WO2012098908A1 - Radiation phase image-capturing device - Google Patents

Radiation phase image-capturing device Download PDF

Info

Publication number
WO2012098908A1
WO2012098908A1 PCT/JP2012/000353 JP2012000353W WO2012098908A1 WO 2012098908 A1 WO2012098908 A1 WO 2012098908A1 JP 2012000353 W JP2012000353 W JP 2012000353W WO 2012098908 A1 WO2012098908 A1 WO 2012098908A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
image
radiation
pitch
pixel
Prior art date
Application number
PCT/JP2012/000353
Other languages
French (fr)
Japanese (ja)
Inventor
拓司 多田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012098908A1 publication Critical patent/WO2012098908A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging

Definitions

  • the present invention relates to a radiation phase image photographing apparatus using a lattice.
  • X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance.
  • X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
  • a subject In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured.
  • each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector.
  • an X-ray transmission image of the subject is detected and imaged by the X-ray image detector.
  • a flat panel detector FPD: Flat Panel Detector
  • a semiconductor circuit is widely used in addition to a combination of an X-ray intensifying screen and a film and a stimulable phosphor.
  • the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
  • Patent Document 1 and Patent Document 2 As such X-ray phase imaging, for example, in Patent Document 1 and Patent Document 2, two gratings of a first grating and a second grating are arranged in parallel at a predetermined interval, and a Talbot by the first grating is used.
  • a radiation phase imaging apparatus is proposed that forms a self-image of the first grating at the position of the second grating by the interference effect, and obtains a radiation phase contrast image by intensity-modulating the self-image with the second grating. ing.
  • the second grating is disposed substantially parallel to the surface of the first grating with respect to the first grating, and the first grating Alternatively, the second grating is relatively translated by a predetermined amount finer than the grating pitch in a direction substantially perpendicular to the grating direction, and a plurality of images are taken by taking images for each translation movement. On the basis of the plurality of images, a fringe scanning method for acquiring the amount of X-ray phase change (phase shift differential amount) generated by the interaction with the subject is performed. A phase contrast image of the subject can be acquired based on the phase shift differential amount.
  • an object of the present invention is to provide a radiation phase image photographing apparatus capable of obtaining a good phase contrast image by one photographing without requiring a highly accurate moving mechanism. To do.
  • the radiographic imaging device of the present invention includes a radiation source, a grating structure periodically arranged, a first grating that forms a periodic pattern image by passing radiation emitted from the radiation source, and the grating structure is periodic.
  • a second grating on which a periodic pattern image formed by the first grating is incident, and a radiation image detector in which pixels that detect radiation transmitted through the second grating are two-dimensionally arranged The first and second gratings generate moiré by overlapping the periodic pattern image formed by the first grating and the second grating.
  • Based on the moire image signal detected by the radiation image detector at least one pixel is arranged in a predetermined direction that is parallel to or orthogonal to the moire periodic direction.
  • a radiographic image of a composite pixel unit is obtained by acquiring an image signal read from the read pixel group and generating an image signal of the composite pixel based on the image signal of the adjacent pixel group of at least two rows in the predetermined direction.
  • a composite image generation unit that generates and generates a plurality of radiation images by shifting the composite pixel in the predetermined direction in units of pixels and generating a composite image based on the generated plurality of radiation images. It is characterized by.
  • the first grating and the second grating are arranged such that the extending direction of the periodic pattern image formed by the first grating and the extending direction of the second grating are relative to each other. It can arrange so that it may incline.
  • the first grating and the second grating can be configured such that the moire period T satisfies the following formula.
  • Z 1 is the distance between the focal point of the radiation source and the first grating
  • Z 2 is the distance between the first grating and the second grating
  • L is the distance between the focal point of the radiation source and the radiation image detector
  • P 1 ′ is the pitch of the periodic pattern image at the position of the second grating
  • Dsub is the size of the pixel in the predetermined direction
  • is the extending direction of the periodic pattern image formed by the first grating
  • the extending direction of the second grating It is the angle made by.
  • a plurality of radiation shielding members that shield radiation are extended at a predetermined pitch, and are arranged between the radiation source and the first grating to absorb the radiation irradiated from the radiation source in a region-selective manner.
  • a multi-slit made of a mold grating is further provided, and the first grating and the second grating can be configured such that the moire period T is a value satisfying the following expression.
  • Z 1 is the distance between the focal point of the radiation source and the first grating
  • Z 2 is the distance between the first grating and the second grating
  • L is the distance between the focal point of the radiation source and the radiation image detector
  • P 1 ′ is the pitch of the periodic pattern image at the position of the second grating
  • Dsub is the size of the pixel in the predetermined direction
  • is the extending direction of the periodic pattern image formed by the first grating
  • the extending direction of the second grating It is the angle made by.
  • the pitch P 3 of the multi-slit may be configured to a value that satisfies the following expression.
  • Z 3 is the distance between the multi-slit and the first grating
  • Z 2 is the distance from the first grating to the second grating
  • P 1 ′ is the pitch of the periodic pattern image at the position of the second grating.
  • the relative inclination angle ⁇ between the periodic pattern image formed by the first grating and the second grating can be set to a value satisfying the following expression.
  • P 1 ′ is the pitch of the periodic pattern image at the position of the second grating
  • D is the number of pixels constituting the composite pixel M ⁇ the size of the pixel in the predetermined direction
  • n is an integer excluding 0 and a multiple of M is there.
  • the inclination ⁇ 1 of the self-image of the first grating with respect to the predetermined direction and the inclination ⁇ 2 of the second grating with respect to the predetermined direction can be set to values satisfying the following expression.
  • P 1 ′ is the pitch of the first periodic pattern image at the position of the second lattice
  • D is the size of the composite pixel composed of M pixels in the predetermined direction
  • n is an integer excluding 0 and a multiple of M. is there.
  • the pitch P 2 of the pitch P 1 'and the second grating periodic pattern image at the position of the second grating can be configured to satisfy the following formula.
  • P 1 is the grating pitch of the first grating
  • Z 1 is the distance from the focal point of the radiation source to the first grating
  • Z 2 is the distance from the first grating to the second grating.
  • the first grating, and a phase modulation type grating that provides a phase modulation of 180 °, the pitch P 1 'and the pitch P 2 of the second grating periodic pattern image at the position of the second grating, the formula It can be configured to satisfy the value.
  • P 1 is the grating pitch of the first grating
  • Z 1 is the distance from the focal point of the radiation source to the first grating
  • Z 2 is the distance from the first grating to the second grating.
  • a radiation image detector a pixel in which pixels are two-dimensionally arranged in the first and second directions orthogonal to each other is used, and a periodic pattern image formed by the first grating or the extension of the second grating The direction and the first direction can be parallel. Further, the phase image generation unit sets a predetermined number of pixels in the first direction according to a relative inclination between the extending direction of the periodic pattern image formed by the first grating and the extending direction of the second grating. Based on the read image signal, a radiation image in units of composite pixels can be acquired.
  • the pixel signal of each pixel constituting the composite pixel within the width in the predetermined direction of one composite pixel is n (n is an integer excluding 0 and a multiple of M, and M is the pixel constituting the composite pixel. Number)
  • the other of the first and second gratings can be tilted so that the period changes.
  • the first grating and the second grating can be configured such that the pitch of the periodic pattern image at the position of the second grating is different from the pitch of the second grating.
  • the extending direction of the periodic pattern image formed by the first grating and the extending direction of the second grating can be made parallel.
  • the first grating and the second grating can be configured such that the moire period T satisfies the following formula.
  • Z 1 is the distance between the focal point of the radiation source and the first grating
  • Z 2 is the distance between the first grating and the second grating
  • L is the distance between the focal point of the radiation source and the radiation image detector
  • P 2 is the pitch of the second grating
  • P 1 ′ is the pitch of the periodic pattern image at the position of the second grating
  • Dsub is the size of the pixel in the predetermined direction.
  • a plurality of radiation shielding members that shield radiation are extended at a predetermined pitch, and are arranged between the radiation source and the first grating to absorb the radiation irradiated from the radiation source in a region-selective manner.
  • a multi-slit made of a mold grating is further provided, and the first grating and the second grating can be configured such that the moire period T is a value satisfying the following expression.
  • Z 1 is the distance between the focal point of the radiation source and the first grating
  • Z 2 is the distance between the first grating and the second grating
  • L is the distance between the focal point of the radiation source and the radiation image detector
  • P 2 is the pitch of the second grating
  • P 1 ′ is the pitch of the periodic pattern image at the position of the second grating
  • Dsub is the size of the pixel in the predetermined direction.
  • the pitch P 3 of the multi-slit may be configured to a value that satisfies the following expression.
  • Z 3 is the distance between the multi-slit and the first grating
  • Z 2 is the distance from the first grating to the second grating
  • P 1 ′ is the pitch of the periodic pattern image at the position of the second grating.
  • the first grating is a phase modulation type grating or amplitude modulation type grating that applies 90 ° phase modulation
  • the pitch P 1 ′ of the periodic pattern image at the position of the second grating is a value that satisfies the following expression. It can be constituted as follows.
  • P 1 is the grating pitch of the first grating
  • Z 1 is the distance from the focal point of the radiation source to the first grating
  • Z 2 is the distance from the first grating to the second grating.
  • the first grating is a phase modulation type grating that applies 180 ° phase modulation
  • the pitch P 1 ′ of the periodic pattern image at the position of the second grating is configured to satisfy the following expression. Can do.
  • P 1 is the grating pitch of the grating
  • Z 1 is the distance from the focal point of the radiation source to the first grating
  • Z 2 is the distance from the first grating to the second grating.
  • the first grating and the second grating are configured so that the pitch of the periodic pattern image at the position of the second grating is different from the pitch of the second grating, and the period formed by the first grating. It can arrange
  • the radiation image detector a pixel in which pixels provided with a switch element for reading an image signal are two-dimensionally arranged can be used as the radiation image detector.
  • a linear reading light source that emits linear reading light may be provided, and the radiographic image detector may read an image signal by scanning the linear reading light source.
  • the second grating can be arranged at a position of the Talbot interference distance from the first grating, and intensity modulation can be applied to the periodic pattern image formed by the Talbot interference effect of the first grating.
  • the first grating is an absorption grating that forms a periodic pattern image by passing radiation as a projected image
  • the second grating is intensity-modulated into a periodic pattern image as a projected image that has passed through the first grating. Can be given.
  • the second grating can be arranged at a distance shorter than the minimum Talbot interference distance from the first grating.
  • the size of the composite pixel in the direction orthogonal to the predetermined direction can be made smaller than the size of the composite pixel in the predetermined direction.
  • the composite image generation unit can generate at least one of a phase contrast image, a small angle scattered image, and an absorption image as a radiation image.
  • first and second gratings can have a two-dimensional grating structure.
  • the radiographic image capturing apparatus of the present invention includes a radiation source, a grating in which a grating structure is periodically arranged, a grating that forms a periodic pattern image by passing radiation emitted from the radiation source, and a periodic pattern image formed by the grating.
  • the charge storage layer is formed in a lattice pattern with a pitch smaller than the arrangement pitch of the linear electrodes, and the lattice and the charge storage layer are formed of a periodic pattern image and a charge formed by the lattice.
  • An image signal read from a group of pixels arranged with an interval between at least one pixel is obtained in a predetermined direction which is a cross direction other than a parallel or orthogonal direction, and at least two rows adjacent to each other in the predetermined direction.
  • a composite pixel unit radiation image is generated by generating a composite pixel image signal based on a pixel group image signal, and a plurality of radiation images are generated by setting the composite pixel by shifting the pixel unit in the predetermined direction.
  • a composite image generation unit that generates a composite image based on the plurality of generated radiation images.
  • the grid and the radiographic image detector can be arranged so that the extending direction of the lattice and the extending direction of the lattice pattern of the charge storage layer are relatively inclined.
  • the lattice and the charge storage layer can be configured such that the moire period T satisfies the following formula.
  • P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector
  • Dsub is the size of the pixel in the predetermined direction
  • is the extending direction of the periodic pattern image formed by the grating
  • the extending direction of the charge storage layer Is the horn made by.
  • a plurality of radiation shielding members for shielding radiation are extended at a predetermined pitch, arranged between the radiation source and the grating, and from an absorption type grating that selectively shields radiation irradiated from the radiation source.
  • the multi-slit can be further provided, and the lattice and the charge storage layer can be configured such that the moire period T satisfies the following formula.
  • P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector
  • Dsub is the size of the pixel in the predetermined direction
  • is the extending direction of the periodic pattern image formed by the grating
  • the extending direction of the charge storage layer Is the horn made by.
  • the pitch P 3 of the multi-slit may be configured to a value that satisfies the following expression.
  • Z 3 is the distance between the multi-slit and the grating
  • Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector
  • P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector.
  • the relative inclination angle ⁇ between the periodic pattern image formed by the grating and the charge storage layer can be set to a value satisfying the following expression.
  • P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector
  • D is the number of fringe images M ⁇ the size of the pixels in the predetermined direction
  • n is an integer excluding 0 and a multiple of M.
  • the inclination ⁇ of the self-image of the lattice with respect to the extending direction of the lattice structure of the charge storage layer can be set to a value satisfying the following expression.
  • P 1 ' is the pitch of the periodic pattern image of the grating at the position of the lattice structure and the charge storage layer of the charge storage layer
  • D is the predetermined direction of the size of the composite pixels of M pixels
  • n represents 0
  • the grating is a phase modulation type grating or amplitude modulation type grating that applies 90 ° phase modulation
  • the pitch P 1 ′ of the periodic pattern image at the position of the radiation image detector and the arrangement pitch P 2 of the grating structure of the charge storage layer can be configured to satisfy:
  • P 1 is the grating pitch of the grating
  • Z 1 is the distance from the focal point of the radiation source to the grating
  • Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector.
  • the grating is a phase modulation type grating that applies 180 ° phase modulation
  • the pitch P 1 ′ of the periodic pattern image and the arrangement pitch P 2 ′ of the grating structure of the charge storage layer at the position of the radiation image detector are Can be configured to satisfy.
  • P 1 is the grating pitch of the grating
  • Z 1 is the distance from the focal point of the radiation source to the grating
  • Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector.
  • the grid and the charge storage layer can be configured such that the pitch of the periodic pattern image at the position of the radiation image detector is different from the arrangement pitch of the grid structure of the charge storage layer.
  • the extending direction of the periodic pattern image at the position of the radiation image detector can be made parallel to the extending direction of the lattice structure of the charge storage layer.
  • the lattice and the charge storage layer can be configured such that the moire period T satisfies the following formula.
  • P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector
  • P 2 ′ is the arrangement pitch of the lattice structure of the charge storage layer
  • Dsub is the size of the pixel in the predetermined direction.
  • a plurality of radiation shielding members for shielding radiation are extended at a predetermined pitch, arranged between the radiation source and the grating, and from an absorption type grating that selectively shields radiation irradiated from the radiation source.
  • the multi-slit can be further provided, and the lattice and the charge storage layer can be configured such that the moire period T satisfies the following formula.
  • P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector
  • P 2 ′ is the arrangement pitch of the lattice structure of the charge storage layer
  • Dsub is the size of the pixel in the predetermined direction
  • the multi-slit pitch P 3 Can be configured to satisfy the following formula.
  • Z 3 is the distance between the multi-slit and the grating
  • Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector
  • P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector.
  • the grating may be a phase modulation type grating or an amplitude modulation type grating that applies 90 ° phase modulation
  • the pitch P 1 ′ of the periodic pattern image at the position of the radiation image detector may be configured to satisfy the following expression. it can.
  • P 1 is the grating pitch of the grating
  • Z 1 is the distance from the focal point of the radiation source to the grating
  • Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector.
  • the grating may be a phase modulation type grating that applies 180 ° phase modulation
  • the pitch P 1 ′ of the periodic pattern image at the position of the radiation image detector may be configured to satisfy the following expression.
  • P 1 is the grating pitch of the grating
  • Z 1 is the distance from the focal point of the radiation source to the grating
  • Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector.
  • the grid and the charge storage layer are configured such that the pitch of the periodic pattern image at the position of the radiation image detector is different from the arrangement pitch of the grid structure of the charge storage layer, and the extension direction of the grid and the grid of the charge storage layer It can arrange
  • the lattice structure of the charge storage layer can be formed so as to be parallel to the linear electrode.
  • the thickness of the charge storage layer in the stacking direction can be set to 2 ⁇ m or less.
  • the dielectric constant of the charge storage layer can be set to be within 2 times or more than 1/2 the dielectric constant of the photoconductive layer.
  • the radiation image detector can be arranged at a position of the Talbot interference distance from the grating, and intensity modulation can be applied to the periodic pattern image formed by the Talbot interference effect of the grating.
  • the grating can be an absorption grating that forms a periodic pattern image by passing radiation as a projection image
  • the radiation image detector can modulate intensity of the periodic pattern image as a projection image that has passed through the grating.
  • the radiation image detector can be arranged at a distance shorter than the minimum Talbot interference distance from the grating.
  • the radiographic imaging device of the present invention includes a radiation source, a grating structure periodically arranged, a first grating that forms a periodic pattern image by passing radiation emitted from the radiation source, and the grating structure is periodic.
  • a second grating on which a periodic pattern image formed by the first grating is incident, and a radiation image detector in which pixels that detect radiation transmitted through the second grating are two-dimensionally arranged A plurality of radiation shielding members that shield radiation, and are arranged between the radiation source and the first grating and irradiated from the radiation source.
  • the image signal representing the moire is generated by superimposing the lattice pattern of the grating on the basis of the image signal representing the moire detected by the radiation image detector with respect to the periodic direction of the moire.
  • a composite pixel unit radiation image is generated by generating a composite pixel image signal based on a pixel group image signal, and a plurality of radiation images are generated by setting the composite pixel by shifting the pixel unit in the predetermined direction.
  • a composite image generation unit that generates a composite image based on the plurality of generated radiation images.
  • the multi-slit can be arranged so that the extending direction of the multi-slit and the extending directions of the first and second gratings are relatively inclined.
  • the multi-slit and the first grating can be configured such that the pitch of the slit image at the position of the first grating is different from the pitch of the grating pattern of the first grating.
  • the radiographic imaging device of the present invention includes a radiation source, a grating structure that is periodically arranged, a grating that forms a periodic pattern image by passing radiation emitted from the radiation source, and a periodic pattern image that is formed by the grating.
  • a second electrode layer in which a large number of linear electrodes that transmit the reading light are stacked in this order, and the image signal for each pixel corresponding to each linear electrode is read by scanning with the reading light.
  • a radiographic imaging device comprising an image detector, wherein a plurality of radiation shielding members for shielding radiation are extended at a predetermined pitch, and are arranged between a radiation source and a grating, and are irradiated from the radiation source.
  • a multi-slit made of an absorption-type lattice that selectively shields the emitted radiation, and the charge storage layer is formed in a lattice shape with a pitch smaller than the arrangement pitch of the linear electrodes, and the multi-slit And the grating are configured to generate an image signal representing the moire by superimposing the slit image formed by the multi-slit and the grating pattern of the grating, and the moire detected by the radiation image detector is generated.
  • Acquiring and generating an image signal of a composite pixel based on image signals of adjacent pixel groups in at least two rows in the predetermined direction Therefore, a radiographic image is generated in units of composite pixels, and a plurality of radiographic images are generated by setting the composite pixels to be shifted in units of pixels in the predetermined direction, and a composite image is generated based on the generated radiographic images.
  • a composite image generating unit is provided.
  • the multi-slit can be arranged so that the extending direction of the multi-slit and the extending direction of the lattice pattern of the lattice and the charge storage layer are relatively inclined. Further, the multi-slit and the grating can be configured so that the pitch of the slit image at the position of the grating is different from the pitch of the grating pattern of the grating.
  • the radiation source and the radiation image detector can be arranged opposite to each other in the horizontal direction so that the subject can be photographed while standing.
  • the radiation source and the radiation image detector can be arranged to face each other in the vertical direction so that the subject can be photographed in the supine position.
  • the radiation source and the radiation image detector can be held by a swivel arm so that the subject can be photographed in a standing position and a standing position.
  • a mammography apparatus configured to be able to photograph a breast as a subject can be provided.
  • the radiation source is moved to a first position where the radiation image detector is irradiated with radiation from the first direction and a second position where radiation is irradiated from a second direction different from the first direction.
  • a moving mechanism is provided, and the composite image generation unit generates the composite image based on the image signals detected by the radiation image detector for the first and second positions, and the composite image corresponding to the first position
  • a stereo image forming unit that forms a stereo image based on the combined image corresponding to the second position can be provided.
  • a circulation mechanism that circulates the radiation source and the radiation image detector around the subject is provided, and the composite image generation unit is configured to detect the rotation image for each rotation angle based on the image signal detected by the radiation image detector at each rotation angle. It is assumed that a composite image is generated, and a 3D image configuration unit that configures a 3D image based on the composite image for each rotation angle can be provided.
  • moire is generated by superimposing the periodic pattern image formed by the first grating and the second grating, and based on the moire image signal detected by the radiographic image detector. Then, an image signal read from a pixel group arranged at an interval of at least one pixel is obtained in a predetermined direction which is a crossing direction other than a parallel or orthogonal direction to the moiré periodic direction, and the predetermined signal is acquired. Since a composite pixel unit phase contrast image is generated by generating an image signal of one composite pixel using image signals of adjacent pixel groups in at least two rows in the direction as different stripe image signals. Phase contrast can be obtained by a single shooting without the need for a highly accurate moving mechanism that moves the second grating as in the prior art. It is possible to obtain a plurality of fringe images to obtain an image.
  • the composite pixel is generated by shifting the pixel unit in the predetermined direction to generate a plurality of radiation images, and the composite image is generated based on the generated plurality of radiation images.
  • an edge having a gentle slope can be clearly shown on the composite image. This effect will be described in detail later.
  • FIG. 1 is a schematic configuration diagram of a first embodiment of a radiation phase imaging apparatus of the present invention.
  • 1 is a top view of the radiation phase image capturing apparatus shown in FIG.
  • Schematic configuration diagram of the first grating Schematic configuration diagram of second grating
  • the perspective view which shows schematic structure of the radiographic image detector of an optical reading system XZ plane sectional view of the radiation image detector shown in FIG. 5A YZ plane sectional view of the radiation image detector shown in FIG. 5A
  • the figure which shows the arrangement
  • action of a recording of the radiographic image detector of an optical reading system The figure for demonstrating the effect
  • action of the reading of the radiographic image detector of an optical reading system The figure for demonstrating the effect
  • action which acquires several fringe images based on the image signal read from the radiographic image detector of an optical reading system The figure for demonstrating the effect
  • action which acquires several fringe images based on the image signal read from the radiographic image detector of an optical reading system The figure for demonstrating the method to acquire five different fringe image signals for producing
  • the figure which illustrates the path
  • generate a phase contrast image The figure which shows an example of arrangement
  • combines two phase contrast images and produces
  • generates a synthesized image The figure showing the self-image of the 1st grating
  • lattice with respect to a pixel row direction The figure which shows an example of the relationship between the sub-pixel read out as an image signal which comprises the fringe image which differs from the moire produced by superposition of the self-image of a 1st grating
  • photographed in the standing position using one Embodiment of this invention 1 is a block diagram showing a schematic configuration of an X-ray imaging system capable of imaging in an upright state using an embodiment of the present invention.
  • photographed in the supine state using one Embodiment of this invention The figure which shows schematic structure of the X-ray imaging system which can be image
  • the figure which shows schematic structure of the mammography apparatus using one Embodiment of this invention Comprising: The grating
  • 1 is a diagram showing a schematic configuration of an X-ray imaging system capable of imaging in an upright state using an embodiment of the present invention, in which a multi-slit is provided in a radiation source.
  • photographed long length using one Embodiment of this invention 1 is a schematic configuration diagram of a CT imaging apparatus using an embodiment of the present invention.
  • 1 is a schematic configuration diagram of a stereo photographing apparatus using an embodiment of the present invention.
  • FIG. 1 shows a schematic configuration of the radiation phase image capturing apparatus of the first embodiment.
  • FIG. 2 shows a top view (XZ sectional view) of the radiation phase image capturing apparatus shown in FIG.
  • the thickness direction in FIG. 2 is the Y direction in FIG.
  • the radiation phase imaging apparatus of the present embodiment forms a periodic pattern image by passing a radiation source 1 that irradiates radiation toward a subject 10 and radiation emitted from the radiation source 1.
  • the first grating 2 and the grating structure are arranged periodically, and a periodic pattern image formed by the first grating 2 (hereinafter referred to as a self-image G1 of the first grating 2) is incident thereon.
  • a fringe image is acquired based on the grating 3, a radiation image detector 4 that detects radiation that has passed through the second grating 3, and an image signal detected by the radiographic image detector 4, and based on the acquired fringe image
  • a phase contrast image generation unit 5 for generating a phase contrast image.
  • the radiation source 1 emits radiation toward the subject 10 and has spatial coherence sufficient to generate a Talbot interference effect when the first grating 2 is irradiated with radiation.
  • a microfocus X-ray tube or a plasma X-ray source having a small radiation emission point size can be used.
  • the first grating 2 includes a substrate 21 that mainly transmits radiation, and a plurality of members 22 provided on the substrate 21.
  • Each of the plurality of members 22 is a linear member that extends in one direction in the plane orthogonal to the optical axis of radiation (Y direction orthogonal to the X direction and Z direction, the thickness direction in FIG. 3).
  • the plurality of members 22 are arranged with a predetermined interval d 1 from each other at a constant period P 1 in the X direction.
  • a material of the member 22 for example, a metal such as gold or platinum can be used.
  • the first grating 2 is desirably a so-called phase modulation type grating that gives a phase modulation of about 90 ° or about 180 ° to the irradiated radiation.
  • the thickness h 1 of the member 22 is preferably set according to the energy of radiation used for imaging, but the X-ray energy region used in normal medical image diagnosis is 30 to 120 eV. In view of this, for example, when the member 22 is made of gold, the required gold thickness h 1 is about 1 ⁇ m to 10 ⁇ m.
  • an amplitude modulation type grating can be used. However, in the case of the amplitude modulation type grating, the member 22 needs to have a thickness that sufficiently absorbs radiation. For example, when the member 22 is made of gold, the gold thickness h 1 required in the X-ray energy region is about 10 ⁇ m to several hundreds of ⁇ m.
  • the second grating 3 includes a substrate 31 that mainly transmits radiation and a plurality of members 32 provided on the substrate 31, as in the first grating 2.
  • the plurality of members 32 shield radiation, and all of them extend in one direction in the plane orthogonal to the optical axis of the radiation (the Y direction orthogonal to the X direction and the Z direction, the thickness direction in FIG. 4). It is a linear member.
  • the plurality of members 32 are arranged with a predetermined interval d 2 from each other at a constant period P 2 in the X direction.
  • a material of the plurality of members 32 for example, a metal such as gold or platinum can be used.
  • the second grating 3 is preferably an amplitude modulation type grating.
  • the thickness h 2 of the member 32 is necessary thickness to sufficiently absorb the radiation.
  • the thickness h 2 of gold required in the X-ray energy range is about 10 [mu] m ⁇ number 100 [mu] m.
  • the radiation irradiated from the radiation source 1 is not a parallel beam but a cone beam that propagates with a predetermined angle spread from the focal point of the radiation. Therefore, the self-image G1 of the first grating 2 formed by the radiation irradiated from the radiation source 1 passing through the first grating 2 is enlarged in proportion to the distance from the focal point of the radiation source 1. For this reason, in the present embodiment, the grating pitch P 2 of the second grating 3 is set so that the slit portion of the second grating 3 takes into account the enlargement of the self-image G 1 due to the distance from the focal point of the radiation source 1.
  • the second grating is determined so as to substantially coincide with the periodic pattern of the bright part of the self-image G1 of the first grating 2 at the position. That is, when the distance from the focal point of the radiation source 1 to the first grating 2 is Z 1 and the distance from the first grating 2 to the second grating 3 is Z 2 (see FIG. 2), the second grating
  • the pitch P 2 is determined so as to satisfy the relationship of the following formula (1) when the first grating 2 is a phase modulation type grating or an amplitude modulation type grating that gives 90 ° phase modulation.
  • the pitch of the self-image G1 of the first grating 2 formed through the first grating 2 is in view of the fact that the lattice pitch P 1 of the lattice 2 of 1 is 1/2, it is desirable that the second lattice pitch P 2 satisfies the relationship of the following equation (2) instead of the above equation (1). .
  • the radiation image detector 4 detects an image in which a self-image of the first grating 2 formed by radiation incident on the first grating 2 is intensity-modulated by the second grating 3 as an image signal.
  • the radiation image detector 4 is a direct-conversion type radiation image detector, in which an image signal is read out by scanning with linear reading light. A radiation image detector is used.
  • FIG. 5A is a perspective view of the radiological image detector 4 of the present embodiment
  • FIG. 5B is a cross-sectional view of the XZ plane of the radiographic image detector shown in FIG. 5A
  • FIG. 5C is a cross-sectional view of the radiographic image detector shown in FIG. It is.
  • the radiation image detector 4 of the present embodiment is charged with a first electrode layer 41 that transmits radiation and irradiation with radiation that has passed through the first electrode layer 41.
  • the charge of one polarity acts as an insulator, and the charge of the other polarity acts as a conductor.
  • the charge storage layer 43, the reading photoconductive layer 44 that generates charges when irradiated with the reading light, and the second electrode layer 45 are laminated in this order. Each of the above layers is formed in order from the second electrode layer 45 on the glass substrate 46.
  • the first electrode layer 41 may be any material that transmits radiation.
  • Nesa film (SnO 2 ), ITO (Indium Tin Oxide), IZO (Indium) Zinc Oxide), IDIXO (Idemitsu Indium X-metal Oxide; Idemitsu Kosan Co., Ltd.), which is an amorphous light-transmitting oxide film, can be used with a thickness of 50 to 200 nm, and 100 nm thick Al, Au, etc. Can also be used.
  • the recording photoconductive layer 42 only needs to generate charges when irradiated with radiation, and is excellent in that it has a relatively high quantum efficiency with respect to radiation and a high dark resistance.
  • a material mainly composed of Se is used.
  • the thickness is suitably 10 ⁇ m or more and 1500 ⁇ m or less. In particular, when it is used for mammography, it is preferably 150 ⁇ m or more and 250 ⁇ m or less, and when used for general photographing, it is preferably 500 ⁇ m or more and 1200 ⁇ m or less.
  • the charge storage layer 43 may be a film that is insulative with respect to the charge of polarity to be stored, such as an acrylic organic resin, polyimide, BCB, PVA, acrylic, polyethylene, polycarbonate, polyetherimide, or a polymer such as As 2 S. 3 , sulfides such as Sb 2 S 3 and ZnS, oxides and fluorides. Furthermore, it is more preferable that it is insulative with respect to the charge of the polarity to be accumulated and that it is conductive with respect to the charge of the opposite polarity, and the product of mobility ⁇ life is 3 digits or more depending on the polarity of the charge. Substances with differences are preferred.
  • the dielectric constant thereof is a recording light. It is desirable to use a conductive layer 42 and a photoconductive layer 44 for reading having a dielectric constant that is 1 ⁇ 2 to 2 times the dielectric constant.
  • the reading photoconductive layer 44 may be any material that exhibits conductivity when irradiated with reading light.
  • a-Se, Se-Te, Se-As-Te, metal-free phthalocyanine, metal phthalocyanine A photoconductive substance mainly composed of at least one of MgPc (Magnesiumtalphtalocyanine), VoPc (phase II of Vanadyl phthalocyanine), CuPc (Copper phthalocyanine) and the like is preferable.
  • a thickness of about 5 to 20 ⁇ m is appropriate.
  • the second electrode layer 45 includes a plurality of transparent linear electrodes 45a that transmit the reading light and a plurality of light shielding linear electrodes 45b that shield the reading light.
  • the transparent linear electrode 45a and the light shielding linear electrode 45b extend linearly continuously from one end of the image forming region of the radiation image detector 4 to the other end. Then, as shown in FIGS. 5A and 5B, the transparent linear electrodes 45a and the light shielding linear electrodes 45b are alternately arranged in parallel at a predetermined interval.
  • the transparent linear electrode 45a transmits reading light and is made of a conductive material.
  • ITO, IZO, or IDIXO can be used as with the first electrode layer 41.
  • the thickness is about 100 to 200 nm.
  • the light shielding linear electrode 45b shields the reading light and is made of a conductive material.
  • a transparent conductive material for example, the above transparent conductive material and a color filter can be used in combination.
  • the thickness of the transparent conductive material is about 100 to 200 nm.
  • an image signal is read out using a pair of adjacent transparent linear electrodes 45a and light shielding linear electrodes 45b. That is, as shown in FIG. 5B, an image signal of one pixel is read out by a pair of transparent linear electrodes 45a and light shielding linear electrodes 45b.
  • the transparent linear electrode 45a and the light shielding linear electrode 45b are arranged so that one pixel is approximately 50 ⁇ m.
  • the linear reading light source 50 includes a light source such as an LED (Light Emitting Diode) or LD (Laser Diode) and a predetermined optical system, and the extending direction of the transparent linear electrode 46a and the light shielding linear electrode 46b.
  • the radiation image detector 4 is irradiated with linear reading light having a width of about 10 ⁇ m in a direction parallel to the direction (Y direction).
  • the linear reading light source 50 is moved in the Y direction by a predetermined moving mechanism (not shown), and the radiation image detector is detected by the linear reading light emitted from the linear reading light source 50 by this movement. 4 is scanned to read the image signal. The operation of reading the image signal will be described in detail later.
  • the radiation source 1, the first grating 2, the second grating 3, and the radiation image detector 4 constitute a radiation phase image capturing apparatus capable of acquiring a radiation phase contrast image.
  • This configuration is used as a Talbot interferometer.
  • a few additional conditions must be nearly met. The conditions will be described below.
  • “substantially satisfy” means that, under various conditions described later, the energy of the radiation emitted from the radiation source, that is, the wavelength has a width rather than a single width, and therefore there is an allowable width for the energy width of the radiation. This means that the performance such as the image quality is inferior because it is not optimal, but there is an allowable range in which at least a phase contrast image can be obtained in the present embodiment.
  • the grid plane of the first grid 2 and the second grid 3 needs to be parallel to the XY plane shown in FIG.
  • the distance Z 2 between the first grating 2 and the second grating 3 should substantially satisfy the following condition when the first grating 2 is a phase modulation type grating that applies 90 ° phase modulation. I must. Where ⁇ is the wavelength of radiation (usually, the effective wavelength of radiation incident on the first grating 2), m is 0 or a positive integer, P 1 is the grating pitch of the first grating 2 described above, and P 2 is described above. This is the lattice pitch of the second lattice 3.
  • the first grating 2 is a phase modulation type grating that gives 180 ° phase modulation
  • is the wavelength of radiation (usually, the effective wavelength of radiation incident on the first grating 2)
  • m is 0 or a positive integer
  • P 1 is the grating pitch of the first grating 2 described above
  • P 2 is described above. This is the lattice pitch of the second lattice 3.
  • the first grating 2 is an amplitude modulation type grating
  • is the wavelength of radiation (usually the effective wavelength of radiation incident on the first grating 2)
  • m ′ is a positive integer
  • P 1 is the grating pitch of the first grating 2 described above
  • P 2 is described above. This is the grating pitch of the second grating 3.
  • the above formulas (3), (4), and (5) are for the case where the radiation irradiated from the radiation source 1 is a cone beam, and when the radiation is a parallel beam, the above formula (3) Instead, the following expression (6), the above expression (4) is replaced by the following expression (7), and the above expression (5) is replaced by the following expression (8).
  • the first grating 2 of the member 22 is formed with a thickness h 1
  • member 32 of the second grating 3 is formed with a thickness h 2
  • the thickness h 1 and the thickness h 2 Is excessively thick, it becomes difficult for radiation incident obliquely to the first grating 2 and the second grating 3 to pass through the slit portion, so-called vignetting occurs, and the direction perpendicular to the extending direction of the members 22 and 32 ( There is a problem that the effective visual field in the X direction becomes narrow. For this reason, it is preferable to define the upper limits of the thicknesses h 1 and h 2 from the viewpoint of securing a visual field.
  • the thicknesses h 1 and h 2 are set so as to satisfy the following expressions (9) and (10). It is preferable.
  • L is the distance from the focal point of the radiation source 1 to the detection surface of the radiation image detector 4 (see FIG. 2).
  • the first grating 2 and the second grating 3 are disposed so as to be relatively inclined to each other.
  • the extending direction of the self-image G1 and the extending direction of the second lattice 3 are relatively inclined.
  • the main scanning direction of each pixel of the image signal detected by the radiation image detector 4 with respect to the first grating 2 and the third grating 3 arranged in this way (FIG. 5).
  • the main pixel size Dx in the X direction) and the sub-pixel size Dy in the sub-scanning direction have a relationship as shown in FIG.
  • it is assumed that the extending direction of the second lattice 3 and the pixel column direction are the same.
  • the configuration is not limited to this, and the extending direction of the first lattice 2 and the pixel column direction may be the same.
  • the main pixel size Dx is determined by the arrangement pitch of the transparent linear electrodes 45a and the light shielding linear electrodes 45b of the radiation image detector 4 as described above, and is set to 50 ⁇ m in this embodiment.
  • the sub-pixel size Dy is determined by the width of the linear reading light irradiated to the radiation image detector 4 by the linear reading light source 50, and is set to 10 ⁇ m in this embodiment. .
  • a plurality of fringe images are acquired and a phase contrast image is generated based on the plurality of fringe images. If the number of the obtained fringe images is M, M subpixels are obtained.
  • the first grating 2 is tilted with respect to the second grating 3 so that the size Dy is one pixel size in the sub-scanning direction of the phase contrast image, that is, the image resolution D.
  • the M ⁇ subpixels corresponds to a composite pixel in the claims.
  • the pitch of the second grating 3 and the pitch of the self-image G1 formed at the position of the second grating 3 by the first grating 2 are P 1 ′
  • the phase of the self-image G1 of the first grating 2 and the second grating 3 corresponds to n periods with respect to the length of the image resolution D in the sub-scanning direction. It will shift.
  • the image signal obtained by dividing the intensity modulation for n periods of the self-image of the first grating 2 by M can be detected by each pixel of Dx ⁇ Dy obtained by dividing the image resolution D of the phase contrast image in the sub-scanning direction by M.
  • n 1
  • the phase of the self-image G1 of the first grating 2 and the second grating 3 is shifted by one period with respect to the length of the image resolution D in the sub-scanning direction. It will be.
  • the region that passes through the second grating 3 in one period of the self-image G1 of the first grating 2 changes over the length of the image resolution D in the sub-scanning direction, whereby the first The intensity of the self-image G1 of the grating 2 is modulated in the sub-scanning direction.
  • M 5, but M may be 3 or more, and may be other than 5.
  • n 1, but n may be an integer other than 1 as long as n is an integer other than 0. That is, when n is a negative integer, the rotation is opposite to that in the above-described example, and n may be an intensity modulation for n periods with n being an integer other than ⁇ 1.
  • n is a multiple of M, the phases of the self-image G1 of the first grating 2 and the second grating 3 are equal between a set of M sub-scanning direction pixels Dy, and M different numbers Since it is not a striped image, it is excluded.
  • the rotation angle ⁇ of the self-image of the first grating 2 with respect to the second grating 3 for example, after fixing the relative rotation angle between the radiation image detector 4 and the second grating 3, the first grating 2 is fixed. This can be done by rotating.
  • the rotation angle ⁇ is about 5.7 °. Then, the actual rotation angle ⁇ ′ of the self-image G1 of the first grating 2 with respect to the second grating 3 is detected by, for example, the self-image G1 of the first grating and the moire pitch by the second grating 3. Can do.
  • Therefore, the actual rotation angle ⁇ ′ can be obtained by substituting P ′ P 1 ′ / cos ⁇ ′ into the above equation.
  • the moire pitch Pm may be obtained based on the image signal detected by the radiation image detector 4.
  • the rotation angle ⁇ determined by the above equation (11) is compared with the actual rotation angle ⁇ ′, and the rotation angle of the first grating 2 is adjusted automatically or manually only by the difference. Good.
  • the phase contrast image generation unit 5 generates one phase contrast image based on image signals of M kinds of different fringe images acquired by the respective pixels of Dx ⁇ Dy described above in the radiation image detector 4, and the phase A plurality of phase contrast images are generated by shifting the positions of the M sub-pixels Dy constituting one pixel of the contrast image in the Y direction, and a combined image is generated by combining the plurality of phase contrast images.
  • a method for generating a phase contrast image and a method for generating a composite image will be described in detail later.
  • the subject 10 is arranged between the radiation source 1 and the first grating 2
  • radiation is emitted from the radiation source 1.
  • the radiation passes through the subject 10 and is then applied to the first grating 2.
  • the radiation irradiated on the first grating 2 is diffracted by the first grating 2 to form a Talbot interference image at a predetermined distance from the first grating 2 in the optical axis direction of the radiation.
  • a self-image G1 of the first grating 2 is formed at a predetermined distance from the first grating 2.
  • the first grating 2 is a phase modulation type grating that gives 90 ° phase modulation, the above equation (3) or the above equation (6) (in the case of a 180 ° phase modulation type grating, the above equation (4)).
  • the radiation passes through the second grating 3.
  • the deformed self-image G1 of the first grating 2 is intensity-modulated by being superimposed on the second grating 3, and is detected by the radiation image detector 4 as an image signal reflecting the wavefront distortion. Is done.
  • the radiation applied to the radiation image detector 4 passes through the first electrode layer 41 and is applied to the recording photoconductive layer 42. Then, a charge pair is generated in the recording photoconductive layer 42 by the irradiation of the radiation, and the positive charge is combined with the negative charge charged in the first electrode layer 41 and disappears, and the negative charge is a latent image. The charge is accumulated in the charge accumulation layer 43 (see FIG. 9B).
  • the linear reading light L1 emitted from the linear reading light source 50 is irradiated from the second electrode layer 45 side.
  • the reading light L1 passes through the transparent linear electrode 45a and is applied to the reading photoconductive layer 44, and the positive charge generated in the reading photoconductive layer 44 due to the irradiation of the reading light L1 is a latent image in the charge storage layer 43.
  • the negative charge is combined with the positive charge charged on the light-shielding linear electrode 45b through the charge amplifier 200 connected to the transparent linear electrode 45a.
  • the radiation image detector 4 is scanned by the linear reading light L1 as the linear reading light source 50 moves in the sub-scanning direction, and the operation described above is performed for each reading line irradiated with the linear reading light L1.
  • the image signals are sequentially detected, and the detected image signals for each reading line are sequentially input to the phase contrast image generation unit 5 and stored.
  • the entire surface of the radiation image detector 4 is scanned with the reading light L 1, and the image signal of one frame is stored in the phase contrast image generation unit 5.
  • the phase contrast image generation unit 5 generates a plurality of phase contrast images as described above based on the stored radiographic image signal. First, the first phase contrast image among the plurality of phase contrast images is generated. For generation, the five sub-pixels Dy constituting one pixel of the first phase contrast image are set at predetermined first positions, and the pixel signals of the respective sub-pixels Dy are respectively acquired to be different from each other. Image signals of five stripe images are acquired.
  • the image resolution D in the sub-scanning direction of the phase contrast image is divided into five, and the intensity modulation for one period of the self-image G1 of the first grating 2 is performed. Since the self-image G1 of the first grating 2 is tilted with respect to the second grating 3 so that an image signal divided into five can be detected, reading from the 1-1 reading line is performed as shown in FIG. The obtained image signal is acquired as the first fringe image signal M1, and the image signal read out from the 1-2 reading line is acquired as the second fringe image signal M2, and read out from the 1-3 reading line.
  • the acquired image signal is acquired as the third fringe image signal M3, and the image signal read out from the 1-4 reading line is acquired as the fourth fringe image signal M4 and read out from the 1-5 reading line.
  • the obtained image signal is the fifth fringe image signal M5. Is obtained. Note that each of the widths 1-1 to 1-5 shown in FIG. 11 in the sub-scanning direction corresponds to the sub-pixel Dy shown in FIG.
  • five subpixels Dy constituting one pixel of the first phase contrast image are set at the first position as shown in FIG. 12, and pixel rows (reading lines) every four pixel intervals in the subscanning direction. ) Is acquired, and one stripe image signal of one frame is acquired. More specifically, the image signal of the pixel row group of the 1-1 reading line shown in FIG. 12 is acquired, the first fringe image signal of 1 frame is acquired, and the pixel row group of the 1-2 reading line is acquired.
  • Image signal is acquired to acquire a second fringe image signal of one frame
  • an image signal of a pixel row group of the first to third reading lines is acquired to acquire a third fringe image signal of one frame
  • the image signal of the pixel row group of the first to fourth reading lines is acquired to acquire the fourth striped image signal of one frame
  • the image signal of the pixel row group of the first to fifth reading lines is acquired to acquire one frame of A fifth fringe image signal is acquired.
  • the phase contrast image generation unit 5 obtains five different fringe image signals for generating the second phase contrast image, so that the five sub-pixels Dy constituting one pixel of the phase contrast image are obtained.
  • the position is shifted by 2 pixels in the sub-scanning direction (Y direction) from the first position described above, and set to the second position, and the pixel signal of each sub-pixel Dy is acquired.
  • image signals of the sixth to tenth fringe images for generating the second phase contrast image To obtain image signals of the sixth to tenth fringe images for generating the second phase contrast image.
  • the image signal of the pixel row group of the 2-1 reading line shown in FIG. 13 is acquired, the sixth striped image signal of one frame is acquired, and the pixel row group of the 2-2 reading line is acquired.
  • An image signal is acquired to acquire a seventh stripe image signal of one frame, an image signal of a pixel row group of the second to third reading lines is acquired, and an eighth stripe image signal of one frame is acquired.
  • the image signal of the pixel row group of the 2-4 reading line is acquired and the ninth striped image signal of one frame is acquired, and the image signal of the pixel row group of the 2-5 reading line is acquired and the first frame of the first frame is acquired.
  • Ten fringe image signals are acquired.
  • the sixth to tenth fringe image signals different from each other for generating the second phase contrast image are acquired.
  • the fringe image signal for generating the first phase contrast image and the fringe image signal for generating the second phase contrast image are shifted by two pixels in the Y direction.
  • the number is not limited to two pixels, and may be one pixel or more smaller than the number of stripe image signals for generating one phase contrast image.
  • phase contrast image generation unit 5 Next, a method of generating the first and second phase contrast images in the phase contrast image generation unit 5 will be described. First, the principle of the method of generating a phase contrast image in the present embodiment will be described.
  • FIG. 14 illustrates one radiation path refracted according to the phase shift distribution ⁇ (x) in the X direction of the subject 10.
  • Reference numeral X1 indicates a path of radiation that travels straight when the subject 10 is not present, and the radiation that travels along the path X1 passes through the first and second gratings 2 and 3 to the radiation image detector 4.
  • Reference numeral X2 indicates a path of the radiation refracted and deflected by the subject 10 when the subject 10 exists. The radiation traveling along the path X2 passes through the first grating 2 and is then shielded by the second grating 3.
  • phase shift distribution ⁇ (x) of the subject 10 is expressed by the following equation (12), where n (x, z) is the refractive index distribution of the subject 10 and z is the direction in which the radiation travels.
  • n (x, z) is the refractive index distribution of the subject 10
  • z is the direction in which the radiation travels.
  • the y-coordinate is omitted for simplification of description.
  • the self-image G1 formed at the position from the first grating 2 to the third grating 3 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to the refraction of radiation at the subject 10.
  • This displacement amount ⁇ x is approximately expressed by the following equation (13) based on the fact that the refraction angle ⁇ of radiation is very small.
  • the refraction angle ⁇ is expressed by the following equation (14) using the wavelength ⁇ of radiation and the phase shift distribution ⁇ (x) of the subject 10.
  • the displacement amount ⁇ x of the self-image G1 due to the refraction of the radiation at the subject 10 is related to the phase shift distribution ⁇ (x) of the subject 10.
  • This displacement amount ⁇ x is the amount of phase shift ⁇ of the intensity modulation signal of each pixel detected by the radiation image detector 4 (the phase shift of the intensity modulation signal of each pixel with and without the subject 10). The amount is related to the following equation (15).
  • the phase shift amount ⁇ of the intensity modulation signal of each pixel is obtained from the above equation (15), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the above equation (14). .
  • the phase shift distribution ⁇ (x) of the subject 10 is calculated using a fringe scanning method based on the first to fifth fringe image signals (sixth to tenth fringe image signals) described above.
  • the image resolution D in the sub-scanning direction of the phase contrast image is divided into five, five types of first to fifth fringe image signals are acquired for each pixel of the phase contrast image. ing.
  • a method of calculating the phase shift amount ⁇ of the intensity modulation signal of each pixel of the phase contrast image from the five types of first to fifth stripe image signals will be described.
  • the method of calculating the phase shift amount ⁇ based on M types of stripe image signals is described without being limited to the five types of stripe image signals.
  • the pixel signal Ik (x) of each pixel arranged in the main scanning direction of the radiation image detector 4 in the kth reading line as shown in FIG. 11 is expressed by the following equation (16).
  • x is a coordinate in the x direction of the pixel
  • a 0 is the intensity of the incident radiation
  • An is a value corresponding to the contrast of the intensity modulation signal (where n is a positive integer).
  • ⁇ (x) represents the refraction angle ⁇ as a function of the coordinate x of the pixel of the radiation image detector 4.
  • arg [] means extraction of declination and corresponds to the phase shift amount ⁇ of each pixel of the phase contrast image. Therefore, by calculating the phase shift amount ⁇ of the intensity modulation signal of each pixel of the phase contrast image from the pixel signals of the M stripe image signals acquired for each pixel of the phase contrast image, based on Expression (16). The refraction angle ⁇ (x) is obtained.
  • the M pixel signals respectively acquired for the M subpixels Dy constituting each pixel of the phase contrast image are read line positions (subpixel Dy positions).
  • the M pixel signal sequences of the sub-pixel Dy are fitted with, for example, a sine wave, and the phase shift amount ⁇ of the fitting curve when the subject is present and when there is no subject is obtained.
  • (15) calculates the differential amount of the phase shift distribution ⁇ (x), and integrates this differential amount with respect to x, thereby obtaining the phase shift distribution ⁇ (x) of the subject 10, that is, the phase contrast image of the subject 10.
  • a sine wave can be typically used as described above, but a rectangular wave or a triangular wave shape may be used.
  • the first phase contrast image is generated using the first to fifth fringe image signals
  • the second phase contrast image is generated using the sixth to tenth fringe image signals.
  • the phase contrast image generation unit 5 combines the two phase contrast images to generate a combined image.
  • the reason for combining the two phase contrast images in this way will be described.
  • the phase differential value calculated based on the fringe image signal corresponding to the edge portion of the subject 10 changes as shown in FIG.
  • the two pixels (a set of five subpixels) that are painted black in the first and second columns from the right use the signals of the five subpixels from the edge of the subject 10 toward the subject side.
  • the phase differential value is obtained based on the signals detected by the 6th to 10th sub-pixels, which is a strong signal.
  • the two pixels painted black in the third and fourth columns from the right shown in FIG. 17 are the signals detected by the second to sixth sub-pixels in the arrangement relationship shown in FIG.
  • the phase differential value is obtained based on the above, and the signal of the edge of the subject 10 can be detected only by one or two subpixels, so that the signal becomes weak.
  • a signal near the edge of the subject 10 is detected by each of the five sub-pixels, so that a relatively strong signal is detected. . Therefore, the edge signals detected by the four pixels in the third and fourth columns from the right shown in FIG. 17 are intermediate signals as a whole.
  • the two thinly painted pixels in the fifth and sixth columns from the right shown in FIG. 17 are based on the signals detected by the third to seventh subpixels in the arrangement relationship shown in FIG.
  • the phase differential value is obtained, and since the edge signal of the subject 10 can be detected only by 2 to 3 subpixels, it becomes a weak signal.
  • the two pixels arranged on the thinly painted two pixels in the fifth and sixth columns from the right are also separated from the edge of the subject, so that a medium signal is detected. Therefore, the edge signals detected by the four pixels in the fifth and sixth columns from the right shown in FIG. 17 are weak signals as a whole.
  • the two pixels painted in black in the first to fourth columns from the left shown in FIG. 17 are detected because the edge signal of the subject 10 is detected by the 3 to 5 subpixels. It becomes a strong signal.
  • the phase contrast image of the edge of the subject 10 looks relatively strong in the range of R1 and R3, but looks relatively weak in the range of R2, and the density Unevenness occurs.
  • the positions of the five subpixels Dy constituting one pixel of the phase contrast image are shifted by 2 pixels in the subscanning direction (Y direction), and another phase contrast image is obtained. It is trying to generate.
  • the five sub-pixels Dy constituting one pixel of the phase contrast image are set by shifting by two pixels in the Y direction.
  • the two thinly-painted pixels in the first and second columns from the right shown in FIG. Since it can only be detected with a signal, the signal is relatively weak.
  • the three pixels painted black in the third to fifth columns from the right shown in FIG. 18 are strong signals because the edge signal of the subject 10 is detected by the 4 to 5 subpixels.
  • the three pixels in the third to fifth columns from the left shown in FIG. 18 are weak signals because the edge signal of the subject 10 can be detected only by the 1-2 subpixels. .
  • a signal near the edge of the subject 10 is detected by each of the five sub-pixels, so that a relatively strong signal is detected. . Therefore, the edge signals detected by the six pixels in the third to fifth columns from the left shown in FIG. 18 are intermediate signals as a whole.
  • the two thinly painted pixels in the first and second columns from the left shown in FIG. 18 are relatively weak signals because the edge signal of the subject 10 can be detected only by the three subpixels. .
  • the phase contrast image of the edge of the subject 10 looks relatively strong in the range of R2 ′, but looks relatively weak in the range of R1 ′ and R3 ′. Become.
  • the first phase contrast image is generated as the phase contrast image shown in FIG. 17, and the second phase contrast image is generated as the phase contrast image shown in FIG. ing.
  • the phase contrast image generation unit 5 calculates a simple average of the first phase contrast image and the second phase contrast image, or adds the first phase contrast image and the second phase contrast image. To generate a composite image.
  • phase contrast images are acquired to generate a composite image.
  • the present invention is not limited to this, and three or more phase contrast images are acquired to generate a composite image. May be.
  • the y-coordinate regarding the y-direction of the pixel of the phase contrast image is not taken into consideration.
  • the refraction angle two-dimensional distribution ⁇ (x, y) is By obtaining this and integrating it along the x-axis, a two-dimensional phase shift distribution ⁇ (x, y) can be obtained.
  • the phase contrast image is generated by integrating the two-dimensional distribution ⁇ (x, y) of the phase shift amount along the x-axis. Also good.
  • phase differential image may be generated as a phase contrast image.
  • the configuration in which the pixel column of the radiation image detector 4 and the grid member of the second grid 3 are arranged in parallel as illustrated in FIG. 6 has been described. It is not necessary that the grid 3 or the pixel column and the first grid 2 are arranged in parallel, and the second grid 3 or the first grid 2 and the pixel column may have an inclination.
  • the conditions of the angle ⁇ 1 formed by the extending direction of the first lattice 2 and the pixel column direction and the angle ⁇ 2 formed by the extending direction of the second lattice 3 and the pixel column direction will be described below.
  • FIG. 19A is a diagram illustrating a self-image G1 of the first grating 2 having an inclination ⁇ 1 with respect to the pixel column and a second grating 3 having an inclination ⁇ 2 with respect to the pixel column.
  • Five squares arranged in the vertical direction shown in FIG. 19A are pixel rows.
  • the diagram shown in FIG. 19B schematically shows the direction of the self-image G1 with respect to the pixel column direction and the extending direction of the second grating 3 with respect to the pixel column direction.
  • conditional expression of ⁇ 1 and ⁇ 2 can be expressed as the following expression (23). Since the following formula (23) is a formula when the phase of the self-image G1 of the first grating 2 and the phase of the second grating 3 is shifted by one period with respect to D, as shown in FIG. If it is shifted by the period, it can be expressed by the following formula (24). Note that n and P 1 ′ in the following equation (24) are the same as those in the above equation (11). In the first embodiment, as shown in FIG. 6, the extending direction of the second grating 3 is parallel to the Y direction, and the extending direction of the self-image G1 of the first grating 2 is set to the Y direction.
  • the extending direction of the self-image G1 of the first grating 2 is parallel to the Y direction, and the extending direction of the second grating 3 is inclined by ⁇ with respect to the Y direction. You may do it.
  • the relative rotation angle ⁇ in the XY plane between the self-image G1 of the first grating 2 and the second grating 3 is not only expressed by the above equations (11) and (24). From the relationship between the moire period T generated by the self-image G1 of the first grating 2 and the second grating 3 and the sub-pixel size Dsub, it can also be expressed by the following equation (25).
  • Z 2 is a distance from the first grating 2 to the second grating 3
  • L is the radiation source 1
  • the distance from the focal point to the radiation image detector 4, P 1 ′, is the arrangement pitch of the self-image G 1 of the first grating 2 formed at the position of the second grating 3.
  • the sub-pixel size is referred to as Dy. This is because the arrangement direction of five pixels for acquiring image signals constituting different stripe images is the Y direction. It is. As described above, the arrangement direction of the five pixels is not necessarily limited to the Y direction, and may be any other direction.
  • the subpixel size in Expression (25) is referred to as Dsub.
  • Dy and Dsub are the same in terms of subpixel size. Therefore, the image resolution D in Expression (11) can also be expressed as the number M of stripe images ⁇ subpixel size Dsub, and the direction of the subpixel size is not limited to the Y direction. Further, as described above, the arrangement pitch P 1 ′ of the self-image G1 of the first grating 2 when the extending direction of the self-image G1 of the first grating 2 and the extending direction of the second grating 3 are relatively inclined.
  • the phase modulation type grating or amplitude modulation type first grating 2 gives a phase modulation of 90 °
  • the following expression (26) is obtained, and in the case where the first grating 2 is a phase modulation type grating that applies 180 ° phase modulation, the following expression (27) is obtained.
  • the self-image G1 of the first grating 2 and the second grating 3 are arranged as shown in FIG. 20, a moire having a periodic direction in the Y direction as shown in the rightmost part of FIG. 20 is generated. However, as shown by a dotted square in FIG.
  • the type of the first grating 2 and the radiation source 1 are set so that the distance Z2 from the first grating 2 to the second grating 3 becomes the Talbot interference distance.
  • One of the above formulas (3) to (8) is satisfied according to the divergence angle of the radiated radiation.
  • the first grating 2 projects a large portion of incident radiation without diffracting, so that a projection image projected through the first grating 2 is obtained in a similar manner at a position behind the first grating 2.
  • the first grating 2 and the second grating 3 are both configured as absorption (amplitude modulation type) gratings and have Talbot interference. Regardless of the presence or absence of the effect, the radiation passing through the slit portion is geometrically projected. More specifically, first the spacing d 1 of the grating 2 and the spacing d 2 of the second grating 3, by a sufficiently large value than the effective wavelength of the radiation emitted from the radiation source 1, the illumination radiation Usually, the self-image G1 of the first grating 2 can be formed behind the first grating 2 without being diffracted by the slit portion.
  • the effective wavelength of radiation is about 0.4 mm.
  • the radiation image first with the distance d 1 of the grating 2 the distance d 2 of the second grating 3, the radiation that has passed through the slit portion be about 1 [mu] m ⁇ 10 [mu] m to form ignores the effects of diffraction
  • the self-image G1 of the first grating 2 is geometrically projected behind the first grating 2 as much as possible.
  • the first and the grating pitch P 1 of the grating 2 for the relationship between the lattice pitch P 2 of the second grating 3 is the same as in the first embodiment. Further, the relation of the relative inclination between the self-image G1 of the first grating 2 and the second grating 3 is the same as the equation (11) in the first embodiment.
  • the member 22 of the first grating 2 and the member 32 of the second grating 3 preferably shield (absorb) radiation completely in order to generate a periodic pattern image with high contrast. Even if a material excellent in radiation absorption (gold, platinum, etc.) is used, there is a considerable amount of radiation that is transmitted without being absorbed. For this reason, in order to improve the radiation shielding property, it is preferable that the thicknesses h 1 and h 2 of the members 22 and 32 be as thick as possible.
  • the members 22 and 32 are preferably capable of shielding 90% or more of the irradiation radiation, and the materials and thicknesses h1 and h2 of the members 22 and 32 are set by the energy of the irradiation radiation. For example, when tungsten is used as the target of the radiation source 1 and the tube voltage is 50 kV, the thicknesses h 1 and h 2 are preferably 100 ⁇ m or more in terms of gold (Au).
  • the thickness of the member 22 of the first grating 2 and the member 32 of the second grating 3 has a problem of so-called radiation vignetting as in the first embodiment. It is preferable to limit the lengths h 1 and h 2 .
  • the projected image projected through the first grating 2 passes through the second grating 3, and as a result, the projected image is subjected to intensity modulation by superimposing with the second grating 3, and the image The signal is detected by the radiation image detector 4 as a signal.
  • the image signal detected by the radiation image detector 4 is read out in the same manner as in the first embodiment, and the image signal of one whole frame is stored in the phase contrast image generation unit 5 and then the phase contrast.
  • the image generation unit 5 Based on the stored image signal, the image generation unit 5 generates first and second phase contrast images in the same manner as in the first embodiment. Then, the phase contrast image generation unit 5 combines the first phase contrast image and the second phase contrast image to generate a combined image.
  • the operation of generating the first and second phase contrast images and the operation of generating the composite image in the phase contrast image generation unit 5 are the same as those in the first embodiment.
  • the distance Z2 between the first grating 2 and the second grating 3 can be made shorter than the Talbot interference distance, a constant Talbot interference distance is ensured. Compared with the radiation phase imaging apparatus of the first embodiment that must be performed, the imaging apparatus can be made thinner. The above is the description of the second embodiment of the radiation phase image capturing apparatus of the present invention.
  • the distance from the radiation source 1 to the radiation image detector 4 is set at a distance set in a general hospital imaging room.
  • the focal point size of the radiation source 1 is, for example, about 0.1 mm to 1 mm, which is typical, the Talbot interference of the first grating 2 or the first grating 2
  • the self-image G1 is blurred due to the projection and the image quality of the phase contrast image is deteriorated.
  • the radiation source 1 having the above-described focal size it is conceivable to effectively reduce the focal point size by installing a pinhole immediately after the focal point of the radiation source 1. If the opening area of the pinhole is reduced in order to reduce the focal point size, the radiation intensity is reduced.
  • a multi-slit may be arranged immediately after the focal point of the radiation source 1 in the radiation phase imaging apparatus of the first and second embodiments.
  • the multi-slit is an absorption type grating having the same configuration as the first and second gratings 2 and 3 of the second embodiment, and a plurality of radiation shielding portions extending in a predetermined direction are periodically formed. It is what is arranged.
  • the arrangement direction of the radiation shielding portions arranged in the multi-slit is preferably the same as either the arrangement direction of the members 22 of the first grating 2 or the members 32 of the second grating 3, but the phase contrast image Are not necessarily the same from the viewpoint of obtaining.
  • the arrangement direction of the radiation shielding portions arranged in the multi slit is the same as the arrangement direction (X direction) of the members 22 of the first lattice 2 To do. That is, in this case, the multi-slit can partially reduce the effective focus size in the X direction by partially shielding the radiation emitted from the focus of the radiation source 1. A large number of microfocus light sources divided in the X direction can be formed.
  • the multi-slit lattice pitch P 3 needs to be set to satisfy the following equation (29), where Z 3 is the distance from the multi-slit to the first lattice 2.
  • P 1 ′ is the arrangement pitch of the self-image G1 of the first grating 2 at the position of the second grating 3.
  • the pitch of the self-image G1 of the first grating 2 is a pitch that takes the position of the multi-slit as the starting point of enlargement. Therefore, the grating pitch P 2 of the second grating 3 satisfies the relationship of the following equation (30) when the first grating 2 is a phase modulation type grating or an amplitude modulation type grating that gives 90 ° phase modulation. To be determined.
  • Z 3 is the distance from the multi slit to the first grating 2 as described above.
  • the first grating 2 is a phase modulation type grating that applies 180 ° phase modulation, it is determined so as to satisfy the relationship of the following equation (31).
  • the first grating 2 if the distance from the focal point of the radiation source 1 to the radiation image detector 4 is L, the first grating 2.
  • the thickness h 1 of the member 22 and the thickness h 2 of the second grating 3 members, the following equation (32) and following equation (33) are preferably determined so as to satisfy.
  • the plurality of self-images G1 formed by the Talbot interference or projection of the first grating 2 by the radiation emitted from each micro-focus light source pseudo-dispersed and formed by the multi-slit This is a geometric condition for overlapping the self-image G1 of the first grating 2 at the position of the second grating 3 by shifting by one pitch.
  • the plurality of microfocus light sources formed by the multi-slits are formed, and the self-images G1 of the plurality of first gratings 2 formed by the Talbot interference or the projection are regularly superimposed on each other.
  • the image quality of the phase contrast image can be improved without reducing the intensity.
  • the relative rotation angle ⁇ between the self-image G1 of the first grating 2 and the second grating 3 is used.
  • the equation indicating the relationship between the moire period T generated by the self-image G1 of the first grating 2 and the second grating 3 and the sub-pixel size Dsub is similar to the following expression (25): It can be expressed as (34).
  • Z 1 is the distance from the focal point of the radiation source 1 to the first grating 2
  • Z 2 is the distance between the first grating 2 and the second grating 3
  • L is from the focal point of the radiation source 1. This is the distance to the radiation image detector 4.
  • the first grating 2 and the second grating 3 are relatively inclined.
  • the first lattice 2 and the second lattice 3 are arranged so that the extending directions of the lattice members 22 and 32 are parallel to each other, and the extending direction of the lattice members 22 and 32 and the extending direction of the multi-slit are relatively It may be tilted. This is because, even in this configuration, the stretching direction of the self-image G1 of the first grating 2 and the stretching direction of the second grating can be relatively inclined, and moire can be generated. This is because a fringe image signal similar to that of the form can be acquired.
  • the setting may be made based on (25).
  • the self-image G1 of the first grating 2 and the second grating 3 are relatively inclined, but this is not necessarily the case.
  • the self-image G1 of the first grating 2 and the second grating 3 are parallel to each other, and the arrangement pitch of the self-image G1 of the first grating 2 is different.
  • the arrangement pitch P 1 ′ of the self-image G1 of the first grating 2 and the second The arrangement pitch P 2 of the grating 3, the moire period T, and the sub-pixel size Dsub may satisfy the following expression (35).
  • the arrangement pitch P 1 ′ of the self-image G1 of the first grating 2 is expressed by the following formula (1) when the first grating 2 is a phase modulation type grating or an amplitude modulation type grating that applies 90 ° phase modulation.
  • the arrangement pitch of the self-image G1 of the first grating 2 is as described above. It can be set as the structure using the 2nd grating
  • the arrangement pitch P 2 of the second grating 3 the period T of the moire, the sub-pixel size Dsub is The following equation (38) may be satisfied.
  • Z 1 is the distance from the focal point of the radiation source 1 to the first grating 2
  • Z 2 is the distance between the first grating 2 and the second grating 3
  • L is from the focal point of the radiation source 1. This is the distance to the radiation image detector 4.
  • the relational expression to be satisfied by the arrangement pitch P 1 ′ of the self-image G1 of the first grating 2 is an expression in which Z 1 in the above expression (36) and the above expression (37) is replaced with Z 3. It is necessary to satisfy the above formula (29). Further, in the above description, the arrangement pitch of the self-image G1 of the first grating 2 and the arrangement pitch of the second grating 3 are different from each other. If radiation is a cone beam, as shown in FIG.
  • the second grating 3 having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first grating 2 is used, and the self-image G1 and the second image of the first grating 2 are further used as described above.
  • the grating 3 may be relatively tilted. With such a configuration, it is possible to generate moire having a period in an oblique direction (a direction not parallel to the X direction and the Y direction) as shown in FIG.
  • FIG. 23 if image signals of five pixels arranged in parallel to the Y direction are acquired, five different from each other as in the first embodiment.
  • Each of the fringe image signals can be acquired.
  • the image signals of five pixels arranged in parallel to the Y direction are acquired.
  • the present invention is not limited to this, and as shown in FIG. 24, 5 pixels arranged in parallel to the X direction. You may make it acquire the image signal of one pixel.
  • the pixels may be arranged in any direction as long as the image signals of the pixels arranged in the crossing direction other than the direction parallel to or orthogonal to the moire periodic direction are acquired.
  • the periodic direction of the self-image G1 of the first grating 2 or the periodic direction of the second grating 3 is either one of the orthogonal directions in which the pixels of the radiation image detector 4 are arranged.
  • the present invention is not limited to this. As shown in FIG. 25, image signals of five pixels arranged in an oblique direction (a direction not parallel to the X direction and the Y direction) can be acquired. Further, the relative angle between the periodic direction of the first and second gratings 2 and 3 and the arrangement direction of the pixels of the radiation image detector 4 may be shifted.
  • the first The relationship between the periodic direction of the second gratings 2 and 3 and the arrangement direction of the pixels of the radiation image detector 4 may be any relationship. Due to this relationship, the subpixel size in the above equation (11), the above equation (24), the above equation (25), the above equation (34), the above equation (35), and the above equation (38) is in the Y direction.
  • the size of the pixel in the predetermined direction is not limited. Even in the cases shown in FIGS.
  • the position of the sub-pixel Dsub is shifted by, for example, two pixels with respect to the periodic direction of the moire, and at the shifted position.
  • the five fringe image signals for generating the second phase contrast image can be acquired by acquiring the pixel signal of each of the sub-pixels Dsub.
  • the first and second gratings 2 and 3 are configured such that the periodic arrangement direction of the members 22 and 32 is linear (that is, the grating surface is planar). In all the embodiments described above, instead of this, as shown in FIG. 26, it is more preferable to use a first grating 450 and a second grating 460 in which the grating surface is concaved into a curved surface.
  • the first grating 450, the radiation permeable and curved surfaces of the substrate 450a, a plurality of members 450b are periodically arranged at a predetermined pitch P 1.
  • Each member 450b extends linearly in the Y direction, as in the first and second embodiments, and the lattice plane of the first grating 450 passes through the focal point of the radiation source 1 and extends of the member 450b. It has a shape along a cylindrical surface with a straight line extending in the direction as the central axis.
  • the second grating 460, the radiation permeable and curved surfaces of the substrate 460a, a plurality of members 460b are periodically arranged at a predetermined pitch P 2.
  • Each member 460b extends linearly in the Y direction, and the lattice plane of the second grating 460 passes through the focal point of the radiation source 1 and is on a cylindrical surface with a straight line extending in the extending direction of the member 460b as a central axis. It is a shape along.
  • the grating pitch P 1 and the grating pitch P 2 are , It is determined so as to satisfy the relationship of the above formula (1) or the above formula (2).
  • the radiation irradiated from the focal point of the radiation source 1 is all the grating surfaces when the subject 10 does not exist. Therefore, there is no upper limit on the thickness of the member 450b and the thickness of the member 460b, and the above equations (9) and (10) need not be considered.
  • the multi slit is configured similarly to the second grating 460.
  • the first and second gratings 450 and 460 may be configured by joining a plurality of planar small gratings. Further, the substrates 450a and 460a of the first and second gratings 450 and 132 may be flexible.
  • the radiation image detector 60 is made flexible, an SID changing mechanism that changes the distance (SID) from the focal point of the radiation source 1 to the detection surface of the radiation image detector 60, and a curvature that changes the curvature according to the SID.
  • An adjustment mechanism may be provided. For example, based on the SID value input from a predetermined input device, the SID changing mechanism and the curvature adjusting mechanism are controlled, the position of the radiation source 1 or the radiation image detector 60 is adjusted, and radiation is incident on the detection surface. The curvature of the radiation image detector 60 may be changed so that the angle is substantially vertical.
  • the curvatures of the first and second gratings 450 and 460 are changed according to the distances Z 1 and Z 2. You may make it provide the mechanism to change. However, when the changes in the distances Z 1 and Z 2 are large, the grating pitches P 1 and P 2 cannot fully correspond even if the curvatures of the first and second gratings 450 and 460 are changed.
  • the second gratings 450 and 460 may be interchangeable with those having appropriate curvature and grating pitches P 1 and P 2 .
  • the first and second gratings 450 and 460 are configured by disposing the members 450b and 460b in a direction orthogonal to the bending direction of the substrates 450a and 460a, respectively. Although the restriction on the thickness is eliminated, the members 450b and 460b may be disposed along the bending method of the substrates 450a and 460a.
  • the radiation image detector 4 a so-called optical reading type radiation image detector in which an image signal is read out by scanning linear reading light emitted from the linear reading light source 50 is used.
  • the present invention is not limited to this, and in all of the above-described embodiments, for example, a number of TFT switches are arranged in a two-dimensional manner as described in JP-A-2002-26300, and the TFT switches are turned on / off.
  • a radiation image detector using a TFT switch from which an image signal is read out, a radiation image detector using a CMOS sensor, or the like may be used.
  • a radiation image detector using a TFT switch is collected by, for example, a pixel electrode 71 and a pixel electrode 71 that collect charges photoelectrically converted in a semiconductor film by radiation irradiation, as shown in FIG.
  • a plurality of pixel circuits 70 each having a TFT switch 72 for reading out the charged charges as image signals are arranged in a two-dimensional manner.
  • the radiation image detector using the TFT switch is provided for each pixel circuit row, and is provided for each of the pixel circuit columns and a large number of gate electrodes 73 to which a gate scanning signal for turning on and off the TFT switch 72 is output.
  • a plurality of data electrodes 74 to which the charge signal read from each pixel circuit 70 is output.
  • the detailed layer configuration of each pixel circuit 70 is the same as the layer configuration described in JP-A-2002-26300.
  • one pixel circuit array corresponds to the main pixel size Dx described in the above embodiment.
  • One pixel circuit row corresponds to the sub-pixel size Dy described in the above embodiment.
  • the main pixel size Dx and the sub-pixel size Dy can be set to 50 ⁇ m, for example.
  • M pixel circuit rows have one image resolution D in the sub-scanning direction of the phase contrast image.
  • the self-image G 1 of the first grating 2 is tilted with respect to the second grating 3.
  • the specific rotation angle of the self-image G1 of the first grating 2 the above equation (11), the above equation (24), the above equation (25), the above equation (34), It is calculated by the above equation (35) or the above equation (38).
  • the image signal read from the pixel circuit row connected to the first read line gate electrode G11 is acquired as the first stripe image signal M1, and the pixel circuit connected to the second read line gate electrode G12.
  • the image signal read from the row is acquired as the second stripe image signal M2, and the image signal read from the pixel circuit row connected to the third read line gate electrode G13 is the third stripe image signal M3.
  • the image signal read from the pixel circuit row connected to the fourth read line gate electrode G14 is acquired as the fourth stripe image signal M4 and connected to the fifth read line gate electrode G15.
  • the image signal read from the pixel circuit row is acquired as the fifth fringe image signal M5.
  • the positions of the five pixel circuit rows constituting one pixel of the phase contrast image are set to be shifted by two lines in the sub-scanning direction (Y direction), and image signals of the sixth to tenth fringe images for generating the second phase contrast image are acquired.
  • the image signal read from the pixel circuit row connected to the third read line gate electrode G13 is acquired as the sixth stripe image signal M6 and connected to the fourth read line gate electrode G14.
  • the image signal read from the pixel circuit row is acquired as the seventh stripe image signal M7
  • the image signal read from the pixel circuit row connected to the fifth read line gate electrode G15 is the eighth stripe image signal M7.
  • the image signal acquired as the image signal M8 and read from the pixel circuit row connected to the sixth reading line gate electrode G16 is acquired as the ninth fringe image signal M9, and is applied to the seventh reading line gate electrode G17.
  • An image signal read from the connected pixel circuit row is acquired as a tenth fringe image signal M10.
  • the first phase contrast image is generated based on the first to fifth fringe image signals
  • the second phase contrast image is generated based on the sixth to tenth fringe image signals.
  • a composite image is generated based on the first and second phase contrast images.
  • the image resolution in the main scanning direction of the phase contrast image is 50 ⁇ m
  • the extending direction of the gate electrode and the data electrode of the radiographic image detector is not limited to the example shown in FIG. 27.
  • the radiographic image detector is arranged so that the gate electrode is in the vertical direction on the paper and the data line is in the horizontal direction on the paper. It may be arranged.
  • the self-image G1 of the first grating 2 and the second grating 3 may be rotated by 90 ° with respect to the arrangement of the radiation image detectors as shown in FIG. In this case, by acquiring the image signal read from the pixel circuit 70 arranged in the direction parallel to the gate electrode, the image signal constituting the different fringe images is acquired as in the above embodiment. Can do.
  • each pixel and the shape of the pixel grid of the radiation image detector are not limited to a square, and may be, for example, a rectangle or a parallelogram. Alternatively, a pixel array in which the pixel grid is rotated 45 degrees may be used. Even when the above-described radiation image detector using the TFT switch is used, the self-image G1 of the first grating 2 and the second grating 3 are made parallel to each other, and the first grating 2 Moire is generated by using the second grating 3 having an arrangement pitch different from the arrangement pitch of the self-image G1, or the second grating having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first grating 2.
  • the self image G1 of the first grating 2 and the second grating 3 may be relatively inclined to generate moire. Even when the above-described radiation image detector using the TFT switch is used, as described above, the periodic direction of the self-image G1 of the first grating 2 or the periodic direction of the second grating 3, and the radiation It is not always necessary to coincide with one of the orthogonal directions in which the pixel circuits 70 of the image detector are arranged.
  • the image signals of the pixels arranged in the crossing direction other than the direction parallel or orthogonal to the periodic direction of the moire generated by the self-image G1 of the first grating 2 and the second grating 3 If it is the structure which can acquire (2), the relationship between the periodic direction of the 1st and 2nd grating
  • a radiation image detector using a CMOS sensor for example, a pixel circuit 80 that generates visible light upon receiving radiation and photoelectrically converts the visible light to detect a charge signal is shown in FIG. As shown, a plurality of two-dimensional arrays can be used.
  • the radiation image detector using the CMOS sensor is provided for each pixel circuit row, and includes a large number of gate electrodes 82 and reset electrodes from which drive signals for driving a signal readout circuit included in the pixel circuit 80 are output. 84, and a plurality of data electrodes 83 provided for each pixel circuit column and to which a charge signal read from the signal reading circuit of each pixel circuit 80 is output.
  • the gate electrode 82 and the reset electrode 84 are connected to a row selection scanning unit 85 that outputs a drive signal to the signal readout circuit, and the data electrode 83 performs predetermined processing on the charge signal output from each pixel circuit.
  • a signal processing unit 86 to be applied is connected.
  • each pixel circuit 80 includes a lower electrode 806 formed above the substrate 800 via an insulating film 803, a photoelectric conversion film 807 formed on the lower electrode 806, and a photoelectric conversion film 807.
  • An upper electrode 808 formed above, a protective film 809 formed on the upper electrode 808, and a radiation conversion film 810 formed on the protective film 809 are provided.
  • the radiation conversion film 810 is made of, for example, CsI: TI that emits light having a wavelength of 550 nm when irradiated with radiation.
  • the thickness is preferably about 500 ⁇ m.
  • the upper electrode 808 is made of a conductive material that is transparent to the incident light because it is necessary to make light having a wavelength of 550 nm incident on the photoelectric conversion film 807.
  • the lower electrode 806 is a thin film divided for each pixel circuit 80, and is formed of a transparent or opaque conductive material.
  • the photoelectric conversion film 807 is formed of, for example, a photoelectric conversion material that absorbs light having a wavelength of 550 nm and generates a charge corresponding to the light.
  • a photoelectric conversion material for example, an organic semiconductor, an organic material containing an organic dye, a material in which an inorganic semiconductor crystal having a direct transition type band gap and a large absorption coefficient, or the like is used alone or in combination.
  • a charge accumulating portion 802 for accumulating the charges transferred to the lower electrode 806 corresponding to the lower electrode 806, and the charges accumulated in the charge accumulating portion 802.
  • a signal readout circuit 801 for converting the signal into a voltage signal and outputting it.
  • the charge storage portion 802 is electrically connected to the lower electrode 806 by a conductive material plug 804 formed through the insulating film 803.
  • the signal readout circuit 801 is configured by a known CMOS circuit.
  • the pixel circuit column corresponds to the main pixel size Dx described in the above embodiment
  • one pixel circuit row corresponds to the sub pixel size Dy described in the above embodiment.
  • the main pixel size Dx and the sub-pixel size Dy can be set to 10 ⁇ m, for example, in the case of a radiation image detector using a CMOS sensor.
  • M pixel circuit rows have one image resolution D in the sub-scanning direction of the phase contrast image.
  • the self-image G 1 of the first grating 2 is tilted with respect to the second grating 3.
  • the specific rotation angle of the self-image 1 of the first grating 2 the above equation (11), the above equation (24), the above equation (25), the above equation (34), It is calculated by the above equation (35) or the above equation (38).
  • one pixel circuit 80 in FIG. It is possible to detect an image signal obtained by dividing intensity modulation of one period of a self image into five, that is, five stripe images different from each other depending on five pixel circuit rows connected to the five gate electrodes 82 shown in FIG. Each of the image signals can be detected.
  • one second grating 3 and the self-image G1 are shown corresponding to one pixel circuit array. However, in actuality, one pixel circuit array corresponds to one pixel circuit array. Many second gratings 3 and self-images G1 may exist, and FIG. 30 is not shown.
  • the image signal read from the pixel circuit row connected to the first read line gate electrode G11 is acquired as the first fringe image signal M1.
  • An image signal read from the pixel circuit row connected to the second read line gate electrode G12 is acquired as the second stripe image signal M2, and is connected to the third read line gate electrode G13.
  • the image signal read from is acquired as the third fringe image signal M3, and the image signal read from the pixel circuit row connected to the fourth read line gate electrode G14 is used as the fourth stripe image signal M4.
  • the acquired image signal read from the pixel circuit row connected to the fifth read line gate electrode G15 is acquired as the fifth fringe image signal M5.
  • the positions of the five pixel circuit rows constituting one pixel of the phase contrast image are set to be shifted by two lines in the sub-scanning direction (Y direction), and image signals of the sixth to tenth fringe images for generating the second phase contrast image are acquired.
  • the image signal read from the pixel circuit row connected to the third read line gate electrode G13 is acquired as the sixth stripe image signal M6 and connected to the fourth read line gate electrode G14.
  • the image signal read from the pixel circuit row is acquired as the seventh stripe image signal M7
  • the image signal read from the pixel circuit row connected to the fifth read line gate electrode G15 is the eighth stripe image signal M7.
  • the image signal acquired as the image signal M8 and read from the pixel circuit row connected to the sixth reading line gate electrode G16 is acquired as the ninth fringe image signal M9, and is applied to the seventh reading line gate electrode G17.
  • An image signal read from the connected pixel circuit row is acquired as a tenth fringe image signal M10.
  • the first phase contrast image is generated based on the first to fifth fringe image signals
  • the second phase contrast image is generated based on the sixth to tenth fringe image signals.
  • a composite image is generated based on the first and second phase contrast images.
  • the extending direction of the gate electrode and the data electrode of the radiation image detector is not limited to the example shown in FIG. You may make it arrange
  • the image signals constituting the different fringe images are acquired as in the above embodiment.
  • the shape of each pixel and the shape of the pixel grid of the radiation image detector are not limited to a square, and may be, for example, a rectangle or a parallelogram. Alternatively, a pixel array in which the pixel grid is rotated 45 degrees may be used.
  • the self-image G1 of the first grating 2 and the second grating 3 are made parallel to each other, and the first grating 2 is used.
  • Moire is generated using the second grating 3 having an arrangement pitch different from the arrangement pitch of the self-image G1, or the second arrangement pitch different from the arrangement pitch of the self-image G1 of the first grating 2 is used. While using the grating 3, the moire may be generated such that the self-image G 1 of the first grating 2 and the second grating 3 are relatively inclined. Similarly to the case of using the radiographic image detector using the TFT switch described above, the periodic direction of the self-image G1 of the first grating 2 or the periodic direction of the second grating 3, and the pixel circuit of the radiographic image detector It is not always necessary to coincide with any one of the orthogonal directions in which 70 is arranged.
  • the image signals of the pixels arranged in the crossing direction other than the parallel or orthogonal direction to the periodic direction of the moire generated by the self-image G1 of the first grating 2 and the second grating 3 If it is the structure which can acquire, the relationship between the periodic direction of the 1st and 2nd grating
  • the image resolution in the main scanning direction of the phase contrast image is 10 ⁇ m
  • a radiographic image detector using a TFT switch or a radiographic image detector using a CMOS sensor can be used.
  • these radiographic image detectors have square pixels, the present invention is not limited thereto.
  • the resolution in the sub-scanning direction is worse than the resolution in the main scanning direction.
  • the resolution Dx is limited in the main scanning direction by the width of the linear electrode (direction perpendicular to the extending direction).
  • the resolution Dy is a product of the width of the reading light of the linear reading light source 50 in the sub-scanning direction, the accumulation time of the charge amplifier 200 per line and the moving speed of the linear reading light source 50. It will be decided. Both the main and sub resolutions are typically several tens of ⁇ m, but it is possible to increase the sub scanning direction resolution while maintaining the main scanning direction resolution. For example, it can be realized by reducing the width of the linear reading light source 50 or slowing the moving speed, and the radiation image detector of the optical reading system described in the first and second embodiments is more advantageous. It is a simple configuration.
  • the X-ray imaging system 100 shown in FIGS. 31 and 32 is obtained by applying the radiation phase imaging apparatus of the above embodiment to an X-ray diagnostic apparatus that images a subject H in a standing position.
  • the X-ray imaging system 100 includes a radiation source 1 that irradiates a subject H with X-rays, and an X-ray that is disposed opposite to the radiation source 1 and is emitted from the radiation source 1 and transmitted through the subject H.
  • the imaging unit 12 that detects and generates image data, controls the exposure operation of the radiation source 1 and the imaging operation of the imaging unit 12 based on the operation of the operator, and calculates the image signal acquired by the imaging unit 12 And a console 13 for processing to generate a phase contrast image.
  • the radiation source 1 is held movably in the vertical direction (X direction) by an X-ray source holding device 14 suspended from the ceiling.
  • the photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
  • the radiation source 1 includes an X-ray tube 18 that generates X-rays according to a high voltage applied from the high voltage generator 16 and an X-ray emitted from the X-ray tube 18 based on the control of the X-ray source control unit 17. It is comprised from the collimator unit 19 provided with the movable collimator 19a which restrict
  • the X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated.
  • the colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
  • the X-ray source holding device 14 includes a carriage unit 14a configured to be movable in a horizontal direction (Z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column units 14b connected in the vertical direction. It consists of.
  • the carriage unit 14a is provided with a motor (not shown) that extends and contracts the support column unit 14b to change the position of the radiation source 1 in the vertical direction.
  • the standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction.
  • the holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c.
  • This motor drive is controlled by the control device 20 of the console 13 to be described later based on the setting operation by the operator.
  • the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. .
  • the detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like.
  • the X-ray holding device 14 expands and contracts the support column 14 b based on the supplied detection value, and moves the radiation source 1 so as to follow the vertical movement of the imaging unit 12.
  • the console 13 is provided with a control device 200 including a CPU, a ROM, a RAM, and the like.
  • the control device 200 includes an input device 201 through which an operator inputs a photographing instruction and the content of the instruction, and an arithmetic processing unit 202 that performs arithmetic processing on the image signal acquired by the photographing unit 12 to generate a phase contrast image and a composite image.
  • An image storage unit 203 for storing a phase contrast image and a composite image, a monitor 204 for displaying the composite image and the like, and an interface (I / F) 205 connected to each unit of the X-ray imaging system 100 via a bus 206 Connected through.
  • the arithmetic processing unit 202 corresponds to the phase contrast image generation unit 5 described in the above embodiment.
  • the input device 201 for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used.
  • X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, and the like.
  • the monitor 204 includes a liquid crystal display and displays characters such as X-ray imaging conditions and a phase contrast image under the control of the control device 200.
  • the imaging unit 12 is provided with the first grating 2, the second grating 3, and the radiation image detector 4 described in the above embodiment.
  • the radiation image detector 4 is arranged so that its detection surface is orthogonal to the optical axis A of X-rays emitted from the radiation source 1. Further, as described in the above embodiment, the first grid 2 and the second grid 3 are installed such that the extending directions of the members 22 and 23 are relatively inclined.
  • an X-ray imaging system 110 shown in FIG. 33 is obtained by applying the radiation phase imaging apparatus of the above embodiment to an X-ray diagnostic apparatus that images a subject H in a prone state.
  • the X-ray system 110 includes a bed 61 on which the subject H is placed in addition to the radiation source 1 and the imaging unit 12 of the X-ray imaging system 100. Since the radiation source 1 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 100, the same reference numerals as those of the X-ray imaging system 100 are given to the respective components. Only differences from the X-ray imaging system 100 will be described below. Since other configurations and operations are the same as those of the X-ray imaging system 100, description thereof is omitted.
  • the X-ray imaging system 110 is attached to the lower surface side of the top plate 62 so that the imaging unit 12 faces the radiation source 1 through the subject H.
  • the radiation source 1 is held by an X-ray source holding device 14, and the X-ray irradiation direction is set downward by an angle changing mechanism (not shown) of the radiation source 1.
  • the radiation source 1 irradiates the subject H lying on the top plate 62 of the bed 16 with X-rays.
  • the X-ray source holding device 14 adjusts the distance from the X-ray focal point 18b to the detection surface of the radiation image detector 3 by moving the radiation source 1 up and down by extending and contracting the support 14b. be able to.
  • the distance between the grating 2 and the radiographic image detector 3 may be shortened.
  • the leg 63 supporting the top plate 62 of the bed 61 can be shortened, and the position of the top plate 62 can be lowered.
  • the imaging unit 12 is thinned and the top plate 62 is positioned high enough to allow the subject H to sit down (for example, about 40 cm above the floor).
  • the radiation source 1 is attached to the bed 61, and the imaging unit 12 is installed on the ceiling side, so that the subject H is photographed in the supine position. It is also possible.
  • the X-ray imaging system 110 it is possible to photograph the lumbar vertebrae, the hip joints, etc., in which the subject H is difficult to shoot, by enabling the position contrast imaging of the phase contrast image.
  • an appropriate fixture for fixing the subject H to the bed 61 it is possible to reduce deterioration of the phase contrast image due to body movement.
  • the X-ray imaging system 120 shown in FIGS. 34 and 35 is obtained by applying the radiation phase imaging apparatus of the above embodiment to an X-ray diagnostic apparatus that images the subject H in a standing position and a standing position. It is.
  • the radiation source 1 and the imaging unit 12 are held by a turning arm 121.
  • the turning arm 121 is connected to the base 122 so as to be turnable. Since the radiation source 1 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 100, the same reference numerals as those of the X-ray imaging system 100 are given to the respective components. Only differences from the X-ray imaging system 100 will be described below. Since other configurations and operations are the same as those of the X-ray imaging system 100, description thereof is omitted.
  • the swivel arm 121 includes a U-shaped portion 121a having a substantially U-shape and a linear straight portion 121b connected to one end of the U-shaped portion 121a.
  • the photographing part 12 is attached to the other end of the U-shaped part 121a.
  • a first groove 123 is formed in the linear portion 121b along the extending direction, and the radiation source 1 is slidably attached to the first groove 123.
  • the radiation source 1 and the imaging unit 12 are opposed to each other, and the distance from the X-ray focal point 18b to the detection surface of the radiation image detector 3 is adjusted by moving the radiation source 1 along the first groove 123. be able to.
  • the base 172 is formed with a second groove 124 extending in the vertical direction.
  • the swivel arm 121 is movable in the vertical direction along the second groove 124 by a coupling mechanism 175 provided at a connection portion between the U-shaped portion 121a and the linear portion 121b. Further, the turning arm 121 can be turned around the rotation axis C along the y direction by the connecting mechanism 125. 35, the swivel arm 121 is rotated 90 ° clockwise around the rotation axis C from the standing position shown in FIG. 35, and the imaging unit 12 is placed under the bed (not shown) on which the subject H is placed. By arranging, it is possible to shoot the supine position.
  • the turning arm 121 is not limited to 90 ° rotation, and can rotate at any angle, and shooting in a direction other than standing-up shooting (horizontal direction) and lying-down shooting (vertical direction). Is possible.
  • the imaging unit 12 is arranged in the U-shaped part 121a, and the radiation source 1 is arranged in the linear part 121b.
  • the imaging unit 12 may be disposed at one end of the C arm, and the radiation source 1 may be disposed at the other end.
  • the mammography apparatus 130 shown in FIGS. 36 and 37 is obtained by applying the radiation phase image imaging apparatus of the above embodiment to mammography (X-ray mammography).
  • the mammography apparatus 130 is an apparatus that captures a phase contrast image of the breast B as a subject.
  • the mammography apparatus 130 is disposed at the other end of the support 131 and the X-ray source storage section 132 disposed at one end of the support 131 that is pivotally connected to a base (not shown).
  • An imaging table 133 and a compression plate 134 configured to be movable in the vertical direction with respect to the imaging table 133 are provided.
  • the X-ray source storage unit 132 stores the radiation source 1, and the imaging table 133 stores the imaging unit 12.
  • the radiation source 1 and the imaging unit 12 are arranged to face each other.
  • the compression plate 134 is moved by a compression plate moving mechanism (not shown), and the breast B is sandwiched between the imaging table 133 and compressed. The X-ray imaging described above is performed in this compressed state.
  • the radiation source 1 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 100, the same reference numerals as those of the X-ray imaging system 100 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 100, description thereof is omitted.
  • a mammography apparatus 140 shown in FIG. 38 is different from the mammography apparatus 130 only in that the first grating 2 is disposed between the radiation source 1 and the compression plate 134.
  • the first grid 2 is stored in a grid storage unit 91 connected to the support unit 131.
  • the imaging unit 92 includes the second grating 3 and the radiation image detector 4 without including the first grating 2.
  • the radiation image detector 3 can detect the fringe image modulated due to the subject B. That is, even with the configuration of the mammography apparatus 140, a phase contrast image of the subject B can be obtained based on the principle described above.
  • the configuration in which the subject is arranged between the first grating 2 and the second grating 3 is not limited to the mammography apparatus, and can be applied to other X-ray imaging systems.
  • the mammography apparatus 150 includes an interlocking mechanism 151 that moves the X-ray source storage unit 132 and the imaging unit 12 in an interlocking manner.
  • the interlocking mechanism 151 is controlled by the control device 200 described above, and the X-ray source storage unit 132 and the imaging unit 12 are moved to the Z direction while the relative positions of the radiation source 1, the grating 2, and the radiation image detector 3 are kept the same. Move in the direction.
  • the position of the subject B is fixed by the imaging stand 133 and the compression plate 134.
  • the control device 200 controls the interlocking movement mechanism 151 so that the distance from the subject B to the imaging stage 133 is a distance corresponding to the enlargement factor.
  • the storage unit 132 and the photographing unit 12 are moved.
  • the positional relationship with calcification, mass, and mammary gland structure is important, and when it is desired to diagnose a suspicious lesion more precisely, it is necessary to increase the resolution of the image.
  • the magnified photography used is effective. Since other configurations and operations are the same as those of the mammography apparatus 130, description thereof will be omitted.
  • FIG. 40 shows a mammography apparatus 160 according to another embodiment that enables enlargement of the subject B.
  • the mammography apparatus 160 includes a detector moving mechanism 161 that moves the radiation image detector 4 in the Z direction. As the radiation image detector 4 is moved away from the radiation source 1, the image incident on the radiation image detector 4 spreads, and the subject B is magnified.
  • the detector moving mechanism 161 is controlled by the control device 200 described above, and moves the radiation image detector 4 to a position corresponding to the enlargement ratio input from the input device 201 described above. Since other configurations and operations are the same as those of the mammography apparatus 130, description thereof will be omitted.
  • the X-ray imaging system 170 shown in FIG. 41 differs from the X-ray imaging system 100 in that a multi-slit 173 is provided in the collimator unit 172 of the radiation source 121. Since other configurations are the same as those of the X-ray imaging system 100, description thereof will be omitted. The effects of the multi-slit 173 and the configuration conditions thereof are as described above.
  • a single composite image is obtained by positioning a radiation source and an imaging unit and performing a series of imaging, but the radiation source and the imaging unit are connected to the optical axis of the X-ray.
  • a plurality of composite images partially overlapping each other may be obtained by performing the series of photographing a plurality of times while being translated in any direction orthogonal to A. In this case, it is possible to generate a long image that is larger than the size of the detection surface of the radiation image detector by connecting the obtained composite images.
  • the X-ray source holding device 14 and the standing stand 15 are controlled, and the radiation source 1 and the imaging unit 12 are interlocked.
  • the radiation source 1 and the imaging unit 12 are interlocked.
  • the above-mentioned parallel movement is possible by moving the turning arm 121 up and down along the groove 124 of the base 122.
  • a mechanism for translating in the direction orthogonal to the optical axis A may be provided as described above. .
  • Synthetic images composed of phase contrast images enable the visualization of soft tissues such as muscle tendons and blood vessels that were difficult to visualize with conventional X-ray imaging. It is possible that this will occur.
  • the present invention can also be applied to a radiation phase CT apparatus that acquires a three-dimensional image so as to separate the obstacle shadow and enable accurate diagnosis and interpretation.
  • a radiation phase CT apparatus that acquires a three-dimensional image so as to separate the obstacle shadow and enable accurate diagnosis and interpretation.
  • the object 10 disposed between the radiation source 1 and the imaging unit 12 including the first and second gratings 2 and 3 and the radiation image detector 4 is placed on the subject 10.
  • a rotational movement mechanism 170 that rotates the radiation source 1 and the imaging unit 12 in the direction of the arrow in FIG.
  • a three-dimensional image of the subject 10 may be configured by the three-dimensional image configuration unit 171 based on the composite image.
  • the method for constructing a three-dimensional image based on a plurality of images is the same as that of a conventional X-ray CT apparatus.
  • the subject 10 may be disposed between the first grating 2 and the second grating 3.
  • a radiation source having the multi-slit described above may be used.
  • a position changing mechanism 190 is provided for changing the position of the radiation source 1 with respect to the subject H and the imaging unit 12 in the arrow direction (Y direction) in FIG.
  • the stereo image construction unit 191 constructs a stereo image of the subject H.
  • the collimator 19a it is preferable to adjust the collimator 19a so that the X-ray irradiation region of the radiation source 1 coincides with the image receiving unit of the imaging unit 12 at the first and second positions. It is also preferable to match the X-ray irradiation area with the image receiving section by changing the angle of the radiation source 1 between the first position and the second position (so-called swinging).
  • the method for constructing a stereo image based on the two images is the same as that of a conventional stereo photographing apparatus.
  • the subject H may be disposed between the first lattice 2 and the second lattice 3.
  • the position of the radiation source 1 is changed along the Y direction (the extending direction of the members 22 and 32 of the first and second gratings 2 and 3), the position of the radiation source 1 is changed.
  • the vignetting of radiation due to the change does not occur.
  • the phase contrast image can be generated by one shooting as compared with the method of generating a phase contrast image by performing a plurality of shootings by translating the conventional grating. Further, it is possible to prevent deterioration of the image quality of the phase contrast image due to the vibration of the apparatus, and further, the apparatus can be simplified and the cost can be reduced because a highly accurate lattice moving mechanism is unnecessary.
  • phase contrast images are generated as described above, and a composite image is generated based on the generated plurality of phase contrast images, for example, an edge having a gentle slope is clearly displayed on the composite image. Can appear.
  • an image that has been difficult to draw can be obtained by acquiring a phase contrast image.
  • conventional X-ray diagnostic imaging is based on an absorption image
  • Corresponding absorption images can help interpretation. For example, it is effective to supplement the portion where the absorption image cannot be expressed by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing, with the information of the phase contrast image.
  • the small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in fields such as cancer and cardiovascular diseases.
  • the arithmetic processing unit 202 is further provided with an absorption image generation unit that generates an absorption image and a small angle scattering image generation unit that generates a small angle scattering image from a plurality of striped images acquired to generate a phase contrast image. May be.
  • the arithmetic processing unit 202 can generate at least one of a phase contrast image, a small angle scattered image, and an absorption image.
  • the absorption image generation unit generates an absorption image by averaging the pixel signal Ik (x, y) obtained for each pixel with respect to k as shown in FIG. is there.
  • the average value may be calculated by simply averaging the pixel signal Ik (x, y) with respect to k. However, when M is small, the error increases, so the pixel signal Ik (x, y) After fitting y) with a sine wave, an average value of the fitted sine wave may be obtained.
  • a rectangular wave or a triangular wave shape may be used.
  • the generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel signal Ik (x, y) with respect to k can be used as long as the amount corresponds to the average value.
  • a method for generating an absorption image by calculating an average value of the pixel signal Ik (x, y) as described above and imaging it will be described more specifically. For example, as shown on the left side of FIG. If the pixel signal Ik (x, y) is detected by each sub-pixel, the pixel signal of the absorption image can be calculated based on the following equation (39), but the absorption image is as shown on the right side of FIG. In order to obtain an absorption image that is compressed by 5 pixels and is easy to see, it is necessary to extend it to 5 pixels in the y direction.
  • an absorption image is generated by calculating a moving average of the pixel signals of five subpixels. You may do it. That is, the absorption image may be calculated based on the following formula (40) to generate an absorption image as shown on the right side of FIG.
  • the cycle of the sin curve is exactly one cycle, so that the center of amplitude can be obtained by taking an average value.
  • the average value of the amplitude can be obtained from the set of I (1,1) to I (1,5) and the set of I (1,2) to I (1,6).
  • the small-angle scattered image generation unit generates a small-angle scattered image by calculating and imaging the amplitude value of the pixel signal Ik (x, y) obtained for each pixel.
  • the amplitude value may be calculated by obtaining a difference between the maximum value and the minimum value of the pixel signal Ik (x, y). However, when M is small, the error increases, and therefore the pixel signal Ik. After fitting (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained.
  • the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
  • the phase contrast image is based on the X-ray refraction component in the periodic arrangement direction (X direction) of the members 22 and 32 of the first and second gratings 2 and 3, and the extending direction (Y The direction (refractive component) is not reflected. That is, a part outline along a direction intersecting the X direction (or Y direction when orthogonal) is drawn as a phase contrast image based on a refractive component in the X direction via a lattice plane that is an XY plane. A part contour that does not intersect the direction and extends along the X direction is not drawn as a phase contrast image in the X direction. That is, there is a part that cannot be depicted depending on the shape and orientation of the part to be the subject H.
  • the part contour near the load surface (YZ surface) substantially along the Y direction is sufficiently depicted.
  • tissue around the cartilage (tendon, ligament, etc.) that intersects the load surface and extends substantially along the X direction is insufficient.
  • the first and second imaginary lines (X-ray optical axis A) orthogonal to the centers of the lattice planes of the first and second gratings 2 and 3 are centered.
  • 2 is provided with a rotation mechanism 180 that rotates the grids 2 and 3 at an arbitrary angle from the first orientation as shown in the upper diagram of FIG. 49 to have the second orientation as shown in the lower diagram of FIG.
  • the first and second phase contrast images and the composite image are generated in each of the first direction and the second direction.
  • 49 shows the first direction of the first and second gratings 2 and 3 such that the extending direction of the member 32 of the second grating 3 is the direction along the Y direction.
  • the first and second gratings 2, 3 are rotated 90 degrees from the state of the upper diagram of FIG. 49 so that the extending direction of the member 32 of the second grating 3 is in the direction along the X direction.
  • the rotation angle of the first and second gratings 2 and 3 is arbitrary. It is.
  • two or more rotation operations such as the third direction and the fourth direction are performed, and the first and second phase contrast images in the respective directions. And a composite image may be generated.
  • the rotation mechanism 180 may be configured to rotate only the first and second gratings 2 and 3 separately from the radiation image detector 4, or the first and second gratings 2 and 2. 3 and the radiation image detector 4 may be rotated together. Furthermore, the generation of the phase contrast image in the first and second directions using the rotation mechanism 180 can be applied to any of the above examples.
  • the multi-slit described above is provided, the multi-slit may be rotated in the same direction as the first grating 2.
  • FIG. 49 shows an example in which the first grating 2 and the second grating 3 are relatively inclined. However, the present invention is not limited to this, and the first grating at the position of the second grating 3 described above is used.
  • a mode in which the pitch of the self-image G1 of the grating 2 and the pitch of the second grating 3 are different from each other is also applicable, and the first grating 2 and the second grating 3 having such a relationship are the same as described above. You may make it rotate 90 degree. Also in this case, the first grating 2 and the second grating 3 are relatively inclined, and the pitch of the self-image G1 of the first grating 2 at the position of the second grating 3 and the second grating 3 The pitch may be different from the pitch.
  • FIG. 50 shows a self-image G1 of the first grating 2 configured as a two-dimensional grating and a second grating 3 configured as a two-dimensional grating.
  • the rotation angle ⁇ of the first grating 2 with respect to the second grating 3 is the same as in the above embodiment, the above equation (11), the above equation (24), the above equation (25), the above equation (34), It is set based on the equation (35) or the above equation (38).
  • the above equation (11), the above equation (24), the above equation (25), the above equation (34), the above equation (35), or the above equation (38) is defined for the subpixel size.
  • the above equation (11), the above equation (24), the above equation (25), the above equation (34), the above equation ⁇ is set so as to satisfy (35) or the above equation (38).
  • M pixel sizes Dx in the X direction as well as the Y direction are one image resolution D in the main scanning direction of the phase contrast image.
  • the first grating 2 is tilted with respect to the second grating 3, and different stripe images are acquired for each pixel Dx also in the X direction.
  • FIG. 50 shows an example in which the first grating 2 and the second grating 3 configured by a two-dimensional grating are relatively inclined, but the present invention is not limited to this, and the second grating 3 described above A mode in which the pitch of the self-image G1 of the first grating 2 at the position and the pitch of the second grating 3 are different from each other is also applicable.
  • the pitch in the X direction of the self-image G1 of the first grating 2 at the position of the second grating 3 is different from the pitch in the X direction of the second grating 3, and the self-image G1
  • the pitch in the Y direction and the pitch in the Y direction of the second grating 3 are different from each other.
  • the first grating 2 and the second grating 3 are relatively inclined, and the pitch of the self-image G1 of the first grating 2 at the position of the second grating 3 and the second grating 3
  • the pitch may be different from the pitch.
  • the radiation image detector having the function of the second grating 3 detects a self-image of the first grating 2 formed by the first grating 2 by passing the radiation through the first grating 2 and A fringe image is generated by intensity modulation of the self-image by accumulating charge signals corresponding to the self-image in a charge storage layer divided into a lattice shape, which will be described later, and outputting the generated fringe image as an image signal It is.
  • FIG. 51A is a perspective view of the radiation image detector 400 having the function of the second grating 3
  • FIG. 51B is a cross-sectional view of the XZ plane of the radiation image detector shown in FIG. 51A
  • FIG. 5151C is the radiation image detector shown in FIG. FIG.
  • the radiation image detector 400 is a first electrode layer 41 that transmits radiation, and is used for recording that generates charges when irradiated with radiation that has passed through the first electrode layer 41.
  • a charge storage layer that acts as an insulator for charges of one polarity and acts as a conductor for charges of the other polarity 43
  • a photoconductive layer for reading 44 that generates charges when irradiated with reading light
  • a second electrode layer 45 are laminated in this order.
  • Each of the above layers is formed in order from the second electrode layer 45 on the glass substrate 46.
  • the radiation image detector 400 having the function of the second grating 3 includes a first electrode layer 41, a recording photoconductive layer 42, a charge storage layer 43, a reading photoconductive layer 44, and a second electrode layer 45. These materials are the same as those of the first electrode layer 41, the recording photoconductive layer 42, the charge storage layer 43, the reading photoconductive layer 44, and the second electrode layer 45 of the radiation image detector 4 in the above embodiment. is there.
  • the radiation image detector 400 having the function of the second grating 3 is different in the shape of the charge storage layer 43 from the radiation image detector 4 of the first and second embodiments.
  • the charge storage layer 43 of the radiation image detector 400 is a line that is parallel to the extending direction of the transparent linear electrode 45a and the light shielding linear electrode 45b of the second electrode layer 45. It is divided into shapes.
  • the charge storage layer 43 is divided at a pitch finer than the arrangement pitch of the transparent linear electrodes 45a or the light shielding linear electrodes 45b.
  • the arrangement pitch P 2 ′ is the same as that of the second lattice 3 of the above embodiment. It is the same as conditions. That is, when the first grating 2 is a phase modulation type grating or an amplitude modulation type grating that gives 90 ° phase modulation, it is determined so as to satisfy the relationship of the following expression (41), and the first grating 2 is 180 ° In the case of a phase modulation type grating that provides phase modulation, it is determined so as to satisfy the relationship of the following equation (42).
  • P 1 is the grating pitch of the first grating 2
  • Z 1 is the distance from the focal point of the radiation source 1 to the first grating 2
  • Z 2 ′ is the first grating. 2 to the detection surface of the radiation image detector 400.
  • the charge storage layer 43 is formed with a thickness of 2 ⁇ m or less in the stacking direction (Z direction).
  • the charge storage layer 43 can be formed, for example, by resistance heating vapor deposition using the above-described material and a mask formed of a metal mask or a fiber having a hole in a metal plate. Further, it may be formed using photolithography.
  • the radiation image detector 400 functions as the second grating 3. This is the same as the condition of the distance between the lattice 2 and the second lattice 3.
  • the first grating 2 projects incident radiation without diffracting, and the distance Z 2 from the first grating 2 to the radiation image detector 400 is set to the Talbot interference distance. May be set independently of each other, or may be a distance satisfying the above equation (28).
  • a self-image of the first lattice 2 formed by the Talbot effect is represented by G1.
  • the carried radiation is irradiated from the first electrode layer 41 side of the radiation image detector 400.
  • the radiation applied to the radiation image detector 400 passes through the first electrode layer 41 and is applied to the recording photoconductive layer 42. Then, a charge pair is generated in the recording photoconductive layer 42 by the irradiation of the radiation, and the positive charge is combined with the negative charge charged in the first electrode layer 41 and disappears, and the negative charge is a latent image. Charges are accumulated in the charge accumulation layer 43 (see FIG. 52B).
  • the charge storage layer 43 is linearly divided at the arrangement pitch as described above, of the charges generated according to the self-image G1 of the first lattice 2 in the recording photoconductive layer 42, Only the charges that are present immediately below the charge storage layer 43 are trapped and stored by the charge storage layer 43, and other charges pass between the linear charge storage layers 43 and pass through the reading photoconductive layer 44. After that, it flows out to the transparent linear electrode 45a and the light shielding linear electrode 45b.
  • the self-image G1 of the first grating 2 is intensity-modulated by superposition with the linear pattern of the charge storage layer 43, and the image signal of the fringe image reflecting the distortion of the wavefront of the self-image by the subject. Is stored in the charge storage layer 43. That is, the charge storage layer 43 performs the same function as the second lattice 3 of the above embodiment.
  • the linear reading light L1 emitted from the linear reading light source 50 is irradiated from the second electrode layer 45 side. Is done.
  • the reading light L1 passes through the transparent linear electrode 45a and is applied to the reading photoconductive layer 44, and the positive charge generated in the reading photoconductive layer 44 due to the irradiation of the reading light L1 is a latent image in the charge storage layer 43.
  • the negative charge is combined with the positive charge charged on the light-shielding linear electrode 45b through the charge amplifier 200 connected to the transparent linear electrode 45a.
  • the radiation image detector 400 is scanned by the linear reading light L1, and each reading line irradiated with the linear reading light L1 is scanned.
  • the image signals are sequentially detected by the above-described operation, and the detected image signals for each reading line are sequentially input and stored in the phase contrast image generation unit 5.
  • the entire surface of the radiation image detector 400 is scanned with the reading light L 1, and the image signal of the entire frame is stored in the phase contrast image generation unit 5.
  • the first and second phase contrast images are generated based on the image signal stored in the phase contrast image generation unit 5, and the first phase contrast image and the second phase are generated.
  • the contrast image and the contrast image are combined to generate a combined image.
  • the recording photoconductive layer 42, the charge storage layer 43, and the reading photoconductive layer 44 are provided between the electrodes.
  • this layer configuration is not necessarily required.
  • the transparent linear electrode 45a and the light-shielding linear electrode of the second electrode layer are provided without providing the reading photoconductive layer 44.
  • a linear charge storage layer 43 may be provided so as to be in direct contact with 45b, and a recording photoconductive layer 42 may be provided on the charge storage layer 43.
  • the recording photoconductive layer 42 also functions as a reading photoconductive layer.
  • the radiation image detector 500 has a structure in which the charge storage layer 43 is provided directly on the second electrode layer 45 without the reading photoconductive layer 44, and the linear charge storage layer 43 is formed by vapor deposition. Therefore, the linear charge storage layer 43 can be easily formed.
  • a metal mask or the like is used to selectively form a linear pattern.
  • a step of setting a metal mask for forming the linear charge accumulation layer 43 by vapor deposition after vapor deposition of the reading photoconductive layer 44 is performed.
  • the reading photoconductive layer 44 is deteriorated or foreign matter is mixed between the photoconductive layers due to an operation in the air between the reading photoconductive layer 44 vapor deposition step and the recording photoconductive layer 42 vapor deposition step. May cause deterioration of quality.
  • the above-described reading photoconductive layer 44 is not provided, it is possible to reduce the operation in the air after vapor deposition of the photoconductive layer, thereby reducing the above-described concern about the quality deterioration.
  • the materials of the recording photoconductive layer 42 and the charge storage layer 43 are the same as those of the radiation image detector 400 described above.
  • the linear configuration of the charge storage layer 43 is the same as that of the above-described radiation image detector.
  • the radiation carrying the self-image G1 of the first grating 2 is radiation. Irradiation is performed from the first electrode layer 41 side of the image detector 4.
  • the radiation applied to the radiation image detector 4 passes through the first electrode layer 41 and is applied to the recording photoconductive layer 42. Then, a charge pair is generated in the recording photoconductive layer 42 by the irradiation of the radiation, and the positive charge is combined with the negative charge charged in the first electrode layer 41 and disappears, and the negative charge is a latent image. Charges are accumulated in the charge accumulation layer 43 (see FIG. 55B). Since the linear charge storage layer 43 in contact with the second electrode layer 45 is an insulating film, the charges reaching the charge storage layer 43 are captured there and go to the second electrode layer 45. Can't, and stays accumulated.
  • the self-image G1 of the first lattice 2 is intensity-modulated by superimposition with the linear pattern of the charge storage layer 43, and a fringe image reflecting the distortion of the wavefront of the self-image G1 by the subject.
  • a signal is accumulated in the charge accumulation layer 43.
  • the linear reading light L1 emitted from the linear reading light source 50 is irradiated from the second electrode layer 45 side.
  • the reading light L1 passes through the transparent linear electrode 45a and is irradiated to the recording photoconductive layer 42 in the vicinity of the charge storage layer 43, and positive charges generated by the irradiation of the reading light L1 are linear charge storage layer 43. Attracted to recombine.
  • the other negative charge is attracted to the transparent linear electrode 45a, and the light shielding linear electrode is connected to the positive charge charged in the transparent linear electrode 45a and the charge amplifier 200 connected to the transparent linear electrode 45a. Combines with the positive charge charged in 45b. As a result, a current flows through the charge amplifier 200, and this current is integrated and detected as an image signal.
  • the charge storage layer 43 is formed by being completely separated into a linear shape.
  • the present invention is not limited to this.
  • the lattice-shaped charge storage layer 43 may be formed by forming a linear pattern on a flat plate shape.
  • the first grating in the radiation phase imaging apparatus of the first and second embodiments is used.
  • the direction in which the first image G1 extends in the first grating 2 and the radiation image detector 400 What is necessary is just to make it incline relatively with the extending
  • the inclination ⁇ of the extending direction of the self-image of the first lattice 2 with respect to the extending direction of the lattice structure of the charge storage layer 43 can be set to a value satisfying the following expression (43).
  • P 1 ′ is the lattice structure of the charge storage layer 43 and the pitch of the self-image of the first lattice 2 at the position of the charge storage layer 43, and D and n are the same as in the above equation (24).
  • 600 linear charge storage layer 43 may be inclined relative to each other.
  • first grating 2 of the self image G1 pitch P 1 'and the grating pitch P 1 of the first grating 2 arrangement pitch P 2 of the lattice structure of the charge storage layer 43' and in the position of the detector 400, 500, 600 Is satisfied when the first grating 2 is a phase modulation type grating or an amplitude modulation type grating that applies 90 ° phase modulation, and the first grating 2 is 180 ° phase modulation.
  • P 1 ′ is an arrangement pitch of the self-image G1 of the first grating 2 at the position of the radiation image detectors 400, 500, and 600, and Z 2 ′ is the radiation image detector 400 from the first grating 2. , 500, 600 to the detection surface.
  • the above equation (45) and the above equation (46) are equations in which Z 1 is replaced with Z 3 (distance between the multi slit and the first lattice 2).
  • the relative rotation angle ⁇ between the stretching direction of the self-image G1 of the first lattice 2 and the stretching direction of the charge storage layer 43, and the self-image of the first lattice 2 The equation showing the relationship between the moire period T generated by G1 and the lattice pattern of the charge storage layer 43 and the subpixel size Dsub is the same as the equation (44).
  • P 1 ′ in the above equation (44) is the pitch of the self-image G1 of the first grating 2 at the position of the radiation image detectors 400, 500, 600.
  • the first lattice 2 and the charge storage layer 43 are arranged so that the extending directions of the lattice patterns are parallel to each other, and the lattice member 22 of the first lattice 2 and The extending direction of the lattice pattern of the charge storage layer 43 and the extending direction of the multi slits may be relatively inclined. With this configuration, the same fringe image signal as in the first and second embodiments can be acquired.
  • first grid 2 and the linear charge storage layer 43 of the radiation image detectors 400, 500, and 600 are not relatively inclined, for example, the extension direction and the line of the self-image G1 of the first grid 2
  • the charge storage layer 43 having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first lattice 2 may be formed so that the extending direction of the charge storage layer 43 is parallel.
  • an image signal representing a moire having a periodic direction in the X direction as shown in FIG. Can be detected. Therefore, for example, as shown by dotted squares in FIG.
  • the first and second embodiments described above Similarly to the above, it is possible to acquire image signals constituting five different fringe images.
  • the charge storage layer 43 having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first grating 2 is formed as described above, the radiation image detectors 400, 500, 600 of the self-image G1 of the first grating 2 are formed.
  • the relationship among the arrangement pitch P 1 ′, the arrangement pitch P 2 ′ of the charge storage layer 43, the moire period T, and the sub-pixel size Dsub is the first lattice in the first and second embodiments.
  • the following equation (48) may be satisfied.
  • the arrangement pitch P 1 ′ of the self-image G1 of the first grating 2 at the position of the radiation image detectors 400, 500, and 600 is a phase modulation type grating in which the first grating 2 applies 90 ° phase modulation.
  • the following expression (49) is satisfied, and in the case where the first grating 3 is a phase modulation type grating giving 180 ° phase modulation, the above expression (50) is satisfied. do it.
  • P 1 is the arrangement pitch of the first grating 2
  • Z 1 is the distance from the focal point of the radiation source 1 to the first grating 2
  • Z 2 ′ is the first grating 2 and radiation. This is the distance from the detection surface of the image detector 400, 500, 600.
  • the charge storage layer 43 having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first grating 2 can be used as described above.
  • the arrangement pitch P 2 of the charge storage layer 43' arrangement pitch P 1 of the first grating 2 self image G1 and the period T of the moire, the sub-pixel size Dsub is The above equation (48) may be satisfied.
  • the relational expression to be satisfied by the arrangement pitch P 1 ′ of the self-image G1 of the first grating 2 is Z 1 in the above expression (49) and the above expression (50) as Z 3 (multi-slit and first It is necessary to satisfy the conditions expressed by the above formula (47).
  • the arrangement pitch of the self-image G1 of the first grating 2 is different from the arrangement pitch of the charge storage layer 43.
  • the arrangement pitch is not limited to this, and for example, radiation emitted from the radiation source 1 is used. Is a cone beam, as in the second grating 3 of the first and second embodiments, as shown in FIG. 22, the self-image G1 of the first grating 2 at the position of Z 2 A charge storage layer 43 having the same arrangement pitch as the arrangement pitch is formed, and the radiation image detectors 400, 500, and 600 having the charge storage layer 43 are made larger than Z 2 (or although not shown, by arranging to move the Z 2 in smaller position), or the arrangement pitch of the first grating 2 self image G1, which is enlarged and the array pitch of the charge storage layer 43 have different configuration.
  • P 1 ′ is the arrangement pitch of the self-image G1 of the first grating 2 at the position of the radiation image detectors 400, 500, and 600 after movement, Z 2 ′, and the first grating 2 The distance to the radiographic image detectors 400, 500, and 600 after the movement is read. Further, as described above, the charge accumulation layer 43 having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first lattice 2 is formed, and further, as described above, the self-image G1 and the charge accumulation of the first lattice 2 are accumulated.
  • the layer 43 may be tilted relatively.
  • an image signal representing a moire having a period in an oblique direction (a direction not parallel to the X direction and the Y direction) as shown in FIG. Can be detected. Therefore, for example, as shown by a dotted square in FIG. 23, if image signals of five pixels arranged in parallel in the Y direction are acquired, they are different from each other as in the first and second embodiments. Image signals constituting five stripe images can be acquired. In FIG. 23, the image signals of five pixels arranged in parallel to the Y direction are acquired.
  • the present invention is not limited to this, and as shown in FIG. 24, 5 pixels arranged in parallel to the X direction.
  • the pixels may be arranged in any direction as long as the image signals of the pixels arranged in the crossing direction other than the direction parallel to or orthogonal to the moire periodic direction are acquired.
  • the periodic direction of the self-image G1 of the first grating 2 or the periodic direction of the charge storage layer 43 is the orthogonal direction in which the pixels of the radiation image detectors 400, 500, and 600 are arranged.
  • the present invention is not limited to this, and as shown in FIG. 25, image signals of five pixels arranged in an oblique direction (a direction not parallel to the X direction and the Y direction) are displayed.
  • the relative angle between the periodic direction of the first lattice 2 and the charge storage layer 43 and the arrangement direction of the pixels of the radiation image detectors 400, 500, 600 may be shifted so as to be acquired.
  • the image signals of a plurality of pixels arranged in a predetermined direction that is parallel to or orthogonal to the moiré periodic direction are acquired as image signals constituting different fringe images.
  • the relationship between the periodic direction of the first lattice 2 and the charge storage layer 43 and the arrangement direction of the pixels of the radiation image detector may be any relationship.
  • the arrangement direction of the pixels of the radiation image detectors 400, 500, and 600 refers to the arrangement direction of the linear electrodes or the scanning direction of the reading light in the radiation image detectors 400, 500, and 600. Due to such a relationship, the subpixel size in the above equation (11), the above equation (43), the above equation (44), or the above equation (48) is not limited to the Y direction, but the pixel in the predetermined direction. It will be the size of.
  • the radiation image detectors 400, 500, and 600 having the function of the second grating 3 are rotated by 90 ° to generate a composite image in each direction.
  • the first grating 2 and the charge storage layer 43 of the radiation image detectors 400, 500, and 600 may have a two-dimensional grating structure.
  • the structure of the two-dimensional lattice of the charge storage layer 43 is the same as the structure of the two-dimensional lattice of the second lattice 3 described above.
  • the pitch of the self-image G1 of the first lattice 2 at the position of the charge storage layer 43 and the charge storage layer 43 are similar to those of the second lattice 3.
  • a form in which the arrangement pitch of the lattice structure is different from the pitch is also applicable.
  • the pitch in the X direction of the self-image G1 of the lattice 2 at the position of the charge storage layer 43 is different from the arrangement pitch in the X direction of the lattice structure of the charge storage layer 43.
  • the pitch in the Y direction is different from the arrangement pitch in the Y direction of the lattice structure of the charge storage layer 43.

Abstract

[Problem] To provide a radiation phase image-capturing device for obtaining a phase-contrast image by using two gratings, wherein a plurality of fringe images for obtaining the phase-contrast image is obtained using a single round of imaging. [Solution] A moiré is generated by the superposition of a second grating with a periodic pattern image from a first grating. An image signal read from a pixel group arranged at a spacing of at least one pixel with respect to a predetermined direction serving as a cross direction other than a direction parallel or perpendicular to the direction of the period of the moiré is obtained on the basis of an image signal of the moiré. With respect to the predetermined direction, the image signals of at least two lines of adjacent pixel groups are used as mutually different fringe image signals to generate an image signal of a single complex pixel and thereby generate a radiation image of a complex pixel unit thereof. The complex pixel is shifted and set by a pixel unit in the predetermined direction, thus generating a plurality of radiation images. A composite image is generated on the basis of the plurality of radiation images.

Description

放射線位相画像撮影装置Radiation phase imaging device
 本発明は、格子を利用した放射線位相画像撮影装置に関するものである。 The present invention relates to a radiation phase image photographing apparatus using a lattice.
 X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被写体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。 X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance. X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
 一般的なX線撮影システムでは、X線を放射するX線源とX線画像を検出するX線画像検出器との間に被写体を配置して、被写体の透過像を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する被写体を構成する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器に入射する。この結果、被写体のX線透過像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。 In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured. In this case, each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector. As an X-ray image detector, a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit is widely used in addition to a combination of an X-ray intensifying screen and a film and a stimulable phosphor.
 しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなり、生体軟部組織やソフトマテリアルなどでは、X線吸収能の差が小さく、従ってX線透過像としての十分な画像の濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が小さいため、画像のコントラストが得られにくい。 However, the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
 近年、被検体の吸収係数の違いによるX線の強度変化に代えて、被検体の屈折率の違いによるX線の位相変化に基づいた位相コントラスト画像を得るX線位相イメージングの研究が行われている。この位相差を利用したX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を取得することができる。 In recent years, research on X-ray phase imaging that obtains a phase contrast image based on a phase change of X-rays due to a difference in refractive index of a subject instead of a change in X-ray intensity due to a difference in absorption coefficient of the subject has been performed. Yes. In X-ray phase imaging using this phase difference, a high-contrast image can be acquired even for a weakly absorbing object with low X-ray absorption ability.
 このようなX線位相イメージングとして、たとえば、特許文献1および特許文献2においては、第1の格子と第2の格子の2つの格子を所定の間隔で平行に配列し、第1の格子によるタルボ干渉効果によって第2の格子の位置に第1の格子の自己像を形成し、この自己像を第2の格子によって強度変調することによって放射線位相コントラスト画像を取得する放射線位相画像撮影装置が提案されている。 As such X-ray phase imaging, for example, in Patent Document 1 and Patent Document 2, two gratings of a first grating and a second grating are arranged in parallel at a predetermined interval, and a Talbot by the first grating is used. A radiation phase imaging apparatus is proposed that forms a self-image of the first grating at the position of the second grating by the interference effect, and obtains a radiation phase contrast image by intensity-modulating the self-image with the second grating. ing.
 そして、特許文献1や特許文献2に記載の放射線位相画像撮影装置においては、第1の格子に対して、第1の格子の面にほぼ平行に第2の格子を配置し、第1の格子または第2の格子を、格子方向にほぼ垂直な方向に、格子ピッチよりも細かい所定量ずつ、相対的に並進移動させながら、その並進移動毎に撮影を行って複数の画像を撮影し、これらの複数の画像に基づいて、被検体との相互作用によって発生したX線の位相変化量(位相シフト微分量)を取得する縞走査法が行われる。そして、この位相シフト微分量に基づいて被検体の位相コントラスト画像を取得することができる。 In the radiation phase image capturing apparatus described in Patent Document 1 or Patent Document 2, the second grating is disposed substantially parallel to the surface of the first grating with respect to the first grating, and the first grating Alternatively, the second grating is relatively translated by a predetermined amount finer than the grating pitch in a direction substantially perpendicular to the grating direction, and a plurality of images are taken by taking images for each translation movement. On the basis of the plurality of images, a fringe scanning method for acquiring the amount of X-ray phase change (phase shift differential amount) generated by the interaction with the subject is performed. A phase contrast image of the subject can be acquired based on the phase shift differential amount.
国際公開WO2008/102654号公報International Publication WO2008 / 102654 特開2010-190777号公報JP 2010-190777 A
 しかしながら、特許文献1および特許文献2に記載の放射線位相画像撮影装置においては、上述したように第1または第2の格子を、その格子ピッチよりも細かいピッチで精度よく移動させる必要がある。格子ピッチは典型的には数μmであり、格子の送り精度はさらに高い精度が要求されるため、非常に高精度な移動機構が必要となる結果、機構の複雑化とコストの増大をもたらす。また、格子の移動毎に撮影を行う場合、位相コントラスト画像を取得するための一連の撮影間で、被検体の動きや装置振動などの要因で被検体と撮影系の位置関係がズレることにより、被検体との相互作用で発生したX線の位相変化を正しく導くことができず、結果として、良好な位相コントラスト画像を得ることができないといった問題がある。 However, in the radiation phase image capturing apparatuses described in Patent Document 1 and Patent Document 2, as described above, it is necessary to move the first or second grating with a finer pitch than the grating pitch. The grating pitch is typically several μm, and the feeding accuracy of the grating is required to be higher, so that a very high-precision moving mechanism is required. As a result, the mechanism becomes complicated and the cost increases. In addition, when imaging is performed for each movement of the lattice, the positional relationship between the subject and the imaging system is shifted due to factors such as subject movement and apparatus vibration between a series of imaging for acquiring a phase contrast image. There is a problem that the phase change of the X-ray generated by the interaction with the subject cannot be correctly guided, and as a result, a good phase contrast image cannot be obtained.
 本発明は、上記の事情に鑑み、高精度な移動機構を必要とすることなく、1回の撮影によって良好な位相コントラスト画像を取得することができる放射線位相画像撮影装置を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a radiation phase image photographing apparatus capable of obtaining a good phase contrast image by one photographing without requiring a highly accurate moving mechanism. To do.
 本発明の放射線画像撮影装置は、放射線源と、格子構造が周期的に配置され、放射線源から射出された放射線を通過させて周期パターン像を形成する第1の格子と、格子構造が周期的に配置され、第1の格子により形成された周期パターン像が入射される第2の格子と、第2の格子を透過した放射線を検出する画素が2次元状に配列された放射線画像検出器とを備えた放射線画像撮影装置であって、第1の格子と第2の格子とが、第1の格子によって形成される周期パターン像と第2の格子の重ね合せによってモアレを発生するものであり、放射線画像検出器によって検出されたモアレの画像信号に基づいて、モアレの周期方向に対して平行または直交方向以外の交差方向となる所定方向について、少なくとも1つの画素の間隔を空けて配置された画素群から読み出された画像信号を取得し、上記所定方向について少なくとも2行の隣接する画素群の画像信号に基づいて複合画素の画像信号を生成することによって複合画素単位の放射線画像を生成するとともに、複合画素を上記所定方向に画素単位でずらして設定して複数の放射線画像を生成し、その生成した複数の放射線画像に基づいて合成画像を生成する合成画像生成部を備えたことを特徴とする。
 また、上記本発明の放射線画像撮影装置においては、第1の格子と第2の格子とを、第1の格子によって形成される周期パターン像の延伸方向と第2の格子の延伸方向とが相対的に傾くように配置することができる。
 また、第1の格子と第2の格子とを、モアレの周期Tが下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000001
 ただし、Zは放射線源の焦点と第1の格子との距離、Zは第1の格子と第2の格子との距離、Lは放射線源の焦点と放射線画像検出器との距離、P’は第2の格子の位置における周期パターン像のピッチ、Dsubは画素の上記所定方向のサイズ、θは第1の格子によって形成される周期パターン像の延伸方向と第2の格子の延伸方向とによってなされる角である。
 また、放射線を遮蔽する放射線遮蔽部材が所定のピッチで複数延設されるとともに、放射線源と第1の格子との間に配置され、放射線源から照射された放射線を領域選択的に遮蔽する吸収型格子からなるマルチスリットをさらに設け、第1の格子と第2の格子とを、モアレの周期Tが下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000002
 ただし、Zは放射線源の焦点と第1の格子との距離、Zは第1の格子と第2の格子との距離、Lは放射線源の焦点と放射線画像検出器との距離、P’は第2の格子の位置における周期パターン像のピッチ、Dsubは画素の上記所定方向のサイズ、θは第1の格子によって形成される周期パターン像の延伸方向と第2の格子の延伸方向とによってなされる角である。
 また、マルチスリットのピッチPを、下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000003
 ただし、Zはマルチスリットと第1の格子との距離、Zは第1の格子から第2の格子までの距離、P’は第2の格子の位置における周期パターン像のピッチである。
 また、第1の格子によって形成される周期パターン像と第2の格子との相対的な傾き角θを、下式を満たす値に設定することができる。
Figure JPOXMLDOC01-appb-I000004
 ただし、P’は第2の格子の位置における周期パターン像のピッチ、Dは複合画素を構成する画素の数M×画素の上記所定方向のサイズ、nは0およびMの倍数を除く整数である。
 また、上記所定方向に対する第1の格子の自己像の傾きθ1と、上記所定方向に対する第2の格子の傾きθ2とを、下式を満たす値に設定することができる。
Figure JPOXMLDOC01-appb-I000005
 ただし、P’は第2の格子の位置における第1の周期パターン像のピッチ、DはM個の画素からなる複合画素の上記所定方向のサイズ、nは0およびMの倍数を除く整数である。
 また、第1の格子を、90°の位相変調を与える位相変調型格子または振幅変調型格子とし、第2の格子の位置における周期パターン像のピッチP’および第2の格子のピッチPが、下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000006
 ただし、Pは第1の格子の格子ピッチ、Zは放射線源の焦点から第1の格子までの距離、Zは第1の格子から第2の格子までの距離である。
 また、第1の格子を、180°の位相変調を与える位相変調型格子とし、第2の格子の位置における周期パターン像のピッチP’および第2の格子のピッチPが、下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000007
 ただし、Pは第1の格子の格子ピッチ、Zは放射線源の焦点から第1の格子までの距離、Zは第1の格子から第2の格子までの距離である。
 また、放射線画像検出器として、互いに直交する第1および第2の方向について画素が2次元状に配列されたものを用い、第1の格子によって形成される周期パターン像または第2の格子の延伸方向と第1の方向とを平行にすることができる。
 また、位相画像生成部を、第1の格子によって形成される周期パターン像の延伸方向と第2の格子の延伸方向との相対的な傾きに応じて、第1の方向に所定数の画素を読み出した画像信号に基づいて、複合画素単位の放射線画像を取得するものとできる。
 また、1つの複合画素の上記所定方向の幅の中で複合画素を構成する各画素の画素信号がn(nは0およびMの倍数を除く整数であり、Mは複合画素を構成する画素の数)周期変化するように第1の格子および第2の格子のうちの他方の格子を傾けることができる。
 また、第1の格子と第2の格子とを、第2の格子の位置における周期パターン像のピッチが第2の格子のピッチと異なるように構成することができる。
 また、第1格子によって形成される周期パターン像の延伸方向と第2の格子の延伸方向とを平行にすることができる。
 また、第1の格子と第2の格子とを、モアレの周期Tが下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000008
 ただし、Zは放射線源の焦点と第1の格子との距離、Zは第1の格子と第2の格子との距離、Lは放射線源の焦点と放射線画像検出器との距離、Pは第2の格子のピッチ、P’は第2の格子の位置における周期パターン像のピッチ、Dsubは画素の上記所定方向のサイズである。
 また、放射線を遮蔽する放射線遮蔽部材が所定のピッチで複数延設されるとともに、放射線源と第1の格子との間に配置され、放射線源から照射された放射線を領域選択的に遮蔽する吸収型格子からなるマルチスリットをさらに設け、第1の格子と第2の格子とを、モアレの周期Tが下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000009
 ただし、Zは放射線源の焦点と第1の格子との距離、Zは第1の格子と第2の格子との距離、Lは放射線源の焦点と放射線画像検出器との距離、Pは第2の格子のピッチ、P’は第2の格子の位置における周期パターン像のピッチ、Dsubは画素の上記所定方向のサイズである。
 また、マルチスリットのピッチPが、下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000010
 ただし、Zはマルチスリットと第1の格子との距離、Zは第1の格子から第2の格子までの距離、P’は第2の格子の位置における周期パターン像のピッチである。
 また、第1の格子を、90°の位相変調を与える位相変調型格子または振幅変調型格子とし、第2の格子の位置における周期パターン像のピッチP’が、下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000011
 ただし、Pは第1の格子の格子ピッチ、Zは放射線源の焦点から第1の格子までの距離、Zは第1の格子から第2の格子までの距離である。
 また、第1の格子を、180°の位相変調を与える位相変調型格子とし、第2の格子の位置における周期パターン像のピッチP’が、下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000012
 ただし、Pは格子の格子ピッチ、Zは放射線源の焦点から第1の格子までの距離、Zは第1の格子から第2の格子までの距離である。
 また、第1の格子と第2の格子とを、第2の格子の位置における周期パターン像のピッチが第2の格子のピッチと異なるように構成するとともに、第1の格子によって形成される周期パターン像の延伸方向と第2の格子の延伸方向とが相対的に傾くように配置することができる。
 また、放射線画像検出器として、画像信号を読み出すためのスイッチ素子を備えた画素が2次元状に配列されたものを用いることができる。
The radiographic imaging device of the present invention includes a radiation source, a grating structure periodically arranged, a first grating that forms a periodic pattern image by passing radiation emitted from the radiation source, and the grating structure is periodic. A second grating on which a periodic pattern image formed by the first grating is incident, and a radiation image detector in which pixels that detect radiation transmitted through the second grating are two-dimensionally arranged The first and second gratings generate moiré by overlapping the periodic pattern image formed by the first grating and the second grating. Based on the moire image signal detected by the radiation image detector, at least one pixel is arranged in a predetermined direction that is parallel to or orthogonal to the moire periodic direction. A radiographic image of a composite pixel unit is obtained by acquiring an image signal read from the read pixel group and generating an image signal of the composite pixel based on the image signal of the adjacent pixel group of at least two rows in the predetermined direction. A composite image generation unit that generates and generates a plurality of radiation images by shifting the composite pixel in the predetermined direction in units of pixels and generating a composite image based on the generated plurality of radiation images. It is characterized by.
In the radiographic image capturing apparatus of the present invention, the first grating and the second grating are arranged such that the extending direction of the periodic pattern image formed by the first grating and the extending direction of the second grating are relative to each other. It can arrange so that it may incline.
In addition, the first grating and the second grating can be configured such that the moire period T satisfies the following formula.
Figure JPOXMLDOC01-appb-I000001
Where Z 1 is the distance between the focal point of the radiation source and the first grating, Z 2 is the distance between the first grating and the second grating, L is the distance between the focal point of the radiation source and the radiation image detector, P 1 ′ is the pitch of the periodic pattern image at the position of the second grating, Dsub is the size of the pixel in the predetermined direction, θ is the extending direction of the periodic pattern image formed by the first grating, and the extending direction of the second grating It is the angle made by.
In addition, a plurality of radiation shielding members that shield radiation are extended at a predetermined pitch, and are arranged between the radiation source and the first grating to absorb the radiation irradiated from the radiation source in a region-selective manner. A multi-slit made of a mold grating is further provided, and the first grating and the second grating can be configured such that the moire period T is a value satisfying the following expression.
Figure JPOXMLDOC01-appb-I000002
Where Z 1 is the distance between the focal point of the radiation source and the first grating, Z 2 is the distance between the first grating and the second grating, L is the distance between the focal point of the radiation source and the radiation image detector, P 1 ′ is the pitch of the periodic pattern image at the position of the second grating, Dsub is the size of the pixel in the predetermined direction, θ is the extending direction of the periodic pattern image formed by the first grating, and the extending direction of the second grating It is the angle made by.
Further, the pitch P 3 of the multi-slit may be configured to a value that satisfies the following expression.
Figure JPOXMLDOC01-appb-I000003
Where Z 3 is the distance between the multi-slit and the first grating, Z 2 is the distance from the first grating to the second grating, and P 1 ′ is the pitch of the periodic pattern image at the position of the second grating. .
Further, the relative inclination angle θ between the periodic pattern image formed by the first grating and the second grating can be set to a value satisfying the following expression.
Figure JPOXMLDOC01-appb-I000004
Where P 1 ′ is the pitch of the periodic pattern image at the position of the second grating, D is the number of pixels constituting the composite pixel M × the size of the pixel in the predetermined direction, and n is an integer excluding 0 and a multiple of M is there.
Further, the inclination θ1 of the self-image of the first grating with respect to the predetermined direction and the inclination θ2 of the second grating with respect to the predetermined direction can be set to values satisfying the following expression.
Figure JPOXMLDOC01-appb-I000005
Where P 1 ′ is the pitch of the first periodic pattern image at the position of the second lattice, D is the size of the composite pixel composed of M pixels in the predetermined direction, and n is an integer excluding 0 and a multiple of M. is there.
Further, the first grating, and a phase modulation type grating or amplitude modulation type grating providing a phase modulation of 90 °, the pitch P 2 of the pitch P 1 'and the second grating periodic pattern image at the position of the second grating Can be configured to satisfy the following formula.
Figure JPOXMLDOC01-appb-I000006
Where P 1 is the grating pitch of the first grating, Z 1 is the distance from the focal point of the radiation source to the first grating, and Z 2 is the distance from the first grating to the second grating.
Further, the first grating, and a phase modulation type grating that provides a phase modulation of 180 °, the pitch P 1 'and the pitch P 2 of the second grating periodic pattern image at the position of the second grating, the formula It can be configured to satisfy the value.
Figure JPOXMLDOC01-appb-I000007
Where P 1 is the grating pitch of the first grating, Z 1 is the distance from the focal point of the radiation source to the first grating, and Z 2 is the distance from the first grating to the second grating.
Further, as a radiation image detector, a pixel in which pixels are two-dimensionally arranged in the first and second directions orthogonal to each other is used, and a periodic pattern image formed by the first grating or the extension of the second grating The direction and the first direction can be parallel.
Further, the phase image generation unit sets a predetermined number of pixels in the first direction according to a relative inclination between the extending direction of the periodic pattern image formed by the first grating and the extending direction of the second grating. Based on the read image signal, a radiation image in units of composite pixels can be acquired.
In addition, the pixel signal of each pixel constituting the composite pixel within the width in the predetermined direction of one composite pixel is n (n is an integer excluding 0 and a multiple of M, and M is the pixel constituting the composite pixel. Number) The other of the first and second gratings can be tilted so that the period changes.
Further, the first grating and the second grating can be configured such that the pitch of the periodic pattern image at the position of the second grating is different from the pitch of the second grating.
Moreover, the extending direction of the periodic pattern image formed by the first grating and the extending direction of the second grating can be made parallel.
In addition, the first grating and the second grating can be configured such that the moire period T satisfies the following formula.
Figure JPOXMLDOC01-appb-I000008
Where Z 1 is the distance between the focal point of the radiation source and the first grating, Z 2 is the distance between the first grating and the second grating, L is the distance between the focal point of the radiation source and the radiation image detector, P 2 is the pitch of the second grating, P 1 ′ is the pitch of the periodic pattern image at the position of the second grating, and Dsub is the size of the pixel in the predetermined direction.
In addition, a plurality of radiation shielding members that shield radiation are extended at a predetermined pitch, and are arranged between the radiation source and the first grating to absorb the radiation irradiated from the radiation source in a region-selective manner. A multi-slit made of a mold grating is further provided, and the first grating and the second grating can be configured such that the moire period T is a value satisfying the following expression.
Figure JPOXMLDOC01-appb-I000009
Where Z 1 is the distance between the focal point of the radiation source and the first grating, Z 2 is the distance between the first grating and the second grating, L is the distance between the focal point of the radiation source and the radiation image detector, P 2 is the pitch of the second grating, P 1 ′ is the pitch of the periodic pattern image at the position of the second grating, and Dsub is the size of the pixel in the predetermined direction.
The pitch P 3 of the multi-slit may be configured to a value that satisfies the following expression.
Figure JPOXMLDOC01-appb-I000010
Where Z 3 is the distance between the multi-slit and the first grating, Z 2 is the distance from the first grating to the second grating, and P 1 ′ is the pitch of the periodic pattern image at the position of the second grating. .
Further, the first grating is a phase modulation type grating or amplitude modulation type grating that applies 90 ° phase modulation, and the pitch P 1 ′ of the periodic pattern image at the position of the second grating is a value that satisfies the following expression. It can be constituted as follows.
Figure JPOXMLDOC01-appb-I000011
Where P 1 is the grating pitch of the first grating, Z 1 is the distance from the focal point of the radiation source to the first grating, and Z 2 is the distance from the first grating to the second grating.
The first grating is a phase modulation type grating that applies 180 ° phase modulation, and the pitch P 1 ′ of the periodic pattern image at the position of the second grating is configured to satisfy the following expression. Can do.
Figure JPOXMLDOC01-appb-I000012
Where P 1 is the grating pitch of the grating, Z 1 is the distance from the focal point of the radiation source to the first grating, and Z 2 is the distance from the first grating to the second grating.
Further, the first grating and the second grating are configured so that the pitch of the periodic pattern image at the position of the second grating is different from the pitch of the second grating, and the period formed by the first grating. It can arrange | position so that the extending | stretching direction of a pattern image and the extending | stretching direction of a 2nd grating | lattice may incline relatively.
In addition, as the radiation image detector, a pixel in which pixels provided with a switch element for reading an image signal are two-dimensionally arranged can be used.
 また、線状の読取光を出射する線状読取光源を設け、放射線画像検出器を、線状読取光源が走査されることによって画像信号が読み出されるものとすることができる。 Also, a linear reading light source that emits linear reading light may be provided, and the radiographic image detector may read an image signal by scanning the linear reading light source.
 また、第2の格子を、第1の格子からタルボ干渉距離の位置に配置し、第1の格子のタルボ干渉効果によって形成される周期パターン像に強度変調を与えるものとできる。 Further, the second grating can be arranged at a position of the Talbot interference distance from the first grating, and intensity modulation can be applied to the periodic pattern image formed by the Talbot interference effect of the first grating.
 また、第1の格子を、放射線を投影像として通過させて周期パターン像を形成する吸収型格子とし、第2の格子を、第1の格子を通過した投影像としての周期パターン像に強度変調を与えるものとできる。 Further, the first grating is an absorption grating that forms a periodic pattern image by passing radiation as a projected image, and the second grating is intensity-modulated into a periodic pattern image as a projected image that has passed through the first grating. Can be given.
 また、第2の格子を、第1の格子から最小のタルボ干渉距離より短い距離に配置することができる。 Also, the second grating can be arranged at a distance shorter than the minimum Talbot interference distance from the first grating.
 また、上記所定方向の複合画素のサイズよりも上記所定方向に直交する方向の複合画素のサイズの方を小さくすることができる。 Also, the size of the composite pixel in the direction orthogonal to the predetermined direction can be made smaller than the size of the composite pixel in the predetermined direction.
 また、合成画像生成部を、放射線画像として位相コントラスト画像、小角散乱画像および吸収画像のうちの少なくとも1つを生成するものとできる。 Further, the composite image generation unit can generate at least one of a phase contrast image, a small angle scattered image, and an absorption image as a radiation image.
 また、第1および第2の格子の格子面の中心に直交する回転軸を中心として、第1および第2の格子を、その格子の延伸方向から90°回転させる回転機構を設けることができる。 Further, it is possible to provide a rotation mechanism that rotates the first and second gratings by 90 ° from the extending direction of the gratings around the rotation axis orthogonal to the centers of the lattice planes of the first and second gratings.
 また、第1および第2の格子を2次元格子の構造とすることができる。 Also, the first and second gratings can have a two-dimensional grating structure.
 本発明の放射線画像撮影装置は、放射線源と、格子構造が周期的に配置され、放射線源から射出された放射線を通過させて周期パターン像を形成する格子と、格子によって形成された周期パターン像を透過する第1の電極層と、第1の電極層を透過した周期パターン像の照射を受けて電荷を発生する光導電層と、光導電層において発生した電荷を蓄積する電荷蓄積層と、読取光を透過する線状電極が多数配列された第2の電極層とがこの順に積層され、読取光によって走査されることによって各線状電極に対応する画素毎の画像信号が読み出される放射線画像検出器とを備え、電荷蓄積層が、線状電極の配列ピッチよりも細かいピッチで格子状に形成されたものであり、格子と電荷蓄積層とが、格子によって形成される周期パターン像と電荷蓄積層の配列パターンとの重ね合せによってモアレを表す画像信号を生成するように構成されたものであり、放射線画像検出器によって検出されたモアレを表す画像信号に基づいて、モアレの周期方向に対して平行または直交方向以外の交差方向となる所定方向について、少なくとも1つの画素の間隔を空けて配置された画素群から読み出された画像信号を取得し、所上記所定方向について少なくとも2行の隣接する画素群の画像信号に基づいて複合画素の画像信号を生成することによって複合画素単位の放射線画像を生成するとともに、複合画素を上記所定方向に画素単位でずらして設定して複数の放射線画像を生成し、その生成した複数の放射線画像に基づいて合成画像を生成する合成画像生成部を備えたことを特徴とする。
 また、上記本発明の放射線画像撮影装置においては、格子と放射線画像検出器とを、格子の延伸方向と電荷蓄積層の格子パターンの延伸方向とが相対的に傾くように配置することができる。
 また、格子と電荷蓄積層とを、モアレの周期Tが下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000013
 ただし、P’は放射線画像検出器の位置における周期パターン像のピッチ、Dsubは画素の上記所定方向のサイズ、θは格子によって形成される周期パターン像の延伸方向と電荷蓄積層の延伸方向とによってなされる角である。
 また、放射線を遮蔽する放射線遮蔽部材が所定のピッチで複数延設されるとともに、放射線源と格子との間に配置され、放射線源から照射された放射線を領域選択的に遮蔽する吸収型格子からなるマルチスリットをさらに設け、格子と電荷蓄積層とを、モアレの周期Tが下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000014
 ただし、P’は放射線画像検出器の位置における周期パターン像のピッチ、Dsubは画素の上記所定方向のサイズ、θは格子によって形成される周期パターン像の延伸方向と電荷蓄積層の延伸方向とによってなされる角である。
 また、マルチスリットのピッチPが、下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000015
 ただし、Zはマルチスリットと格子との距離、Z’は格子から放射線画像検出器の検出面までの距離、P’は放射線画像検出器の位置における周期パターン像のピッチである。
 また、格子によって形成される周期パターン像と電荷蓄積層との相対的な傾き角θを、下式を満たす値に設定することができる。
Figure JPOXMLDOC01-appb-I000016
 ただし、P’は放射線画像検出器の位置における周期パターン像のピッチ、Dは縞画像の数M×画素の上記所定方向のサイズ、nは0およびMの倍数を除く整数である。
 また、電荷蓄積層の格子構造の延伸方向に対する格子の自己像の傾きθを、下式を満たす値に設定することができる。
Figure JPOXMLDOC01-appb-I000017
 ただし、P’は電荷蓄積層の格子構造および電荷蓄積層の位置における格子の周期パターン像のピッチ、DはM個の画素からなる複合画素の上記所定方向のサイズ、nは0およびMの倍数を除く整数である。
 また、格子を、90°の位相変調を与える位相変調型格子または振幅変調型格子とし、放射線画像検出器の位置における周期パターン像のピッチP’および電荷蓄積層の格子構造の配列ピッチP’が、下式を満たすように構成することができる。
Figure JPOXMLDOC01-appb-I000018
 ただし、Pは格子の格子ピッチ、Zは放射線源の焦点から格子までの距離、Z’は格子から放射線画像検出器の検出面までの距離である。
 また、格子を、180°の位相変調を与える位相変調型格子とし、放射線画像検出器の位置における周期パターン像のピッチP’および電荷蓄積層の格子構造の配列ピッチP’が、下式を満たすように構成することができる。
Figure JPOXMLDOC01-appb-I000019
 ただし、Pは格子の格子ピッチ、Zは放射線源の焦点から格子までの距離、Z’は格子から放射線画像検出器の検出面までの距離である。
 また、格子と電荷蓄積層とを、放射線画像検出器の位置における周期パターン像のピッチが電荷蓄積層の格子構造の配列ピッチと異なるように構成することができる。
 また、放射線画像検出器の位置における周期パターン像の延伸方向と電荷蓄積層の格子構造の延伸方向とを平行にすることができる。
 また、格子と電荷蓄積層とを、モアレの周期Tが下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000020
 ただし、P’は放射線画像検出器の位置における周期パターン像のピッチ、P’は電荷蓄積層の格子構造の配列ピッチ、Dsubは画素の上記所定方向のサイズである。
 また、放射線を遮蔽する放射線遮蔽部材が所定のピッチで複数延設されるとともに、放射線源と格子との間に配置され、放射線源から照射された放射線を領域選択的に遮蔽する吸収型格子からなるマルチスリットをさらに設け、格子と電荷蓄積層とを、モアレの周期Tが下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000021
 ただし、P’は放射線画像検出器の位置における周期パターン像のピッチ、P’は電荷蓄積層の格子構造の配列ピッチ、Dsubは画素の上記所定方向のサイズ
 また、マルチスリットのピッチPが、下式を満たす値となるように構成することができる。
Figure JPOXMLDOC01-appb-I000022
 ただし、Zはマルチスリットと格子との距離、Z’は格子から放射線画像検出器の検出面までの距離、P’は前記放射線画像検出器の位置における前記周期パターン像のピッチである。
 また、格子を、90°の位相変調を与える位相変調型格子または振幅変調型格子とし、放射線画像検出器の位置における周期パターン像のピッチP’が、下式を満たすように構成することができる。
Figure JPOXMLDOC01-appb-I000023
 ただし、Pは格子の格子ピッチ、Zは放射線源の焦点から格子までの距離、Z’は格子から放射線画像検出器の検出面までの距離である。
 また、格子を、180°の位相変調を与える位相変調型格子とし、放射線画像検出器の位置における周期パターン像のピッチP’が、下式を満たすように構成することができる。
Figure JPOXMLDOC01-appb-I000024
 ただし、Pは格子の格子ピッチ、Zは放射線源の焦点から格子までの距離、Z’は格子から放射線画像検出器の検出面までの距離である。
 また、格子と電荷蓄積層とを、放射線画像検出器の位置における周期パターン像のピッチが電荷蓄積層の格子構造の配列ピッチと異なるように構成するとともに、格子の延伸方向と電荷蓄積層の格子パターンの延伸方向とが相対的に傾くように配置することができる。
The radiographic image capturing apparatus of the present invention includes a radiation source, a grating in which a grating structure is periodically arranged, a grating that forms a periodic pattern image by passing radiation emitted from the radiation source, and a periodic pattern image formed by the grating. A first electrode layer that transmits light, a photoconductive layer that generates charges upon irradiation of a periodic pattern image transmitted through the first electrode layer, a charge storage layer that stores charges generated in the photoconductive layer, Radiation image detection in which a second electrode layer in which a large number of linear electrodes that transmit reading light are arranged is stacked in this order, and an image signal for each pixel corresponding to each linear electrode is read by scanning with the reading light And the charge storage layer is formed in a lattice pattern with a pitch smaller than the arrangement pitch of the linear electrodes, and the lattice and the charge storage layer are formed of a periodic pattern image and a charge formed by the lattice. It is configured to generate an image signal representing moire by superimposing with an array pattern of layers, and based on the image signal representing moire detected by the radiation image detector, with respect to the periodic direction of moire An image signal read from a group of pixels arranged with an interval between at least one pixel is obtained in a predetermined direction which is a cross direction other than a parallel or orthogonal direction, and at least two rows adjacent to each other in the predetermined direction. A composite pixel unit radiation image is generated by generating a composite pixel image signal based on a pixel group image signal, and a plurality of radiation images are generated by setting the composite pixel by shifting the pixel unit in the predetermined direction. And a composite image generation unit that generates a composite image based on the plurality of generated radiation images.
In the radiographic image capturing apparatus of the present invention, the grid and the radiographic image detector can be arranged so that the extending direction of the lattice and the extending direction of the lattice pattern of the charge storage layer are relatively inclined.
Further, the lattice and the charge storage layer can be configured such that the moire period T satisfies the following formula.
Figure JPOXMLDOC01-appb-I000013
Where P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector, Dsub is the size of the pixel in the predetermined direction, θ is the extending direction of the periodic pattern image formed by the grating, and the extending direction of the charge storage layer. Is the horn made by.
In addition, a plurality of radiation shielding members for shielding radiation are extended at a predetermined pitch, arranged between the radiation source and the grating, and from an absorption type grating that selectively shields radiation irradiated from the radiation source. The multi-slit can be further provided, and the lattice and the charge storage layer can be configured such that the moire period T satisfies the following formula.
Figure JPOXMLDOC01-appb-I000014
Where P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector, Dsub is the size of the pixel in the predetermined direction, θ is the extending direction of the periodic pattern image formed by the grating, and the extending direction of the charge storage layer. Is the horn made by.
The pitch P 3 of the multi-slit may be configured to a value that satisfies the following expression.
Figure JPOXMLDOC01-appb-I000015
Here, Z 3 is the distance between the multi-slit and the grating, Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector, and P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector.
Further, the relative inclination angle θ between the periodic pattern image formed by the grating and the charge storage layer can be set to a value satisfying the following expression.
Figure JPOXMLDOC01-appb-I000016
Here, P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector, D is the number of fringe images M × the size of the pixels in the predetermined direction, and n is an integer excluding 0 and a multiple of M.
Further, the inclination θ of the self-image of the lattice with respect to the extending direction of the lattice structure of the charge storage layer can be set to a value satisfying the following expression.
Figure JPOXMLDOC01-appb-I000017
However, P 1 'is the pitch of the periodic pattern image of the grating at the position of the lattice structure and the charge storage layer of the charge storage layer, D is the predetermined direction of the size of the composite pixels of M pixels, n represents 0 and M It is an integer excluding multiples.
Further, the grating is a phase modulation type grating or amplitude modulation type grating that applies 90 ° phase modulation, and the pitch P 1 ′ of the periodic pattern image at the position of the radiation image detector and the arrangement pitch P 2 of the grating structure of the charge storage layer. 'Can be configured to satisfy:
Figure JPOXMLDOC01-appb-I000018
Here, P 1 is the grating pitch of the grating, Z 1 is the distance from the focal point of the radiation source to the grating, and Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector.
In addition, the grating is a phase modulation type grating that applies 180 ° phase modulation, and the pitch P 1 ′ of the periodic pattern image and the arrangement pitch P 2 ′ of the grating structure of the charge storage layer at the position of the radiation image detector are Can be configured to satisfy.
Figure JPOXMLDOC01-appb-I000019
Here, P 1 is the grating pitch of the grating, Z 1 is the distance from the focal point of the radiation source to the grating, and Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector.
Further, the grid and the charge storage layer can be configured such that the pitch of the periodic pattern image at the position of the radiation image detector is different from the arrangement pitch of the grid structure of the charge storage layer.
In addition, the extending direction of the periodic pattern image at the position of the radiation image detector can be made parallel to the extending direction of the lattice structure of the charge storage layer.
Further, the lattice and the charge storage layer can be configured such that the moire period T satisfies the following formula.
Figure JPOXMLDOC01-appb-I000020
Here, P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector, P 2 ′ is the arrangement pitch of the lattice structure of the charge storage layer, and Dsub is the size of the pixel in the predetermined direction.
In addition, a plurality of radiation shielding members for shielding radiation are extended at a predetermined pitch, arranged between the radiation source and the grating, and from an absorption type grating that selectively shields radiation irradiated from the radiation source. The multi-slit can be further provided, and the lattice and the charge storage layer can be configured such that the moire period T satisfies the following formula.
Figure JPOXMLDOC01-appb-I000021
However, P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector, P 2 ′ is the arrangement pitch of the lattice structure of the charge storage layer, Dsub is the size of the pixel in the predetermined direction, and the multi-slit pitch P 3 Can be configured to satisfy the following formula.
Figure JPOXMLDOC01-appb-I000022
Where Z 3 is the distance between the multi-slit and the grating, Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector, and P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector. .
Further, the grating may be a phase modulation type grating or an amplitude modulation type grating that applies 90 ° phase modulation, and the pitch P 1 ′ of the periodic pattern image at the position of the radiation image detector may be configured to satisfy the following expression. it can.
Figure JPOXMLDOC01-appb-I000023
Here, P 1 is the grating pitch of the grating, Z 1 is the distance from the focal point of the radiation source to the grating, and Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector.
Further, the grating may be a phase modulation type grating that applies 180 ° phase modulation, and the pitch P 1 ′ of the periodic pattern image at the position of the radiation image detector may be configured to satisfy the following expression.
Figure JPOXMLDOC01-appb-I000024
Here, P 1 is the grating pitch of the grating, Z 1 is the distance from the focal point of the radiation source to the grating, and Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector.
Further, the grid and the charge storage layer are configured such that the pitch of the periodic pattern image at the position of the radiation image detector is different from the arrangement pitch of the grid structure of the charge storage layer, and the extension direction of the grid and the grid of the charge storage layer It can arrange | position so that the extending | stretching direction of a pattern may incline relatively.
 また、電荷蓄積層の格子構造を、線状電極と平行となるように形成することができる。 Also, the lattice structure of the charge storage layer can be formed so as to be parallel to the linear electrode.
 また、電荷蓄積層の積層方向の厚さを2μm以下とすることができる。 Further, the thickness of the charge storage layer in the stacking direction can be set to 2 μm or less.
 また、電荷蓄積層の誘電率を、光導電層の誘電率の2倍以内かつ1/2倍以上とすることができる。 In addition, the dielectric constant of the charge storage layer can be set to be within 2 times or more than 1/2 the dielectric constant of the photoconductive layer.
 また、放射線画像検出器を、格子からタルボ干渉距離の位置に配置し、格子のタルボ干渉効果によって形成される周期パターン像に強度変調を与えるものとできる。 Also, the radiation image detector can be arranged at a position of the Talbot interference distance from the grating, and intensity modulation can be applied to the periodic pattern image formed by the Talbot interference effect of the grating.
 また、格子を、放射線を投影像として通過させて周期パターン像を形成する吸収型格子とし、放射線画像検出器を、格子を通過した投影像としての周期パターン像に強度変調を与えるものとできる。 Further, the grating can be an absorption grating that forms a periodic pattern image by passing radiation as a projection image, and the radiation image detector can modulate intensity of the periodic pattern image as a projection image that has passed through the grating.
 また、放射線画像検出器を、格子から最小のタルボ干渉距離より短い距離に配置することができる。 Also, the radiation image detector can be arranged at a distance shorter than the minimum Talbot interference distance from the grating.
 本発明の放射線画像撮影装置は、放射線源と、格子構造が周期的に配置され、放射線源から射出された放射線を通過させて周期パターン像を形成する第1の格子と、格子構造が周期的に配置され、第1の格子により形成された周期パターン像が入射される第2の格子と、第2の格子を透過した放射線を検出する画素が2次元状に配列された放射線画像検出器とを備えた放射線画像撮影装置であって、放射線を遮蔽する放射線遮蔽部材が所定のピッチで複数延設されるとともに、放射線源と第1の格子との間に配置され、放射線源から照射された放射線を領域選択的に遮蔽する吸収型格子からなるマルチスリットを備え、該マルチスリットと第1の格子および第2の格子とが、マルチスリットにより形成されたスリット像と第1の格子および第2の格子の格子パターンとの重ね合せによってモアレを表す画像信号を生成するように構成されたものであり、放射線画像検出器によって検出されたモアレを表す画像信号に基づいて、モアレの周期方向に対して平行または直交方向以外の交差方向となる所定方向について、少なくとも1つの画素の間隔を空けて配置された画素群から読み出された画像信号を取得し、上記所定方向について少なくとも2行の隣接する画素群の画像信号に基づいて複合画素の画像信号を生成することによって複合画素単位の放射線画像を生成するとともに、複合画素を上記所定方向に画素単位でずらして設定して複数の放射線画像を生成し、該生成した複数の放射線画像に基づいて合成画像を生成する合成画像生成部を備えたことを特徴とする。
 また、上記本発明の放射線画像撮影装置において、マルチスリットを、そのマルチスリットの延伸方向と第1の格子および第2の格子の延伸方向とが相対的に傾くように配置することができる。
 また、マルチスリットと第1の格子とを、第1の格子の位置におけるスリット像のピッチが第1の格子の格子パターンのピッチと異なるように構成することができる。
The radiographic imaging device of the present invention includes a radiation source, a grating structure periodically arranged, a first grating that forms a periodic pattern image by passing radiation emitted from the radiation source, and the grating structure is periodic. A second grating on which a periodic pattern image formed by the first grating is incident, and a radiation image detector in which pixels that detect radiation transmitted through the second grating are two-dimensionally arranged A plurality of radiation shielding members that shield radiation, and are arranged between the radiation source and the first grating and irradiated from the radiation source. A multi-slit composed of an absorption-type grating that selectively shields radiation; and the multi-slit, the first grating, and the second grating include a slit image formed by the multi-slit, the first grating, and the first grating. The image signal representing the moire is generated by superimposing the lattice pattern of the grating on the basis of the image signal representing the moire detected by the radiation image detector with respect to the periodic direction of the moire. Image signals read from a group of pixels arranged at an interval of at least one pixel in a predetermined direction that is a crossing direction other than a parallel or orthogonal direction, and adjacent to at least two rows in the predetermined direction A composite pixel unit radiation image is generated by generating a composite pixel image signal based on a pixel group image signal, and a plurality of radiation images are generated by setting the composite pixel by shifting the pixel unit in the predetermined direction. And a composite image generation unit that generates a composite image based on the plurality of generated radiation images.
In the radiographic image capturing apparatus of the present invention, the multi-slit can be arranged so that the extending direction of the multi-slit and the extending directions of the first and second gratings are relatively inclined.
In addition, the multi-slit and the first grating can be configured such that the pitch of the slit image at the position of the first grating is different from the pitch of the grating pattern of the first grating.
 本発明の放射線画像撮影装置は、放射線源と、格子構造が周期的に配置され、放射線源から射出された放射線を通過させて周期パターン像を形成する格子と、格子によって形成された周期パターン像を透過する第1の電極層と、該第1の電極層を透過した周期パターン像の照射を受けて電荷を発生する光導電層と、該光導電層において発生した電荷を蓄積する電荷蓄積層と、読取光を透過する線状電極が多数配列された第2の電極層とがこの順に積層され、読取光によって走査されることによって各線状電極に対応する画素毎の画像信号が読み出される放射線画像検出器とを備えた放射線画像撮影装置であって、放射線を遮蔽する放射線遮蔽部材が所定のピッチで複数延設されるとともに、放射線源と格子との間に配置され、放射線源から照射された放射線を領域選択的に遮蔽する吸収型格子からなるマルチスリットを備え、電荷蓄積層が、線状電極の配列ピッチよりも細かいピッチで格子状に形成されたものであるとともに、該マルチスリットと格子とが、マルチスリットにより形成されたスリット像と格子の格子パターンとの重ね合せによってモアレを表す画像信号を生成するように構成されたものであり、放射線画像検出器によって検出されたモアレを表す画像信号に基づいて、モアレの周期方向に対して平行または直交方向以外の交差方向となる所定方向について、少なくとも1つの画素の間隔を空けて配置された画素群から読み出された画像信号を取得し、上記所定方向について少なくとも2行の隣接する画素群の画像信号に基づいて複合画素の画像信号を生成することによって複合画素単位の放射線画像を生成するとともに、複合画素を上記所定方向に画素単位でずらして設定して複数の放射線画像を生成し、該生成した複数の放射線画像に基づいて合成画像を生成する合成画像生成部を備えたことを特徴とする。
 また、マルチスリットを、該マルチスリットの延伸方向と格子および電荷蓄積層の格子パターンの延伸方向とが相対的に傾くように配置することができる。
 また、マルチスリットと格子とを、格子の位置におけるスリット像のピッチが格子の格子パターンのピッチと異なるように構成することができる。
The radiographic imaging device of the present invention includes a radiation source, a grating structure that is periodically arranged, a grating that forms a periodic pattern image by passing radiation emitted from the radiation source, and a periodic pattern image that is formed by the grating. A first electrode layer that transmits light, a photoconductive layer that generates charges upon irradiation of a periodic pattern image transmitted through the first electrode layer, and a charge storage layer that stores charges generated in the photoconductive layer And a second electrode layer in which a large number of linear electrodes that transmit the reading light are stacked in this order, and the image signal for each pixel corresponding to each linear electrode is read by scanning with the reading light. A radiographic imaging device comprising an image detector, wherein a plurality of radiation shielding members for shielding radiation are extended at a predetermined pitch, and are arranged between a radiation source and a grating, and are irradiated from the radiation source. A multi-slit made of an absorption-type lattice that selectively shields the emitted radiation, and the charge storage layer is formed in a lattice shape with a pitch smaller than the arrangement pitch of the linear electrodes, and the multi-slit And the grating are configured to generate an image signal representing the moire by superimposing the slit image formed by the multi-slit and the grating pattern of the grating, and the moire detected by the radiation image detector is generated. An image signal read from a group of pixels arranged with an interval between at least one pixel in a predetermined direction that is parallel to or orthogonal to the moiré periodic direction based on the image signal that is represented. Acquiring and generating an image signal of a composite pixel based on image signals of adjacent pixel groups in at least two rows in the predetermined direction Therefore, a radiographic image is generated in units of composite pixels, and a plurality of radiographic images are generated by setting the composite pixels to be shifted in units of pixels in the predetermined direction, and a composite image is generated based on the generated radiographic images. A composite image generating unit is provided.
Further, the multi-slit can be arranged so that the extending direction of the multi-slit and the extending direction of the lattice pattern of the lattice and the charge storage layer are relatively inclined.
Further, the multi-slit and the grating can be configured so that the pitch of the slit image at the position of the grating is different from the pitch of the grating pattern of the grating.
 また、放射線源と放射線画像検出器とを水平方向に対向配置し、被検体の立位撮影を可能に構成することができる。 Also, the radiation source and the radiation image detector can be arranged opposite to each other in the horizontal direction so that the subject can be photographed while standing.
 また、放射線源と放射線画像検出器とを上下方向に対向配置し、被検体の臥位撮影を可能に構成することができる。 Also, the radiation source and the radiation image detector can be arranged to face each other in the vertical direction so that the subject can be photographed in the supine position.
 また、放射線源と放射線画像検出器とを旋回アームによって保持し、被検体の立位撮影および臥位撮影を可能に構成することができる。 Also, the radiation source and the radiation image detector can be held by a swivel arm so that the subject can be photographed in a standing position and a standing position.
 また、被検体として乳房を撮影可能に構成されたマンモグラフィ装置とすることができる。 Also, a mammography apparatus configured to be able to photograph a breast as a subject can be provided.
 また、放射線画像検出器に対して放射線が第1の方向から照射される第1の位置と第1の方向とは異なる第2の方向から照射される第2の位置とに放射線源を移動させる移動機構を設け、合成画像生成部を、第1および第2の位置について放射線画像検出器により検出された画像信号に基づいてそれぞれ合成画像を生成するものとし、第1の位置に対応する合成画像と第2の位置に対応する合成画像とに基づいてステレオ画像を構成するステレオ画像構成部を設けることができる。 Further, the radiation source is moved to a first position where the radiation image detector is irradiated with radiation from the first direction and a second position where radiation is irradiated from a second direction different from the first direction. A moving mechanism is provided, and the composite image generation unit generates the composite image based on the image signals detected by the radiation image detector for the first and second positions, and the composite image corresponding to the first position And a stereo image forming unit that forms a stereo image based on the combined image corresponding to the second position can be provided.
 また、放射線源と放射線画像検出器とを被検体の周りを周回させる周回機構を設け、合成画像生成部を、各回転角度で放射線画像検出器によって検出された画像信号に基づいて回転角度毎の合成画像を生成するものとし、その回転角度毎の合成画像に基づいて3次元画像を構成する3次元画像構成部を設けることができる。 In addition, a circulation mechanism that circulates the radiation source and the radiation image detector around the subject is provided, and the composite image generation unit is configured to detect the rotation image for each rotation angle based on the image signal detected by the radiation image detector at each rotation angle. It is assumed that a composite image is generated, and a 3D image configuration unit that configures a 3D image based on the composite image for each rotation angle can be provided.
 本発明の放射線画像撮影装置によれば、第1の格子によって形成される周期パターン像と第2の格子の重ね合せによってモアレを発生させ、放射線画像検出器によって検出されたモアレの画像信号に基づいて、モアレの周期方向に対して平行または直交方向以外の交差方向となる所定方向について、少なくとも1つの画素の間隔を空けて配置された画素群から読み出された画像信号を取得し、上記所定方向について少なくとも2行の隣接する画素群の画像信号を互いに異なる縞画像信号として用いて1つの複合画素の画像信号を生成することによってその複合画素単位の位相コントラスト画像を生成するようにしたので、従来のように第2の格子を移動させる高精度な移動機構を必要とすることなく、1回の撮影によって位相コントラスト画像を取得するための複数の縞画像を取得することができる。 According to the radiographic imaging device of the present invention, moire is generated by superimposing the periodic pattern image formed by the first grating and the second grating, and based on the moire image signal detected by the radiographic image detector. Then, an image signal read from a pixel group arranged at an interval of at least one pixel is obtained in a predetermined direction which is a crossing direction other than a parallel or orthogonal direction to the moiré periodic direction, and the predetermined signal is acquired. Since a composite pixel unit phase contrast image is generated by generating an image signal of one composite pixel using image signals of adjacent pixel groups in at least two rows in the direction as different stripe image signals. Phase contrast can be obtained by a single shooting without the need for a highly accurate moving mechanism that moves the second grating as in the prior art. It is possible to obtain a plurality of fringe images to obtain an image.
 さらに、複合画素を上記所定方向に画素単位でずらして設定して複数の放射線画像を生成し、その生成した複数の放射線画像に基づいて合成画像を生成するようにしたので、たとえば、画素行方向に対して緩やかな傾きを有するエッジについても合成画像上において明確に表れるようにすることができる。なお、この効果については、後で詳述する。 Further, the composite pixel is generated by shifting the pixel unit in the predetermined direction to generate a plurality of radiation images, and the composite image is generated based on the generated plurality of radiation images. In contrast, an edge having a gentle slope can be clearly shown on the composite image. This effect will be described in detail later.
本発明の放射線位相画像撮影装置の第1の実施形態の概略構成図1 is a schematic configuration diagram of a first embodiment of a radiation phase imaging apparatus of the present invention. 図1に示す放射線位相画像撮影装置の上面図1 is a top view of the radiation phase image capturing apparatus shown in FIG. 第1の格子の概略構成図Schematic configuration diagram of the first grating 第2の格子の概略構成図Schematic configuration diagram of second grating 光読取方式の放射線画像検出器の概略構成を示す斜視図The perspective view which shows schematic structure of the radiographic image detector of an optical reading system 図5Aに示す放射線画像検出器のXZ面断面図XZ plane sectional view of the radiation image detector shown in FIG. 5A 図5Aに示す放射線画像検出器のYZ面断面図YZ plane sectional view of the radiation image detector shown in FIG. 5A 第1の格子の自己像、第2の格子および放射線画像検出器の画素の配置関係を示す図The figure which shows the arrangement | positioning relationship of the pixel of a self-image of a 1st grating | lattice, a 2nd grating | lattice, and a radiographic image detector. 第2の格子に対する第1の格子の自己像の傾き角を設定する方法を説明するための図The figure for demonstrating the method of setting the inclination-angle of the self-image of the 1st grating | lattice with respect to a 2nd grating | lattice. 第2の格子に対する第1の格子の自己像の傾き角の調整方法を説明するための図The figure for demonstrating the adjustment method of the inclination angle of the self-image of the 1st grating | lattice with respect to a 2nd grating | lattice. 光読取方式の放射線画像検出器の記録の作用を説明するための図The figure for demonstrating the effect | action of a recording of the radiographic image detector of an optical reading system 光読取方式の放射線画像検出器の記録の作用を説明するための図The figure for demonstrating the effect | action of a recording of the radiographic image detector of an optical reading system 光読取方式の放射線画像検出器の読取りの作用を説明するための図The figure for demonstrating the effect | action of the reading of the radiographic image detector of an optical reading system 光読取方式の放射線画像検出器から読み取られた画像信号に基づいて、複数の縞画像を取得する作用を説明するための図The figure for demonstrating the effect | action which acquires several fringe images based on the image signal read from the radiographic image detector of an optical reading system 光読取方式の放射線画像検出器から読み取られた画像信号に基づいて、複数の縞画像を取得する作用を説明するための図The figure for demonstrating the effect | action which acquires several fringe images based on the image signal read from the radiographic image detector of an optical reading system 第2の位相コントラスト画像を生成するための互いに異なる5つの縞画像信号を取得する方法を説明するための図The figure for demonstrating the method to acquire five different fringe image signals for producing | generating a 2nd phase contrast image. 被検体のX方向に関する位相シフト分布Φ(x)に応じて屈折される1つの放射線の経路を例示する図The figure which illustrates the path | route of one radiation refracted according to phase shift distribution (PHI) (x) regarding the X direction of a subject. 位相コントラスト画像を生成する方法を説明するための図The figure for demonstrating the method to produce | generate a phase contrast image 被写体のエッジの位相微分値と検出器の画素との配置関係の一例を示す図The figure which shows an example of arrangement | positioning relationship between the phase differential value of a to-be-photographed object's edge, and the pixel of a detector. 2つの位相コントラスト画像を合成して合成画像を生成する理由を説明するための図The figure for demonstrating the reason which synthesize | combines two phase contrast images and produces | generates a synthesized image 2つの位相コントラスト画像を合成して合成画像を生成する理由を説明するための図The figure for demonstrating the reason which synthesize | combines two phase contrast images and produces | generates a synthesized image 画素列に対して傾きを有する第1の格子の自己像と、画素列に対して傾きを有する第2の格子とを表す図The figure showing the self-image of the 1st grating | lattice which has an inclination with respect to a pixel row | line | column, and the 2nd grating | lattice which has an inclination with respect to a pixel row | line. 画素列方向に対する自己像の方向と画素列方向に対する第2の格子の延伸方向とを模式的に示した図The figure which showed typically the direction of the self-image with respect to a pixel row direction, and the extending | stretching direction of the 2nd grating | lattice with respect to a pixel row direction 第1の格子の自己像と第2の格子との重ね合せによって生じるモアレと異なる縞画像を構成する画像信号として読み出される副画素との関係の一例を示す図The figure which shows an example of the relationship between the sub-pixel read out as an image signal which comprises the fringe image which differs from the moire produced by superposition of the self-image of a 1st grating | lattice, and a 2nd grating | lattice. 第1の格子の自己像の延伸方向と第2の格子の延伸方向とを平行にするとともに、第1の格子の自己像のピッチと異なるピッチの第2の格子を用いた場合において、第1の格子の自己像と第2の格子との重ね合せによって生じるモアレと、異なる縞画像を構成する画像信号として読み出される副画素との関係の一例を示す図In the case where the extending direction of the self-image of the first grating and the extending direction of the second grating are made parallel to each other and the second grating having a pitch different from the pitch of the self-image of the first grating is used, The figure which shows an example of the relationship between the sub-pixel read out as an image signal which comprises a different fringe image, and the moire produced by superposition of the self-image of the grating | lattice of a 2nd, and a 2nd grating | lattice 第2の格子を、第1の格子の自己像のピッチと第2の格子のピッチとが一致する位置から遠ざけることによって第2の格子の位置における第1の格子の自己像のピッチと第2の格子のピッチとを異なるものとした場合の一例を示す図By moving the second grating away from the position where the pitch of the self-image of the first grating and the pitch of the second grating coincide with each other, the pitch of the self-image of the first grating at the position of the second grating and the second The figure which shows an example at the time of making the pitch of the grating | lattice different 第1の格子の自己像の延伸方向と第2の格子の延伸方向と相対的に傾けるとともに、第1の格子の自己像のピッチと異なるピッチの第2の格子を用いた場合において、第1の格子の自己像と第2の格子との重ね合せによって生じるモアレと、異なる縞画像を構成する画像信号として読み出される副画素との関係の一例を示す図In the case where a second lattice having a pitch different from the pitch of the self-image of the first lattice is used while being inclined relative to the extending direction of the self-image of the first lattice and the extending direction of the second lattice, The figure which shows an example of the relationship between the sub-pixel read out as an image signal which comprises a different fringe image, and the moire produced by superposition of the self-image of the grating | lattice of a 2nd, and a 2nd grating | lattice 第1の格子の自己像の延伸方向と第2の格子の延伸方向と相対的に傾けるとともに、第1の格子の自己像のピッチと異なるピッチの第2の格子を用いた場合において、第1の格子の自己像と第2の格子との重ね合せによって生じるモアレと、異なる縞画像を構成する画像信号として読み出される副画素との関係のその他の例を示す図In the case where a second lattice having a pitch different from the pitch of the self-image of the first lattice is used while being inclined relative to the extending direction of the self-image of the first lattice and the extending direction of the second lattice, The figure which shows the other example of the relationship between the moiré produced by the superimposition of the self-image of the grating | lattice of 2nd, and the 2nd grating | lattice, and the subpixel read as an image signal which comprises a different fringe image 第1の格子の自己像の延伸方向と第2の格子の延伸方向と相対的に傾けるとともに、第1の格子の自己像のピッチと異なるピッチの第2の格子を用いた場合において、第1の格子の自己像と第2の格子との重ね合せによって生じるモアレと、異なる縞画像を構成する画像信号として読み出される副画素との関係のその他の例を示す図In the case where a second lattice having a pitch different from the pitch of the self-image of the first lattice is used while being inclined relative to the extending direction of the self-image of the first lattice and the extending direction of the second lattice, The figure which shows the other example of the relationship between the moiré produced by the superimposition of the self-image of the grating | lattice of 2nd, and the 2nd grating | lattice, and the subpixel read as an image signal which comprises a different fringe image 格子面を曲面状に凹面化した第1の格子および第2の格子の一例を示す図The figure which shows an example of the 1st grating | lattice and the 2nd grating | lattice which made the grating | lattice surface concave-surfaced TFTスイッチを用いた放射線画像検出器と第1および第2の格子との配置関係を示す図The figure which shows the arrangement | positioning relationship between the radiographic image detector using a TFT switch, and the 1st and 2nd grating | lattice CMOSセンサを用いた放射線画像検出器の概略構成を示す図The figure which shows schematic structure of the radiographic image detector using a CMOS sensor. CMOSセンサを用いた放射線画像検出器の1つの画素回路の構成を示す図The figure which shows the structure of one pixel circuit of the radiographic image detector using a CMOS sensor. CMOSセンサを用いた放射線画像検出器と第1および第2の格子との配置関係を示す図The figure which shows the arrangement | positioning relationship between the radiographic image detector using a CMOS sensor, and the 1st and 2nd grating | lattice. 本発明の一実施形態を用いた立位状態で撮影可能なX線撮影システムの概略構成を示す図The figure which shows schematic structure of the X-ray imaging system which can be image | photographed in the standing position using one Embodiment of this invention 本発明の一実施形態を用いた立位状態で撮影可能なX線撮影システムの概略構成を示すブロック図1 is a block diagram showing a schematic configuration of an X-ray imaging system capable of imaging in an upright state using an embodiment of the present invention. 本発明の一実施形態を用いた臥位状態で撮影可能なX線撮影システムの概略構成を示す図The figure which shows schematic structure of the X-ray imaging system which can be image | photographed in the supine state using one Embodiment of this invention 本発明の一実施形態を用いた立位状態および臥位状態で撮影可能なX線撮影システムの概略構成を示す図The figure which shows schematic structure of the X-ray imaging system which can be image | photographed in the standing state and the supine state using one Embodiment of this invention 本発明の一実施形態を用いた立位状態および臥位状態で撮影可能なX線撮影システムの概略構成を示す図The figure which shows schematic structure of the X-ray imaging system which can be image | photographed in the standing state and the supine state using one Embodiment of this invention 本発明の一実施形態を用いたマンモグラフィ装置の概略構成を示す図The figure which shows schematic structure of the mammography apparatus using one Embodiment of this invention. 本発明の一実施形態を用いたマンモグラフィ装置の概略構成を示す図The figure which shows schematic structure of the mammography apparatus using one Embodiment of this invention. 本発明の一実施形態を用いたマンモグラフィ装置であって、放射線源と被検体との間に格子を配置したマンモグラフィ装置の概略構成を示す図The figure which shows schematic structure of the mammography apparatus using one Embodiment of this invention, Comprising: The grating | lattice has arrange | positioned between the radiation source and the subject. 本発明の一実施形態を用いた拡大撮影可能なマンモグラフィ装置の概略構成を示す図The figure which shows schematic structure of the mammography apparatus in which expansion imaging | photography is possible using one Embodiment of this invention. 本発明の一実施形態を用いた拡大撮影可能なマンモグラフィ装置のその他の概略構成を示す図The figure which shows the other schematic structure of the mammography apparatus in which expansion imaging | photography is possible using one Embodiment of this invention. 本発明の一実施形態を用いた立位状態で撮影可能なX線撮影システムであって、放射線源にマルチスリットを設けたX線撮影システムの概略構成を示す図1 is a diagram showing a schematic configuration of an X-ray imaging system capable of imaging in an upright state using an embodiment of the present invention, in which a multi-slit is provided in a radiation source. 本発明の一実施形態を用いた長尺撮影可能なX線撮影システムの概略構成を示す図The figure which shows schematic structure of the X-ray imaging system which can be image | photographed long length using one Embodiment of this invention 本発明の一実施形態を用いたCT撮影装置の概略構成図1 is a schematic configuration diagram of a CT imaging apparatus using an embodiment of the present invention. 本発明の一実施形態を用いたステレオ撮影装置の概略構成図1 is a schematic configuration diagram of a stereo photographing apparatus using an embodiment of the present invention. 吸収画像と小角散乱画像を生成する方法を説明するための図Diagram for explaining a method for generating an absorption image and a small angle scattered image 吸収画像の生成する方法を説明するための図The figure for demonstrating the method of producing | generating an absorption image 吸収画像を生成するその他の方法を説明するための図Diagram for explaining another method of generating an absorption image 5つの副画素の信号のサインカーブの一例を示す図The figure which shows an example of the sine curve of the signal of five subpixels 第1および第2の格子を90°回転させる構成を説明するための図The figure for demonstrating the structure which rotates the 1st and 2nd grating | lattice 90 degrees 第1および第2の格子を2次元格子とした場合の例を説明するための図The figure for demonstrating the example at the time of making a 1st and 2nd grating | lattice into a two-dimensional grating | lattice 第2の格子の機能を有する放射線画像検出器の一例を示す図The figure which shows an example of the radiographic image detector which has a function of a 2nd grating | lattice 図51Aに示す放射線画像検出器のXZ面断面図XZ plane sectional view of the radiation image detector shown in FIG. 51A 図51Aに示す放射線画像検出器のYZ面断面図YZ plane sectional view of the radiation image detector shown in FIG. 51A 図51に示す放射線画像検出器における放射線画像の記録の作用を説明するための図The figure for demonstrating the effect | action of recording of the radiographic image in the radiographic image detector shown in FIG. 図51に示す放射線画像検出器における放射線画像の記録の作用を説明するための図The figure for demonstrating the effect | action of recording of the radiographic image in the radiographic image detector shown in FIG. 図51に示す放射線画像検出器における放射線画像の読取りの作用を説明するための図The figure for demonstrating the effect | action of reading of the radiographic image in the radiographic image detector shown in FIG. 第2の格子の機能を有する放射線画像検出器のその他の例を示す図The figure which shows the other example of the radiographic image detector which has a function of a 2nd grating | lattice. 図54に示す放射線画像検出器における放射線画像の記録の作用を説明するための図The figure for demonstrating the effect | action of recording of the radiographic image in the radiographic image detector shown in FIG. 図54に示す放射線画像検出器における放射線画像の記録の作用を説明するための図The figure for demonstrating the effect | action of recording of the radiographic image in the radiographic image detector shown in FIG. 図54に示す放射線画像検出器における放射線画像の読取りの作用を説明するための図The figure for demonstrating the effect | action of reading of the radiographic image in the radiographic image detector shown in FIG. 図51に示す放射線画像検出器における電荷蓄積層のその他の形状を示す図The figure which shows the other shape of the electric charge storage layer in the radiographic image detector shown in FIG.
 以下、図面を参照して本発明の放射線画像撮影装置の第1の実施形態を用いた放射線位相画像撮影装置について説明する。図1に第1の実施形態の放射線位相画像撮影装置の概略構成を示す。図2に図1に示す放射線位相画像撮影装置の上面図(X-Z断面図)を示す。図2の紙面厚さ方向が図1のY方向である。 Hereinafter, a radiation phase image capturing apparatus using the first embodiment of the radiation image capturing apparatus of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of the radiation phase image capturing apparatus of the first embodiment. FIG. 2 shows a top view (XZ sectional view) of the radiation phase image capturing apparatus shown in FIG. The thickness direction in FIG. 2 is the Y direction in FIG.
 本実施形態の放射線位相画像撮影装置は、図1に示すように、放射線を被検体10に向かって照射する放射線源1と、放射線源1から射出された放射線を通過させて周期パターン像を形成する第1の格子2と、格子構造が周期的に配置され、第1の格子2により形成された周期パターン像(以下、第1の格子2の自己像G1という)が入射される第2の格子3と、第2の格子3を通過した放射線を検出する放射線画像検出器4と、放射線画像検出器4により検出された画像信号に基づいて縞画像を取得し、その取得した縞画像に基づいて位相コントラスト画像を生成する位相コントラスト画像生成部5とを備えている。 As shown in FIG. 1, the radiation phase imaging apparatus of the present embodiment forms a periodic pattern image by passing a radiation source 1 that irradiates radiation toward a subject 10 and radiation emitted from the radiation source 1. The first grating 2 and the grating structure are arranged periodically, and a periodic pattern image formed by the first grating 2 (hereinafter referred to as a self-image G1 of the first grating 2) is incident thereon. A fringe image is acquired based on the grating 3, a radiation image detector 4 that detects radiation that has passed through the second grating 3, and an image signal detected by the radiographic image detector 4, and based on the acquired fringe image And a phase contrast image generation unit 5 for generating a phase contrast image.
 放射線源1は、被検体10に向けて放射線を射出するものであり、第1の格子2に放射線を照射したとき、タルボ干渉効果を発生させうるだけの空間的干渉性を有するものである。たとえば、放射線の発光点のサイズが小さいマイクロフォーカスX線管やプラズマX線源を利用することができる。 The radiation source 1 emits radiation toward the subject 10 and has spatial coherence sufficient to generate a Talbot interference effect when the first grating 2 is irradiated with radiation. For example, a microfocus X-ray tube or a plasma X-ray source having a small radiation emission point size can be used.
 第1の格子2は、図3に示すように、放射線を主として透過する基板21と、基板21上に設けられた複数の部材22とを備えている。複数の部材22は、いずれも放射線の光軸に直交する面内の一方向(X方向およびZ方向に直交するY方向、図3の紙面厚さ方向)に延伸した線状の部材である。複数の部材22は、X方向に一定の周期Pで、互いに所定の間隔dを空けて配列されている。部材22の素材としては、たとえば、金、白金などの金属を用いることができる。また、第1の格子2としては、照射される放射線に対して約90°または約180°の位相変調を与える、いわゆる位相変調型格子であることが望ましい。部材22の厚さhは、撮影に供される放射線のエネルギーに応じて設定されることが好ましいが、通常の医療画像診断で用いられるようなX線エネルギー領域は30~120eVであることを鑑みて、たとえば、部材22を金とした場合、必要な金の厚さhは、1μm~10μm程度になる。また、第1の格子2としては、振幅変調型格子を用いることもできるが、振幅変調型格子の場合、部材22は放射線を十分に吸収する厚さが必要となる。たとえば、部材22を金とした場合、前記X線エネルギー領域において必要な金の厚さhは10μm~数100μm程度になる。 As shown in FIG. 3, the first grating 2 includes a substrate 21 that mainly transmits radiation, and a plurality of members 22 provided on the substrate 21. Each of the plurality of members 22 is a linear member that extends in one direction in the plane orthogonal to the optical axis of radiation (Y direction orthogonal to the X direction and Z direction, the thickness direction in FIG. 3). The plurality of members 22 are arranged with a predetermined interval d 1 from each other at a constant period P 1 in the X direction. As a material of the member 22, for example, a metal such as gold or platinum can be used. Further, the first grating 2 is desirably a so-called phase modulation type grating that gives a phase modulation of about 90 ° or about 180 ° to the irradiated radiation. The thickness h 1 of the member 22 is preferably set according to the energy of radiation used for imaging, but the X-ray energy region used in normal medical image diagnosis is 30 to 120 eV. In view of this, for example, when the member 22 is made of gold, the required gold thickness h 1 is about 1 μm to 10 μm. As the first grating 2, an amplitude modulation type grating can be used. However, in the case of the amplitude modulation type grating, the member 22 needs to have a thickness that sufficiently absorbs radiation. For example, when the member 22 is made of gold, the gold thickness h 1 required in the X-ray energy region is about 10 μm to several hundreds of μm.
 第2の格子3は、図4に示すように、第1の格子2と同様に、放射線を主として透過する基板31と、基板31に設けられた複数の部材32とを備えている。複数の部材32は放射線を遮蔽するものであり、いずれも放射線の光軸に直交する面内の一方向(X方向およびZ方向に直交するY方向、図4の紙面厚さ方向)に延伸した線状の部材である。複数の部材32は、X方向に一定の周期Pで、互いに所定の間隔dを空けて配列されている。複数の部材32の素材としては、たとえば、金、白金などの金属を用いることができる。第2の格子3は、振幅変調型格子であることが望ましい。部材32の厚さhは、撮影に供される放射線のエネルギーに応じて設定されることが好ましいが、このとき、部材32は放射線を十分に吸収する厚さが必要である。たとえば、部材32を金とした場合、前記X線エネルギー領域において必要な金の厚さhは10μm~数100μm程度になる。 As shown in FIG. 4, the second grating 3 includes a substrate 31 that mainly transmits radiation and a plurality of members 32 provided on the substrate 31, as in the first grating 2. The plurality of members 32 shield radiation, and all of them extend in one direction in the plane orthogonal to the optical axis of the radiation (the Y direction orthogonal to the X direction and the Z direction, the thickness direction in FIG. 4). It is a linear member. The plurality of members 32 are arranged with a predetermined interval d 2 from each other at a constant period P 2 in the X direction. As a material of the plurality of members 32, for example, a metal such as gold or platinum can be used. The second grating 3 is preferably an amplitude modulation type grating. The thickness h 2 of the member 32, but are preferably set in accordance with the energy of the radiation to be used for shooting, this time, member 32 is necessary thickness to sufficiently absorb the radiation. For example, when the member 32 and the gold, the thickness h 2 of gold required in the X-ray energy range is about 10 [mu] m ~ number 100 [mu] m.
 さて、一般的に、放射線源1から照射される放射線は、平行ビームではなく、放射線の焦点から所定の角度の拡がりをもって伝搬するコーンビームである。したがって、放射線源1から照射される放射線が第1の格子2を通過して形成される第1の格子2の自己像G1は、放射線源1の焦点からの距離に比例して拡大される。このため本実施形態においては、第2の格子3の格子ピッチPは、前記放射線源1の焦点からの距離による自己像G1の拡大を考慮して、そのスリット部が、第2の格子3の位置における第1の格子2の自己像G1の明部の周期パターンとほぼ一致するように決定される。すなわち、放射線源1の焦点から第1の格子2までの距離をZ、第1の格子2から第2の格子3までの距離をZとした場合(図2参照)、第2の格子ピッチPは、第1の格子2が90°の位相変調を与える位相変調型格子または振幅変調型格子の場合、次式(1)の関係を満たすように決定される。
Figure JPOXMLDOC01-appb-M000001
 また、第1の格子2が180°の位相変調を与える位相変調型格子の場合には、第1の格子2を通過して形成される第1の格子2の自己像G1のピッチが、第1の格子2の格子ピッチPの1/2になることを考慮すると、第2の格子ピッチPは、上式(1)に代えて、次式(2)の関係を満たすことが望ましい。
Figure JPOXMLDOC01-appb-M000002
In general, the radiation irradiated from the radiation source 1 is not a parallel beam but a cone beam that propagates with a predetermined angle spread from the focal point of the radiation. Therefore, the self-image G1 of the first grating 2 formed by the radiation irradiated from the radiation source 1 passing through the first grating 2 is enlarged in proportion to the distance from the focal point of the radiation source 1. For this reason, in the present embodiment, the grating pitch P 2 of the second grating 3 is set so that the slit portion of the second grating 3 takes into account the enlargement of the self-image G 1 due to the distance from the focal point of the radiation source 1. Is determined so as to substantially coincide with the periodic pattern of the bright part of the self-image G1 of the first grating 2 at the position. That is, when the distance from the focal point of the radiation source 1 to the first grating 2 is Z 1 and the distance from the first grating 2 to the second grating 3 is Z 2 (see FIG. 2), the second grating The pitch P 2 is determined so as to satisfy the relationship of the following formula (1) when the first grating 2 is a phase modulation type grating or an amplitude modulation type grating that gives 90 ° phase modulation.
Figure JPOXMLDOC01-appb-M000001
In the case where the first grating 2 is a phase modulation type grating that applies 180 ° phase modulation, the pitch of the self-image G1 of the first grating 2 formed through the first grating 2 is In view of the fact that the lattice pitch P 1 of the lattice 2 of 1 is 1/2, it is desirable that the second lattice pitch P 2 satisfies the relationship of the following equation (2) instead of the above equation (1). .
Figure JPOXMLDOC01-appb-M000002
 なお、放射線源1から照射される放射線が平行ビームである場合には、第1の格子2を通過して形成される第1の格子2の自己像G1は、放射線源1からの距離に応じて拡大されないため、第1の格子2が90°の位相変調を与える位相変調型格子または振幅変調型格子の場合には、P=Pであり、第1の格子2が180°の位相変調を与える位相変調型格子の場合には、P=P/2である。 When the radiation irradiated from the radiation source 1 is a parallel beam, the self-image G1 of the first grating 2 formed through the first grating 2 corresponds to the distance from the radiation source 1. Therefore, when the first grating 2 is a phase modulation type grating or an amplitude modulation type grating that gives a phase modulation of 90 °, P 2 = P 1 and the first grating 2 has a phase of 180 °. In the case of a phase modulation type grating that applies modulation, P 2 = P 1/2 .
 放射線画像検出器4は、第1の格子2に入射した放射線が形成する第1の格子2の自己像が第2の格子3によって強度変調された像を画像信号として検出するものである。このような放射線画像検出器4として、本実施形態においては、直接変換型の放射線画像検出器であって、線状の読取光によって走査されることによって画像信号が読み出される、いわゆる光読取方式の放射線画像検出器を用いる。 The radiation image detector 4 detects an image in which a self-image of the first grating 2 formed by radiation incident on the first grating 2 is intensity-modulated by the second grating 3 as an image signal. In this embodiment, the radiation image detector 4 is a direct-conversion type radiation image detector, in which an image signal is read out by scanning with linear reading light. A radiation image detector is used.
 図5Aは、本実施形態の放射線画像検出器4の斜視図、図5Bは図5Aに示す放射線画像検出器のXZ面断面図、図5Cは図5Aに示す放射線画像検出器のYZ面断面図である。 5A is a perspective view of the radiological image detector 4 of the present embodiment, FIG. 5B is a cross-sectional view of the XZ plane of the radiographic image detector shown in FIG. 5A, and FIG. 5C is a cross-sectional view of the radiographic image detector shown in FIG. It is.
 本実施形態の放射線画像検出器4は、図5A~図5Cに示すように、放射線を透過する第1の電極層41、第1の電極層41を透過した放射線の照射を受けることにより電荷を発生する記録用光導電層42、記録用光導電層42において発生した電荷のうち一方の極性の電荷に対しては絶縁体として作用し、且つ他方の極性の電荷に対しては導電体として作用する電荷蓄積層43、読取光の照射を受けることにより電荷を発生する読取用光導電層44、および第2の電極層45をこの順に積層してなるものである。なお、上記各層は、ガラス基板46上に第2の電極層45から順に形成されている。 As shown in FIGS. 5A to 5C, the radiation image detector 4 of the present embodiment is charged with a first electrode layer 41 that transmits radiation and irradiation with radiation that has passed through the first electrode layer 41. Of the generated charges in the recording photoconductive layer 42 and the recording photoconductive layer 42, the charge of one polarity acts as an insulator, and the charge of the other polarity acts as a conductor. The charge storage layer 43, the reading photoconductive layer 44 that generates charges when irradiated with the reading light, and the second electrode layer 45 are laminated in this order. Each of the above layers is formed in order from the second electrode layer 45 on the glass substrate 46.
 第1の電極層41としては、放射線を透過するものであればよく、たとえば、ネサ皮膜(SnO2)、ITO(Indium Tin Oxide)、IZO(Indium
Zinc Oxide)、アモルファス状光透過性酸化膜であるIDIXO(Idemitsu Indium X-metal Oxide ;出光興産(株))などを50~200nm厚にして用いることができ、また、100nm厚のAlやAuなども用いることもできる。
The first electrode layer 41 may be any material that transmits radiation. For example, Nesa film (SnO 2 ), ITO (Indium Tin Oxide), IZO (Indium)
Zinc Oxide), IDIXO (Idemitsu Indium X-metal Oxide; Idemitsu Kosan Co., Ltd.), which is an amorphous light-transmitting oxide film, can be used with a thickness of 50 to 200 nm, and 100 nm thick Al, Au, etc. Can also be used.
 記録用光導電層42は、放射線の照射を受けることにより電荷を発生するものであればよく、放射線に対して比較的量子効率が高く、また暗抵抗が高いなどの点で優れているa-Seを主成分とするものを使用する。厚さは10μm以上1500μm以下が適切である。また、特にマンモグラフィ用途である場合には、150μm以上250μm以下であることが好ましく、一般撮影用途である場合には、500μm以上1200μm以下であることが好ましい。 The recording photoconductive layer 42 only needs to generate charges when irradiated with radiation, and is excellent in that it has a relatively high quantum efficiency with respect to radiation and a high dark resistance. A material mainly composed of Se is used. The thickness is suitably 10 μm or more and 1500 μm or less. In particular, when it is used for mammography, it is preferably 150 μm or more and 250 μm or less, and when used for general photographing, it is preferably 500 μm or more and 1200 μm or less.
 電荷蓄積層43は、蓄積したい極性の電荷に対して絶縁性の膜であれば良く、アクリル系有機樹脂、ポリイミド、BCB、PVA、アクリル、ポリエチレン、ポリカーボネート、ポリエーテルイミド等のポリマーやAs、Sb、ZnS等の硫化物、その他に酸化物、フッ化物より構成される。更には、蓄積したい極性の電荷に対して絶縁性であり、それと逆の極性の電荷に対しては導電性を有する方がより好ましく、移動度×寿命の積が、電荷の極性により3桁以上差がある物質が好ましい。 The charge storage layer 43 may be a film that is insulative with respect to the charge of polarity to be stored, such as an acrylic organic resin, polyimide, BCB, PVA, acrylic, polyethylene, polycarbonate, polyetherimide, or a polymer such as As 2 S. 3 , sulfides such as Sb 2 S 3 and ZnS, oxides and fluorides. Furthermore, it is more preferable that it is insulative with respect to the charge of the polarity to be accumulated and that it is conductive with respect to the charge of the opposite polarity, and the product of mobility × life is 3 digits or more depending on the polarity of the charge. Substances with differences are preferred.
 好ましい化合物としては、AsSe、AsSeにCl、Br、Iを500ppmから20000ppmまでドープしたもの、AsSeのSeをTeで50%程度まで置換したAs(SeTe1-x(0.5<x<1)、AsSeのSeをSで50%程度まで置換したもの、AsSeからAs濃度を±15%程度変化させたAsSe(x+y=100、34≦x≦46)、アモルファスSe-Te系でTeを5-30wt%のもの等が挙げられる。 Preferred compounds include As 2 Se 3 , As 2 Se 3 doped with Cl, Br, and I from 500 ppm to 20000 ppm, and As 2 Se 3 with Se 2 substituted to about 50% by Te. 1-x ) 3 (0.5 <x <1), As 2 Se 3 with Se replaced to about 50%, As x Se with As concentration changed by about ± 15% from As 2 Se 3 y (x + y = 100, 34 ≦ x ≦ 46), amorphous Se—Te system and Te of 5-30 wt%.
 なお、電荷蓄積層43の材料としては、第1の電極層41と第2の電極層45との間に形成される電気力線が曲がらないようにするため、その誘電率が、記録用光導電層42と読取用光導電層44の誘電率の1/2倍以上2倍以下のものを用いることが望ましい。 In addition, as a material of the charge storage layer 43, in order to prevent the electric lines of force formed between the first electrode layer 41 and the second electrode layer 45 from being bent, the dielectric constant thereof is a recording light. It is desirable to use a conductive layer 42 and a photoconductive layer 44 for reading having a dielectric constant that is ½ to 2 times the dielectric constant.
 読取用光導電層44としては、読取光の照射を受けることにより導電性を呈するものであればよく、たとえば、a-Se、Se-Te、Se-As-Te、無金属フタロシアニン、金属フタロシアニン、MgPc(Magnesium phtalocyanine),VoPc(phaseII of Vanadyl phthalocyanine)、CuPc(Copper phthalocyanine)などのうち少なくとも1つを主成分とする光導電性物質が好適である。厚さは5~20μm程度が適切である。 The reading photoconductive layer 44 may be any material that exhibits conductivity when irradiated with reading light. For example, a-Se, Se-Te, Se-As-Te, metal-free phthalocyanine, metal phthalocyanine, A photoconductive substance mainly composed of at least one of MgPc (Magnesiumtalphtalocyanine), VoPc (phase II of Vanadyl phthalocyanine), CuPc (Copper phthalocyanine) and the like is preferable. A thickness of about 5 to 20 μm is appropriate.
 第2の電極層45は、読取光を透過する複数の透明線状電極45aと読取光を遮光する複数の遮光線状電極45bとを有するものである。透明線状電極45aと遮光線状電極45bとは、放射線画像検出器4の画像形成領域の一方の端部から他方の端部まで連続して直線状に延びるものである。そして、透明線状電極45aと遮光線状電極45bとは、図5(A),(B)に示すように、所定の間隔を空けて交互に平行に配列されている。 The second electrode layer 45 includes a plurality of transparent linear electrodes 45a that transmit the reading light and a plurality of light shielding linear electrodes 45b that shield the reading light. The transparent linear electrode 45a and the light shielding linear electrode 45b extend linearly continuously from one end of the image forming region of the radiation image detector 4 to the other end. Then, as shown in FIGS. 5A and 5B, the transparent linear electrodes 45a and the light shielding linear electrodes 45b are alternately arranged in parallel at a predetermined interval.
 透明線状電極45aは読取光を透過するとともに、導電性を有する材料から形成されている。たとえば、第1の電極層41と同様に、ITO、IZOやIDIXOを用いることができる。そして、その厚さは100~200nm程度である。 The transparent linear electrode 45a transmits reading light and is made of a conductive material. For example, as with the first electrode layer 41, ITO, IZO, or IDIXO can be used. The thickness is about 100 to 200 nm.
 遮光線状電極45bは読取光を遮光するとともに、導電性を有する材料から形成されている。たとえば、上記の透明導電材料とカラーフィルターを組み合せて用いることができる。透明導電材料の厚さは100~200nm程度である。 The light shielding linear electrode 45b shields the reading light and is made of a conductive material. For example, the above transparent conductive material and a color filter can be used in combination. The thickness of the transparent conductive material is about 100 to 200 nm.
 そして、本実施形態の放射線画像検出器4においては、後で詳述するが、隣接する透明線状電極45aと遮光線状電極45bとの1組を用いて画像信号が読み出される。すなわち、図5Bに示すように、1組の透明線状電極45aと遮光線状電極45bとによって1画素の画像信号が読み出されることになる。本実施形態においては、1画素が略50μmとなるように透明線状電極45aと遮光線状電極45bとが配置されている。 In the radiation image detector 4 of the present embodiment, as will be described in detail later, an image signal is read out using a pair of adjacent transparent linear electrodes 45a and light shielding linear electrodes 45b. That is, as shown in FIG. 5B, an image signal of one pixel is read out by a pair of transparent linear electrodes 45a and light shielding linear electrodes 45b. In the present embodiment, the transparent linear electrode 45a and the light shielding linear electrode 45b are arranged so that one pixel is approximately 50 μm.
 そして、本実施形態の放射線位相画像撮影装置は、図5Aに示すように、透明線状電極45aと遮光線状電極45bの延伸方向に直交する方向(X方向)に延設された線状読取光源50を備えている。本実施形態の線状読取光源50は、LED(Light Emitting Diode)やLD(Laser Diode)などの光源と所定の光学系とから構成され、透明線状電極46aと遮光線状電極46bの延伸方向に平行な方向(Y方向)に略10μmの幅の線状の読取光を放射線画像検出器4に照射するように構成されている。そして、この線状読取光源50は、所定の移動機構(図示省略)によってY方向について移動するものであり、この移動により線状読取光源50から発せられた線状の読取光によって放射線画像検出器4が走査されて画像信号が読み出される。画像信号の読取りの作用については後で詳述する。 Then, the radiation phase imaging apparatus of the present embodiment, as shown in FIG. 5A, linear reading that extends in a direction (X direction) orthogonal to the extending direction of the transparent linear electrode 45a and the light shielding linear electrode 45b. A light source 50 is provided. The linear reading light source 50 according to the present embodiment includes a light source such as an LED (Light Emitting Diode) or LD (Laser Diode) and a predetermined optical system, and the extending direction of the transparent linear electrode 46a and the light shielding linear electrode 46b. The radiation image detector 4 is irradiated with linear reading light having a width of about 10 μm in a direction parallel to the direction (Y direction). The linear reading light source 50 is moved in the Y direction by a predetermined moving mechanism (not shown), and the radiation image detector is detected by the linear reading light emitted from the linear reading light source 50 by this movement. 4 is scanned to read the image signal. The operation of reading the image signal will be described in detail later.
 そして、放射線源1、第1の格子2、第2の格子3および放射線画像検出器4によって放射線位相コントラスト画像を取得可能な放射線位相画像撮影装置が構成されるが、本構成をタルボ干渉計として機能させるためには、さらにいくつかの条件をほぼ満たさねばならない。その条件について以下に説明する。ここで、ほぼ満たす、とは、後述の各種条件において、放射線源から放射される放射線のエネルギー、すなわち波長が単一ではなく幅をもっているために、放射線のエネルギー幅に対して許容幅が存在すること、および、最適ではないために画質等の性能は劣るが、本実施形態において少なくとも位相コントラスト画像を得ることができる許容幅が存在する、ということを意味する。 The radiation source 1, the first grating 2, the second grating 3, and the radiation image detector 4 constitute a radiation phase image capturing apparatus capable of acquiring a radiation phase contrast image. This configuration is used as a Talbot interferometer. In order to function, a few additional conditions must be nearly met. The conditions will be described below. Here, “substantially satisfy” means that, under various conditions described later, the energy of the radiation emitted from the radiation source, that is, the wavelength has a width rather than a single width, and therefore there is an allowable width for the energy width of the radiation. This means that the performance such as the image quality is inferior because it is not optimal, but there is an allowable range in which at least a phase contrast image can be obtained in the present embodiment.
 まず、第1の格子2と第2の格子3とのグリッド面が、図1に示すX-Y平面に平行であることが必要である。 First, the grid plane of the first grid 2 and the second grid 3 needs to be parallel to the XY plane shown in FIG.
 そして、さらに、第1の格子2と第2の格子3との距離Zは、第1の格子2が90°の位相変調を与える位相変調型格子である場合、次の条件をほぼ満たさなければならない。
Figure JPOXMLDOC01-appb-M000003
ただし、λは放射線の波長(通常は第1の格子2に入射する放射線の実効波長)、mは0か正の整数、Pは上述した第1の格子2の格子ピッチ、Pは上述した第2の格子3の格子ピッチである。
Further, the distance Z 2 between the first grating 2 and the second grating 3 should substantially satisfy the following condition when the first grating 2 is a phase modulation type grating that applies 90 ° phase modulation. I must.
Figure JPOXMLDOC01-appb-M000003
Where λ is the wavelength of radiation (usually, the effective wavelength of radiation incident on the first grating 2), m is 0 or a positive integer, P 1 is the grating pitch of the first grating 2 described above, and P 2 is described above. This is the lattice pitch of the second lattice 3.
 また、第1の格子2が180°の位相変調を与える位相変調型格子である場合、次の条件をほぼ満たさなければならない。
Figure JPOXMLDOC01-appb-M000004
ただし、λは放射線の波長(通常は第1の格子2に入射する放射線の実効波長)、mは0か正の整数、Pは上述した第1の格子2の格子ピッチ、Pは上述した第2の格子3の格子ピッチである。
In addition, when the first grating 2 is a phase modulation type grating that gives 180 ° phase modulation, the following condition must be substantially satisfied.
Figure JPOXMLDOC01-appb-M000004
Where λ is the wavelength of radiation (usually, the effective wavelength of radiation incident on the first grating 2), m is 0 or a positive integer, P 1 is the grating pitch of the first grating 2 described above, and P 2 is described above. This is the lattice pitch of the second lattice 3.
 また、第1の格子2が振幅変調型格子である場合には、次の条件をほぼ満たさなければならない。
Figure JPOXMLDOC01-appb-M000005
ただし、λは放射線の波長(通常は第1の格子2に入射する放射線の実効波長)、m’は正の整数、Pは上述した第1の格子2の格子ピッチ、Pは上述した第2の格子3の格子ピッチである。
Further, when the first grating 2 is an amplitude modulation type grating, the following condition must be substantially satisfied.
Figure JPOXMLDOC01-appb-M000005
Where λ is the wavelength of radiation (usually the effective wavelength of radiation incident on the first grating 2), m ′ is a positive integer, P 1 is the grating pitch of the first grating 2 described above, and P 2 is described above. This is the grating pitch of the second grating 3.
 なお、上式(3),(4),(5)は、放射線源1により照射される放射線がコーンビームである場合であり、放射線が平行ビームである場合には、上式(3)に代えて下式(6)、上式(4)に代えて下式(7)、上式(5)に代えて下式(8)となる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
The above formulas (3), (4), and (5) are for the case where the radiation irradiated from the radiation source 1 is a cone beam, and when the radiation is a parallel beam, the above formula (3) Instead, the following expression (6), the above expression (4) is replaced by the following expression (7), and the above expression (5) is replaced by the following expression (8).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 また、図3に示すように、第1の格子2の部材22は厚みhで形成され、第2の格子3の部材32は厚みhで形成されるが、厚みhと厚みhとを厚くしすぎると、第1の格子2および第2の格子3に斜めに入射する放射線がスリット部を通過しにくくなり、いわゆるケラレが生じて部材22,32の延伸方向に直交する方向(X方向)の有効視野が狭くなるといった問題がある。このため、視野確保の観点から、厚みh,hの上限を規定することが好ましい。放射線画像検出器4の検出面におけるX方向の有効視野の長さVを確保するためには、厚みh,hは、次式(9)および次式(10)を満たすように設定することが好ましい。ここで、Lは、放射線源1の焦点から放射線画像検出器4の検出面までの距離である(図2参照)。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Further, as shown in FIG. 3, the first grating 2 of the member 22 is formed with a thickness h 1, although member 32 of the second grating 3 is formed with a thickness h 2, the thickness h 1 and the thickness h 2 Is excessively thick, it becomes difficult for radiation incident obliquely to the first grating 2 and the second grating 3 to pass through the slit portion, so-called vignetting occurs, and the direction perpendicular to the extending direction of the members 22 and 32 ( There is a problem that the effective visual field in the X direction becomes narrow. For this reason, it is preferable to define the upper limits of the thicknesses h 1 and h 2 from the viewpoint of securing a visual field. In order to ensure the effective field length V in the X direction on the detection surface of the radiation image detector 4, the thicknesses h 1 and h 2 are set so as to satisfy the following expressions (9) and (10). It is preferable. Here, L is the distance from the focal point of the radiation source 1 to the detection surface of the radiation image detector 4 (see FIG. 2).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 そして、さらに本実施形態の放射線位相画像撮影装置においては、図6に示すように、第1の格子2と第2の格子3とを相対的に傾けて配置することにより、第1の格子2の自己像G1の延伸方向と第2の格子3の延伸方向とが相対的に傾くように配置されるものである。そして、本実施形態においては、このように配置された第1の格子2と第3の格子3に対して、放射線画像検出器4によって検出される画像信号の各画素の主走査方向(図5のX方向)の主画素サイズDxと副走査方向の副画素サイズDyとが、図6に示すような関係となるようにする。なお、本実施形態においては第2の格子3の延伸方向と画素列方向とが同じとなるように構成されているものとする。ただし、これに限らず、第1の格子2の延伸方向と画素列方向とが同じとなるように構成するようにしてもよい。 Further, in the radiation phase imaging apparatus of the present embodiment, as shown in FIG. 6, the first grating 2 and the second grating 3 are disposed so as to be relatively inclined to each other. The extending direction of the self-image G1 and the extending direction of the second lattice 3 are relatively inclined. In the present embodiment, the main scanning direction of each pixel of the image signal detected by the radiation image detector 4 with respect to the first grating 2 and the third grating 3 arranged in this way (FIG. 5). The main pixel size Dx in the X direction) and the sub-pixel size Dy in the sub-scanning direction have a relationship as shown in FIG. In the present embodiment, it is assumed that the extending direction of the second lattice 3 and the pixel column direction are the same. However, the configuration is not limited to this, and the extending direction of the first lattice 2 and the pixel column direction may be the same.
 主画素サイズDxは、上述したように放射線画像検出器4の透明線状電極45aと遮光線状電極45bの配列ピッチによって決定されるものであって、本実施形態においては50μmに設定されている。また、副画素サイズDyは、線状読取光源50によって放射線画像検出器4に照射される線状の読取光の幅によって決定されるものであって、本実施形態においては10μmに設定されている。 The main pixel size Dx is determined by the arrangement pitch of the transparent linear electrodes 45a and the light shielding linear electrodes 45b of the radiation image detector 4 as described above, and is set to 50 μm in this embodiment. . The sub-pixel size Dy is determined by the width of the linear reading light irradiated to the radiation image detector 4 by the linear reading light source 50, and is set to 10 μm in this embodiment. .
 ここで、本実施形態においては、複数の縞画像を取得し、その複数の縞画像に基づいて位相コントラスト画像を生成するが、その取得する縞画像の数をMとすると、M個の副画素サイズDyが位相コントラスト画像の副走査方向の1つの画素サイズ、すなわち画像解像度Dとなるように第1の格子2が第2の格子3に対して傾けられる。なお、このM個×副画素が、請求項における複合画素に相当する。 Here, in the present embodiment, a plurality of fringe images are acquired and a phase contrast image is generated based on the plurality of fringe images. If the number of the obtained fringe images is M, M subpixels are obtained. The first grating 2 is tilted with respect to the second grating 3 so that the size Dy is one pixel size in the sub-scanning direction of the phase contrast image, that is, the image resolution D. The M × subpixels corresponds to a composite pixel in the claims.
 具体的には、図7に示すように、第2の格子3のピッチおよび第1の格子2によって第2の格子3の位置に形成される自己像G1のピッチをP’、第2の格子3に対する第1の格子2の自己像のX-Y面内の相対的な回転角をθ、位相コントラスト画像の副走査方向の画像解像度をD(=Dy×M)とすると、回転角θを下式(11)を満たすように設定することによって、副走査方向の画像解像度Dの長さに対して、第1の格子2の自己像G1と第2の格子3の位相がn周期分ずれることになる。なお、図7においては、M=5、n=1の場合を示している。
Figure JPOXMLDOC01-appb-M000011
Specifically, as shown in FIG. 7, the pitch of the second grating 3 and the pitch of the self-image G1 formed at the position of the second grating 3 by the first grating 2 are P 1 ′, When the relative rotation angle in the XY plane of the self-image of the first grating 2 with respect to the grating 3 is θ and the image resolution in the sub-scanning direction of the phase contrast image is D (= Dy × M), the rotation angle θ Is set so as to satisfy the following expression (11), the phase of the self-image G1 of the first grating 2 and the second grating 3 corresponds to n periods with respect to the length of the image resolution D in the sub-scanning direction. It will shift. FIG. 7 shows the case where M = 5 and n = 1.
Figure JPOXMLDOC01-appb-M000011
 したがって、位相コントラスト画像の副走査方向の画像解像度DをM分割したDx×Dyの各画素によって、第1の格子2の自己像のn周期分の強度変調をM分割した画像信号が検出できることになる。図7に示す例では、n=1としているので、副走査方向の画像解像度Dの長さに対して、第1の格子2の自己像G1と第2の格子3の位相が1周期分ずれることになる。もっとわかり易く言えば、第1の格子2の自己像G1の1周期分のうち、第2の格子3を通過する領域が、副走査方向の画像解像度Dの長さにわたって変化することにより、第1の格子2の自己像G1の強度が、副走査方向に変調される。 Therefore, the image signal obtained by dividing the intensity modulation for n periods of the self-image of the first grating 2 by M can be detected by each pixel of Dx × Dy obtained by dividing the image resolution D of the phase contrast image in the sub-scanning direction by M. Become. In the example shown in FIG. 7, since n = 1, the phase of the self-image G1 of the first grating 2 and the second grating 3 is shifted by one period with respect to the length of the image resolution D in the sub-scanning direction. It will be. More simply, the region that passes through the second grating 3 in one period of the self-image G1 of the first grating 2 changes over the length of the image resolution D in the sub-scanning direction, whereby the first The intensity of the self-image G1 of the grating 2 is modulated in the sub-scanning direction.
 そして、M=5としているので、Dx×Dyの各画素によって第1の格子2の自己像の1周期の強度変調を5分割した画像信号が検出できることになり、すなわち、Dx×Dyの各画素によって互いに異なる5つの縞画像の画像信号をそれぞれ検出することができることになる。なお、5つの縞画像の画像信号の取得方法については、後で詳述する。 Since M = 5, an image signal obtained by dividing the intensity modulation of one period of the self-image of the first grating 2 into 5 can be detected by each pixel of Dx × Dy, that is, each pixel of Dx × Dy. Thus, it is possible to detect image signals of five different fringe images. The method for acquiring the image signals of the five striped images will be described in detail later.
 なお、本実施形態においては、上述したとおり、Dx=50μm、Dy=10μm、M=5としているので、位相コントラスト画像の主走査方向の画像解像度Dxと副走査方向の画像解像度D=Dy×Mが同じになるが、必ずしも主走査方向の画像解像度Dxと副走査方向の画像解像度Dとを合わせる必要はなく、任意の主副比としてもよい。 In the present embodiment, as described above, since Dx = 50 μm, Dy = 10 μm, and M = 5, the image resolution Dx in the main scanning direction and the image resolution D in the sub-scanning direction D = Dy × M of the phase contrast image. However, it is not always necessary to match the image resolution Dx in the main scanning direction and the image resolution D in the sub scanning direction, and an arbitrary main / sub ratio may be used.
 さらに、本実施形態においては、M=5としているが、Mは3以上であればよく、5以外であってもよい。また、上記説明ではn=1としたが、nは0以外の整数であれば1以外の整数でもよい。すなわち、nが負の整数の場合には上述した例に対して反対周りの回転となり、また、nを±1以外の整数としてn周期分の強度変調としてもよい。ただし、nがMの倍数の場合は、1組のM個の副走査方向画素Dyの間で第1の格子2の自己像G1と第2の格子3の位相が等しくなり、異なるM個の縞画像とならないため除外するものとする。 Further, in this embodiment, M = 5, but M may be 3 or more, and may be other than 5. In the above description, n = 1, but n may be an integer other than 1 as long as n is an integer other than 0. That is, when n is a negative integer, the rotation is opposite to that in the above-described example, and n may be an intensity modulation for n periods with n being an integer other than ± 1. However, when n is a multiple of M, the phases of the self-image G1 of the first grating 2 and the second grating 3 are equal between a set of M sub-scanning direction pixels Dy, and M different numbers Since it is not a striped image, it is excluded.
 また、第2の格子3に対する第1の格子2の自己像の回転角θについては、たとえば、放射線画像検出器4と第2の格子3の相対回転角を固定した後、第1の格子2を回転させることによって行うことができる。 As for the rotation angle θ of the self-image of the first grating 2 with respect to the second grating 3, for example, after fixing the relative rotation angle between the radiation image detector 4 and the second grating 3, the first grating 2 is fixed. This can be done by rotating.
 たとえば、上式(11)でP’=5μm、D=50μm、n=1とすると、回転角θは約5.7°である。そして、第2の格子3に対する第1の格子2の自己像G1の実際の回転角θ’は、たとえば、第1の格子の自己像G1と第2の格子3によるモアレのピッチによって検出することができる。 For example, if P 1 ′ = 5 μm, D = 50 μm, and n = 1 in the above equation (11), the rotation angle θ is about 5.7 °. Then, the actual rotation angle θ ′ of the self-image G1 of the first grating 2 with respect to the second grating 3 is detected by, for example, the self-image G1 of the first grating and the moire pitch by the second grating 3. Can do.
 具体的には、図8に示すように、実際の回転角をθ’、回転によって生じたX方向への見た目の自己像G1のピッチP’とすると、観測されるモアレのピッチPmは、
1/Pm=|1/P’-1/P’|
であるので、P’=P’/cosθ’を上式に代入することによって実際の回転角θ’を求めることができる。なお、モアレのピッチPmについては、放射線画像検出器4によって検出された画像信号に基づいて求めるようにすればよい。
Specifically, as shown in FIG. 8, when the actual rotation angle is θ ′ and the pitch P ′ of the apparent self-image G1 in the X direction generated by the rotation is, the observed moire pitch Pm is
1 / Pm = | 1 / P′−1 / P 1 ′ |
Therefore, the actual rotation angle θ ′ can be obtained by substituting P ′ = P 1 ′ / cos θ ′ into the above equation. The moire pitch Pm may be obtained based on the image signal detected by the radiation image detector 4.
 そして、上式(11)で定めた回転角θと実際の回転角θ’とを比較し、その差の分だけで自動または手動で第1の格子2の回転角を調整するようにすればよい。 Then, the rotation angle θ determined by the above equation (11) is compared with the actual rotation angle θ ′, and the rotation angle of the first grating 2 is adjusted automatically or manually only by the difference. Good.
 位相コントラスト画像生成部5は、放射線画像検出器4における上述したDx×Dyの各画素によって取得された互いに異なるM種類の縞画像の画像信号に基づいて1つの位相コントラスト画像を生成するとともに、位相コントラスト画像の1画素を構成するM個の副画素Dyの位置をY方向についてずらすことによって複数の位相コントラスト画像を生成し、この複数の位相コントラスト画像を合成した合成画像を生成するものである。位相コントラスト画像の生成方法および合成画像の生成方法については、後で詳述する。 The phase contrast image generation unit 5 generates one phase contrast image based on image signals of M kinds of different fringe images acquired by the respective pixels of Dx × Dy described above in the radiation image detector 4, and the phase A plurality of phase contrast images are generated by shifting the positions of the M sub-pixels Dy constituting one pixel of the contrast image in the Y direction, and a combined image is generated by combining the plurality of phase contrast images. A method for generating a phase contrast image and a method for generating a composite image will be described in detail later.
 次に、本実施形態の放射線位相画像撮影装置の作用について説明する。 Next, the operation of the radiation phase imaging apparatus of this embodiment will be described.
 まず、図1に示すように、放射線源1と第1の格子2との間に、被検体10が配置された後、放射線源1から放射線が射出される。そして、その放射線は被検体10を透過した後、第1の格子2に照射される。第1の格子2に照射された放射線は、第1の格子2で回折されることにより、第1の格子2から放射線の光軸方向において所定の距離において、タルボ干渉像を形成する。 First, as shown in FIG. 1, after the subject 10 is arranged between the radiation source 1 and the first grating 2, radiation is emitted from the radiation source 1. The radiation passes through the subject 10 and is then applied to the first grating 2. The radiation irradiated on the first grating 2 is diffracted by the first grating 2 to form a Talbot interference image at a predetermined distance from the first grating 2 in the optical axis direction of the radiation.
 これをタルボ効果と呼び、光波が第1の格子2を通過したとき、第1の格子2から所定の距離において、第1の格子2の自己像G1を形成する。たとえば、第1の格子2が、90°の位相変調を与える位相変調型格子の場合、上式(3)または上式(6)(180°の位相変調型格子の場合は上式(4)または上式(7)、強度変調型格子の場合は上式(5)または上式(8))で与えられる距離Zにおいて第1の格子2の自己像G1を形成する一方、被検体10によって、第1の格子2に入射する放射線の波面は歪むため、第1の格子2の自己像G1はそれに従って変形している。 This is called the Talbot effect. When a light wave passes through the first grating 2, a self-image G1 of the first grating 2 is formed at a predetermined distance from the first grating 2. For example, when the first grating 2 is a phase modulation type grating that gives 90 ° phase modulation, the above equation (3) or the above equation (6) (in the case of a 180 ° phase modulation type grating, the above equation (4)). or the above equation (7), while forming a first grating 2 self image G1 at a distance Z 2 given by the above equation (5) or equation (8)) in the case of intensity modulation type grating, the subject 10 As a result, the wavefront of the radiation incident on the first grating 2 is distorted, and the self-image G1 of the first grating 2 is deformed accordingly.
 続いて、放射線は、第2の格子3を通過する。その結果、上記の変形した第1の格子2の自己像G1は第2の格子3との重ね合わせにより、強度変調を受け、上記波面の歪みを反映した画像信号として放射線画像検出器4により検出される。 Subsequently, the radiation passes through the second grating 3. As a result, the deformed self-image G1 of the first grating 2 is intensity-modulated by being superimposed on the second grating 3, and is detected by the radiation image detector 4 as an image signal reflecting the wavefront distortion. Is done.
 ここで、放射線画像検出器4における画像検出と読出しの作用について説明する。 Here, the operation of image detection and readout in the radiation image detector 4 will be described.
 まず、図9Aに示すように高圧電源101によって放射線画像検出器4の第1の電極層41に負の電圧を印加した状態において、第1の格子2の自己像と第2の格子3との重ね合わせによって強度変調された放射線が、放射線画像検出器4の第1の電極層41側から照射される。 First, as shown in FIG. 9A, in a state where a negative voltage is applied to the first electrode layer 41 of the radiation image detector 4 by the high-voltage power source 101, the self-image of the first grating 2 and the second grating 3 The radiation whose intensity is modulated by the superposition is irradiated from the first electrode layer 41 side of the radiation image detector 4.
 そして、放射線画像検出器4に照射された放射線は、第1の電極層41を透過し、記録用光導電層42に照射される。そして、その放射線の照射によって記録用光導電層42において電荷対が発生し、そのうち正の電荷は第1の電極層41に帯電した負の電荷と結合して消滅し、負の電荷は潜像電荷として電荷蓄積層43に蓄積される(図9B参照)。 The radiation applied to the radiation image detector 4 passes through the first electrode layer 41 and is applied to the recording photoconductive layer 42. Then, a charge pair is generated in the recording photoconductive layer 42 by the irradiation of the radiation, and the positive charge is combined with the negative charge charged in the first electrode layer 41 and disappears, and the negative charge is a latent image. The charge is accumulated in the charge accumulation layer 43 (see FIG. 9B).
 次に、図10に示すように、第1の電極層41が接地された状態において、線状読取光源50から発せられた線状の読取光L1が第2の電極層45側から照射される。読取光L1は透明線状電極45aを透過して読取用光導電層44に照射され、その読取光L1の照射により読取用光導電層44において発生した正の電荷が電荷蓄積層43における潜像電荷と結合するとともに、負の電荷が、透明線状電極45aに接続されたチャージアンプ200を介して遮光線状電極45bに帯電した正の電荷と結合する。 Next, as shown in FIG. 10, in the state where the first electrode layer 41 is grounded, the linear reading light L1 emitted from the linear reading light source 50 is irradiated from the second electrode layer 45 side. . The reading light L1 passes through the transparent linear electrode 45a and is applied to the reading photoconductive layer 44, and the positive charge generated in the reading photoconductive layer 44 due to the irradiation of the reading light L1 is a latent image in the charge storage layer 43. The negative charge is combined with the positive charge charged on the light-shielding linear electrode 45b through the charge amplifier 200 connected to the transparent linear electrode 45a.
 そして、読取用光導電層44において発生した負の電荷と遮光線状電極45bに帯電した正の電荷との結合によって、チャージアンプ200に電流が流れ、この電流が積分されて画像信号として検出される。 A current flows through the charge amplifier 200 due to the combination of the negative charge generated in the read photoconductive layer 44 and the positive charge charged in the light shielding linear electrode 45b, and this current is integrated and detected as an image signal. The
 そして、線状読取光源50が、副走査方向に移動することによって線状の読取光L1によって放射線画像検出器4が走査され、線状の読取光L1の照射された読取ライン毎に上述した作用によって画像信号が順次検出され、その検出された読取ライン毎の画像信号が位相コントラスト画像生成部5に順次入力されて記憶される。 Then, the radiation image detector 4 is scanned by the linear reading light L1 as the linear reading light source 50 moves in the sub-scanning direction, and the operation described above is performed for each reading line irradiated with the linear reading light L1. Thus, the image signals are sequentially detected, and the detected image signals for each reading line are sequentially input to the phase contrast image generation unit 5 and stored.
 そして、放射線画像検出器4の全面が読取光L1に走査されて1フレーム全体の画像信号が位相コントラスト画像生成部5に記憶される。 Then, the entire surface of the radiation image detector 4 is scanned with the reading light L 1, and the image signal of one frame is stored in the phase contrast image generation unit 5.
 位相コントラスト画像生成部5は、記憶された放射線画像信号に基づいて、上述したように複数の位相コントラスト画像を生成するが、まず、その複数の位相コントラスト画像のうちの第1の位相コントラスト画像を生成するため、その第1の位相コントラスト画像の1つの画素を構成する5つの副画素Dyを所定の第1の位置に設定し、その各副画素Dyの画素信号をそれぞれ取得することによって互いに異なる5つの縞画像の画像信号を取得する。 The phase contrast image generation unit 5 generates a plurality of phase contrast images as described above based on the stored radiographic image signal. First, the first phase contrast image among the plurality of phase contrast images is generated. For generation, the five sub-pixels Dy constituting one pixel of the first phase contrast image are set at predetermined first positions, and the pixel signals of the respective sub-pixels Dy are respectively acquired to be different from each other. Image signals of five stripe images are acquired.
 具体的には、本実施形態においては、図7に示すように、位相コントラスト画像の副走査方向の画像解像度Dを5分割し、第1の格子2の自己像G1の1周期の強度変調を5分割した画像信号が検出できるように第1の格子2の自己像G1を第2の格子3に対して傾けるようにしたので、図11に示すように、第1-1読取ラインから読み出された画像信号が第1の縞画像信号M1として取得され、第1-2読取ラインから読み出された画像信号が第2の縞画像信号M2として取得され、第1-3読取ラインから読み出された画像信号が第3の縞画像信号M3として取得され、第1-4読取ラインから読み出された画像信号が第4の縞画像信号M4として取得され、第1-5読取ラインから読み出された画像信号が第5の縞画像信号M5として取得される。なお、図11に示す第1-1~第1-5のそれぞれの副走査方向の幅は、図7に示す副画素Dyに相当する。 Specifically, in the present embodiment, as shown in FIG. 7, the image resolution D in the sub-scanning direction of the phase contrast image is divided into five, and the intensity modulation for one period of the self-image G1 of the first grating 2 is performed. Since the self-image G1 of the first grating 2 is tilted with respect to the second grating 3 so that an image signal divided into five can be detected, reading from the 1-1 reading line is performed as shown in FIG. The obtained image signal is acquired as the first fringe image signal M1, and the image signal read out from the 1-2 reading line is acquired as the second fringe image signal M2, and read out from the 1-3 reading line. The acquired image signal is acquired as the third fringe image signal M3, and the image signal read out from the 1-4 reading line is acquired as the fourth fringe image signal M4 and read out from the 1-5 reading line. The obtained image signal is the fifth fringe image signal M5. Is obtained. Note that each of the widths 1-1 to 1-5 shown in FIG. 11 in the sub-scanning direction corresponds to the sub-pixel Dy shown in FIG.
 また、図11においては、第1の位相コントラスト画像の1画素のDx×(Dy×5)の範囲しか示していないが、その他の範囲についても、上記と同様にして第1~第5の縞画像信号が取得される。 In FIG. 11, only the Dx × (Dy × 5) range of one pixel of the first phase contrast image is shown, but the first to fifth stripes are also applied to the other ranges in the same manner as described above. An image signal is acquired.
 すなわち、第1の位相コントラスト画像の1つの画素を構成する5つの副画素Dyが、図12に示すように第1の位置に設定され、副走査方向について4画素間隔毎の画素行(読取ライン)からなる画素行群の画像信号が取得されて1フレームの1つの縞画像信号が取得される。より具体的には、図12に示す第1-1読取ラインの画素行群の画像信号が取得されて1フレームの第1の縞画像信号が取得され、第1-2読取ラインの画素行群の画像信号が取得されて1フレームの第2の縞画像信号が取得され、第1-3読取ラインの画素行群の画像信号が取得されて1フレームの第3の縞画像信号が取得され、第1-4読取ラインの画素行群の画像信号が取得されて1フレームの第4の縞画像信号が取得され、第1-5読取ラインの画素行群の画像信号が取得されて1フレームの第5の縞画像信号が取得される。 That is, five subpixels Dy constituting one pixel of the first phase contrast image are set at the first position as shown in FIG. 12, and pixel rows (reading lines) every four pixel intervals in the subscanning direction. ) Is acquired, and one stripe image signal of one frame is acquired. More specifically, the image signal of the pixel row group of the 1-1 reading line shown in FIG. 12 is acquired, the first fringe image signal of 1 frame is acquired, and the pixel row group of the 1-2 reading line is acquired. Image signal is acquired to acquire a second fringe image signal of one frame, an image signal of a pixel row group of the first to third reading lines is acquired to acquire a third fringe image signal of one frame, The image signal of the pixel row group of the first to fourth reading lines is acquired to acquire the fourth striped image signal of one frame, and the image signal of the pixel row group of the first to fifth reading lines is acquired to acquire one frame of A fifth fringe image signal is acquired.
 上記のようにして第1の位相コントラスト画像を生成するための互いに異なる第1~第5の縞画像信号が取得される。 As described above, different first to fifth fringe image signals for generating the first phase contrast image are obtained.
 次に、位相コントラスト画像生成部5は、第2の位相コントラスト画像を生成するための互いに異なる5つの縞画像信号を取得するため、位相コントラスト画像の1つの画素を構成する5つの副画素Dyの位置を、図13に示すように上述した第1の位置から副走査方向(Y方向)に2画素だけずらして第2の位置に設定し、その各副画素Dyの画素信号をそれぞれ取得することによって第2の位相コントラスト画像を生成するための第6~第10の縞画像の画像信号を取得する。 Next, the phase contrast image generation unit 5 obtains five different fringe image signals for generating the second phase contrast image, so that the five sub-pixels Dy constituting one pixel of the phase contrast image are obtained. As shown in FIG. 13, the position is shifted by 2 pixels in the sub-scanning direction (Y direction) from the first position described above, and set to the second position, and the pixel signal of each sub-pixel Dy is acquired. To obtain image signals of the sixth to tenth fringe images for generating the second phase contrast image.
 具体的には、図13に示す第2-1読取ラインの画素行群の画像信号が取得されて1フレームの第6の縞画像信号が取得され、第2-2読取ラインの画素行群の画像信号が取得されて1フレームの第7の縞画像信号が取得され、第2-3読取ラインの画素行群の画像信号が取得されて1フレームの第8の縞画像信号が取得され、第2-4読取ラインの画素行群の画像信号が取得されて1フレームの第9の縞画像信号が取得され、第2-5読取ラインの画素行群の画像信号が取得されて1フレームの第10の縞画像信号が取得される。 Specifically, the image signal of the pixel row group of the 2-1 reading line shown in FIG. 13 is acquired, the sixth striped image signal of one frame is acquired, and the pixel row group of the 2-2 reading line is acquired. An image signal is acquired to acquire a seventh stripe image signal of one frame, an image signal of a pixel row group of the second to third reading lines is acquired, and an eighth stripe image signal of one frame is acquired. The image signal of the pixel row group of the 2-4 reading line is acquired and the ninth striped image signal of one frame is acquired, and the image signal of the pixel row group of the 2-5 reading line is acquired and the first frame of the first frame is acquired. Ten fringe image signals are acquired.
 上記のようにして第2の位相コントラスト画像を生成するための互いに異なる第6~第10の縞画像信号が取得される。 As described above, the sixth to tenth fringe image signals different from each other for generating the second phase contrast image are acquired.
 なお、本実施形態においては、第1の位相コントラスト画像を生成するための縞画像信号と第2の位相コントラスト画像を生成するための縞画像信号との間でY方向に2画素だけずらすようにしたが、2画素に限らず、1つの位相コントラスト画像を生成するための縞画像信号の数より小さく1画素以上であればよい。 In the present embodiment, the fringe image signal for generating the first phase contrast image and the fringe image signal for generating the second phase contrast image are shifted by two pixels in the Y direction. However, the number is not limited to two pixels, and may be one pixel or more smaller than the number of stripe image signals for generating one phase contrast image.
 次に、位相コントラスト画像生成部5において、第1および第2の位相コントラスト画像を生成する方法について説明するが、まず、本実施形態における位相コントラスト画像の生成方法の原理について説明する。 Next, a method of generating the first and second phase contrast images in the phase contrast image generation unit 5 will be described. First, the principle of the method of generating a phase contrast image in the present embodiment will be described.
 図14は、被検体10のX方向に関する位相シフト分布Φ(x)に応じて屈折される1つの放射線の経路を例示している。符号X1は、被検体10が存在しない場合に直進する放射線の経路を示しており、この経路X1を進む放射線は、第1および第2の格子2,3を通過して放射線画像検出器4に入射する。符号X2は、被検体10が存在する場合に、被検体10により屈折されて偏向した放射線の経路を示している。この経路X2を進む放射線は、第1の格子2を通過した後、第2の格子3により遮蔽される。 FIG. 14 illustrates one radiation path refracted according to the phase shift distribution Φ (x) in the X direction of the subject 10. Reference numeral X1 indicates a path of radiation that travels straight when the subject 10 is not present, and the radiation that travels along the path X1 passes through the first and second gratings 2 and 3 to the radiation image detector 4. Incident. Reference numeral X2 indicates a path of the radiation refracted and deflected by the subject 10 when the subject 10 exists. The radiation traveling along the path X2 passes through the first grating 2 and is then shielded by the second grating 3.
 被検体10の位相シフト分布Φ(x)は、被検体10の屈折率分布をn(x,z)、放射線の進む方向をzとして、次式(12)で表される。ここで、説明の簡略化のため、y座標は省略している。
Figure JPOXMLDOC01-appb-M000012
The phase shift distribution Φ (x) of the subject 10 is expressed by the following equation (12), where n (x, z) is the refractive index distribution of the subject 10 and z is the direction in which the radiation travels. Here, the y-coordinate is omitted for simplification of description.
Figure JPOXMLDOC01-appb-M000012
 第1の格子2から第3の格子3の位置に形成された自己像G1は、被検体10での放射線の屈折により、その屈折角ψに応じた量だけx方向に変位する。この変位量Δxは、放射線の屈折角ψが微小であることに基づいて、近似的に次式(13)で表される。
Figure JPOXMLDOC01-appb-M000013
The self-image G1 formed at the position from the first grating 2 to the third grating 3 is displaced in the x direction by an amount corresponding to the refraction angle ψ due to the refraction of radiation at the subject 10. This displacement amount Δx is approximately expressed by the following equation (13) based on the fact that the refraction angle ψ of radiation is very small.
Figure JPOXMLDOC01-appb-M000013
 ここで、屈折角ψは、放射線の波長λと被検体10の位相シフト分布Φ(x)を用いて、次式(14)で表される。
Figure JPOXMLDOC01-appb-M000014
Here, the refraction angle ψ is expressed by the following equation (14) using the wavelength λ of radiation and the phase shift distribution Φ (x) of the subject 10.
Figure JPOXMLDOC01-appb-M000014
 このように、被検体10での放射線の屈折による自己像G1の変位量Δxは、被検体10の位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、放射線画像検出器4で検出される各画素の強度変調信号の位相ズレ量Ψ(被検体10がある場合とない場合とでの各画素の強度変調信号の位相ズレ量)に、次式(15)のように関連している。
Figure JPOXMLDOC01-appb-M000015
Thus, the displacement amount Δx of the self-image G1 due to the refraction of the radiation at the subject 10 is related to the phase shift distribution Φ (x) of the subject 10. This displacement amount Δx is the amount of phase shift Ψ of the intensity modulation signal of each pixel detected by the radiation image detector 4 (the phase shift of the intensity modulation signal of each pixel with and without the subject 10). The amount is related to the following equation (15).
Figure JPOXMLDOC01-appb-M000015
 したがって、各画素の強度変調信号の位相ズレ量Ψを求めることにより、上式(15)から屈折角ψが求まり、上式(14)を用いて位相シフト分布Φ(x)の微分量が求まる。この微分量をxについて積分することにより、被検体10の位相シフト分布Φ(x)、すなわち被検体10の位相コントラスト画像を生成することができる。本実施形態では、上記位相ズレ量Ψを、上述した第1~第5の縞画像信号(第6~第10の縞画像信号)に基づいて縞走査法を用いて算出する。 Therefore, by obtaining the phase shift amount ψ of the intensity modulation signal of each pixel, the refraction angle ψ is obtained from the above equation (15), and the differential amount of the phase shift distribution Φ (x) is obtained using the above equation (14). . By integrating this differential amount with respect to x, the phase shift distribution Φ (x) of the subject 10, that is, the phase contrast image of the subject 10 can be generated. In the present embodiment, the phase shift amount Ψ is calculated using a fringe scanning method based on the first to fifth fringe image signals (sixth to tenth fringe image signals) described above.
 本実施形態においては、位相コントラスト画像の副走査方向の画像解像度Dを5分割するようにしたので、位相コントラスト画像の各画素について、それぞれ5種類の第1~第5の縞画像信号が取得されている。以下に、この5種類の第1~第5の縞画像信号から位相コントラスト画像の各画素の強度変調信号の位相ズレ量Ψを算出する方法を説明する。なお、ここでは5種類の縞画像信号に限定せず、M種類の縞画像信号に基づいて位相ズレ量Ψを算出する方法を説明する。 In the present embodiment, since the image resolution D in the sub-scanning direction of the phase contrast image is divided into five, five types of first to fifth fringe image signals are acquired for each pixel of the phase contrast image. ing. Hereinafter, a method of calculating the phase shift amount Ψ of the intensity modulation signal of each pixel of the phase contrast image from the five types of first to fifth stripe image signals will be described. Here, the method of calculating the phase shift amount Ψ based on M types of stripe image signals is described without being limited to the five types of stripe image signals.
 まず、図11に示すような第k読取ラインにおける放射線画像検出器4の主走査方向に並ぶ各画素の画素信号Ik(x)は、次式(16)で表される。
Figure JPOXMLDOC01-appb-M000016
First, the pixel signal Ik (x) of each pixel arranged in the main scanning direction of the radiation image detector 4 in the kth reading line as shown in FIG. 11 is expressed by the following equation (16).
Figure JPOXMLDOC01-appb-M000016
 ここで、xは、画素のx方向に関する座標であり、Aは入射放射線の強度であり、Aは強度変調信号のコントラストに対応する値である(ここで、nは正の整数である)。また、ψ(x)は、上記屈折角ψを放射線画像検出器4の画素の座標xの関数として表したものである。 Here, x is a coordinate in the x direction of the pixel, A 0 is the intensity of the incident radiation, and An is a value corresponding to the contrast of the intensity modulation signal (where n is a positive integer). ). Also, ψ (x) represents the refraction angle ψ as a function of the coordinate x of the pixel of the radiation image detector 4.
 次いで、次式(17)の関係式を用いると、上記屈折角ψ(x)は、式(18)のように表される。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Next, using the relational expression of the following expression (17), the refraction angle ψ (x) is expressed as the expression (18).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 ここで、arg[]は、偏角の抽出を意味しており、位相コントラスト画像の各画素の位相ズレ量Ψに対応する。したがって、位相コントラスト画像の各画素について取得されたM個の縞画像信号の画素信号から、式(16)に基づいて位相コントラスト画像の各画素の強度変調信号の位相ズレ量Ψを算出することにより、屈折角ψ(x)が求められる。 Here, arg [] means extraction of declination and corresponds to the phase shift amount Ψ of each pixel of the phase contrast image. Therefore, by calculating the phase shift amount ψ of the intensity modulation signal of each pixel of the phase contrast image from the pixel signals of the M stripe image signals acquired for each pixel of the phase contrast image, based on Expression (16). The refraction angle ψ (x) is obtained.
 具体的には、位相コントラスト画像の各画素を構成するM個の副画素Dyについてそれぞれ取得されたM個の画素信号は、図15に示すように、読取ラインの位置(副画素Dyの位置)に対して、M×副画素Dyの周期で周期的に変化する。したがって、この副画素DyのM個の画素信号列を、たとえば正弦波でフィッティングし、被検体があるときと被検体なしのときのフィッティングカーブの位相ズレ量Ψを取得し、上式(14)、(15)により位相シフト分布Φ(x)の微分量を算出し、この微分量をxについて積分することにより被検体10の位相シフト分布Φ(x)、すなわち被検体10の位相コントラスト画像を生成する。 Specifically, as shown in FIG. 15, the M pixel signals respectively acquired for the M subpixels Dy constituting each pixel of the phase contrast image are read line positions (subpixel Dy positions). On the other hand, it periodically changes in a cycle of M × subpixel Dy. Therefore, the M pixel signal sequences of the sub-pixel Dy are fitted with, for example, a sine wave, and the phase shift amount Ψ of the fitting curve when the subject is present and when there is no subject is obtained. , (15) calculates the differential amount of the phase shift distribution Φ (x), and integrates this differential amount with respect to x, thereby obtaining the phase shift distribution Φ (x) of the subject 10, that is, the phase contrast image of the subject 10. Generate.
 なお、フィッティングカーブについては、典型的には上述したように正弦波を用いることができるが、矩形波や三角波形状を用いるようにしてもよい。 For the fitting curve, a sine wave can be typically used as described above, but a rectangular wave or a triangular wave shape may be used.
 上記のようにして第1~第5の縞画像信号を用いて第1の位相コントラスト画像が生成され、第6~第10の縞画像信号を用いて第2の位相コントラスト画像が生成される。そして、位相コントラスト画像生成部5は、この2つの位相コントラスト画像を合成して合成画像を生成するが、ここで、このようにして2つの位相コントラスト画像を合成する理由について説明する。 As described above, the first phase contrast image is generated using the first to fifth fringe image signals, and the second phase contrast image is generated using the sixth to tenth fringe image signals. Then, the phase contrast image generation unit 5 combines the two phase contrast images to generate a combined image. Here, the reason for combining the two phase contrast images in this way will be described.
 まず、被写体10のエッジ部分に対応する縞画像信号に基づいて演算される位相微分値は、図16に示すように変化することになる。これに対し、たとえば、位相コントラスト画像の1つの画素を構成する5つの副画素Dyと、Y方向に対して緩やかに傾くような被写体10のエッジとが図17に示すような関係となった場合、図17に示す右から1列目と2列目の黒く塗られている2つ画素(5つの副画素のセット)は被写体10のエッジから被写体側に向かって5つの副画素の信号を用いて位相微分値を求めることになり、図16に示す配置関係でいうと6番~10番の副画素によって検出された信号に基づいて位相微分値を求めることになるので強い信号となる。 First, the phase differential value calculated based on the fringe image signal corresponding to the edge portion of the subject 10 changes as shown in FIG. On the other hand, for example, when the relationship between the five sub-pixels Dy constituting one pixel of the phase contrast image and the edge of the subject 10 that gently tilts in the Y direction is as shown in FIG. 17, the two pixels (a set of five subpixels) that are painted black in the first and second columns from the right use the signals of the five subpixels from the edge of the subject 10 toward the subject side. In this arrangement relationship shown in FIG. 16, the phase differential value is obtained based on the signals detected by the 6th to 10th sub-pixels, which is a strong signal.
 また、図17に示す右から3列目と4列目の列の黒く塗られている2つ画素は、図16に示す配置関係でいうと2番~6番の副画素によって検出された信号に基づいて位相微分値を求めることになり、被写体10のエッジの信号を1~2副画素でしか検出できないため、弱い信号となる。ただし、この2つ画素の上に配置された2つの画素については、それぞれの5つの副画素によって被写体10のエッジ近傍の信号を検出することになるので、比較的強い信号を検出することになる。したがって、図17に示す右から3列目と4列目の4つの画素によって検出されるエッジの信号は全体としては中程度の信号となる。 In addition, the two pixels painted black in the third and fourth columns from the right shown in FIG. 17 are the signals detected by the second to sixth sub-pixels in the arrangement relationship shown in FIG. The phase differential value is obtained based on the above, and the signal of the edge of the subject 10 can be detected only by one or two subpixels, so that the signal becomes weak. However, for the two pixels arranged on the two pixels, a signal near the edge of the subject 10 is detected by each of the five sub-pixels, so that a relatively strong signal is detected. . Therefore, the edge signals detected by the four pixels in the third and fourth columns from the right shown in FIG. 17 are intermediate signals as a whole.
 また、図17に示す右から5列目と6列目の薄く塗られている2つ画素は、図16に示す配置関係でいうと3番~7番の副画素によって検出された信号に基づいて位相微分値を求めることになり、被写体10のエッジの信号を2~3副画素でしか検出できないため、弱い信号となる。そして、右から5列目と6列目の薄く塗られている2つ画素の上に配置された2つの画素についても被写体のエッジから離れているので中程度の信号を検出することになる。したがって、図17に示す右から5列目と6列目の4つの画素によって検出されるエッジの信号は全体としては弱い信号となる。 Further, the two thinly painted pixels in the fifth and sixth columns from the right shown in FIG. 17 are based on the signals detected by the third to seventh subpixels in the arrangement relationship shown in FIG. Thus, the phase differential value is obtained, and since the edge signal of the subject 10 can be detected only by 2 to 3 subpixels, it becomes a weak signal. The two pixels arranged on the thinly painted two pixels in the fifth and sixth columns from the right are also separated from the edge of the subject, so that a medium signal is detected. Therefore, the edge signals detected by the four pixels in the fifth and sixth columns from the right shown in FIG. 17 are weak signals as a whole.
 また、図17に示す左から1列目~4列目の列の黒く塗られている2つ画素は、被写体10のエッジの信号を3~5副画素で検出することになるので、中程度から強い信号となる。 In addition, the two pixels painted in black in the first to fourth columns from the left shown in FIG. 17 are detected because the edge signal of the subject 10 is detected by the 3 to 5 subpixels. It becomes a strong signal.
 したがって、結果としては、図17に示すように被写体10のエッジの位相コントラスト画像は、R1とR3の範囲では比較的強く見えることになるが、R2の範囲では比較的弱く見えることになり、濃度ムラが発生してしまう。 Therefore, as a result, as shown in FIG. 17, the phase contrast image of the edge of the subject 10 looks relatively strong in the range of R1 and R3, but looks relatively weak in the range of R2, and the density Unevenness occurs.
 そこで、本実施形態においては、上述したように位相コントラスト画像の1つの画素を構成する5つの副画素Dyの位置を副走査方向(Y方向)に2画素だけずらし、もう一つの位相コントラスト画像を生成するようにしている。 Therefore, in the present embodiment, as described above, the positions of the five subpixels Dy constituting one pixel of the phase contrast image are shifted by 2 pixels in the subscanning direction (Y direction), and another phase contrast image is obtained. It is trying to generate.
 具体的には、図18に示すように位相コントラスト画像の1つの画素を構成する5つの副画素DyをY方向に2画素だけずらして設定する。このように設定した場合、上記と同様に考えると、図18に示す右から1列目と2列目の列の薄く塗られている2つ画素は、被写体10のエッジの信号を3副画素でしか検出できないため、比較的弱い信号となる。 Specifically, as shown in FIG. 18, the five sub-pixels Dy constituting one pixel of the phase contrast image are set by shifting by two pixels in the Y direction. In this case, considering the same as above, the two thinly-painted pixels in the first and second columns from the right shown in FIG. Since it can only be detected with a signal, the signal is relatively weak.
 また、図18に示す右から3列目~5列目の黒く塗られている3つ画素は、被写体10のエッジの信号を4~5副画素で検出するため強い信号となる。 In addition, the three pixels painted black in the third to fifth columns from the right shown in FIG. 18 are strong signals because the edge signal of the subject 10 is detected by the 4 to 5 subpixels.
 また、図18に示す左から3列目~5列目の列の黒く塗られている3つ画素は、被写体10のエッジの信号を1~2副画素でしか検出できないため、弱い信号となる。ただし、この3つ画素の上に配置された3つの画素については、それぞれの5つの副画素によって被写体10のエッジ近傍の信号を検出することになるので、比較的強い信号を検出することになる。したがって、図18に示す左から3列目~5列目の6つの画素によって検出されるエッジの信号は全体としては中程度の信号となる。 Further, the three pixels in the third to fifth columns from the left shown in FIG. 18 are weak signals because the edge signal of the subject 10 can be detected only by the 1-2 subpixels. . However, for the three pixels arranged on the three pixels, a signal near the edge of the subject 10 is detected by each of the five sub-pixels, so that a relatively strong signal is detected. . Therefore, the edge signals detected by the six pixels in the third to fifth columns from the left shown in FIG. 18 are intermediate signals as a whole.
 また、図18に示す左から1列目と2列目の列の薄く塗られている2つ画素は、被写体10のエッジの信号を3副画素でしか検出できないため、比較的弱い信号となる。 Further, the two thinly painted pixels in the first and second columns from the left shown in FIG. 18 are relatively weak signals because the edge signal of the subject 10 can be detected only by the three subpixels. .
 したがって、結果としては、図18に示すように被写体10のエッジの位相コントラスト画像は、R2’の範囲では比較的強く見えることになるが、R1’とR3’の範囲では比較的弱く見えることになる。 Therefore, as a result, as shown in FIG. 18, the phase contrast image of the edge of the subject 10 looks relatively strong in the range of R2 ′, but looks relatively weak in the range of R1 ′ and R3 ′. Become.
 すなわち、図17に示す位相コントラストにおいてエッジが明確に表れていない範囲を図18に示す位相コントラスト画像においてエッジが明確に表れている範囲で補うことができるので、これらの位相コントラスト画像は互いに補完しあう関係となる。 That is, since the range in which the edge is not clearly shown in the phase contrast shown in FIG. 17 can be supplemented by the range in which the edge is clearly shown in the phase contrast image shown in FIG. 18, these phase contrast images complement each other. It becomes a relationship.
 上記のような理由により、本実施形態においては、図17に示す位相コントラスト画像として第1の位相コントラスト画像を生成し、図18に示す位相コントラスト画像として第2の位相コントラスト画像を生成するようにしている。 For the reasons described above, in the present embodiment, the first phase contrast image is generated as the phase contrast image shown in FIG. 17, and the second phase contrast image is generated as the phase contrast image shown in FIG. ing.
 そして、位相コントラスト画像生成部5は、たとえば、第1の位相コントラスト画像と第2の位相コントラスト画像との単純平均を算出したり、第1の位相コントラスト画像と第2の位相コントラスト画像とを加算したりして合成画像を生成する。 Then, for example, the phase contrast image generation unit 5 calculates a simple average of the first phase contrast image and the second phase contrast image, or adds the first phase contrast image and the second phase contrast image. To generate a composite image.
 なお、本実施形態においては、2つの位相コントラスト画像を取得して合成画像を生成するようにしたが、これに限らず、3つ以上の位相コントラスト画像を取得して合成画像を生成するようにしてもよい。 In the present embodiment, two phase contrast images are acquired to generate a composite image. However, the present invention is not limited to this, and three or more phase contrast images are acquired to generate a composite image. May be.
 また、上記説明では、位相コントラスト画像の画素のy方向に関するy座標を考慮していないが、各y座標についても同様の演算を行うことにより、屈折角の2次元分布ψ(x,y)が得られ、これをx軸に沿って積分することにより、2次元的な位相シフト分布Φ(x,y)を得ることができる。 In the above description, the y-coordinate regarding the y-direction of the pixel of the phase contrast image is not taken into consideration. However, by performing the same calculation for each y-coordinate, the refraction angle two-dimensional distribution ψ (x, y) is By obtaining this and integrating it along the x-axis, a two-dimensional phase shift distribution Φ (x, y) can be obtained.
 また、屈折角の2次元分布ψ(x,y)に代えて、位相ズレ量の2次元分布Ψ(x,y)をx軸に沿って積分することにより位相コントラスト画像を生成するようにしてもよい。 Further, instead of the two-dimensional distribution ψ (x, y) of the refraction angle, the phase contrast image is generated by integrating the two-dimensional distribution ψ (x, y) of the phase shift amount along the x-axis. Also good.
 屈折角の2次元分布ψ(x,y)や位相ズレ量Ψ(x,y)は、位相シフト分布Φ(x,y)の微分値に対応するものであるため位相微分像と呼ばれるが、この位相微分像を位相コントラスト画像として生成するようにしてもよい。 The two-dimensional distribution of refraction angles ψ (x, y) and the phase shift amount ψ (x, y) correspond to the differential values of the phase shift distribution Φ (x, y) and are called phase differential images. This phase differential image may be generated as a phase contrast image.
 なお、上記実施形態においては、図6に示すように放射線画像検出器4の画素列と第2の格子3の格子部材とが平行に並んでいる構成について説明したが、必ずしも画素列と第2の格子3または画素列と第1の格子2が平行に並んでいる必要はなく、第2の格子3または第1の格子2と画素列とが傾きを持っていてもよい。そのときの第1の格子2の延伸方向と画素列方向とがなす角θ1と、第2の格子3の延伸方向と画素列方向とがなす角θ2との条件について、以下に説明する。 In the above-described embodiment, the configuration in which the pixel column of the radiation image detector 4 and the grid member of the second grid 3 are arranged in parallel as illustrated in FIG. 6 has been described. It is not necessary that the grid 3 or the pixel column and the first grid 2 are arranged in parallel, and the second grid 3 or the first grid 2 and the pixel column may have an inclination. The conditions of the angle θ1 formed by the extending direction of the first lattice 2 and the pixel column direction and the angle θ2 formed by the extending direction of the second lattice 3 and the pixel column direction will be described below.
 図19Aは、画素列に対して傾きθ1を有する第1の格子2の自己像G1と、画素列に対して傾きθ2を有する第2の格子3とを表す図である。図19Aに示す縦方向に5つの並ぶ四角が画素列である。なお、図19Bに示す線図は、画素列方向に対する自己像G1の方向と画素列方向に対する第2の格子3の延伸方向とを模式的に示したものである。 FIG. 19A is a diagram illustrating a self-image G1 of the first grating 2 having an inclination θ1 with respect to the pixel column and a second grating 3 having an inclination θ2 with respect to the pixel column. Five squares arranged in the vertical direction shown in FIG. 19A are pixel rows. The diagram shown in FIG. 19B schematically shows the direction of the self-image G1 with respect to the pixel column direction and the extending direction of the second grating 3 with respect to the pixel column direction.
 ここで、θ1とθ2の条件としては、自己像G1と第2の格子3との交点間であるAB間とAC間とが、D=M×Dyの範囲に収まるようにすればよい。 Here, as a condition of θ1 and θ2, the distance between AB and the distance between the intersections of the self-image G1 and the second grating 3 may be within the range of D = M × Dy.
 そして、AB間の距離LABは、下式(19)のように表すことができるので、この距離LABが丁度Dの範囲となる条件は下式(20)になる。なお、式(19)におけるP’は、上式(11)と同様に、第1の格子2によって第2の格子3の位置に形成される自己像G1のピッチである。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Since the distance L AB between the ABs can be expressed as the following expression (19), the condition that the distance L AB is just in the range of D is the following expression (20). Note that P 1 ′ in Expression (19) is the pitch of the self-image G1 formed at the position of the second grating 3 by the first grating 2 as in the above Expression (11).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 一方、AC間の距離LACは、下式(21)のように表すことができるので、この距離LACが丁度Dの範囲となる条件は下式(22)になる。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
On the other hand, since the distance LAC between ACs can be expressed as the following formula (21), the condition that this distance LAC is just in the range of D is the following formula (22).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 したがって、θ1とθ2との条件式は、下式(23)のように表すことができる。下式(23)は、図19Aに示すように、Dに対して第1の格子2の自己像G1と第2の格子3の位相が1周期分ずれる場合の式であるので、これをn周期分ずれるとすると下式(24)で表すことができる。なお、下式(24)におけるnとP’は上式(11)の場合と同様である。
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
 また、上記第1の実施形態においては、図6に示すように、第2の格子3の延伸方向をY方向に平行とし、第1の格子2の自己像G1の延伸方向をこのY方向に対してθだけ傾けるようにしたが、逆に、第1の格子2の自己像G1の延伸方向をY方向に平行とし、第2の格子3の延伸方向をこのY方向に対してθだけ傾けるようにしてもよい。
 また、第1の格子2の自己像G1と第2の格子3とのX-Y面内の相対的な回転角θは、上式(11)や式(24)で表されるだけでなく、第1の格子2の自己像G1と第2の格子3とによって発生するモアレの周期Tと副画素サイズDsubとの関係から、下式(25)で表すこともできる。ただし、下式(25)におけるZは放射線源1の焦点から第1の格子2までの距離、Zは第1の格子2から第2の格子3までの距離、Lは放射線源1の焦点から放射線画像検出器4までの距離、P’は第2の格子3の位置に形成される第1の格子2の自己像G1の配列ピッチである。
 なお、上式(11)の説明においては、副画素サイズをDyと呼ぶようにしたが、これは互いに異なる縞画像を構成する画像信号を取得するための5つの画素の配列方向がY方向だからである。上述したように、上記5つの画素の配列方向は必ずしもY方向に限定されるものでなく、その他の方向でも良いため、式(25)における副画素サイズはDsubと呼ぶことにしている。副画素サイズという意味では、DyとDsubは同じものである。したがって、式(11)における画像解像度Dについても、縞画像の数M×副画素サイズDsubと表すことができ、この副画素サイズの方向もY方向に限定されるものではない。
Figure JPOXMLDOC01-appb-M000025
 また、上述したように第1の格子2の自己像G1の延伸方向と第2の格子3の延伸方向とを相対的に傾ける場合における第1の格子2の自己像G1の配列ピッチP’と第1の格子2の格子ピッチPと第2の格子3の格子ピッチPとが満たすべき関係は、第1の格子2が90°の位相変調を与える位相変調型格子または振幅変調型格子の場合には下式(26)となり、第1の格子2が180°の位相変調を与える位相変調型格子の場合には下式(27)となる。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 そして、図20に示すように第1の格子2の自己像G1と第2の格子3とを配置した場合、図20の一番右に示すようなY方向に周期方向を有するモアレが発生するが、たとえば図20おいて点線四角で示すように、上記モアレの周期方向に対して平行に配列された画素の画像信号を取得するようにすれば、上記第1の実施形態と同様に、互いに異なる5つの縞画像信号をそれぞれ取得することができる。そして、この場合においても、上記第1の実施形態と同様に、副画素Dsubの位置をモアレの周期方向に対してたとえば2画素だけずらし、そのずらした位置での各副画素Dsubの画素信号をそれぞれ取得することによって第2の位相コントラスト画像を生成するための5つの縞画像信号を取得することができる。
 以上が、本発明の放射線位相画像撮影装置の第1の実施形態の説明である。
Therefore, the conditional expression of θ1 and θ2 can be expressed as the following expression (23). Since the following formula (23) is a formula when the phase of the self-image G1 of the first grating 2 and the phase of the second grating 3 is shifted by one period with respect to D, as shown in FIG. If it is shifted by the period, it can be expressed by the following formula (24). Note that n and P 1 ′ in the following equation (24) are the same as those in the above equation (11).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
In the first embodiment, as shown in FIG. 6, the extending direction of the second grating 3 is parallel to the Y direction, and the extending direction of the self-image G1 of the first grating 2 is set to the Y direction. However, conversely, the extending direction of the self-image G1 of the first grating 2 is parallel to the Y direction, and the extending direction of the second grating 3 is inclined by θ with respect to the Y direction. You may do it.
Further, the relative rotation angle θ in the XY plane between the self-image G1 of the first grating 2 and the second grating 3 is not only expressed by the above equations (11) and (24). From the relationship between the moire period T generated by the self-image G1 of the first grating 2 and the second grating 3 and the sub-pixel size Dsub, it can also be expressed by the following equation (25). However, Z 1 in the formula (25) distance from the focal point of the radiation source 1 to the first grid 2, Z 2 is a distance from the first grating 2 to the second grating 3, L is the radiation source 1 The distance from the focal point to the radiation image detector 4, P 1 ′, is the arrangement pitch of the self-image G 1 of the first grating 2 formed at the position of the second grating 3.
In the description of the above formula (11), the sub-pixel size is referred to as Dy. This is because the arrangement direction of five pixels for acquiring image signals constituting different stripe images is the Y direction. It is. As described above, the arrangement direction of the five pixels is not necessarily limited to the Y direction, and may be any other direction. Therefore, the subpixel size in Expression (25) is referred to as Dsub. Dy and Dsub are the same in terms of subpixel size. Therefore, the image resolution D in Expression (11) can also be expressed as the number M of stripe images × subpixel size Dsub, and the direction of the subpixel size is not limited to the Y direction.
Figure JPOXMLDOC01-appb-M000025
Further, as described above, the arrangement pitch P 1 ′ of the self-image G1 of the first grating 2 when the extending direction of the self-image G1 of the first grating 2 and the extending direction of the second grating 3 are relatively inclined. When the first and the grating pitch P 1 of the grating 2 grating pitch P 2 and the relationship should satisfy the second grating 3, the phase modulation type grating or amplitude modulation type first grating 2 gives a phase modulation of 90 ° In the case of a grating, the following expression (26) is obtained, and in the case where the first grating 2 is a phase modulation type grating that applies 180 ° phase modulation, the following expression (27) is obtained.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
When the self-image G1 of the first grating 2 and the second grating 3 are arranged as shown in FIG. 20, a moire having a periodic direction in the Y direction as shown in the rightmost part of FIG. 20 is generated. However, as shown by a dotted square in FIG. 20, for example, if image signals of pixels arranged in parallel to the periodic direction of the moire are acquired, each other, as in the first embodiment, Five different fringe image signals can be acquired. Even in this case, as in the first embodiment, the position of the sub-pixel Dsub is shifted by, for example, two pixels with respect to the moire periodic direction, and the pixel signal of each sub-pixel Dsub at the shifted position is changed. By acquiring each, it is possible to acquire five fringe image signals for generating the second phase contrast image.
The above is the description of the first embodiment of the radiation phase imaging apparatus of the present invention.
 次に、本発明の放射線画像撮影装置の第2の実施形態を用いた放射線位相画像撮影装置について説明する。上記第1の実施形態の放射線位相画像撮影装置は、第1の格子2から第2の格子3までの距離Z2がタルボ干渉距離となるように、第1の格子2の種類や放射線源1から放射される放射線の拡がり角に応じて、上式(3)~上式(8)のいずれかを満たすようにしたが、第2の実施形態の放射線位相画像撮影装置においては、第1の格子2が入射放射線の大部分を回折させずに投影することで、第1の格子2を通過して射影される投影像が、第1の格子2の後方の位置で相似的に得られるため、第1の格子2から第2の格子3までの距離Zを、タルボ干渉距離と無関係に設定することができるようにしたものである。 Next, a radiation phase image capturing apparatus using the second embodiment of the radiation image capturing apparatus of the present invention will be described. In the radiation phase imaging apparatus of the first embodiment, the type of the first grating 2 and the radiation source 1 are set so that the distance Z2 from the first grating 2 to the second grating 3 becomes the Talbot interference distance. One of the above formulas (3) to (8) is satisfied according to the divergence angle of the radiated radiation. However, in the radiation phase imaging apparatus of the second embodiment, the first grating 2 projects a large portion of incident radiation without diffracting, so that a projection image projected through the first grating 2 is obtained in a similar manner at a position behind the first grating 2. the distance Z 2 from the first grating 2 to the second grating 3, in which to be able to be set independently of the Talbot distance.
 具体的には、第2の実施形態の放射線位相画像撮影装置においては、第1の格子2と第2の格子3とが、ともに吸収型(振幅変調型)格子として構成されるとともに、タルボ干渉効果の有無に関わらず、スリット部を通過した放射線を幾何学的に投影するように構成されている。より詳細には、第1の格子2の間隔dと第2の格子3の間隔dとを、放射線源1から照射される放射線の実効波長より十分大きな値とすることで、照射放射線の大部分はスリット部での回折を受けずに、第1の格子2の後方に第1の格子2の自己像G1を形成するように構成することができる。たとえば、放射線源のターゲットとしてタングステンを用い、管電圧を50kVとした場合には、放射線の実効波長は約0.4Åである。この場合には、第1の格子2の間隔dと第2の格子3の間隔dを、1μm~10μm程度とすればスリット部を通過した放射線が形成する放射線像は回折の効果を無視できる程度になり、第1の格子2の後方に、第1の格子2の自己像G1が幾何学的に投影される。 Specifically, in the radiation phase imaging apparatus of the second embodiment, the first grating 2 and the second grating 3 are both configured as absorption (amplitude modulation type) gratings and have Talbot interference. Regardless of the presence or absence of the effect, the radiation passing through the slit portion is geometrically projected. More specifically, first the spacing d 1 of the grating 2 and the spacing d 2 of the second grating 3, by a sufficiently large value than the effective wavelength of the radiation emitted from the radiation source 1, the illumination radiation Mostly, the self-image G1 of the first grating 2 can be formed behind the first grating 2 without being diffracted by the slit portion. For example, when tungsten is used as the target of the radiation source and the tube voltage is 50 kV, the effective wavelength of radiation is about 0.4 mm. In this case, the radiation image first with the distance d 1 of the grating 2 the distance d 2 of the second grating 3, the radiation that has passed through the slit portion be about 1 [mu] m ~ 10 [mu] m to form ignores the effects of diffraction The self-image G1 of the first grating 2 is geometrically projected behind the first grating 2 as much as possible.
 なお、第1の格子2の格子ピッチPと第2の格子3の格子ピッチPとの関係については、上記第1の実施形態と同様である。また、第1の格子2の自己像G1と第2の格子3との相対的な傾きの関係についても、上記第1の実施形態における式(11)などと同様である。 The first and the grating pitch P 1 of the grating 2 for the relationship between the lattice pitch P 2 of the second grating 3 is the same as in the first embodiment. Further, the relation of the relative inclination between the self-image G1 of the first grating 2 and the second grating 3 is the same as the equation (11) in the first embodiment.
 そして、第2の実施形態においては、第1の格子2と第2の格子3との距離Zを、上式(5)においてm=1とした場合の最小のタルボ干渉距離より短い値に設定することができる。すなわち、上記距離Zが、次式(28)を満たす範囲の値に設定する。
Figure JPOXMLDOC01-appb-M000028
In the second embodiment, the distance Z 2 between the first grating 2 and the second grating 3 is set to a value shorter than the minimum Talbot interference distance when m = 1 in the above equation (5). Can be set. That is, the distance Z 2 is set to a value in the range satisfying the following equation (28).
Figure JPOXMLDOC01-appb-M000028
 なお、第1の格子2の部材22と第2の格子3の部材32とは、コントラストの高い周期パターン像を生成するためには、放射線を完全に遮蔽(吸収)することが好ましいが、上述した放射線吸収に優れる材料(金、白金等)を用いたとしても、吸収されずに透過する放射線が少なからず存在する。このため、放射線の遮蔽性を高めるためには、部材22,32のそれぞれの厚みh,hを、可能な限り厚くすることが好ましい。部材22,32は、照射放射線の90%以上を遮蔽できることが好ましく、部材22,32のそれぞれの材質と厚さh1,h2は、照射放射線のエネルギーによって設定される。たとえば、放射線源1のターゲットとしてタングステンを用い、管電圧を50kVとした場合には、厚みh,hは、金(Au)換算で100μm以上であることが好ましい。 The member 22 of the first grating 2 and the member 32 of the second grating 3 preferably shield (absorb) radiation completely in order to generate a periodic pattern image with high contrast. Even if a material excellent in radiation absorption (gold, platinum, etc.) is used, there is a considerable amount of radiation that is transmitted without being absorbed. For this reason, in order to improve the radiation shielding property, it is preferable that the thicknesses h 1 and h 2 of the members 22 and 32 be as thick as possible. The members 22 and 32 are preferably capable of shielding 90% or more of the irradiation radiation, and the materials and thicknesses h1 and h2 of the members 22 and 32 are set by the energy of the irradiation radiation. For example, when tungsten is used as the target of the radiation source 1 and the tube voltage is 50 kV, the thicknesses h 1 and h 2 are preferably 100 μm or more in terms of gold (Au).
 ただし、第2の実施形態においても、上記第1の実施形態と同様に、いわゆる放射線のケラレの問題があるため、第1の格子2の部材22と第2の格子3の部材32との厚さh,hを制限することが好ましい。 However, in the second embodiment as well, the thickness of the member 22 of the first grating 2 and the member 32 of the second grating 3 has a problem of so-called radiation vignetting as in the first embodiment. It is preferable to limit the lengths h 1 and h 2 .
 そして、第2の実施形態の放射線位相画像撮影装置においても、図1に示すように、放射線源1と第1の格子2との間に、被検体10が配置された後、放射線源1から放射線が射出される。そして、その放射線は被検体10を透過した後、第1の格子2に照射される。 Also in the radiation phase imaging apparatus of the second embodiment, as shown in FIG. 1, after the subject 10 is disposed between the radiation source 1 and the first grating 2, Radiation is emitted. The radiation passes through the subject 10 and is then applied to the first grating 2.
 そして、第1の格子2を通過して射影された投影像が第2の格子3を通過し、その結果、上記投影像は、第2の格子3との重ね合わせにより強度変調を受け、画像信号として放射線画像検出器4により検出される。 Then, the projected image projected through the first grating 2 passes through the second grating 3, and as a result, the projected image is subjected to intensity modulation by superimposing with the second grating 3, and the image The signal is detected by the radiation image detector 4 as a signal.
 そして、放射線画像検出器4により検出された画像信号は、上記第1の実施形態と同様にして読み出され、1フレーム全体の画像信号が位相コントラスト画像生成部5に記憶された後、位相コントラスト画像生成部5は、その記憶された画像信号に基づいて、上記第1の実施形態と同様にして、第1および第2の位相コントラスト画像を生成する。そして、位相コントラスト画像生成部5は、第1の位相コントラスト画像と第2の位相コントラスト画像とを合成して合成画像を生成する。 Then, the image signal detected by the radiation image detector 4 is read out in the same manner as in the first embodiment, and the image signal of one whole frame is stored in the phase contrast image generation unit 5 and then the phase contrast. Based on the stored image signal, the image generation unit 5 generates first and second phase contrast images in the same manner as in the first embodiment. Then, the phase contrast image generation unit 5 combines the first phase contrast image and the second phase contrast image to generate a combined image.
 位相コントラスト画像生成部5において、第1および第2位相コントラスト画像を生成する作用および合成画像を生成する作用についても、上記第1の実施形態と同様である。 The operation of generating the first and second phase contrast images and the operation of generating the composite image in the phase contrast image generation unit 5 are the same as those in the first embodiment.
 第2の実施形態の放射線位相画像撮影装置によれば、第1の格子2と第2の格子3との距離Z2をタルボ干渉距離よりも短くすることができるので、一定のタルボ干渉距離を確保しなければならない第1の実施形態の放射線位相画像撮影装置と比較すると、撮影装置をより薄型化することができる。
 以上が、本発明の放射線位相画像撮影装置の第2の実施形態の説明である。
According to the radiation phase imaging apparatus of the second embodiment, since the distance Z2 between the first grating 2 and the second grating 3 can be made shorter than the Talbot interference distance, a constant Talbot interference distance is ensured. Compared with the radiation phase imaging apparatus of the first embodiment that must be performed, the imaging apparatus can be made thinner.
The above is the description of the second embodiment of the radiation phase image capturing apparatus of the present invention.
 また、上記第1の実施形態および第2の実施形態の放射線位相画像撮影装置において、放射線源1から放射線画像検出器4までの距離を、一般的な病院の撮影室で設定されるような距離(1m~2m)とした場合に、放射線源1の焦点サイズが、たとえば、一般的な0.1mm~1mm程度である場合には、第1の格子2のタルボ干渉や第1の格子2の投影による自己像G1にボケが生じ、位相コントラスト画像の画質の低下をもたらす恐れがある。 Further, in the radiation phase imaging apparatus of the first embodiment and the second embodiment, the distance from the radiation source 1 to the radiation image detector 4 is set at a distance set in a general hospital imaging room. When the focal point size of the radiation source 1 is, for example, about 0.1 mm to 1 mm, which is typical, the Talbot interference of the first grating 2 or the first grating 2 There is a possibility that the self-image G1 is blurred due to the projection and the image quality of the phase contrast image is deteriorated.
 そこで、放射線源1として上述したような焦点サイズのものを用いる場合には、放射線源1の焦点の直後にピンホールを設置して実効的に焦点サイズを小さくすることが考えられるが、実効的な焦点サイズを縮小するためにピンホールの開口面積を小さくすると放射線強度が低下してしまう。 Therefore, when the radiation source 1 having the above-described focal size is used, it is conceivable to effectively reduce the focal point size by installing a pinhole immediately after the focal point of the radiation source 1. If the opening area of the pinhole is reduced in order to reduce the focal point size, the radiation intensity is reduced.
 そこで、上述したようなピンホールを設けるのではなく、第1および第2の実施形態の放射線位相画像撮影装置において、放射線源1の焦点の直後にマルチスリットを配置するようにしてもよい。 Therefore, instead of providing the pinhole as described above, a multi-slit may be arranged immediately after the focal point of the radiation source 1 in the radiation phase imaging apparatus of the first and second embodiments.
 ここで、マルチスリットは、第2の実施形態の第1および第2の格子2,3と同様な構成の吸収型格子であり、所定の方向に延伸した複数の放射線遮蔽部が、周期的に配置されているものである。マルチスリットに配置された放射線遮蔽部の配列方向は、第1の格子2の部材22あるいは第2の格子3の部材32の配列方向のいずれか一方と同一であることが好ましいが、位相コントラスト画像が得られるという観点では、必ずしも同一である必要はない。本実施形態では、このうちの最も好ましい形態の例として、マルチスリットに配置された放射線遮蔽部の配列方向は、第1の格子2の部材22の配列方向(X方向)と同一であるとして説明する。
 すなわち、この場合において、マルチスリットは、放射線源1の焦点から放射される放射線を部分的に遮蔽することにより、X方向に関する実効的な焦点サイズを縮小するものとすることができ、擬似的に、X方向に分割された多数の微小焦点光源を形成することができる。
Here, the multi-slit is an absorption type grating having the same configuration as the first and second gratings 2 and 3 of the second embodiment, and a plurality of radiation shielding portions extending in a predetermined direction are periodically formed. It is what is arranged. The arrangement direction of the radiation shielding portions arranged in the multi-slit is preferably the same as either the arrangement direction of the members 22 of the first grating 2 or the members 32 of the second grating 3, but the phase contrast image Are not necessarily the same from the viewpoint of obtaining. In the present embodiment, as an example of the most preferable form among them, it is assumed that the arrangement direction of the radiation shielding portions arranged in the multi slit is the same as the arrangement direction (X direction) of the members 22 of the first lattice 2 To do.
That is, in this case, the multi-slit can partially reduce the effective focus size in the X direction by partially shielding the radiation emitted from the focus of the radiation source 1. A large number of microfocus light sources divided in the X direction can be formed.
 このマルチスリットの格子ピッチPは、マルチスリットから第1の格子2までの距離をZとして、次式(29)を満たすように設定する必要がある。なお、P’は、第2の格子3の位置における第1の格子2の自己像G1の配列ピッチである。
Figure JPOXMLDOC01-appb-M000029
The multi-slit lattice pitch P 3 needs to be set to satisfy the following equation (29), where Z 3 is the distance from the multi-slit to the first lattice 2. P 1 ′ is the arrangement pitch of the self-image G1 of the first grating 2 at the position of the second grating 3.
Figure JPOXMLDOC01-appb-M000029
 また、式(29)を満たすマルチスリットがある場合は、第1の格子2の自己像G1のピッチは、マルチスリットの位置を拡大の起点として考えたピッチとなる。そのため、第2の格子3の格子ピッチPは、第1の格子2が90°の位相変調を与える位相変調型格子または振幅変調型格子の場合は、次式(30)の関係を満たすように決定される。なお、Zは、上述したようにマルチスリットから第1の格子2までの距離である。
Figure JPOXMLDOC01-appb-M000030
 また、第1の格子2が180°の位相変調を与える位相変調型格子の場合には、次式(31)の関係を満たすように決定される。
Figure JPOXMLDOC01-appb-M000031
When there is a multi-slit that satisfies the equation (29), the pitch of the self-image G1 of the first grating 2 is a pitch that takes the position of the multi-slit as the starting point of enlargement. Therefore, the grating pitch P 2 of the second grating 3 satisfies the relationship of the following equation (30) when the first grating 2 is a phase modulation type grating or an amplitude modulation type grating that gives 90 ° phase modulation. To be determined. Z 3 is the distance from the multi slit to the first grating 2 as described above.
Figure JPOXMLDOC01-appb-M000030
When the first grating 2 is a phase modulation type grating that applies 180 ° phase modulation, it is determined so as to satisfy the relationship of the following equation (31).
Figure JPOXMLDOC01-appb-M000031
 さらに、放射線画像検出器4の検出面におけるX方向の有効視野の長さVを確保するには、放射線源1の焦点から放射線画像検出器4までの距離をLとすると、第1の格子2の部材22の厚みhと第2の格子3の部材の厚みhとは、次式(32)および次式(33)を満たすように決定されることが好ましい。
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
Further, in order to secure the effective field length V in the X direction on the detection surface of the radiation image detector 4, if the distance from the focal point of the radiation source 1 to the radiation image detector 4 is L, the first grating 2. the thickness h 1 of the member 22 and the thickness h 2 of the second grating 3 members, the following equation (32) and following equation (33) are preferably determined so as to satisfy.
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
 なお、上式(29)は、マルチスリットにより疑似的に分散形成された各微小焦点光源から射出された放射線が第1の格子2のタルボ干渉あるいは投影によって形成された複数の自己像G1が、第2の格子3の位置で、ちょうど第1の格子2の自己像G1のピッチ1周期分ずつずれて重なり合うための幾何学的な条件である。このように、マルチスリットによって形成される複数の微小焦点光源は形成する、上記タルボ干渉または上記投影による、複数の第1の格子2の自己像G1が規則的に重ね合わせられることにより、放射線の強度を低下させずに、位相コントラスト画像の画質を向上させることができる。
 また、上記のように第1および第2の実施形態の放射線位相画像撮影装置においてマルチスリットを用いる場合、第1の格子2の自己像G1と第2の格子3との相対的な回転角θと、第1の格子2の自己像G1と第2の格子3とによって発生するモアレの周期Tと、副画素サイズDsubとの関係を示す式は、上式(25)と同様に、下式(34)のように表すことができる。下式(34)におけるZは放射線源1の焦点から第1の格子2までの距離、Zは第1の格子2と第2の格子3との距離、Lは放射線源1の焦点から放射線画像検出器4までの距離である。
Figure JPOXMLDOC01-appb-M000034
In the above equation (29), the plurality of self-images G1 formed by the Talbot interference or projection of the first grating 2 by the radiation emitted from each micro-focus light source pseudo-dispersed and formed by the multi-slit This is a geometric condition for overlapping the self-image G1 of the first grating 2 at the position of the second grating 3 by shifting by one pitch. In this way, the plurality of microfocus light sources formed by the multi-slits are formed, and the self-images G1 of the plurality of first gratings 2 formed by the Talbot interference or the projection are regularly superimposed on each other. The image quality of the phase contrast image can be improved without reducing the intensity.
As described above, when the multi-slit is used in the radiation phase imaging apparatus of the first and second embodiments, the relative rotation angle θ between the self-image G1 of the first grating 2 and the second grating 3 is used. And the equation indicating the relationship between the moire period T generated by the self-image G1 of the first grating 2 and the second grating 3 and the sub-pixel size Dsub is similar to the following expression (25): It can be expressed as (34). In the following equation (34), Z 1 is the distance from the focal point of the radiation source 1 to the first grating 2, Z 2 is the distance between the first grating 2 and the second grating 3, and L is from the focal point of the radiation source 1. This is the distance to the radiation image detector 4.
Figure JPOXMLDOC01-appb-M000034
 また、上記第1および第2の実施形態においては、第1の格子2と第2の格子3とを相対的に傾けるようにしたが、上述したマルチスリットを設けるようにした場合には、第1の格子2と第2の格子3とはその格子部材22,32の延伸方向が平行となるように配置し、この格子部材22,32の延伸方向とマルチスリットの延伸方向とを相対的に傾けるようにしてもよい。なぜならば、この構成によっても、第1の格子2の自己像G1の延伸方向と第2の格子の延伸方向とが相対的に傾き、モアレを発生させることができ、第1および第2の実施形態と同様の縞画像信号を取得することができるからである。なお、格子部材22,32の延伸方向とマルチスリットの延伸方向との傾き角については、第1および第2の実施形態と同様に、上式(11)、上式(24)、または上式(25)に基づいて設定するようにすればよい。
 また、上記第1および第2実施形態の放射線位相画像撮影装置の説明においては、第1の格子2の自己像G1と第2の格子3とを相対的に傾けるようにしたが、必ずしもこのように相対的に傾ける必要はなく、たとえば第1の格子2の自己像G1と第2の格子3とが平行となるようにするとともに、第1の格子2の自己像G1の配列ピッチとは異なる配列ピッチの第2の格子3を用いるようにしてもよい。
 このような第1の格子2および第2の格子3を用いた場合、図21に示すようなY方向のモアレ、すなわちX方向に周期方向を有するモアレが発生することになる。したがって、たとえば図21おいて点線四角で示すように、上記モアレの周期方向に対して平行に配列された5つの画素の画像信号を取得するようにすれば、上記第1の実施形態と同様に、互いに異なる5つの縞画像を構成する画像信号をそれぞれ取得することができる。
 上記のように第1の格子2の自己像G1の配列ピッチとは異なる配列ピッチの第2の格子3を用いる場合、第1の格子2の自己像G1の配列ピッチP’と、第2の格子3の配列ピッチPと、モアレの周期Tと、副画素サイズDsubとが、下式(35)を満たすようにすればよい。
Figure JPOXMLDOC01-appb-M000035
 また、このとき第1の格子2の自己像G1の配列ピッチP’は、第1の格子2が90°の位相変調を与える位相変調型格子または振幅変調型格子の場合には下式(36)を満たすようにし、第1の格子2が180°の位相変調を与える位相変調型格子の場合には下式(37)を満たすようにすればよい。
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
 また、上記第1および第2の実施形態の放射線位相画像撮影装置に対して上述したマルチスリットを設けた実施形態においても、上記のように第1の格子2の自己像G1の配列ピッチとは異なる配列ピッチの第2の格子3を用いた構成とすることができる。上記マルチスリットを用いる場合においても、第1の格子2の自己像G1の配列ピッチP’と、第2の格子3の配列ピッチPと、モアレの周期Tと、副画素サイズDsubとは、下式(38)を満たすようにすればよい。下式(38)におけるZは放射線源1の焦点から第1の格子2までの距離、Zは第1の格子2と第2の格子3との距離、Lは放射線源1の焦点から放射線画像検出器4までの距離である。
Figure JPOXMLDOC01-appb-M000038
 なお、このとき第1の格子2の自己像G1の配列ピッチP’が満たすべき関係式は、上式(36)および上式(37)におけるZをZに置き換えた式となり、さらに上式(29)を満たす必要がある。
 また、上記説明では、第1の格子2の自己像G1の配列ピッチと第2の格子3の配列ピッチとが異なる構成としたが、この構成に限らず、たとえば、放射線源1から出射される放射線がコーンビームである場合には、図22に示すように、Zの位置において第1の格子2の自己像G1の配列ピッチと同じ配列ピッチとなるような第2の格子3を用い、この第2の格子3をZをより大きくした位置(あるいは、図示していないが、Zをより小さくした位置に移動させて配置することによって、拡大された第1の格子3の自己像G1の配列ピッチと第2の格子3の配列ピッチとが異なるような構成としてもよい。この構成の場合でも、上式(35)、上式(36)または上式(37)を満たし、さらにマルチスリットを用いる場合には、さらに上式(35)に替えて上式(38)、上式(29)を満たす必要がある。ただし、これらの式において、P’は上記移動後の第2の格子3の位置における第1の格子2の自己像G1の配列ピッチP’、Zは、第1の格子2と上記移動後の第2の格子3との距離、と読み替えるものとする。
 また、上述したように第1の格子2の自己像G1の配列ピッチとは異なる配列ピッチの第2の格子3を用いるとともに、さらに上述したように第1の格子2の自己像G1と第2の格子3とを相対的に傾けるようにしてもよい。
 このような構成とすることにより、図23に示すような斜め方向に(X方向およびY方向に平行でない方向)周期を有するモアレを発生させることができる。したがって、たとえば図23おいて点線四角で示すように、Y方向に平行に配列された5つの画素の画像信号を取得するようにすれば、上記第1の実施形態と同様に、互いに異なる5つの縞画像信号をそれぞれ取得することができる。
 なお、図23においては、Y方向に平行に配列された5つの画素の画像信号を取得するようにしたが、これに限らず、図24に示すように、X方向に平行に配列された5つの画素の画像信号を取得するようにしてもよい。要するに、上記モアレの周期方向に対して平行または直交方向以外の交差する方向について配列された画素の画像信号を取得するのであれば、如何なる方向に画素が配列されていてもよい。
 また、上記説明においては、第1の格子2の自己像G1の周期方向または第2の格子3の周期方向が、放射線画像検出器4の画素が配列される直交する方向のうちのいずれか一方の方向と一致する場合について説明したが、これに限らず、図25に示すように、斜め方向(X方向およびY方向に平行でない方向)に配列された5つの画素の画像信号が取得できるように第1および第2の格子2,3の周期方向と放射線画像検出器4の画素の配列方向との相対角度がずれていてもよい。
 要するに、モアレの周期方向に対して平行または直交方向以外の交差方向となる所定方向について配列された複数の画素の画像信号を互いに異なる縞画像を構成する画像信号として取得するのであれば、第1および第2の格子2,3の周期方向と放射線画像検出器4の画素の配列方向との関係を如何なる関係にしてもよい。このような関係により、上式(11)、上式(24)、上式(25)、上式(34)、上式(35)、上式(38)における副画素サイズは、Y方向に限定されるものではなく、上記所定方向の画素のサイズということになる。
 そして、図21から図25に示したような場合においても、上記第1の実施形態と同様に、副画素Dsubの位置をモアレの周期方向に対してたとえば2画素だけずらし、そのずらした位置での各副画素Dsubの画素信号をそれぞれ取得することによって第2の位相コントラスト画像を生成するための5つの縞画像信号を取得することができる。
In the first and second embodiments, the first grating 2 and the second grating 3 are relatively inclined. However, when the multi-slit described above is provided, The first lattice 2 and the second lattice 3 are arranged so that the extending directions of the lattice members 22 and 32 are parallel to each other, and the extending direction of the lattice members 22 and 32 and the extending direction of the multi-slit are relatively It may be tilted. This is because, even in this configuration, the stretching direction of the self-image G1 of the first grating 2 and the stretching direction of the second grating can be relatively inclined, and moire can be generated. This is because a fringe image signal similar to that of the form can be acquired. In addition, about the inclination | tilt angle of the extending | stretching direction of the lattice members 22 and 32 and the extending | stretching direction of a multi slit, similarly to the 1st and 2nd embodiment, the above Formula (11), the above Formula (24), or the above Formula The setting may be made based on (25).
In the description of the radiation phase imaging apparatus of the first and second embodiments, the self-image G1 of the first grating 2 and the second grating 3 are relatively inclined, but this is not necessarily the case. For example, the self-image G1 of the first grating 2 and the second grating 3 are parallel to each other, and the arrangement pitch of the self-image G1 of the first grating 2 is different. You may make it use the 2nd grating | lattice 3 of arrangement pitch.
When such first grating 2 and second grating 3 are used, a moire in the Y direction as shown in FIG. 21, that is, a moire having a periodic direction in the X direction is generated. Therefore, for example, as shown by a dotted square in FIG. 21, if the image signals of five pixels arranged in parallel with the periodic direction of the moire are acquired, the same as in the first embodiment. The image signals constituting the five different fringe images can be respectively acquired.
When the second grating 3 having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first grating 2 is used as described above, the arrangement pitch P 1 ′ of the self-image G1 of the first grating 2 and the second The arrangement pitch P 2 of the grating 3, the moire period T, and the sub-pixel size Dsub may satisfy the following expression (35).
Figure JPOXMLDOC01-appb-M000035
At this time, the arrangement pitch P 1 ′ of the self-image G1 of the first grating 2 is expressed by the following formula (1) when the first grating 2 is a phase modulation type grating or an amplitude modulation type grating that applies 90 ° phase modulation. 36), and when the first grating 2 is a phase modulation type grating giving 180 ° phase modulation, the following expression (37) may be satisfied.
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
Also in the embodiment in which the multi-slit described above is provided for the radiation phase imaging apparatus of the first and second embodiments, the arrangement pitch of the self-image G1 of the first grating 2 is as described above. It can be set as the structure using the 2nd grating | lattice 3 of a different arrangement pitch. In the case of using the multi-slit also arranged a pitch P 1 'of the first grating 2 self image G1, the arrangement pitch P 2 of the second grating 3, the period T of the moire, the sub-pixel size Dsub is The following equation (38) may be satisfied. In the following equation (38), Z 1 is the distance from the focal point of the radiation source 1 to the first grating 2, Z 2 is the distance between the first grating 2 and the second grating 3, and L is from the focal point of the radiation source 1. This is the distance to the radiation image detector 4.
Figure JPOXMLDOC01-appb-M000038
At this time, the relational expression to be satisfied by the arrangement pitch P 1 ′ of the self-image G1 of the first grating 2 is an expression in which Z 1 in the above expression (36) and the above expression (37) is replaced with Z 3. It is necessary to satisfy the above formula (29).
Further, in the above description, the arrangement pitch of the self-image G1 of the first grating 2 and the arrangement pitch of the second grating 3 are different from each other. If radiation is a cone beam, as shown in FIG. 22, using the second grating 3 as the same arrangement pitch as the array pitch of the first grating 2 self image G1 at the position of Z 2, The self-image of the first grating 3 enlarged by disposing the second grating 3 at a position where Z 2 is made larger (or by moving to a position where Z 2 is made smaller, although not shown). The arrangement pitch of G1 may be different from the arrangement pitch of the second grating 3. Even in this configuration, the above expression (35), the above expression (36), or the above expression (37) is satisfied, and When using a multi slit, The above equation in place of equation (35) to the al (38), it is necessary to satisfy the above equation (29). However, in these formulas, the P 1 'position of the second grating 3 after the movement the first arrangement pitch P 1 of the self image G1 grid 2 ', Z 2, the distance between the first grating 2 and the second grating 3 after the movement, to be replaced with.
Further, as described above, the second grating 3 having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first grating 2 is used, and the self-image G1 and the second image of the first grating 2 are further used as described above. The grating 3 may be relatively tilted.
With such a configuration, it is possible to generate moire having a period in an oblique direction (a direction not parallel to the X direction and the Y direction) as shown in FIG. Therefore, for example, as shown by a dotted square in FIG. 23, if image signals of five pixels arranged in parallel to the Y direction are acquired, five different from each other as in the first embodiment. Each of the fringe image signals can be acquired.
In FIG. 23, the image signals of five pixels arranged in parallel to the Y direction are acquired. However, the present invention is not limited to this, and as shown in FIG. 24, 5 pixels arranged in parallel to the X direction. You may make it acquire the image signal of one pixel. In short, the pixels may be arranged in any direction as long as the image signals of the pixels arranged in the crossing direction other than the direction parallel to or orthogonal to the moire periodic direction are acquired.
In the above description, the periodic direction of the self-image G1 of the first grating 2 or the periodic direction of the second grating 3 is either one of the orthogonal directions in which the pixels of the radiation image detector 4 are arranged. However, the present invention is not limited to this. As shown in FIG. 25, image signals of five pixels arranged in an oblique direction (a direction not parallel to the X direction and the Y direction) can be acquired. Further, the relative angle between the periodic direction of the first and second gratings 2 and 3 and the arrangement direction of the pixels of the radiation image detector 4 may be shifted.
In short, if the image signals of a plurality of pixels arranged in a predetermined direction which is a cross direction other than the parallel or orthogonal direction to the moiré periodic direction are acquired as image signals constituting different fringe images, the first The relationship between the periodic direction of the second gratings 2 and 3 and the arrangement direction of the pixels of the radiation image detector 4 may be any relationship. Due to this relationship, the subpixel size in the above equation (11), the above equation (24), the above equation (25), the above equation (34), the above equation (35), and the above equation (38) is in the Y direction. The size of the pixel in the predetermined direction is not limited.
Even in the cases shown in FIGS. 21 to 25, as in the first embodiment, the position of the sub-pixel Dsub is shifted by, for example, two pixels with respect to the periodic direction of the moire, and at the shifted position. The five fringe image signals for generating the second phase contrast image can be acquired by acquiring the pixel signal of each of the sub-pixels Dsub.
 また、上記説明においては、第1および第2の格子2,3は、その部材22,32の周期配列方向が直線状(すなわち、格子面が平面状)となるように構成されているが、上述した全ての実施形態において、これに代えて、図26に示すように、格子面を曲面状に凹面化した第1の格子450および第2の格子460を用いることがより好ましい。 In the above description, the first and second gratings 2 and 3 are configured such that the periodic arrangement direction of the members 22 and 32 is linear (that is, the grating surface is planar). In all the embodiments described above, instead of this, as shown in FIG. 26, it is more preferable to use a first grating 450 and a second grating 460 in which the grating surface is concaved into a curved surface.
 第1の格子450は、放射線透過性でかつ湾曲した基板450aの表面に、複数の部材450bが所定のピッチPで周期的に配列されている。各部材450bは、第1および第2の実施形態と同様に、Y方向に直線状に延伸しており、第1の格子450の格子面は、放射線源1の焦点を通り、部材450bの延伸方向に延びる直線を中心軸とする円筒面上に沿った形状となっている。同様に、第2の格子460は、放射線透過性でかつ湾曲した基板460aの表面に、複数の部材460bが所定のピッチPで周期的に配列されている。各部材460bは、Y方向に直線状に延伸しており、第2の格子460の格子面は、放射線源1の焦点を通り、部材460bの延伸方向に延びる直線を中心軸とする円筒面上に沿った形状となっている。 The first grating 450, the radiation permeable and curved surfaces of the substrate 450a, a plurality of members 450b are periodically arranged at a predetermined pitch P 1. Each member 450b extends linearly in the Y direction, as in the first and second embodiments, and the lattice plane of the first grating 450 passes through the focal point of the radiation source 1 and extends of the member 450b. It has a shape along a cylindrical surface with a straight line extending in the direction as the central axis. Similarly, the second grating 460, the radiation permeable and curved surfaces of the substrate 460a, a plurality of members 460b are periodically arranged at a predetermined pitch P 2. Each member 460b extends linearly in the Y direction, and the lattice plane of the second grating 460 passes through the focal point of the radiation source 1 and is on a cylindrical surface with a straight line extending in the extending direction of the member 460b as a central axis. It is a shape along.
 放射線源1の焦点から第1の格子450までの距離をZ、第1の格子450から第2の格子460までの距離をZとした場合に、格子ピッチPおよび格子ピッチPは、上式(1)または上式(2)の関係を満たすように決定される。 When the distance from the focal point of the radiation source 1 to the first grating 450 is Z 1 and the distance from the first grating 450 to the second grating 460 is Z 2 , the grating pitch P 1 and the grating pitch P 2 are , It is determined so as to satisfy the relationship of the above formula (1) or the above formula (2).
 このように、第1および第2の格子450,460の格子面を円筒面状にすることにより、放射線源1の焦点から照射される放射線は、被検体10が存在しない場合、全ての格子面に垂直に入射することになるため、部材450bの厚みと部材460bの厚みとの上限の制約がなく、上式(9),(10)を考慮する必要がない。 Thus, by making the grating surfaces of the first and second gratings 450 and 460 cylindrical, the radiation irradiated from the focal point of the radiation source 1 is all the grating surfaces when the subject 10 does not exist. Therefore, there is no upper limit on the thickness of the member 450b and the thickness of the member 460b, and the above equations (9) and (10) need not be considered.
 さらに、上述したマルチスリットを設ける実施形態の場合には、このマルチスリットを第2の格子460と同様の構成にすることが好ましい。 Furthermore, in the case of the embodiment in which the multi slit described above is provided, it is preferable that the multi slit is configured similarly to the second grating 460.
 なお、第1および第2の格子450,460は、それぞれ複数の平面状の小格子を接合することによって構成されたものであってもよい。また、第1および第2の格子450,132の基板450a,460aは可撓性を有するものであってもよい。 The first and second gratings 450 and 460 may be configured by joining a plurality of planar small gratings. Further, the substrates 450a and 460a of the first and second gratings 450 and 132 may be flexible.
 また、放射線画像検出器60を可撓性とし、放射線源1の焦点から放射線画像検出器60の検出面までの距離(SID)を変化させるSID変化機構、およびSIDに応じて曲率を変化させる曲率調整機構を設けるようにしてもよい。たとえば、所定の入力装置から入力されたSIDの値に基づいて、SID変更機構および曲率調整機構を制御し、放射線源1または放射線画像検出器60の位置を調整するとともに、検出面に対する放射線の入射角度がほぼ垂直となるように放射線画像検出器60の曲率を変化させるようにしてもよい。 Also, the radiation image detector 60 is made flexible, an SID changing mechanism that changes the distance (SID) from the focal point of the radiation source 1 to the detection surface of the radiation image detector 60, and a curvature that changes the curvature according to the SID. An adjustment mechanism may be provided. For example, based on the SID value input from a predetermined input device, the SID changing mechanism and the curvature adjusting mechanism are controlled, the position of the radiation source 1 or the radiation image detector 60 is adjusted, and radiation is incident on the detection surface. The curvature of the radiation image detector 60 may be changed so that the angle is substantially vertical.
 さらに、上記SID変更機構におるSIDの変更にともなって、距離Z,Zが変化する場合には、距離Z,Zに応じて第1および第2の格子450,460の曲率を変化させる機構を設けるようにしてもよい。ただし、距離Z,Zの変化が大きい場合には、第1および第2の格子450,460の曲率を変化させても格子ピッチP,Pが対応しきれないため、第1および第2の格子450,460を適切な曲率および格子ピッチP,Pを有するものと交換自在としてもよい。 Further, when the distances Z 1 and Z 2 change with the change of the SID in the SID changing mechanism, the curvatures of the first and second gratings 450 and 460 are changed according to the distances Z 1 and Z 2. You may make it provide the mechanism to change. However, when the changes in the distances Z 1 and Z 2 are large, the grating pitches P 1 and P 2 cannot fully correspond even if the curvatures of the first and second gratings 450 and 460 are changed. The second gratings 450 and 460 may be interchangeable with those having appropriate curvature and grating pitches P 1 and P 2 .
 また、上記説明では、基板450a,460aの湾曲方向に直交する方向に部材450b,460bを配設することにより第1および第2の格子450,460をそれぞれ構成し、これにより部材450b,460bの厚みの制約を排除するようにしたが、基板450a,460aの湾曲方法に沿って部材450b,460bを配設するようにしてもよい。 In the above description, the first and second gratings 450 and 460 are configured by disposing the members 450b and 460b in a direction orthogonal to the bending direction of the substrates 450a and 460a, respectively. Although the restriction on the thickness is eliminated, the members 450b and 460b may be disposed along the bending method of the substrates 450a and 460a.
 また、上記説明においては、放射線画像検出器4として、線状読取光源50から発せられた線状の読取光の走査によって画像信号が読み出される、いわゆる光読取方式の放射線画像検出器を用いるようにしたが、これに限らず、上述した全ての実施形態において、たとえば、特開2002-26300号公報に記載されているような、TFTスイッチが2次元状に多数配列され、そのTFTスイッチをオンオフすることによって画像信号が読み出されるTFTスイッチを用いた放射線画像検出器や、CMOSセンサを用いた放射線画像検出器などを用いるようにしてもよい。 In the above description, as the radiation image detector 4, a so-called optical reading type radiation image detector in which an image signal is read out by scanning linear reading light emitted from the linear reading light source 50 is used. However, the present invention is not limited to this, and in all of the above-described embodiments, for example, a number of TFT switches are arranged in a two-dimensional manner as described in JP-A-2002-26300, and the TFT switches are turned on / off. Thus, a radiation image detector using a TFT switch from which an image signal is read out, a radiation image detector using a CMOS sensor, or the like may be used.
 具体的には、TFTスイッチを用いた放射線画像検出器は、たとえば、図27に示すように、放射線の照射によって半導体膜において光電変換された電荷を収集する画素電極71と画素電極71によって収集された電荷を画像信号として読み出すためのTFTスイッチ72とを備えた画素回路70が2次元状に多数配列されたものである。そして、TFTスイッチを用いた放射線画像検出器は、画素回路行毎に設けられ、TFTスイッチ72をオンオフするためのゲート走査信号が出力される多数のゲート電極73と、画素回路列毎に設けられ、各画素回路70から読み出された電荷信号が出力される多数のデータ電極74とを備えている。なお、各画素回路70の詳細な層構成については、特開2002-26300号公報に記載されている層構成と同様である。 Specifically, a radiation image detector using a TFT switch is collected by, for example, a pixel electrode 71 and a pixel electrode 71 that collect charges photoelectrically converted in a semiconductor film by radiation irradiation, as shown in FIG. A plurality of pixel circuits 70 each having a TFT switch 72 for reading out the charged charges as image signals are arranged in a two-dimensional manner. The radiation image detector using the TFT switch is provided for each pixel circuit row, and is provided for each of the pixel circuit columns and a large number of gate electrodes 73 to which a gate scanning signal for turning on and off the TFT switch 72 is output. And a plurality of data electrodes 74 to which the charge signal read from each pixel circuit 70 is output. The detailed layer configuration of each pixel circuit 70 is the same as the layer configuration described in JP-A-2002-26300.
 そして、たとえば、第2の格子3と画素回路列(データ電極)とが平行になるように設置した場合、1つの画素回路列が、上記実施形態において説明した主画素サイズDxに相当し、1つの画素回路行が、上記実施形態において説明した副画素サイズDyに相当する。なお、主画素サイズDxおよび副画素サイズDyは、たとえば、50μmとすることができる。 For example, when the second grid 3 and the pixel circuit array (data electrode) are installed in parallel, one pixel circuit array corresponds to the main pixel size Dx described in the above embodiment. One pixel circuit row corresponds to the sub-pixel size Dy described in the above embodiment. Note that the main pixel size Dx and the sub-pixel size Dy can be set to 50 μm, for example.
 そして、上記実施形態と同様に、位相コントラスト画像を生成するためにM枚の縞画像を使用する場合、M行の画素回路行が、位相コントラスト画像の副走査方向の1つの画像解像度Dとなるように第1の格子2の自己像G1が第2の格子3に対して傾けられる。具体的な、第1の格子2の自己像G1の回転角については、上記実施形態と同様に、上式(11)、上式(24)、上式(25)、上式(34)、上式(35)または上式(38)によって算出される。 Similarly to the above-described embodiment, when M striped images are used to generate a phase contrast image, M pixel circuit rows have one image resolution D in the sub-scanning direction of the phase contrast image. Thus, the self-image G 1 of the first grating 2 is tilted with respect to the second grating 3. As for the specific rotation angle of the self-image G1 of the first grating 2, the above equation (11), the above equation (24), the above equation (25), the above equation (34), It is calculated by the above equation (35) or the above equation (38).
 上式(11)において、たとえば、M=5、n=1として第1の格子2の自己像G1の回転角θを設定した場合、図27の1つの画素回路70によって第1の格子2の自己像の1周期の強度変調を5分割した画像信号を検出できることになり、すなわち、図27に示す5本のゲート電極73に接続される5行の画素回路行によって、互いに異なる5つの縞画像の画像信号をそれぞれ検出することができることになる。なお、図27においては、1つの画素回路列に対して1本の第2の格子3と自己像G1とが対応して示されているが、実際には、1つの画素回路列に対して多数の第2の格子3および自己像G1が存在していてもよく、図27は図示省略しているものとする。 In the above equation (11), for example, when the rotation angle θ of the self-image G1 of the first grating 2 is set with M = 5 and n = 1, one pixel circuit 70 in FIG. An image signal obtained by dividing the intensity modulation of one period of the self image into five can be detected, that is, five different fringe images depending on five pixel circuit rows connected to the five gate electrodes 73 shown in FIG. Each of the image signals can be detected. In FIG. 27, one second grating 3 and a self-image G1 are shown corresponding to one pixel circuit array, but in actuality, one pixel circuit array is shown. Many second gratings 3 and self-images G1 may be present, and FIG. 27 is not shown.
 したがって、第1読取ライン用ゲート電極G11に接続される画素回路行から読み出された画像信号が第1の縞画像信号M1として取得され、第2読取ライン用ゲート電極G12に接続される画素回路行から読み出された画像信号が第2の縞画像信号M2として取得され、第3読取ライン用ゲート電極G13に接続される画素回路行から読み出された画像信号が第3の縞画像信号M3として取得され、第4読取ライン用ゲート電極G14に接続される画素回路行から読み出された画像信号が第4の縞画像信号M4として取得され、第5読取ライン用ゲート電極G15に接続される画素回路行から読み出された画像信号が第5の縞画像信号M5として取得される。 Therefore, the image signal read from the pixel circuit row connected to the first read line gate electrode G11 is acquired as the first stripe image signal M1, and the pixel circuit connected to the second read line gate electrode G12. The image signal read from the row is acquired as the second stripe image signal M2, and the image signal read from the pixel circuit row connected to the third read line gate electrode G13 is the third stripe image signal M3. The image signal read from the pixel circuit row connected to the fourth read line gate electrode G14 is acquired as the fourth stripe image signal M4 and connected to the fifth read line gate electrode G15. The image signal read from the pixel circuit row is acquired as the fifth fringe image signal M5.
 そして、さらに上記実施形態と同様に、第2の位相コントラスト画像を生成するための互いに異なる5つの縞画像信号を取得するため、位相コントラスト画像の1つの画素を構成する5つの画素回路行の位置が、副走査方向(Y方向)に2行だけずらされて設定され、第2の位相コントラスト画像を生成するための第6~第10の縞画像の画像信号を取得する。 Further, similarly to the above embodiment, in order to obtain five different fringe image signals for generating the second phase contrast image, the positions of the five pixel circuit rows constituting one pixel of the phase contrast image Are set to be shifted by two lines in the sub-scanning direction (Y direction), and image signals of the sixth to tenth fringe images for generating the second phase contrast image are acquired.
 具体的には、第3読取ライン用ゲート電極G13に接続される画素回路行から読み出された画像信号が第6の縞画像信号M6として取得され、第4読取ライン用ゲート電極G14に接続される画素回路行から読み出された画像信号が第7の縞画像信号M7として取得され、第5読取ライン用ゲート電極G15に接続される画素回路行から読み出された画像信号が第8の縞画像信号M8として取得され、第6読取ライン用ゲート電極G16に接続される画素回路行から読み出された画像信号が第9の縞画像信号M9として取得され、第7読取ライン用ゲート電極G17に接続される画素回路行から読み出された画像信号が第10の縞画像信号M10として取得される。 Specifically, the image signal read from the pixel circuit row connected to the third read line gate electrode G13 is acquired as the sixth stripe image signal M6 and connected to the fourth read line gate electrode G14. The image signal read from the pixel circuit row is acquired as the seventh stripe image signal M7, and the image signal read from the pixel circuit row connected to the fifth read line gate electrode G15 is the eighth stripe image signal M7. The image signal acquired as the image signal M8 and read from the pixel circuit row connected to the sixth reading line gate electrode G16 is acquired as the ninth fringe image signal M9, and is applied to the seventh reading line gate electrode G17. An image signal read from the connected pixel circuit row is acquired as a tenth fringe image signal M10.
 上記実施形態と同様にして、第1~第5の縞画像信号に基づいて第1の位相コントラスト画像が生成されるとともに、第6~第10の縞画像信号に基づいて第2の位相コントラスト画像が生成され、第1および第2の位相コントラスト画像に基づいて合成画像が生成される。 Similar to the above embodiment, the first phase contrast image is generated based on the first to fifth fringe image signals, and the second phase contrast image is generated based on the sixth to tenth fringe image signals. Are generated, and a composite image is generated based on the first and second phase contrast images.
 なお、上述したように1つの画素回路70の主走査方向および副走査方向のサイズが50μmである場合には、位相コントラスト画像の主走査方向の画像解像度は50μmとなり、副走査方向の画像解像度は50μm×5=250μmとなる。 As described above, when the size of one pixel circuit 70 in the main scanning direction and the sub scanning direction is 50 μm, the image resolution in the main scanning direction of the phase contrast image is 50 μm, and the image resolution in the sub scanning direction is 50 μm × 5 = 250 μm.
 また、放射線画像検出器のゲート電極およびデータ電極の延伸方向は図27に示す例に限らず、たとえば、ゲート電極が紙面縦方向とし、データ線が紙面横方向となるように放射線画像検出器を配置するようにしてもよい。
 また、図27に示すような放射線画像検出器の配置に対して、第1の格子2の自己像G1と第2の格子3とが90°回転させた構成としてもよい。この場合には、ゲート電極に平行な方向に配列された画素回路70から読み出された画像信号を取得することによって、上記実施形態と同様に互いに異なる縞画像を構成する画像信号を取得することができる。
 また、放射線画像検出器の各画素の形状や画素格子の形状は正方形に限らず、たとえば長方形や平行四辺形などでもよい。また、画素格子を45度回転したような画素配列でもよい。
 また、上述したTFTスイッチを用いた放射線画像検出器を用いる場合においても、第1の格子2の自己像G1と第2の格子3とが平行となるようにするとともに、第1の格子2の自己像G1の配列ピッチとは異なる配列ピッチの第2の格子3を用いてモアレを発生させるようにしたり、第1の格子2の自己像G1の配列ピッチとは異なる配列ピッチの第2の格子3を用いるとともに、さらに第1の格子2の自己像G1と第2の格子3とが相対的に傾くようにしてモアレを発生させるようにしてもよい。
 また、上述したTFTスイッチを用いた放射線画像検出器を用いる場合においても、上記で説明したように、第1の格子2の自己像G1の周期方向または第2の格子3の周期方向と、放射線画像検出器の画素回路70が配列される直交する方向のうちのいずれか一方の方向とは必ずしも一致している必要はない。上記で説明したように、第1の格子2の自己像G1と第2の格子3とによって発生するモアレの周期方向に対して平行または直交方向以外の交差する方向について配列された画素の画像信号を取得可能な構成であれば、第1および第2の格子2,3の周期方向と放射線画像検出器の画素回路70の配列方向との関係は如何なる関係にしてもよい。
 また、CMOSセンサを用いた放射線画像検出器としては、たとえば、放射線の照射を受けて可視光を発生し、その可視光を光電変換することによって電荷信号を検出する画素回路80が、図28に示すように2次元状に多数配列されたものを用いることができる。そして、このCMOSセンサを用いた放射線画像検出器は、画素回路行毎に設けられ、画素回路80に含まれる信号読み出し回路を駆動するための駆動信号が出力される多数のゲート電極82およびリセット電極84と、画素回路列毎に設けられ、各画素回路80の信号読み出し回路から読み出された電荷信号が出力される多数のデータ電極83とを備えている。なお、ゲート電極82およびリセット電極84には、信号読み出し回路に駆動信号を出力する行選択走査部85が接続され、データ電極83には、各画素回路から出力された電荷信号に所定の処理を施す信号処理部86が接続されている。
The extending direction of the gate electrode and the data electrode of the radiographic image detector is not limited to the example shown in FIG. 27. For example, the radiographic image detector is arranged so that the gate electrode is in the vertical direction on the paper and the data line is in the horizontal direction on the paper. It may be arranged.
In addition, the self-image G1 of the first grating 2 and the second grating 3 may be rotated by 90 ° with respect to the arrangement of the radiation image detectors as shown in FIG. In this case, by acquiring the image signal read from the pixel circuit 70 arranged in the direction parallel to the gate electrode, the image signal constituting the different fringe images is acquired as in the above embodiment. Can do.
Further, the shape of each pixel and the shape of the pixel grid of the radiation image detector are not limited to a square, and may be, for example, a rectangle or a parallelogram. Alternatively, a pixel array in which the pixel grid is rotated 45 degrees may be used.
Even when the above-described radiation image detector using the TFT switch is used, the self-image G1 of the first grating 2 and the second grating 3 are made parallel to each other, and the first grating 2 Moire is generated by using the second grating 3 having an arrangement pitch different from the arrangement pitch of the self-image G1, or the second grating having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first grating 2. 3 may be used, and the self image G1 of the first grating 2 and the second grating 3 may be relatively inclined to generate moire.
Even when the above-described radiation image detector using the TFT switch is used, as described above, the periodic direction of the self-image G1 of the first grating 2 or the periodic direction of the second grating 3, and the radiation It is not always necessary to coincide with one of the orthogonal directions in which the pixel circuits 70 of the image detector are arranged. As described above, the image signals of the pixels arranged in the crossing direction other than the direction parallel or orthogonal to the periodic direction of the moire generated by the self-image G1 of the first grating 2 and the second grating 3 If it is the structure which can acquire (2), the relationship between the periodic direction of the 1st and 2nd grating | lattices 2 and 3 and the arrangement direction of the pixel circuit 70 of a radiographic image detector may be made into any relationship.
As a radiation image detector using a CMOS sensor, for example, a pixel circuit 80 that generates visible light upon receiving radiation and photoelectrically converts the visible light to detect a charge signal is shown in FIG. As shown, a plurality of two-dimensional arrays can be used. The radiation image detector using the CMOS sensor is provided for each pixel circuit row, and includes a large number of gate electrodes 82 and reset electrodes from which drive signals for driving a signal readout circuit included in the pixel circuit 80 are output. 84, and a plurality of data electrodes 83 provided for each pixel circuit column and to which a charge signal read from the signal reading circuit of each pixel circuit 80 is output. The gate electrode 82 and the reset electrode 84 are connected to a row selection scanning unit 85 that outputs a drive signal to the signal readout circuit, and the data electrode 83 performs predetermined processing on the charge signal output from each pixel circuit. A signal processing unit 86 to be applied is connected.
 各画素回路80は、図29に示すように、基板800の上方に絶縁膜803を介して形成された下部電極806と、下部電極806上に形成された光電変換膜807と、光電変換膜807上に形成された上部電極808と、上部電極808上に形成された保護膜809と、保護膜809上に形成された放射線変換膜810とを備えている。 As shown in FIG. 29, each pixel circuit 80 includes a lower electrode 806 formed above the substrate 800 via an insulating film 803, a photoelectric conversion film 807 formed on the lower electrode 806, and a photoelectric conversion film 807. An upper electrode 808 formed above, a protective film 809 formed on the upper electrode 808, and a radiation conversion film 810 formed on the protective film 809 are provided.
 放射線変換膜810は、たとえば、放射線の照射を受けて550nmの波長の光を発するCsI:TIから形成される。その厚さは500μm程度とすることが望ましい。 The radiation conversion film 810 is made of, for example, CsI: TI that emits light having a wavelength of 550 nm when irradiated with radiation. The thickness is preferably about 500 μm.
 上部電極808は、光電変換膜807に550nmの波長の光を入射させる必要があるため、その入射光に対して透明な導電性材料で構成される。また、下部電極806は、画素回路80毎に分割された薄膜であり、透明または不透明の導電性材料で形成される。 The upper electrode 808 is made of a conductive material that is transparent to the incident light because it is necessary to make light having a wavelength of 550 nm incident on the photoelectric conversion film 807. The lower electrode 806 is a thin film divided for each pixel circuit 80, and is formed of a transparent or opaque conductive material.
 光電変換膜807は、たとえば、550nmの波長の光を吸収してこの光に応じた電荷を発生する光電変換材料から形成される。このような光電変換材料としては、たとえば、有機半導体、有機色素を含む有機材料、および直接遷移型のバンドギャップをもつ吸収係数の大きい無機半導体結晶等を単体または組み合わせた材料などがある。 The photoelectric conversion film 807 is formed of, for example, a photoelectric conversion material that absorbs light having a wavelength of 550 nm and generates a charge corresponding to the light. As such a photoelectric conversion material, for example, an organic semiconductor, an organic material containing an organic dye, a material in which an inorganic semiconductor crystal having a direct transition type band gap and a large absorption coefficient, or the like is used alone or in combination.
 そして、上部電極808と下部電極806との間に所定のバイアス電圧を印加することで、光電変換膜807で発生した電荷のうち一方が上部電極808に移動し、他方が下部電極806に移動する。 Then, by applying a predetermined bias voltage between the upper electrode 808 and the lower electrode 806, one of the charges generated in the photoelectric conversion film 807 moves to the upper electrode 808 and the other moves to the lower electrode 806. .
 そして、下部電極806の下方の基板800内には、この下部電極806に対応させて、下部電極806に移動した電荷を蓄積するための電荷蓄積部802と、電荷蓄積部802に蓄積された電荷を電圧信号に変換して出力する信号読み出し回路801とが形成されている。 In the substrate 800 below the lower electrode 806, a charge accumulating portion 802 for accumulating the charges transferred to the lower electrode 806 corresponding to the lower electrode 806, and the charges accumulated in the charge accumulating portion 802. And a signal readout circuit 801 for converting the signal into a voltage signal and outputting it.
 電荷蓄積部802は、絶縁膜803を貫通して形成された導電性材料のプラグ804によって下部電極806に電気的に接続されている。信号読み出し回路801は、公知のCMOS回路によって構成されている。 The charge storage portion 802 is electrically connected to the lower electrode 806 by a conductive material plug 804 formed through the insulating film 803. The signal readout circuit 801 is configured by a known CMOS circuit.
 そして、上述したようなCMOSセンサを用いた放射線画像検出器を、図30に示すように、第2の格子3と画素回路列(データ電極)とが平行になるように設置した場合、1つの画素回路列が、上記実施形態において説明した主画素サイズDxに相当し、1つの画素回路行が、上記実施形態において説明した副画素サイズDyに相当する。なお、主画素サイズDxおよび副画素サイズDyは、CMOSセンサを用いた放射線画像検出器の場合には、たとえば、10μmとすることができる。 When the radiation image detector using the CMOS sensor as described above is installed so that the second grid 3 and the pixel circuit array (data electrode) are parallel as shown in FIG. The pixel circuit column corresponds to the main pixel size Dx described in the above embodiment, and one pixel circuit row corresponds to the sub pixel size Dy described in the above embodiment. Note that the main pixel size Dx and the sub-pixel size Dy can be set to 10 μm, for example, in the case of a radiation image detector using a CMOS sensor.
 そして、上記実施形態と同様に、位相コントラスト画像を生成するためにM枚の縞画像を使用する場合、M行の画素回路行が、位相コントラスト画像の副走査方向の1つの画像解像度Dとなるように第1の格子2の自己像G1が第2の格子3に対して傾けられる。具体的な、第1の格子2の自己像1の回転角については、上記実施形態と同様に、上式(11)、上式(24)、上式(25)、上式(34)、上式(35)または上式(38)によって算出される。 Similarly to the above-described embodiment, when M striped images are used to generate a phase contrast image, M pixel circuit rows have one image resolution D in the sub-scanning direction of the phase contrast image. Thus, the self-image G 1 of the first grating 2 is tilted with respect to the second grating 3. As for the specific rotation angle of the self-image 1 of the first grating 2, the above equation (11), the above equation (24), the above equation (25), the above equation (34), It is calculated by the above equation (35) or the above equation (38).
 上式(11)において、たとえば、M=5、n=1として第1の格子2の自己像G1の回転角θを設定した場合、図30の1つの画素回路80によって第1の格子2の自己像の1周期の強度変調を5分割した画像信号を検出できることになり、すなわち、図30に示す5本のゲート電極82に接続される5行の画素回路行によって、互いに異なる5つの縞画像の画像信号をそれぞれ検出することができることになる。なお、図30においては、1つの画素回路列に対して1本の第2の格子3と自己像G1とが対応して示されているが、実際には、1つの画素回路列に対して多数の第2の格子3および自己像G1が存在していてもよく、図30は図示省略しているものとする。 In the above equation (11), for example, when the rotation angle θ of the self-image G1 of the first grating 2 is set with M = 5 and n = 1, one pixel circuit 80 in FIG. It is possible to detect an image signal obtained by dividing intensity modulation of one period of a self image into five, that is, five stripe images different from each other depending on five pixel circuit rows connected to the five gate electrodes 82 shown in FIG. Each of the image signals can be detected. In FIG. 30, one second grating 3 and the self-image G1 are shown corresponding to one pixel circuit array. However, in actuality, one pixel circuit array corresponds to one pixel circuit array. Many second gratings 3 and self-images G1 may exist, and FIG. 30 is not shown.
 したがって、TFTスイッチを用いた放射線画像検出器の場合と同様に、第1読取ライン用ゲート電極G11に接続される画素回路行から読み出された画像信号が第1の縞画像信号M1として取得され、第2読取ライン用ゲート電極G12に接続される画素回路行から読み出された画像信号が第2の縞画像信号M2として取得され、第3読取ライン用ゲート電極G13に接続される画素回路行から読み出された画像信号が第3の縞画像信号M3として取得され、第4読取ライン用ゲート電極G14に接続される画素回路行から読み出された画像信号が第4の縞画像信号M4として取得され、第5読取ライン用ゲート電極G15に接続される画素回路行から読み出された画像信号が第5の縞画像信号M5として取得される。 Accordingly, as in the case of the radiation image detector using the TFT switch, the image signal read from the pixel circuit row connected to the first read line gate electrode G11 is acquired as the first fringe image signal M1. An image signal read from the pixel circuit row connected to the second read line gate electrode G12 is acquired as the second stripe image signal M2, and is connected to the third read line gate electrode G13. The image signal read from is acquired as the third fringe image signal M3, and the image signal read from the pixel circuit row connected to the fourth read line gate electrode G14 is used as the fourth stripe image signal M4. The acquired image signal read from the pixel circuit row connected to the fifth read line gate electrode G15 is acquired as the fifth fringe image signal M5.
 そして、さらに上記実施形態と同様に、第2の位相コントラスト画像を生成するための互いに異なる5つの縞画像信号を取得するため、位相コントラスト画像の1つの画素を構成する5つの画素回路行の位置が、副走査方向(Y方向)に2行だけずらされて設定され、第2の位相コントラスト画像を生成するための第6~第10の縞画像の画像信号を取得する。 Further, similarly to the above embodiment, in order to obtain five different fringe image signals for generating the second phase contrast image, the positions of the five pixel circuit rows constituting one pixel of the phase contrast image Are set to be shifted by two lines in the sub-scanning direction (Y direction), and image signals of the sixth to tenth fringe images for generating the second phase contrast image are acquired.
 具体的には、第3読取ライン用ゲート電極G13に接続される画素回路行から読み出された画像信号が第6の縞画像信号M6として取得され、第4読取ライン用ゲート電極G14に接続される画素回路行から読み出された画像信号が第7の縞画像信号M7として取得され、第5読取ライン用ゲート電極G15に接続される画素回路行から読み出された画像信号が第8の縞画像信号M8として取得され、第6読取ライン用ゲート電極G16に接続される画素回路行から読み出された画像信号が第9の縞画像信号M9として取得され、第7読取ライン用ゲート電極G17に接続される画素回路行から読み出された画像信号が第10の縞画像信号M10として取得される。 Specifically, the image signal read from the pixel circuit row connected to the third read line gate electrode G13 is acquired as the sixth stripe image signal M6 and connected to the fourth read line gate electrode G14. The image signal read from the pixel circuit row is acquired as the seventh stripe image signal M7, and the image signal read from the pixel circuit row connected to the fifth read line gate electrode G15 is the eighth stripe image signal M7. The image signal acquired as the image signal M8 and read from the pixel circuit row connected to the sixth reading line gate electrode G16 is acquired as the ninth fringe image signal M9, and is applied to the seventh reading line gate electrode G17. An image signal read from the connected pixel circuit row is acquired as a tenth fringe image signal M10.
 上記実施形態と同様にして、第1~第5の縞画像信号に基づいて第1の位相コントラスト画像が生成されるとともに、第6~第10の縞画像信号に基づいて第2の位相コントラスト画像が生成され、第1および第2の位相コントラスト画像に基づいて合成画像が生成される。
 また、TFTスイッチを用いた放射線画像検出器の場合と同様に、放射線画像検出器のゲート電極およびデータ電極の延伸方向は図30に示す例に限らず、たとえば、ゲート電極が紙面縦方向とし、データ線が紙面横方向となるように放射線画像検出器を配置するようにしてもよい。
 また、図30に示すような放射線画像検出器の配置に対して、第1の格子2の自己像G1と第2の格子3とが90°回転させた構成としてもよい。この場合には、ゲート電極に平行な方向に配列された画素回路80から読み出された画像信号を取得することによって、上記実施形態と同様に互いに異なる縞画像を構成する画像信号を取得することができる。
 また、放射線画像検出器の各画素の形状や画素格子の形状は正方形に限らず、たとえば長方形や平行四辺形などでもよい。また、画素格子を45度回転したような画素配列でもよい。
 また、上述したTFTスイッチを用いた放射線画像検出器を用いる場合と同様に、第1の格子2の自己像G1と第2の格子3とが平行となるようにするとともに、第1の格子2の自己像G1の配列ピッチとは異なる配列ピッチの第2の格子3を用いてモアレを発生させるようにしたり、第1の格子2の自己像G1の配列ピッチとは異なる配列ピッチの第2の格子3を用いるとともに、さらに第1の格子2の自己像G1と第2の格子3とが相対的に傾くようにしてモアレを発生させるようにしてもよい。
 また、上述したTFTスイッチを用いた放射線画像検出器を用いる場合と同様に、第1の格子2の自己像G1の周期方向または第2の格子3の周期方向と、放射線画像検出器の画素回路70が配列される直交する方向のうちのいずれか一方の方向とは必ずしも一致している必要はない。上記で説明したように、第1の格子2の自己像G1と第2の格子3とによって発生するモアレの周期方向に対して平行または直交方向以外の交差する方向について配列された画素の画像信号を取得可能な構成であれば、第1および第2の格子2,3の周期方向と放射線画像検出器の画素回路80の配列方向との関係は如何なる関係にしてもよい。
Similar to the above embodiment, the first phase contrast image is generated based on the first to fifth fringe image signals, and the second phase contrast image is generated based on the sixth to tenth fringe image signals. Are generated, and a composite image is generated based on the first and second phase contrast images.
As in the case of the radiation image detector using the TFT switch, the extending direction of the gate electrode and the data electrode of the radiation image detector is not limited to the example shown in FIG. You may make it arrange | position a radiographic image detector so that a data line may become a paper surface horizontal direction.
Further, the self-image G1 of the first grating 2 and the second grating 3 may be rotated by 90 ° with respect to the arrangement of the radiation image detectors as shown in FIG. In this case, by acquiring the image signals read from the pixel circuits 80 arranged in the direction parallel to the gate electrode, the image signals constituting the different fringe images are acquired as in the above embodiment. Can do.
Further, the shape of each pixel and the shape of the pixel grid of the radiation image detector are not limited to a square, and may be, for example, a rectangle or a parallelogram. Alternatively, a pixel array in which the pixel grid is rotated 45 degrees may be used.
Similarly to the case of using the radiation image detector using the TFT switch described above, the self-image G1 of the first grating 2 and the second grating 3 are made parallel to each other, and the first grating 2 is used. Moire is generated using the second grating 3 having an arrangement pitch different from the arrangement pitch of the self-image G1, or the second arrangement pitch different from the arrangement pitch of the self-image G1 of the first grating 2 is used. While using the grating 3, the moire may be generated such that the self-image G 1 of the first grating 2 and the second grating 3 are relatively inclined.
Similarly to the case of using the radiographic image detector using the TFT switch described above, the periodic direction of the self-image G1 of the first grating 2 or the periodic direction of the second grating 3, and the pixel circuit of the radiographic image detector It is not always necessary to coincide with any one of the orthogonal directions in which 70 is arranged. As described above, the image signals of the pixels arranged in the crossing direction other than the parallel or orthogonal direction to the periodic direction of the moire generated by the self-image G1 of the first grating 2 and the second grating 3 If it is the structure which can acquire, the relationship between the periodic direction of the 1st and 2nd grating | lattices 2 and 3 and the arrangement direction of the pixel circuit 80 of a radiographic image detector may be made into any relationship.
 なお、上述したように1つの画素回路80の主走査方向および副走査方向のサイズが10μmである場合には、位相コントラスト画像の主走査方向の画像解像度は10μmとなり、副走査方向の画像解像度は10μm×5=50μmとなる。 As described above, when the size of one pixel circuit 80 in the main scanning direction and the sub scanning direction is 10 μm, the image resolution in the main scanning direction of the phase contrast image is 10 μm, and the image resolution in the sub scanning direction is 10 μm × 5 = 50 μm.
 上述したようにTFTスイッチを用いた放射線画像検出器やCMOSセンサを用いた放射線画像検出器も用いることは可能であるが、これらの放射線画像検出器は、画素が正方形であるため、本発明を適用する場合には、副走査方向の解像度が主走査方向の解像度に対して悪くなる。これに対し、上記第1および第2の実施形態で説明した光読取方式の放射線画像検出器においては、主走査方向については線状電極の幅(延伸方向と垂直な方向)によって解像度Dxが制限されるが、副走査方向については、線状読取光源50の読取光の副走査方向の幅および1ラインあたりのチャージアンプ200の蓄積時間と線状読取光源50の移動速度の積で解像度Dyが決まることになる。主副解像度ともに典型的には数10μmであるが、主走査方向の解像度を維持したまま副走査方向の解像度を高くする設計が可能である。たとえば、線状読取光源50の幅を小さくしたり、移動速度を遅くすることにより実現可能であって、上記第1および第2の実施形態で説明した光読取方式の放射線画像検出器はより有利な構成である。 As described above, a radiographic image detector using a TFT switch or a radiographic image detector using a CMOS sensor can be used. However, since these radiographic image detectors have square pixels, the present invention is not limited thereto. When applied, the resolution in the sub-scanning direction is worse than the resolution in the main scanning direction. On the other hand, in the optical reading type radiographic image detector described in the first and second embodiments, the resolution Dx is limited in the main scanning direction by the width of the linear electrode (direction perpendicular to the extending direction). However, in the sub-scanning direction, the resolution Dy is a product of the width of the reading light of the linear reading light source 50 in the sub-scanning direction, the accumulation time of the charge amplifier 200 per line and the moving speed of the linear reading light source 50. It will be decided. Both the main and sub resolutions are typically several tens of μm, but it is possible to increase the sub scanning direction resolution while maintaining the main scanning direction resolution. For example, it can be realized by reducing the width of the linear reading light source 50 or slowing the moving speed, and the radiation image detector of the optical reading system described in the first and second embodiments is more advantageous. It is a simple configuration.
 また、1回の撮影で複数の縞画像信号を取得することができるので、上述したような即座に繰り返し使用可能な半導体の検出器に限らず、蓄積性蛍光体シートや銀塩フイルムなども利用することができる。なお、この場合、蓄積性蛍光体シートや現像された銀塩フイルムなどを読み取る際の読取画素が請求項における画素に相当するものとする。 In addition, since a plurality of fringe image signals can be acquired in one shooting, not only the semiconductor detector that can be used immediately and repeatedly as described above, but also a stimulable phosphor sheet or silver salt film can be used. can do. In this case, the reading pixel when reading the stimulable phosphor sheet or the developed silver salt film corresponds to the pixel in the claims.
 以上、本発明の放射線位相画像撮影装置の基本的な構成を説明したが、次に、この基本構成を用いた具体的なシステムの構成について説明する。なお、以下に説明するシステムにおいては、上述した全ての実施形態を用いることができる。 The basic configuration of the radiation phase imaging apparatus of the present invention has been described above. Next, a specific system configuration using this basic configuration will be described. In the system described below, all the embodiments described above can be used.
 図31および図32に示すX線撮影システム100は、被検者Hを立位状態で撮影するX線診断装置に上記実施形態の放射線位相画像撮影装置を適用したものである。 The X-ray imaging system 100 shown in FIGS. 31 and 32 is obtained by applying the radiation phase imaging apparatus of the above embodiment to an X-ray diagnostic apparatus that images a subject H in a standing position.
 X線撮影システム100は、具体的には、被検体HにX線を照射する放射線源1と、放射線源1に対向配置され、放射線源1から射出され被検者Hを透過したX線を検出して画像データを生成する撮影部12と、操作者の操作に基づいて放射線源1の曝射動作や撮影部12の撮影動作を制御するとともに、撮影部12により取得された画像信号を演算処理して位相コントラスト画像を生成するコンソール13とを備えている。 Specifically, the X-ray imaging system 100 includes a radiation source 1 that irradiates a subject H with X-rays, and an X-ray that is disposed opposite to the radiation source 1 and is emitted from the radiation source 1 and transmitted through the subject H. The imaging unit 12 that detects and generates image data, controls the exposure operation of the radiation source 1 and the imaging operation of the imaging unit 12 based on the operation of the operator, and calculates the image signal acquired by the imaging unit 12 And a console 13 for processing to generate a phase contrast image.
 放射線源1は、天井から吊り下げられたX線源保持装置14により上下方向(X方向)に移動自在に保持されている。撮影部12は、床上に設置された立位スタンド15により上下方向に移動自在に保持されている。 The radiation source 1 is held movably in the vertical direction (X direction) by an X-ray source holding device 14 suspended from the ceiling. The photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
 放射線源1は、X線源制御部17の制御に基づき、高電圧発生器16から印加される高電圧に応じてX線を発生するX線管18と、X線管18から発せられたX線のうち、被検者Hの検査領域に寄与しない部分を遮蔽するように照射野を制限する可動式のコリメータ19aを備えたコリメータユニット19とから構成されている。X線管18は、陽極回転型であり、電子放出源(陰極)としてのフィラメント(図示せず)から電子線を放出して、所定の速度で回転する回転陽極18aに衝突させることによりX線を発生する。この回転陽極18aの電子線の衝突部分がX線焦点18bとなる。 The radiation source 1 includes an X-ray tube 18 that generates X-rays according to a high voltage applied from the high voltage generator 16 and an X-ray emitted from the X-ray tube 18 based on the control of the X-ray source control unit 17. It is comprised from the collimator unit 19 provided with the movable collimator 19a which restrict | limits an irradiation field so that the part which does not contribute to the test | inspection area | region of the subject H among the lines may be shielded. The X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
 X線源保持装置14は、天井に設置された天井レール(図示せず)により水平方向(Z方向)に移動自在に構成された台車部14aと、上下方向に連結された複数の支柱部14bとからなる。台車部14aには、支柱部14bを伸縮させて、放射線源1の上下方向に関する位置を変更するモータ(図示せず)が設けられている。 The X-ray source holding device 14 includes a carriage unit 14a configured to be movable in a horizontal direction (Z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column units 14b connected in the vertical direction. It consists of. The carriage unit 14a is provided with a motor (not shown) that extends and contracts the support column unit 14b to change the position of the radiation source 1 in the vertical direction.
 立位スタンド15は、床に設置された本体15aに、撮影部12を保持する保持部15bが上下方向に移動自在に取り付けられている。保持部15bは、上下方向に離間して配置された2つのプーリ15cの間に掛架された無端ベルト15dに接続され、プーリ15cを回転させるモータ(図示せず)により駆動される。このモータ駆動は、操作者の設定操作に基づき、後述するコンソール13の制御装置20により制御される。 The standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction. The holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c. This motor drive is controlled by the control device 20 of the console 13 to be described later based on the setting operation by the operator.
 また、立位スタンド15には、プーリ15cまたは無端ベルト15dの移動量を計測することにより、撮影部12の上下方向に関する位置を検出するポテンショメータ等の位置センサ(図示せず)が設けられている。この位置センサの検出値は、ケーブル等によりX線源保持装置14に供給される。X線保持装置14は、供給された検出値に基づいて支柱部14bを伸縮させ、撮影部12の上下動に追従するように放射線源1を移動させる。 Further, the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. . The detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like. The X-ray holding device 14 expands and contracts the support column 14 b based on the supplied detection value, and moves the radiation source 1 so as to follow the vertical movement of the imaging unit 12.
 コンソール13には、CPU、ROM,RAM等からなる制御装置200が設けられている。制御装置200には、操作者が撮影指示やその指示内容を入力する入力装置201と、撮影部12により取得された画像信号を演算処理して位相コントラスト画像および合成画像を生成する演算処理部202と、位相コントラスト画像および合成画像を記憶する画像記憶部203と、合成画像等を表示するモニタ204と、X線撮影システム100の各部と接続されるインターフェース(I/F)205とがバス206を介して接続されている。なお、演算処理部202が、上記実施形態において説明した位相コントラスト画像生成部5に相当するものである。 The console 13 is provided with a control device 200 including a CPU, a ROM, a RAM, and the like. The control device 200 includes an input device 201 through which an operator inputs a photographing instruction and the content of the instruction, and an arithmetic processing unit 202 that performs arithmetic processing on the image signal acquired by the photographing unit 12 to generate a phase contrast image and a composite image. An image storage unit 203 for storing a phase contrast image and a composite image, a monitor 204 for displaying the composite image and the like, and an interface (I / F) 205 connected to each unit of the X-ray imaging system 100 via a bus 206 Connected through. The arithmetic processing unit 202 corresponds to the phase contrast image generation unit 5 described in the above embodiment.
 入力装置201としては、たとえば、スイッチ、タッチパネル、マウス、キーボード等を用いることが可能であり、入力装置201の操作により、X線管電圧やX線照射時間等のX線撮影条件、撮影タイミング等が入力される。モニタ204は、液晶ディスプレイ等からなり、制御装置200の制御により、X線撮影条件等の文字や位相コントラスト画像を表示する。 As the input device 201, for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used. By operating the input device 201, X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, and the like. Is entered. The monitor 204 includes a liquid crystal display and displays characters such as X-ray imaging conditions and a phase contrast image under the control of the control device 200.
 撮影部12には、上記実施形態で説明した第1の格子2、第2の格子3および放射線画像検出器4が設けられている。放射線画像検出器4は、その検出面が放射線源1から照射されるX線の光軸Aに直交するように配置されている。また、第1の格子2と第2の格子3とは、上記実施形態で説明したように、その部材22,23の延伸方向が相対的に傾いて設置されている。 The imaging unit 12 is provided with the first grating 2, the second grating 3, and the radiation image detector 4 described in the above embodiment. The radiation image detector 4 is arranged so that its detection surface is orthogonal to the optical axis A of X-rays emitted from the radiation source 1. Further, as described in the above embodiment, the first grid 2 and the second grid 3 are installed such that the extending directions of the members 22 and 23 are relatively inclined.
 次に、図33に示すX線撮影システム110は、被検者Hを臥位状態で撮影するX線診断装置に上記実施形態の放射線位相画像撮影装置を適用したものである。 Next, an X-ray imaging system 110 shown in FIG. 33 is obtained by applying the radiation phase imaging apparatus of the above embodiment to an X-ray diagnostic apparatus that images a subject H in a prone state.
 X線システム110は、上記X線撮影システム100の放射線源1および撮影部12の他に、被検者Hを寝載するベッド61を備えている。放射線源1および撮影部12は、上記X線撮影システム100のものと同様の構成であるため、各構成要素には、X線撮影システム100と同一の符号を付している。以下、上記X線撮影システム100との差異についてのみ説明する。その他の構成および作用については、上記X線撮影システム100と同様であるため説明は省略する。 The X-ray system 110 includes a bed 61 on which the subject H is placed in addition to the radiation source 1 and the imaging unit 12 of the X-ray imaging system 100. Since the radiation source 1 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 100, the same reference numerals as those of the X-ray imaging system 100 are given to the respective components. Only differences from the X-ray imaging system 100 will be described below. Since other configurations and operations are the same as those of the X-ray imaging system 100, description thereof is omitted.
 X線撮影システム110は、撮影部12が、被検者Hを介して放射線源1に対向するように、天板62の下面側に取り付けられている。一方、放射線源1は、X線源保持装置14によって保持されており、放射線源1の角度変更機構(図示せず)によりX線照射方向が下方向とされている。放射線源1は、この状態でベッド16の天板62に寝載された被検者HにX線を照射する。X線源保持装置14は、支柱部14bの伸縮により放射線源1の上下動を可能とするため、この上下動により、X線焦点18bから放射線画像検出器3の検出面までの距離を調整することができる。 The X-ray imaging system 110 is attached to the lower surface side of the top plate 62 so that the imaging unit 12 faces the radiation source 1 through the subject H. On the other hand, the radiation source 1 is held by an X-ray source holding device 14, and the X-ray irradiation direction is set downward by an angle changing mechanism (not shown) of the radiation source 1. In this state, the radiation source 1 irradiates the subject H lying on the top plate 62 of the bed 16 with X-rays. The X-ray source holding device 14 adjusts the distance from the X-ray focal point 18b to the detection surface of the radiation image detector 3 by moving the radiation source 1 up and down by extending and contracting the support 14b. be able to.
 なお、たとえば、撮影部12の構成として、上記第2の実施形態の放射線位相画像撮影装置の構成を採用した場合には、格子2と放射線画像検出器3との間の距離を短くすることができ、薄型化が可能であるため、ベッド61の天板62を支持する脚部63を短くし、天板62の位置を低くすることができる。たとえば、撮影部12を薄型化し、天板62の位置を被検者Hが容易に腰掛けられる程度の高さ(たとえば、床上40cm程度)とすることが好ましい。また、天板62の位置を低くすることは、放射線源1から撮影部12までの十分な距離を確保するうえでも好ましい。 For example, when the configuration of the radiological phase imaging apparatus of the second embodiment is adopted as the configuration of the imaging unit 12, the distance between the grating 2 and the radiographic image detector 3 may be shortened. In addition, since the thickness can be reduced, the leg 63 supporting the top plate 62 of the bed 61 can be shortened, and the position of the top plate 62 can be lowered. For example, it is preferable that the imaging unit 12 is thinned and the top plate 62 is positioned high enough to allow the subject H to sit down (for example, about 40 cm above the floor). In addition, it is preferable to lower the position of the top plate 62 in order to secure a sufficient distance from the radiation source 1 to the imaging unit 12.
 なお、上記放射線源1と撮影部12との位置関係とは逆に、放射線源1をベッド61に取り付け、撮影部12を天井側に設置することで、被検者Hの臥位撮影を行うことも可能である。 Contrary to the positional relationship between the radiation source 1 and the imaging unit 12, the radiation source 1 is attached to the bed 61, and the imaging unit 12 is installed on the ceiling side, so that the subject H is photographed in the supine position. It is also possible.
 X線撮影システム110のように、位相コントラスト画像の臥位撮影を可能とすることにより、被検者Hの撮影肢位が難しい腰椎、股関節等の撮影が可能になる。また、ベッド61に被検者Hを固定するための適切な固定具を用いることにより、体動による位相コントラスト画像の劣化を低減することが可能になる。 As in the case of the X-ray imaging system 110, it is possible to photograph the lumbar vertebrae, the hip joints, etc., in which the subject H is difficult to shoot, by enabling the position contrast imaging of the phase contrast image. In addition, by using an appropriate fixture for fixing the subject H to the bed 61, it is possible to reduce deterioration of the phase contrast image due to body movement.
 次に、図34および図35に示すX線撮影システム120は、被検者Hを立位状態および臥位状態で撮影するX線診断装置に上記実施形態の放射線位相画像撮影装置を適用したものである。 Next, the X-ray imaging system 120 shown in FIGS. 34 and 35 is obtained by applying the radiation phase imaging apparatus of the above embodiment to an X-ray diagnostic apparatus that images the subject H in a standing position and a standing position. It is.
 X線システム110においては、放射線源1および撮影部12が、旋回アーム121によって保持されている。この旋回アーム121は、基台122に旋回可能に連結されている。放射線源1および撮影部12は、上記X線撮影システム100のものと同様の構成であるため、各構成要素には、X線撮影システム100と同一の符号を付している。以下、上記X線撮影システム100との差異についてのみ説明する。その他の構成および作用については、上記X線撮影システム100と同様であるため説明は省略する。 In the X-ray system 110, the radiation source 1 and the imaging unit 12 are held by a turning arm 121. The turning arm 121 is connected to the base 122 so as to be turnable. Since the radiation source 1 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 100, the same reference numerals as those of the X-ray imaging system 100 are given to the respective components. Only differences from the X-ray imaging system 100 will be described below. Since other configurations and operations are the same as those of the X-ray imaging system 100, description thereof is omitted.
 旋回アーム121は、ほぼU字状の形状をしたU字状部121aと、このU字状部121aの一端に接続された直線状の直線状部121bとからなる。U字状部121aの他端には、撮影部12が取り付けられている。直線状部121bには、その延伸方向に沿って第1の溝123が形成さえており、この第1の溝123に、放射線源1が摺動自在に取り付けられている。放射線源1と撮影部12とは対向しており、放射線源1を第1の溝123に沿って移動させることにより、X線焦点18bから放射線画像検出器3の検出面までの距離を調整することができる。 The swivel arm 121 includes a U-shaped portion 121a having a substantially U-shape and a linear straight portion 121b connected to one end of the U-shaped portion 121a. The photographing part 12 is attached to the other end of the U-shaped part 121a. A first groove 123 is formed in the linear portion 121b along the extending direction, and the radiation source 1 is slidably attached to the first groove 123. The radiation source 1 and the imaging unit 12 are opposed to each other, and the distance from the X-ray focal point 18b to the detection surface of the radiation image detector 3 is adjusted by moving the radiation source 1 along the first groove 123. be able to.
 また、基台172には、上下方向に延伸した第2の溝124が形成されている。旋回アーム121は、U字状部121aと直線状部121bとの接続部に設けられた連結機構175により、第2の溝124に沿って上下方向に移動自在となっている。また、旋回アーム121は、連結機構125により、y方向に沿う回転軸Cを中心として旋回可能となっている。図35に示す立位状態から旋回アーム121を、回転軸Cを中心として時計回りに90°回動させるとともに、被検者Hを寝載するベッド(図示せず)の下に撮影部12を配置することで、臥位撮影が可能となる。なお、旋回アーム121は、90°の回動に限られず、任意の角度の回動を行うことができ、立位撮影(水平方向)および臥位撮影(上下方向)以外の方向での撮影が可能である。 In addition, the base 172 is formed with a second groove 124 extending in the vertical direction. The swivel arm 121 is movable in the vertical direction along the second groove 124 by a coupling mechanism 175 provided at a connection portion between the U-shaped portion 121a and the linear portion 121b. Further, the turning arm 121 can be turned around the rotation axis C along the y direction by the connecting mechanism 125. 35, the swivel arm 121 is rotated 90 ° clockwise around the rotation axis C from the standing position shown in FIG. 35, and the imaging unit 12 is placed under the bed (not shown) on which the subject H is placed. By arranging, it is possible to shoot the supine position. Note that the turning arm 121 is not limited to 90 ° rotation, and can rotate at any angle, and shooting in a direction other than standing-up shooting (horizontal direction) and lying-down shooting (vertical direction). Is possible.
 X線撮影システム120においては、U字状部121aに撮影部12を配設し、直線状部121bに放射線源1を配設しているが、いわゆるCアームを用いたX線診断装置のように、Cアームの一端に撮影部12を配設し、他端に放射線源1を配設するようにしてもよい。 In the X-ray imaging system 120, the imaging unit 12 is arranged in the U-shaped part 121a, and the radiation source 1 is arranged in the linear part 121b. However, like the X-ray diagnostic apparatus using a so-called C-arm. In addition, the imaging unit 12 may be disposed at one end of the C arm, and the radiation source 1 may be disposed at the other end.
 次に、図36および図37に示すマンモグラフィ装置130は、上記実施形態の放射線位相画像撮影装置をマンモグラフィ(X線乳房撮影)に適用したものである。 Next, the mammography apparatus 130 shown in FIGS. 36 and 37 is obtained by applying the radiation phase image imaging apparatus of the above embodiment to mammography (X-ray mammography).
 マンモグラフィ装置130は、被検体として乳房Bの位相コントラスト画像を撮影する装置である。マンモグラフィ装置130は、基台(図示せず)に対して旋回可能に連結された支持部131の一端に配設されたX線源収納部132と、支持部131の他端に配設された撮影台133と、撮影台133に対して上下方向に移動可能に構成された圧迫板134とを備えている。 The mammography apparatus 130 is an apparatus that captures a phase contrast image of the breast B as a subject. The mammography apparatus 130 is disposed at the other end of the support 131 and the X-ray source storage section 132 disposed at one end of the support 131 that is pivotally connected to a base (not shown). An imaging table 133 and a compression plate 134 configured to be movable in the vertical direction with respect to the imaging table 133 are provided.
 X線源収納部132には放射線源1が収納されており、撮影台133には撮影部12が収納されている。放射線源1と撮影部12とは互いに対向するように配置されている。圧迫板134は、圧迫板移動機構(図示せず)により移動し、撮影台133との間で乳房Bを挟み込んで圧迫する。この圧迫状態で、上述したX線撮影が行われる。 The X-ray source storage unit 132 stores the radiation source 1, and the imaging table 133 stores the imaging unit 12. The radiation source 1 and the imaging unit 12 are arranged to face each other. The compression plate 134 is moved by a compression plate moving mechanism (not shown), and the breast B is sandwiched between the imaging table 133 and compressed. The X-ray imaging described above is performed in this compressed state.
 なお、放射線源1および撮影部12は、上記X線撮影システム100のものと同様の構成であるため、各構成要素には、X線撮影システム100と同一の符号を付している。その他の構成および作用については、上記X線撮影システム100と同様であるため説明は省略する。 Since the radiation source 1 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 100, the same reference numerals as those of the X-ray imaging system 100 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 100, description thereof is omitted.
 次に、マンモグラフィ装置の変形例を示す。図38に示すマンモグラフィ装置140は、第1の格子2が、放射線源1と圧迫板134との間に配設されている点のみが上記マンモグラフィ装置130と異なる。第1の格子2は、支持部131に接続された格子収納部91に収納されている。撮影部92は、第1の格子2を備えず、第2の格子3および放射線画像検出器4により構成されている。 Next, a modification of the mammography device is shown. A mammography apparatus 140 shown in FIG. 38 is different from the mammography apparatus 130 only in that the first grating 2 is disposed between the radiation source 1 and the compression plate 134. The first grid 2 is stored in a grid storage unit 91 connected to the support unit 131. The imaging unit 92 includes the second grating 3 and the radiation image detector 4 without including the first grating 2.
 このように被検体(乳房)Bが第1の格子2と放射線画像検出器4との間に位置する場合であっても、放射線画像検出器4によって検出される第1の格子2の自己像G1が被検体Bにより変形する。したがって、この場合でも、被検体Bに起因して変調された縞画像を放射線画像検出器3により検出することができる。すなわち、本マンモグラフィ装置140の構成でも、上述した原理で被検体Bの位相コントラスト画像を得ることができる。 Thus, even when the subject (breast) B is located between the first grating 2 and the radiation image detector 4, the self-image of the first grating 2 detected by the radiation image detector 4. G1 is deformed by the subject B. Therefore, even in this case, the radiation image detector 3 can detect the fringe image modulated due to the subject B. That is, even with the configuration of the mammography apparatus 140, a phase contrast image of the subject B can be obtained based on the principle described above.
 なお、第1の格子2と第2の格子3との間に被検体を配置する構成は、マンモグラフィ装置に限られず、他のX線撮影システムに適用することが可能である。 Note that the configuration in which the subject is arranged between the first grating 2 and the second grating 3 is not limited to the mammography apparatus, and can be applied to other X-ray imaging systems.
 次に、図39において、被検体Bの拡大撮影を可能とするマンモグラフィ装置150を示す。マンモグラフィ装置150は、X線源収納部132と撮影部12とを連動して移動させる連動機構151を備える。連動機構151は、上述した制御装置200により制御され、放射線源1、格子2および放射線画像検出器3の相対的位置を同一に保ったまま、X線源収納部132と撮影部12とをZ方向に移動させる。 Next, in FIG. 39, a mammography apparatus 150 capable of enlarging the subject B is shown. The mammography apparatus 150 includes an interlocking mechanism 151 that moves the X-ray source storage unit 132 and the imaging unit 12 in an interlocking manner. The interlocking mechanism 151 is controlled by the control device 200 described above, and the X-ray source storage unit 132 and the imaging unit 12 are moved to the Z direction while the relative positions of the radiation source 1, the grating 2, and the radiation image detector 3 are kept the same. Move in the direction.
 被検体Bの位置は、撮影台133と圧迫板134とにより固定されている。X線源収納部132と撮影台12を下方向に移動させることにより、被検体Bが放射線源11に近づき、被検体Bが拡大撮影される。この拡大率は、上述の入力装置201から入力可能である。入力装置201から拡大率が入力されると、制御装置200は、連動移動機構151を制御し、被検体Bから撮影台133までの距離が、拡大率に応じた距離となるようにX線源収納部132と撮影部12とを移動させる。 The position of the subject B is fixed by the imaging stand 133 and the compression plate 134. By moving the X-ray source storage unit 132 and the imaging table 12 downward, the subject B approaches the radiation source 11 and the subject B is magnified. This enlargement ratio can be input from the input device 201 described above. When an enlargement factor is input from the input device 201, the control device 200 controls the interlocking movement mechanism 151 so that the distance from the subject B to the imaging stage 133 is a distance corresponding to the enlargement factor. The storage unit 132 and the photographing unit 12 are moved.
 たとえば、乳がんの診断では、石灰化や腫瘤、乳腺構造との配置関係が重要であり、疑わしい病変をより精密に診断したい場合には、画像の分解能を高める必要があるため、本マンモグラフィ装置150を用いた拡大撮影が有効である。その他の構成および作用については、上記マンモグラフィ装置130と同様であるため説明は省略する。 For example, in the diagnosis of breast cancer, the positional relationship with calcification, mass, and mammary gland structure is important, and when it is desired to diagnose a suspicious lesion more precisely, it is necessary to increase the resolution of the image. The magnified photography used is effective. Since other configurations and operations are the same as those of the mammography apparatus 130, description thereof will be omitted.
 次に、図40において、被検体Bの拡大撮影を可能とする別実施形態のマンモグラフィ装置160を示す。マンモグラフィ装置160は、放射線画像検出器4をZ方向に移動させる検出器移動機構161を備えている。放射線画像検出器4を放射線源1から遠ざけるほど放射線画像検出器4に入射する像が広がり、被検体Bが拡大撮影される。検出器移動機構161は、上述した制御装置200により制御され、上述した入力装置201から入力される拡大率に応じた位置に放射線画像検出器4を移動させる。その他の構成および作用については、上記マンモグラフィ装置130と同様であるため説明は省略する。 Next, FIG. 40 shows a mammography apparatus 160 according to another embodiment that enables enlargement of the subject B. The mammography apparatus 160 includes a detector moving mechanism 161 that moves the radiation image detector 4 in the Z direction. As the radiation image detector 4 is moved away from the radiation source 1, the image incident on the radiation image detector 4 spreads, and the subject B is magnified. The detector moving mechanism 161 is controlled by the control device 200 described above, and moves the radiation image detector 4 to a position corresponding to the enlargement ratio input from the input device 201 described above. Since other configurations and operations are the same as those of the mammography apparatus 130, description thereof will be omitted.
 次に、図41に示すX線撮影システム170は、放射線源121のコリメータユニット172に、マルチスリット173を配設した点が、上記X線撮影システム100と異なる。その他の構成については、上記X線撮影システム100と同様であるので説明を省略する。なお、このマルチスリット173の効果およびその構成の条件などについては、上述したとおりである。 Next, the X-ray imaging system 170 shown in FIG. 41 differs from the X-ray imaging system 100 in that a multi-slit 173 is provided in the collimator unit 172 of the radiation source 121. Since other configurations are the same as those of the X-ray imaging system 100, description thereof will be omitted. The effects of the multi-slit 173 and the configuration conditions thereof are as described above.
 また、上記各システムにおいては、放射線源と撮影部とを位置決めして一連の撮影を行うことにより、1枚の合成画像を得ているが、放射線源と撮影部とを、X線の光軸Aに直交するいずれかの方向に平行移動させながら、上記一連の撮影を複数回行うことにより、互いに一部が重複した複数の合成画像を得るように構成してもよい。この場合には、得られた複数の合成画像を繋ぎ合せることにより、放射線画像検出器の検出面のサイズより大きい長尺画像を生成することが可能である。 In each of the above systems, a single composite image is obtained by positioning a radiation source and an imaging unit and performing a series of imaging, but the radiation source and the imaging unit are connected to the optical axis of the X-ray. A plurality of composite images partially overlapping each other may be obtained by performing the series of photographing a plurality of times while being translated in any direction orthogonal to A. In this case, it is possible to generate a long image that is larger than the size of the detection surface of the radiation image detector by connecting the obtained composite images.
 たとえば、上述した立位撮影のX線撮影システム100では、図42に示すように、X線源保持装置14と立位スタンド15とを制御し、放射線源1と撮影部12とを連動させて上下動させることにより、X線の光軸Aに直交するX方向への平行移動が可能である。 For example, in the above-described standing X-ray imaging system 100, as shown in FIG. 42, the X-ray source holding device 14 and the standing stand 15 are controlled, and the radiation source 1 and the imaging unit 12 are interlocked. By moving up and down, parallel movement in the X direction orthogonal to the optical axis A of the X-ray is possible.
 また、上述した立位撮影および臥位撮影の可能なX線撮影システム120においては、基台122の溝124に沿って旋回アーム121を上下動させることにより上記平行移動が可能である。その他、X線撮影システム110の場合には、放射線源1と撮影部12とを平行移動させる機構がないため、上述したように光軸Aに直交する方向について平行移動させる機構を設ければよい。 Further, in the X-ray imaging system 120 capable of the above-described standing position imaging and standing position imaging, the above-mentioned parallel movement is possible by moving the turning arm 121 up and down along the groove 124 of the base 122. In addition, in the case of the X-ray imaging system 110, since there is no mechanism for translating the radiation source 1 and the imaging unit 12, a mechanism for translating in the direction orthogonal to the optical axis A may be provided as described above. .
 さらに、放射線源と撮影部とをX方向およびY方向の2方向に2次元移動させて撮影を行うことにより、合成画像が2次元方向に繋ぎ合わされた長尺画像を生成することも好ましい。 Furthermore, it is also preferable to generate a long image in which the composite image is connected in the two-dimensional direction by performing two-dimensional movement in two directions, the X direction and the Y direction, with the radiation source and the imaging unit.
 また、上記実施形態では、2次元の合成画像を取得する例を示している。位相コントラスト画像からなる合成画像は、従来のX線撮影では描出が難しかった筋腱、血管等の軟部組織の描出を可能とするが、2次元画像では、これらが描出されることによって障害陰影が生じることが考えられる。 In the above embodiment, an example in which a two-dimensional composite image is acquired is shown. Synthetic images composed of phase contrast images enable the visualization of soft tissues such as muscle tendons and blood vessels that were difficult to visualize with conventional X-ray imaging. It is possible that this will occur.
 そこで、障害陰影を分離し正確な診断や読影を可能とするように、本発明を、3次元画像を取得する放射線位相CT装置に適用することもできる。具体的には、図43に示すように、放射線源1と、第1および第2の格子2,3と放射線画像検出器4を備えた撮像部12との間に配置された被検体10に対して、放射線源1および撮像部12を同図の矢印方向に回転させる回転移動機構170を設け、この回転移動機構170による複数の回転角度で撮像部12により得られた被検体10の複数の合成画像に基づいて、3次元画像構成部171により被検体10の3次元画像を構成するようにしてもよい。なお、複数の画像に基づいて3次元画像を構成する方法については、従来のX線CT装置と同様である。また、放射線位相CT装置に適用する場合においても、被検体10を第1の格子2と第2の格子3との間に配置してもよい。また、放射線源1に代えて、上述したマルチスリットを有する放射線源を用いるようにしてもよい。 Therefore, the present invention can also be applied to a radiation phase CT apparatus that acquires a three-dimensional image so as to separate the obstacle shadow and enable accurate diagnosis and interpretation. Specifically, as shown in FIG. 43, the object 10 disposed between the radiation source 1 and the imaging unit 12 including the first and second gratings 2 and 3 and the radiation image detector 4 is placed on the subject 10. On the other hand, a rotational movement mechanism 170 that rotates the radiation source 1 and the imaging unit 12 in the direction of the arrow in FIG. A three-dimensional image of the subject 10 may be configured by the three-dimensional image configuration unit 171 based on the composite image. The method for constructing a three-dimensional image based on a plurality of images is the same as that of a conventional X-ray CT apparatus. Further, even when applied to a radiation phase CT apparatus, the subject 10 may be disposed between the first grating 2 and the second grating 3. Further, instead of the radiation source 1, a radiation source having the multi-slit described above may be used.
 また、上記障害陰影を分離し、正確な診断や読影を可能とするように、本発明を立体視が可能なステレオ画像を取得するステレオ撮影に適用することも好ましい。具体的には、図44に示すように、被検体Hおよび撮影部12に対する放射線源1の位置を同図の矢印方向(Y方向)に変更する位置変更機構190を設け、この位置変更機構190により変更された第1および第2の位置で撮影部12により得られた被検体Hの2枚の合成画像に基づいて、ステレオ画像構成部191により被検体Hのステレオ画像を構成する。 In addition, it is also preferable to apply the present invention to stereo photography for obtaining a stereo image that can be stereoscopically viewed so as to separate the obstacle shadow and enable accurate diagnosis and interpretation. Specifically, as shown in FIG. 44, a position changing mechanism 190 is provided for changing the position of the radiation source 1 with respect to the subject H and the imaging unit 12 in the arrow direction (Y direction) in FIG. Based on the two synthesized images of the subject H obtained by the imaging unit 12 at the first and second positions changed by the above, the stereo image construction unit 191 constructs a stereo image of the subject H.
 第1および第2の位置において、放射線源1のX線照射領域が撮影部12の受像部に一致するようにコリメータ19aを調整することが好ましい。また、第1の位置と第2の位置とで、放射線源1の角度を変化させる(いわゆる首振りを行う)ことで、X線照射領域を受像部に合わせることも好ましい。 It is preferable to adjust the collimator 19a so that the X-ray irradiation region of the radiation source 1 coincides with the image receiving unit of the imaging unit 12 at the first and second positions. It is also preferable to match the X-ray irradiation area with the image receiving section by changing the angle of the radiation source 1 between the first position and the second position (so-called swinging).
 2枚の画像に基づいてステレオ画像を構成する方法については、従来のステレオ撮影装置と同様である。なお、この構成においても、被検体Hを第1の格子2と第2の格子3との間に配置してもよい。 The method for constructing a stereo image based on the two images is the same as that of a conventional stereo photographing apparatus. In this configuration as well, the subject H may be disposed between the first lattice 2 and the second lattice 3.
 なお、この構成によれば、放射線源1の位置をY方向(第1および第2の格子2,3の部材22,32の延伸方向)に沿って変更しているため、放射線源1の位置変更にともなう放射線のケラレが生じないといった利点がある。 In addition, according to this structure, since the position of the radiation source 1 is changed along the Y direction (the extending direction of the members 22 and 32 of the first and second gratings 2 and 3), the position of the radiation source 1 is changed. There is an advantage that the vignetting of radiation due to the change does not occur.
 上述したようなシステムによれば、従来の格子を並進移動させて複数回の撮影を行って位相コントラスト画像を生成する方法に対して、1回の撮影で位相コントラスト画像が生成できるので、体動や装置振動による位相コントラスト画像の画質低下を防ぐことができ、さらに、高精度な格子移動機構が不要なため、装置の簡略化ならびにコストダウンが可能である。 According to the system as described above, the phase contrast image can be generated by one shooting as compared with the method of generating a phase contrast image by performing a plurality of shootings by translating the conventional grating. Further, it is possible to prevent deterioration of the image quality of the phase contrast image due to the vibration of the apparatus, and further, the apparatus can be simplified and the cost can be reduced because a highly accurate lattice moving mechanism is unnecessary.
 また、上述したとおり複数の位相コントラスト画像を生成し、その生成した複数の位相コントラスト画像に基づいて合成画像を生成するようにしたので、たとえば、緩やかな傾きを有するエッジについても合成画像上において明確に表れるようにすることができる。 In addition, since a plurality of phase contrast images are generated as described above, and a composite image is generated based on the generated plurality of phase contrast images, for example, an edge having a gentle slope is clearly displayed on the composite image. Can appear.
 また、上記実施形態においては、位相コントラスト画像を取得することによりこれまで描出が難しかった画像を得ることができるが、従来のX線画像診断学は吸収画像に基づいているため、位相コントラスト画像と対応して吸収画像が参照できると読影の助けになる。たとえば、吸収画像と位相コントラスト画像を重み付けや階調、周波数処理などの適当な処理によって重ね合わせることにより吸収画像が表現できなかった部分を位相コントラスト画像の情報で補うことは有効である。 Further, in the above embodiment, an image that has been difficult to draw can be obtained by acquiring a phase contrast image. However, since conventional X-ray diagnostic imaging is based on an absorption image, Corresponding absorption images can help interpretation. For example, it is effective to supplement the portion where the absorption image cannot be expressed by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing, with the information of the phase contrast image.
 しかし、位相コントラスト画像とは別に吸収画像を撮影することは、位相コントラスト画像の撮影と吸収画像の撮影との間の撮影肢体のズレによって良好な重ね合わせを困難にするのに加え、撮影回数が増えることにより被検体の負担となる。また、近年、位相コントラスト画像や吸収画像の他に、小角散乱画像が注目されている。小角散乱画像は、被検体組織内部の微細構造に起因する組織性状を表現可能であり、たとえば、ガンや循環器疾患といった分野での新しい画像診断のための表現方法として期待されている。 However, taking an absorption image separately from a phase contrast image makes it difficult to superimpose a good image due to the shift of the limbs between the phase contrast image and the absorption image. Increasing the burden on the subject. In recent years, small-angle scattered images have attracted attention in addition to phase contrast images and absorption images. The small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in fields such as cancer and cardiovascular diseases.
 そこで、位相コントラスト画像を生成するために取得した複数枚の縞画像から、吸収画像を生成する吸収画像生成部や小角散乱画像を生成する小角散乱画像生成部を演算処理部202にさらに設けるようにしてもよい。なお、演算処理部202は、位相コントラスト画像、小角散乱画像および吸収画像のうちの少なくとも1つを生成するものとできる。 Therefore, the arithmetic processing unit 202 is further provided with an absorption image generation unit that generates an absorption image and a small angle scattering image generation unit that generates a small angle scattering image from a plurality of striped images acquired to generate a phase contrast image. May be. The arithmetic processing unit 202 can generate at least one of a phase contrast image, a small angle scattered image, and an absorption image.
 吸収画像生成部は、画素毎に得られる画素信号Ik(x,y)を、図45に示すようにkについて平均化して平均値を算出して画像化することにより吸収画像を生成するものである。なお、平均値の算出は、画素信号Ik(x,y)をkについて単純に平均化することにより行ってもよいが、Mが小さい場合には誤差が大きくなるため、画素信号Ik(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の平均値を求めるようにしてもよい。また、正弦波に限らず、矩形波や三角波形状を用いるようにしてもよい。 The absorption image generation unit generates an absorption image by averaging the pixel signal Ik (x, y) obtained for each pixel with respect to k as shown in FIG. is there. The average value may be calculated by simply averaging the pixel signal Ik (x, y) with respect to k. However, when M is small, the error increases, so the pixel signal Ik (x, y) After fitting y) with a sine wave, an average value of the fitted sine wave may be obtained. In addition to a sine wave, a rectangular wave or a triangular wave shape may be used.
 また、吸収画像の生成には、平均値に限られず、平均値に対応する量であれば、画素信号Ik(x,y)をkについて加算した加算値等を用いることが可能である。 Further, the generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel signal Ik (x, y) with respect to k can be used as long as the amount corresponds to the average value.
 また、上述したように画素信号Ik(x,y)の平均値を算出して画像化することにより吸収画像を生成する方法をより具体的に説明すると、たとえば、図46の左側に示すような画素信号Ik(x,y)が各副画素によって検出されたとすると、吸収画像の画素信号は下式(39)に基づいて算出することができるが、吸収画像は図46の右側に示すように5画素圧縮されたものとなり、見やすい吸収画像とするためにy方向に5画素に引き延ばす必要がある。
Figure JPOXMLDOC01-appb-M000039
Further, a method for generating an absorption image by calculating an average value of the pixel signal Ik (x, y) as described above and imaging it will be described more specifically. For example, as shown on the left side of FIG. If the pixel signal Ik (x, y) is detected by each sub-pixel, the pixel signal of the absorption image can be calculated based on the following equation (39), but the absorption image is as shown on the right side of FIG. In order to obtain an absorption image that is compressed by 5 pixels and is easy to see, it is necessary to extend it to 5 pixels in the y direction.
Figure JPOXMLDOC01-appb-M000039
 そこで、たとえば、図47の左側に示すような画素信号Ik(x,y)が各副画素によって検出されたとき、5つの副画素の画素信号の移動平均を算出することによって吸収画像を生成するようにしてもよい。すなわち、吸収画像を下式(40)に基づいて算出して、図47の右側に示すような吸収画像を生成するようにしてもよい。
Figure JPOXMLDOC01-appb-M000040
Therefore, for example, when a pixel signal Ik (x, y) as shown on the left side of FIG. 47 is detected by each subpixel, an absorption image is generated by calculating a moving average of the pixel signals of five subpixels. You may do it. That is, the absorption image may be calculated based on the following formula (40) to generate an absorption image as shown on the right side of FIG.
Figure JPOXMLDOC01-appb-M000040
 図48に示すように、1画素ずらした5個セットでも、sinカーブのちょうど1周期となるため、平均値を取ることで、振幅の中心を求めることが可能となる。I(1,1)~I(1,5)のセットでも、I(1,2)~I(1,6)のセットからでも、振幅の平均値を得ることが出来る。 As shown in FIG. 48, even if a set of 5 pixels are shifted by one pixel, the cycle of the sin curve is exactly one cycle, so that the center of amplitude can be obtained by taking an average value. The average value of the amplitude can be obtained from the set of I (1,1) to I (1,5) and the set of I (1,2) to I (1,6).
 小角散乱画像生成部は、画素毎に得られる画素信号Ik(x,y)の振幅値を算出して画像化することにより小角散乱画像を生成する。なお、振幅値の算出は、画素信号Ik(x,y)の最大値と最小値との差を求めることによって行ってもよいが、Mが小さい場合には誤差が大きくなるため、画素信号Ik(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の振幅値を求めるようにしてもよい。また、小角散乱画像の生成には、振幅値に限られず、平均値を中心としたばらつきに対応する量として、分散値や標準偏差などを用いることができる。 The small-angle scattered image generation unit generates a small-angle scattered image by calculating and imaging the amplitude value of the pixel signal Ik (x, y) obtained for each pixel. The amplitude value may be calculated by obtaining a difference between the maximum value and the minimum value of the pixel signal Ik (x, y). However, when M is small, the error increases, and therefore the pixel signal Ik. After fitting (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained. In addition, the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
 また、位相コントラスト画像は、第1および第2の格子2,3の部材22,32の周期配列方向(X方向)のX線の屈折成分に基づくものとなり、部材22,23の延伸方向(Y方向)の屈折成分は反映されない。すなわち、XY面である格子面を介して、X方向に交差する方向(直交する場合はY方向)に沿った部位輪郭がX方向の屈折成分に基づく位相コントラスト画像として描出されるのであり、X方向に交差せずにX方向に沿っている部位輪郭はX方向の位相コントラスト画像として描出されない。すなわち、被検体Hとする部位の形状と向きによっては描出できない部位が存在する。例えば、膝等の関節軟骨の荷重面の方向を格子の面内方向であるXY方向のうちY方向に合わせると、Y方向にほぼ沿った荷重面(YZ面)近傍の部位輪郭は十分に描出されるが、荷重面に交差しX方向にほぼ沿って延びる軟骨周辺組織(腱や靭帯など)については描出が不十分になると考えられる。被検体Hを動かすことにより、描出が不十分な部位を再度撮影することは可能ではあるが、被検体H及び術者の負担が増えることに加え、再度撮影した画像との位置再現性を担保することが難しいといった問題がある。 The phase contrast image is based on the X-ray refraction component in the periodic arrangement direction (X direction) of the members 22 and 32 of the first and second gratings 2 and 3, and the extending direction (Y The direction (refractive component) is not reflected. That is, a part outline along a direction intersecting the X direction (or Y direction when orthogonal) is drawn as a phase contrast image based on a refractive component in the X direction via a lattice plane that is an XY plane. A part contour that does not intersect the direction and extends along the X direction is not drawn as a phase contrast image in the X direction. That is, there is a part that cannot be depicted depending on the shape and orientation of the part to be the subject H. For example, when the direction of the load surface of the articular cartilage such as the knee is aligned with the Y direction in the XY direction which is the in-plane direction of the lattice, the part contour near the load surface (YZ surface) substantially along the Y direction is sufficiently depicted. However, it is considered that the depiction of tissue around the cartilage (tendon, ligament, etc.) that intersects the load surface and extends substantially along the X direction is insufficient. By moving the subject H, it is possible to recapture a region that is not fully visualized, but in addition to increasing the burden on the subject H and the operator, position reproducibility with the recaptured image is ensured. There is a problem that it is difficult to do.
 そこで、他の例として、図49に示すように、第1および第2の格子2,3の格子面の中心に直交する仮想線(X線の光軸A)を中心として、第1および第2の格子2,3を、図49の上図に示すような第1の向きから任意の角度で回転させて、図49の下図に示すような第2の向きとする回転機構180を設け、第1の向きと第2の向きとのそれぞれにおいて第1および第2の位相コントラスト画像と合成画像とを生成するように構成することも好適である。 Therefore, as another example, as shown in FIG. 49, the first and second imaginary lines (X-ray optical axis A) orthogonal to the centers of the lattice planes of the first and second gratings 2 and 3 are centered. 2 is provided with a rotation mechanism 180 that rotates the grids 2 and 3 at an arbitrary angle from the first orientation as shown in the upper diagram of FIG. 49 to have the second orientation as shown in the lower diagram of FIG. It is also preferable that the first and second phase contrast images and the composite image are generated in each of the first direction and the second direction.
 こうすることで、上述した位置再現性の問題をなくせる。なお、図49の上図には、第2の格子3の部材32の延伸方向がY方向に沿う方向となるような第1および第2の格子2,3の第1の向きを示し、図49の下図には、図49の上図の状態から90度回転させ、第2の格子3の部材32の延伸方向がX方向に沿う方向となるような第1および第2の格子2,3の第2の向きを示したが、第1の格子2と第2の格子3との間の傾き関係を維持した状態であれば、第1および第2の格子2,3の回転角度は任意である。また、第1の向きおよび第2の向きに加えて、第3の向き、第4の向きなど、2回以上の回転操作を行って、それぞれの向きでの第1および第2の位相コントラスト画像と合成画像とを生成するように構成してもよい。 In this way, the above-described problem of position reproducibility can be eliminated. 49 shows the first direction of the first and second gratings 2 and 3 such that the extending direction of the member 32 of the second grating 3 is the direction along the Y direction. In the lower diagram of 49, the first and second gratings 2, 3 are rotated 90 degrees from the state of the upper diagram of FIG. 49 so that the extending direction of the member 32 of the second grating 3 is in the direction along the X direction. However, if the inclination relation between the first grating 2 and the second grating 3 is maintained, the rotation angle of the first and second gratings 2 and 3 is arbitrary. It is. Further, in addition to the first direction and the second direction, two or more rotation operations such as the third direction and the fourth direction are performed, and the first and second phase contrast images in the respective directions. And a composite image may be generated.
 なお、この回転機構180は、放射線画像検出器4とは別に第1および第2の格子2,3のみを一体的に回転させるものであってもよいし、第1および第2の格子2,3とともに放射線画像検出器4を一体的に回転させるものであってもよい。さらに、回転機構180を用いた第1および第2の向きにおける位相コントラスト画像の生成は、上記いずれの例においても適用可能である。上述したマルチスリットを具備する場合には、第1の格子2と同様の向きに、マルチスリットも回転させるように構成すればよい。
 また、図49においては、第1の格子2と第2の格子3とが相対的に傾いている例について示したが、これに限らず、上述した第2の格子3の位置における第1の格子2の自己像G1のピッチと第2の格子3のピッチとを異なるピッチとする形態も適用可能であり、このような関係の第1の格子2および第2の格子3を、上記と同様に90度回転させるようにしてもよい。また、この場合も第1の格子2と第2の格子3とを相対的に傾けるとともに、第2の格子3の位置における第1の格子2の自己像G1のピッチと第2の格子3のピッチとを異なるピッチとする形態としてもよい。
The rotation mechanism 180 may be configured to rotate only the first and second gratings 2 and 3 separately from the radiation image detector 4, or the first and second gratings 2 and 2. 3 and the radiation image detector 4 may be rotated together. Furthermore, the generation of the phase contrast image in the first and second directions using the rotation mechanism 180 can be applied to any of the above examples. When the multi-slit described above is provided, the multi-slit may be rotated in the same direction as the first grating 2.
FIG. 49 shows an example in which the first grating 2 and the second grating 3 are relatively inclined. However, the present invention is not limited to this, and the first grating at the position of the second grating 3 described above is used. A mode in which the pitch of the self-image G1 of the grating 2 and the pitch of the second grating 3 are different from each other is also applicable, and the first grating 2 and the second grating 3 having such a relationship are the same as described above. You may make it rotate 90 degree. Also in this case, the first grating 2 and the second grating 3 are relatively inclined, and the pitch of the self-image G1 of the first grating 2 at the position of the second grating 3 and the second grating 3 The pitch may be different from the pitch.
 また、上述したように、1次元格子である第1および第2の格子2,3を回転させるのではなく、第1および第2の格子の2,3を、それぞれの部材22,32を2次元方向に延設した2次元格子の構成としてもよい。図50は、2次元格子として構成された第1の格子2の自己像G1と2次元格子として構成された第2の格子3とを示している。第2の格子3に対する第1の格子2の回転角θについては、上記実施形態と同様に、上式(11)、上式(24)、上式(25)、上式(34)、上式(35)または上式(38)に基づいて設定される。 Further, as described above, instead of rotating the first and second gratings 2 and 3 which are one-dimensional gratings, the members 2 and 3 of the first and second gratings 2 and 2 are set to 2 respectively. It is good also as a structure of the two-dimensional lattice extended in the dimension direction. FIG. 50 shows a self-image G1 of the first grating 2 configured as a two-dimensional grating and a second grating 3 configured as a two-dimensional grating. The rotation angle θ of the first grating 2 with respect to the second grating 3 is the same as in the above embodiment, the above equation (11), the above equation (24), the above equation (25), the above equation (34), It is set based on the equation (35) or the above equation (38).
 なお、この場合、上式(11)、上式(24)、上式(25)、上式(34)、上式(35)または上式(38)は、副画素サイズについて規定したものであるが、副画素サイズだけでなく、副画素サイズに直交する方向の画素サイズに対しても上式(11)、上式(24)、上式(25)、上式(34)、上式(35)または上式(38)を満たすようにθが設定される。たとえば、位相コントラスト画像を取得するための縞画像の数をMとすると、Y方向と同様にX方向についても、M個の画素サイズDxが位相コントラスト画像の主走査方向の1つの画像解像度Dとなるように第1の格子2が第2の格子3に対して傾けられ、X方向についても、各画素Dxについて互いに異なる縞画像が取得されることになる。 In this case, the above equation (11), the above equation (24), the above equation (25), the above equation (34), the above equation (35), or the above equation (38) is defined for the subpixel size. However, not only the subpixel size but also the pixel size in the direction orthogonal to the subpixel size, the above equation (11), the above equation (24), the above equation (25), the above equation (34), the above equation Θ is set so as to satisfy (35) or the above equation (38). For example, if the number of fringe images for obtaining a phase contrast image is M, M pixel sizes Dx in the X direction as well as the Y direction are one image resolution D in the main scanning direction of the phase contrast image. Thus, the first grating 2 is tilted with respect to the second grating 3, and different stripe images are acquired for each pixel Dx also in the X direction.
 このように構成することにより、1次元格子を回転させる構成と比較すると、1度の撮影で第1の方向、第2の方向に対する位相コントラスト画像が得られるため、撮影間の被検体の体動や装置振動の影響がなく、第1および第2の方向の位相コントラスト画像間の位置再現性においてより良好である。また、回転機構を排除することで、装置の簡略化、コストダウンが可能である。
 また、図50においては、2次元格子で構成された第1の格子2と第2の格子3とを相対的に傾ける例を示したが、これに限らず、上述した第2の格子3の位置における第1の格子2の自己像G1のピッチと第2の格子3のピッチとを異なるピッチとする形態も適用可能である。この場合、たとえば、第2の格子3の位置における第1の格子2の自己像G1のX方向のピッチと第2の格子3のX方向のピッチとを異なるものとするとともに、上記自己像G1のY方向のピッチと第2の格子3のY方向のピッチとを異なるものとすることになる。また、この場合も第1の格子2と第2の格子3とを相対的に傾けるとともに、第2の格子3の位置における第1の格子2の自己像G1のピッチと第2の格子3のピッチとを異なるピッチとする形態としてもよい。
By configuring in this way, phase contrast images in the first direction and the second direction can be obtained with one imaging as compared with a configuration in which a one-dimensional grating is rotated. There is no influence of the apparatus vibration and the position reproducibility between the phase contrast images in the first and second directions is better. Further, by eliminating the rotation mechanism, the apparatus can be simplified and the cost can be reduced.
FIG. 50 shows an example in which the first grating 2 and the second grating 3 configured by a two-dimensional grating are relatively inclined, but the present invention is not limited to this, and the second grating 3 described above A mode in which the pitch of the self-image G1 of the first grating 2 at the position and the pitch of the second grating 3 are different from each other is also applicable. In this case, for example, the pitch in the X direction of the self-image G1 of the first grating 2 at the position of the second grating 3 is different from the pitch in the X direction of the second grating 3, and the self-image G1 The pitch in the Y direction and the pitch in the Y direction of the second grating 3 are different from each other. Also in this case, the first grating 2 and the second grating 3 are relatively inclined, and the pitch of the self-image G1 of the first grating 2 at the position of the second grating 3 and the second grating 3 The pitch may be different from the pitch.
 また、上記第1および第2の実施形態の放射線位相画像撮影装置においては、第1の格子2と第2の格子3との2つの格子を用いるようにしたが、第2の格子3の機能を放射線画像検出器にもたせることによって第2の格子3を用いないようにすることができる。以下、第2の格子3の機能を有する放射線画像検出器の構成について説明する。 In the radiation phase imaging apparatus of the first and second embodiments, two gratings of the first grating 2 and the second grating 3 are used, but the function of the second grating 3 is used. Can be prevented from using the second grating 3. Hereinafter, the configuration of the radiation image detector having the function of the second grating 3 will be described.
 第2の格子3の機能を有する放射線画像検出器は、放射線が第1の格子2を通過することによって第1の格子2によって形成された第1の格子2の自己像を検出するとともに、その自己像に応じた電荷信号を後述する格子状に分割された電荷蓄積層に蓄積することによって自己像に強度変調を施して縞画像を生成し、その生成した縞画像を画像信号として出力するものである。 The radiation image detector having the function of the second grating 3 detects a self-image of the first grating 2 formed by the first grating 2 by passing the radiation through the first grating 2 and A fringe image is generated by intensity modulation of the self-image by accumulating charge signals corresponding to the self-image in a charge storage layer divided into a lattice shape, which will be described later, and outputting the generated fringe image as an image signal It is.
 図51Aは、第2の格子3の機能を有する放射線画像検出器400の斜視図、図51Bは図51Aに示す放射線画像検出器のXZ面断面図、図5151Cは図51Aに示す放射線画像検出器のYZ面断面図である。 51A is a perspective view of the radiation image detector 400 having the function of the second grating 3, FIG. 51B is a cross-sectional view of the XZ plane of the radiation image detector shown in FIG. 51A, and FIG. 5151C is the radiation image detector shown in FIG. FIG.
 放射線画像検出器400は、図51A~図51Cに示すように、放射線を透過する第1の電極層41、第1の電極層41を透過した放射線の照射を受けることにより電荷を発生する記録用光導電層42、記録用光導電層42において発生した電荷のうち一方の極性の電荷に対しては絶縁体として作用し、且つ他方の極性の電荷に対しては導電体として作用する電荷蓄積層43、読取光の照射を受けることにより電荷を発生する読取用光導電層44、および第2の電極層45をこの順に積層してなるものである。なお、上記各層は、ガラス基板46上に第2の電極層45から順に形成されている。 As shown in FIGS. 51A to 51C, the radiation image detector 400 is a first electrode layer 41 that transmits radiation, and is used for recording that generates charges when irradiated with radiation that has passed through the first electrode layer 41. Among the charges generated in the photoconductive layer 42 and the recording photoconductive layer 42, a charge storage layer that acts as an insulator for charges of one polarity and acts as a conductor for charges of the other polarity 43, a photoconductive layer for reading 44 that generates charges when irradiated with reading light, and a second electrode layer 45 are laminated in this order. Each of the above layers is formed in order from the second electrode layer 45 on the glass substrate 46.
 そして、第2の格子3の機能を有する放射線画像検出器400は、第1の電極層41、記録用光導電層42、電荷蓄積層43、読取用光導電層44および第2の電極層45の材料については、上記実施形態における放射線画像検出器4の第1の電極層41、記録用光導電層42、電荷蓄積層43、読取用光導電層44および第2の電極層45と同様である。 The radiation image detector 400 having the function of the second grating 3 includes a first electrode layer 41, a recording photoconductive layer 42, a charge storage layer 43, a reading photoconductive layer 44, and a second electrode layer 45. These materials are the same as those of the first electrode layer 41, the recording photoconductive layer 42, the charge storage layer 43, the reading photoconductive layer 44, and the second electrode layer 45 of the radiation image detector 4 in the above embodiment. is there.
 そして、第2の格子3の機能を有する放射線画像検出器400は、上記第1および第2の実施形態の放射線画像検出器4と電荷蓄積層43の形状が異なる。放射線画像検出器400の電荷蓄積層43は、図51A~図51Cに示すように、第2の電極層45の透明線状電極45aおよび遮光線状電極45bの延伸方向に平行となるように線状に分割されている。 And the radiation image detector 400 having the function of the second grating 3 is different in the shape of the charge storage layer 43 from the radiation image detector 4 of the first and second embodiments. As shown in FIGS. 51A to 51C, the charge storage layer 43 of the radiation image detector 400 is a line that is parallel to the extending direction of the transparent linear electrode 45a and the light shielding linear electrode 45b of the second electrode layer 45. It is divided into shapes.
 また、電荷蓄積層43は、透明線状電極45aもしくは遮光線状電極45bの配列ピッチよりも細かいピッチで分割されるが、その配列ピッチP’は、上記実施形態の第2の格子3の条件と同様である。すなわち、第1の格子2が90°の位相変調を与える位相変調型格子または振幅変調型格子の場合、下式(41)の関係を満たすように決定され、第1の格子2が180°の位相変調を与える位相変調型格子の場合には、下式(42)の関係を満たすように決定される。なお、下式(41),(42)におけるPは第1の格子2の格子ピッチ、Zは放射線源1の焦点から第1の格子2までの距離、Z’は第1の格子2から放射線画像検出器400の検出面までの距離である。
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000042
The charge storage layer 43 is divided at a pitch finer than the arrangement pitch of the transparent linear electrodes 45a or the light shielding linear electrodes 45b. The arrangement pitch P 2 ′ is the same as that of the second lattice 3 of the above embodiment. It is the same as conditions. That is, when the first grating 2 is a phase modulation type grating or an amplitude modulation type grating that gives 90 ° phase modulation, it is determined so as to satisfy the relationship of the following expression (41), and the first grating 2 is 180 ° In the case of a phase modulation type grating that provides phase modulation, it is determined so as to satisfy the relationship of the following equation (42). In the following equations (41) and (42), P 1 is the grating pitch of the first grating 2, Z 1 is the distance from the focal point of the radiation source 1 to the first grating 2, and Z 2 ′ is the first grating. 2 to the detection surface of the radiation image detector 400.
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000042
 また、電荷蓄積層43は、積層方向(Z方向)について2μm以下の厚さで形成される。 The charge storage layer 43 is formed with a thickness of 2 μm or less in the stacking direction (Z direction).
 そして、電荷蓄積層43は、たとえば、上述したような材料と金属板に穴を空けたメタルマスクやファイバーなどによって形成されたマスクとを用いて抵抗加熱蒸着によって形成することができる。また、フォトリソグラフィを用いて形成するようにしてもよい。 The charge storage layer 43 can be formed, for example, by resistance heating vapor deposition using the above-described material and a mask formed of a metal mask or a fiber having a hole in a metal plate. Further, it may be formed using photolithography.
 なお、タルボ干渉計として機能させるための第1の格子2と放射線画像検出器400との距離の条件については、放射線画像検出器400が第2の格子3として機能するものであるので、第1の格子2と第2の格子3との距離の条件と同様である。また、上記第2の実施形態のように第1の格子2が入射放射線を回折せずに投影させる構成とし、第1の格子2から放射線画像検出器400までの距離Zを、タルボ干渉距離を無関係に設定するようにしてもよく、上式(28)を満たすような距離としてもよい。 Regarding the distance condition between the first grating 2 and the radiation image detector 400 for functioning as a Talbot interferometer, the radiation image detector 400 functions as the second grating 3. This is the same as the condition of the distance between the lattice 2 and the second lattice 3. In addition, as in the second embodiment, the first grating 2 projects incident radiation without diffracting, and the distance Z 2 from the first grating 2 to the radiation image detector 400 is set to the Talbot interference distance. May be set independently of each other, or may be a distance satisfying the above equation (28).
 次に、上記のように構成された放射線画像検出器400の作用について説明する。 Next, the operation of the radiation image detector 400 configured as described above will be described.
 まず、図52Aに示すように高圧電源101によって放射線画像検出器400の第1の電極層41に負の電圧を印加した状態において、タルボ効果によって形成された第1の格子2の自己像をG1担持した放射線が、放射線画像検出器400の第1の電極層41側から照射される。 First, as shown in FIG. 52A, in a state where a negative voltage is applied to the first electrode layer 41 of the radiation image detector 400 by the high-voltage power supply 101, a self-image of the first lattice 2 formed by the Talbot effect is represented by G1. The carried radiation is irradiated from the first electrode layer 41 side of the radiation image detector 400.
 そして、放射線画像検出器400に照射された放射線は、第1の電極層41を透過し、記録用光導電層42に照射される。そして、その放射線の照射によって記録用光導電層42において電荷対が発生し、そのうち正の電荷は第1の電極層41に帯電した負の電荷と結合して消滅し、負の電荷は潜像電荷として電荷蓄積層43に蓄積される(図52B参照)。 The radiation applied to the radiation image detector 400 passes through the first electrode layer 41 and is applied to the recording photoconductive layer 42. Then, a charge pair is generated in the recording photoconductive layer 42 by the irradiation of the radiation, and the positive charge is combined with the negative charge charged in the first electrode layer 41 and disappears, and the negative charge is a latent image. Charges are accumulated in the charge accumulation layer 43 (see FIG. 52B).
 ここで、電荷蓄積層43は、上述したような配列ピッチで線状に分割されているので、記録用光導電層42において第1の格子2の自己像G1に応じて発生した電荷のうちその直下に電荷蓄積層43が存在する電荷のみが電荷蓄積層43によってトラップされて蓄積され、それ以外の電荷については線状の電荷蓄積層43の間を通過し、読取用光導電層44を通過した後、透明線状電極45aと遮光線状電極45bとに流れ出してしまう。 Here, since the charge storage layer 43 is linearly divided at the arrangement pitch as described above, of the charges generated according to the self-image G1 of the first lattice 2 in the recording photoconductive layer 42, Only the charges that are present immediately below the charge storage layer 43 are trapped and stored by the charge storage layer 43, and other charges pass between the linear charge storage layers 43 and pass through the reading photoconductive layer 44. After that, it flows out to the transparent linear electrode 45a and the light shielding linear electrode 45b.
 このように記録用光導電層42において発生した電荷のうち、その直下に線状の電荷蓄積層43が存在する電荷のみを蓄積する。この作用によって、第1の格子2の自己像G1は電荷蓄積層43の線状のパターンとの重ね合わせにより強度変調を受け、被検体による自己像の波面の歪みを反映した縞画像の画像信号が電荷蓄積層43に蓄積されることになる。すなわち、電荷蓄積層43は、上記実施形態の第2の格子3と同等の機能を果たすことになる。 Of the charges generated in the recording photoconductive layer 42 in this way, only the charges in which the linear charge storage layer 43 exists immediately below are stored. By this action, the self-image G1 of the first grating 2 is intensity-modulated by superposition with the linear pattern of the charge storage layer 43, and the image signal of the fringe image reflecting the distortion of the wavefront of the self-image by the subject. Is stored in the charge storage layer 43. That is, the charge storage layer 43 performs the same function as the second lattice 3 of the above embodiment.
 そして、次に、図53に示すように、第1の電極層41が接地された状態において、線状読取光源50から発せられた線状の読取光L1が第2の電極層45側から照射される。読取光L1は透明線状電極45aを透過して読取用光導電層44に照射され、その読取光L1の照射により読取用光導電層44において発生した正の電荷が電荷蓄積層43における潜像電荷と結合するとともに、負の電荷が、透明線状電極45aに接続されたチャージアンプ200を介して遮光線状電極45bに帯電した正の電荷と結合する。 Then, as shown in FIG. 53, in the state where the first electrode layer 41 is grounded, the linear reading light L1 emitted from the linear reading light source 50 is irradiated from the second electrode layer 45 side. Is done. The reading light L1 passes through the transparent linear electrode 45a and is applied to the reading photoconductive layer 44, and the positive charge generated in the reading photoconductive layer 44 due to the irradiation of the reading light L1 is a latent image in the charge storage layer 43. The negative charge is combined with the positive charge charged on the light-shielding linear electrode 45b through the charge amplifier 200 connected to the transparent linear electrode 45a.
 そして、読取用光導電層44において発生した負の電荷と遮光線状電極45bに帯電した正の電荷との結合によって、チャージアンプ200に電流が流れ、この電流が積分されて画像信号として検出される。 A current flows through the charge amplifier 200 due to the combination of the negative charge generated in the read photoconductive layer 44 and the positive charge charged in the light shielding linear electrode 45b, and this current is integrated and detected as an image signal. The
 そして、線状読取光源50が、副走査方向(Y方向)に移動することによって線状の読取光L1によって放射線画像検出器400が走査され、線状の読取光L1の照射された読取ライン毎に上述した作用によって画像信号が順次検出され、その検出された読取ライン毎の画像信号が位相コントラスト画像生成部5に順次入力されて記憶される。 Then, when the linear reading light source 50 moves in the sub-scanning direction (Y direction), the radiation image detector 400 is scanned by the linear reading light L1, and each reading line irradiated with the linear reading light L1 is scanned. In addition, the image signals are sequentially detected by the above-described operation, and the detected image signals for each reading line are sequentially input and stored in the phase contrast image generation unit 5.
 そして、放射線画像検出器400の全面が読取光L1に走査されて1フレーム全体の画像信号が位相コントラスト画像生成部5に記憶される。 Then, the entire surface of the radiation image detector 400 is scanned with the reading light L 1, and the image signal of the entire frame is stored in the phase contrast image generation unit 5.
 そして、上記実施形態と同様にして、位相コントラスト画像生成部5に記憶された画像信号に基づいて、第1および第2の位相コントラスト画像が生成され、第1の位相コントラスト画像と第2の位相コントラスト画像とが合成されて合成画像が生成される。 In the same manner as in the above embodiment, the first and second phase contrast images are generated based on the image signal stored in the phase contrast image generation unit 5, and the first phase contrast image and the second phase are generated. The contrast image and the contrast image are combined to generate a combined image.
 また、上述した第2の格子3の機能を有する放射線画像検出器400おいては、電極間に、記録用光導電層42、電荷蓄積層43および読取用光導電層44の3層を設ける構成としたが、必ずしもこの層構成である必要はなく、たとえば、図54に示すように、読取用光導電層44を設けることなく、第2の電極層の透明線状電極45aおよび遮光線状電極45b上に直接接触するように線状の電荷蓄積層43を設け、その電荷蓄積層43の上に記録用光導電層42を設けるようにしてもよい。なお、この記録用光導電層42は、読取用光導電層としても機能するものである。 In the radiation image detector 400 having the function of the second grating 3 described above, the recording photoconductive layer 42, the charge storage layer 43, and the reading photoconductive layer 44 are provided between the electrodes. However, this layer configuration is not necessarily required. For example, as shown in FIG. 54, the transparent linear electrode 45a and the light-shielding linear electrode of the second electrode layer are provided without providing the reading photoconductive layer 44. A linear charge storage layer 43 may be provided so as to be in direct contact with 45b, and a recording photoconductive layer 42 may be provided on the charge storage layer 43. The recording photoconductive layer 42 also functions as a reading photoconductive layer.
 この放射線画像検出器500の構造は、読取用光導電層44なしに第2の電極層45に直接電荷蓄積層43を設ける構造であり、線状の電荷蓄積層43は、蒸着で形成することができるため、線状の電荷蓄積層43の形成を容易にする。蒸着工程においては、選択的に線状パターンを形成するためにメタルマスクなどを用いる。読取用光導電層44の上に線状の電荷蓄積層43を設ける構成では、読取用光導電層44の蒸着後に線状の電荷蓄積層43を蒸着で形成するためのメタルマスクをセットする工程が必要なため、読取用光導電層44の蒸着工程と記録用光導電層42の蒸着工程の間で大気中操作により、読取用光導電層44に劣化や、光導電層間に異物が混入して品質の劣化をもたらす虞がある。一方、上述した読取用光導電層44を設けない構造とすることで、光導電層の蒸着後の大気中操作を減らすことができるため、上述の品質劣化の懸念を低減することができる。 The radiation image detector 500 has a structure in which the charge storage layer 43 is provided directly on the second electrode layer 45 without the reading photoconductive layer 44, and the linear charge storage layer 43 is formed by vapor deposition. Therefore, the linear charge storage layer 43 can be easily formed. In the vapor deposition process, a metal mask or the like is used to selectively form a linear pattern. In the configuration in which the linear charge accumulation layer 43 is provided on the reading photoconductive layer 44, a step of setting a metal mask for forming the linear charge accumulation layer 43 by vapor deposition after vapor deposition of the reading photoconductive layer 44 is performed. Therefore, the reading photoconductive layer 44 is deteriorated or foreign matter is mixed between the photoconductive layers due to an operation in the air between the reading photoconductive layer 44 vapor deposition step and the recording photoconductive layer 42 vapor deposition step. May cause deterioration of quality. On the other hand, by adopting a structure in which the above-described reading photoconductive layer 44 is not provided, it is possible to reduce the operation in the air after vapor deposition of the photoconductive layer, thereby reducing the above-described concern about the quality deterioration.
 記録用光導電層42および電荷蓄積層43の材料については、上述した放射線画像検出器400と同様である。また、電荷蓄積層43の線状構成についても、上述した放射線画像検出器と同様である。 The materials of the recording photoconductive layer 42 and the charge storage layer 43 are the same as those of the radiation image detector 400 described above. The linear configuration of the charge storage layer 43 is the same as that of the above-described radiation image detector.
 以下に、この放射線画像検出器500の放射線画像の記録と読み出しの作用について説明する。 Hereinafter, the operation of recording and reading out the radiation image of the radiation image detector 500 will be described.
 まず、図55Aに示すように高圧電源101によって放射線画像検出器500の第1の電極層41に負の電圧を印加した状態において、第1の格子2の自己像G1を担持した放射線が、放射線画像検出器4の第1の電極層41側から照射される。 First, as shown in FIG. 55A, in a state where a negative voltage is applied to the first electrode layer 41 of the radiation image detector 500 by the high-voltage power source 101, the radiation carrying the self-image G1 of the first grating 2 is radiation. Irradiation is performed from the first electrode layer 41 side of the image detector 4.
 そして、放射線画像検出器4に照射された放射線は、第1の電極層41を透過し、記録用光導電層42に照射される。そして、その放射線の照射によって記録用光導電層42において電荷対が発生し、そのうち正の電荷は第1の電極層41に帯電した負の電荷と結合して消滅し、負の電荷は潜像電荷として電荷蓄積層43に蓄積される(図55B参照)。なお、第2の電極層45に接した線状の電荷蓄積層43は絶縁性の膜であるから、この電荷蓄積層43に到達した電荷はそこに捕えられ、第2の電極層45へ行くことができず、蓄積されて留まる。 The radiation applied to the radiation image detector 4 passes through the first electrode layer 41 and is applied to the recording photoconductive layer 42. Then, a charge pair is generated in the recording photoconductive layer 42 by the irradiation of the radiation, and the positive charge is combined with the negative charge charged in the first electrode layer 41 and disappears, and the negative charge is a latent image. Charges are accumulated in the charge accumulation layer 43 (see FIG. 55B). Since the linear charge storage layer 43 in contact with the second electrode layer 45 is an insulating film, the charges reaching the charge storage layer 43 are captured there and go to the second electrode layer 45. Can't, and stays accumulated.
 ここでも、上述した放射線画像検出器400と同様に、記録用光導電層42において発生した電荷のうち、その直下に線状の電荷蓄積層43が存在する電荷のみを蓄積する。この作用によって、第1の格子2の自己像G1は電荷蓄積層43の線状のパターンとの重ね合わせにより強度変調を受け、被検体による自己像G1の波面の歪みを反映した縞画像の画像信号が電荷蓄積層43に蓄積されることになる。 Also here, as in the case of the radiation image detector 400 described above, out of the charges generated in the recording photoconductive layer 42, only the charges in which the linear charge storage layer 43 exists immediately below are stored. By this action, the self-image G1 of the first lattice 2 is intensity-modulated by superimposition with the linear pattern of the charge storage layer 43, and a fringe image reflecting the distortion of the wavefront of the self-image G1 by the subject. A signal is accumulated in the charge accumulation layer 43.
 そして、図56に示すように、第1の電極層41が接地された状態において、線状読取光源50から発せられた線状の読取光L1が第2の電極層45側から照射される。読取光L1は、透明線状電極45aを透過して電荷蓄積層43近傍の記録用光導電層42に照射され、その読取光L1の照射により発生した正の電荷が線状の電荷蓄積層43へ引き寄せられて再結合する。そして、もう一方の負の電荷は、透明線状電極45aへ引き寄せられ、透明線状電極45aに帯電した正の電荷および透明線状電極45aに接続されたチャージアンプ200を介して遮光線状電極45bに帯電した正の電荷と結合する。これによりチャージアンプ200に電流が流れ、この電流が積分されて画像信号として検出される。 Then, as shown in FIG. 56, in the state where the first electrode layer 41 is grounded, the linear reading light L1 emitted from the linear reading light source 50 is irradiated from the second electrode layer 45 side. The reading light L1 passes through the transparent linear electrode 45a and is irradiated to the recording photoconductive layer 42 in the vicinity of the charge storage layer 43, and positive charges generated by the irradiation of the reading light L1 are linear charge storage layer 43. Attracted to recombine. The other negative charge is attracted to the transparent linear electrode 45a, and the light shielding linear electrode is connected to the positive charge charged in the transparent linear electrode 45a and the charge amplifier 200 connected to the transparent linear electrode 45a. Combines with the positive charge charged in 45b. As a result, a current flows through the charge amplifier 200, and this current is integrated and detected as an image signal.
 また、上述した放射線画像検出器400,500においては、電荷蓄積層43を、完全に線状に分離して形成するようにしたが、これに限らず、たとえば、図57に示す放射線画像検出器600のように、平板形状の上に線状のパターンを形成することによって格子状の電荷蓄積層43を形成するようにしてもよい。 Further, in the above-described radiographic image detectors 400 and 500, the charge storage layer 43 is formed by being completely separated into a linear shape. However, the present invention is not limited to this. As in 600, the lattice-shaped charge storage layer 43 may be formed by forming a linear pattern on a flat plate shape.
 そして、上述したような第2の格子3の機能を有する放射線画像検出器400,500,600を用いる場合においても、上記第1および第2の実施形態の放射線位相画像撮影装置において第1の格子2の自己像G1の延伸方向と第2の格子3の延伸方向とを相対的に傾けるようにしたのと同様に、第1の格子2の自己像G1の延伸方向と放射線画像検出器400,500,600の線状の電荷蓄積層43の延伸方向とを相対的に傾けるようにすればよい。 Even in the case where the radiation image detectors 400, 500, and 600 having the function of the second grating 3 as described above are used, the first grating in the radiation phase imaging apparatus of the first and second embodiments is used. In the same manner as the direction in which the second self-image G1 extends and the direction in which the second grating 3 extends relatively, the direction in which the first image G1 extends in the first grating 2 and the radiation image detector 400, What is necessary is just to make it incline relatively with the extending | stretching direction of the linear charge storage layer 43 of 500,600.
 具体的には、たとえば電荷蓄積層43の格子構造の延伸方向に対する第1の格子2の自己像の延伸方向の傾きθを、下式(43)を満たす値に設定することができる。なお、下式(43)は、上式(24)をθ1=θ、θ2=0として求めたものである。
Figure JPOXMLDOC01-appb-M000043
Specifically, for example, the inclination θ of the extending direction of the self-image of the first lattice 2 with respect to the extending direction of the lattice structure of the charge storage layer 43 can be set to a value satisfying the following expression (43). The following formula (43) is obtained by setting the above formula (24) as θ1 = θ and θ2 = 0.
Figure JPOXMLDOC01-appb-M000043
 ただし、P’は電荷蓄積層43の格子構造および電荷蓄積層43の位置における第1の格子2の自己像のピッチであり、Dとnは上式(24)と同様である。
 また、上式(43)に限らず、上記実施形態と同様に、上式(11)または上式(25)に基づいて、第1の格子2の自己像G1と放射線画像検出器400,500,600の線状の電荷蓄積層43とを相対的に傾けるようにしてもよい。ただし、上式(25)においてL=Z+Zとなるので下式(44)で表されることになる。
Figure JPOXMLDOC01-appb-M000044
 また、上記のように第1の格子2の自己像G1の延伸方向と放射線画像検出器400,500,600の線状の電荷蓄積層43の延伸方向とを相対的に傾ける場合において、放射線画像検出器400,500,600の位置における第1の格子2の自己像G1のピッチP’と第1の格子2の格子ピッチPと電荷蓄積層43の格子構造の配列ピッチP’とが満たすべき関係は、第1の格子2が90°の位相変調を与える位相変調型格子または振幅変調型格子の場合には下式(45)となり、第1の格子2が180°の位相変調を与える位相変調型格子の場合には下式(46)となる。なお、下式(45),(46)におけるZは放射線源1の焦点から第1の格子2までの距離、Z’は第1の格子2から放射線画像検出器400の検出面までの距離である。
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000046
 また、第2の格子3の機能を備えた放射線画像検出器400,500,600を用いる場合においても、放射線源1と第1の格子2との間に、上述したマルチスリットを設けるようにしてもよい。この場合、マルチスリットの格子ピッチPは、マルチスリットから第1の格子2までの距離をZとして、次式(47)を満たすように設定する必要がある。なお、P’は、放射線画像検出器400,500,600の位置における第1の格子2の自己像G1の配列ピッチであり、Z’は、第1の格子2から放射線画像検出器400,500,600の検出面までの距離である。なお、マルチスリットを設ける場合には、上式(45)および上式(46)は、ZをZ(マルチスリットと第1の格子2との距離)に置き換えた式となる。
Figure JPOXMLDOC01-appb-M000047
 また、上記のようにマルチスリットを用いる場合、第1の格子2の自己像G1の延伸方向と電荷蓄積層43の延伸方向との相対的な回転角θと、第1の格子2の自己像G1と電荷蓄積層43の格子パターンとによって発生するモアレの周期Tと、副画素サイズDsubとの関係を示す式は、上式(44)と同様である。なお、このとき上式(44)におけるP’は、第1の格子2の自己像G1の放射線画像検出器400,500,600の位置におけるピッチである。
Here, P 1 ′ is the lattice structure of the charge storage layer 43 and the pitch of the self-image of the first lattice 2 at the position of the charge storage layer 43, and D and n are the same as in the above equation (24).
In addition to the above equation (43), the self-image G1 of the first grating 2 and the radiation image detectors 400 and 500 based on the above equation (11) or the above equation (25), as in the above embodiment. , 600 linear charge storage layer 43 may be inclined relative to each other. However, since L = Z 1 + Z 2 in the above equation (25), it is represented by the following equation (44).
Figure JPOXMLDOC01-appb-M000044
Further, in the case where the extending direction of the self-image G1 of the first grating 2 and the extending direction of the linear charge storage layer 43 of the radiation image detectors 400, 500, and 600 are relatively inclined as described above, a radiation image is obtained. first grating 2 of the self image G1 pitch P 1 'and the grating pitch P 1 of the first grating 2 arrangement pitch P 2 of the lattice structure of the charge storage layer 43' and in the position of the detector 400, 500, 600 Is satisfied when the first grating 2 is a phase modulation type grating or an amplitude modulation type grating that applies 90 ° phase modulation, and the first grating 2 is 180 ° phase modulation. In the case of a phase modulation type grating that gives the following equation (46): In the following equations (45) and (46), Z 1 is the distance from the focal point of the radiation source 1 to the first grating 2, and Z 2 ′ is the distance from the first grating 2 to the detection surface of the radiation image detector 400. Distance.
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000046
Even when the radiation image detectors 400, 500, and 600 having the function of the second grating 3 are used, the above-described multi-slit is provided between the radiation source 1 and the first grating 2. Also good. In this case, the multi-slit grating pitch P 3 needs to be set to satisfy the following equation (47), where Z 3 is the distance from the multi-slit to the first grating 2. P 1 ′ is an arrangement pitch of the self-image G1 of the first grating 2 at the position of the radiation image detectors 400, 500, and 600, and Z 2 ′ is the radiation image detector 400 from the first grating 2. , 500, 600 to the detection surface. In the case where a multi slit is provided, the above equation (45) and the above equation (46) are equations in which Z 1 is replaced with Z 3 (distance between the multi slit and the first lattice 2).
Figure JPOXMLDOC01-appb-M000047
When the multi-slit is used as described above, the relative rotation angle θ between the stretching direction of the self-image G1 of the first lattice 2 and the stretching direction of the charge storage layer 43, and the self-image of the first lattice 2 The equation showing the relationship between the moire period T generated by G1 and the lattice pattern of the charge storage layer 43 and the subpixel size Dsub is the same as the equation (44). At this time, P 1 ′ in the above equation (44) is the pitch of the self-image G1 of the first grating 2 at the position of the radiation image detectors 400, 500, 600.
 また、上述したマルチスリットを設けるようにした場合には、第1の格子2と電荷蓄積層43の格子パターンの延伸方向が平行となるように配置し、第1の格子2の格子部材22および電荷蓄積層43の格子パターンの延伸方向とマルチスリットの延伸方向とを相対的に傾けるようにしてもよい。この構成によっても第1および第2の実施形態と同様の縞画像信号を取得することができる。
 また、第1の格子2と放射線画像検出器400,500,600の線状の電荷蓄積層43とを相対的に傾けるのではなく、たとえば第1の格子2の自己像G1の延伸方向と線状の電荷蓄積層43の延伸方向とが平行となるようにするとともに、第1の格子2の自己像G1の配列ピッチとは異なる配列ピッチの電荷蓄積層43を形成するようにしてもよい。
 このような第1の格子2および電荷蓄積層43を用いた場合も、上記第1および第2の実施形態と同様に、図20に示すようなX方向に周期方向を有するモアレを表す画像信号を検出することができる。したがって、たとえば図20おいて点線四角で示すように、上記モアレの周期方向に対して平行に配列された5つの画素の画像信号を取得するようにすれば、上記第1および第2の実施形態と同様に、互いに異なる5つの縞画像を構成する画像信号をそれぞれ取得することができる。
 上記のように第1の格子2の自己像G1の配列ピッチとは異なる配列ピッチの電荷蓄積層43を形成する場合、第1の格子2の自己像G1の放射線画像検出器400,500,600の位置における配列ピッチP’と、電荷蓄積層43の配列ピッチP’、モアレの周期Tと、副画素サイズDsubとの関係は、上記第1および第2の実施形態における第1の格子2と第2の格子3との関係と同様に、下式(48)を満たすようにすればよい。なお、下式(48)は、上式(35)においてL=Z+Zとしたものである。
Figure JPOXMLDOC01-appb-M000048
 また、このとき第1の格子2の自己像G1の放射線画像検出器400,500,600の位置における配列ピッチP’は、第1の格子2が90°の位相変調を与える位相変調型格子または振幅変調型格子の場合には、下式(49)を満たすようにし、第1の格子3が180°の位相変調を与える位相変調型格子の場合には上式(50)を満たすようにすればよい。下式(49),(50)におけるPは第1の格子2の配列ピッチ、Zは放射線源1の焦点から第1の格子2までの距離、Z’第1の格子2と放射線画像検出器400,500,600の検出面との距離である。
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000050
 また、上述したマルチスリットを設けた実施形態においても、上記のように第1の格子2の自己像G1の配列ピッチとは異なる配列ピッチの電荷蓄積層43を用いた構成とすることができる。上記マルチスリットを用いる場合においても、第1の格子2の自己像G1の配列ピッチP’と、電荷蓄積層43の配列ピッチP’と、モアレの周期Tと、副画素サイズDsubとは、上式(48)を満たすようにすればよい。
 なお、このとき第1の格子2の自己像G1の配列ピッチP’が満たすべき関係式は、上式(49)および上式(50)におけるZをZ(マルチスリットと第1の格子2との距離)に置き換えた式となり、さらに上式(47)で表されるような条件を満たす必要がある。
 また、上記説明では、第1の格子2の自己像G1の配列ピッチと電荷蓄積層43の配列ピッチとが異なる構成としたが、この構成に限らず、たとえば、放射線源1から出射される放射線がコーンビームである場合には、上記第1および第2の実施形態の第2の格子3と同様に、図22に示すように、Zの位置において第1の格子2の自己像G1の配列ピッチと同じ配列ピッチとなるような電荷蓄積層43を形成し、この電荷蓄積層43を有する放射線画像検出器400,500,600をZより大きくした位置(あるいは、図示していないが、Zをより小さくした位置)に移動させて配置することによって、拡大された第1の格子2の自己像G1の配列ピッチと電荷蓄積層43の配列ピッチとが異なるような構成としてもよい。この構成の場合でも、上式(48)と、上式(49)または上式(50)を満たし、さらにマルチスリットを用いる場合には、さらに上式(47)を満たす必要がある。ただし、これらの式において、P’は上記移動後の放射線画像検出器400,500,600の位置における第1の格子2の自己像G1の配列ピッチ、Z’、第1の格子2と上記移動後の放射線画像検出器400,500,600との距離、と読み替えるものとする。
 また、上述したように第1の格子2の自己像G1の配列ピッチとは異なる配列ピッチの電荷蓄積層43を形成するとともに、さらに上述したように第1の格子2の自己像G1と電荷蓄積層43とを相対的に傾けるようにしてもよい。
 このような構成とすることにより、上記第1および第2の実施形態と同様に、図23に示すような斜め方向に(X方向およびY方向に平行でない方向)周期を有するモアレを表す画像信号を検出することができる。したがって、たとえば図23において点線四角で示すように、Y方向に平行に配列された5つの画素の画像信号を取得するようにすれば、上記第1および第2の実施形態と同様に、互いに異なる5つの縞画像を構成する画像信号をそれぞれ取得することができる。
 なお、図23においては、Y方向に平行に配列された5つの画素の画像信号を取得するようにしたが、これに限らず、図24に示すように、X方向に平行に配列された5つの画素の画像信号を取得するようにしてもよい。要するに、上記モアレの周期方向に対して平行または直交方向以外の交差する方向について配列された画素の画像信号を取得するのであれば、如何なる方向に画素が配列されていてもよい。
 また、上記説明においては、第1の格子2の自己像G1の周期方向または電荷蓄積層43の周期方向が、放射線画像検出器400,500,600の画素が配列される直交する方向のうちのいずれか一方の方向と一致する場合について説明したが、これに限らず、図25に示すように、斜め方向(X方向およびY方向に平行でない方向)に配列された5つの画素の画像信号が取得できるように第1の格子2および電荷蓄積層43の周期方向と放射線画像検出器400,500,600の画素の配列方向との相対角度がずれていてもよい。
 要するに、上述したように、モアレの周期方向に対して平行または直交方向以外の交差方向となる所定方向について配列された複数の画素の画像信号を互いに異なる縞画像を構成する画像信号として取得するのであれば、第1の格子2および電荷蓄積層43の周期方向と放射線画像検出器の画素の配列方向との関係を如何なる関係にしてもよい。なお、ここでいう放射線画像検出器400,500,600の画素の配列方向とは、放射線画像検出器400,500,600における線状電極の配列方向または読取光の走査方向のことをいう。このような関係により、上式(11)、上式(43)、上式(44)または上式(48)における副画素サイズは、Y方向に限定されるものではなく、上記所定方向の画素のサイズということになる。
When the multi-slit described above is provided, the first lattice 2 and the charge storage layer 43 are arranged so that the extending directions of the lattice patterns are parallel to each other, and the lattice member 22 of the first lattice 2 and The extending direction of the lattice pattern of the charge storage layer 43 and the extending direction of the multi slits may be relatively inclined. With this configuration, the same fringe image signal as in the first and second embodiments can be acquired.
In addition, the first grid 2 and the linear charge storage layer 43 of the radiation image detectors 400, 500, and 600 are not relatively inclined, for example, the extension direction and the line of the self-image G1 of the first grid 2 The charge storage layer 43 having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first lattice 2 may be formed so that the extending direction of the charge storage layer 43 is parallel.
In the case of using the first lattice 2 and the charge storage layer 43 as described above, as in the first and second embodiments, an image signal representing a moire having a periodic direction in the X direction as shown in FIG. Can be detected. Therefore, for example, as shown by dotted squares in FIG. 20, if image signals of five pixels arranged in parallel to the moiré periodic direction are acquired, the first and second embodiments described above. Similarly to the above, it is possible to acquire image signals constituting five different fringe images.
When the charge storage layer 43 having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first grating 2 is formed as described above, the radiation image detectors 400, 500, 600 of the self-image G1 of the first grating 2 are formed. The relationship among the arrangement pitch P 1 ′, the arrangement pitch P 2 ′ of the charge storage layer 43, the moire period T, and the sub-pixel size Dsub is the first lattice in the first and second embodiments. Similarly to the relationship between 2 and the second grating 3, the following equation (48) may be satisfied. The following formula (48) is obtained by setting L = Z 1 + Z 2 in the above formula (35).
Figure JPOXMLDOC01-appb-M000048
At this time, the arrangement pitch P 1 ′ of the self-image G1 of the first grating 2 at the position of the radiation image detectors 400, 500, and 600 is a phase modulation type grating in which the first grating 2 applies 90 ° phase modulation. Alternatively, in the case of an amplitude modulation type grating, the following expression (49) is satisfied, and in the case where the first grating 3 is a phase modulation type grating giving 180 ° phase modulation, the above expression (50) is satisfied. do it. In the following equations (49) and (50), P 1 is the arrangement pitch of the first grating 2, Z 1 is the distance from the focal point of the radiation source 1 to the first grating 2, and Z 2 ′ is the first grating 2 and radiation. This is the distance from the detection surface of the image detector 400, 500, 600.
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000050
In the embodiment provided with the multi-slit described above, the charge storage layer 43 having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first grating 2 can be used as described above. In the case of using the multi-slit also, 'the arrangement pitch P 2 of the charge storage layer 43' arrangement pitch P 1 of the first grating 2 self image G1 and the period T of the moire, the sub-pixel size Dsub is The above equation (48) may be satisfied.
At this time, the relational expression to be satisfied by the arrangement pitch P 1 ′ of the self-image G1 of the first grating 2 is Z 1 in the above expression (49) and the above expression (50) as Z 3 (multi-slit and first It is necessary to satisfy the conditions expressed by the above formula (47).
In the above description, the arrangement pitch of the self-image G1 of the first grating 2 is different from the arrangement pitch of the charge storage layer 43. However, the arrangement pitch is not limited to this, and for example, radiation emitted from the radiation source 1 is used. Is a cone beam, as in the second grating 3 of the first and second embodiments, as shown in FIG. 22, the self-image G1 of the first grating 2 at the position of Z 2 A charge storage layer 43 having the same arrangement pitch as the arrangement pitch is formed, and the radiation image detectors 400, 500, and 600 having the charge storage layer 43 are made larger than Z 2 (or although not shown, by arranging to move the Z 2 in smaller position), or the arrangement pitch of the first grating 2 self image G1, which is enlarged and the array pitch of the charge storage layer 43 have different configuration. Even in this configuration, the above equation (48), the above equation (49), or the above equation (50) is satisfied, and when using a multi slit, the above equation (47) must be further satisfied. In these equations, P 1 ′ is the arrangement pitch of the self-image G1 of the first grating 2 at the position of the radiation image detectors 400, 500, and 600 after movement, Z 2 ′, and the first grating 2 The distance to the radiographic image detectors 400, 500, and 600 after the movement is read.
Further, as described above, the charge accumulation layer 43 having an arrangement pitch different from the arrangement pitch of the self-image G1 of the first lattice 2 is formed, and further, as described above, the self-image G1 and the charge accumulation of the first lattice 2 are accumulated. The layer 43 may be tilted relatively.
By adopting such a configuration, as in the first and second embodiments, an image signal representing a moire having a period in an oblique direction (a direction not parallel to the X direction and the Y direction) as shown in FIG. Can be detected. Therefore, for example, as shown by a dotted square in FIG. 23, if image signals of five pixels arranged in parallel in the Y direction are acquired, they are different from each other as in the first and second embodiments. Image signals constituting five stripe images can be acquired.
In FIG. 23, the image signals of five pixels arranged in parallel to the Y direction are acquired. However, the present invention is not limited to this, and as shown in FIG. 24, 5 pixels arranged in parallel to the X direction. You may make it acquire the image signal of one pixel. In short, the pixels may be arranged in any direction as long as the image signals of the pixels arranged in the crossing direction other than the direction parallel to or orthogonal to the moire periodic direction are acquired.
In the above description, the periodic direction of the self-image G1 of the first grating 2 or the periodic direction of the charge storage layer 43 is the orthogonal direction in which the pixels of the radiation image detectors 400, 500, and 600 are arranged. Although the case where it coincides with one of the directions has been described, the present invention is not limited to this, and as shown in FIG. 25, image signals of five pixels arranged in an oblique direction (a direction not parallel to the X direction and the Y direction) are displayed. The relative angle between the periodic direction of the first lattice 2 and the charge storage layer 43 and the arrangement direction of the pixels of the radiation image detectors 400, 500, 600 may be shifted so as to be acquired.
In short, as described above, the image signals of a plurality of pixels arranged in a predetermined direction that is parallel to or orthogonal to the moiré periodic direction are acquired as image signals constituting different fringe images. If so, the relationship between the periodic direction of the first lattice 2 and the charge storage layer 43 and the arrangement direction of the pixels of the radiation image detector may be any relationship. Here, the arrangement direction of the pixels of the radiation image detectors 400, 500, and 600 refers to the arrangement direction of the linear electrodes or the scanning direction of the reading light in the radiation image detectors 400, 500, and 600. Due to such a relationship, the subpixel size in the above equation (11), the above equation (43), the above equation (44), or the above equation (48) is not limited to the Y direction, but the pixel in the predetermined direction. It will be the size of.
 また、上記実施形態における第2の格子3と同様に、第2の格子3の機能を備えた放射線画像検出器400,500,600を90°回転させて、それぞれの向きで合成画像を生成するようにしてもよいし、第1の格子2と放射線画像検出器400,500,600の電荷蓄積層43とを2次元格子の構造としてもよい。電荷蓄積層43の2次元格子の構造は、上述した第2の格子3の2次元格子の構造と同様である。また、電荷蓄積層43を2次元格子として構成する場合においても、第2の格子3と同様に、電荷蓄積層43の位置における第1の格子2の自己像G1のピッチと電荷蓄積層43の格子構造の配列ピッチとを異なるピッチとする形態も適用可能である。この場合、たとえば、電荷蓄積層43の位置における格子2の自己像G1のX方向のピッチと電荷蓄積層43の格子構造のX方向の配列ピッチとを異なるものとするとともに、上記自己像G1のY方向のピッチと電荷蓄積層43の格子構造のY方向の配列ピッチとを異なるものとすることになる。 Further, similarly to the second grating 3 in the above-described embodiment, the radiation image detectors 400, 500, and 600 having the function of the second grating 3 are rotated by 90 ° to generate a composite image in each direction. Alternatively, the first grating 2 and the charge storage layer 43 of the radiation image detectors 400, 500, and 600 may have a two-dimensional grating structure. The structure of the two-dimensional lattice of the charge storage layer 43 is the same as the structure of the two-dimensional lattice of the second lattice 3 described above. Further, when the charge storage layer 43 is configured as a two-dimensional lattice, the pitch of the self-image G1 of the first lattice 2 at the position of the charge storage layer 43 and the charge storage layer 43 are similar to those of the second lattice 3. A form in which the arrangement pitch of the lattice structure is different from the pitch is also applicable. In this case, for example, the pitch in the X direction of the self-image G1 of the lattice 2 at the position of the charge storage layer 43 is different from the arrangement pitch in the X direction of the lattice structure of the charge storage layer 43. The pitch in the Y direction is different from the arrangement pitch in the Y direction of the lattice structure of the charge storage layer 43.

Claims (64)

  1.  放射線源と、
     格子構造が周期的に配置され、前記放射線源から射出された放射線を通過させて周期パターン像を形成する第1の格子と、
     格子構造が周期的に配置され、前記第1の格子により形成された周期パターン像が入射される第2の格子と、
     該第2の格子を透過した放射線を検出する画素が2次元状に配列された放射線画像検出器とを備えた放射線画像撮影装置であって、
     前記第1の格子と前記第2の格子とが、前記第1の格子によって形成される周期パターン像と前記第2の格子の重ね合せによってモアレを発生するものであり、
     前記放射線画像検出器によって検出された前記モアレの画像信号に基づいて、前記モアレの周期方向に対して平行または直交方向以外の交差方向となる所定方向について、少なくとも1つの前記画素の間隔を空けて配置された画素群から読み出された画像信号を取得し、前記所定方向について少なくとも2行の隣接する前記画素群の画像信号に基づいて複合画素の画像信号を生成することによって前記複合画素単位の放射線画像を生成するとともに、前記複合画素を前記所定方向に前記画素単位でずらして設定して複数の前記放射線画像を生成し、該生成した複数の放射線画像に基づいて合成画像を生成する合成画像生成部を備えたことを特徴とする放射線画像撮影装置。
    A radiation source;
    A first grating in which a grating structure is periodically arranged to pass a radiation emitted from the radiation source to form a periodic pattern image;
    A second grating in which a grating structure is periodically arranged and a periodic pattern image formed by the first grating is incident;
    A radiographic imaging device comprising a radiographic image detector in which pixels that detect radiation transmitted through the second grating are two-dimensionally arranged,
    The first grating and the second grating generate moiré by overlapping the periodic pattern image formed by the first grating and the second grating,
    Based on the image signal of the moire detected by the radiation image detector, at least one pixel is spaced in a predetermined direction which is a cross direction other than a direction parallel to or orthogonal to the periodic direction of the moire. An image signal read from the arranged pixel group is acquired, and an image signal of the composite pixel is generated based on the image signal of the adjacent pixel group of at least two rows in the predetermined direction. A composite image that generates a radiographic image, generates a plurality of radiographic images by setting the composite pixel to be shifted in the pixel unit in the predetermined direction, and generates a composite image based on the generated radiographic images A radiographic imaging apparatus comprising a generation unit.
  2.  前記第1の格子と前記第2の格子とが、前記第1の格子によって形成される周期パターン像の延伸方向と前記第2の格子の延伸方向とが相対的に傾くように配置されるものであることを特徴とする請求項1記載の放射線画像撮影装置。 The first grating and the second grating are arranged so that the extending direction of the periodic pattern image formed by the first grating and the extending direction of the second grating are relatively inclined. The radiographic image capturing apparatus according to claim 1, wherein:
  3.  前記第1の格子と前記第2の格子とが、前記モアレの周期Tが下式を満たす値となるように構成されたものであることを特徴とする請求項2記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000025
     ただし、Zは前記放射線源の焦点と前記第1の格子との距離、Zは前記第1の格子と前記第2の格子との距離、Lは前記放射線源の焦点と前記放射線画像検出器との距離、P’は前記第2の格子の位置における前記周期パターン像のピッチ、Dsubは前記画素の前記所定方向のサイズ、θは前記第1の格子によって形成される周期パターン像の延伸方向と前記第2の格子の延伸方向とによってなされる角
    The radiographic image capturing apparatus according to claim 2, wherein the first grating and the second grating are configured such that a period T of the moire satisfies a value satisfying the following expression.
    Figure JPOXMLDOC01-appb-I000025
    Where Z 1 is the distance between the focal point of the radiation source and the first grating, Z 2 is the distance between the first grating and the second grating, and L is the focal point of the radiation source and the radiation image detection. P 1 ′ is the pitch of the periodic pattern image at the position of the second grating, Dsub is the size of the pixel in the predetermined direction, and θ is the periodic pattern image formed by the first grating. Angle formed by the stretching direction and the stretching direction of the second lattice
  4.  前記放射線を遮蔽する放射線遮蔽部材が所定のピッチで複数延設されるとともに、前記放射線源と前記第1の格子との間に配置され、前記放射線源から照射された放射線を領域選択的に遮蔽する吸収型格子からなるマルチスリットをさらに備え、
     前記第1の格子と前記第2の格子とが、前記モアレの周期Tが下式を満たす値となるように構成されたものであることを特徴とする請求項2記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000026
     ただし、Zは前記放射線源の焦点と前記第1の格子との距離、Zは前記第1の格子と前記第2の格子との距離、Lは前記放射線源の焦点と前記放射線画像検出器との距離、P’は前記第2の格子の位置における前記周期パターン像のピッチ、Dsubは前記画素の前記所定方向のサイズ、θは前記第1の格子によって形成される周期パターン像の延伸方向と前記第2の格子の延伸方向とによってなされる角
    A plurality of radiation shielding members that shield the radiation are extended at a predetermined pitch, and are arranged between the radiation source and the first grating to selectively shield the radiation emitted from the radiation source. Further comprising a multi-slit consisting of an absorbing grating that
    The radiographic image capturing apparatus according to claim 2, wherein the first grating and the second grating are configured such that a period T of the moire satisfies a value satisfying the following expression.
    Figure JPOXMLDOC01-appb-I000026
    Where Z 1 is the distance between the focal point of the radiation source and the first grating, Z 2 is the distance between the first grating and the second grating, and L is the focal point of the radiation source and the radiation image detection. P 1 ′ is the pitch of the periodic pattern image at the position of the second grating, Dsub is the size of the pixel in the predetermined direction, and θ is the periodic pattern image formed by the first grating. Angle formed by the stretching direction and the stretching direction of the second lattice
  5.  前記マルチスリットのピッチPが、下式を満たす値となるように構成されたものであることを特徴とする請求項4記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000027
     ただし、Zは前記マルチスリットと前記第1の格子との距離、Zは前記第1の格子から前記第2の格子までの距離、P’は前記第2の格子の位置における前記周期パターン像のピッチ
    The pitch P 3 of the multi-slit, the radiation imaging apparatus according to claim 4, characterized in that configured to a value that satisfies the following expression.
    Figure JPOXMLDOC01-appb-I000027
    Where Z 3 is the distance between the multi-slit and the first grating, Z 2 is the distance from the first grating to the second grating, and P 1 ′ is the period at the position of the second grating. Pitch of pattern image
  6.  前記第1の格子によって形成される周期パターン像と前記第2の格子との相対的な傾き角θが、下式を満たす値に設定されるものであることを特徴とする請求項2記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000028
     ただし、P’は前記第2の格子の位置における前記周期パターン像のピッチ、Dは前記複合画素を構成する前記画素の数M×前記画素の前記所定方向のサイズ、nは0およびMの倍数を除く整数
    The relative inclination angle θ between the periodic pattern image formed by the first grating and the second grating is set to a value satisfying the following expression. Radiation imaging device.
    Figure JPOXMLDOC01-appb-I000028
    Where P 1 ′ is the pitch of the periodic pattern image at the position of the second grating, D is the number M of the pixels constituting the composite pixel × the size of the pixel in the predetermined direction, and n is 0 and M An integer excluding multiples
  7.  前記所定方向に対する前記第1の格子の自己像の傾きθ1と、前記所定方向に対する前記第2の格子の傾きθ2とが、下式を満たす値に設定されるものであることを特徴とする請求項2記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000029
    ただし、P’は前記第2の格子の位置における前記第1の周期パターン像のピッチ、DはM個の前記画素からなる前記複合画素の前記所定方向のサイズ、nは0およびMの倍数を除く整数
    The inclination θ1 of the self-image of the first grating with respect to the predetermined direction and the inclination θ2 of the second grating with respect to the predetermined direction are set to values satisfying the following expression: Item 3. The radiographic image capturing apparatus according to Item 2.
    Figure JPOXMLDOC01-appb-I000029
    Where P 1 ′ is the pitch of the first periodic pattern image at the position of the second grating, D is the size of the composite pixel composed of M pixels, and n is a multiple of 0 and M An integer excluding
  8.  前記第1の格子が、90°の位相変調を与える位相変調型格子または振幅変調型格子であり、
     前記第2の格子の位置における前記周期パターン像のピッチP’および前記第2の格子のピッチPが、下式を満たす値となるように構成されたものであることを特徴とする請求項2、3、6および7いずれか1項記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000030
     ただし、Pは前記第1の格子の格子ピッチ、Zは前記放射線源の焦点から前記第1の格子までの距離、Zは前記第1の格子から前記第2の格子までの距離
    The first grating is a phase modulation type grating or an amplitude modulation type grating that gives 90 ° phase modulation;
    Wherein said second pitch P 1 'and the pitch P 2 of the second grating of the periodic pattern image at the position of the grating, characterized in that it is one that is configured to a value that satisfies the formula Item 8. The radiographic image capturing apparatus according to any one of Items 2, 3, 6, and 7.
    Figure JPOXMLDOC01-appb-I000030
    Where P 1 is the grating pitch of the first grating, Z 1 is the distance from the focal point of the radiation source to the first grating, and Z 2 is the distance from the first grating to the second grating.
  9.  前記第1の格子が、180°の位相変調を与える位相変調型格子であり、
     前記第2の格子の位置における前記周期パターン像のピッチP’および前記第2の格子のピッチPが、下式を満たす値となるように構成されたものであることを特徴とする請求項2、3、6および7いずれか1項記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000031
     ただし、Pは前記第1の格子の格子ピッチ、Zは前記放射線源の焦点から前記第1の格子までの距離、Zは前記第1の格子から前記第2の格子までの距離
    The first grating is a phase modulation type grating that applies 180 ° phase modulation;
    Wherein said second pitch P 1 'and the pitch P 2 of the second grating of the periodic pattern image at the position of the grating, characterized in that it is one that is configured to a value that satisfies the formula Item 8. The radiographic image capturing apparatus according to any one of Items 2, 3, 6, and 7.
    Figure JPOXMLDOC01-appb-I000031
    Where P 1 is the grating pitch of the first grating, Z 1 is the distance from the focal point of the radiation source to the first grating, and Z 2 is the distance from the first grating to the second grating.
  10.  前記放射線画像検出器が、互いに直交する第1および第2の方向について前記画素が2次元状に配列されたものであり、
     前記第1の格子によって形成される周期パターン像または前記第2の格子の延伸方向と前記第1の方向が平行であることを特徴とする請求項2から9いずれか1項記載の放射線画像撮影装置。
    The radiation image detector is a pixel in which the pixels are two-dimensionally arranged in first and second directions orthogonal to each other,
    The radiographic imaging according to claim 2, wherein the periodic pattern image formed by the first grating or the extending direction of the second grating is parallel to the first direction. apparatus.
  11.  前記位相画像生成部が、前記第1の格子によって形成される周期パターン像の延伸方向と前記第2の格子の延伸方向との相対的な傾きに応じて、前記第1の方向に所定数の画素を読み出した画像信号に基づいて、前記複合画素単位の放射線画像を取得するものであることを特徴とする請求項10記載の放射線画像撮影装置。 The phase image generation unit has a predetermined number in the first direction according to a relative inclination between the extending direction of the periodic pattern image formed by the first grating and the extending direction of the second grating. The radiographic image capturing apparatus according to claim 10, wherein the radiographic image of the composite pixel unit is acquired based on an image signal obtained by reading out pixels.
  12.  1つの前記複合画素の前記所定方向の幅の中で前記複合画素を構成する各画素の画素信号がn(nは0およびMの倍数を除く整数であり、Mは前記複合画素を構成する画素の数)周期変化するように前記第1の格子および前記第2の格子のうちの他方の格子が傾けられていることを特徴とする請求項2から11いずれか1項記載の放射線画像撮影装置。 The pixel signal of each pixel constituting the composite pixel within the width of one composite pixel in the predetermined direction is n (n is an integer excluding 0 and a multiple of M, and M is a pixel constituting the composite pixel. The radiographic imaging device according to any one of claims 2 to 11, wherein the other of the first grating and the second grating is inclined so as to change in period. .
  13.  前記第1の格子と前記第2の格子とが、前記第2の格子の位置における前記周期パターン像のピッチが前記第2の格子のピッチと異なるように構成されたものであることを特徴とする請求項1記載の放射線画像撮影装置。 The first grating and the second grating are configured such that the pitch of the periodic pattern image at the position of the second grating is different from the pitch of the second grating. The radiographic imaging apparatus according to claim 1.
  14.  前記第1格子によって形成される周期パターン像の延伸方向と前記第2の格子の延伸方向とが平行であることを特徴とする請求項13記載の放射線画像撮影装置。 The radiographic image capturing apparatus according to claim 13, wherein the extending direction of the periodic pattern image formed by the first grating and the extending direction of the second grating are parallel to each other.
  15.  前記第1の格子と前記第2の格子とが、前記モアレの周期Tが下式を満たす値となるように構成されたものであることを特徴とする請求項13または14記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000032
     ただし、Zは前記放射線源の焦点と前記第1の格子との距離、Zは前記第1の格子と前記第2の格子との距離、Lは前記放射線源の焦点と前記放射線画像検出器との距離、Pは前記第2の格子のピッチ、P’は前記第2の格子の位置における前記周期パターン像のピッチ、Dsubは前記画素の前記所定方向のサイズ
    15. The radiographic imaging according to claim 13, wherein the first grating and the second grating are configured such that the moire period T is a value satisfying the following expression: 15. apparatus.
    Figure JPOXMLDOC01-appb-I000032
    Where Z 1 is the distance between the focal point of the radiation source and the first grating, Z 2 is the distance between the first grating and the second grating, and L is the focal point of the radiation source and the radiation image detection. P 2 is the pitch of the second grating, P 1 ′ is the pitch of the periodic pattern image at the position of the second grating, and Dsub is the size of the pixel in the predetermined direction
  16.  前記放射線を遮蔽する放射線遮蔽部材が所定のピッチで複数延設されるとともに、前記放射線源と前記第1の格子との間に配置され、前記放射線源から照射された放射線を領域選択的に遮蔽する吸収型格子からなるマルチスリットをさらに備え、
     前記第1の格子と前記第2の格子とが、前記モアレの周期Tが下式を満たす値となるように構成されたものであることを特徴とする請求項13または14記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000033
     ただし、Zは前記放射線源の焦点と前記第1の格子との距離、Zは前記第1の格子と前記第2の格子との距離、Lは前記放射線源の焦点と前記放射線画像検出器との距離、Pは前記第2の格子のピッチ、P’は前記第2の格子の位置における前記周期パターン像のピッチ、Dsubは前記画素の前記所定方向のサイズ
    A plurality of radiation shielding members that shield the radiation are extended at a predetermined pitch, and are arranged between the radiation source and the first grating to selectively shield the radiation emitted from the radiation source. Further comprising a multi-slit consisting of an absorbing grating that
    15. The radiographic imaging according to claim 13, wherein the first grating and the second grating are configured such that the moire period T is a value satisfying the following expression: 15. apparatus.
    Figure JPOXMLDOC01-appb-I000033
    Where Z 1 is the distance between the focal point of the radiation source and the first grating, Z 2 is the distance between the first grating and the second grating, and L is the focal point of the radiation source and the radiation image detection. P 2 is the pitch of the second grating, P 1 ′ is the pitch of the periodic pattern image at the position of the second grating, and Dsub is the size of the pixel in the predetermined direction
  17.  前記マルチスリットのピッチPが、下式を満たす値となるように構成されたものであることを特徴とする請求項16記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000034
     ただし、Zは前記マルチスリットと前記第1の格子との距離、Zは前記第1の格子から前記第2の格子までの距離、P’は前記第2の格子の位置における前記周期パターン像のピッチ
    The radiographic imaging apparatus according to claim 16, wherein the multi-slit pitch P 3 is configured to satisfy a value satisfying the following expression.
    Figure JPOXMLDOC01-appb-I000034
    Where Z 3 is the distance between the multi-slit and the first grating, Z 2 is the distance from the first grating to the second grating, and P 1 ′ is the period at the position of the second grating. Pitch of pattern image
  18.  前記第1の格子が、90°の位相変調を与える位相変調型格子または振幅変調型格子であり、
     前記第2の格子の位置における前記周期パターン像のピッチP’が、下式を満たす値となるように構成されたものであることを特徴とする請求項13から15いずれか1項記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000035
     ただし、Pは前記第1の格子の格子ピッチ、Zは前記放射線源の焦点から前記第1の格子までの距離、Zは前記第1の格子から前記第2の格子までの距離
    The first grating is a phase modulation type grating or an amplitude modulation type grating that gives 90 ° phase modulation;
    The pitch P 1 ′ of the periodic pattern image at the position of the second grating is configured to be a value satisfying the following expression: 16 to 15, Radiation imaging device.
    Figure JPOXMLDOC01-appb-I000035
    Where P 1 is the grating pitch of the first grating, Z 1 is the distance from the focal point of the radiation source to the first grating, and Z 2 is the distance from the first grating to the second grating.
  19.  前記第1の格子が、180°の位相変調を与える位相変調型格子であり、
     前記第2の格子の位置における前記周期パターン像のピッチP’が、下式を満たす値となるように構成されたものであることを特徴とする請求項13から15いずれか1項記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000036
     ただし、Pは前記格子の格子ピッチ、Zは前記放射線源の焦点から前記第1の格子までの距離、Zは前記第1の格子から前記第2の格子までの距離
    The first grating is a phase modulation type grating that applies 180 ° phase modulation;
    The pitch P 1 ′ of the periodic pattern image at the position of the second grating is configured to be a value satisfying the following expression: 16 to 15, Radiation imaging device.
    Figure JPOXMLDOC01-appb-I000036
    Where P 1 is the grating pitch of the grating, Z 1 is the distance from the focal point of the radiation source to the first grating, and Z 2 is the distance from the first grating to the second grating.
  20.  前記第1の格子と前記第2の格子とが、前記第1の格子によって形成される周期パターン像の延伸方向と前記第2の格子の延伸方向とが相対的に傾くように配置されるものであることを特徴とする請求項13記載の放射線画像撮影装置。 The first grating and the second grating are arranged so that the extending direction of the periodic pattern image formed by the first grating and the extending direction of the second grating are relatively inclined. The radiographic imaging apparatus according to claim 13, wherein
  21.  前記放射線画像検出器が、前記画像信号を読み出すためのスイッチ素子を備えた前記画素が2次元状に配列されたものであることを特徴とする請求項1から20いずれか1項記載の放射線画像撮影装置。 21. The radiographic image according to any one of claims 1 to 20, wherein the radiographic image detector is configured such that the pixels including a switch element for reading out the image signal are two-dimensionally arranged. Shooting device.
  22.  線状の読取光を出射する線状読取光源を備え、
     前記放射線画像検出器が、前記線状読取光源が走査されることによって前記画像信号が読み出されるものであることを特徴とする請求項1から20いずれか1項記載の放射線画像撮影装置。
    A linear reading light source that emits linear reading light;
    21. The radiographic image capturing apparatus according to claim 1, wherein the radiographic image detector reads the image signal by scanning the linear reading light source.
  23.  前記第2の格子が、前記第1の格子からタルボ干渉距離の位置に配置され、
     前記第1の格子のタルボ干渉効果によって形成される前記周期パターン像に強度変調を与えるものであることを特徴とする請求項1から22いずれか1項記載の放射線画像撮影装置。
    The second grating is disposed at a Talbot interference distance from the first grating;
    23. The radiographic image capturing apparatus according to claim 1, wherein intensity modulation is applied to the periodic pattern image formed by the Talbot interference effect of the first grating.
  24.  前記第1の格子が、前記放射線を投影像として通過させて前記周期パターン像を形成する吸収型格子であり、
     前記第2の格子が、前記第1の格子を通過した前記投影像としての前記周期パターン像に強度変調を与えるものであることを特徴とする請求項1から8、10から18および20から22いずれか1項記載の放射線画像撮影装置。
    The first grating is an absorption grating that forms the periodic pattern image by passing the radiation as a projection image;
    23. The second grating, wherein the periodic pattern image as the projection image that has passed through the first grating gives intensity modulation to the periodic pattern image. The radiographic imaging apparatus of any one of Claims.
  25.  前記第2の格子が、前記第1の格子から最小のタルボ干渉距離より短い距離に配置されていることを特徴とする請求項24記載の放射線画像撮影装置。 25. The radiographic image capturing apparatus according to claim 24, wherein the second grating is disposed at a distance shorter than a minimum Talbot interference distance from the first grating.
  26. 前記所定方向の前記複合画素のサイズよりも前記所定方向に直交する方向の前記複合画素のサイズの方が小さいことを特徴とする請求項1から25いずれか1項記載の放射線画像撮影装置。 26. The radiographic image capturing apparatus according to claim 1, wherein a size of the composite pixel in a direction orthogonal to the predetermined direction is smaller than a size of the composite pixel in the predetermined direction.
  27.  前記合成画像生成部が、前記放射線画像として位相コントラスト画像、小角散乱画像および吸収画像のうちの少なくとも1つを生成するものであることを特徴とする請求項1から26いずれか1項記載の放射線画像撮影装置。 27. The radiation according to any one of claims 1 to 26, wherein the composite image generation unit generates at least one of a phase contrast image, a small angle scattered image, and an absorption image as the radiation image. Image shooting device.
  28.  前記第1および第2の格子の格子面の中心に直交する回転軸を中心として、前記第1および第2の格子を、該格子の延伸方向から90°回転させる回転機構を備えたものであることを特徴とする請求項1から27いずれか1項記載の放射線画像撮影装置。 A rotation mechanism that rotates the first and second gratings by 90 ° from the extending direction of the gratings around a rotation axis that is orthogonal to the centers of the lattice planes of the first and second gratings is provided. The radiographic imaging apparatus according to any one of claims 1 to 27, wherein
  29.  前記第1および第2の格子が2次元格子の構造であることを特徴とする請求項1から27いずれか1項記載の放射線画像撮影装置。 28. The radiographic image capturing apparatus according to claim 1, wherein the first and second gratings have a two-dimensional grating structure.
  30.  放射線源と、格子構造が周期的に配置され、前記放射線源から射出された放射線を通過させて周期パターン像を形成する格子と、
     該格子によって形成された周期パターン像を透過する第1の電極層と、該第1の電極層を透過した前記周期パターン像の照射を受けて電荷を発生する光導電層と、該光導電層において発生した電荷を蓄積する電荷蓄積層と、読取光を透過する線状電極が多数配列された第2の電極層とがこの順に積層され、前記読取光によって走査されることによって前記各線状電極に対応する画素毎の画像信号が読み出される放射線画像検出器とを備えた放射線画像撮影装置であって、
     前記電荷蓄積層が、前記線状電極の配列ピッチよりも細かいピッチで格子状に形成されたものであり、
     前記格子と前記電荷蓄積層とが、前記格子によって形成される周期パターン像と前記電荷蓄積層の配列パターンとの重ね合せによってモアレを表す画像信号を生成するように構成されたものであり、
     前記放射線画像検出器によって検出された前記モアレを表す画像信号に基づいて、前記モアレの周期方向に対して平行または直交方向以外の交差方向となる所定方向について、少なくとも1つの前記画素の間隔を空けて配置された画素群から読み出された画像信号を取得し、前記所定方向について少なくとも2行の隣接する前記画素群の画像信号に基づいて複合画素の画像信号を生成することによって前記複合画素単位の放射線画像を生成するとともに、前記複合画素を前記所定方向に前記画素単位でずらして設定して複数の前記放射線画像を生成し、該生成した複数の放射線画像に基づいて合成画像を生成する合成画像生成部を備えたことを特徴とする放射線画像撮影装置。
    A radiation source and a grating in which a grating structure is periodically arranged to pass a radiation emitted from the radiation source to form a periodic pattern image;
    A first electrode layer that transmits a periodic pattern image formed by the lattice; a photoconductive layer that generates an electric charge upon irradiation of the periodic pattern image transmitted through the first electrode layer; and the photoconductive layer. A charge accumulation layer for accumulating the charges generated in step 1 and a second electrode layer in which a large number of linear electrodes that transmit the reading light are stacked in this order, and each linear electrode is scanned by the reading light. A radiographic image capturing device including a radiographic image detector that reads out an image signal for each pixel corresponding to
    The charge storage layer is formed in a lattice shape with a pitch finer than the arrangement pitch of the linear electrodes,
    The lattice and the charge storage layer are configured to generate an image signal representing moiré by superimposing a periodic pattern image formed by the lattice and an array pattern of the charge storage layer,
    Based on an image signal representing the moire detected by the radiological image detector, at least one pixel is spaced in a predetermined direction that is parallel to or orthogonal to the periodic direction of the moire. The composite pixel unit by acquiring an image signal read from the pixel group arranged in a row and generating an image signal of the composite pixel based on the image signal of the adjacent pixel group in at least two rows in the predetermined direction Generating a plurality of radiation images by generating the plurality of radiation images by setting the composite pixel to be shifted in the pixel unit in the predetermined direction, and generating a composite image based on the generated plurality of radiation images A radiographic imaging apparatus comprising an image generation unit.
  31.  前記格子と前記放射線画像検出器とが、前記格子の延伸方向と前記電荷蓄積層の格子パターンの延伸方向とが相対的に傾くように配置されたものであることを特徴とする請求項30記載の放射線画像撮影装置。 31. The lattice and the radiation image detector are arranged so that the extending direction of the lattice and the extending direction of the lattice pattern of the charge storage layer are relatively inclined. Radiographic imaging device.
  32.  前記格子と前記電荷蓄積層とが、前記モアレの周期Tが下式を満たす値となるように構成されたものであることを特徴とする請求項31記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000037
     ただし、P’は前記放射線画像検出器の位置における前記周期パターン像のピッチ、Dsubは前記画素の前記所定方向のサイズ、θは前記格子によって形成される周期パターン像の延伸方向と前記電荷蓄積層の延伸方向とによってなされる角
    32. The radiographic imaging apparatus according to claim 31, wherein the lattice and the charge storage layer are configured such that the period T of the moire satisfies a value that satisfies the following expression.
    Figure JPOXMLDOC01-appb-I000037
    Where P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector, Dsub is the size of the pixel in the predetermined direction, θ is the extending direction of the periodic pattern image formed by the grating and the charge accumulation. The angle made by the stretching direction of the layer
  33.  前記放射線を遮蔽する放射線遮蔽部材が所定のピッチで複数延設されるとともに、前記放射線源と前記格子との間に配置され、前記放射線源から照射された放射線を領域選択的に遮蔽する吸収型格子からなるマルチスリットをさらに備え、
     前記格子と前記電荷蓄積層とが、前記モアレの周期Tが下式を満たす値となるように構成されたものであることを特徴とする請求項31記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000038
     ただし、P’は前記放射線画像検出器の位置における前記周期パターン像のピッチ、Dsubは前記画素の前記所定方向のサイズ、θは前記格子によって形成される周期パターン像の延伸方向と前記電荷蓄積層の延伸方向とによってなされる角
    A plurality of radiation shielding members that shield the radiation are extended at a predetermined pitch, and are arranged between the radiation source and the grating, and are an absorption type that selectively shields radiation emitted from the radiation source. It is further equipped with a multi slit consisting of a lattice
    32. The radiographic imaging apparatus according to claim 31, wherein the lattice and the charge storage layer are configured such that the period T of the moire satisfies a value that satisfies the following expression.
    Figure JPOXMLDOC01-appb-I000038
    Where P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector, Dsub is the size of the pixel in the predetermined direction, θ is the extending direction of the periodic pattern image formed by the grating and the charge accumulation. The angle made by the stretching direction of the layer
  34.  前記マルチスリットのピッチPが、下式を満たす値となるように構成されたものであることを特徴とする請求項33記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000039
     ただし、Zは前記マルチスリットと前記格子との距離、Z’は前記格子から前記放射線画像検出器の検出面までの距離、P’は前記放射線画像検出器の位置における前記周期パターン像のピッチ
    The pitch P 3 of the multi-slit, the radiation image photographing apparatus according to claim 33, wherein a is one that is configured to a value that satisfies the following expression.
    Figure JPOXMLDOC01-appb-I000039
    Where Z 3 is the distance between the multi-slit and the grating, Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector, and P 1 ′ is the periodic pattern image at the position of the radiation image detector. Pitch of
  35.  前記格子によって形成される周期パターン像と前記電荷蓄積層との相対的な傾き角θが、下式を満たす値に設定されるものであることを特徴とする請求項31記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000040
     ただし、P’は前記放射線画像検出器の位置における前記周期パターン像のピッチ、Dは前記縞画像の数M×前記画素の前記所定方向のサイズ、nは0およびMの倍数を除く整数
    32. The radiographic imaging apparatus according to claim 31, wherein a relative inclination angle [theta] between the periodic pattern image formed by the lattice and the charge storage layer is set to a value satisfying the following expression. .
    Figure JPOXMLDOC01-appb-I000040
    Where P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector, D is the number M of the fringe images × the size of the pixel in the predetermined direction, and n is an integer excluding 0 and a multiple of M
  36.  前記電荷蓄積層の格子構造の延伸方向に対する前記格子の自己像の傾きθが、下式を満たす値に設定されるものであることを特徴とする請求項31記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000041
    ただし、P’は前記電荷蓄積層の格子構造および前記電荷蓄積層の位置における前記格子の周期パターン像のピッチ、DはM個の前記画素からなる前記複合画素の前記所定方向のサイズ、nは0およびMの倍数を除く整数
    32. The radiographic image capturing apparatus according to claim 31, wherein the inclination [theta] of the self-image of the lattice with respect to the extending direction of the lattice structure of the charge storage layer is set to a value satisfying the following expression.
    Figure JPOXMLDOC01-appb-I000041
    Where P 1 ′ is the lattice structure of the charge storage layer and the pitch of the periodic pattern image of the lattice at the position of the charge storage layer, D is the size of the composite pixel composed of M pixels in the predetermined direction, n Is an integer excluding multiples of 0 and M
  37.  前記格子が、90°の位相変調を与える位相変調型格子または振幅変調型格子であり、
     前記放射線画像検出器の位置における前記周期パターン像のピッチP’および前記電荷蓄積層の格子構造の配列ピッチP’、下式を満たすように構成されたものであることを特徴とする請求項31、32、35および36いずれか1項記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000042
     ただし、Pは前記格子の格子ピッチ、Zは前記放射線源の焦点から前記格子までの距離、Z’は前記格子から前記放射線画像検出器の検出面までの距離
    The grating is a phase modulation type grating or an amplitude modulation type grating that gives 90 ° phase modulation;
    The pitch P 1 ′ of the periodic pattern image at the position of the radiation image detector and the arrangement pitch P 2 ′ of the lattice structure of the charge storage layer are configured to satisfy the following expression: Item 37. The radiographic image capturing apparatus according to any one of Items 31, 32, 35, and 36.
    Figure JPOXMLDOC01-appb-I000042
    Where P 1 is the grating pitch of the grating, Z 1 is the distance from the focal point of the radiation source to the grating, and Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector.
  38.  前記格子が、180°の位相変調を与える位相変調型格子であり、
     前記放射線画像検出器の位置における前記周期パターン像のピッチP’および前記電荷蓄積層の格子構造の配列ピッチP’が、下式を満たすように構成されたものであることを特徴とする請求項31、32、35および36いずれか1項記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000043
     ただし、Pは前記格子の格子ピッチ、Zは前記放射線源の焦点から前記格子までの距離、Z’は前記格子から前記放射線画像検出器の検出面までの距離
    The grating is a phase modulation type grating that gives 180 ° phase modulation;
    The pitch P 1 ′ of the periodic pattern image at the position of the radiation image detector and the arrangement pitch P 2 ′ of the lattice structure of the charge storage layer are configured to satisfy the following formula: 37. A radiographic imaging apparatus according to any one of claims 31, 32, 35 and 36.
    Figure JPOXMLDOC01-appb-I000043
    Where P 1 is the grating pitch of the grating, Z 1 is the distance from the focal point of the radiation source to the grating, and Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector.
  39.  前記格子と前記電荷蓄積層とが、前記放射線画像検出器の位置における前記周期パターン像のピッチが前記電荷蓄積層の格子構造の配列ピッチと異なるように構成されたものであることを特徴とする請求項30記載の放射線画像撮影装置。 The lattice and the charge storage layer are configured such that the pitch of the periodic pattern image at the position of the radiation image detector is different from the arrangement pitch of the lattice structure of the charge storage layer. The radiographic imaging apparatus according to claim 30.
  40.  前記放射線画像検出器の位置における前記周期パターン像の延伸方向と前記電荷蓄積層の格子構造の延伸方向とが平行であることを特徴とする請求項39記載の放射線画像撮影装置。 40. The radiographic image capturing apparatus according to claim 39, wherein the extending direction of the periodic pattern image at the position of the radiation image detector is parallel to the extending direction of the lattice structure of the charge storage layer.
  41.  前記格子と前記電荷蓄積層とが、前記モアレの周期Tが下式を満たす値となるように構成されたものであることを特徴とする請求項39または40記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000044
     ただし、P’は前記放射線画像検出器の位置における前記周期パターン像のピッチ、P’は前記電荷蓄積層の格子構造の配列ピッチ、Dsubは前記画素の前記所定方向のサイズ
    41. The radiographic image capturing apparatus according to claim 39, wherein the lattice and the charge storage layer are configured such that a period T of the moire satisfies a value satisfying the following expression.
    Figure JPOXMLDOC01-appb-I000044
    Where P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector, P 2 ′ is the arrangement pitch of the lattice structure of the charge storage layer, and Dsub is the size of the pixel in the predetermined direction.
  42.  前記放射線を遮蔽する放射線遮蔽部材が所定のピッチで複数延設されるとともに、前記放射線源と前記格子との間に配置され、前記放射線源から照射された放射線を領域選択的に遮蔽する吸収型格子からなるマルチスリットをさらに備え、
     前記格子と前記電荷蓄積層とが、前記モアレの周期Tが下式を満たす値となるように構成されたものであることを特徴とする請求項39または40記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000045
     ただし、P’は前記放射線画像検出器の位置における前記周期パターン像のピッチ、P’は前記電荷蓄積層の格子構造の配列ピッチ、Dsubは前記画素の前記所定方向のサイズ
    A plurality of radiation shielding members that shield the radiation are extended at a predetermined pitch, and are arranged between the radiation source and the grating, and are an absorption type that selectively shields radiation emitted from the radiation source. It is further equipped with a multi slit consisting of a lattice
    41. The radiographic image capturing apparatus according to claim 39, wherein the lattice and the charge storage layer are configured such that a period T of the moire satisfies a value satisfying the following expression.
    Figure JPOXMLDOC01-appb-I000045
    Where P 1 ′ is the pitch of the periodic pattern image at the position of the radiation image detector, P 2 ′ is the arrangement pitch of the lattice structure of the charge storage layer, and Dsub is the size of the pixel in the predetermined direction.
  43.  前記マルチスリットのピッチPが、下式を満たす値となるように構成されたものであることを特徴とする請求項42記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000046
     ただし、Zは前記マルチスリットと前記格子との距離、Z’は前記格子から前記放射線画像検出器の検出面までの距離、P’は前記放射線画像検出器の位置における前記周期パターン像のピッチ、
    The pitch P 3 of the multi-slit, the radiation image photographing apparatus according to claim 42, wherein a is one that is configured to a value that satisfies the following expression.
    Figure JPOXMLDOC01-appb-I000046
    Where Z 3 is the distance between the multi-slit and the grating, Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector, and P 1 ′ is the periodic pattern image at the position of the radiation image detector. Pitch,
  44.  前記格子が、90°の位相変調を与える位相変調型格子または振幅変調型格子であり、
     前記放射線画像検出器の位置における前記周期パターン像のピッチP’が、下式を満たすように構成されたものであることを特徴とする請求項39から41いずれか1項記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000047
     ただし、Pは前記格子の格子ピッチ、Zは前記放射線源の焦点から前記格子までの距離、Z’は前記格子から前記放射線画像検出器の検出面までの距離
    The grating is a phase modulation type grating or an amplitude modulation type grating that gives 90 ° phase modulation;
    The radiographic imaging according to any one of claims 39 to 41, wherein a pitch P 1 ′ of the periodic pattern image at a position of the radiological image detector is configured to satisfy the following expression: apparatus.
    Figure JPOXMLDOC01-appb-I000047
    Where P 1 is the grating pitch of the grating, Z 1 is the distance from the focal point of the radiation source to the grating, and Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector.
  45.  前記格子が、180°の位相変調を与える位相変調型格子であり、
     前記放射線画像検出器の位置における前記周期パターン像のピッチP’が、下式を満たすように構成されたものであることを特徴とする請求項39から41いずれか1項記載の放射線画像撮影装置。
    Figure JPOXMLDOC01-appb-I000048
     ただし、Pは前記格子の格子ピッチ、Zは前記放射線源の焦点から前記格子までの距離、Z’は前記格子から前記放射線画像検出器の検出面までの距離
    The grating is a phase modulation type grating that gives 180 ° phase modulation;
    The radiographic imaging according to any one of claims 39 to 41, wherein a pitch P 1 ′ of the periodic pattern image at a position of the radiological image detector is configured to satisfy the following expression: apparatus.
    Figure JPOXMLDOC01-appb-I000048
    Where P 1 is the grating pitch of the grating, Z 1 is the distance from the focal point of the radiation source to the grating, and Z 2 ′ is the distance from the grating to the detection surface of the radiation image detector.
  46.  前記格子と前記放射線画像検出器とが、前記格子の延伸方向と前記電荷蓄積層の格子パターンの延伸方向とが相対的に傾くように配置されたものであることを特徴とする請求項37記載の放射線画像撮影装置。 38. The lattice and the radiation image detector are arranged so that the extending direction of the lattice and the extending direction of the lattice pattern of the charge storage layer are relatively inclined. Radiographic imaging device.
  47.  前記電荷蓄積層の格子構造が、前記線状電極と平行となるように形成されたものであることを特徴とする請求項30から46いずれか1項記載の放射線画像撮影装置。 The radiographic imaging apparatus according to any one of claims 30 to 46, wherein a lattice structure of the charge storage layer is formed to be parallel to the linear electrode.
  48.  前記電荷蓄積層の前記積層方向の厚さが2μm以下であることを特徴とする請求項30から47いずれか1項記載の放射線画像撮影装置。 48. The radiographic image capturing apparatus according to claim 30, wherein a thickness of the charge storage layer in the stacking direction is 2 μm or less.
  49.  前記電荷蓄積層の誘電率が、前記光導電層の誘電率の2倍以内かつ1/2倍以上であることを特徴とする請求項30から48いずれか1項記載の放射線画像撮影装置。 49. The radiographic imaging apparatus according to claim 30, wherein a dielectric constant of the charge storage layer is within twice and a half or more of a dielectric constant of the photoconductive layer.
  50.  前記放射線画像検出器が、前記格子からタルボ干渉距離の位置に配置され、
     前記格子のタルボ干渉効果によって形成される前記周期パターン像に強度変調を与えるものであることを特徴とする請求項30から49いずれか1項記載の放射線画像撮影装置。
    The radiation image detector is disposed at a Talbot interference distance from the grating;
    50. The radiographic image capturing apparatus according to claim 30, wherein intensity modulation is applied to the periodic pattern image formed by the Talbot interference effect of the grating.
  51.  前記格子が、前記放射線を投影像として通過させて前記周期パターン像を形成する吸収型格子であり、
     前記放射線画像検出器が、前記格子を通過した前記投影像としての前記周期パターン像に強度変調を与えるものであることを特徴とする請求項30から37、39から44および46から49いずれか1項記載の放射線画像撮影装置。
    The grating is an absorptive grating that forms the periodic pattern image by passing the radiation as a projection image;
    50. The radiation image detector according to any one of claims 30 to 37, 39 to 44, and 46 to 49, wherein the radiation pattern detector applies intensity modulation to the periodic pattern image as the projection image that has passed through the grating. The radiographic imaging device described in the item.
  52.  前記放射線画像検出器が、前記格子から最小のタルボ干渉距離より短い距離に配置されたものであることを特徴とする請求項51記載の放射線画像撮影装置。 52. The radiographic image capturing apparatus according to claim 51, wherein the radiographic image detector is disposed at a distance shorter than a minimum Talbot interference distance from the lattice.
  53.  放射線源と、格子構造が周期的に配置され、前記放射線源から射出された放射線を通過させて周期パターン像を形成する第1の格子と、
     格子構造が周期的に配置され、前記第1の格子により形成された周期パターン像が入射される第2の格子と、
     該第2の格子を透過した放射線を検出する画素が2次元状に配列された放射線画像検出器とを備えた放射線画像撮影装置であって、
     前記放射線を遮蔽する放射線遮蔽部材が所定のピッチで複数延設されるとともに、前記放射線源と前記第1の格子との間に配置され、前記放射線源から照射された放射線を領域選択的に遮蔽する吸収型格子からなるマルチスリットを備え、
     該マルチスリットと前記第1の格子および前記第2の格子とが、前記マルチスリットにより形成されたスリット像と前記1の格子および第2の格子の格子パターンとの重ね合せによってモアレを表す画像信号を生成するように構成されたものであり、
     前記放射線画像検出器によって検出された前記モアレを表す画像信号に基づいて、前記モアレの周期方向に対して平行または直交方向以外の交差方向となる所定方向について、少なくとも1つの前記画素の間隔を空けて配置された画素群から読み出された画像信号を取得し、前記所定方向について少なくとも2行の隣接する前記画素群の画像信号に基づいて複合画素の画像信号を生成することによって前記複合画素単位の放射線画像を生成するとともに、前記複合画素を前記所定方向に前記画素単位でずらして設定して複数の前記放射線画像を生成し、該生成した複数の放射線画像に基づいて合成画像を生成する合成画像生成部を備えたことを特徴とする放射線画像撮影装置。
    A radiation source and a first grating in which a grating structure is periodically arranged to pass the radiation emitted from the radiation source to form a periodic pattern image;
    A second grating in which a grating structure is periodically arranged and a periodic pattern image formed by the first grating is incident;
    A radiographic imaging device comprising a radiographic image detector in which pixels that detect radiation transmitted through the second grating are two-dimensionally arranged,
    A plurality of radiation shielding members that shield the radiation are extended at a predetermined pitch, and are arranged between the radiation source and the first grating to selectively shield the radiation emitted from the radiation source. Equipped with multi-slits made of absorbing lattice
    The multi-slit, the first grating, and the second grating are image signals that express moire by superposition of the slit image formed by the multi-slit and the grating patterns of the first grating and the second grating. Is configured to generate
    Based on an image signal representing the moire detected by the radiological image detector, at least one pixel is spaced in a predetermined direction that is parallel to or orthogonal to the periodic direction of the moire. The composite pixel unit by acquiring an image signal read from the pixel group arranged in a row and generating an image signal of the composite pixel based on the image signal of the adjacent pixel group in at least two rows in the predetermined direction Generating a plurality of radiation images by generating the plurality of radiation images by setting the composite pixel to be shifted in the pixel unit in the predetermined direction, and generating a composite image based on the generated plurality of radiation images A radiographic imaging apparatus comprising an image generation unit.
  54.  前記マルチスリットが、該マルチスリットの延伸方向と前記第1の格子および前記第2の格子の延伸方向とが相対的に傾くように配置されたものであることを特徴とする請求項53記載の放射線画像撮影装置。 54. The multi-slit is arranged such that an extending direction of the multi-slit and an extending direction of the first lattice and the second lattice are relatively inclined. Radiation imaging device.
  55.  前記マルチスリットと前記第1の格子とが、前記第1の格子の位置における前記スリット像のピッチが前記第1の格子の格子パターンのピッチと異なるように構成されたものであることを特徴とする請求項53または54記載の放射線画像撮影装置。 The multi-slit and the first grating are configured such that the pitch of the slit image at the position of the first grating is different from the pitch of the grating pattern of the first grating. 55. The radiographic imaging apparatus according to claim 53 or 54.
  56.  放射線源と、格子構造が周期的に配置され、前記放射線源から射出された放射線を通過させて周期パターン像を形成する格子と、
     該格子によって形成された周期パターン像を透過する第1の電極層と、該第1の電極層を透過した前記周期パターン像の照射を受けて電荷を発生する光導電層と、該光導電層において発生した電荷を蓄積する電荷蓄積層と、読取光を透過する線状電極が多数配列された第2の電極層とがこの順に積層され、前記読取光によって走査されることによって前記各線状電極に対応する画素毎の画像信号が読み出される放射線画像検出器とを備えた放射線画像撮影装置であって、
     前記放射線を遮蔽する放射線遮蔽部材が所定のピッチで複数延設されるとともに、前記放射線源と前記格子との間に配置され、前記放射線源から照射された放射線を領域選択的に遮蔽する吸収型格子からなるマルチスリットを備え、
     前記電荷蓄積層が、前記線状電極の配列ピッチよりも細かいピッチで格子状に形成されたものであるとともに、
     該マルチスリットと前記格子とが、前記マルチスリットにより形成されたスリット像と前記格子の格子パターンとの重ね合せによってモアレを表す画像信号を生成するように構成されたものであり、
     前記放射線画像検出器によって検出された前記モアレを表す画像信号に基づいて、前記モアレの周期方向に対して平行または直交方向以外の交差方向となる所定方向について、少なくとも1つの前記画素の間隔を空けて配置された画素群から読み出された画像信号を取得し、前記所定方向について少なくとも2行の隣接する前記画素群の画像信号に基づいて複合画素の画像信号を生成することによって前記複合画素単位の放射線画像を生成するとともに、前記複合画素を前記所定方向に前記画素単位でずらして設定して複数の前記放射線画像を生成し、該生成した複数の放射線画像に基づいて合成画像を生成する合成画像生成部を備えたことを特徴とする放射線画像撮影装置。
    A radiation source and a grating in which a grating structure is periodically arranged to pass a radiation emitted from the radiation source to form a periodic pattern image;
    A first electrode layer that transmits a periodic pattern image formed by the lattice; a photoconductive layer that generates an electric charge upon irradiation of the periodic pattern image transmitted through the first electrode layer; and the photoconductive layer. A charge accumulation layer for accumulating the charges generated in step 1 and a second electrode layer in which a large number of linear electrodes that transmit the reading light are stacked in this order, and each linear electrode is scanned by the reading light. A radiographic image capturing device including a radiographic image detector that reads out an image signal for each pixel corresponding to
    A plurality of radiation shielding members that shield the radiation are extended at a predetermined pitch, and are arranged between the radiation source and the grating, and an absorption type that selectively shields radiation emitted from the radiation source. It has a multi slit made of a lattice,
    The charge storage layer is formed in a lattice shape with a pitch smaller than the arrangement pitch of the linear electrodes,
    The multi-slit and the grating are configured to generate an image signal representing moiré by superimposing a slit image formed by the multi-slit and a grating pattern of the grating,
    Based on an image signal representing the moire detected by the radiological image detector, at least one pixel is spaced in a predetermined direction that is parallel to or orthogonal to the periodic direction of the moire. The composite pixel unit by acquiring an image signal read from the pixel group arranged in a row and generating an image signal of the composite pixel based on the image signal of the adjacent pixel group in at least two rows in the predetermined direction Generating a plurality of radiation images by generating the plurality of radiation images by setting the composite pixel to be shifted in the pixel unit in the predetermined direction, and generating a composite image based on the generated plurality of radiation images A radiographic imaging apparatus comprising an image generation unit.
  57.  前記マルチスリットが、該マルチスリットの延伸方向と前記格子および前記電荷蓄積層の格子パターンの延伸方向とが相対的に傾くように配置されたものであることを特徴とする請求項56記載の放射線画像撮影装置。 57. The radiation according to claim 56, wherein the multi-slits are arranged such that the extending direction of the multi-slit and the extending direction of the lattice pattern of the lattice and the charge storage layer are relatively inclined. Image shooting device.
  58.  前記マルチスリットと前記格子とが、前記格子の位置における前記スリット像のピッチが前記格子の格子パターンのピッチと異なるように構成されたものであることを特徴とする請求項56または57記載の放射線画像撮影装置。 The radiation according to claim 56 or 57, wherein the multi-slit and the grating are configured such that a pitch of the slit image at the position of the grating is different from a pitch of a grating pattern of the grating. Image shooting device.
  59.  前記放射線源と前記放射線画像検出器とが水平方向に対向配置され、被検体の立位撮影を可能に構成されたものであることを特徴とする請求項1から58いずれか1項記載の放射線画像撮影装置。 59. Radiation according to any one of claims 1 to 58, wherein the radiation source and the radiation image detector are arranged opposite to each other in the horizontal direction so as to be capable of standing imaging of a subject. Image shooting device.
  60.  前記放射線源と前記放射線画像検出器とが上下方向に対向配置され、被検体の臥位撮影を可能に構成されたものであることを特徴とする請求項1から58いずれか1項記載の放射線画像撮影装置。 59. Radiation according to any one of claims 1 to 58, wherein the radiation source and the radiation image detector are arranged opposite to each other in the vertical direction so as to be able to photograph the subject's supine position. Image shooting device.
  61.  前記放射線源と前記放射線画像検出器とが旋回アームによって保持され、被検体の立位撮影および臥位撮影を可能に構成されたものであることを特徴とする請求項1から58いずれか1項記載の放射線位相画像撮影装置。 The said radiation source and the said radiographic image detector are hold | maintained by the turning arm, and it is comprised so that the standing-up imaging | photography of a subject and a supine position imaging | photography are possible. The radiation phase image photographing apparatus described.
  62.  被検体として乳房を撮影可能に構成されたマンモグラフィ装置であることを特徴とする請求項1から58いずれか1項記載の放射線位相画像撮影装置。 59. The radiation phase image photographing apparatus according to any one of claims 1 to 58, wherein the radiation phase image photographing apparatus is a mammography apparatus configured to be capable of photographing a breast as a subject.
  63.  前記放射線画像検出器に対して前記放射線が第1の方向から照射される第1の位置と前記第1の方向とは異なる第2の方向から照射される第2の位置とに前記放射線源を移動させる移動機構を備え、
     前記合成画像生成部が、第1および第2の位置について前記放射線画像検出器により検出された画像信号に基づいてそれぞれ前記合成画像を生成するものであり、
     前記第1の位置に対応する合成画像と第2の位置に対応する合成画像とに基づいてステレオ画像を構成するステレオ画像構成部を備えたことを特徴とする請求項1から58いずれか1項記載の放射線位相画像撮影装置。
    The radiation source is placed at a first position where the radiation is irradiated from a first direction to the radiation image detector and a second position where the radiation image detector is irradiated from a second direction different from the first direction. Equipped with a moving mechanism to move,
    The composite image generation unit generates the composite image based on the image signals detected by the radiation image detector for the first and second positions,
    59. The apparatus according to claim 1, further comprising a stereo image configuration unit configured to form a stereo image based on a composite image corresponding to the first position and a composite image corresponding to the second position. The radiation phase image photographing apparatus described.
  64.  前記放射線源と前記放射線画像検出器とを被検体の周りを周回させる周回機構を備え、
     前記合成画像生成部が、各回転角度で前記放射線画像検出器によって検出された画像信号に基づいて回転角度毎の前記合成画像を生成するものであり、
     該回転角度毎の合成画像に基づいて3次元画像を構成する3次元画像構成部を備えたことを特徴とする請求項1から58いずれか1項記載の放射線画像撮影装置。
    Comprising a circling mechanism for circling the radiation source and the radiological image detector around a subject;
    The composite image generation unit generates the composite image for each rotation angle based on the image signal detected by the radiation image detector at each rotation angle,
    59. The radiographic image capturing apparatus according to claim 1, further comprising a three-dimensional image forming unit configured to form a three-dimensional image based on the combined image for each rotation angle.
PCT/JP2012/000353 2011-01-20 2012-01-20 Radiation phase image-capturing device WO2012098908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011009331 2011-01-20
JP2011-009331 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012098908A1 true WO2012098908A1 (en) 2012-07-26

Family

ID=46515541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000353 WO2012098908A1 (en) 2011-01-20 2012-01-20 Radiation phase image-capturing device

Country Status (1)

Country Link
WO (1) WO2012098908A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121607A (en) * 2012-12-21 2014-07-03 Siemens Aktiengesellschaft X-ray image acquisition system for differential phase contrast imaging of examination object by way of phase stepping, and angiographic examination method
EP3545843A1 (en) * 2018-03-26 2019-10-02 Agfa Nv Pci variable pre-sample mask
CN110763706A (en) * 2018-07-10 2020-02-07 三星电子株式会社 System and method for analyzing crystal defects

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102654A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. X-ray image system and x-ray image program
JP2010190777A (en) * 2009-02-19 2010-09-02 Konica Minolta Medical & Graphic Inc X-ray imaging apparatus
JP2010236986A (en) * 2009-03-31 2010-10-21 Fujifilm Corp Radiation phase contrast imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102654A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. X-ray image system and x-ray image program
JP2010190777A (en) * 2009-02-19 2010-09-02 Konica Minolta Medical & Graphic Inc X-ray imaging apparatus
JP2010236986A (en) * 2009-03-31 2010-10-21 Fujifilm Corp Radiation phase contrast imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121607A (en) * 2012-12-21 2014-07-03 Siemens Aktiengesellschaft X-ray image acquisition system for differential phase contrast imaging of examination object by way of phase stepping, and angiographic examination method
EP3545843A1 (en) * 2018-03-26 2019-10-02 Agfa Nv Pci variable pre-sample mask
CN110763706A (en) * 2018-07-10 2020-02-07 三星电子株式会社 System and method for analyzing crystal defects

Similar Documents

Publication Publication Date Title
JP5796908B2 (en) Radiation phase imaging device
JP5150711B2 (en) Radiography apparatus and radiation imaging system
EP2531105B1 (en) Radiation imaging system
JP5475925B2 (en) Radiation imaging apparatus and image processing method
JP2012130586A (en) X-ray image detecting apparatus, radiographing apparatus, and radiographing system
JP2012130451A (en) Radiographic apparatus and radiographic system
JP2012148068A (en) Radiographic image obtainment method and radiographic apparatus
US20120153181A1 (en) Radiation image capturing apparatus and radiation image obtaining method
JP2012110472A (en) Radiation phase image obtainment method and radiation phase image radiographic apparatus
JP2012135612A (en) Radiation phase image photographing method and apparatus
US20120153182A1 (en) Radiation image obtaining method and radiation image capturing apparatus
JP2012143549A (en) Radiographic image generation method and radiographic imaging apparatus
JP2012166010A (en) Radiographic imaging apparatus and radiographic image detector
JP2012236005A (en) Radiation imaging apparatus
JP2012143553A (en) Radiographic apparatus and radiation image detector
WO2012098908A1 (en) Radiation phase image-capturing device
WO2012056725A1 (en) Radiation phase contrast imaging apparatus and radiation image detector
WO2012070662A1 (en) Radiographic image detection apparatus, radiography apparatus, and radiography system
JP2012110395A (en) Radiographic system
JP2012147824A (en) Radiographing apparatus, and radiographic image detector
JP2012110606A (en) Radiographic apparatus and radiographic system
JP2012143490A (en) Radiographic apparatus and radiation image detector
JP2012143491A (en) Radiographic apparatus and radiation image detector
WO2012070580A1 (en) Radiograph detection device, radiography device, and radiography system
JP2012125364A (en) Radiation image detector, radiographic apparatus, and radiographic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP