線状電極246bの配列ピッチによって決定されるものであって、本例においては50μmに設定されている。また、副画素サイズDyは、線状読取光源250によってX線画像検出器240に照射される線状の読取光の幅によって決定されるものであって、本例においては10μmに設定されている。 As described above, the main pixel size Dx is determined by the arrangement pitch of the transparent linear electrodes 246a and the light shielding linear electrodes 246b of the X-ray image detector 240, and is set to 50 μm in this example. . The sub-pixel size Dy is determined by the width of the linear reading light irradiated to the X-ray image detector 240 by the linear reading light source 250, and is set to 10 μm in this example. .
 ここで、本例においては、複数の縞画像を取得し、その複数の縞画像に基づいて位相コントラスト画像を生成するが、その取得する縞画像の数をMとすると、M個の副画素サイズDyが位相コントラスト画像の副走査方向の1つの画像解像度Dとなるように第1の格子131が第2の格子132に対して傾けられる。 Here, in this example, a plurality of fringe images are acquired, and a phase contrast image is generated based on the plurality of fringe images. If the number of acquired fringe images is M, M subpixel sizes are obtained. The first grating 131 is tilted with respect to the second grating 132 so that Dy becomes one image resolution D in the sub-scanning direction of the phase contrast image.
 具体的には、図26に示すように、第2の格子132のピッチ及び第1の格子131によって第2の格子132の位置に形成される自己像G1のパターン周期をp1’、第2の格子132に対する第1の格子131の自己像G1のxy面内の相対的な回転角をθ、位相コントラスト画像の副走査方向の画像解像度をD(=Dy×M)とすると、回転角θを下式(29)を満たすように設定することによって、副走査方向の画像解像度Dの長さに対して、第1の格子131の自己像G1と第2の格子132の位相がn周期分ずれることになる。なお、図26においては、M=5、n=1の場合を示している。 Specifically, as shown in FIG. 26, the pitch of the second grating 132 and the pattern period of the self-image G1 formed at the position of the second grating 132 by the first grating 131 are p 1 ′, second When the relative rotation angle in the xy plane of the self-image G1 of the first grating 131 with respect to the first grating 131 is θ and the image resolution in the sub-scanning direction of the phase contrast image is D (= Dy × M), the rotation angle θ Is set so as to satisfy the following expression (29), the phase of the self-image G1 of the first grating 131 and the phase of the second grating 132 for n periods with respect to the length of the image resolution D in the sub-scanning direction. It will shift. FIG. 26 shows a case where M = 5 and n = 1.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 したがって、位相コントラスト画像の副走査方向の画像解像度DをM分割したDx×Dyの各画素によって、第1の格子131の自己像G1のn周期分の強度変調をM分割した画像信号が検出できることになる。図26に示す例では、n=1としているので、副走査方向の画像解像度Dの長さに対して、第1の格子131の自己像G1と第2の格子132の位相が1周期分ずれることになる。もっとわかり易く言えば、第1の格子131の自己像G1の1周期分のうち、第2の格子132を通過する領域が、副走査方向の画像解像度Dの長さにわたって変化することにより、第1の格子131の自己像G1の強度が、副走査方向に変調される。 Therefore, the image signal obtained by dividing the intensity modulation of n periods of the self-image G1 of the first grating 131 by M can be detected by each pixel of Dx × Dy obtained by dividing the image resolution D of the phase contrast image in the sub-scanning direction by M. become. In the example shown in FIG. 26, since n = 1, the phase of the self-image G1 of the first grating 131 and the second grating 132 is shifted by one period with respect to the length of the image resolution D in the sub-scanning direction. It will be. More simply, the region that passes through the second grating 132 in one period of the self-image G1 of the first grating 131 changes over the length of the image resolution D in the sub-scanning direction, so that the first The intensity of the self-image G1 of the grating 131 is modulated in the sub-scanning direction.
 そして、M=5としているので、Dx×Dyの各画素によって第1の格子131の自己像G1の1周期の強度変調を5分割した画像信号が検出できることになり、すなわち、Dx×Dyの各画素によって互いに異なる5つの縞画像の画像信号をそれぞれ検出することができることになる。なお、5つの縞画像の画像信号の取得方法については、後で詳述する。 Since M = 5, an image signal obtained by dividing the intensity modulation of one period of the self-image G1 of the first grating 131 into five by each pixel of Dx × Dy can be detected, that is, each of Dx × Dy. Image signals of five stripe images different from each other can be detected depending on the pixel. The method for acquiring the image signals of the five striped images will be described in detail later.
 なお、本例においては、上述したとおり、Dx=50μm、Dy=10μm、M=5としているので、位相コントラスト画像の主走査方向の画像解像度Dxと副走査方向の画像解像度D=Dy×Mが同じになるが、必ずしも主走査方向の画像解像度Dxと副走査方向の画像解像度Dとを合わせる必要はなく、任意の主副比としてもよい。 In this example, as described above, since Dx = 50 μm, Dy = 10 μm, and M = 5, the image resolution Dx in the main scanning direction and the image resolution D = Dy × M in the sub-scanning direction of the phase contrast image are obtained. Although it is the same, it is not always necessary to match the image resolution Dx in the main scanning direction and the image resolution D in the sub scanning direction, and an arbitrary main / sub ratio may be used.
 更に、本例においては、M=5としているが、Mは3以上であればよく、5以外であってもよい。また、上記説明ではn=1としたが、nは0以外の整数であれば1以外の整数でもよい。すなわち、nが負の整数の場合には上述した例に対して反対周りの回転となり、また、nを±1以外の整数としてn周期分の強度変調としてもよい。ただし、nがMの倍数の場合は、1組のM個の副走査方向画素Dyの間で第1の格子131の自己像G1と第2の格子132の位相が等しくなり、異なるM個の縞画像とならないため除外するものとする。 Furthermore, in this example, M = 5, but M may be 3 or more and may be other than 5. In the above description, n = 1, but n may be an integer other than 1 as long as n is an integer other than 0. That is, when n is a negative integer, the rotation is opposite to that in the above-described example, and n may be an intensity modulation for n periods with n being an integer other than ± 1. However, when n is a multiple of M, the phases of the self-image G1 of the first grating 131 and the second grating 132 are equal between one set of M sub-scanning direction pixels Dy, and M different numbers Since it is not a striped image, it is excluded.
 また、第2の格子132に対する第1の格子131の自己像G1の回転角θについては、たとえば、X線画像検出器240と第2の格子132の相対回転角を固定した後、第1の格子131を回転させることによって行うことができる。 Regarding the rotation angle θ of the self-image G1 of the first grating 131 with respect to the second grating 132, for example, after the relative rotation angle of the X-ray image detector 240 and the second grating 132 is fixed, This can be done by rotating the grating 131.
 たとえば、上式(29)でp’=5μm、D=50μm、n=1とすると、回転角θは約5.7°である。そして、第2の格子132に対する第1の格子131の自己像G1の実際の回転角θ’は、たとえば、第1の格子の自己像G1と第2の格子132によるモアレのピッチによって検出することができる。 For example, if p 1 ′ = 5 μm, D = 50 μm, and n = 1 in the above equation (29), the rotation angle θ is about 5.7 °. The actual rotation angle θ ′ of the self-image G1 of the first grating 131 with respect to the second grating 132 is detected by, for example, the pitch of the moire by the self-image G1 of the first grating and the second grating 132. Can do.
 具体的には、図27に示すように、実際の回転角をθ’、回転によって生じたx方向への見た目の自己像G1のピッチP’とすると、観測されるモアレのピッチPmは、1/Pm=|1/P’-1/p’|であるので、P’=p’/cosθ’を上式に代入することによって実際の回転角θ’を求めることができる。なお、モアレのピッチPmについては、X線画像検出器240によって検出された画像信号に基づいて求めるようにすればよい。 Specifically, as shown in FIG. 27, assuming that the actual rotation angle is θ ′ and the pitch P ′ of the apparent self-image G1 in the x direction generated by the rotation is, the observed moire pitch Pm is 1 Since / Pm = | 1 / P′−1 / p 1 ′ |, the actual rotation angle θ ′ can be obtained by substituting P ′ = p 1 ′ / cos θ ′ into the above equation. The moire pitch Pm may be obtained based on the image signal detected by the X-ray image detector 240.
 そして、上式(29)で定めた回転角θと実際の回転角θ’とを比較し、その差の分だけで自動又は手動で第1の格子131の回転角を調整するようにすればよい。 Then, the rotation angle θ determined by the above equation (29) is compared with the actual rotation angle θ ′, and the rotation angle of the first grating 131 is adjusted automatically or manually only by the difference. Good.
 位相コントラスト画像生成部260は、X線画像検出器240により検出された互いに異なるM種類の縞画像の画像信号に基づいてX線位相コントラスト画像を生成するものである。 The phase contrast image generation unit 260 generates an X-ray phase contrast image based on image signals of M kinds of different fringe images detected by the X-ray image detector 240.
 次に、本例のX線撮影システムの作用について説明する。 Next, the operation of the X-ray imaging system of this example will be described.
 まず、図23に示すように、X線源11と第1の格子131との間に、被写体Hが配置された後、X線源11からX線が射出される。そして、そのX線は被写体Hを透過した後、第1の格子131に照射される。第1の格子131に照射されたX線は、第1の格子131で回折されることにより、第1の格子131からX線の光軸方向において所定の距離において、タルボ干渉像を形成する。 First, as shown in FIG. 23, after the subject H is arranged between the X-ray source 11 and the first grating 131, X-rays are emitted from the X-ray source 11. Then, the X-ray passes through the subject H and is then irradiated on the first grating 131. The X-rays irradiated to the first grating 131 are diffracted by the first grating 131 to form a Talbot interference image at a predetermined distance from the first grating 131 in the optical axis direction of the X-ray.
 これをタルボ効果と呼び、光波が第1の格子131を通過したとき、第1の格子131から所定の距離において、第1の格子131の自己像G1を形成する。たとえば、第1の格子131が、90°の位相変調を与える位相変調型格子の場合、上式(26)(180°の位相変調型格子の場合は上式(27)、吸収型格子の場合は上式(28))で与えられる距離において第1の格子131の自己像G1を形成する。一方、被写体Hによって、第1の格子131に入射するX線の波面は歪むため、第1の格子131の自己像G1はそれに従って変形している。 This is called the Talbot effect, and when a light wave passes through the first grating 131, a self-image G1 of the first grating 131 is formed at a predetermined distance from the first grating 131. For example, when the first grating 131 is a phase modulation type grating that applies 90 ° phase modulation, the above equation (26) (in the case of a 180 ° phase modulation type grating, the above equation (27), the case of an absorption type grating) Forms a self-image G1 of the first grating 131 at a distance given by the above equation (28). On the other hand, the wavefront of the X-ray incident on the first grating 131 is distorted by the subject H, so that the self-image G1 of the first grating 131 is deformed accordingly.
 続いて、X線は、第2の格子132を通過する。その結果、上記の変形した第1の格子131の自己像G1は第2の格子132との重ね合わせによりモアレを形成し、上記波面の歪みを反映した画像信号としてX線画像検出器240により検出される。 Subsequently, the X-ray passes through the second grating 132. As a result, the deformed self-image G1 of the first grating 131 forms a moire by being superimposed on the second grating 132, and is detected by the X-ray image detector 240 as an image signal reflecting the wavefront distortion. Is done.
 ここで、X線画像検出器240における画像検出と読出しの作用について説明する。 Here, the operation of image detection and readout in the X-ray image detector 240 will be described.
 まず、図28に示すように高圧電源400によってX線画像検出器240の第1の電極層241に負の電圧を印加した状態において、第1の格子131の自己像G1と第2の格子132との重ね合わせによって形成されたモアレを伴ったX線が、X線画像検出器240の第1の電極層241側から照射される(FIG.28A)。 First, as shown in FIG. 28, in a state where a negative voltage is applied to the first electrode layer 241 of the X-ray image detector 240 by the high-voltage power supply 400, the self-image G1 of the first grating 131 and the second grating 132. X-rays with moiré formed by superimposing and are irradiated from the first electrode layer 241 side of the X-ray image detector 240 (FIG. 28A).
 そして、X線画像検出器240に照射されたX線は、第1の電極層241を透過し、記録用光導電層242に照射される。そして、そのX線の照射によって記録用光導電層242において電荷対が発生し、そのうち正の電荷は第1の電極層241に帯電した負の電荷と結合して消滅し、負の電荷は潜像電荷として記録用光導電層242と電荷輸送層244との界面に形成される蓄電部243に蓄積される(FIG.28B)。 Then, the X-rays irradiated to the X-ray image detector 240 are transmitted through the first electrode layer 241 and irradiated to the recording photoconductive layer 242. The X-ray irradiation generates a charge pair in the recording photoconductive layer 242, and the positive charge is combined with the negative charge charged in the first electrode layer 241 and disappears, and the negative charge is latent. The image charges are accumulated in the power storage unit 243 formed at the interface between the recording photoconductive layer 242 and the charge transport layer 244 (FIG. 28B).
 次に、図29に示すように、第1の電極層241が接地された状態において、線状読取光源250から発せられた線状の読取光L1が第2の電極層246側から照射される。読取光L1は透明線状電極246aを透過して読取用光導電層245に照射され、その読取光L1の照射により読取用光導電層245において発生した正の電荷が電荷輸送層244を通過して蓄電部243における潜像電荷と結合するとともに、負の電荷が、透明線状電極246aに接続されたチャージアンプ200を介して遮光線状電極246bに帯電した正の電荷と結合する。 Next, as shown in FIG. 29, in the state where the first electrode layer 241 is grounded, the linear reading light L1 emitted from the linear reading light source 250 is irradiated from the second electrode layer 246 side. . The reading light L1 passes through the transparent linear electrode 246a and is applied to the reading photoconductive layer 245, and the positive charge generated in the reading photoconductive layer 245 by the irradiation of the reading light L1 passes through the charge transport layer 244. The negative charge is combined with the positive charge charged on the light shielding linear electrode 246b through the charge amplifier 200 connected to the transparent linear electrode 246a.
 そして、読取用光導電層245において発生した負の電荷と遮光線状電極246bに帯電した正の電荷との結合によって、チャージアンプ200に電流が流れ、この電流が積分されて画像信号として検出される。 A current flows through the charge amplifier 200 due to the combination of the negative charge generated in the reading photoconductive layer 245 and the positive charge charged in the light shielding linear electrode 246b, and this current is integrated and detected as an image signal. The
 そして、線状読取光源250が、副走査方向に移動することによって線状の読取光L1によってX線画像検出器240が走査され、線状の読取光L1の照射された読取ライン毎に上述した作用によって画像信号が順次検出され、その検出された読取ライン毎の画像信号が位相コントラスト画像生成部260に順次入力されて記憶される。 Then, the linear reading light source 250 moves in the sub-scanning direction to scan the X-ray image detector 240 with the linear reading light L1, and the above-described reading lines are irradiated with the linear reading light L1. The image signals are sequentially detected by the action, and the detected image signals for each reading line are sequentially input and stored in the phase contrast image generation unit 260.
 そして、X線画像検出器240の全面が読取光L1に走査されて1フレーム全体の画像信号が位相コントラスト画像生成部260に記憶された後、位相コントラスト画像生成部260は、その記憶された画像信号に基づいて、互いに異なる5つの縞画像の画像信号を取得する。 Then, after the entire surface of the X-ray image detector 240 is scanned with the reading light L1 and the image signal of one frame is stored in the phase contrast image generation unit 260, the phase contrast image generation unit 260 stores the stored image. Based on the signal, image signals of five different fringe images are acquired.
 具体的には、本例においては、図26に示すように、位相コントラスト画像の副走査方向の画像解像度Dを5分割し、第1の格子131の自己像G1の1周期の強度変調を5分割した画像信号が検出できるように第1の格子131の自己像G1を第2の格子132に対して傾けるようにしたので、図30に示すように、第1読取ラインから読み出された画像信号が第1の縞画像信号M1として取得され、第2読取ラインから読み出された画像信号が第2の縞画像信号M2として取得され、第3読取ラインから読み出された画像信号が第3の縞画像信号M3として取得され、第4読取ラインから読み出された画像信号が第4の縞画像信号M4として取得され、第5読取ラインから読み出された画像信号が第5の縞画像信号M5として取得される。なお、図30に示す第1~第5読取ラインは、図26に示す副画素サイズDyに相当する。 Specifically, in this example, as shown in FIG. 26, the image resolution D of the phase contrast image in the sub-scanning direction is divided into five, and the intensity modulation of one period of the self-image G1 of the first grating 131 is 5 Since the self-image G1 of the first grating 131 is tilted with respect to the second grating 132 so that the divided image signal can be detected, the image read from the first reading line as shown in FIG. The signal is acquired as the first fringe image signal M1, the image signal read from the second reading line is acquired as the second fringe image signal M2, and the image signal read from the third reading line is the third. The image signal acquired as the fringe image signal M3 and read from the fourth reading line is acquired as the fourth fringe image signal M4, and the image signal read from the fifth reading line is the fifth fringe image signal. Acquired as M5 . Note that the first to fifth reading lines shown in FIG. 30 correspond to the sub-pixel size Dy shown in FIG.
 また、図30においては、Dx×(Dy×5)の読取範囲しか示していないが、その他の読取範囲についても、上記と同様にして第1~第5の縞画像信号が取得される。すなわち、図31に示すように、副走査方向について4画素間隔毎の画素行(読取ライン)からなる画素行群の画像信号が取得されて1フレームの1つの縞画像信号が取得される。より具体的には、第1読取ラインの画素行群の画像信号が取得されて1フレームの第1の縞画像信号が取得され、第2読取ラインの画素行群の画像信号が取得されて1フレームの第2の縞画像信号が取得され、第3読取ラインの画素行群の画像信号が取得されて1フレームの第3の縞画像信号が取得され、第4読取ラインの画素行群の画像信号が取得されて1フレームの第4の縞画像信号が取得され、第5読取ラインの画素行群の画像信号が取得されて1フレームの第5の縞画像信号が取得される。 In FIG. 30, only the reading range of Dx × (Dy × 5) is shown, but the first to fifth fringe image signals are acquired in the same manner as described above for the other reading ranges. That is, as shown in FIG. 31, an image signal of a pixel row group composed of pixel rows (reading lines) every four pixel intervals in the sub-scanning direction is acquired, and one stripe image signal of one frame is acquired. More specifically, the image signal of the pixel row group of the first reading line is acquired to acquire the first stripe image signal of one frame, and the image signal of the pixel row group of the second reading line is acquired to 1 The second stripe image signal of the frame is acquired, the image signal of the pixel row group of the third reading line is acquired, the third stripe image signal of one frame is acquired, and the image of the pixel row group of the fourth reading line A signal is acquired to acquire a fourth stripe image signal of one frame, an image signal of a pixel row group of the fifth reading line is acquired, and a fifth stripe image signal of one frame is acquired.
 上記のようにして互いに異なる第1~第5の縞画像信号が取得され、この第1~第5の縞画像信号に基づいて、位相コントラスト画像生成部260において位相コントラスト画像が生成される。 As described above, the first to fifth fringe image signals different from each other are acquired, and the phase contrast image generation unit 260 generates a phase contrast image based on the first to fifth fringe image signals.
 本例における位相コントラスト画像の生成方法は、既に式(13)~(19)を参照して説明した内容と同様であるため、その説明を省略する。 The method for generating the phase contrast image in this example is the same as that already described with reference to the equations (13) to (19), and thus the description thereof is omitted.
 なお、上述した第1の格子131と第2の格子132とを傾ける構成において、第1の格子131と第2の格子132とをともに吸収型格子として構成し、タルボ干渉効果の有無に関わらず、スリット部を通過した放射線を幾何学的に投影する構成としてもよい。この場合には、第1の格子131の間隔dと第2の格子132の間隔dとを、X線源11から照射されるX線の実効波長より十分大きな値とすることで、照射X線の大部分はスリット部での回折を受けずに第1の格子131の後方に第1の格子の自己像G1を形成するように構成することができる。たとえば、X線源のターゲットとしてタングステンを用い、管電圧を50kVとした場合には、X線の実効波長は約0.4Åである。この場合には、第1の格子131の間隔dと第2の格子132の間隔dを、1μm~10μm程度とすればスリット部を通過したX線が形成する像は回折の効果を無視できる程度になり、第1の格子131の後方に、第1の格子131の自己像G1が幾何学的に投影される。第1の格子131の格子ピッチpと第2の格子132の格子ピッチpとの関係については、上述した第1の格子131が吸収型格子である場合の式(1)、更にマルチスリットを用いる場合には、マルチスリット103から第1の格子131までの距離をLとして、上述した式(21)と同様である。また、第2の格子132に対する第1の格子131によって形成される自己像G1の傾きについても、上述の例と同様であり、位相コントラスト画像の生成も、上述の例と同様に行われる。 In the above-described configuration in which the first grating 131 and the second grating 132 are inclined, both the first grating 131 and the second grating 132 are configured as absorption gratings, regardless of the presence or absence of the Talbot interference effect. The radiation that has passed through the slit portion may be geometrically projected. In this case, by a distance d 1 of the first grating 131 and a distance d 2 of the second grating 132, and sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, illumination Most of the X-rays can be configured to form the self-image G1 of the first grating behind the first grating 131 without being diffracted by the slit portion. For example, when tungsten is used as the target of the X-ray source and the tube voltage is 50 kV, the effective wavelength of X-ray is about 0.4 mm. In this case, an image in which the distance d 1 of the first grating 131 spacing d 2 of the second grating 132, be about 1 [mu] m ~ 10 [mu] m X-rays passing through the slit portion is formed ignore the effects of diffraction The self-image G1 of the first grating 131 is geometrically projected behind the first grating 131 as much as possible. The grating pitch p 1 of the first grating 131 for the relationship between the lattice pitch p 2 of the second grating 132, wherein when the first grating 131 described above is an absorption grating (1), further multi-slit Is used, the distance from the multi-slit 103 to the first grating 131 is L 3, which is the same as the equation (21) described above. The inclination of the self-image G1 formed by the first grating 131 with respect to the second grating 132 is also the same as in the above example, and the generation of the phase contrast image is performed in the same manner as in the above example.
 なお、上記例においては、図25に示すように、第2の格子132の延伸方向をy方向に平行とし、第1の格子131の自己像G1の延伸方向をこのy方向に対してθだけ傾けるようにしたが、逆に、第1の格子131の自己像G1の延伸方向をy方向と平行とし、第2の格子132の延伸方向をこのy方向に対してθだけ傾けるようにしてもよい。 In the above example, as shown in FIG. 25, the extending direction of the second grating 132 is parallel to the y direction, and the extending direction of the self-image G1 of the first grating 131 is θ relative to the y direction. In contrast, the extending direction of the self-image G1 of the first grating 131 is parallel to the y direction, and the extending direction of the second grating 132 is inclined by θ with respect to the y direction. Good.
 なお、上記例においては、X線画像検出器240として、線状読取光源250から発せられた線状の読取光の走査によって画像信号が読み出される、いわゆる光読取方式のX線画像検出器を用いるようにしたが、これに限らず、たとえば、特開2002-26300号公報に記載されているような、TFTスイッチが2次元状に多数配列され、そのTFTスイッチをオンオフすることによって画像信号が読み出されるTFTスイッチを用いたX線画像検出器や、CMOSセンサを用いたX線画像検出器などを用いるようにしてもよい。 In the above example, as the X-ray image detector 240, a so-called optical reading type X-ray image detector in which an image signal is read out by scanning linear reading light emitted from the linear reading light source 250 is used. However, the present invention is not limited to this. For example, as described in Japanese Patent Application Laid-Open No. 2002-26300, a large number of TFT switches are arranged two-dimensionally, and image signals are read by turning on and off the TFT switches. An X-ray image detector using a TFT switch or an X-ray image detector using a CMOS sensor may be used.
 具体的には、TFTスイッチを用いたX線画像検出器は、たとえば、図32に示すように、X線の照射によって半導体膜において光電変換された電荷を収集する画素電極271と画素電極271によって収集された電荷を画像信号として読み出すためのTFTスイッチ272とを備えた画素回路270が2次元状に多数配列されたものである。そして、TFTスイッチを用いたX線画像検出器は、画素回路行毎に設けられ、TFTスイッチ272をオンオフするためのゲート走査信号が出力される多数のゲート電極273と、画素回路列毎に設けられ、各画素回路270から読み出された電荷信号が出力される多数のデータ電極274とを備えている。なお、各画素回路270の詳細な層構成については、特開2002-26300号公報に記載されている層構成と同様である。 Specifically, an X-ray image detector using a TFT switch includes, for example, a pixel electrode 271 and a pixel electrode 271 that collect charges photoelectrically converted in a semiconductor film by X-ray irradiation as shown in FIG. A number of pixel circuits 270 each including a TFT switch 272 for reading out the collected charges as an image signal are arranged in a two-dimensional manner. An X-ray image detector using a TFT switch is provided for each pixel circuit row, and is provided for each pixel circuit column and a large number of gate electrodes 273 from which a gate scanning signal for turning on and off the TFT switch 272 is output. And a plurality of data electrodes 274 from which the charge signal read from each pixel circuit 270 is output. The detailed layer configuration of each pixel circuit 270 is the same as the layer configuration described in Japanese Patent Laid-Open No. 2002-26300.
 そして、たとえば、第2の格子132と画素回路列(データ電極)とが平行になるように設置した場合、1つの画素回路列が、上記例において説明した主画素サイズDxに相当し、1つの画素回路行が、上記例において説明した副画素サイズDyに相当する。なお、主画素サイズDx及び副画素サイズDyは、たとえば、50μmとすることができる。 For example, when the second grid 132 and the pixel circuit array (data electrode) are installed in parallel, one pixel circuit array corresponds to the main pixel size Dx described in the above example, The pixel circuit row corresponds to the sub-pixel size Dy described in the above example. Note that the main pixel size Dx and the sub-pixel size Dy can be set to 50 μm, for example.
 そして、上記例と同様に、位相コントラスト画像を生成するためにM枚の縞画像を使用する場合、M行の画素回路行が、位相コントラスト画像の副走査方向の1つの画像解像度Dとなるように第1の格子131の自己像G1が第2の格子132に対して傾けられる。具体的な、第1の格子131の自己像G1の回転角については、上記例と同様に、上式(29)によって算出される。 Similarly to the above example, when M striped images are used to generate the phase contrast image, the M pixel circuit rows have one image resolution D in the sub-scanning direction of the phase contrast image. In addition, the self-image G 1 of the first grating 131 is tilted with respect to the second grating 132. The specific rotation angle of the self-image G1 of the first grating 131 is calculated by the above equation (29) as in the above example.
 上式(29)において、たとえば、M=5、n=1として第1の格子131の自己像G1の回転角θを設定した場合、図32の1つの画素回路270によって第1の格子131の自己像G1の1周期の強度変調を5分割した画像信号を検出できることになり、すなわち、図32に示す5本のゲート電極273に接続される5行の画素回路行によって、互いに異なる5つの縞画像の画像信号をそれぞれ検出することができることになる。なお、図32においては、1つの画素回路列に対して1本の第2の格子132と自己像G1とが対応して示されているが、実際には、1つの画素回路列に対して多数の第2の格子132及び自己像G1が存在していてもよく、図32は図示省略しているものとする。 In the above equation (29), for example, when the rotation angle θ of the self-image G1 of the first grating 131 is set with M = 5 and n = 1, the one grating circuit 270 in FIG. An image signal obtained by dividing the intensity modulation of one period of the self-image G1 into five can be detected, that is, five stripes different from each other depending on five pixel circuit rows connected to the five gate electrodes 273 shown in FIG. Each image signal of the image can be detected. In FIG. 32, one second grating 132 and the self-image G1 are shown corresponding to one pixel circuit array, but in actuality, one pixel circuit array corresponds to one pixel circuit array. A large number of second gratings 132 and self-images G1 may exist, and FIG. 32 is not shown.
 したがって、第1読取ライン用ゲート電極G11に接続される画素回路行から読み出された画像信号が第1の縞画像信号M1として取得され、第2読取ライン用ゲート電極G12に接続される画素回路行から読み出された画像信号が第2の縞画像信号M2として取得され、第3読取ライン用ゲート電極G13に接続される画素回路行から読み出された画像信号が第3の縞画像信号M3として取得され、第4読取ライン用ゲート電極G14に接続される画素回路行から読み出された画像信号が第4の縞画像信号M4として取得され、第5読取ライン用ゲート電極G15に接続される画素回路行から読み出された画像信号が第5の縞画像信号M5として取得される。 Therefore, the image signal read from the pixel circuit row connected to the first read line gate electrode G11 is acquired as the first stripe image signal M1, and the pixel circuit connected to the second read line gate electrode G12. The image signal read from the row is acquired as the second stripe image signal M2, and the image signal read from the pixel circuit row connected to the third read line gate electrode G13 is the third stripe image signal M3. The image signal read from the pixel circuit row connected to the fourth read line gate electrode G14 is acquired as the fourth stripe image signal M4 and connected to the fifth read line gate electrode G15. The image signal read from the pixel circuit row is acquired as the fifth fringe image signal M5.
 第1~第5の縞画像信号に基づいて位相コントラスト画像を生成する方法については、上記例と同様である。なお、上述したように1つの画素回路270の主走査方向及び副走査方向のサイズが50μmである場合には、位相コントラスト画像の主走査方向の画像解像度は50μmとなり、副走査方向の画像解像度は50μm×5=250μmとなる。 The method for generating the phase contrast image based on the first to fifth fringe image signals is the same as the above example. As described above, when the size of one pixel circuit 270 in the main scanning direction and the sub scanning direction is 50 μm, the image resolution in the main scanning direction of the phase contrast image is 50 μm, and the image resolution in the sub scanning direction is 50 μm × 5 = 250 μm.
 また、CMOSセンサを用いたX線画像検出器としては、たとえば、X線の照射を受けて可視光を発生し、その可視光を光電変換することによって電荷信号を検出する画素回路280が、図33に示すように2次元状に多数配列されたものを用いることができる。そして、このCMOSセンサを用いたX線画像検出器は、画素回路行毎に設けられ、画素回路280に含まれる信号読み出し回路を駆動するための駆動信号が出力される多数のゲート電極282及びリセット電極284と、画素回路列毎に設けられ、各画素回路280の信号読み出し回路から読み出された電荷信号が出力される多数のデータ電極283とを備えている。なお、ゲート電極282及びリセット電極284には、信号読み出し回路に駆動信号を出力する行選択走査部285が接続され、データ電極283には、各画素回路から出力された電荷信号に所定の処理を施す信号処理部286が接続されている。 As an X-ray image detector using a CMOS sensor, for example, a pixel circuit 280 that generates visible light upon receiving X-ray irradiation and photoelectrically converts the visible light to detect a charge signal is illustrated in FIG. As shown in FIG. 33, a plurality of two-dimensional arrays can be used. The X-ray image detector using the CMOS sensor is provided for each pixel circuit row, and includes a large number of gate electrodes 282 that output a drive signal for driving a signal readout circuit included in the pixel circuit 280 and a reset. An electrode 284 and a plurality of data electrodes 283 that are provided for each pixel circuit column and output a charge signal read from the signal reading circuit of each pixel circuit 280 are provided. The gate electrode 282 and the reset electrode 284 are connected to a row selection scanning unit 285 that outputs a drive signal to the signal readout circuit, and the data electrode 283 performs predetermined processing on the charge signal output from each pixel circuit. A signal processing unit 286 to be applied is connected.
 各画素回路280は、図34に示すように、基板800の上方に絶縁膜803を介して形成された下部電極806と、下部電極806上に形成された光電変換膜807と、光電変換膜807上に形成された上部電極808と、上部電極808上に形成された保護膜809と、保護膜809上に形成されたX線変換膜810とを備えている。 As shown in FIG. 34, each pixel circuit 280 includes a lower electrode 806 formed above the substrate 800 via an insulating film 803, a photoelectric conversion film 807 formed on the lower electrode 806, and a photoelectric conversion film 807. An upper electrode 808 formed above, a protective film 809 formed on the upper electrode 808, and an X-ray conversion film 810 formed on the protective film 809 are provided.
 X線変換膜810は、たとえば、X線の照射を受けて550nmの波長の光を発するCsI:TIから形成される。その厚さは500μm程度とすることが望ましい。 The X-ray conversion film 810 is made of, for example, CsI: TI that emits light having a wavelength of 550 nm when irradiated with X-rays. The thickness is preferably about 500 μm.
 上部電極808は、光電変換膜807に550nmの波長の光を入射させる必要があるため、その入射光に対して透明な導電性材料で構成される。また、下部電極806は、画素回路280毎に分割された薄膜であり、透明又は不透明の導電性材料で形成される。 The upper electrode 808 is made of a conductive material that is transparent to the incident light because it is necessary to make light having a wavelength of 550 nm incident on the photoelectric conversion film 807. The lower electrode 806 is a thin film divided for each pixel circuit 280 and is formed of a transparent or opaque conductive material.
 光電変換膜807は、たとえば、550nmの波長の光を吸収してこの光に応じた電荷を発生する光電変換材料から形成される。このような光電変換材料としては、たとえば、有機半導体、有機色素を含む有機材料、及び直接遷移型のバンドギャップをもつ吸収係数の大きい無機半導体結晶等を単体又は組み合わせた材料などがある。 The photoelectric conversion film 807 is formed of, for example, a photoelectric conversion material that absorbs light having a wavelength of 550 nm and generates a charge corresponding to the light. As such a photoelectric conversion material, for example, an organic semiconductor, an organic material containing an organic dye, a material in which an inorganic semiconductor crystal having a direct transition type band gap and a large absorption coefficient is used alone or in combination are used.
 そして、上部電極808と下部電極806との間に所定のバイアス電圧を印加することで、光電変換膜807で発生した電荷のうち一方が上部電極808に移動し、他方が下部電極806に移動する。 Then, by applying a predetermined bias voltage between the upper electrode 808 and the lower electrode 806, one of the charges generated in the photoelectric conversion film 807 moves to the upper electrode 808 and the other moves to the lower electrode 806. .
 そして、下部電極806の下方の基板800内には、この下部電極806に対応させて、下部電極806に移動した電荷を蓄積するための電荷蓄積部802と、電荷蓄積部802に蓄積された電荷を電圧信号に変換して出力する信号読み出し回路801とが形成されている。 In the substrate 800 below the lower electrode 806, a charge accumulating portion 802 for accumulating the charges transferred to the lower electrode 806 corresponding to the lower electrode 806, and the charges accumulated in the charge accumulating portion 802. And a signal readout circuit 801 for converting the signal into a voltage signal and outputting it.
 電荷蓄積部802は、絶縁膜803を貫通して形成された導電性材料のプラグ804によって下部電極806に電気的に接続されている。信号読み出し回路801は、公知のCMOS回路によって構成されている。 The charge storage portion 802 is electrically connected to the lower electrode 806 by a conductive material plug 804 formed through the insulating film 803. The signal readout circuit 801 is configured by a known CMOS circuit.
 そして、上述したようなCMOSセンサを用いたX線画像検出器を、図35に示すように、第2の格子132と画素回路列(データ電極)とが平行になるように設置した場合、1つの画素回路列が、上記例において説明した主画素サイズDxに相当し、1つの画素回路行が、上記例において説明した副画素サイズDyに相当する。なお、主画素サイズDx及び副画素サイズDyは、CMOSセンサを用いたX線画像検出器の場合には、たとえば、10μmとすることができる。 When the X-ray image detector using the CMOS sensor as described above is installed so that the second grating 132 and the pixel circuit array (data electrode) are parallel as shown in FIG. One pixel circuit column corresponds to the main pixel size Dx described in the above example, and one pixel circuit row corresponds to the sub pixel size Dy described in the above example. Note that the main pixel size Dx and the sub-pixel size Dy can be set to, for example, 10 μm in the case of an X-ray image detector using a CMOS sensor.
 そして、上記例と同様に、位相コントラスト画像を生成するためにM枚の縞画像を使用する場合、M行の画素回路行が、位相コントラスト画像の副走査方向の1つの画像解像度Dとなるように第1の格子131の自己像G1が第2の格子132に対して傾けられる。具体的な、第1の格子131の自己像G1回転角については、上記例と同様に、上式(29)によって算出される。 Similarly to the above example, when M striped images are used to generate the phase contrast image, the M pixel circuit rows have one image resolution D in the sub-scanning direction of the phase contrast image. In addition, the self-image G 1 of the first grating 131 is tilted with respect to the second grating 132. A specific self-image G1 rotation angle of the first grating 131 is calculated by the above equation (29) as in the above example.
 上式(29)において、たとえば、M=5、n=1として第1の格子131の自己像G1の回転角θを設定した場合、図35の1つの画素回路280によって第1の格子131の自己像G1の1周期の強度変調を5分割した画像信号を検出できることになり、すなわち、図35に示す5本のゲート電極282に接続される5行の画素回路行によって、互いに異なる5つの縞画像の画像信号をそれぞれ検出することができることになる。なお、図35においては、1つの画素回路列に対して1本の第2の格子132と自己像G1とが対応して示されているが、実際には、1つの画素回路列に対して多数の第2の格子132及び自己像G1が存在していてもよく、図35は図示省略しているものとする。 In the above equation (29), for example, when M = 5 and n = 1 and the rotation angle θ of the self-image G1 of the first grating 131 is set, one pixel circuit 280 in FIG. An image signal obtained by dividing the intensity modulation of one period of the self-image G1 into five can be detected, that is, five stripes different from each other depending on five pixel circuit rows connected to the five gate electrodes 282 shown in FIG. Each image signal of the image can be detected. In FIG. 35, one second grating 132 and the self-image G1 are shown corresponding to one pixel circuit array. However, in actuality, one pixel circuit array corresponds to one pixel circuit array. Many second gratings 132 and self-images G1 may exist, and FIG. 35 is not shown.
 したがって、TFTスイッチを用いたX線画像検出器の場合と同様に、第1読取ライン用ゲート電極G11に接続される画素回路行から読み出された画像信号が第1の縞画像信号M1として取得され、第2読取ライン用ゲート電極G12に接続される画素回路行から読み出された画像信号が第2の縞画像信号M2として取得され、第3読取ライン用ゲート電極G13に接続される画素回路行から読み出された画像信号が第3の縞画像信号M3として取得され、第4読取ライン用ゲート電極G14に接続される画素回路行から読み出された画像信号が第4の縞画像信号M4として取得され、第5読取ライン用ゲート電極G15に接続される画素回路行から読み出された画像信号が第5の縞画像信号M5として取得される。 Therefore, as in the case of the X-ray image detector using the TFT switch, the image signal read from the pixel circuit row connected to the first read line gate electrode G11 is acquired as the first fringe image signal M1. Then, the image signal read from the pixel circuit row connected to the second read line gate electrode G12 is acquired as the second stripe image signal M2, and the pixel circuit connected to the third read line gate electrode G13. The image signal read from the row is acquired as the third stripe image signal M3, and the image signal read from the pixel circuit row connected to the fourth read line gate electrode G14 is the fourth stripe image signal M4. And the image signal read from the pixel circuit row connected to the fifth read line gate electrode G15 is acquired as the fifth fringe image signal M5.
 第1~第5の縞画像信号に基づいて位相コントラスト画像を生成する方法については、上記例と同様である。なお、上述したように1つの画素回路280の主走査方向及び副走査方向のサイズが10μmである場合には、位相コントラスト画像の主走査方向の画像解像度は10μmとなり、副走査方向の画像解像度は10μm×5=50μmとなる。 The method for generating the phase contrast image based on the first to fifth fringe image signals is the same as the above example. As described above, when the size of one pixel circuit 280 in the main scanning direction and the sub scanning direction is 10 μm, the image resolution in the main scanning direction of the phase contrast image is 10 μm, and the image resolution in the sub scanning direction is 10 μm × 5 = 50 μm.
 なお、X線画像検出器のゲート電極及びデータ電極の延伸方向は、図32及び図35に示す例に限らず、たとえば、ゲート電極が紙面縦方向とし、データ線が紙面横方向となるようにX線画像検出器を配置するようにしてもよい。 Note that the extending direction of the gate electrode and the data electrode of the X-ray image detector is not limited to the example shown in FIGS. 32 and 35. For example, the gate electrode is in the vertical direction on the paper surface and the data line is in the horizontal direction on the paper surface. An X-ray image detector may be arranged.
 また、図32や図35に示すようなX線画像検出器の配置に対して、第1の格子131の自己像G1と第2の格子132とが90°回転された構成としてもよい。この場合には、ゲート電極に平行な方向に配列された画素回路270、280から読み出された画像信号を取得することによって、上記例と同様に互いに異なる縞画像を構成する画像信号を取得することができる。 Further, the self-image G1 of the first grating 131 and the second grating 132 may be rotated by 90 ° with respect to the arrangement of the X-ray image detectors as shown in FIGS. In this case, by acquiring the image signals read from the pixel circuits 270 and 280 arranged in the direction parallel to the gate electrode, the image signals constituting the different fringe images are acquired as in the above example. be able to.
 また、第1の格子131の自己像G1の周期方向又は第2の格子132の周期方向と、X線画像検出器の画素回路270、280が配列される方向のうちのいずれか一方の方向とは必ずしも一致している必要はない。第1の格子131の自己像G1と第2の格子132とによって発生するモアレの周期方向に対して平行方向、あるいは直交方向以外の交差する方向について配列された画素の画像信号を取得可能な構成であれば、第1の格子131の自己像G1及び第2の格子132の周期方向とX線画像検出器の画素回路270の配列方向との関係はいかなる関係にしてもよい。 In addition, the periodic direction of the self-image G1 of the first grating 131 or the periodic direction of the second grating 132, and one of the directions in which the pixel circuits 270 and 280 of the X-ray image detector are arranged Do not necessarily match. Configuration capable of acquiring image signals of pixels arranged in a direction parallel to the periodic direction of moire generated by the self-image G1 of the first grating 131 and the second grating 132, or in an intersecting direction other than the orthogonal direction If so, the relationship between the self-image G1 of the first grating 131 and the periodic direction of the second grating 132 and the arrangement direction of the pixel circuit 270 of the X-ray image detector may be any relationship.
 なお、上述したようにTFTスイッチを用いたX線画像検出器やCMOSセンサを用いたX線画像検出器も用いることは可能であるが、これらのX線画像検出器は、一般的に画素が正方形であるため、本発明を適用する場合には、副走査方向の解像度が主走査方向の解像度に対して悪くなる。これに対し、上記例で説明した光読取方式のX線画像検出器においては、主走査方向については線状電極の幅(延伸方向と垂直な方向)によって解像度Dxが制限されるが、副走査方向については、線状読取光源250の読取光の副走査方向の幅及び1ラインあたりのチャージアンプ200の蓄積時間と線状読取光源250の移動速度の積で解像度Dyが決まることになる。主副解像度ともに典型的には数10μmであるが、主走査方向の解像度を維持したまま副走査方向の解像度を高くする設計が可能である。たとえば、線状読取光源250の幅を小さくしたり、移動速度を遅くすることにより実現可能であって、光読取方式のX線画像検出器は、より有利な構成である。 As described above, an X-ray image detector using a TFT switch or an X-ray image detector using a CMOS sensor can be used. However, these X-ray image detectors generally have pixels. Due to the square shape, when the present invention is applied, the resolution in the sub-scanning direction becomes worse than the resolution in the main scanning direction. On the other hand, in the optical reading type X-ray image detector described in the above example, the resolution Dx is limited in the main scanning direction by the width of the linear electrode (direction perpendicular to the extending direction). Regarding the direction, the resolution Dy is determined by the product of the width of the reading light of the linear reading light source 250 in the sub-scanning direction, the accumulation time of the charge amplifier 200 per line, and the moving speed of the linear reading light source 250. Both the main and sub resolutions are typically several tens of μm, but it is possible to increase the sub scanning direction resolution while maintaining the main scanning direction resolution. For example, the X-ray image detector of the optical reading system can be realized by reducing the width of the linear reading light source 250 or reducing the moving speed, and has a more advantageous configuration.
 また、1回の撮影で複数の縞画像信号を取得することができるので、上述したような即座に繰り返し使用可能な半導体の検出器に限らず、蓄積性蛍光体シートや銀塩フイルムなども利用することができる。なお、この場合、蓄積性蛍光体シートや現像された銀塩フイルムなどを読み取る際の読取画素が請求項における画素に相当するものとする。 In addition, since a plurality of fringe image signals can be acquired in one shooting, not only the semiconductor detector that can be used immediately and repeatedly as described above, but also a stimulable phosphor sheet or silver salt film can be used. can do. In this case, the reading pixel when reading the stimulable phosphor sheet or the developed silver salt film corresponds to the pixel in the claims.
 次に、本発明の例を説明するための他のX線撮影システムの構成例について説明する。図36に本例のX線撮影システムの概略構成を示す。
 X線撮影システムは、図36に示すように、X線源11から射出されたX線を通過させて周期パターン像(自己像G1)を形成する格子131と、格子131により形成された自己像G1を領域選択的に検出するX線画像検出器340と、格子131に対して、X線画像検出器340をその線状電極の延伸方向に直交する方向に相対的に移動させる移動機構333と、移動機構333による前記相対的な移動に伴ってX線画像検出器340の出力により得られた強度変調信号に基づいて位相コントラスト画像を生成する位相コントラスト画像生成部260とを備えている。
Next, a configuration example of another X-ray imaging system for explaining an example of the present invention will be described. FIG. 36 shows a schematic configuration of the X-ray imaging system of this example.
As shown in FIG. 36, the X-ray imaging system has a grating 131 that passes X-rays emitted from the X-ray source 11 to form a periodic pattern image (self-image G1), and a self-image formed by the grating 131. An X-ray image detector 340 that selectively detects G1; and a moving mechanism 333 that moves the X-ray image detector 340 relative to the grating 131 in a direction orthogonal to the extending direction of the linear electrodes; And a phase contrast image generation unit 260 that generates a phase contrast image based on the intensity modulation signal obtained from the output of the X-ray image detector 340 in accordance with the relative movement by the movement mechanism 333.
 本例においても、所定のピッチを有するマルチスリット(例えば、上述のマルチスリット103)をX線源11と第1の格子131との間に設置して使用することができる。 Also in this example, a multi-slit (for example, the multi-slit 103 described above) having a predetermined pitch can be installed between the X-ray source 11 and the first grating 131 and used.
 X線画像検出器340は、X線が格子131を通過することによって格子131によって形成された格子131の自己像G1を検出するとともに、その自己像G1に応じた電荷信号を後述する格子状に分割された電荷蓄積層に蓄積することによって自己像G1を領域選択的に検出して画像信号として出力するものである。このようなX線画像検出器340として、本例においては、直接変換型のX線画像検出器であって、線状の読取光によって走査されることによって画像信号が読み出される、いわゆる光読取方式のX線画像検出器を用いる。 The X-ray image detector 340 detects the self-image G1 of the grating 131 formed by the grating 131 by passing the X-rays through the grating 131, and the charge signal corresponding to the self-image G1 in a lattice shape to be described later. By accumulating in the divided charge accumulation layer, the self-image G1 is selectively detected in a region and output as an image signal. In this example, the X-ray image detector 340 is a direct conversion type X-ray image detector that reads an image signal by scanning with a linear reading light. X-ray image detector.
 図37は、本例のX線画像検出器340の外観FIG.37A)、xz面断面(FIG.37B)、及びyz面断面(FIG.37C)を模式的に示す。 FIG. 37 shows an appearance FIG. Of the X-ray image detector 340 of this example. 37A), an xz plane cross section (FIG. 37B), and a yz plane cross section (FIG. 37C) are schematically shown.
 本例のX線画像検出器340は、図37に示すように、X線を透過する第1の電極層241、第1の電極層241を透過したX線の照射を受けることにより電荷を発生する記録用光導電層242、記録用光導電層242において発生した電荷のうち一方の極性の電荷に対しては絶縁体として作用し、かつ他方の極性の電荷に対しては導電体として作用する電荷蓄積層343、読取光の照射を受けることにより電荷を発生する読取用光導電層245、及び第2の電極層246をこの順に積層してなるものである。なお、上記各層は、ガラス基板247上に第2の電極層246から順に形成されている。 As shown in FIG. 37, the X-ray image detector 340 in this example generates charges by receiving the first electrode layer 241 that transmits X-rays and the irradiation of X-rays that have transmitted through the first electrode layer 241. Among the charges generated in the recording photoconductive layer 242 and the recording photoconductive layer 242, it acts as an insulator for charges of one polarity, and acts as a conductor for charges of the other polarity. The charge storage layer 343, a reading photoconductive layer 245 that generates charges when irradiated with reading light, and a second electrode layer 246 are stacked in this order. Note that each of the above layers is formed on the glass substrate 247 in order from the second electrode layer 246.
 電荷蓄積層343は、蓄積したい極性の電荷に対して絶縁性の膜であれば良く、アクリル系有機樹脂、ポリイミド、BCB、PVA、アクリル、ポリエチレン、ポリカーボネート、ポリエーテルイミド等のポリマーやAs、Sb、ZnS等の硫化物、その他に酸化物、フッ化物より構成される。更には、蓄積したい極性の電荷に対して絶縁性であり、それと逆の極性の電荷に対しては導電性を有する方がより好ましく、移動度×寿命の積が、電荷の極性により3桁以上差がある物質が好ましい。 The charge storage layer 343 may be any film that is insulative with respect to the polar charge to be stored, such as an acrylic organic resin, polyimide, BCB, PVA, acrylic, polyethylene, polycarbonate, polyetherimide, or the like, or As 2 S. 3 , sulfides such as Sb 2 S 3 and ZnS, oxides and fluorides. Furthermore, it is more preferable that it is insulative with respect to the charge of the polarity to be accumulated and that it is conductive with respect to the charge of the opposite polarity, and the product of mobility × life is 3 digits or more depending on the polarity of the charge. Substances with differences are preferred.
 好ましい化合物としては、AsSe、AsSeにCl、Br、Iを500ppmから20000ppmまでドープしたもの、AsSeのSeをTeで50%程度まで置換したAs(SexTe1-x)(0.5<x<1)、AsSeのSeをSで50%程度まで置換したもの、AsSeからAs濃度を±15%程度変化させたAsxSey(x+y=100、34≦x≦46)、アモルファスSe-Te系でTeを5-30wt%のもの等が挙げられる。 Preferred compounds include As 2 Se 3 , As 2 Se 3 doped with Cl, Br, and I from 500 ppm to 20000 ppm, and As 2 Se 3 with Se 2 substituted to about 50% by Te (SexTe1-x ) 3 (0.5 <x <1), As 2 Se 3 with Se replaced to about 50%, AsxSey with As concentration changed by about ± 15% from As 2 Se 3 (x + y = 100, 34.ltoreq.x.ltoreq.46), amorphous Se-Te system and Te of 5-30 wt%.
 なお、電荷蓄積層343の材料としては、第1の電極層241と第2の電極層246との間に形成される電気力線が曲がらないようにするため、その誘電率が、記録用光導電層242と読取用光導電層245の誘電率の1/2倍以上2倍以下のものを用いることが望ましい。 Note that as a material of the charge storage layer 343, in order to prevent bending of electric lines of force formed between the first electrode layer 241 and the second electrode layer 246, the dielectric constant thereof is a recording light. It is desirable to use a conductive layer 242 and a photoconductive layer for reading 245 having a dielectric constant that is 1/2 times or more and 2 times or less.
 そして、本例における電荷蓄積層343は、図37に示すように、第2の電極層246の透明線状電極246a及び遮光線状電極246bの延伸方向に平行となるように線状に分割されている。 Then, as shown in FIG. 37, the charge storage layer 343 in this example is linearly divided so as to be parallel to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b of the second electrode layer 246. ing.
 また、電荷蓄積層343は、透明線状電極246a若しくは遮光線状電極246bの配列ピッチよりも細かいピッチで分割されるが、その配列ピッチpと間隔dは、格子131との組み合わせによって位相イメージングを行うことができるように決定される。すなわち、上記のように線状に分割された電荷蓄積層343は、上述の各例における第2の格子132と同様に、格子131の自己像G1を周期的にマスクする機能を有している。なお、透明線状電極246a若しくは遮光線状電極246bの配列ピッチp及び間隔dは、上述した第2の格子132に関する格子ピッチp及び間隔dと同様に決められるため、同一符号を用いて説明する。 The charge storage layer 343 is divided at a pitch finer than the arrangement pitch of the transparent linear electrodes 246 a or the light shielding linear electrodes 246 b, and the arrangement pitch p 2 and the interval d 2 are different depending on the combination of the grating 131. It is determined so that imaging can be performed. That is, the charge storage layer 343 divided linearly as described above has a function of periodically masking the self-image G1 of the grating 131 in the same manner as the second grating 132 in each example described above. . The arrangement pitch p 2 and the interval d 2 of the transparent linear electrodes 246a or the light shielding linear electrodes 246b are determined in the same manner as the lattice pitch p 2 and the interval d 2 related to the second grating 132 described above, and therefore the same reference numerals are used. It explains using.
 具体的には、X線源11から照射されるX線が、平行ビームではなく、コーンビームである場合には、格子131を通過して形成される格子131の自己像G1は、X線源11からの距離に比例して拡大される。そして、本例においては、電荷蓄積層343の配列ピッチpは、線状の電荷蓄積層343の部分が、電荷蓄積層343の位置における格子131の自己像G1の明部の周期パターンとほぼ一致するように決定される。すなわち、格子131の格子ピッチをp、X線画像検出器340の検出面の位置における自己像G1のパターン周期p’、X線源11の焦点から格子131までの距離をL、格子131からX線画像検出器340の検出面までの距離をLとした場合、電荷蓄積層343の配列ピッチpは、上記の式(1)、上述のマルチスリット103を用いる場合は、マルチスリット103から格子131までの距離をLとして、上記の式(21)の関係を満たすように決定される。 Specifically, when the X-ray irradiated from the X-ray source 11 is not a parallel beam but a cone beam, the self-image G1 of the grating 131 formed through the grating 131 is expressed by the X-ray source. It is enlarged in proportion to the distance from 11. Then, in this embodiment, the arrangement pitch p 2 of the charge storage layer 343, the portion of the linear charge accumulation layer 343 is approximately the periodic pattern of the light area of the self image G1 of the grating 131 at the position of the charge accumulation layer 343 It is determined to match. That is, the grating pitch of the grating 131 is p 1 , the pattern period p 1 ′ of the self-image G1 at the position of the detection surface of the X-ray image detector 340, the distance from the focal point of the X-ray source 11 to the grating 131 is L 1 , and the grating When the distance from 131 to the detection surface of the X-ray image detector 340 is L 2 , the arrangement pitch p 2 of the charge storage layer 343 is expressed by the above equation (1), and when using the multi slit 103 described above, the multi pitch the distance from the slit 103 to grating 131 as L 3, is determined to satisfy the above equation (21).
 また、電荷蓄積層343は、積層方向(z方向)について2μm以下の厚さで形成される。 The charge storage layer 343 is formed with a thickness of 2 μm or less in the stacking direction (z direction).
 そして、電荷蓄積層343は、たとえば、上述したような材料と金属板に穴を空けたメタルマスクやファイバーなどによって形成されたマスクとを用いて抵抗加熱蒸着によって形成することができる。また、フォトリソグラフィを用いて形成するようにしてもよい。 The charge storage layer 343 can be formed by resistance heating vapor deposition using, for example, the above-described material and a mask formed of a metal mask or a fiber having a hole in a metal plate. Further, it may be formed using photolithography.
 そして、本例のX線画像検出器340においては、後で詳述するが、隣接する透明線状電極246aと遮光線状電極246bとの1組を用いて画像信号が読み出される。すなわち、図37に示すように、1組の透明線状電極246aと遮光線状電極246bとによって1画素の画像信号が読み出されることになる。本例においては、1画素が略50μmとなるように透明線状電極246aと遮光線状電極246bとが配置されている。 In the X-ray image detector 340 of this example, as will be described in detail later, an image signal is read out using a pair of the adjacent transparent linear electrode 246a and the light shielding linear electrode 246b. That is, as shown in FIG. 37, an image signal of one pixel is read out by one set of transparent linear electrode 246a and light shielding linear electrode 246b. In this example, the transparent linear electrode 246a and the light shielding linear electrode 246b are arranged so that one pixel is approximately 50 μm.
 そして、本例のX線撮影システムは、図37に示すように、透明線状電極246aと遮光線状電極246bの延伸方向に直交する方向(x方向)に延設された線状読取光源250を備えている。 In the X-ray imaging system of this example, as shown in FIG. 37, a linear reading light source 250 extended in a direction (x direction) orthogonal to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b. It has.
 本例では、X線源11、格子131、及び上記のように分割された電荷蓄積層343を有するX線画像検出器340を備える構成をタルボ干渉計として機能させる。このためには、更にいくつかの条件をほぼ満たさねばならない。その条件について以下に説明する。 In this example, a configuration including the X-ray source 11, the grating 131, and the X-ray image detector 340 having the charge storage layer 343 divided as described above is caused to function as a Talbot interferometer. In order to do this, several conditions must be almost satisfied. The conditions will be described below.
 まず、格子131とX線画像検出器340の検出面が、図36に示すxy平面に平行であることが必要である。 First, it is necessary that the detection surfaces of the grating 131 and the X-ray image detector 340 are parallel to the xy plane shown in FIG.
 そして、更に、格子131とX線画像検出器340の検出面までの距離Z(タルボ干渉距離Z)は、格子131が90°の位相変調を与える位相変調型格子である場合、上述の式(26)をほぼ満たさなければならない。 Further, the distance Z 2 (Talbot interference distance Z) between the grating 131 and the detection surface of the X-ray image detector 340 is equal to the above formula when the grating 131 is a phase modulation type grating that applies 90 ° phase modulation. (26) must be almost satisfied.
 また、格子131が180°の位相変調を与える位相変調型格子である場合には上述の式(27)、格子131が吸収型格子である場合には、上述の式(28)をほぼ満たさなければならない。 When the grating 131 is a phase modulation type grating that applies 180 ° phase modulation, the above expression (27) must be substantially satisfied, and when the grating 131 is an absorption type grating, the above expression (28) must be substantially satisfied. I must.
 移動機構333は、上述したように、X線画像検出器340をその線状電極の延伸方向に直交する方向に並進移動させることにより、格子131とX線画像検出器340との相対位置を変化させるものである。移動機構333は、たとえば、圧電素子等のアクチュエータにより構成される。 As described above, the moving mechanism 333 changes the relative position between the grating 131 and the X-ray image detector 340 by translating the X-ray image detector 340 in a direction orthogonal to the extending direction of the linear electrode. It is something to be made. The moving mechanism 333 is configured by an actuator such as a piezoelectric element, for example.
 次に、本例のX線撮影システムの作用について説明する。 Next, the operation of the X-ray imaging system of this example will be described.
 X線は被写体Hを透過した後、格子131に照射される。格子131に照射されたX線は、格子131で回折されることにより、格子131からX線の光軸方向において所定の距離において、タルボ干渉像(格子131の自己像G1)を形成する。 X-rays pass through the subject H and then irradiate the grating 131. The X-rays irradiated on the grating 131 are diffracted by the grating 131 to form a Talbot interference image (self-image G1 of the grating 131) at a predetermined distance from the grating 131 in the optical axis direction of the X-ray.
 そして、格子131の自己像G1は、X線画像検出器340の第1の電極層241側から入射され、X線画像検出器340の分割された電荷蓄積層343によって領域選択的に蓄積され、画像信号としてX線画像検出器340から出力される。 Then, the self-image G1 of the grating 131 is incident from the first electrode layer 241 side of the X-ray image detector 340 and is region-selectively stored by the divided charge storage layer 343 of the X-ray image detector 340. An X-ray image detector 340 outputs the image signal.
 ここで、X線画像検出器340における縞画像の検出と読出しの作用について、より詳細に説明する。 Here, the operation of detecting and reading out the fringe image in the X-ray image detector 340 will be described in more detail.
 まず、図38に示すように高圧電源400によってX線画像検出器340の第1の電極層241に負の電圧を印加した状態において、格子131の自己像G1を担持したX線が、X線画像検出器340の第1の電極層241側から照射される(FIG.38A)。 First, as shown in FIG. 38, in the state where a negative voltage is applied to the first electrode layer 241 of the X-ray image detector 340 by the high-voltage power supply 400, the X-ray carrying the self-image G1 of the grating 131 becomes X-ray. Irradiation is performed from the first electrode layer 241 side of the image detector 340 (FIG. 38A).
 そして、X線画像検出器340に照射されたX線は、第1の電極層241を透過し、記録用光導電層242に照射される。そして、そのX線の照射によって記録用光導電層242において電荷対が発生し、そのうち正の電荷は第1の電極層241に帯電した負の電荷と結合して消滅し、負の電荷は潜像電荷として電荷蓄積層343に蓄積される(FIG.38B参照)。 Then, the X-rays irradiated to the X-ray image detector 340 are transmitted through the first electrode layer 241 and irradiated to the recording photoconductive layer 242. The X-ray irradiation generates a charge pair in the recording photoconductive layer 242, and the positive charge is combined with the negative charge charged in the first electrode layer 241 and disappears, and the negative charge is latent. It is stored in the charge storage layer 343 as an image charge (see FIG. 38B).
 ここで、本例における電荷蓄積層343は、上述したような配列ピッチで線状に分割されているので、記録用光導電層242において格子131の自己像G1に応じて発生した電荷のうちその直下に電荷蓄積層343が存在する電荷のみが電荷蓄積層343によってトラップされて蓄積され、それ以外の電荷については線状の電荷蓄積層343の間(以下、非電荷蓄積領域という)を通過し、読取用光導電層245を通過した後、透明線状電極246aと遮光線状電極246bとに流れ出してしまう。 Here, since the charge storage layer 343 in this example is linearly divided at the arrangement pitch as described above, out of the charges generated according to the self-image G1 of the grating 131 in the recording photoconductive layer 242, Only charges in which the charge storage layer 343 exists immediately below are trapped and stored by the charge storage layer 343, and other charges pass between the linear charge storage layers 343 (hereinafter referred to as non-charge storage regions). Then, after passing through the reading photoconductive layer 245, it flows out to the transparent linear electrode 246a and the light shielding linear electrode 246b.
 このように記録用光導電層242において発生した電荷のうち、その直下に線状の電荷蓄積層343が存在する電荷のみを蓄積することによって、格子131の自己像は、電荷蓄積層343の線状のパターンとの重ね合わせにより、領域選択的に電荷蓄積層343に蓄積されることになる。すなわち、本例の電荷蓄積層343は、従来の2つの格子を利用した位相イメージングにおける2つ目の格子と同等の機能を果たすことになる。 As described above, by accumulating only the electric charge generated in the recording photoconductive layer 242 and having the linear electric charge accumulation layer 343 immediately below the electric charge, the self-image of the lattice 131 becomes the line of the electric charge accumulation layer 343. By overlapping with the pattern, the region is selectively stored in the charge storage layer 343. That is, the charge storage layer 343 of this example performs the same function as the second grating in phase imaging using two conventional gratings.
 そして、次に、図39に示すように、第1の電極層241が接地された状態において、線状読取光源250から発せられた線状の読取光L1が第2の電極層246側から照射される。読取光L1は透明線状電極246aを透過して読取用光導電層245に照射され、その読取光L1の照射により読取用光導電層245において発生した正の電荷が電荷蓄積層343における潜像電荷と結合するとともに、負の電荷が、透明線状電極246aに接続されたチャージアンプ200を介して遮光線状電極246bに帯電した正の電荷と結合する。 Next, as shown in FIG. 39, in the state where the first electrode layer 241 is grounded, the linear reading light L1 emitted from the linear reading light source 250 is irradiated from the second electrode layer 246 side. Is done. The reading light L1 passes through the transparent linear electrode 246a and is irradiated to the reading photoconductive layer 245, and the positive charge generated in the reading photoconductive layer 245 by the irradiation of the reading light L1 is a latent image in the charge storage layer 343. The negative charge is combined with the positive charge charged to the light shielding linear electrode 246b through the charge amplifier 200 connected to the transparent linear electrode 246a while being combined with the charge.
 そして、読取用光導電層245において発生した負の電荷と遮光線状電極246bに帯電した正の電荷との結合によって、チャージアンプ200に電流が流れ、この電流が積分されて画像信号として検出される。 A current flows through the charge amplifier 200 due to the combination of the negative charge generated in the reading photoconductive layer 245 and the positive charge charged in the light shielding linear electrode 246b, and this current is integrated and detected as an image signal. The
 そして、線状読取光源250が、副走査方向(y方向)に移動することによって線状の読取光L1によってX線画像検出器340が走査され、線状の読取光L1の照射された読取ライン毎に上述した作用によって画像信号が順次検出され、その検出された読取ライン毎の画像信号が位相コントラスト画像生成部260に順次入力されて記憶される。 Then, the linear reading light source 250 moves in the sub-scanning direction (y direction), the X-ray image detector 340 is scanned with the linear reading light L1, and the reading line irradiated with the linear reading light L1. The image signal is sequentially detected by the above-described operation every time, and the detected image signal for each reading line is sequentially input to the phase contrast image generation unit 260 and stored.
 そして、X線画像検出器340の全面が読取光L1に走査されて1フレーム全体の画像信号が位相コントラスト画像生成部260に記憶される。 Then, the entire surface of the X-ray image detector 340 is scanned with the reading light L 1, and the image signal of the entire frame is stored in the phase contrast image generation unit 260.
 本例における位相コントラスト画像の生成方法の原理は、式(13)~(19)を参照して説明した内容と同様であるため、その説明を省略する。位相コントラスト画像生成部260により、複数の縞画像に基づいて位相コントラスト画像が生成される。 The principle of the method for generating the phase contrast image in this example is the same as the content described with reference to the equations (13) to (19), and thus the description thereof is omitted. The phase contrast image generation unit 260 generates a phase contrast image based on the plurality of fringe images.
 なお、上述のX線撮影システムは、格子131からX線画像検出器340の検出面までの距離Zがタルボ干渉距離となるように、格子131の種類によって、上述の式(26)又は式(27)又は式(28)のいずれかを満たすようにしたが、格子131が入射X線を回折せずに投影させる構成としてもよい。この構成によれば、格子131を通過して射影される投影像が、格子131の後方の位置で相似的に得られるため、格子131からX線画像検出器340の検出面までの距離Zを、タルボ干渉距離を無関係に設定することができる。 Incidentally, X-ray imaging system described above, as the distance Z 2 to the detection surface of the X-ray image detector 340 from the grating 131 becomes Talbot interference distance, depending on the type of grating 131, the above equation (26) or formula Although either (27) or (28) is satisfied, the grating 131 may be configured to project incident X-rays without diffracting. According to this configuration, since the projected image projected through the grating 131 is obtained similarly at a position behind the grating 131, the distance Z 2 from the grating 131 to the detection surface of the X-ray image detector 340 is obtained. Can be set regardless of the Talbot interference distance.
 次に、上述のX線撮影システムの変形例について説明する。上述のX線撮影システムは、移動機構333によってX線画像検出器340を並進移動させ、各位置においてX線画像の撮影を行うことによってM枚の縞画像信号を取得するようにしたが、本例のX線撮影システムは、上記のような移動機構333を必要とすることなく、1回のX線画像の撮影によってM枚の縞画像信号を取得可能に構成されたものである。
 すなわち、上述の図25~図31等を参照して説明したように、本例においても、図25~図27等に示すように、格子131とX線画像検出器340とが、格子131の自己像G1の延伸方向とX線画像検出器340の電荷蓄積層343の延伸方向とが相対的に傾くように配置されるものである。そして、このように配置された格子131と電荷蓄積層343に対して、X線画像検出器340によって検出される画像信号の各画素の主走査方向(図37のx方向)の主画素サイズDxと副走査方向の副画素サイズDyとは、図26に示すような関係となる。上述の図25~図31等を参照して説明した構成及び作用と同様にして、1回の放射線画像の撮影が行われた後、X線画像検出器340の全面が読取光L1に走査されて1フレーム全体の画像信号が位相コントラスト画像生成部260に記憶され、位相コントラスト画像生成部260は、その記憶された画像信号に基づいて、互いに異なる5つの縞画像の画像信号を取得する。この第1~第5の縞画像信号に基づいて、位相コントラスト画像生成部260により、上記例と同様にして位相コントラスト画像が生成される。
Next, a modified example of the above X-ray imaging system will be described. In the X-ray imaging system described above, the X-ray image detector 340 is translated by the moving mechanism 333, and X-ray images are captured at each position to acquire M fringe image signals. The X-ray imaging system of the example is configured to be able to acquire M striped image signals by capturing one X-ray image without requiring the moving mechanism 333 as described above.
That is, as described with reference to FIGS. 25 to 31 and the like described above, also in this example, as shown in FIGS. 25 to 27 and the like, the grating 131 and the X-ray image detector 340 are connected to each other. The extending direction of the self-image G1 and the extending direction of the charge storage layer 343 of the X-ray image detector 340 are arranged so as to be relatively inclined. The main pixel size Dx in the main scanning direction (x direction in FIG. 37) of each pixel of the image signal detected by the X-ray image detector 340 with respect to the lattice 131 and the charge storage layer 343 thus arranged. And the sub-pixel size Dy in the sub-scanning direction have a relationship as shown in FIG. In the same manner as the configuration and operation described with reference to FIGS. 25 to 31 and the like, after one radiographic image is taken, the entire surface of the X-ray image detector 340 is scanned with the reading light L1. Then, the image signal of the entire frame is stored in the phase contrast image generation unit 260, and the phase contrast image generation unit 260 acquires the image signals of five different fringe images based on the stored image signal. Based on the first to fifth fringe image signals, the phase contrast image generation unit 260 generates a phase contrast image in the same manner as in the above example.
 また、上記例においては、X線画像検出器340として、電極間に、記録用光導電層242、電荷蓄積層343及び読取用光導電層245の3層を設けたものを利用するようにしたが、必ずしもこの層構成である必要はなく、たとえば、図40に示すように、読取用光導電層245を設けることなく、第2の電極層の透明線状電極246a及び遮光線状電極246b上に直接接触するように線状の電荷蓄積層343を設け、その電荷蓄積層343の上に記録用光導電層242を設けるようにしてもよい。なお、この記録用光導電層242は、読取用光導電層としても機能するものである。 In the above example, the X-ray image detector 340 is provided with three layers of the recording photoconductive layer 242, the charge storage layer 343, and the reading photoconductive layer 245 between the electrodes. However, this layer configuration is not necessarily required. For example, as shown in FIG. 40, the transparent photoelectrode 246a and the light shielding electrode 246b of the second electrode layer are provided without providing the reading photoconductive layer 245. A linear charge storage layer 343 may be provided so as to be in direct contact with the recording medium, and a recording photoconductive layer 242 may be provided on the charge storage layer 343. The recording photoconductive layer 242 also functions as a reading photoconductive layer.
 この構造は、読取用光導電層245なしに第2の電極層246に直接電荷蓄積層343を設ける構造であり、線状の電荷蓄積層343は、蒸着で形成することができるため、線状の電荷蓄積層343の形成を容易にすることができる。蒸着工程においては、選択的に線状パターンを形成するためにメタルマスクなどを用いる。読取用光導電層245の上に線状の電荷蓄積層343を設ける構成では、読取用光導電層245の蒸着後に線状の電荷蓄積層343を蒸着で形成するためのメタルマスクをセットする工程が必要なため、読取用光導電層245の蒸着工程と記録用光導電層242の蒸着工程の間で大気中操作により、読取用光導電層245に劣化や、光導電層間に異物が混入して品質の劣化をもたらす虞がある。一方、上述した読取用光導電層245を設けない構造とすることで、光導電層の蒸着後の大気中操作を減らすことができるため、上述の品質劣化の懸念を低減することができる。 This structure is a structure in which the charge accumulation layer 343 is provided directly on the second electrode layer 246 without the reading photoconductive layer 245, and the linear charge accumulation layer 343 can be formed by vapor deposition. The charge storage layer 343 can be easily formed. In the vapor deposition process, a metal mask or the like is used to selectively form a linear pattern. In the configuration in which the linear charge storage layer 343 is provided on the reading photoconductive layer 245, a step of setting a metal mask for forming the linear charge storage layer 343 by vapor deposition after vapor deposition of the reading photoconductive layer 245 is performed. Therefore, the reading photoconductive layer 245 is deteriorated or foreign matter is mixed in between the photoconductive layers by an operation in the air between the reading photoconductive layer 245 vapor deposition step and the recording photoconductive layer 242 vapor deposition step. May cause deterioration of quality. On the other hand, by adopting a structure in which the above-described reading photoconductive layer 245 is not provided, operations in the air after the photoconductive layer is deposited can be reduced, so that the above-described concern about quality deterioration can be reduced.
 以下に、図40に示すX線画像検出器360のX線画像の記録と読み出しの作用について説明する。 Hereinafter, the operation of recording and reading out the X-ray image of the X-ray image detector 360 shown in FIG. 40 will be described.
 まず、図41に示すように高圧電源400によってX線画像検出器360の第1の電極層241に負の電圧を印加した状態において、格子131の自己像G1を担持したX線が、X線画像検出器360の第1の電極層241側から照射される(FIG.41A)。 First, as shown in FIG. 41, in a state where a negative voltage is applied to the first electrode layer 241 of the X-ray image detector 360 by the high-voltage power source 400, the X-ray carrying the self-image G1 of the grating 131 is Irradiation is performed from the first electrode layer 241 side of the image detector 360 (FIG. 41A).
 そして、X線画像検出器340に照射されたX線は、第1の電極層241を透過し、記録用光導電層242に照射される。そして、そのX線の照射によって記録用光導電層242において電荷対が発生し、そのうち正の電荷は第1の電極層241に帯電した負の電荷と結合して消滅し、負の電荷は潜像電荷として電荷蓄積層343に蓄積される(FIG.41B)。なお、第2の電極層246に接した線状の電荷蓄積層343は絶縁性の膜であるから、この電荷蓄積層343に到達した電荷はそこに捕えられ、第2の電極層246へ行くことができず、蓄積されて留まる。 Then, the X-rays irradiated to the X-ray image detector 340 are transmitted through the first electrode layer 241 and irradiated to the recording photoconductive layer 242. The X-ray irradiation generates a charge pair in the recording photoconductive layer 242, and the positive charge is combined with the negative charge charged in the first electrode layer 241 and disappears, and the negative charge is latent. The image charge is stored in the charge storage layer 343 (FIG. 41B). Note that since the linear charge storage layer 343 in contact with the second electrode layer 246 is an insulating film, charges that have reached the charge storage layer 343 are captured there and go to the second electrode layer 246. Can't, and stays accumulated.
 ここでも、上記例のX線画像検出器340と同様に、記録用光導電層242において発生した電荷のうち、その直下に線状の電荷蓄積層343が存在する電荷のみを蓄積することによって、格子131の自己像G1は電荷蓄積層343の線状のパターンとの重ね合わせにより領域選択的に電荷蓄積層343に蓄積されることになる。 Here, as in the X-ray image detector 340 of the above example, by accumulating only the electric charge generated in the recording photoconductive layer 242 and the electric charge accumulating layer 343 directly below it, The self-image G1 of the lattice 131 is stored in the charge storage layer 343 in a region-selective manner by overlapping with the linear pattern of the charge storage layer 343.
 そして、図42に示すように、第1の電極層241が接地された状態において、線状読取光源250から発せられた線状の読取光L1が第2の電極層246側から照射される。読取光L1は、透明線状電極246aを透過して電荷蓄積層343近傍の記録用光導電層242に照射され、その読取光L1の照射により発生した正の電荷が線状の電荷蓄積層343へ引き寄せられて再結合する。そして、もう一方の負の電荷は、透明線状電極246aへ引き寄せられ、透明線状電極246aに帯電した正の電荷及び透明線状電極246aに接続されたチャージアンプ200を介して遮光線状電極246bに帯電した正の電荷と結合する。これによりチャージアンプ200に電流が流れ、この電流が積分されて画像信号として検出される。 Then, as shown in FIG. 42, in the state where the first electrode layer 241 is grounded, the linear reading light L1 emitted from the linear reading light source 250 is irradiated from the second electrode layer 246 side. The reading light L1 passes through the transparent linear electrode 246a and is applied to the recording photoconductive layer 242 in the vicinity of the charge storage layer 343. Positive charges generated by the irradiation of the reading light L1 are linear charge storage layer 343. Attracted to recombine. The other negative charge is drawn to the transparent linear electrode 246a, and the light shielding linear electrode is connected to the positive charge charged in the transparent linear electrode 246a and the charge amplifier 200 connected to the transparent linear electrode 246a. It couple | bonds with the positive charge charged to 246b. As a result, a current flows through the charge amplifier 200, and this current is integrated and detected as an image signal.
 上述したX線画像検出器360を用いた場合においても、複数の縞画像信号の取得方法及び位相コントラスト画像の生成方法は上記各例と同様である。 Even when the above-described X-ray image detector 360 is used, the method for acquiring a plurality of fringe image signals and the method for generating a phase contrast image are the same as those in the above examples.
 また、上記各例においては、X線画像検出器340の電荷蓄積層343を、完全に線状に分離して形成するようにしたが、これに限らず、たとえば、図43に示すように、平板形状の上に線状のパターンを形成することによって格子状に形成するようにしてもよい。 In each of the above examples, the charge storage layer 343 of the X-ray image detector 340 is formed to be completely separated into a linear shape. However, the present invention is not limited to this, for example, as shown in FIG. You may make it form in a grid | lattice form by forming a linear pattern on flat plate shape.
 図44は、本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その演算部の構成を示す。 FIG. 44 shows a configuration of a calculation unit regarding another example of the radiation imaging system for explaining the embodiment of the present invention.
 前述した各X線撮影システムによれば、これまで描出が難しかったX線弱吸収物体の高コントラストな画像(位相コントラスト画像)が得られるが、更に、位相コントラスト画像と対応して吸収画像が参照できることは読影の助けになる。例えば、吸収画像と位相コントラスト画像を重み付けや階調、周波数処理などの適当な処理によって重ね合わせることにより吸収画像で表現できなかった部分を位相コントラスト画像の情報で補うことは有効である。しかし、位相コントラスト画像とは別に吸収画像を撮影することは、位相コントラスト画像の撮影と吸収画像の撮影の間の撮影肢位のズレによって良好な重ね合わせを困難にするのに加え、撮影回数が増えることにより被検者の負担となる。また、近年、位相コントラスト画像や吸収画像の他に、小角散乱画像が注目されている。小角散乱画像は、被検体組織内部の微細構造に起因する組織性状を表現可能であり、例えば、ガンや循環器疾患といった分野での新しい画像診断のための表現方法として期待されている。 According to each X-ray imaging system described above, a high-contrast image (phase contrast image) of an X-ray weakly absorbing object that has been difficult to draw can be obtained. In addition, an absorption image is referred to corresponding to the phase contrast image. What you can do will help you interpret. For example, it is effective to supplement the portion that could not be represented by the absorption image with the information of the phase contrast image by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing. However, capturing an absorption image separately from the phase contrast image makes it difficult to superimpose images due to the shift in the shooting position between the phase contrast image capture and the absorption image capture. Increasing the burden on the subject. In recent years, small-angle scattered images have attracted attention in addition to phase contrast images and absorption images. The small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in the fields of cancer and cardiovascular diseases.
 そこで、本X線撮影システムは、位相コントラスト画像のために取得した複数枚の画像から、吸収画像や小角散乱画像を生成することも可能とする演算処理部190を用いる。演算処理部190は、位相コントラスト画像生成部191、吸収画像生成部192、小角散乱画像生成部193が構成されている。これらは、いずれもk=0,1,2,・・・,M-1のM個の各走査位置で得られる画像データに基づいて演算処理を行う。このうち、位相コントラスト画像生成部191は、前述の手順に従って位相コントラスト画像を生成する。 Therefore, this X-ray imaging system uses an arithmetic processing unit 190 that can generate an absorption image and a small-angle scattered image from a plurality of images acquired for a phase contrast image. The arithmetic processing unit 190 includes a phase contrast image generation unit 191, an absorption image generation unit 192, and a small angle scattered image generation unit 193. These all perform arithmetic processing based on image data obtained at M scanning positions of k = 0, 1, 2,..., M−1. Among these, the phase contrast image generation unit 191 generates a phase contrast image according to the above-described procedure.
 吸収画像生成部192は、画素ごとに得られる画素データI(x,y)を、図45に示すように、kについて平均化して平均値を算出して画像化することにより吸収画像を生成する。なお、平均値の算出は、画素データI(x,y)をkについて単純に平均化することにより行なっても良いが、Mが小さい場合には誤差が大きくなるため、画素データI(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の平均値を求めるようにしてもよい。また、吸収画像の生成には、平均値に限られず、平均値に対応する量であれば、画素データI(x,y)をkについて加算した加算値等を用いることが可能である。 The absorption image generation unit 192 generates an absorption image by averaging the pixel data I k (x, y) obtained for each pixel with respect to k and calculating an average value as shown in FIG. 45. To do. The average value may be calculated by simply averaging the pixel data I k (x, y) with respect to k. However, when M is small, the error increases, so that the pixel data I k ( After fitting x, y) with a sine wave, an average value of the fitted sine wave may be obtained. The generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel data I k (x, y) with respect to k can be used as long as the amount corresponds to the average value.
 なお、被写体がない状態で撮影(プレ撮影)して取得される画像群から、吸収像を作成するようにしてもよい。この吸収像は、検出系の検出強度ムラを反映している(格子の透過率ムラ、照射X線強度の面内ムラ、X線画像検出器の感度ムラ等の情報が含まれている)。そこで、この画像から、検出系の検出強度ムラを補正するための補正係数マップを作成することが出来る。被写体がある状態で撮影(メイン撮影)して取得される画像群から、吸収像を作成し、前述の補正係数を各画素にかけることで、検出系の検出強度ムラを補正した、被写体の吸収像を得ることが出来る。 Note that an absorption image may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject. This absorption image reflects detection intensity unevenness of the detection system (including information such as grating transmittance unevenness, in-plane unevenness of irradiation X-ray intensity, and sensitivity unevenness of the X-ray image detector). Therefore, a correction coefficient map for correcting detection intensity unevenness of the detection system can be created from this image. Absorption of the subject, in which an absorption image is created from a group of images acquired by shooting in the presence of the subject (main shooting), and the detection coefficient unevenness of the detection system is corrected by applying the above correction coefficient to each pixel. An image can be obtained.
 小角散乱画像生成部193は、画素ごとに得られる画素データI(x,y)の振幅値を算出して画像化することにより小角散乱画像を生成する。なお、振幅値の算出は、画素データI(x,y)の最大値と最小値との差を求めることによって行なっても良いが、Mが小さい場合には誤差が大きくなるため、画素データI(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の振幅値を求めるようにしても良い。また、小角散乱画像の生成には、振幅値に限られず、平均値を中心としたばらつきに対応する量として、分散値や標準偏差等を用いることが可能である。 The small angle scattered image generation unit 193 generates a small angle scattered image by calculating and imaging the amplitude value of the pixel data I k (x, y) obtained for each pixel. The amplitude value may be calculated by obtaining the difference between the maximum value and the minimum value of the pixel data I k (x, y). However, when M is small, the error increases, so that the pixel data After fitting I k (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained. In addition, the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
 本X線撮影システムによれば、被写体の位相コントラスト画像のために取得した複数枚の画像から吸収画像や小角散乱画像を生成するので、吸収画像や小角散乱画像の撮影の間の撮影肢位のズレが生じず、位相コントラスト画像と吸収画像や小角散乱画像との良好な重ね合わせが可能となる。 According to the present X-ray imaging system, an absorption image and a small angle scattered image are generated from a plurality of images acquired for the phase contrast image of the subject. No deviation occurs, and the phase contrast image can be satisfactorily superimposed with the absorption image or the small-angle scattered image.
 前述の各X線撮影システムでは、放射線として一般的なX線を用いる場合について説明したが、本発明に用いられる放射線はX線に限られるものではなく、α線、γ線等のX線以外の放射線を用いることも可能である。 In each of the above-described X-ray imaging systems, the case where general X-rays are used as radiation has been described. However, the radiation used in the present invention is not limited to X-rays, but other than X-rays such as α-rays and γ-rays. It is also possible to use other radiation.
 以上説明した各例は、本発明を医療診断用の装置に適用したものであるが、本発明は医療診断用途に限られず、工業用等のその他の放射線検出装置に適用することが可能である。 In each example described above, the present invention is applied to an apparatus for medical diagnosis. However, the present invention is not limited to medical diagnosis use, and can be applied to other radiation detection apparatuses for industrial use. .
 以上、説明したように、本明細書には、第1の方向に配列された複数の条帯を有する第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像を周期的にマスクするように配列された格子パターンと、前記格子パターンによってマスクされた前記放射線像を複数の画素を用いて検出する放射線画像検出器と、を備え、前記第1の格子は、当該第1の格子を通過する放射線の光軸に交差する面内において少なくとも前記第1の方向に配列された複数の第1の格子片を含み、前記第1の格子片の前記第1の方向における配列ピッチは、前記放射線画像検出器の前記第1の方向における画素ピッチの2倍以上であることを特徴とする放射線画像検出装置が開示されている。 As described above, in this specification, the first grating having a plurality of strips arranged in the first direction and the radiation image formed by the radiation that has passed through the first grating have a period. And a radiological image detector that detects the radiographic image masked by the grid pattern using a plurality of pixels, wherein the first grid includes the first grid A plurality of first grating pieces arranged in the first direction in a plane intersecting an optical axis of radiation passing through one grating, and the arrangement of the first grating pieces in the first direction A radiation image detection apparatus is disclosed, wherein the pitch is at least twice the pixel pitch in the first direction of the radiation image detector.
 また、本明細書には、第1の方向に配列された複数の条帯を有する第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像を周期的にマスクするように配列された複数の条帯を有する第2の格子と、前記第2の格子によってマスクされた前記放射線像を複数の画素を用いて検出する放射線画像検出器と、を備え、前記第2の格子は、前記第1の格子及び当該第2の格子を通過する放射線の光軸と交差する面内において少なくとも前記第1の方向に配列された複数の第2の格子片を含み、前記第2の格子片の前記第1の方向における配列ピッチは、前記放射線画像検出器の前記第1の方向における画素ピッチの2倍以上であることを特徴とする放射線画像検出装置が開示されている。 Further, in the present specification, a first grating having a plurality of strips arranged in a first direction and a radiation image formed by radiation passing through the first grating are periodically masked. A second grating having a plurality of strips arranged in a line, and a radiation image detector for detecting the radiation image masked by the second grating using a plurality of pixels, and The grating includes a plurality of second grating pieces arranged at least in the first direction in a plane intersecting an optical axis of radiation passing through the first grating and the second grating, An arrangement pitch of the lattice pieces in the first direction is at least twice as large as a pixel pitch in the first direction of the radiological image detector.
 また、本明細書には、第1の方向に配列された複数の条帯を有する第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像を周期的にマスクするように配列された複数の条帯を有する第2の格子と、前記第2の格子によってマスクされた前記放射線像を複数の画素を用いて検出する放射線画像検出器と、を備え、前記第1の格子は、当該第1の格子を通過する放射線の光軸に交差する面内において少なくとも前記第1の方向に配列された複数の第1の格子片を含み、前記第1の格子片の前記第1の方向における配列ピッチは、前記放射線画像検出器の前記第1の方向における画素ピッチの2倍以上であり、前記第2の格子は、前記放射線の光軸と交差する面内において少なくとも前記第1の方向に配列された複数の第2の格子片を含み、前記第2の格子片の前記第1の方向における配列ピッチは、前記放射線画像検出器の前記第1の方向における画素ピッチの2倍以上であることを特徴とする放射線画像検出装置が開示されている。 Further, in the present specification, a first grating having a plurality of strips arranged in a first direction and a radiation image formed by radiation passing through the first grating are periodically masked. A second grating having a plurality of strips arranged in a line, and a radiation image detector for detecting the radiation image masked by the second grating using a plurality of pixels, The grating includes a plurality of first grating pieces arranged in at least the first direction in a plane intersecting the optical axis of the radiation passing through the first grating, and the first grating piece includes the first grating pieces. The arrangement pitch in the direction 1 is at least twice the pixel pitch in the first direction of the radiation image detector, and the second grating is at least in the plane intersecting the optical axis of the radiation. A plurality of second array arranged in one direction The radiation image is characterized in that the arrangement pitch of the second grating pieces in the first direction is not less than twice the pixel pitch in the first direction of the radiation image detector. A detection device is disclosed.
 また、本明細書に開示された放射線画像検出装置において、前記第1の格子片の前記配列ピッチと、前記第2の格子片の前記配列ピッチとは、ほぼ等しい。 Further, in the radiological image detection apparatus disclosed in this specification, the arrangement pitch of the first grating pieces and the arrangement pitch of the second grating pieces are substantially equal.
 また、本明細書に開示された放射線画像検出装置において、前記第1の格子を通過する放射線は、放射線焦点からの距離に比例して照射範囲が拡大されるコーンビームであり、前記配列ピッチは、当該配列ピッチを有する格子と放射線焦点との間の距離と、前記放射線画像検出器と放射線焦点との間の距離との比である拡大率に基づいて補正された値である。 In the radiological image detection apparatus disclosed in the present specification, the radiation passing through the first grating is a cone beam whose irradiation range is expanded in proportion to the distance from the radiation focus, and the arrangement pitch is The value corrected based on the enlargement ratio, which is the ratio between the distance between the grating having the arrangement pitch and the radiation focus and the distance between the radiation image detector and the radiation focus.
 また、本明細書に開示された放射線画像検出装置においては、前記放射線の光軸に沿った方向での前記格子の寸法をh、前記格子の条帯と条帯との間隔をd、前記格子の配列ピッチをP、前記格子と放射線焦点との間の距離をRとすると、
Figure JPOXMLDOC01-appb-M000031

を満たす。
Further, in the radiological image detection apparatus disclosed in the present specification, the dimension of the grating in the direction along the optical axis of the radiation is h, the distance between the stripes of the grating is d, and the grating Where P B is the arrangement pitch of R and R is the distance between the grating and the radiation focus.
Figure JPOXMLDOC01-appb-M000031

Meet.
 また、本明細書に開示された放射線画像検出装置においては、前記第1の方向が、放射線焦点を通る軸を有する円筒面の周方向に沿っている。 In the radiological image detection apparatus disclosed in this specification, the first direction is along the circumferential direction of a cylindrical surface having an axis passing through the radiation focus.
 また、本明細書に開示された放射線画像検出装置においては、前記配列ピッチが、前記放射線画像検出器によって検出されるモアレの基本周波数と、少なくとも第4次までの高調波成分の周波数とに基づいて決められる。 In the radiological image detection apparatus disclosed in this specification, the arrangement pitch is based on the fundamental frequency of moire detected by the radiographic image detector and the frequency of harmonic components up to at least the fourth order. Can be decided.
 また、本明細書に開示された放射線画像検出装置においては、前記配列ピッチが、前記画素ピッチの6倍以上である。 Further, in the radiological image detection apparatus disclosed in this specification, the arrangement pitch is 6 times or more the pixel pitch.
 また、本明細書に開示された放射線画像検出装置においては、前記配列ピッチが、前記画素ピッチの8倍以上である。 In the radiological image detection apparatus disclosed in this specification, the arrangement pitch is 8 times or more the pixel pitch.
 また、本明細書に開示された放射線画像検出装置においては、前記配列ピッチが、前記画素ピッチの10倍以上である。 Further, in the radiological image detection apparatus disclosed in this specification, the arrangement pitch is 10 times or more the pixel pitch.
 また、本明細書に開示された放射線画像検出装置においては、前記複数の格子片を含む前記格子において、隣り合う格子片の間に帯状の境界部が形成されている。 Further, in the radiological image detection apparatus disclosed in the present specification, in the lattice including the plurality of lattice pieces, a band-shaped boundary portion is formed between adjacent lattice pieces.
 また、本明細書に開示された放射線画像検出装置においては、前記複数の格子片を含む前記格子において、当該複数の格子片が、前記第1の方向と交差する第2の方向にも配列される。 Further, in the radiological image detection apparatus disclosed in the present specification, in the lattice including the plurality of lattice pieces, the plurality of lattice pieces are also arranged in a second direction intersecting the first direction. The
 また、本明細書に開示された放射線画像検出装置においては、前記第1の格子は、前記第1の方向と交差する第2方向に配列された複数の条帯を更に有する。 Moreover, in the radiological image detection apparatus disclosed in this specification, the first grating further includes a plurality of strips arranged in a second direction intersecting the first direction.
 また、本明細書には、上述の放射線画像検出装置と、前記第1の格子に向けて放射線を照射する放射線源とを備えることを特徴とする放射線撮影装置が開示されている。 Further, the present specification discloses a radiation imaging apparatus comprising the above-described radiation image detection apparatus and a radiation source that irradiates radiation toward the first grating.
 また、本明細書には、上述の放射線撮影装置と、前記放射線撮影装置の前記放射線画像検出器により検出された画像から、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、被写体の位相コントラスト画像を生成する演算処理部と、を備えることを特徴とする放射線撮影システムが開示されている。 Further, in the present specification, the distribution of the refraction angle of the radiation incident on the radiation image detector is calculated from the above-described radiation imaging apparatus and the image detected by the radiation image detector of the radiation imaging apparatus, A radiation imaging system including an arithmetic processing unit that generates a phase contrast image of a subject based on the distribution of refraction angles is disclosed.
 本発明によれば、必要な視野サイズに対応する大きさの格子を安定的に製造できるとともに、格子片の配列に起因して位相コントラスト画像の画質が低下することなく、安定した画質の位相コントラスト画像が得られる。 According to the present invention, it is possible to stably manufacture a grating having a size corresponding to a required visual field size, and it is possible to stably produce a phase contrast without degrading the image quality of the phase contrast image due to the arrangement of the grating pieces. An image is obtained.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年11月26日出願の日本特許出願(特願2010-264242)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on November 26, 2010 (Japanese Patent Application No. 2010-264242), the contents of which are incorporated herein by reference.
 10 X線撮影システム
 11 X線源(放射線源)
 12 撮影部(放射線画像検出装置)
 13 コンソール(制御演算手段)
 30 フラットパネル検出器(FPD)
 31 第1の吸収型格子
 31a 基板
 31b X線遮蔽部(条帯)
 32 第2の吸収型格子
 32a 基板
 32b X線遮蔽部(条帯)
 311 第1の格子片
 312 第2の格子片
 315 境界部
 325 境界部
 PB1,PB2 配列ピッチ
 PC1,PC2 配列ピッチ
 P  画度ピッチ
10 X-ray imaging system 11 X-ray source (radiation source)
12 Imaging unit (radiation image detection device)
13 Console (control calculation means)
30 Flat panel detector (FPD)
31 First absorption type grating 31a Substrate 31b X-ray shielding part (strip)
32 Second absorption type grating 32a Substrate 32b X-ray shielding part (strip)
311 1st lattice piece 312 2nd lattice piece 315 Boundary portion 325 Boundary portion P B1 , P B2 arrangement pitch P C1 , P C2 arrangement pitch P D image pitch

Claims (16)

  1.  第1の方向に配列された複数の条帯を有する第1の格子と、
     前記第1の格子を通過した放射線によって形成される放射線像を周期的にマスクするように配列された格子パターンと、
     前記格子パターンによってマスクされた前記放射線像を複数の画素を用いて検出する放射線画像検出器と、を備え、
     前記第1の格子は、当該第1の格子を通過する放射線の光軸に交差する面内において少なくとも前記第1の方向に配列された複数の第1の格子片を含み、前記第1の格子片の前記第1の方向における配列ピッチは、前記放射線画像検出器の前記第1の方向における画素ピッチの2倍以上であることを特徴とする放射線画像検出装置。
    A first grid having a plurality of strips arranged in a first direction;
    A grating pattern arranged to periodically mask a radiation image formed by radiation passing through the first grating;
    A radiation image detector that detects the radiation image masked by the lattice pattern using a plurality of pixels;
    The first grating includes a plurality of first grating pieces arranged at least in the first direction in a plane intersecting an optical axis of radiation passing through the first grating, and the first grating An arrangement pitch of the pieces in the first direction is at least twice as large as a pixel pitch in the first direction of the radiological image detector.
  2.  第1の方向に配列された複数の条帯を有する第1の格子と、
     前記第1の格子を通過した放射線によって形成される放射線像を周期的にマスクするように配列された複数の条帯を有する第2の格子と、
     前記第2の格子によってマスクされた前記放射線像を複数の画素を用いて検出する放射線画像検出器と、を備え、
     前記第2の格子は、前記第1の格子及び当該第2の格子を通過する放射線の光軸と交差する面内において少なくとも前記第1の方向に配列された複数の第2の格子片を含み、前記第2の格子片の前記第1の方向における配列ピッチは、前記放射線画像検出器の前記第1の方向における画素ピッチの2倍以上であることを特徴とする放射線画像検出装置。
    A first grid having a plurality of strips arranged in a first direction;
    A second grating having a plurality of strips arranged to periodically mask a radiation image formed by radiation that has passed through the first grating;
    A radiation image detector that detects the radiation image masked by the second grating using a plurality of pixels;
    The second grating includes a plurality of second grating pieces arranged at least in the first direction in a plane intersecting the optical axis of the radiation passing through the first grating and the second grating. The arrangement pitch of the second lattice pieces in the first direction is at least twice the pixel pitch of the radiographic image detector in the first direction.
  3.  第1の方向に配列された複数の条帯を有する第1の格子と、
     前記第1の格子を通過した放射線によって形成される放射線像を周期的にマスクするように配列された複数の条帯を有する第2の格子と、
     前記第2の格子によってマスクされた前記放射線像を複数の画素を用いて検出する放射線画像検出器と、を備え、
     前記第1の格子は、当該第1の格子を通過する放射線の光軸に交差する面内において少なくとも前記第1の方向に配列された複数の第1の格子片を含み、前記第1の格子片の前記第1の方向における配列ピッチは、前記放射線画像検出器の前記第1の方向における画素ピッチの2倍以上であり、
     前記第2の格子は、前記放射線の光軸と交差する面内において少なくとも前記第1の方向に配列された複数の第2の格子片を含み、
     前記第2の格子片の前記第1の方向における配列ピッチは、前記放射線画像検出器の前記第1の方向における画素ピッチの2倍以上であることを特徴とする放射線画像検出装置。
    A first grid having a plurality of strips arranged in a first direction;
    A second grating having a plurality of strips arranged to periodically mask a radiation image formed by radiation that has passed through the first grating;
    A radiation image detector that detects the radiation image masked by the second grating using a plurality of pixels;
    The first grating includes a plurality of first grating pieces arranged at least in the first direction in a plane intersecting an optical axis of radiation passing through the first grating, and the first grating The arrangement pitch of the pieces in the first direction is not less than twice the pixel pitch in the first direction of the radiation image detector,
    The second grating includes a plurality of second grating pieces arranged in at least the first direction in a plane intersecting the optical axis of the radiation,
    An arrangement pitch of the second lattice pieces in the first direction is at least twice as large as a pixel pitch in the first direction of the radiographic image detector.
  4.  請求項3に記載の放射線画像検出装置であって、
     前記第1の格子片の前記配列ピッチと、前記第2の格子片の前記配列ピッチとは、ほぼ等しいことを特徴とする放射線画像検出装置。
    The radiological image detection apparatus according to claim 3,
    The radiological image detection apparatus according to claim 1, wherein the arrangement pitch of the first grating pieces and the arrangement pitch of the second grating pieces are substantially equal.
  5.  請求項1から4のいずれか一項に記載の放射線画像検出装置であって、
     前記第1の格子を通過する放射線は、放射線焦点からの距離に比例して照射範囲が拡大されるコーンビームであり、
     前記配列ピッチは、当該配列ピッチを有する格子と放射線焦点との間の距離と、前記放射線画像検出器と放射線焦点との間の距離との比である拡大率に基づいて補正された値であることを特徴とする放射線画像検出装置。
    The radiological image detection apparatus according to any one of claims 1 to 4,
    The radiation passing through the first grating is a cone beam whose irradiation range is expanded in proportion to the distance from the radiation focus,
    The arrangement pitch is a value corrected based on an enlargement ratio that is a ratio of a distance between a grating having the arrangement pitch and a radiation focus and a distance between the radiation image detector and the radiation focus. A radiological image detection apparatus characterized by that.
  6.  請求項5に記載の放射線画像検出装置であって、
     前記放射線の光軸に沿った方向での前記格子の寸法をh、前記格子の条帯と条帯との間隔をd、前記格子の配列ピッチをP、前記格子と放射線焦点との間の距離をRとすると、
    Figure JPOXMLDOC01-appb-M000001

    を満たすことを特徴とする放射線画像検出装置。
    The radiological image detection apparatus according to claim 5,
    The dimension of the grating in the direction along the optical axis of the radiation is h, the distance between the stripes of the grating is d, the arrangement pitch of the grating is P B , and between the grating and the radiation focus If the distance is R,
    Figure JPOXMLDOC01-appb-M000001

    The radiation image detection apparatus characterized by satisfy | filling.
  7.  請求項5に記載の放射線画像検出装置であって、
     前記第1の方向は、放射線焦点を通る軸を有する円筒面の周方向に沿っていることを特徴とする放射線画像検出装置。
    The radiological image detection apparatus according to claim 5,
    The radiation image detecting apparatus according to claim 1, wherein the first direction is along a circumferential direction of a cylindrical surface having an axis passing through the radiation focus.
  8.  請求項1から7のいずれか一項に記載の放射線画像検出装置であって、
     前記配列ピッチは、前記放射線画像検出器によって検出されるモアレの基本周波数と、少なくとも第4次までの高調波成分の周波数とに基づいて決められることを特徴とする放射線画像検出装置。
    The radiological image detection apparatus according to any one of claims 1 to 7,
    The arrangement pitch is determined based on a fundamental frequency of moire detected by the radiological image detector and frequencies of harmonic components up to at least the fourth order.
  9.  請求項1から8のいずれか一項に記載の放射線画像検出装置であって、
     前記配列ピッチは、前記画素ピッチの6倍以上であることを特徴とする放射線画像検出装置。
    The radiological image detection apparatus according to any one of claims 1 to 8,
    The radiological image detection apparatus, wherein the arrangement pitch is 6 times or more the pixel pitch.
  10.  請求項9に記載の放射線画像検出装置であって、
     前記配列ピッチは、前記画素ピッチの8倍以上であることを特徴とする放射線画像検出装置。
    The radiological image detection apparatus according to claim 9,
    The radiological image detection apparatus, wherein the array pitch is 8 times or more the pixel pitch.
  11.  請求項10に記載の放射線画像検出装置であって、
     前記配列ピッチは、前記画素ピッチの10倍以上であることを特徴とする放射線画像検出装置。
    It is a radiographic image detection apparatus of Claim 10, Comprising:
    The radiological image detection apparatus, wherein the arrangement pitch is 10 times or more of the pixel pitch.
  12.  請求項1から11のいずれか一項に記載の放射線画像検出装置であって、
     前記複数の格子片を含む前記格子において、隣り合う格子片の間に境界部が形成されていることを特徴とする放射線画像検出装置。
    It is a radiographic image detection apparatus as described in any one of Claim 1 to 11, Comprising:
    In the lattice including the plurality of lattice pieces, a boundary portion is formed between adjacent lattice pieces.
  13.  請求項1から12のいずれか一項に記載の放射線画像検出装置であって、
     前記複数の格子片を含む前記格子において、当該複数の格子片は、前記第1の方向と交差する第2の方向にも配列されることを特徴とする放射線画像検出装置。
    The radiological image detection apparatus according to any one of claims 1 to 12,
    In the lattice including the plurality of lattice pieces, the plurality of lattice pieces are also arranged in a second direction intersecting with the first direction.
  14.  請求項1から13のいずれか一項に記載の放射線画像検出装置であって、
     前記第1の格子は、前記第1の方向と交差する第2方向に配列された複数の条帯を更に有することを特徴とする放射線画像検出装置。
    The radiological image detection apparatus according to any one of claims 1 to 13,
    The first grating further includes a plurality of strips arranged in a second direction intersecting the first direction.
  15.  請求項1から14のいずれか一項に記載の放射線画像検出装置と、
     前記第1の格子に向けて放射線を照射する放射線源とを備えることを特徴とする放射線撮影装置。
    The radiological image detection apparatus according to any one of claims 1 to 14,
    A radiation imaging apparatus comprising: a radiation source that irradiates radiation toward the first grating.
  16.  請求項15に記載の放射線撮影装置と、
     前記放射線撮影装置の前記放射線画像検出器により検出された画像から、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、被写体の位相コントラスト画像を生成する演算処理部と、を備えることを特徴とする放射線撮影システム。
    A radiographic apparatus according to claim 15;
    From the image detected by the radiation image detector of the radiation imaging apparatus, the distribution of the refraction angle of the radiation incident on the radiation image detector is calculated, and based on the refraction angle distribution, the phase contrast image of the subject is calculated. A radiation imaging system comprising: an arithmetic processing unit to generate.
PCT/JP2011/077261 2010-11-26 2011-11-25 Radiographic image detection apparatus, radiography apparatus, and radiography system WO2012070662A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-264242 2010-11-26
JP2010264242A JP2014030439A (en) 2010-11-26 2010-11-26 Radiation image detection device, radiation imaging device and radiation imaging system

Publications (1)

Publication Number Publication Date
WO2012070662A1 true WO2012070662A1 (en) 2012-05-31

Family

ID=46145999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077261 WO2012070662A1 (en) 2010-11-26 2011-11-25 Radiographic image detection apparatus, radiography apparatus, and radiography system

Country Status (2)

Country Link
JP (1) JP2014030439A (en)
WO (1) WO2012070662A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203571A (en) * 2014-04-10 2015-11-16 株式会社フジキン Manufacturing method of grid for scattered x-ray removal
CN107743379B (en) * 2015-06-15 2021-10-22 皇家飞利浦有限公司 Tiled detector arrangement for differential phase contrast CT
WO2020054151A1 (en) * 2018-09-11 2020-03-19 株式会社島津製作所 X-ray phase imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022678A (en) * 2000-07-10 2002-01-23 Hitachi Medical Corp X-ray measuring instrument
JP2007203063A (en) * 2006-02-01 2007-08-16 Siemens Ag Focus-detector system for x-ray apparatus
JP2008224661A (en) * 2007-02-14 2008-09-25 Konica Minolta Medical & Graphic Inc X-ray imaging element, device and method
JP2010249533A (en) * 2009-04-10 2010-11-04 Canon Inc Source grating for talbot-lau-type interferometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022678A (en) * 2000-07-10 2002-01-23 Hitachi Medical Corp X-ray measuring instrument
JP2007203063A (en) * 2006-02-01 2007-08-16 Siemens Ag Focus-detector system for x-ray apparatus
JP2008224661A (en) * 2007-02-14 2008-09-25 Konica Minolta Medical & Graphic Inc X-ray imaging element, device and method
JP2010249533A (en) * 2009-04-10 2010-11-04 Canon Inc Source grating for talbot-lau-type interferometer

Also Published As

Publication number Publication date
JP2014030439A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP5150711B2 (en) Radiography apparatus and radiation imaging system
JP5796908B2 (en) Radiation phase imaging device
JP2012130586A (en) X-ray image detecting apparatus, radiographing apparatus, and radiographing system
JP5475925B2 (en) Radiation imaging apparatus and image processing method
JP2012130451A (en) Radiographic apparatus and radiographic system
WO2012057140A1 (en) Radiography system and radiograph generation method
JP5238786B2 (en) Radiography apparatus and radiation imaging system
US20120140886A1 (en) Radiographic phase-contrast imaging method and apparatus
US20120163537A1 (en) Radiographic image obtainment method and radiographic apparatus
US20120128126A1 (en) Radiation phase image obtainment method and radiation phase image radiographic apparatus
US20120153181A1 (en) Radiation image capturing apparatus and radiation image obtaining method
WO2012005179A1 (en) Radiographic imaging system and image processing method of same
US20120153182A1 (en) Radiation image obtaining method and radiation image capturing apparatus
JP2012236005A (en) Radiation imaging apparatus
US20120163541A1 (en) Radiographic apparatus and radiation image detector
WO2012057047A1 (en) Radiation imaging system
JP2011206490A (en) Radiographic system and radiographic method
WO2012070662A1 (en) Radiographic image detection apparatus, radiography apparatus, and radiography system
JP2012110395A (en) Radiographic system
WO2012056725A1 (en) Radiation phase contrast imaging apparatus and radiation image detector
WO2012098908A1 (en) Radiation phase image-capturing device
JP2012147824A (en) Radiographing apparatus, and radiographic image detector
WO2012070580A1 (en) Radiograph detection device, radiography device, and radiography system
JP2012110606A (en) Radiographic apparatus and radiographic system
JP2012125364A (en) Radiation image detector, radiographic apparatus, and radiographic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP