WO2012070580A1 - Radiograph detection device, radiography device, and radiography system - Google Patents

Radiograph detection device, radiography device, and radiography system Download PDF

Info

Publication number
WO2012070580A1
WO2012070580A1 PCT/JP2011/076925 JP2011076925W WO2012070580A1 WO 2012070580 A1 WO2012070580 A1 WO 2012070580A1 JP 2011076925 W JP2011076925 W JP 2011076925W WO 2012070580 A1 WO2012070580 A1 WO 2012070580A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
image
ray
radiation
lattice
Prior art date
Application number
PCT/JP2011/076925
Other languages
French (fr)
Japanese (ja)
Inventor
金子 泰久
拓司 多田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012070580A1 publication Critical patent/WO2012070580A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1648Ancillary equipment for scintillation cameras, e.g. reference markers, devices for removing motion artifacts, calibration devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4464Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being mounted to ceiling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/502Clinical applications involving diagnosis of breast, i.e. mammography

Definitions

  • the present invention relates to a radiation image detection apparatus, a radiation imaging apparatus using the radiation image detection apparatus, and a radiation imaging system.
  • X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance.
  • X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
  • a subject In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured.
  • each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector.
  • X-ray image detector there is a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit in addition to a combination of an X-ray intensifying screen and a film, a stimulable phosphor (accumulating phosphor), and so on. Widely used.
  • FPD Flat Panel Detector
  • the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
  • an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object.
  • Imaging research is actively conducted.
  • a first diffraction grating phase type grating or absorption type grating
  • a specific distance Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating.
  • the Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the arranged subject and the X-ray.
  • the X-ray Talbot interferometer detects moiré fringes generated by superimposing the first image of the first diffraction grating and the second diffraction grating, and obtains subject phase information by analyzing changes in the moiré fringes caused by the subject.
  • a fringe scanning method is known. According to this fringe scanning method, the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating.
  • a distribution (differential image of phase shift) is obtained, and a phase contrast image of the subject can be obtained based on this angular distribution.
  • each of the first and second diffraction gratings is configured by connecting a plurality of grating pieces, and each grating piece is relatively small. It has been.
  • each of the first and second diffraction gratings is configured by connecting a plurality of grating pieces, the above-described fringe scanning cannot be normally performed at the connecting part of adjacent grating pieces, and the X-rays transmitted through the connecting part are not generated.
  • the area of the incident X-ray image detector is a defective area in which the X-ray phase change caused by the subject cannot be accurately detected.
  • the data of each pixel belonging to a defective area is complemented based on the data of surrounding pixels, or the first and second diffractions are performed so as to avoid the occurrence of such a defective area.
  • the present invention has been made in view of the above-described circumstances, and is intended to increase the imaging range and improve the image quality in radiation phase imaging.
  • a first grating a grating pattern having a period substantially matching a pattern period of a radiation image formed by radiation that has passed through the first grating, and the radiation image masked by the grating pattern
  • the first grating includes a plurality of grating pieces arranged in a plane intersecting the traveling direction of the radiation passing through the first grating, and is adjacent to the grating.
  • a radiographic image detection apparatus in which a connecting portion for connecting pieces is formed of a radiation shield.
  • a radiographic apparatus comprising: the radiological image detection apparatus according to (1) above; and a radiation source that irradiates radiation toward the first grating.
  • a radiation imaging system including an arithmetic processing unit that complements data of pixels belonging to an area excluding the defective area.
  • a plurality of lattice pieces are connected to form a lattice, thereby obtaining a large-size lattice while maintaining the accuracy by using a relatively small individual lattice piece. it can. Then, by forming the connecting portion of the adjacent lattice pieces with a radiation shield, the pixels belonging to the defect area can be easily and reliably extracted, and the data of the pixels can be complemented with certainty. The image quality can be improved.
  • FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention
  • FIG. 2 shows a control block of the radiation imaging system of FIG.
  • the X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject (patient) H in a standing position, and is disposed opposite to the X-ray source 11 that emits X-rays to the subject H, and the X-ray source 11.
  • An imaging unit (X-ray image detection device) 12 that detects X-rays transmitted through the subject H from the X-ray source 11 and generates image data, and an exposure operation and imaging of the X-ray source 11 based on the operation of the operator.
  • the console 12 is broadly classified into a console 13 that controls the photographing operation of the unit 12 and performs arithmetic processing on image data acquired by the photographing unit 12 to generate a phase contrast image.
  • the X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling.
  • the photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
  • the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18.
  • the X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion that does not contribute to the inspection area of the subject H.
  • the X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
  • the X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of.
  • a motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
  • the standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction.
  • the holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c.
  • the driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
  • the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. .
  • the detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like.
  • the X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
  • the console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like.
  • the control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
  • the input device 21 for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used.
  • X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, etc. Is entered.
  • the monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
  • the imaging unit 12 includes a flat panel detector (FPD) 30 made of a semiconductor circuit, a first absorption type grating 31 and a second absorption type for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging.
  • the absorption type grating 32 is provided.
  • the FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11.
  • the first and second absorption gratings 31 and 32 are disposed between the FPD 30 and the X-ray source 11.
  • the imaging unit 12 changes the relative positional relationship of the second absorption type grating 32 with respect to the first absorption type grating 31 by translating the second absorption type grating 32 in the vertical direction (x direction).
  • a scanning mechanism 33 is provided.
  • the scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
  • FIG. 3 shows the configuration of the radiation image detector.
  • the FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41.
  • a scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13.
  • the scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
  • Each pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and stores the converted electric charges in a capacitor (not shown) connected to an electrode below the conversion layer. It can be configured as a direct conversion type element.
  • Each pixel 40 is connected to a thin film transistor (TFT) switch (not shown), and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46.
  • TFT thin film transistor
  • Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it.
  • the X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
  • the readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory (all not shown).
  • the integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter.
  • the A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit.
  • the correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory.
  • correction processing by the correction circuit correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
  • the first absorption type lattice 31 is configured by connecting a plurality of first lattice pieces 31A.
  • Each of the first lattice pieces 31A includes a substrate 31a and a plurality of Xs arranged on the substrate 31a. It is comprised from the line shielding part 31b.
  • the second absorption type grating 32 is also configured by connecting a plurality of second grating pieces 32A.
  • Each of the second grating pieces 32A includes a substrate 32a and a plurality of substrates arranged on the substrate 32a. It is comprised from the X-ray shielding part 32b.
  • the substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays.
  • the X-ray shielding portions 31b and 32b are both linear members extending in one direction (y direction in the illustrated example) in a plane perpendicular to the optical axis A of the X-rays emitted from the X-ray source 11. Composed.
  • a material of each X-ray shielding part 31b, 32b a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable.
  • These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
  • X-ray shielding portion 31b is in a plane perpendicular to the optical axis A of the X-ray, with grating pitch p 1 in the constant direction (x-direction) orthogonal to the one direction, arranged at predetermined intervals d 1 from each other Has been.
  • X-ray shielding portion 32b in the plane orthogonal to the optical axis A of the X-ray, with grating pitch p 2 of the constant in the direction (x-direction) orthogonal to the one direction, the predetermined distance d 2 from each other It is arranged in a space.
  • the first and second absorption gratings 31 and 32 do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings.
  • the slit portions may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
  • the plurality of first lattice pieces 31A are arranged in the same x direction as the arrangement direction of the X-ray shielding portions 31b in a plane orthogonal to the optical axis A, and the lattice pieces 31A adjacent to each other in the x direction are arranged. It is connected.
  • the plurality of second lattice pieces 32A are arranged in the x direction within a plane orthogonal to the optical axis A, and the lattice pieces 32A adjacent in the x direction are connected to each other.
  • the lattice pieces 31A and 32A are not limited to the same direction (x direction) as the arrangement direction of the X-ray shielding portions 31b and 32b, and may be arranged in a direction (y direction) orthogonal thereto. They may be two-dimensionally arranged in the x direction and the y direction.
  • the first and second absorption type gratings 31 and 32 are configured to project the X-rays that have passed through the slit portion almost geometrically regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, most of the X-rays included in the irradiated X-rays can be obtained at the slit portion. It is configured to pass through without being diffracted while maintaining straightness. For example, when tungsten is used as the rotary anode 18a described above and the tube voltage is 50 kV, the effective wavelength of X-ray is about 0.4 mm. In this case, if the distances d 1 and d 2 are set to about 1 to 10 ⁇ m, most of the X-rays are projected almost geometrically without being diffracted by the slit portion.
  • the X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam having the X-ray focal point 18b as a light emission point, and therefore a projected image projected through the first absorption grating 31 (hereinafter referred to as a projection image).
  • the projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b.
  • the grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic pattern of the bright part of the G1 image at the position of the second absorption type grating 32.
  • the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
  • the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the imaging unit 12 of the present X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting, and the G1 image of the first absorption grating 31 is the first. because at every position of the rear absorption type grating 31 similarly obtained, the distance L 2, can be set independently of the Talbot distance.
  • the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating.
  • the grating pitch p 1 of 31, the grating pitch p 2, X-ray wavelength of the second absorption-type grating 32 (effective wavelength) lambda, and using the positive integer m, is expressed by the following equation (2).
  • Equation (2) is an equation representing the Talbot interference distance when the X-ray irradiated from the X-ray source 11 is a cone beam. “Timm Weitkamp, et al., Proc. Of SPIE, Vol. 6318, 2006 It is known from the annual salary 63180S-1.
  • Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, the distance L 2, the value of the range that satisfies the following equation (5) Set to.
  • the X-ray shielding portions 31b and 32b preferably completely shield (absorb) X-rays in order to generate a periodic pattern image with high contrast, but the above-described materials (gold, platinum) having excellent X-ray absorption properties Etc.), there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b, it is preferable to increase the thickness much as possible. For example, when the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays. In this case, the thicknesses h 1 and h 2 are 30 ⁇ m or more in terms of gold (Au). It is preferable that
  • the X-rays irradiated from the X-ray source 11 are cone beams
  • the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are too thick, the X-rays incident obliquely enter the slit portion.
  • vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 31b and 32b becomes narrow. Therefore, in view of the field of view secured to define the upper limit of the thickness h 1, h 2.
  • the effective visual field length V in the x direction is 10 cm.
  • the thickness h 1 may be 100 ⁇ m or less and the thickness h 2 may be 120 ⁇ m or less.
  • an intensity-modulated image is formed by superimposing the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 and is captured by the FPD 30. .
  • the pattern period p 1 ′ of the G1 image at the position of the second absorption grating 32 and the substantial grating pitch p 2 ′ (substantial pitch after production) of the second absorption grating 32 are manufacturing errors. Some differences occur due to or placement errors. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
  • the period T of the moire fringes is expressed by the following equation (8).
  • the arrangement pitch P in the x direction of the pixels 40 needs to be at least not an integral multiple of the moire period T, and it is necessary to satisfy the following equation (9) (where n Is a positive integer).
  • the arrangement pitch P of the pixels 40 of the FPD 30 is a value determined by design (generally about 100 ⁇ m) and is difficult to change, the magnitude relationship between the arrangement pitch P and the moire period T is adjusted. Adjusts the positions of the first and second absorption gratings 31 and 32 and changes the moire period T by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the G1 image. It is preferable to do.
  • FIG. 6 shows a method of changing the moire cycle T.
  • the moire period T can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A.
  • a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided.
  • the substantial grating pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ / cos ⁇ ”.
  • the moire cycle T changes (FIG. 6A).
  • the change of the moire period T is such that either one of the first and second absorption type gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. It can be performed by inclining.
  • a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided.
  • the second absorption type grating 32 is inclined by the angle ⁇ by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ ⁇ cos ⁇ ”.
  • the moire cycle T changes (FIG. 6B).
  • the moire period T can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A.
  • the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32.
  • a relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided.
  • the G1 image of the first absorption type grating 31 projected onto the position of the second absorption type grating 32.
  • the pattern period of “p 1 ′” ⁇ “p 1 ′ ⁇ (L 1 + L 2 + ⁇ ) / (L 1 + L 2 )” changes, and as a result, the moire period T changes (FIG. 6C).
  • imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed.
  • the change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the moiré period T is constituted by an actuator such as a piezoelectric element. Is possible.
  • the moire fringes detected by the FPD 30 are modulated by the subject H.
  • This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire fringes detected by the FPD 30.
  • FIG. 7 shows one X-ray refracted according to the phase shift distribution ⁇ (x) of the subject H in the x direction.
  • Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do.
  • Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
  • phase shift distribution ⁇ (x) of the subject H is expressed by the following equation (11), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
  • the G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H. become.
  • This amount of displacement ⁇ x is approximately expressed by the following equation (12) based on the small X-ray refraction angle ⁇ .
  • the refraction angle ⁇ is expressed by Expression (13) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x) of the subject H.
  • the amount of displacement ⁇ x is expressed by the following equation with the phase shift amount ⁇ of the signal output from each pixel 40 of the FPD 30 (the phase shift amount of the signal of each pixel 40 with and without the subject H): It is related as shown in (14).
  • phase shift amount ⁇ of the signal of each pixel 40 the refraction angle ⁇ is obtained from the equation (14), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (13).
  • a phase shift distribution ⁇ (x) of the subject H that is, a phase contrast image of the subject H can be generated.
  • the phase shift amount ⁇ is calculated using a fringe scanning method described below.
  • the fringe scanning method imaging is performed while one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner relative to the other in the x direction (that is, the phase of both grating periods is changed). Shoot while changing).
  • the second absorption type grating 32 is moved by the scanning mechanism 33 described above, but the first absorption type grating 31 may be moved.
  • the moire fringes move, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2 ⁇ ), the moire fringes return to their original positions.
  • a fringe image is photographed with the FPD 30 while moving the second absorption grating 32 by an integer of the grating pitch p 2 , and each pixel 40 is captured from the plural fringe images photographed.
  • the signal is acquired and processed by the processing unit 22 to obtain the phase shift amount ⁇ of the signal of each pixel 40.
  • FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
  • the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present.
  • x is a coordinate in the x direction of the pixel 40
  • a 0 is the intensity of the incident X-ray
  • An is a value corresponding to the contrast of the signal value of the pixel 40 (where n is a positive value). Is an integer).
  • ⁇ (x) represents the refraction angle ⁇ as a function of the coordinate x of the pixel 40.
  • arg [] means the extraction of the declination, and corresponds to the phase shift amount ⁇ of the signal of each pixel 40. Accordingly, the refraction angle ⁇ (x) is obtained by calculating the phase shift amount ⁇ of the signal of each pixel 40 from the M signal values obtained at each pixel 40 based on the equation (17).
  • FIG. 9 shows a signal of one pixel of the radiation image detector that changes with the fringe scanning.
  • the M signal values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption grating 32.
  • a broken line in FIG. 9 indicates a change in signal value when the subject H does not exist, and a solid line in FIG. 9 indicates a change in signal value when the subject H exists.
  • the phase difference between the two waveforms corresponds to the phase shift amount ⁇ of the signal of each pixel 40.
  • the phase shift is obtained by integrating the refraction angle ⁇ (x) along the x-axis.
  • a distribution ⁇ (x) is obtained.
  • the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution ⁇ (x , Y).
  • the above calculation is performed by the calculation processing unit 22.
  • the arithmetic processing unit 22 further includes a connection portion between the first lattice pieces 31A adjacent to each other in the first absorption type lattice 31 and a second absorption type lattice in the projection onto the FPD 30 with the X-ray focal point 18b as the viewpoint.
  • the pixels 40 belonging to the region (defect region) where the connection part of the 32 adjacent second lattice pieces 32A is projected are extracted, and the signal values of these pixels 40 are complemented with the signal values of the surrounding pixels 40.
  • the phase shift distribution ⁇ is calculated based on the complemented signal value.
  • extraction of the pixel 40 and complementation of the signal value will be described.
  • FIG. 10 shows the configuration of the first and second gratings
  • FIG. 11 shows the distribution of defect areas in the radiation image detector.
  • the first lattice pieces 31A adjacent to each other in the first absorption type lattice 31 are dispersed with fine particles of heavy metal having an atomic number of 40 or more as an X-ray absorber, such as gold paste, platinum paste, lead-containing solder, etc.
  • the connecting portion 31c is constituted by an X-ray shield made of a hardened adhesive layer.
  • the second lattice pieces 32A adjacent to each other in the second absorption type grating 32 are also connected using an adhesive in which an X-ray absorbing material is dispersed, and the connecting portion 32c is an X-ray made of a cured adhesive layer. It is constituted by a shield.
  • the connecting portions 31c and 32c configured as described above are typically formed to a thickness of about several tens to several hundreds of ⁇ m, and the distances d 1 and d 1 between the slit portions of the first and second absorption gratings 31 and 32 are formed. It is larger than d 2 (about 1 to 10 ⁇ m) and is substantially equal to or larger than the pitch of the pixels 40 in the FPD 30.
  • the signal value of the pixel 40 is smaller than the signal value of the pixel 40 belonging to the third area A3 excluding the first and second areas A1 and A2. Therefore, a predetermined threshold is set for the signal value of the pixel 40, and the pixel 40 having a signal value smaller than this threshold is extracted.
  • the extracted signal value of each pixel 40 is complemented by an appropriate method such as replacement with an average value of signal values of a plurality of pixels 40 that belong to the third region A3 around the pixel.
  • at least one pixel 40 belonging to the third region A3 is interposed between each pixel 40, in other words, the first region A1 and the second region A2 do not overlap each other and are adjacent to each other.
  • the first and second absorption type gratings 31 and 32 are arranged so that a gap G larger than the pitch of the pixels 40 of the FPD 30 is placed between both the areas A1 and A2.
  • the above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the phase contrast image in the storage unit 23.
  • the above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20.
  • the phase contrast image of the subject H is displayed on the monitor 24.
  • each of the first and second absorption type gratings 31 and 32 is configured by connecting a plurality of grating pieces to each of the grating pieces.
  • the first and second absorption gratings 31 and 32 having a large size can be obtained while maintaining the accuracy by using relatively small ones for 31A and 32A. Thereby, the imaging range can be expanded.
  • the pixels 40 belonging to the regions A1 and A2 in which the connecting portion is projected Extraction can be performed easily and reliably, and the signal value of the pixel 40 can be reliably complemented to improve the image quality of the obtained phase contrast image.
  • the pixels 40 belonging to the first and second regions A1 and A2 are in close proximity to each other by stripe scanning.
  • the effective pixels 40 capable of accurately detecting the phase information of the subject can be provided, and the signal values of the pixels 40 belonging to the first and second regions A1 and A2 are obtained using the signal values of the effective pixels 40. Can be complemented with high accuracy. Thereby, the image quality of the obtained phase contrast image can be improved.
  • the irradiated X-rays have high spatial coherence.
  • a general X-ray source used in the medical field can be used as the X-ray source 11 without being required.
  • the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned).
  • the above-described X-ray imaging system 10 calculates the refraction angle ⁇ by performing fringe scanning on the projection image of the first grating, and therefore the first and second gratings absorb both.
  • the present invention is not limited to this.
  • the present invention is also useful when the refraction angle ⁇ is calculated by performing fringe scanning on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating.
  • the method of analyzing the moire fringes formed by superimposing the X-ray image of the first grating and the second grating is not limited to the above-described fringe scanning method. For example, “J. Opt. Soc. Am. Vol” Various methods using Moire fringes, such as a method using Fourier transform / inverse Fourier transform known as “.72, No. 1 1982 (1982) P.156”, can also be applied.
  • the X-ray imaging system 10 has been described as one that stores or displays an image of the phase shift distribution ⁇ as a phase contrast image, as described above, the phase shift distribution ⁇ is a phase determined from the refraction angle ⁇ .
  • the differential amount of the shift distribution ⁇ is integrated, and the differential amount of the refraction angle ⁇ and the phase shift distribution ⁇ is also related to the phase change of the X-ray by the subject. Therefore, an image having the refraction angle ⁇ as an image and an image having the differential amount of the phase shift ⁇ are also included in the phase contrast image.
  • phase differential image (a differential amount of the phase shift distribution ⁇ ) may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject.
  • This phase differential image reflects the phase unevenness of the detection system (including phase shift due to moire, grid nonuniformity, etc.).
  • a phase differential image is created from a group of images acquired by shooting (main shooting) in the presence of a subject, and the phase differential image obtained by pre-shooting is subtracted from this to correct phase irregularity in the measurement system.
  • a phase differential image can be obtained.
  • FIG. 12 shows the configuration of the first and second gratings for a modification of the radiation imaging system of FIG. 1, and FIG. 13 shows the distribution of defect areas in the radiation image detector.
  • the first absorption grating 31 includes a plurality of first grating pieces 31A arranged in the x direction and the y direction, and the first grating pieces 31A adjacent in the x direction are arranged in the y direction. Adjacent first lattice pieces 31A are connected to each other. Also in the second absorption type grating 32, a plurality of second grating pieces 32A are arranged in the x direction and the y direction, and the second grating pieces 32A adjacent in the x direction are adjacent to each other in the y direction. The lattice pieces 32A are connected to each other. The connecting portions between adjacent lattice pieces are all formed by an X-ray shield.
  • each pixel 40 which belongs to 1st area
  • At least one pixel 40 belonging to the third area excluding the first and second areas A1 and A2 is interposed between each pixel 40 belonging to the second area A2 onto which the connecting portion 32cx is projected. .
  • the first area A1 and the second area A2 do not overlap each other, and a gap larger than the pitch of the pixels 40 of the FPD 30 is placed between the adjacent areas A1 and A2.
  • the effective pixel 40 can be provided in the immediate vicinity of each pixel 40 belonging to the first and second regions A1 and A2, and the first and second regions are used by using the signal values of these effective pixels 40.
  • the signal values of the pixels 40 belonging to A1 and A2 can be complemented with high accuracy.
  • each pixel 40 belonging to the fourth region A4 on which the connecting portion 31cy of the two first grid pieces 31A adjacent in the y direction is projected, and two second grid pieces 32A that are also adjacent in the y direction At least one pixel 40 belonging to the sixth area A6 excluding the fourth and fifth areas A4 and A5 is interposed between each pixel 40 belonging to the fifth area A5 on which the connection 32cy portion is projected. Yes.
  • the fourth area A4 and the fifth area A5 do not overlap each other, and a gap larger than the pitch of the pixels 40 of the FPD 30 is placed between the adjacent areas A4 and A5.
  • the effective pixel 40 can be provided in the immediate vicinity of each pixel 40 belonging to the fourth and fifth regions A4, A5, and the fourth and fifth regions can be obtained using the signal values of the effective pixels 40.
  • the signal values of the pixels 40 belonging to A4 and A5 can be complemented with high accuracy.
  • the first region A1 and the second region A2 do not overlap with each other in the x direction
  • the fourth region A4 and the fifth region A5 do not overlap with each other in the y direction. Only one of the x direction and the y direction may be such that the two regions do not overlap. In this direction, the effective pixel 40 may be provided in the immediate vicinity of each pixel 40 belonging to both regions. it can.
  • FIG. 14 shows the configuration of the first and second gratings for another modification of the radiation imaging system of FIG.
  • the first grating piece 31A and the second grating piece 32A have X-rays of the first absorption type grating 31 and the second absorption type grating 32 in a geometric shape excluding their thickness. It is similar according to the ratio (L 1 / (L 1 + L 2 )) of the distance from the focal point 18b. Then, the arrangement direction of the first grating pieces 31A in the first absorption type grating 31 and the number of arrangements in each direction, and the arrangement direction of the second grating pieces 32A in the second absorption type grating 32 and the number of arrangements in each direction. The centers of the first and second absorption gratings 31 and 32 are both located on the optical axis A of X-rays.
  • the region where the connection part 32c of the second absorption type grating 32 is projected is included in the region where the connection part 31c of the first absorption type grating 31 is projected.
  • FIG. 15 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • a mammography apparatus 80 shown in FIG. 15 is an apparatus that captures an X-ray image (phase contrast image) of a breast B as a subject.
  • the mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81.
  • An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
  • the X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12.
  • the X-ray source 11 and the imaging unit 12 are arranged to face each other.
  • the compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
  • the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 described above are attached to the respective components. Yes. Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • FIG. 16 shows a modification of the radiation imaging system of FIG.
  • the first absorption type lattice 31 is accommodated in a lattice accommodation portion 91 connected to the arm member 81.
  • the imaging unit 92 includes an FPD 30, a second absorption type grating 32, and a scanning mechanism 33.
  • the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
  • the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 90 can also be applied to the X-ray imaging system 10 described above. Is possible.
  • FIG. 17 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101.
  • the X-ray imaging system 100 shown in FIG. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • the focal point of the X-ray focal point 18b when the distance from the X-ray source 11 to the FPD 30 is a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b.
  • the blur of the G1 image due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is lowered. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall.
  • the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
  • the multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction).
  • the extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32.
  • the multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
  • the lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following formula (18), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
  • Expression (18) indicates that the projection image (G1 image) of the X-rays emitted from the small-focus light sources dispersedly formed by the multi-slit 103 by the first absorption-type grating 31 is the position of the second absorption-type grating 32. This is a geometric condition for matching (overlapping).
  • the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (19).
  • the G1 images based on the plurality of small focus light sources formed by the multi-slit 103 are superimposed, thereby improving the image quality of the phase contrast image without reducing the X-ray intensity.
  • the multi slit 103 described above can be applied to any of the X-ray imaging systems described above.
  • FIG. 18 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • the phase contrast image obtained by the fringe scanning is an X-ray refraction component in the periodic array direction (x direction) of the X-ray shielding portions of the first and second absorption gratings 31 and 32.
  • the refractive component in the extending direction (y direction) of the X-ray shielding part is not included. For this reason, there is a portion that cannot be depicted depending on the shape and orientation of the subject H. For example, when the direction of the load surface of the articular cartilage is matched with the y direction, it is considered that the peripheral tissue of the cartilage (such as tendons and ligaments) having a shape perpendicular to the load surface is insufficiently depicted.
  • the peripheral tissue of the cartilage such as tendons and ligaments
  • the first and second absorption gratings 31 and 32 are centered on a virtual line (X-ray optical axis A) orthogonal to the center of the grating surface of the first and second absorption gratings 31 and 32. It is also possible to provide a lattice rotation mechanism 105 that rotates integrally from the first direction and sets the second direction to generate a phase contrast image in each of the first direction and the second direction. it can.
  • the first and second absorption gratings 31 and 32 are rotated by 90 °, and the first direction and the second direction are orthogonal to each other. As long as the direction intersects, the rotation angle of the first and second absorption gratings 31 and 32 is not limited to 90 °. Further, the grating rotating mechanism 105 may be configured to rotate only the first and second absorption type gratings 31 and 32 separately from the FPD 30, or the first and second absorption type gratings 31. , 32 and the FPD 30 may be rotated together.
  • an X-ray source in which the multi-slit 103 and the collimator unit 102 are integrally formed so that the rotation coincides with the first and second absorption gratings 31 and 32 is used. Rotate. Furthermore, the generation of phase contrast images in the first and second orientations using the grating rotation mechanism 105 can be applied to any of the X-ray imaging systems described above.
  • FIG. 19 shows the configuration of the first and second gratings for another example of the radiation imaging system for explaining the embodiment of the present invention.
  • the first and second absorption gratings 31 and 32 are arranged such that the periodic arrangement direction of the X-ray shielding portions 31b and 32b is linear (that is, the grating surface is planar).
  • the grating surface is planar.
  • the first absorption type grating 110 is configured by connecting a plurality of first grating pieces 110A, and each of the first grating pieces 110A is formed on the surface of a planar substrate 110a that is X-ray transparent. , a plurality of X-ray shielding section 110b that extends linearly in the y direction are periodically arranged at a predetermined pitch p 1.
  • the first absorption type grating 110 includes a plurality of first gratings in the circumferential direction of the cylindrical surface with the imaginary line passing through the X-ray focal point 18b and extending in the extending direction (y direction) of the X-ray shielding part 110b as a central axis.
  • the lattice surface is formed in a substantially concave curved surface shape.
  • a connecting portion between adjacent first lattice pieces 110A is formed of an X-ray shield.
  • the second absorption type grating 111 is configured by connecting a plurality of second grating pieces 111A, and each of the second grating pieces 111A is an X-ray transparent and planar substrate 111a. on the surface of a plurality of X-ray shielding section 111b that extends linearly in the y direction are periodically arranged at a predetermined pitch p 2.
  • the second absorption type grating 111 includes a plurality of second gratings in the circumferential direction of the cylindrical surface with a virtual line passing through the X-ray focal point 18b and extending in the extending direction (y direction) of the X-ray shielding part 111b as a central axis.
  • the lattice surface is formed in a substantially concave curved surface shape.
  • a connecting portion between the adjacent second lattice pieces 111A is formed of an X-ray shield.
  • the grating surfaces can be easily formed into a substantially concave curved surface shape. Then, by making the grating surfaces of the first and second absorption gratings 110 and 111 substantially concave curved surfaces, the X-rays irradiated from the X-ray focal point 18 b since made incident substantially perpendicularly to the respective units, the upper limit of the limitation of the thickness h 2 of the thickness h 1 and the X-ray shielding portion 111b of the X-ray shielding section 110b is reduced, the above expression (6) and (7) There is no need to consider.
  • the detection surface of the FPD 112 is also a cylinder whose central axis is a straight line that extends in the y direction through the X-ray focal point 18b. It is preferable to form a concave curved surface along the surface.
  • the first and second absorption gratings 110 and 111 and the FPD 112 can be applied to any of the X-ray imaging systems described above. Furthermore, it is also preferable that the multi slit 103 has the same shape as the first and second absorption gratings 110 and 111.
  • FIG. 20 shows the configuration of the radiation image detector in relation to another example of the radiation imaging system for explaining the embodiment of the present invention.
  • the second absorption type grating 32 is provided independently of the FPD 30, but the X-ray image detector itself has the second absorption type grating 32 or an equivalent configuration. You may do it.
  • the second absorption type grating can be eliminated by using an X-ray image detector having a configuration disclosed in Japanese Patent Laid-Open No. 2009-133823.
  • This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges, and a charge collection electrode that collects electric charges converted in the conversion layer,
  • the charge collecting electrode 121 of the pixel 120 is configured by arranging a plurality of linear electrode groups 122 to 127 formed by electrically connecting linear electrodes arranged at a constant period so that their phases are different from each other. Has been.
  • the pixels 120 are two-dimensionally arranged at a constant pitch along the x direction and the y direction, and each pixel 120 has a charge collection for collecting the charges converted by the conversion layer that converts the X-rays into charges.
  • An electrode 121 is formed.
  • the charge collection electrode 121 includes first to sixth linear electrode groups 122 to 127, and the phase of the arrangement period of the linear electrodes of each linear electrode group is shifted by ⁇ / 3.
  • the phase of the first linear electrode group 122 is 0, the phase of the second linear electrode group 123 is ⁇ / 3, the phase of the third linear electrode group 124 is 2 ⁇ / 3, The phase of the fourth linear electrode group 125 is ⁇ , the phase of the fifth linear electrode group 126 is 4 ⁇ / 3, and the phase of the sixth linear electrode group 127 is 5 ⁇ / 3.
  • the relationship between 1 ′ and the arrangement pitch P of the pixels 120 in the x direction is similar to the second absorption grating 32 of the X-ray imaging system 10 described above, and the period T of the moire fringes represented by the equation (8). Therefore, it is necessary to satisfy the formula (9), and it is preferable to satisfy the formula (10).
  • each pixel 120 is provided with a switch group 128 for reading out the charges collected by the charge collecting electrode 121.
  • the switch group 128 includes TFT switches provided in the first to sixth linear electrode groups 121 to 126, respectively.
  • the second absorption type grating 32 is not required from the imaging unit 12, and a plurality of images can be obtained by one imaging. Since a phase component fringe image can be acquired, physical scanning for fringe scanning becomes unnecessary, and the scanning mechanism 33 can be eliminated. Thereby, it is possible to reduce the cost and further reduce the thickness of the photographing unit.
  • the structure of the charge collecting electrode may be replaced with another structure described in Japanese Patent Application Laid-Open No. 2009-133823.
  • FIG. 21 shows the configuration of the calculation unit of another example of the radiation imaging system for explaining the embodiment of the present invention.
  • phase contrast image a high-contrast image (phase contrast image) of an X-ray weakly absorbing object that has been difficult to draw
  • an absorption image is referred to corresponding to the phase contrast image.
  • it is effective to supplement the portion that could not be represented by the absorption image with the information of the phase contrast image by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing.
  • capturing an absorption image separately from the phase contrast image makes it difficult to superimpose images due to the shift in the shooting position between the phase contrast image capture and the absorption image capture. Increasing the burden on the subject.
  • the small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in the fields of cancer and cardiovascular diseases.
  • this X-ray imaging system uses an arithmetic processing unit 190 that can generate an absorption image and a small-angle scattered image from a plurality of images acquired for a phase contrast image.
  • the absorption image generation unit 192 generates an absorption image by averaging pixel data I k (x, y) obtained for each pixel with respect to k, calculating an average value, and forming an image as shown in FIG. To do.
  • the average value may be calculated by simply averaging the pixel data I k (x, y) with respect to k. However, when M is small, the error increases, so that the pixel data I k ( After fitting x, y) with a sine wave, an average value of the fitted sine wave may be obtained.
  • the generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel data I k (x, y) with respect to k can be used as long as the amount corresponds to the average value.
  • an absorption image may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject.
  • This absorption image reflects the transmittance unevenness of the detection system (including information such as the transmittance unevenness of the grid). Therefore, a correction coefficient map for correcting the transmittance unevenness of the detection system can be created from this image.
  • Absorption of the subject in which an absorption image is created from a group of images obtained by shooting in the state of the subject (main shooting), and the above-described correction coefficient is applied to each pixel, thereby correcting the transmittance unevenness of the detection system. An image can be obtained.
  • the small angle scattered image generation unit 193 generates a small angle scattered image by calculating and imaging the amplitude value of the pixel data I k (x, y) obtained for each pixel.
  • the amplitude value may be calculated by obtaining the difference between the maximum value and the minimum value of the pixel data I k (x, y).
  • M is small
  • the error increases, so that the pixel data After fitting I k (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained.
  • the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
  • an absorption image and a small angle scattered image are generated from a plurality of images acquired for the phase contrast image of the subject. No deviation occurs, and the phase contrast image can be satisfactorily superimposed with the absorption image or the small-angle scattered image.
  • FIG. 23 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • the X-ray imaging system of the present example has a first grating 131 that forms the first periodic pattern image by passing the X-rays emitted from the X-ray source 11 and the first grating 131.
  • a second grating 132 that forms a second periodic pattern image by modulating the intensity of the periodic pattern image, and an X-ray image detector (radiation) that detects the second periodic pattern image formed by the second grating 132.
  • Image detector) 240 and a second periodic pattern image detected by X-ray image detector 240 acquire a fringe image, and generate a phase contrast image based on the acquired fringe image Part 260.
  • the phase contrast image generation unit 260 constitutes a part of the processing of the control device 20 in the console 13 (FIG. 2) and the processing of the arithmetic processing unit 22.
  • the X-ray source 11 emits X-rays toward the subject H, and has spatial coherence that can generate a Talbot interference effect when the first grating 131 is irradiated with X-rays. is there.
  • a microfocus X-ray tube or a plasma X-ray source having a small X-ray emission point size can be used.
  • a multi-slit for example, the multi-slit 103 described above
  • It can be used by being installed between the X-ray source 11 and the first grating 131.
  • the first grating 131 is desirably a so-called phase modulation type grating that gives a phase modulation of about 90 ° or about 180 ° with respect to the irradiated X-ray.
  • the necessary thickness h 1 is about 1 ⁇ m to several ⁇ m.
  • An amplitude modulation type grating can also be used as the first grating 131.
  • the second grating 132 is preferably an amplitude modulation type grating.
  • the self-image of the first grating 131 formed through the first grating 131 is an X-ray source. It is enlarged in proportion to the distance from 11.
  • the grating pitch P 2 of the second grating 132 substantially matches the periodic pattern of the bright part of the self-image of the first grating 131 at the position of the second grating 132. To be determined.
  • the second grating pitch p 2 is Are determined so as to satisfy the relationship of the above formula (1).
  • the first grating 131 has a plurality of first grating pieces arranged one-dimensionally or two-dimensionally, and these first grating pieces. It is configured by connecting each other, and the connecting portion between the adjacent first lattice pieces is configured by an X-ray shield.
  • the second grating 132 also has a plurality of second grating pieces arranged one-dimensionally or two-dimensionally. The pieces are connected to each other, and the connecting portion between the adjacent second lattice pieces is formed of an X-ray shield.
  • the X-ray image detector 240 detects an image in which the self-image of the first grating 131 formed by the X-rays incident on the first grating 131 is intensity-modulated by the second grating 132 as an image signal.
  • the X-ray image detector 240 is a direct-conversion X-ray image detector that reads an image signal by scanning with linear reading light. X-ray image detector.
  • FIG. 24 shows the appearance (FIG. 24A), xz plane cross section (FIG. 24B), and yz plane cross section (FIG. 24C) of the X-ray image detector 240.
  • the X-ray image detector 240 of this example includes a first electrode layer 241 that transmits X-rays, and a recording photoconductive layer 242 that generates charges when irradiated with X-rays transmitted through the first electrode layer 241.
  • the charge transport layer 244 which acts as an insulator for charges of one polarity among the charges generated in the recording photoconductive layer 242, and acts as a conductor for charges of the other polarity, reading light
  • the photoconductive layer for reading 245 that generates an electric charge when irradiated with the first electrode layer 246 and the second electrode layer 246 are laminated in this order.
  • a power storage unit 243 that accumulates charges generated in the recording photoconductive layer 242 is formed. Note that each of the above layers is formed on the glass substrate 247 in order from the second electrode layer 246.
  • the first electrode layer 241 only needs to transmit X-rays.
  • Nesa film (SnO 2 ), ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), amorphous light-transmitting oxide film IDIXO (Idemitsu Indium X-metal Oxide; Idemitsu Kosan Co., Ltd.) having a thickness of 50 to 200 nm can be used, and Al or Au having a thickness of 100 nm can also be used.
  • the recording photoconductive layer 242 only needs to generate charge when irradiated with X-rays, and is excellent in that it has relatively high quantum efficiency and high dark resistance with respect to X-rays.
  • a material mainly composed of a-Se is used.
  • the thickness is suitably 10 ⁇ m or more and 1500 ⁇ m or less. In particular, when it is used for mammography, it is preferably 150 ⁇ m or more and 250 ⁇ m or less, and when used for general photographing, it is preferably 500 ⁇ m or more and 1200 ⁇ m or less.
  • the better for example, 102 Or more, preferably 103 or more
  • poly N-vinylcarbazole PVK
  • Organic compounds such as 4'-diamine (TPD) and discotic liquid crystal, or TPD polymer (polycarbonate, polystyrene, PVK) dispersion, semiconductor materials such as a-Se and As 2 Se 3 doped with 10 to 200 ppm of Cl Is appropriate.
  • a thickness of about 0.2 to 2 ⁇ m is appropriate.
  • the reading photoconductive layer 245 may be any material that exhibits conductivity when irradiated with reading light.
  • a photoconductive substance mainly composed of at least one of MgPc (Magnesium phthalocyanine), VoPc (phase II of Vanadyl phthalocyanine), CuPc (Cupper phthalocyanine), and the like is preferable.
  • a thickness of about 5 to 20 ⁇ m is appropriate.
  • the second electrode layer 246 includes a plurality of transparent linear electrodes 246a that transmit the reading light and a plurality of light shielding linear electrodes 246b that shield the reading light.
  • the transparent linear electrode 246a and the light-shielding linear electrode 246b extend linearly continuously from one end of the image forming area of the X-ray image detector 240 to the other end.
  • the transparent linear electrodes 246a and the light-shielding linear electrodes 246b are alternately arranged in parallel at predetermined intervals (FIG. 24A, 24B).
  • the transparent linear electrode 246a is made of a conductive material while transmitting reading light.
  • ITO, IZO, or IDIXO can be used as with the first electrode layer 241.
  • the thickness is about 100 to 200 nm.
  • the light shielding linear electrode 246b shields the reading light and is made of a conductive material.
  • a transparent conductive material for example, the above transparent conductive material and a color filter can be used in combination.
  • the thickness of the transparent conductive material is about 100 to 200 nm.
  • an image signal is read out using a pair of the adjacent transparent linear electrode 246a and the light shielding linear electrode 246b. That is, an image signal of one pixel is read out by one set of the transparent linear electrode 246a and the light shielding linear electrode 246b (FIG. 24B).
  • the transparent linear electrode 246a and the light shielding linear electrode 246b are arranged so that one pixel is approximately 50 ⁇ m.
  • the X-ray imaging system of this example includes a linear reading light source 250 extending in a direction (x direction) orthogonal to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b (FIG. 24A).
  • the linear reading light source 250 of this example is composed of a light source such as an LED (Light Emitting Diode) or LD (Laser Diode) and a predetermined optical system, and the linear reading light having a width of about 10 ⁇ m is detected as an X-ray image detector. It is comprised so that 240 may be irradiated.
  • the linear reading light source 250 is moved in the extending direction (y direction) of the transparent linear electrode 246a and the light shielding linear electrode 246b by a predetermined moving mechanism (not shown).
  • the X-ray image detector 240 is scanned by the linear reading light emitted from the light source 250 and the image signal is read out. The operation of reading the image signal will be described in detail later.
  • the first grating 131, the second grating 132, and the X-ray image detector 240 In order for the configuration including the X-ray source 11, the first grating 131, the second grating 132, and the X-ray image detector 240 to function as a Talbot interferometer, some conditions must be substantially satisfied. The conditions will be described below.
  • the grid surfaces of the first grating 131 and the second grating 132 must be parallel to the xy plane shown in FIG.
  • the distance Z 2 (Talbot interference distance Z) between the first grating 131 and the second grating 132 is the following when the first grating 131 is a phase modulation type grating that applies 90 ° phase modulation.
  • Expression (20) is substantially satisfied and the first grating 131 is a phase modulation type grating that gives 180 ° phase modulation, the following Expression (21) must be approximately satisfied.
  • is the X-ray wavelength (usually effective wavelength)
  • m is 0 or a positive integer
  • p 1 is the lattice pitch of the first grating 131 described above
  • p 2 is the grating pitch of the second grating 132 described above. It is.
  • the above formula (2) must be substantially satisfied with respect to the Talbot interference distance Z.
  • the thicknesses h 1 and h 2 of the first and second gratings 131 and 132 are also set so as to satisfy the expressions (6) and (7) described above with respect to the first and second gratings 31 and 32. Must be set.
  • the first grating 131 and the second grating 132 are formed by extending the first grating 131 and the second grating 132. It is arranged so that the direction is relatively inclined. Then, with respect to the first grating 131 and the second grating 132 arranged in this way, the main scanning direction (x direction in FIG. 24) of each pixel of the image signal detected by the X-ray image detector 240.
  • the main pixel size Dx and the sub-pixel size Dy in the sub-scanning direction have a relationship as shown in FIG.
  • the main pixel size Dx is determined by the arrangement pitch of the transparent linear electrodes 246a and the light shielding linear electrodes 246b of the X-ray image detector 240, and is set to 50 ⁇ m in this example.
  • the sub-pixel size Dy is determined by the width of the linear reading light irradiated to the X-ray image detector 240 by the linear reading light source 250, and is set to 10 ⁇ m in this example. .
  • a plurality of fringe images are acquired, and a phase contrast image is generated based on the plurality of fringe images. If the number of acquired fringe images is M, M subpixel sizes are obtained.
  • the first grating 131 is tilted with respect to the second grating 132 so that Dy becomes one image resolution D in the sub-scanning direction of the phase contrast image.
  • a periodic pattern image formed on the position of the second grating 132 by the pitch of the second grating 132 and the first grating 131 (hereinafter referred to as self of the first grating 131).
  • the pitch of the image G1) is p
  • the relative rotation angle of the self-image of the first grating 131 with respect to the second grating 132 in the xy plane is ⁇
  • the rotation angle ⁇ is set so as to satisfy the following expression (22), so that the self-image G1 of the first grating 131 and the first image G1 with respect to the length of the image resolution D in the sub scanning direction
  • the phase of the second grating 132 is shifted by n periods.
  • an image signal obtained by dividing the intensity modulation for n periods of the self-image of the first grating 131 by M can be detected by each pixel of Dx ⁇ Dy obtained by dividing the image resolution D of the phase contrast image in the sub-scanning direction by M.
  • n 1
  • the phase of the self-image G1 of the first grating 131 and the second grating 132 is shifted by one period with respect to the length of the image resolution D in the sub-scanning direction. It will be. More simply, the range that passes through the second grating 132 for one period of the self-image G1 of the first grating 131 changes over the length of the image resolution D in the sub-scanning direction.
  • M 5, but M may be 3 or more and may be other than 5.
  • n 1, but n may be an integer other than 1 as long as n is an integer other than 0. That is, when n is a negative integer, the rotation is opposite to that in the above-described example, and n may be an intensity modulation for n periods with n being an integer other than ⁇ 1.
  • n is a multiple of M, the phases of the self-image G1 of the first grating 131 and the second grating 132 are equal between one set of M sub-scanning direction pixels Dy, and M different numbers Since it is not a striped image, it is excluded.
  • the first grating 131 for example, after fixing the relative rotation angle of the X-ray image detector 240 and the second grating 132, the first grating 131. This can be done by rotating 131.
  • the theoretical rotation angle ⁇ is about 5.7 °.
  • the actual rotation angle ⁇ ′ of the self-image of the first grating 131 relative to the second grating 132 can be detected by, for example, the self-image of the first grating and the moire pitch by the second grating 132. .
  • , the actual rotation angle ⁇ ′ can be obtained by substituting P ′ p / cos ⁇ ′ into the above equation.
  • the moire pitch Pm may be obtained based on the image signal detected by the X-ray image detector 240.
  • the theoretical rotation angle ⁇ and the actual rotation angle ⁇ ′ may be compared, and the rotation angle of the first grating 131 may be adjusted automatically or manually based on the difference.
  • the phase contrast image generation unit 260 generates an X-ray phase contrast image based on image signals of M kinds of different fringe images detected by the X-ray image detector 240.
  • X-rays are emitted from the X-ray source 11. Then, the X-ray passes through the subject H and is then irradiated on the first grating 131.
  • the X-rays irradiated to the first grating 131 are diffracted by the first grating 131 to form a Talbot interference image at a predetermined distance from the first grating 131 in the optical axis direction of the X-ray.
  • a self-image of the first grating 131 is formed at a predetermined distance from the first grating 131.
  • the first grating 131 is a phase modulation type grating that gives 90 ° phase modulation
  • Expression (20) Expression (21) in the case of a 180 ° phase modulation type grating or intensity modulation type grating
  • the self-image of the first grating 131 is formed at a given distance, the wavefront of the X-ray incident on the first grating 131 is distorted by the subject H, so that the self-image of the first grating 131 is deformed accordingly. Yes.
  • the X-ray passes through the second grating 132.
  • the self-image of the deformed first grating 131 is intensity-modulated by being superimposed on the second grating 132, and is detected by the X-ray image detector 240 as an image signal reflecting the wavefront distortion. Is done.
  • intensity modulation is performed by superposition of the self-image of the first grating 131 and the second grating 132.
  • the X-rays thus emitted are irradiated from the first electrode layer 241 side of the X-ray image detector 240 (FIG. 28A).
  • the X-rays irradiated to the X-ray image detector 240 are transmitted through the first electrode layer 241 and irradiated to the recording photoconductive layer 242.
  • the X-ray irradiation generates a charge pair in the recording photoconductive layer 242, and the positive charge is combined with the negative charge charged in the first electrode layer 241 and disappears, and the negative charge is latent.
  • the image charges are accumulated in the power storage unit 243 formed at the interface between the recording photoconductive layer 242 and the charge transport layer 244 (FIG. 28B).
  • the linear reading light L1 emitted from the linear reading light source 250 is irradiated from the second electrode layer 246 side. .
  • the reading light L1 passes through the transparent linear electrode 246a and is applied to the reading photoconductive layer 245, and the positive charge generated in the reading photoconductive layer 245 by the irradiation of the reading light L1 passes through the charge transport layer 244.
  • the negative charge is combined with the positive charge charged on the light shielding linear electrode 246b through the charge amplifier 200 connected to the transparent linear electrode 246a.
  • the linear reading light source 250 moves in the sub-scanning direction to scan the X-ray image detector 240 with the linear reading light L1, and the above-described reading lines are irradiated with the linear reading light L1.
  • the image signals are sequentially detected by the action, and the detected image signals for each reading line are sequentially input and stored in the phase contrast image generation unit 260.
  • the phase contrast image generation unit 260 stores the stored image. Based on the signal, image signals of five different fringe images are acquired.
  • the image resolution D in the sub-scanning direction of the phase contrast image is divided into five, and the intensity modulation of one period of the self image of the first grating 131 is divided into five. Since the first grating 131 is inclined with respect to the second grating 132 so that the detected image signal can be detected, as shown in FIG. 30, the image signal read from the first reading line is the first The image signal acquired as the fringe image signal M1 and read from the second reading line is acquired as the second fringe image signal M2, and the image signal read from the third reading line is the third fringe image signal M3.
  • the image signal read from the fourth reading line is acquired as the fourth fringe image signal M4, and the image signal read from the fifth reading line is acquired as the fifth fringe image signal M5. .
  • the first to fifth reading lines shown in FIG. 30 correspond to the sub-pixel size Dy shown in FIG.
  • FIG. 30 only the reading range of Dx ⁇ (Dy ⁇ 5) is shown, but the first to fifth fringe image signals are acquired in the same manner as described above for the other reading ranges. That is, as shown in FIG. 31, an image signal of a pixel row group composed of pixel rows (reading lines) every four pixel intervals in the sub-scanning direction is acquired, and one stripe image signal of one frame is acquired.
  • the image signal of the pixel row group of the first reading line is acquired to acquire the first stripe image signal of one frame
  • the image signal of the pixel row group of the second reading line is acquired to 1
  • the second stripe image signal of the frame is acquired
  • the image signal of the pixel row group of the third reading line is acquired
  • the third stripe image signal of one frame is acquired
  • the image of the pixel row group of the fourth reading line A signal is acquired to acquire a fourth stripe image signal of one frame
  • an image signal of a pixel row group of the fifth reading line is acquired, and a fifth stripe image signal of one frame is acquired.
  • the phase contrast image generation unit 260 generates a phase contrast image based on the first to fifth fringe image signals.
  • the method for generating the phase contrast image in this example is the same as that already described with reference to the equations (11) to (17), and thus the description thereof is omitted.
  • both the first grating 131 and the second grating 132 are configured as absorption (amplitude modulation type) gratings, and the Talbot interference effect is obtained. Irrespective of the presence or absence of, it is good also as a structure which projects the radiation which passed the slit part substantially geometrically.
  • the distance d 1 of the first grating 131 spacing d 2 of the second grating 132, substantially geometrically without being most of the radiation is diffracted by the slit portion be about 1 [mu] m ⁇ 10 [mu] m Projected.
  • the grating pitch p 1 of the first grating 131 for the relationship between the lattice pitch p 2 of the second grating 132 is the same as when the first grating 131 described above is a phase modulation type grating. Further, the inclination of the first grating 131 with respect to the second grating 132 is also the same as in the above example, and the generation of the phase contrast image is performed in the same manner as in the above example.
  • the X-ray image detector 240 a so-called optical reading type X-ray image detector in which an image signal is read out by scanning linear reading light emitted from the linear reading light source 250 is used.
  • the present invention is not limited to this.
  • a large number of TFT switches are arranged two-dimensionally, and image signals are read by turning on and off the TFT switches.
  • An X-ray image detector using a TFT switch or an X-ray image detector using a CMOS may be used.
  • an X-ray image detector using a TFT switch includes, for example, a pixel electrode 271 and a pixel electrode 271 that collect charges photoelectrically converted in a semiconductor film by X-ray irradiation as shown in FIG.
  • a number of pixel circuits 270 each including a TFT switch 272 for reading out the collected charges as an image signal are arranged in a two-dimensional manner.
  • An X-ray image detector using a TFT switch is provided for each pixel circuit row, and is provided for each pixel circuit column and a large number of gate electrodes 273 from which a gate scanning signal for turning on and off the TFT switch 272 is output.
  • a plurality of data electrodes 274 from which the charge signal read from each pixel circuit 270 is output.
  • the detailed layer configuration of each pixel circuit 270 is the same as the layer configuration described in Japanese Patent Laid-Open No. 2002-26300.
  • one pixel circuit array corresponds to the main pixel size Dx described in the above example
  • the pixel circuit row corresponds to the sub-pixel size Dy described in the above example.
  • the main pixel size Dx and the sub-pixel size Dy can be set to 50 ⁇ m, for example.
  • the M pixel circuit rows have one image resolution D in the sub-scanning direction of the phase contrast image.
  • the first grating 131 is inclined with respect to the second grating 132.
  • the specific rotation angle of the first grating 131 is calculated by the equation (22) as in the above example.
  • the image signal read from the pixel circuit row connected to the first read line gate electrode G11 is acquired as the first stripe image signal M1, and the pixel circuit connected to the second read line gate electrode G12.
  • the image signal read from the row is acquired as the second stripe image signal M2, and the image signal read from the pixel circuit row connected to the third read line gate electrode G13 is the third stripe image signal M3.
  • the image signal read from the pixel circuit row connected to the fourth read line gate electrode G14 is acquired as the fourth stripe image signal M4 and connected to the fifth read line gate electrode G15.
  • the image signal read from the pixel circuit row is acquired as the fifth fringe image signal M5.
  • the method for generating the phase contrast image based on the first to fifth fringe image signals is the same as the above example.
  • the image resolution in the main scanning direction of the phase contrast image is 50 ⁇ m
  • a pixel circuit 280 that generates visible light upon receiving X-ray irradiation and photoelectrically converts the visible light to detect a charge signal is shown in FIG.
  • a plurality of two-dimensional arrays can be used.
  • the X-ray image detector using CMOS is provided for each pixel circuit row, and includes a large number of gate electrodes 282 and reset electrodes from which a drive signal for driving a signal readout circuit included in the pixel circuit 280 is output. 284 and a plurality of data electrodes 283 that are provided for each pixel circuit column and output a charge signal read from the signal reading circuit of each pixel circuit 280.
  • the gate electrode 282 and the reset electrode 284 are connected to a row selection scanning unit 285 that outputs a drive signal to the signal readout circuit, and the data electrode 283 performs predetermined processing on the charge signal output from each pixel circuit.
  • a signal processing unit 286 to be applied is connected.
  • each pixel circuit 280 includes a lower electrode 806 formed above the substrate 800 via an insulating film 803, a photoelectric conversion film 807 formed on the lower electrode 806, and a photoelectric conversion film 807.
  • An upper electrode 808 formed above, a protective film 809 formed on the upper electrode 808, and an X-ray conversion film 810 formed on the protective film 809 are provided.
  • the X-ray conversion film 810 is made of, for example, CsI: TI that emits light having a wavelength of 550 nm when irradiated with X-rays.
  • the thickness is preferably about 500 ⁇ m.
  • the upper electrode 808 is made of a conductive material that is transparent to the incident light because it is necessary to make light having a wavelength of 550 nm incident on the photoelectric conversion film 807.
  • the lower electrode 806 is a thin film divided for each pixel circuit 280 and is formed of a transparent or opaque conductive material.
  • the photoelectric conversion film 807 is formed of, for example, a photoelectric conversion material that absorbs light having a wavelength of 550 nm and generates a charge corresponding to the light.
  • a photoelectric conversion material for example, an organic semiconductor, an organic material containing an organic dye, a material in which an inorganic semiconductor crystal having a direct transition type band gap and a large absorption coefficient is used alone or in combination are used.
  • a charge accumulating portion 802 for accumulating the charges transferred to the lower electrode 806 corresponding to the lower electrode 806, and the charges accumulated in the charge accumulating portion 802.
  • a signal readout circuit 801 for converting the signal into a voltage signal and outputting it.
  • the charge storage portion 802 is electrically connected to the lower electrode 806 by a conductive material plug 804 formed through the insulating film 803.
  • the signal readout circuit 801 is configured by a known CMOS circuit.
  • the pixel circuit column corresponds to the main pixel size Dx described in the above example
  • one pixel circuit row corresponds to the sub pixel size Dy described in the above example.
  • the main pixel size Dx and the sub-pixel size Dy can be set to 10 ⁇ m, for example, in the case of an X-ray image detector using CMOS.
  • the M pixel circuit rows have one image resolution D in the sub-scanning direction of the phase contrast image.
  • the first grating 131 is inclined with respect to the second grating 132.
  • the specific rotation angle of the first grating 131 is calculated by the equation (22) as in the above example.
  • the image signal read from the pixel circuit row connected to the first read line gate electrode G11 is acquired as the first fringe image signal M1.
  • the image signal read from the pixel circuit row connected to the second read line gate electrode G12 is acquired as the second stripe image signal M2, and the pixel circuit connected to the third read line gate electrode G13.
  • the image signal read from the row is acquired as the third stripe image signal M3, and the image signal read from the pixel circuit row connected to the fourth read line gate electrode G14 is the fourth stripe image signal M4.
  • the image signal read from the pixel circuit row connected to the fifth read line gate electrode G15 is acquired as the fifth fringe image signal M5.
  • the method for generating the phase contrast image based on the first to fifth fringe image signals is the same as the above example.
  • the image resolution in the main scanning direction of the phase contrast image is 10 ⁇ m
  • an X-ray image detector using a TFT switch or an X-ray image detector using a CMOS can be used.
  • these X-ray image detectors have square pixels.
  • the resolution in the sub-scanning direction becomes worse than the resolution in the main scanning direction.
  • the resolution Dx is limited in the main scanning direction by the width of the linear electrode (direction perpendicular to the extending direction).
  • the resolution Dy is determined by the product of the width of the reading light of the linear reading light source 250 in the sub-scanning direction, the accumulation time of the charge amplifier 200 per line, and the moving speed of the linear reading light source 250.
  • Both the main and sub resolutions are typically several tens of ⁇ m, but it is possible to increase the sub scanning direction resolution while maintaining the main scanning direction resolution.
  • the X-ray image detector of the optical reading system can be realized by reducing the width of the linear reading light source 250 or reducing the moving speed, and has a more advantageous configuration.
  • FIG. 36 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • the X-ray imaging system shown in FIG. 36 detects the periodic pattern image formed by the grating 131 that forms the periodic pattern image by passing the X-rays emitted from the X-ray source 11, and the period.
  • An X-ray image detector (radiation image detector) 340 that performs intensity modulation on the pattern image, a moving mechanism 333 that moves the X-ray image detector 340 in a direction orthogonal to the extending direction of the linear electrode, and X
  • the line image detector 340 includes a phase contrast image generation unit 260 that generates a phase contrast image based on a fringe image obtained by intensity modulation of the periodic pattern image.
  • a multi-slit (for example, the multi-slit 103 described above) having a predetermined pitch can be installed between the X-ray source 11 and the first grating 131 and used.
  • the X-ray image detector 340 detects a self-image of the grating 131 formed by the grating 131 when the X-rays pass through the grating 131 and divides a charge signal corresponding to the self-image into a lattice shape to be described later. By accumulating in the charge storage layer, intensity modulation is performed on the self-image to generate a fringe image, and the generated fringe image is output as an image signal.
  • the X-ray image detector 340 is a direct conversion type X-ray image detector that reads an image signal by scanning with a linear reading light. X-ray image detector.
  • FIG. 37 shows the external appearance (FIG. 37A), xz plane cross section (FIG. 37B), and yz plane cross section (FIG. 37C) of the X-ray image detector 340.
  • the X-ray image detector 340 includes a first electrode layer 241 that transmits X-rays, a recording photoconductive layer 242 that generates charges when irradiated with X-rays transmitted through the first electrode layer 241, and recording A charge storage layer 343 that acts as an insulator for charges of one polarity of the charges generated in the photoconductive layer 242 and acts as a conductor for charges of the other polarity, and is irradiated with reading light.
  • a photoconductive layer for reading 245 that generates electric charges when received and a second electrode layer 246 are stacked in this order. Note that each of the above layers is formed on the glass substrate 247 in order from the second electrode layer 246.
  • the charge storage layer 343 may be any film that is insulative with respect to the polar charge to be stored, such as an acrylic organic resin, polyimide, BCB, PVA, acrylic, polyethylene, polycarbonate, polyetherimide, or the like, or As 2 S. 3 , sulfides such as Sb 2 S 3 and ZnS, oxides and fluorides. Furthermore, it is more preferable that it is insulative with respect to the charge of the polarity to be accumulated and that it is conductive with respect to the charge of the opposite polarity, and the product of mobility ⁇ life is 3 digits or more depending on the polarity of the charge. Substances with differences are preferred.
  • the dielectric constant thereof is a recording light. It is desirable to use a conductive layer 242 and a photoconductive layer for reading 245 having a dielectric constant that is 1/2 times or more and 2 times or less.
  • the charge storage layer 343 in this example is divided into lines so as to be parallel to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b of the second electrode layer 246.
  • the charge storage layer 343 is divided at a pitch finer than the arrangement pitch of the transparent linear electrodes 246 a or the light shielding linear electrodes 246 b, and the arrangement pitch p 2 and the interval d 2 are different depending on the combination of the grating 131. It is determined so that imaging can be performed. Note that the arrangement pitch p 2 and the interval d 2 of the transparent linear electrodes 246 a or the light shielding linear electrodes 246 b are determined in the same manner as the pitch p 2 and the interval d 2 for the second grating 132 described above, and therefore the same reference numerals are used. I will explain.
  • the self-image of the grating 131 formed through the grating 131 is the X-ray source 11.
  • the arrangement pitch p 2 of the charge storage layer 343, the portion of the linear charge accumulation layer 343 is approximately coincident with the periodic pattern of the light area of the self-image of the grating 131 at the position of the charge accumulation layer 343 To be decided.
  • the grating pitch of the grating 131 is p 1
  • the distance between the X-ray shielding portions of the grating 131 is d 1
  • the distance from the focal point of the X-ray source 11 to the grating 131 is L 1
  • the grating 131 to the X-ray image detector 340 When the distance to the detection surface is L 2 , the arrangement pitch p 2 of the charge storage layer 343 is determined so as to satisfy the relationship of the above formula (1).
  • the charge storage layer 343 is formed with a thickness of 2 ⁇ m or less in the stacking direction (z direction).
  • the charge storage layer 343 can be formed by resistance heating vapor deposition using, for example, the above-described material and a mask formed of a metal mask or a fiber having a hole in a metal plate. Further, it may be formed using photolithography.
  • an image signal is read out using a pair of the adjacent transparent linear electrode 246a and the light shielding linear electrode 246b. That is, an image signal of one pixel is read out by one set of the transparent linear electrode 246a and the light shielding linear electrode 246b (FIG. 37B).
  • the transparent linear electrode 246a and the light shielding linear electrode 246b are arranged so that one pixel is approximately 50 ⁇ m.
  • the X-ray imaging system of this example includes a linear reading light source 250 extending in a direction (x direction) orthogonal to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b (FIG. 37A).
  • the distance Z 2 (Talbot interference distance Z) between the grating 131 and the detection surface of the X-ray image detector 340 is equal to the above formula when the grating 131 is a phase modulation type grating that applies 90 ° phase modulation.
  • the above equation (21) must be substantially satisfied.
  • the above formula (2) must be substantially satisfied with respect to the Talbot interference distance Z.
  • the moving mechanism 333 changes the relative position between the grating 131 and the X-ray image detector 340 by translating the X-ray image detector 340 in a direction orthogonal to the extending direction of the linear electrode. It is something to be made.
  • the moving mechanism 333 is configured by an actuator such as a piezoelectric element, for example.
  • X-rays pass through the subject H and then irradiate the grating 131.
  • the X-rays irradiated to the grating 131 are diffracted by the grating 131, thereby forming a Talbot interference image at a predetermined distance from the grating 131 in the optical axis direction of the X-ray.
  • the self-image of the grating 131 is incident from the first electrode layer 241 side of the X-ray image detector 340, undergoes intensity modulation by the charge storage layer 343 of the X-ray image detector 340, and reflects only the wavefront.
  • An X-ray image detector 340 detects the image signal of the fringe image.
  • the X-ray carrying the self-image of the grating 131 is the first X-ray image detector 340. Is irradiated from the electrode layer 241 side (FIG. 38A).
  • the X-rays irradiated to the X-ray image detector 340 are transmitted through the first electrode layer 241 and irradiated to the recording photoconductive layer 242.
  • the X-ray irradiation generates a charge pair in the recording photoconductive layer 242, and the positive charge is combined with the negative charge charged in the first electrode layer 241 and disappears, and the negative charge is latent.
  • the image charge is stored in the charge storage layer 343 (FIG. 38B).
  • the charge storage layer 343 in this example is linearly divided at the arrangement pitch as described above, the charge storage layer 343 is directly below the charge generated according to the self-image of the lattice 131 in the recording photoconductive layer 242. Only the charges in which the charge storage layer 343 exists are trapped and stored by the charge storage layer 343, and other charges pass between the linear charge storage layers 343 (hereinafter referred to as non-charge storage regions), After passing through the reading photoconductive layer 245, it flows out to the transparent linear electrode 246a and the light shielding linear electrode 246b.
  • the self-image of the lattice 131 is changed into the linear shape of the electric charge accumulation layer 343.
  • An image signal of a fringe image that is subjected to intensity modulation by superimposing the pattern and the distortion of the wavefront of the self-image by the subject H is accumulated in the charge accumulation layer 343. That is, the charge storage layer 343 of this example performs the same function as the second grating in phase imaging using two conventional gratings.
  • the linear reading light L1 emitted from the linear reading light source 250 is irradiated from the second electrode layer 246 side. Is done.
  • the reading light L1 passes through the transparent linear electrode 246a and is irradiated to the reading photoconductive layer 245, and the positive charge generated in the reading photoconductive layer 245 by the irradiation of the reading light L1 is a latent image in the charge storage layer 343.
  • the negative charge is combined with the positive charge charged to the light shielding linear electrode 246b through the charge amplifier 200 connected to the transparent linear electrode 246a while being combined with the charge.
  • the linear reading light source 250 moves in the sub-scanning direction (y direction)
  • the X-ray image detector 340 is scanned with the linear reading light L1, and the reading line irradiated with the linear reading light L1.
  • the image signal is sequentially detected by the above-described operation every time, and the detected image signal for each reading line is sequentially input to the phase contrast image generation unit 260 and stored.
  • the entire surface of the X-ray image detector 340 is scanned with the reading light L 1, and the image signal of the entire frame is stored in the phase contrast image generation unit 260.
  • the principle of the method for generating the phase contrast image in this example is the same as the content described with reference to the equations (11) to (17), and thus the description thereof is omitted.
  • the phase contrast image generation unit 260 generates a phase contrast image based on the plurality of fringe images.
  • the grating 131 may be configured to project incident X-rays without being diffracted. According to this configuration, since the projected image projected through the grating 131 is obtained similarly at all positions behind the grating 131, the distance from the grating 131 to the detection surface of the X-ray image detector 340 is obtained.
  • the Z 2 can be set independently of the Talbot interference distance.
  • the X-ray image detector 340 is translated by the moving mechanism 333, and X-ray images are captured at each position to acquire M fringe image signals.
  • the X-ray imaging system of the example is configured to be able to acquire M striped image signals by capturing one X-ray image without requiring the moving mechanism 333 as described above.
  • the grating 131 and the X-ray image detector 340 include the extension direction of the grating 131 and the charge storage layer of the X-ray image detector 340. It arrange
  • the sub-pixel size Dy in the sub-scanning direction have a relationship as shown in FIG.
  • the phase contrast image generation unit 260 acquires the image signals of five different fringe images based on the stored image signal. Based on the first to fifth fringe image signals, the phase contrast image generation unit 260 generates a phase contrast image in the same manner as in the above example.
  • the X-ray image detector 340 is provided with three layers of the recording photoconductive layer 242, the charge storage layer 343, and the reading photoconductive layer 245 between the electrodes.
  • this layer configuration is not necessarily required.
  • the transparent photoelectrode 246a and the light shielding electrode 246b of the second electrode layer are provided without providing the reading photoconductive layer 245.
  • a linear charge storage layer 343 may be provided so as to be in direct contact with the recording medium, and a recording photoconductive layer 242 may be provided on the charge storage layer 343.
  • the recording photoconductive layer 242 also functions as a reading photoconductive layer.
  • This structure is a structure in which the charge storage layer 343 is provided directly on the second electrode layer 246 without the reading photoconductive layer 245, and the linear charge storage layer 343 can be easily formed. That is, the linear charge storage layer 343 can be formed by vapor deposition. In this vapor deposition step, a metal mask or the like is used to selectively form a linear pattern. However, in the configuration in which the linear charge storage layer 343 is provided on the reading photoconductive layer 245, the reading photoconductive layer 245 is provided. Because of the process of setting the metal mask after vapor deposition, the photoconductive layer 245 for reading is deteriorated by an operation in the atmosphere between the vapor deposition process of the read photoconductive layer 245 and the vapor deposition process of the recording photoconductive layer 242.
  • the X-ray carrying the self-image of the grating 131 is the first X-ray image detector 360. From the electrode layer 241 side (FIG. 41A).
  • the X-rays irradiated to the X-ray image detector 340 are transmitted through the first electrode layer 241 and irradiated to the recording photoconductive layer 242.
  • the X-ray irradiation generates a charge pair in the recording photoconductive layer 242, and the positive charge is combined with the negative charge charged in the first electrode layer 241 and disappears, and the negative charge is latent.
  • the image charge is stored in the charge storage layer 343 (FIG. 41B). Note that since the linear charge storage layer 343 in contact with the second electrode layer 246 is an insulating film, charges that have reached the charge storage layer 343 are captured there and go to the second electrode layer 246. Can't, and stays accumulated.
  • the self-image of the lattice 131 is intensity-modulated by being superimposed on the linear pattern of the charge storage layer 343, and an image signal of a fringe image reflecting the distortion of the wavefront of the self-image by the subject H is stored in the charge storage layer 343. Will be.
  • the linear reading light L1 emitted from the linear reading light source 250 is irradiated from the second electrode layer 246 side.
  • the reading light L1 passes through the transparent linear electrode 246a and is applied to the recording photoconductive layer 242 in the vicinity of the charge storage layer 343.
  • Positive charges generated by the irradiation of the reading light L1 are linear charge storage layer 343. Attracted to recombine.
  • the other negative charge is drawn to the transparent linear electrode 246a, and the light shielding linear electrode is connected to the positive charge charged in the transparent linear electrode 246a and the charge amplifier 200 connected to the transparent linear electrode 246a. It couple
  • a current flows through the charge amplifier 200, and this current is integrated and detected as an image signal.
  • the method for acquiring a plurality of fringe image signals and the method for generating a phase contrast image are the same as those in the above examples.
  • the charge storage layer 343 of the X-ray image detector 340 is formed to be completely separated into a linear shape.
  • the present invention is not limited to this, for example, as shown in FIG. You may make it form in a grid
  • the resolution Dx is limited in the main scanning direction by the width of the linear electrode (direction perpendicular to the extending direction), but in the sub-scanning direction.
  • the resolution Dy is determined by the product of the reading light of the linear reading light source 250 in the sub-scanning direction, the accumulation time of the charge amplifier 200 per line, and the moving speed of the linear reading light source 250.
  • Both the main and sub resolutions are typically several tens of ⁇ m, but it is possible to increase the sub scanning direction resolution while maintaining the main scanning direction resolution. For example, this can be realized by reducing the width of the linear reading light source 250 or by reducing the moving speed.
  • the radiation used in the present invention is not limited to X-rays, but other than X-rays such as ⁇ -rays and ⁇ -rays. It is also possible to use other radiation.
  • the present specification includes a first grating and a grating pattern having a period substantially matching the pattern period of a radiation image formed by radiation that has passed through the first grating;
  • a radiation image detector for detecting the radiation image masked by the grating pattern, wherein the first grating is arranged in a plane intersecting a traveling direction of the radiation passing through the first grating.
  • a radiation image detection device is disclosed that includes a plurality of lattice pieces and a connecting portion that connects adjacent lattice pieces is formed of a radiation shield.
  • the lattice pattern is a second lattice, and the second lattice intersects with the traveling direction of the radiation passing through the second lattice.
  • a connecting portion that includes a plurality of lattice pieces arranged inside and connects adjacent lattice pieces is formed of a radiation shield.
  • the radiological image detection apparatus disclosed in the present specification is configured such that the radiographic image detector has a first area in which the connection portion of the first lattice is projected in a projection with a radiographic focal point as a viewpoint, A second region on which a connecting portion of the second lattice is projected, and the first region and the second region coincide with each other, or among the first region and the second region One area is included in the other area.
  • the radiographic image detector includes: In projection from the viewpoint of the radiation focal point, a first region where a connecting portion of lattice pieces adjacent to each other in the first direction of the first lattice is projected, and the first direction of the second lattice Each of the pixels belonging to the first region, the second region on which the connecting portion of the lattice pieces adjacent to each other is projected, and the third region excluding the first region and the second region; At least one pixel belonging to the third region is interposed between each pixel belonging to the second region.
  • the plurality of grating pieces are also arranged in a second direction intersecting the first direction.
  • the radiological image detector includes a fourth region in which a connection portion of lattice pieces adjacent to each other in the second direction of the first lattice is projected in a projection with a radiation focus as a viewpoint; A fifth region where a connecting portion of lattice pieces adjacent to each other in the second direction of the second lattice is projected, and a sixth region excluding the fourth region and the fifth region, At least one pixel belonging to the sixth area is interposed between each pixel belonging to the fourth area and each pixel belonging to the fifth area.
  • a surface on which the plurality of grating pieces are arranged is a cylindrical surface, and a central axis thereof has a radiation focus. Pass through.
  • the connecting portion is formed of an adhesive in which a radiation absorbing material is dispersed.
  • the radiation absorbing material is heavy metal particles having an atomic number of 40 or more.
  • the heavy metal is at least one selected from the group consisting of gold, platinum, and lead.
  • the present specification discloses a radiation imaging apparatus including any one of the above-described radiation image detection apparatuses and a radiation source that irradiates radiation toward the first grating.
  • a radiation imaging system includes an arithmetic processing unit that complements data of pixels belonging to an area excluding the defective area.
  • the arithmetic processing unit may calculate a refraction angle of radiation incident on the radiation image detector from image data in which data of each pixel belonging to the defect area is complemented. The distribution is calculated, and a phase contrast image of the subject is generated based on the distribution of the refraction angles.
  • a plurality of lattice pieces are connected to form a lattice, thereby obtaining a large-size lattice while maintaining the accuracy by using a relatively small individual lattice piece. it can. Then, by forming the connecting portion of the adjacent lattice pieces with a radiation shield, the pixels belonging to the defect area can be easily and reliably extracted, and the data of the pixels can be complemented with certainty. The image quality can be improved.

Abstract

The present invention increases image quality and expands the imaging range in radiation phase imaging. An X-ray image detection device (12) is provided with: a first lattice (31); a lattice pattern (32) that has a cycle that essentially matches the pattern cycle of a radiological image formed by means of radiation that has passed through the first lattice; and a radiograph detector (30) that detects the radiological image masked by the lattice pattern. The first lattice contains a plurality of lattice parts (31A) arrayed in a plane that intersects with the direction of progress of the radiation that passes through the first lattice, and the connection section that connects adjacent lattice parts (31A) to each other is formed from a radiation shielding body. Also, in the image data acquired by the radiograph detector, the data of each pixel (40) belonging to a defective region projected by the connection section are complemented by data of pixels (40) belonging to the region that excludes the defective region and that is at the periphery of the pixels (40) of the defective region.

Description

放射線画像検出装置、放射線撮影装置、及び放射線撮影システムRadiation image detection apparatus, radiation imaging apparatus, and radiation imaging system
 本発明は、放射線画像検出装置、及び該放射線画像検出装置を用いた放射線撮影装置、並びに放射線撮影システムに関する。 The present invention relates to a radiation image detection apparatus, a radiation imaging apparatus using the radiation image detection apparatus, and a radiation imaging system.
 X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被写体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。 X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance. X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
 一般的なX線撮影システムでは、X線を放射するX線源とX線画像を検出するX線画像検出器との間に被写体を配置して、被写体の透過像を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する被写体を構成する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器に入射する。この結果、被写体のX線透過像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体(蓄積性蛍光体)のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。 In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured. In this case, each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector. As an X-ray image detector, there is a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit in addition to a combination of an X-ray intensifying screen and a film, a stimulable phosphor (accumulating phosphor), and so on. Widely used.
 しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなり、生体軟部組織やソフトマテリアルなどでは、X線吸収能の差が小さく、従ってX線透過像としての十分な画像の濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が小さいため、画像のコントラストが得られにくい。 However, the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
 このような問題を背景に、近年、被写体によるX線の強度変化に代えて、被写体によるX線の位相変化(角度変化)に基づいた画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。一般に、X線が物体に入射したとき、X線の強度よりも位相のほうが高い相互作用を示すことが知られている。このため、位相差を利用したX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を得ることができる。このようなX線位相イメージングの一種として、近年、2枚の透過回折格子(位相型格子及び吸収型格子)とX線画像検出器とからなるX線タルボ干渉計を用いたX線撮影システムが考案されている(例えば、特許文献1参照)。 Against the background of such problems, in recent years, an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object. Imaging research is actively conducted. In general, it is known that when X-rays are incident on an object, the interaction is higher in phase than in X-ray intensity. For this reason, in the X-ray phase imaging using the phase difference, a high-contrast image can be obtained even for a weakly absorbing object having a low X-ray absorption capability. As a kind of such X-ray phase imaging, in recent years, an X-ray imaging system using an X-ray Talbot interferometer comprising two transmission diffraction gratings (phase grating and absorption grating) and an X-ray image detector has been proposed. It has been devised (for example, see Patent Document 1).
 X線タルボ干渉計は、被写体の背後に第1の回折格子(位相型格子あるいは吸収型格子)を配置し、第1の回折格子の格子ピッチとX線波長で決まる特定距離(タルボ干渉距離)だけ下流に第2の回折格子(吸収型格子)を配置し、その背後にX線画像検出器を配置することにより構成される。上記タルボ干渉距離とは、第1の回折格子を通過したX線が、タルボ干渉効果によって自己像を形成する距離であり、この自己像は、X線源と第1の回折格子との間に配置された被写体とX線との相互作用(位相変化)により変調を受ける。 In the X-ray Talbot interferometer, a first diffraction grating (phase type grating or absorption type grating) is arranged behind a subject, and a specific distance (Talbot interference distance) determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating. The Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the arranged subject and the X-ray.
 X線タルボ干渉計では、第1の回折格子の自己像と第2の回折格子との重ね合わせにより生じるモアレ縞を検出し、被写体によるモアレ縞の変化を解析することによって被写体の位相情報を取得する。モアレ縞の解析方法としては、たとえば、縞走査法が知られている。この縞走査法によると、第1の回折格子に対して第2の回折格子を、第1の回折格子の面にほぼ平行で、かつ第1の回折格子の格子方向(条帯方向)にほぼ垂直な方向に、格子ピッチを等分割した走査ピッチで並進移動させながら複数回の撮影を行い、X線画像検出器で得られる各画素の信号値の変化から、被写体で屈折したX線の角度分布(位相シフトの微分像)を取得し、この角度分布に基づいて被写体の位相コントラスト画像を得ることができる。 The X-ray Talbot interferometer detects moiré fringes generated by superimposing the first image of the first diffraction grating and the second diffraction grating, and obtains subject phase information by analyzing changes in the moiré fringes caused by the subject. To do. As a method for analyzing moire fringes, for example, a fringe scanning method is known. According to this fringe scanning method, the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating. The angle of X-rays refracted by the subject from a change in the signal value of each pixel obtained by the X-ray image detector, which is taken multiple times while being translated in the vertical direction at a scanning pitch obtained by equally dividing the lattice pitch. A distribution (differential image of phase shift) is obtained, and a phase contrast image of the subject can be obtained based on this angular distribution.
 X線タルボ干渉計を用いたX線撮影システムにおいて、撮影範囲を拡大するには第1及び第2の回折格子も相応に大きなものが必要となる。しかし、第1及び第2の回折格子は、典型的にはμmオーダーの格子ピッチで高アスペクト比に構成される必要があるため、サイズの大きな格子を精度よく製造することは非常に困難である。そこで、特許文献1に記載されたX線撮影システムにおいては、第1及び第2の回折格子の各々が、複数の格子片を連結して構成され、個々の格子片は比較的小さいものが用いられている。 In an X-ray imaging system using an X-ray Talbot interferometer, the first and second diffraction gratings must be correspondingly large in order to expand the imaging range. However, since the first and second diffraction gratings typically need to be configured with a high aspect ratio with a grating pitch on the order of μm, it is very difficult to accurately manufacture a large-size grating. . Therefore, in the X-ray imaging system described in Patent Document 1, each of the first and second diffraction gratings is configured by connecting a plurality of grating pieces, and each grating piece is relatively small. It has been.
日本国特開2007‐203061号公報Japanese Unexamined Patent Publication No. 2007-203061
 第1及び第2の回折格子の各々を複数の格子片を連結して構成した場合に、隣り合う格子片の連結部では上記の縞走査が正常に行えず、連結部を透過したX線が入射するX線画像検出器の領域は、被写体によるX線の位相変化を正確に検出することができない欠陥領域となる。特許文献1には、欠陥領域に属する各画素のデータを、その周囲の画素のデータに基づいて補完し、又は、そのような欠陥領域の発生が回避されるように第1及び第2の回折格子を調整することが記載されているが、具体的な方策は何ら開示されていない。 When each of the first and second diffraction gratings is configured by connecting a plurality of grating pieces, the above-described fringe scanning cannot be normally performed at the connecting part of adjacent grating pieces, and the X-rays transmitted through the connecting part are not generated. The area of the incident X-ray image detector is a defective area in which the X-ray phase change caused by the subject cannot be accurately detected. In Patent Document 1, the data of each pixel belonging to a defective area is complemented based on the data of surrounding pixels, or the first and second diffractions are performed so as to avoid the occurrence of such a defective area. Although adjusting the lattice is described, no specific measures are disclosed.
 本発明は、上述した事情に鑑みなされたものであり、放射線位相イメージングにおいて、撮影範囲の拡大と画質の向上を図ることにある。 The present invention has been made in view of the above-described circumstances, and is intended to increase the imaging range and improve the image quality in radiation phase imaging.
 (1) 第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有する格子パターンと、前記格子パターンによってマスキングされた前記放射線像を検出する放射線画像検出器と、を備え、前記第1の格子は、該第1の格子を通過する放射線の進行方向と交差する面内において配列された複数の格子片を含み、隣り合う格子片同士を連結する連結部が放射線遮蔽体で形成されている放射線画像検出装置。
 (2) 上記(1)の放射線画像検出装置と、前記第1の格子に向けて放射線を照射する放射線源と、を備える放射線撮影装置。
 (3) 上記(2)の放射線撮影装置と、前記前記放射線画像検出器で取得される画像データにおいて、前記連結部が投影される欠陥領域に属する各画素のデータを、その画素の周囲にあって該欠陥領域を除く領域に属する画素のデータで補完する演算処理部を備える放射線撮影システム。
(1) a first grating, a grating pattern having a period substantially matching a pattern period of a radiation image formed by radiation that has passed through the first grating, and the radiation image masked by the grating pattern The first grating includes a plurality of grating pieces arranged in a plane intersecting the traveling direction of the radiation passing through the first grating, and is adjacent to the grating. A radiographic image detection apparatus in which a connecting portion for connecting pieces is formed of a radiation shield.
(2) A radiographic apparatus comprising: the radiological image detection apparatus according to (1) above; and a radiation source that irradiates radiation toward the first grating.
(3) In the image data acquired by the radiation imaging apparatus of (2) and the radiation image detector, the data of each pixel belonging to the defect area onto which the connecting portion is projected is placed around the pixel. A radiation imaging system including an arithmetic processing unit that complements data of pixels belonging to an area excluding the defective area.
 本発明によれば、複数の格子片を連結して格子を構成することにより、個々の格子片には比較的小型なものを用いてその精度を維持しつつ、大きなサイズの格子を得ることができる。そして、隣り合う格子片の連結部を放射線遮蔽体で形成することによって、欠陥領域に属する画素の抽出が容易にかつ確実に行え、もって、その画素のデータの補完を確実に行って、得られる画像の画質を向上させることができる。 According to the present invention, a plurality of lattice pieces are connected to form a lattice, thereby obtaining a large-size lattice while maintaining the accuracy by using a relatively small individual lattice piece. it can. Then, by forming the connecting portion of the adjacent lattice pieces with a radiation shield, the pixels belonging to the defect area can be easily and reliably extracted, and the data of the pixels can be complemented with certainty. The image quality can be improved.
本発明の実施形態を説明するための放射線撮影システムの一例の構成を示す模式図である。It is a schematic diagram which shows the structure of an example of the radiography system for describing embodiment of this invention. 図1の放射線撮影システムの制御ブロック図である。It is a control block diagram of the radiography system of FIG. 図1の放射線撮影システムに含まれる放射線画像検出器の構成を示す模式図である。It is a schematic diagram which shows the structure of the radiographic image detector contained in the radiography system of FIG. 第1及び第2の格子の構成を示す斜視図である。It is a perspective view which shows the structure of the 1st and 2nd grating | lattice. 第1及び第2の格子の構成を示す側面図である。It is a side view which shows the structure of the 1st and 2nd grating | lattice. 第1及び第2の格子の重ね合わせによるモアレ縞の周期を変更するための機構を示す模式図である。It is a schematic diagram which shows the mechanism for changing the period of the moire fringe by superimposition of the 1st and 2nd grating | lattice. 被写体による放射線の屈折を説明するための模式図である。It is a schematic diagram for demonstrating the refraction | bending of the radiation by a to-be-photographed object. 縞走査法を説明するための模式図である。It is a schematic diagram for demonstrating the fringe scanning method. 縞走査に伴う放射線画像検出器の画素の信号を示すグラフである。It is a graph which shows the signal of the pixel of the radiographic image detector accompanying a fringe scanning. 放射線画像検出器における欠陥領域の分布を説明するための第1及び第2の格子の構成を示す模式図である。It is a schematic diagram which shows the structure of the 1st and 2nd grating | lattice for demonstrating distribution of the defect area | region in a radiographic image detector. 放射線画像検出器における欠陥領域の分布を示す平面図である。It is a top view which shows distribution of the defect area | region in a radiographic image detector. 図1の放射線撮影システムの変形例に関し、その第1及び第2の格子の構成を示す模式図である。It is a schematic diagram which shows the structure of the 1st and 2nd grating | lattice regarding the modification of the radiography system of FIG. 放射線画像検出器における欠陥領域の分布を示す模式図である。It is a schematic diagram which shows distribution of the defect area | region in a radiographic image detector. 図1の放射線撮影システムの変形例に関し、その第1及び第2の格子の構成を示す模式図である。It is a schematic diagram which shows the structure of the 1st and 2nd grating | lattice regarding the modification of the radiography system of FIG. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 図15の放射線撮影システムの変形例の構成を示す模式図である。It is a schematic diagram which shows the structure of the modification of the radiography system of FIG. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その放射線画像検出器の構成を示す模式図である。It is a schematic diagram which shows the structure of the radiographic image detector regarding the other example of the radiography system for describing embodiment of this invention. 本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その演算処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic processing part regarding the other example of the radiography system for describing embodiment of this invention. 図21の放射線撮影システムの演算処理部における処理を説明するための放射線画像検出器の画素の信号を示すグラフである。It is a graph which shows the signal of the pixel of the radiographic image detector for demonstrating the process in the arithmetic processing part of the radiography system of FIG. 本発明の実施形態を説明するための放射線撮影システムの他の例の概略構成図である。It is a schematic block diagram of the other example of the radiography system for describing embodiment of this invention. 光読取方式の放射線画像検出器の概略構成を示す図である。It is a figure which shows schematic structure of the radiographic image detector of an optical reading system. 第1の格子、第2の格子及び放射線画像検出器の画素の配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the pixel of a 1st grating | lattice, a 2nd grating | lattice, and a radiographic image detector. 第2の格子に対する第1の格子の傾き角を設定する方法を説明するための図である。It is a figure for demonstrating the method to set the inclination-angle of the 1st grating | lattice with respect to a 2nd grating | lattice. 第2の格子に対する第1の格子の傾き角の調整方法を説明するための図である。It is a figure for demonstrating the adjustment method of the inclination-angle of the 1st grating | lattice with respect to a 2nd grating | lattice. 光読取方式の放射線画像検出器の記録の作用を説明するための図である。It is a figure for demonstrating the effect | action of recording of the radiographic image detector of an optical reading system. 光読取方式の放射線画像検出器の読取りの作用を説明するための図である。It is a figure for demonstrating the effect | action of the reading of the radiation image detector of an optical reading system. 光読取方式の放射線画像検出器から読み取られた画像信号に基づいて、複数の縞画像を取得する作用を説明するための図である。It is a figure for demonstrating the effect | action which acquires a some fringe image based on the image signal read from the radiographic image detector of an optical reading system. 光読取方式の放射線画像検出器から読み取られた画像信号に基づいて、複数の縞画像を取得する作用を説明するための図である。It is a figure for demonstrating the effect | action which acquires a some fringe image based on the image signal read from the radiographic image detector of an optical reading system. TFTスイッチを用いた放射線画像検出器と第1及び第2の格子との配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship between the radiographic image detector using a TFT switch, and the 1st and 2nd grating | lattice. CMOSを用いた放射線画像検出器の概略構成を示す図である。It is a figure which shows schematic structure of the radiographic image detector using CMOS. CMOSを用いた放射線画像検出器の1つの画素回路の構成を示す図である。It is a figure which shows the structure of one pixel circuit of the radiographic image detector using CMOS. CMOSを用いた放射線画像検出器と第1及び第2の格子との配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship between the radiographic image detector using CMOS, and the 1st and 2nd grating | lattice. 本発明の実施形態を説明するための放射線撮影システムの他の例の概略構成図である。It is a schematic block diagram of the other example of the radiography system for describing embodiment of this invention. 放射線画像検出器の一実施形態の概略構成を示す図である。It is a figure which shows schematic structure of one Embodiment of a radiographic image detector. 放射線画像検出器の一実施形態の記録の作用を説明するための図である。It is a figure for demonstrating the effect | action of recording of one Embodiment of a radiographic image detector. 放射線画像検出器の一実施形態の読取りの作用を説明するための図である。It is a figure for demonstrating the effect | action of reading of one Embodiment of a radiographic image detector. 放射線画像検出器のその他の実施形態を示す図である。It is a figure which shows other embodiment of a radiographic image detector. 放射線画像検出器のその他の実施形態の記録の作用を説明するための図である。It is a figure for demonstrating the effect | action of recording of other embodiment of a radiographic image detector. 放射線画像検出器のその他の実施形態の読取りの作用を説明するための図である。It is a figure for demonstrating the effect | action of the reading of other embodiment of a radiographic image detector. 放射線画像検出器のその他の実施形態を示す図である。It is a figure which shows other embodiment of a radiographic image detector.
 図1は、本発明の実施形態を説明するための放射線撮影システムの一例の構成を示し、図2は、図1の放射線撮影システムの制御ブロックを示す。 FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention, and FIG. 2 shows a control block of the radiation imaging system of FIG.
 X線撮影システム10は、被写体(患者)Hを立位状態で撮影するX線診断装置であって、被写体HにX線を放射するX線源11と、X線源11に対向配置され、X線源11から被写体Hを透過したX線を検出して画像データを生成する撮影部(X線画像検出装置)12と、操作者の操作に基づいてX線源11の曝射動作や撮影部12の撮影動作を制御するとともに、撮影部12により取得された画像データを演算処理して位相コントラスト画像を生成するコンソール13とに大別される。 The X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject (patient) H in a standing position, and is disposed opposite to the X-ray source 11 that emits X-rays to the subject H, and the X-ray source 11. An imaging unit (X-ray image detection device) 12 that detects X-rays transmitted through the subject H from the X-ray source 11 and generates image data, and an exposure operation and imaging of the X-ray source 11 based on the operation of the operator. The console 12 is broadly classified into a console 13 that controls the photographing operation of the unit 12 and performs arithmetic processing on image data acquired by the photographing unit 12 to generate a phase contrast image.
 X線源11は、天井から吊り下げられたX線源保持装置14により上下方向(x方向)に移動自在に保持されている。撮影部12は、床上に設置された立位スタンド15により上下方向に移動自在に保持されている。 The X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling. The photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
 X線源11は、X線源制御部17の制御に基づき、高電圧発生器16から印加される高電圧に応じてX線を発生するX線管18と、X線管18から発せられたX線のうち、被写体Hの検査領域に寄与しない部分を遮蔽するように照射野を制限する可動式のコリメータ19aを備えたコリメータユニット19とから構成されている。X線管18は、陽極回転型であり、電子放出源(陰極)としてのフィラメント(図示せず)から電子線を放出して、所定の速度で回転する回転陽極18aに衝突させることによりX線を発生する。この回転陽極18aの電子線の衝突部分がX線焦点18bとなる。 Based on the control of the X-ray source control unit 17, the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18. The X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion that does not contribute to the inspection area of the subject H. The X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
 X線源保持装置14は、天井に設置された天井レール(図示せず)により水平方向(z方向)に移動自在に構成された台車部14aと、上下方向に連結された複数の支柱部14bとからなる。台車部14aには、支柱部14bを伸縮させて、X線源11の上下方向に関する位置を変更するモータ(図示せず)が設けられている。 The X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of. A motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
 立位スタンド15は、床に設置された本体15aに、撮影部12を保持する保持部15bが上下方向に移動自在に取り付けられている。保持部15bは、上下方向に離間して配置された2つのプーリ15cの間に掛架された無端ベルト15dに接続され、プーリ15cを回転させるモータ(図示せず)により駆動される。このモータの駆動は、操作者の設定操作に基づき、後述するコンソール13の制御装置20により制御される。 The standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction. The holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c. The driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
 また、立位スタンド15には、プーリ15c又は無端ベルト15dの移動量を計測することにより、撮影部12の上下方向に関する位置を検出するポテンショメータ等の位置センサ(図示せず)が設けられている。この位置センサの検出値は、ケーブル等によりX線源保持装置14に供給される。X線源保持装置14は、供給された検出値に基づいて支柱部14bを伸縮させ、撮影部12の上下動に追従するようにX線源11を移動させる。 Further, the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. . The detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like. The X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
 コンソール13には、CPU、ROM、RAM等からなる制御装置20が設けられている。制御装置20には、操作者が撮影指示やその指示内容を入力する入力装置21と、撮影部12により取得された画像データを演算処理してX線画像を生成する演算処理部22と、X線画像を記憶する記憶部23と、X線画像等を表示するモニタ24と、X線撮影システム10の各部と接続されるインターフェース(I/F)25とがバス26を介して接続されている。 The console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like. The control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
 入力装置21としては、例えば、スイッチ、タッチパネル、マウス、キーボード等を用いることが可能であり、入力装置21の操作により、X線管電圧やX線照射時間等のX線撮影条件、撮影タイミング等が入力される。モニタ24は、液晶ディスプレイ等からなり、制御装置20の制御により、X線撮影条件等の文字やX線画像を表示する。 As the input device 21, for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used. By operating the input device 21, X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, etc. Is entered. The monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
 撮影部12には、半導体回路からなるフラットパネル検出器(FPD)30、被写体HによるX線の位相変化(角度変化)を検出し位相イメージングを行うための第1の吸収型格子31及び第2の吸収型格子32が設けられている。 The imaging unit 12 includes a flat panel detector (FPD) 30 made of a semiconductor circuit, a first absorption type grating 31 and a second absorption type for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging. The absorption type grating 32 is provided.
 FPD30は、検出面がX線源11から照射されるX線の光軸Aに直交するように配置されている。詳しくは後述するが、第1及び第2の吸収型格子31,32は、FPD30とX線源11との間に配置されている。 The FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11. Although described in detail later, the first and second absorption gratings 31 and 32 are disposed between the FPD 30 and the X-ray source 11.
 また、撮影部12には、第2の吸収型格子32を上下方向(x方向)に並進移動させることにより、第1の吸収型格子31に対する第2の吸収型格子32の相対位置関係を変化させる走査機構33が設けられている。この走査機構33は、例えば、圧電素子等のアクチュエータにより構成される。 The imaging unit 12 changes the relative positional relationship of the second absorption type grating 32 with respect to the first absorption type grating 31 by translating the second absorption type grating 32 in the vertical direction (x direction). A scanning mechanism 33 is provided. The scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
 図3は、放射線画像検出器の構成を示す。 FIG. 3 shows the configuration of the radiation image detector.
 放射線画像検出器としてのFPD30は、X線を電荷に変換して蓄積する複数の画素40がアクティブマトリクス基板上にxy方向に2次元配列されてなる受像部41と、受像部41からの電荷の読み出しタイミングを制御する走査回路42と、各画素40に蓄積された電荷を読み出し、電荷を画像データに変換して記憶する読み出し回路43と、画像データをコンソール13のI/F25を介して演算処理部22に送信するデータ送信回路44とから構成されている。なお、走査回路42と各画素40とは、行毎に走査線45によって接続されており、読み出し回路43と各画素40とは、列毎に信号線46によって接続されている。 The FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41. A scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13. And a data transmission circuit 44 for transmission to the unit 22. The scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
 各画素40は、アモルファスセレン等の変換層(図示せず)でX線を電荷に直接変換し、変換された電荷を変換層の下部の電極に接続されたキャパシタ(図示せず)に蓄積する直接変換型の素子として構成することができる。各画素40には、薄膜トランジスタ(TFT:Thin Film Transistor)スイッチ(図示せず)が接続され、TFTスイッチのゲート電極が走査線45、ソース電極がキャパシタ、ドレイン電極が信号線46に接続される。TFTスイッチが走査回路42からの駆動パルスによってON状態になると、キャパシタに蓄積された電荷が信号線46に読み出される。 Each pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and stores the converted electric charges in a capacitor (not shown) connected to an electrode below the conversion layer. It can be configured as a direct conversion type element. Each pixel 40 is connected to a thin film transistor (TFT) switch (not shown), and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46. When the TFT switch is turned on by the drive pulse from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 46.
 なお、各画素40は、テルビウム賦活酸化ガドリニウム(GdS:Tb)、タリウム賦活ヨウ化セシウム(CsI:Tl)等からなるシンチレータ(図示せず)でX線を一旦可視光に変換し、変換された可視光をフォトダイオード(図示せず)で電荷に変換して蓄積する間接変換型のX線検出素子として構成することも可能である。また、X線画像検出器としては、TFTパネルをベースとしたFPDに限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした各種のX線画像検出器を用いることも可能である。 Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it. The X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
 読み出し回路43は、積分アンプ回路、A/D変換器、補正回路、及び画像メモリ(いずれも図示せず)により構成されている。積分アンプ回路は、各画素40から信号線46を介して出力された電荷を積分して電圧信号(画像信号)に変換して、A/D変換器に入力する。A/D変換器は、入力された画像信号をデジタルの画像データに変換して補正回路に入力する。補正回路は、画像データに対して、オフセット補正、ゲイン補正、及びリニアリティ補正を行い、補正後の画像データを画像メモリに記憶させる。なお、補正回路による補正処理として、X線の露光量や露光分布(いわゆるシェーディング)の補正や、FPD30の制御条件(駆動周波数や読み出し期間)に依存するパターンノイズ(例えば、TFTスイッチのリーク信号)の補正等を含めてもよい。 The readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory (all not shown). The integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter. The A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit. The correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory. As correction processing by the correction circuit, correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
 図4及び図5は、第1及び第2の格子の構成を示す。 4 and 5 show the configurations of the first and second gratings.
 第1の吸収型格子31は、複数の第1の格子片31Aを連結して構成されており、第1の格子片31Aの各々は、基板31aと、この基板31aに配置された複数のX線遮蔽部31bとから構成されている。第2の吸収型格子32もまた、複数の第2の格子片32Aが連結されて構成されており、第2の格子片32Aの各々は、基板32aと、この基板32aに配置された複数のX線遮蔽部32bとから構成されている。基板31a,32aは、いずれもX線を透過させるガラス等のX線透過性部材により形成されている。 The first absorption type lattice 31 is configured by connecting a plurality of first lattice pieces 31A. Each of the first lattice pieces 31A includes a substrate 31a and a plurality of Xs arranged on the substrate 31a. It is comprised from the line shielding part 31b. The second absorption type grating 32 is also configured by connecting a plurality of second grating pieces 32A. Each of the second grating pieces 32A includes a substrate 32a and a plurality of substrates arranged on the substrate 32a. It is comprised from the X-ray shielding part 32b. The substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays.
 X線遮蔽部31b,32bは、いずれもX線源11から照射されるX線の光軸Aに直交する面内の一方向(図示の例では、y方向)に延伸した線状の部材で構成される。各X線遮蔽部31b,32bの材料としては、X線吸収性に優れるものが好ましく、例えば、金、白金等の重金属であることが好ましい。これらのX線遮蔽部31b,32bは、金属メッキ法や蒸着法によって形成することが可能である。 The X-ray shielding portions 31b and 32b are both linear members extending in one direction (y direction in the illustrated example) in a plane perpendicular to the optical axis A of the X-rays emitted from the X-ray source 11. Composed. As a material of each X-ray shielding part 31b, 32b, a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable. These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
 X線遮蔽部31bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の格子ピッチpで、互いに所定の間隔dを空けて配列されている。同様に、X線遮蔽部32bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の格子ピッチpで、互いに所定の間隔dを空けて配列されている。このような第1及び第2の吸収型格子31,32は、入射X線に位相差を与えるものでなく、強度差を与えるものであるため、振幅型格子とも称される。なお、スリット部(上記間隔d,dの領域)は空隙でなくてもよく、例えば、高分子や軽金属などのX線低吸収材で該空隙を充填してもよい。 X-ray shielding portion 31b is in a plane perpendicular to the optical axis A of the X-ray, with grating pitch p 1 in the constant direction (x-direction) orthogonal to the one direction, arranged at predetermined intervals d 1 from each other Has been. Similarly, X-ray shielding portion 32b, in the plane orthogonal to the optical axis A of the X-ray, with grating pitch p 2 of the constant in the direction (x-direction) orthogonal to the one direction, the predetermined distance d 2 from each other It is arranged in a space. Since the first and second absorption gratings 31 and 32 do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings. Note that the slit portions (regions having the distances d 1 and d 2 ) may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
 図示の例では、複数の第1の格子片31Aは、光軸Aに直交する面内においてX線遮蔽部31bの配列方向と同じx方向に配列され、x方向に隣り合う格子片31A同士が連結されている。同様に、複数の第2の格子片32Aは、光軸Aに直交する面内においてx方向に配列され、x方向に隣り合う格子片32A同士が連結されている。なお、格子片31A、32Aは、X線遮蔽部31b、32bの配列方向と同一の方向(x方向)に限らず、これと直交する方向(y方向)に配列されていてもよく、また、x方向及びy方向に二次元的に配列されていてもよい。 In the illustrated example, the plurality of first lattice pieces 31A are arranged in the same x direction as the arrangement direction of the X-ray shielding portions 31b in a plane orthogonal to the optical axis A, and the lattice pieces 31A adjacent to each other in the x direction are arranged. It is connected. Similarly, the plurality of second lattice pieces 32A are arranged in the x direction within a plane orthogonal to the optical axis A, and the lattice pieces 32A adjacent in the x direction are connected to each other. The lattice pieces 31A and 32A are not limited to the same direction (x direction) as the arrangement direction of the X-ray shielding portions 31b and 32b, and may be arranged in a direction (y direction) orthogonal thereto. They may be two-dimensionally arranged in the x direction and the y direction.
 第1及び第2の吸収型格子31,32は、タルボ干渉効果の有無に係らず、スリット部を通過したX線をほぼ幾何学的に投影するように構成されている。具体的には、間隔d,dを、X線源11から照射されるX線の実効波長より十分大きな値とすることで、照射X線に含まれる大部分のX線をスリット部で回折させずに、直進性を保ったまま通過するように構成する。例えば、前述の回転陽極18aとしてタングステンを用い、管電圧を50kVとした場合には、X線の実効波長は、約0.4Åである。この場合には、間隔d,dを、1~10μm程度とすれば、スリット部で大部分のX線が回折されずにほぼ幾何学的に投影される。 The first and second absorption type gratings 31 and 32 are configured to project the X-rays that have passed through the slit portion almost geometrically regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, most of the X-rays included in the irradiated X-rays can be obtained at the slit portion. It is configured to pass through without being diffracted while maintaining straightness. For example, when tungsten is used as the rotary anode 18a described above and the tube voltage is 50 kV, the effective wavelength of X-ray is about 0.4 mm. In this case, if the distances d 1 and d 2 are set to about 1 to 10 μm, most of the X-rays are projected almost geometrically without being diffracted by the slit portion.
 X線源11から放射されるX線は、平行ビームではなく、X線焦点18bを発光点としたコーンビームであるため、第1の吸収型格子31を通過して射影される投影像(以下、この投影像をG1像と称する)は、X線焦点18bからの距離に比例して拡大される。第2の吸収型格子32の格子ピッチpは、そのスリット部が、第2の吸収型格子32の位置におけるG1像の明部の周期パターンとほぼ一致するように決定されている。すなわち、X線焦点18bから第1の吸収型格子31までの距離をL、第1の吸収型格子31から第2の吸収型格子32までの距離をLとした場合に、格子ピッチpは、次式(1)の関係を満たすように決定される。 The X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam having the X-ray focal point 18b as a light emission point, and therefore a projected image projected through the first absorption grating 31 (hereinafter referred to as a projection image). The projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b. The grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic pattern of the bright part of the G1 image at the position of the second absorption type grating 32. That is, when the distance from the X-ray focal point 18b to the first absorption grating 31 is L 1 and the distance from the first absorption grating 31 to the second absorption grating 32 is L 2 , the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1の吸収型格子31から第2の吸収型格子32までの距離Lは、タルボ干渉計では、第1の回折格子の格子ピッチとX線波長とで決まるタルボ干渉距離に制約されるが、本X線撮影システム10の撮影部12では、第1の吸収型格子31が入射X線を回折させずに投影させる構成であって、第1の吸収型格子31のG1像が、第1の吸収型格子31の後方のすべての位置で相似的に得られるため、該距離Lを、タルボ干渉距離と無関係に設定することができる。 In the Talbot interferometer, the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The imaging unit 12 of the present X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting, and the G1 image of the first absorption grating 31 is the first. because at every position of the rear absorption type grating 31 similarly obtained, the distance L 2, can be set independently of the Talbot distance.
 上記のように撮影部12は、タルボ干渉計を構成するものではないが、第1の吸収型格子31でX線を回折したと仮定した場合のタルボ干渉距離Zは、第1の吸収型格子31の格子ピッチp、第2の吸収型格子32の格子ピッチp、X線波長(実効波長)λ、及び正の整数mを用いて、次式(2)で表される。 As described above, the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating. the grating pitch p 1 of 31, the grating pitch p 2, X-ray wavelength of the second absorption-type grating 32 (effective wavelength) lambda, and using the positive integer m, is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)は、X線源11から照射されるX線がコーンビームである場合のタルボ干渉距離を表す式であり、「Timm Weitkamp, et al., Proc. of SPIE, Vol. 6318, 2006年 63180S-1項」により知られている。 Equation (2) is an equation representing the Talbot interference distance when the X-ray irradiated from the X-ray source 11 is a cone beam. “Timm Weitkamp, et al., Proc. Of SPIE, Vol. 6318, 2006 It is known from the annual salary 63180S-1.
 本X線撮影システム10では、上記距離Lを、m=1の場合の最小のタルボ干渉距離Zより短い値に設定することで、撮影部12の薄型化を図っている。すなわち、上記距離Lは、次式(3)を満たす範囲の値に設定される。 In the present X-ray imaging system 10, the imaging unit 12 is thinned by setting the distance L 2 to a value shorter than the minimum Talbot interference distance Z when m = 1. That is, the distance L 2 is set to a value in the range satisfying the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、X線源11から照射されるX線が実質的に平行ビームとみなせる場合のタルボ干渉距離Zは次式(4)となり、上記距離Lを、次式(5)を満たす範囲の値に設定する。 Incidentally, Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, the distance L 2, the value of the range that satisfies the following equation (5) Set to.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 X線遮蔽部31b,32bは、コントラストの高い周期パターン像を生成するためには、X線を完全に遮蔽(吸収)することが好ましいが、上記したX線吸収性に優れる材料(金、白金等)を用いたとしても、吸収されずに透過するX線が少なからず存在する。このため、X線の遮蔽性を高めるためには、X線遮蔽部31b,32bのそれぞれの厚みh,hを、可能な限り厚くすることが好ましい。例えば、X線管18の管電圧が50kVの場合に、照射X線の90%以上を遮蔽することが好ましく、この場合には、厚みh,hは、金(Au)換算で30μm以上であることが好ましい。 The X-ray shielding portions 31b and 32b preferably completely shield (absorb) X-rays in order to generate a periodic pattern image with high contrast, but the above-described materials (gold, platinum) having excellent X-ray absorption properties Etc.), there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b, it is preferable to increase the thickness much as possible. For example, when the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays. In this case, the thicknesses h 1 and h 2 are 30 μm or more in terms of gold (Au). It is preferable that
 しかし、X線源11から照射されるX線がコーンビームである場合に、X線遮蔽部31b,32bの厚みh,hを厚くし過ぎると、斜めに入射するX線がスリット部を通過しにくくなり、いわゆるケラレが生じて、X線遮蔽部31b,32bの延伸方向(条帯方向)に直交する方向(x方向)の有効視野が狭くなるといった問題がある。このため、視野確保の観点から、厚みh,hの上限を規定する。FPD30の検出面におけるx方向の有効視野の長さVを確保するには、X線焦点18bからFPD30の検出面までの距離をLとすると、厚みh,hは、図5に示す幾何学的関係から、次式(6)及び(7)を満たすように設定する必要がある。 However, when the X-rays irradiated from the X-ray source 11 are cone beams, if the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are too thick, the X-rays incident obliquely enter the slit portion. There is a problem that it becomes difficult to pass, so-called vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 31b and 32b becomes narrow. Therefore, in view of the field of view secured to define the upper limit of the thickness h 1, h 2. In order to secure the effective field length V in the x direction on the detection surface of the FPD 30, assuming that the distance from the X-ray focal point 18 b to the detection surface of the FPD 30 is L, the thicknesses h 1 and h 2 are shown in FIG. From the scientific relationship, it is necessary to set so as to satisfy the following expressions (6) and (7).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 例えば、d=2.5μm、d=3.0μmであり、通常の病院での撮影を想定して、L=2mとした場合には、x方向の有効視野の長さVとして10cmの長さを確保するには、厚みhは100μm以下、厚みhは120μm以下とすればよい。 For example, when d 1 = 2.5 μm and d 2 = 3.0 μm, and assuming L = 2 m assuming normal hospital imaging, the effective visual field length V in the x direction is 10 cm. In order to ensure the length, the thickness h 1 may be 100 μm or less and the thickness h 2 may be 120 μm or less.
 以上のように構成された撮影部12では、第1の吸収型格子31のG1像と第2の吸収型格子32との重ね合わせにより、強度変調された像が形成され、FPD30によって撮像される。第2の吸収型格子32の位置におけるG1像のパターン周期p’と、第2の吸収型格子32の実質的な格子ピッチp’(製造後の実質的なピッチ)とは、製造誤差や配置誤差により若干の差異が生じる。このうち、配置誤差とは、第1及び第2の吸収型格子31,32が、相対的に傾斜や回転、両者の間隔が変化することによりx方向への実質的なピッチが変化することを意味している。 In the imaging unit 12 configured as described above, an intensity-modulated image is formed by superimposing the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 and is captured by the FPD 30. . The pattern period p 1 ′ of the G1 image at the position of the second absorption grating 32 and the substantial grating pitch p 2 ′ (substantial pitch after production) of the second absorption grating 32 are manufacturing errors. Some differences occur due to or placement errors. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
 G1像のパターン周期p’と格子ピッチp’との微小な差異により、画像コントラストはモアレ縞となる。このモアレ縞の周期Tは、次式(8)で表される。 Due to the minute difference between the pattern period p 1 ′ of the G1 image and the grating pitch p 2 ′, the image contrast becomes moire fringes. The period T of the moire fringes is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 このモアレ縞をFPD30で検出するため、画素40のx方向に関する配列ピッチPは、少なくともモアレ周期Tの整数倍でないことが必要であり、次式(9)を満たす必要がある(ここで、nは正の整数である)。 In order to detect the moire fringes by the FPD 30, the arrangement pitch P in the x direction of the pixels 40 needs to be at least not an integral multiple of the moire period T, and it is necessary to satisfy the following equation (9) (where n Is a positive integer).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、式(9)を満たす範囲において、配列ピッチPがモアレ周期Tより大きくてもモアレ縞を検出することは可能であるが、配列ピッチPはモアレ周期Tより小さいことが好ましく、次式(10)を満たすことが好ましい。これは、良質な位相コントラスト画像を得るためには、後述する位相コントラスト画像の生成過程において、モアレ縞が高いコントラストで検出されていることが好ましいためである。 In addition, it is possible to detect moire fringes even if the arrangement pitch P is larger than the moire period T within a range satisfying the expression (9), but the arrangement pitch P is preferably smaller than the moire period T. 10) is preferably satisfied. This is because, in order to obtain a high-quality phase contrast image, moire fringes are preferably detected with high contrast in the phase contrast image generation process described later.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 FPD30の画素40の配列ピッチPは、設計的に定められた値(一般的に100μm程度)であり変更することが困難であるため、配列ピッチPとモアレ周期Tとの大小関係を調整するには、第1及び第2の吸収型格子31,32の位置調整を行い、G1像のパターン周期p’と格子ピッチp’との少なくともいずれか一方を変更することによりモアレ周期Tを変更することが好ましい。 Since the arrangement pitch P of the pixels 40 of the FPD 30 is a value determined by design (generally about 100 μm) and is difficult to change, the magnitude relationship between the arrangement pitch P and the moire period T is adjusted. Adjusts the positions of the first and second absorption gratings 31 and 32 and changes the moire period T by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the G1 image. It is preferable to do.
 図6に、モアレ周期Tを変更する方法を示す。 FIG. 6 shows a method of changing the moire cycle T.
 モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aを中心として相対的に回転させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aを中心として相対的に回転させる相対回転機構50を設ける。この相対回転機構50により、第2の吸収型格子32を角度θだけ回転させると、x方向に関する実質的な格子ピッチは、「p’」→「p’/cosθ」と変化し、この結果、モアレ周期Tが変化する(FIG.6A)。 The moire period T can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A. For example, a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided. When the second absorption type grating 32 is rotated by the angle θ by the relative rotation mechanism 50, the substantial grating pitch in the x direction changes from “p 2 ′” → “p 2 ′ / cos θ”. As a result, the moire cycle T changes (FIG. 6A).
 別の例として、モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させる相対傾斜機構51を設ける。この相対傾斜機構51により、第2の吸収型格子32を角度αだけ傾斜させると、x方向に関する実質的な格子ピッチは、「p’」→「p’×cosα」と変化し、この結果、モアレ周期Tが変化する(FIG.6B)。 As another example, the change of the moire period T is such that either one of the first and second absorption type gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. It can be performed by inclining. For example, a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided. Provide. When the second absorption type grating 32 is inclined by the angle α by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” → “p 2 ′ × cos α”. As a result, the moire cycle T changes (FIG. 6B).
 更に別の例として、モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を光軸Aの方向に沿って相対的に移動させることにより行うことができる。例えば、第1の吸収型格子31と第2の吸収型格子32との間の距離Lを変更するように、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aの方向に沿って相対的に移動させる相対移動機構52を設ける。この相対移動機構52により、第2の吸収型格子32を光軸Aに移動量δだけ移動させると、第2の吸収型格子32の位置に投影される第1の吸収型格子31のG1像のパターン周期は、「p’」→「p’×(L+L+δ)/(L+L)」と変化し、この結果、モアレ周期Tが変化する(FIG.6C)。 As another example, the moire period T can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A. For example, with respect to the first absorption type grating 31, the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32. A relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided. When the second absorption type grating 32 is moved to the optical axis A by the movement amount δ by the relative movement mechanism 52, the G1 image of the first absorption type grating 31 projected onto the position of the second absorption type grating 32. The pattern period of “p 1 ′” → “p 1 ′ × (L 1 + L 2 + δ) / (L 1 + L 2 )” changes, and as a result, the moire period T changes (FIG. 6C).
 本X線撮影システム10において、撮影部12は、上述のようにタルボ干渉計ではなく、距離Lを自由に設定することができるため、相対移動機構52のように距離Lの変更によりモアレ周期Tを変更する機構を、好適に採用することができる。モアレ周期Tを変更するための第1及び第2の吸収型格子31,32の上記変更機構(相対回転機構50、相対傾斜機構51、及び相対移動機構52)は、圧電素子等のアクチュエータにより構成することが可能である。 In the X-ray imaging system 10, imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed. The change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the moiré period T is constituted by an actuator such as a piezoelectric element. Is possible.
 X線源11と第1の吸収型格子31との間に被写体Hを配置した場合には、FPD30により検出されるモアレ縞は、被写体Hにより変調を受ける。この変調量は、被写体Hによる屈折効果によって偏向したX線の角度に比例する。したがって、FPD30で検出されたモアレ縞を解析することによって、被写体Hの位相コントラスト画像を生成することができる。 When the subject H is disposed between the X-ray source 11 and the first absorption type grating 31, the moire fringes detected by the FPD 30 are modulated by the subject H. This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire fringes detected by the FPD 30.
 次に、モアレ縞の解析方法について説明する。 Next, a method for analyzing moire fringes will be described.
 図7は、被写体Hのx方向に関する位相シフト分布Φ(x)に応じて屈折される1つのX線を示す。 FIG. 7 shows one X-ray refracted according to the phase shift distribution Φ (x) of the subject H in the x direction.
 符号55は、被写体Hが存在しない場合に直進するX線の経路を示しており、この経路55を進むX線は、第1及び第2の吸収型格子31,32を通過してFPD30に入射する。符号56は、被写体Hが存在する場合に、被写体Hにより屈折されて偏向したX線の経路を示している。この経路56を進むX線は、第1の吸収型格子31を通過した後、第2の吸収型格子32より遮蔽される。 Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do. Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
 被写体Hの位相シフト分布Φ(x)は、被写体Hの屈折率分布をn(x,z)、zをX線の進む方向として、次式(11)で表される。 The phase shift distribution Φ (x) of the subject H is expressed by the following equation (11), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 第1の吸収型格子31から第2の吸収型格子32の位置に投射されたG1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に次式(12)で表される。 The G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. become. This amount of displacement Δx is approximately expressed by the following equation (12) based on the small X-ray refraction angle φ.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 ここで、屈折角φは、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(13)で表される。 Here, the refraction angle φ is expressed by Expression (13) using the X-ray wavelength λ and the phase shift distribution Φ (x) of the subject H.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 このように、被写体HでのX線の屈折によるG1像の変位量Δxは、被写体Hの位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、FPD30の各画素40から出力される信号の位相ズレ量ψ(被写体Hがある場合とない場合とでの各画素40の信号の位相のズレ量)に、次式(14)のように関連している。 Thus, the displacement amount Δx of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution Φ (x) of the subject H. The amount of displacement Δx is expressed by the following equation with the phase shift amount ψ of the signal output from each pixel 40 of the FPD 30 (the phase shift amount of the signal of each pixel 40 with and without the subject H): It is related as shown in (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 したがって、各画素40の信号の位相ズレ量ψを求めることにより、式(14)から屈折角φが求まり、式(13)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。本X線撮影システム10では、上記位相ズレ量ψを、下記に示す縞走査法を用いて算出する。 Therefore, by obtaining the phase shift amount ψ of the signal of each pixel 40, the refraction angle φ is obtained from the equation (14), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (13). Is integrated with respect to x, a phase shift distribution Φ (x) of the subject H, that is, a phase contrast image of the subject H can be generated. In the present X-ray imaging system 10, the phase shift amount ψ is calculated using a fringe scanning method described below.
 縞走査法では、第1及び第2の吸収型格子31,32の一方を他方に対して相対的にx方向にステップ的に並進移動させながら撮影を行う(すなわち、両者の格子周期の位相を変化させながら撮影を行う)。本X線撮影システム10では、前述の走査機構33により第2の吸収型格子32を移動させているが、第1の吸収型格子31を移動させてもよい。第2の吸収型格子32の移動に伴って、モアレ縞が移動し、並進距離(x方向への移動量)が、第2の吸収型格子32の格子周期の1周期(格子ピッチp)に達すると(すなわち、位相変化が2πに達すると)、モアレ縞は元の位置に戻る。このようなモアレ縞の変化を、格子ピッチpを整数分の1ずつ第2の吸収型格子32を移動させながら、FPD30で縞画像を撮影し、撮影した複数の縞画像から各画素40の信号を取得し、演算処理部22で演算処理することにより、各画素40の信号の位相ズレ量ψを得る。 In the fringe scanning method, imaging is performed while one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner relative to the other in the x direction (that is, the phase of both grating periods is changed). Shoot while changing). In the X-ray imaging system 10, the second absorption type grating 32 is moved by the scanning mechanism 33 described above, but the first absorption type grating 31 may be moved. As the second absorption type grating 32 moves, the moire fringes move, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2π), the moire fringes return to their original positions. With such a change in moire fringes, a fringe image is photographed with the FPD 30 while moving the second absorption grating 32 by an integer of the grating pitch p 2 , and each pixel 40 is captured from the plural fringe images photographed. The signal is acquired and processed by the processing unit 22 to obtain the phase shift amount ψ of the signal of each pixel 40.
 図8は、格子ピッチpをM(2以上の整数)個に分割した走査ピッチ(p/M)ずつ第2の吸収型格子32を移動させる様子を模式的に示す。 FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
 走査機構33は、k=0,1,2,・・・,M-1のM個の各走査位置に、第2の吸収型格子32を順に並進移動させる。なお、同図では、第2の吸収型格子32の初期位置を、被写体Hが存在しない場合における第2の吸収型格子32の位置でのG1像の暗部が、X線遮蔽部32bにほぼ一致する位置(k=0)としているが、この初期位置は、k=0,1,2,・・・,M-1のうちいずれの位置としてもよい。 The scanning mechanism 33 translates the second absorption type grating 32 in order to M scanning positions of k = 0, 1, 2,..., M−1. In the same figure, the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present. The initial position is k = 0, 1, 2,..., M−1.
 まず、k=0の位置では、主として、被写体Hにより屈折されなかったX線が第2の吸収型格子32を通過する。次に、k=1,2,・・・と順に第2の吸収型格子32を移動させていくと、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されなかったX線の成分が減少する一方で、被写体Hにより屈折されたX線の成分が増加する。特に、k=M/2では、主として、被写体Hにより屈折されたX線のみが第2の吸収型格子32を通過する。k=M/2を超えると、逆に、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されたX線の成分が減少する一方で、被写体Hにより屈折されなかったX線の成分が増加する。 First, at the position of k = 0, X-rays that are not refracted by the subject H mainly pass through the second absorption type grating 32. Next, when the second absorption grating 32 is moved in order of k = 1, 2,..., The X-rays passing through the second absorption grating 32 are not refracted by the subject H. While the line component decreases, the X-ray component refracted by the subject H increases. In particular, at k = M / 2, mainly only the X-rays refracted by the subject H pass through the second absorption type grating 32. When k = M / 2 is exceeded, on the contrary, the X-ray component that is refracted by the subject H decreases in the X-rays that pass through the second absorption grating 32, while the X-ray that is not refracted by the subject H. The line component increases.
 k=0,1,2,・・・,M-1の各位置で、FPD30により撮影を行うと、各画素40について、M個の信号値(画素データ)が得られる。以下に、このM個の信号値から各画素40の信号の位相ズレ量ψを算出する方法を説明する。第2の吸収型格子32の位置kにおける各画素40の信号値をI(x)と標記すると、I(x)は、次式(15)で表される。 When shooting is performed by the FPD 30 at each position of k = 0, 1, 2,..., M−1, M signal values (pixel data) are obtained for each pixel 40. Hereinafter, a method of calculating the phase shift amount ψ of the signal of each pixel 40 from the M signal values will be described. When the signal value of each pixel 40 at the position k of the second absorption type grating 32 is denoted as I k (x), I k (x) is expressed by the following equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ここで、xは、画素40のx方向に関する座標であり、Aは入射X線の強度であり、Aは画素40の信号値のコントラストに対応する値である(ここで、nは正の整数である)。また、φ(x)は、上記屈折角φを画素40の座標xの関数として表したものである。 Here, x is a coordinate in the x direction of the pixel 40, A 0 is the intensity of the incident X-ray, and An is a value corresponding to the contrast of the signal value of the pixel 40 (where n is a positive value). Is an integer). Φ (x) represents the refraction angle φ as a function of the coordinate x of the pixel 40.
 次いで、次式(16)の関係式を用いると、上記屈折角φ(x)は、次式(17)のように表される。 Next, using the relational expression of the following expression (16), the refraction angle φ (x) is expressed as the following expression (17).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 ここで、arg[ ]は、偏角の抽出を意味しており、各画素40の信号の位相ズレ量ψに対応する。したがって、各画素40で得られたM個の信号値から、式(17)に基づいて各画素40の信号の位相ズレ量ψを算出することにより、屈折角φ(x)が求められる。 Here, arg [] means the extraction of the declination, and corresponds to the phase shift amount ψ of the signal of each pixel 40. Accordingly, the refraction angle φ (x) is obtained by calculating the phase shift amount ψ of the signal of each pixel 40 from the M signal values obtained at each pixel 40 based on the equation (17).
 図9は、縞走査に伴って変化する放射線画像検出器の一つの画素の信号を示す。 FIG. 9 shows a signal of one pixel of the radiation image detector that changes with the fringe scanning.
 各画素40で得られたM個の信号値は、第2の吸収型格子32の位置kに対して、格子ピッチpの周期で周期的に変化する。図9中の破線は、被写体Hが存在しない場合の信号値の変化を示しており、図9中の実線は、被写体Hが存在する場合の信号値の変化を示している。この両者の波形の位相差が各画素40の信号の位相ズレ量ψに対応する。 The M signal values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption grating 32. A broken line in FIG. 9 indicates a change in signal value when the subject H does not exist, and a solid line in FIG. 9 indicates a change in signal value when the subject H exists. The phase difference between the two waveforms corresponds to the phase shift amount ψ of the signal of each pixel 40.
 そして、屈折角φ(x)は、上記式(13)で示したように微分位相値に対応する値であるため、屈折角φ(x)をx軸に沿って積分することにより、位相シフト分布Φ(x)が得られる。なお、上記の説明では、画素40のy方向に関するy座標を考慮していないが、各y座標について同様の演算を行うことにより、x方向及びy方向における2次元的な位相シフト分布Φ(x,y)が得られる。 Since the refraction angle φ (x) is a value corresponding to the differential phase value as shown in the above equation (13), the phase shift is obtained by integrating the refraction angle φ (x) along the x-axis. A distribution Φ (x) is obtained. In the above description, the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution Φ (x , Y).
 以上の演算は、演算処理部22により行われる。演算処理部22は、更に、X線焦点18bを視点とするFPD30への投影において、第1の吸収型格子31の隣り合う第1の格子片31A同士の連結部、及び第2の吸収型格子32の隣り合う第2の格子片32A同士の連結部が投影される領域(欠陥領域)に属する画素40を抽出し、それらの画素40の信号値を周囲の画素40の信号値で補完して、補完された信号値に基づいて位相シフト分布Φを算出する。以下、画素40の抽出及びその信号値の補完について説明する。 The above calculation is performed by the calculation processing unit 22. The arithmetic processing unit 22 further includes a connection portion between the first lattice pieces 31A adjacent to each other in the first absorption type lattice 31 and a second absorption type lattice in the projection onto the FPD 30 with the X-ray focal point 18b as the viewpoint. The pixels 40 belonging to the region (defect region) where the connection part of the 32 adjacent second lattice pieces 32A is projected are extracted, and the signal values of these pixels 40 are complemented with the signal values of the surrounding pixels 40. The phase shift distribution Φ is calculated based on the complemented signal value. Hereinafter, extraction of the pixel 40 and complementation of the signal value will be described.
 図10は、第1及び第2の格子の構成を示し、図11は放射線画像検出器における欠陥領域の分布を示す。 FIG. 10 shows the configuration of the first and second gratings, and FIG. 11 shows the distribution of defect areas in the radiation image detector.
 第1の吸収型格子31において隣り合う第1の格子片31A同士は、X線吸収材としての原子番号40以上の重金属の微粒子が分散された、例えば金ペースト、白金ペースト、鉛含有半田、等の接着剤を用いて連結され、その連結部31cは、硬化した接着剤層からなるX線遮蔽体によって構成されている。第2の吸収型格子32において隣り合う第2の格子片32A同士もまたX線吸収材が分散された接着剤を用いて連結され、その連結部32cは、硬化した接着剤層からなるX線遮蔽体によって構成されている。このように構成される連結部31c,32cは、典型的には数十~数百μm程の厚みに形成され、第1及び第2の吸収型格子31,32のスリット部の間隔d,d(1~10μm程度)に比べて大きく、FPD30における画素40のピッチに略等しいか、それより大きい。 The first lattice pieces 31A adjacent to each other in the first absorption type lattice 31 are dispersed with fine particles of heavy metal having an atomic number of 40 or more as an X-ray absorber, such as gold paste, platinum paste, lead-containing solder, etc. The connecting portion 31c is constituted by an X-ray shield made of a hardened adhesive layer. The second lattice pieces 32A adjacent to each other in the second absorption type grating 32 are also connected using an adhesive in which an X-ray absorbing material is dispersed, and the connecting portion 32c is an X-ray made of a cured adhesive layer. It is constituted by a shield. The connecting portions 31c and 32c configured as described above are typically formed to a thickness of about several tens to several hundreds of μm, and the distances d 1 and d 1 between the slit portions of the first and second absorption gratings 31 and 32 are formed. It is larger than d 2 (about 1 to 10 μm) and is substantially equal to or larger than the pitch of the pixels 40 in the FPD 30.
 したがって、第1の吸収型格子31の連結部31cが投影される第1の領域A1に属する画素40、及び第2の吸収型格子32の連結部32cが投影される第2の領域A2に属する画素40の信号値は、第1及び第2の領域A1,A2を除く第3の領域A3に属する画素40の信号値に比べて小さくなる。そこで、画素40の信号値に対して所定の閾値が設定され、この閾値より小さい信号値の画素40が抽出される。抽出された各画素40の信号値は、例えば、その画素の周囲にあって第3の領域A3に属する複数の画素40の信号値の平均値に置換するなどの適宜な方法によって補完される。 Therefore, the pixel 40 belonging to the first area A1 where the connection part 31c of the first absorption type grating 31 is projected and the second area A2 where the connection part 32c of the second absorption type grating 32 is projected. The signal value of the pixel 40 is smaller than the signal value of the pixel 40 belonging to the third area A3 excluding the first and second areas A1 and A2. Therefore, a predetermined threshold is set for the signal value of the pixel 40, and the pixel 40 having a signal value smaller than this threshold is extracted. The extracted signal value of each pixel 40 is complemented by an appropriate method such as replacement with an average value of signal values of a plurality of pixels 40 that belong to the third region A3 around the pixel.
 ここで、第1の吸収型格子31の連結部が投影される第1の領域A1に属する各画素40と、第2の吸収型格子32の連結部が投影される第2の領域A2に属する各画素40との間に、第3の領域A3に属する画素40を少なくとも一つ介在させるように、換言すれば、第1の領域A1と第2の領域A2とが互いに重複せず、隣り合う両領域A1,A2の間にFPD30の画素40のピッチより大きい隙間Gを置くように、第1及び第2の吸収型格子31,32が配置されている。かかる構成により、第1及び第2の領域A1,A2に属する各画素40の極近傍に第3の領域A3に属する画素40、即ち、縞走査によって被写体の位相情報を正確に検出可能な有効画素40が設けられる。 Here, each pixel 40 belonging to the first area A1 where the connection part of the first absorption type grating 31 is projected and belongs to the second area A2 where the connection part of the second absorption type grating 32 is projected. In other words, at least one pixel 40 belonging to the third region A3 is interposed between each pixel 40, in other words, the first region A1 and the second region A2 do not overlap each other and are adjacent to each other. The first and second absorption type gratings 31 and 32 are arranged so that a gap G larger than the pitch of the pixels 40 of the FPD 30 is placed between both the areas A1 and A2. With this configuration, the pixels 40 belonging to the third region A3 in the immediate vicinity of the pixels 40 belonging to the first and second regions A1 and A2, that is, effective pixels capable of accurately detecting the phase information of the subject by fringe scanning. 40 is provided.
 以上の演算は、演算処理部22により行われ、演算処理部22は、位相コントラスト画像を記憶部23に記憶させる。 The above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the phase contrast image in the storage unit 23.
 上記の縞走査、及び位相コントラスト画像の生成処理は、入力装置21から操作者により撮影指示がなされた後、制御装置20の制御に基づいて各部が連係動作し、自動的に行われ、最終的に被写体Hの位相コントラスト画像がモニタ24に表示される。 The above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20. The phase contrast image of the subject H is displayed on the monitor 24.
 以上、説明したように、本X線撮影システム10によれば、第1及び第2の吸収型格子31,32の各々を、複数の格子片を連結して構成することにより、個々の格子片31A,32Aには比較的小型なものを用いてその精度を維持しつつ、大きなサイズの第1及び第2の吸収型格子31,32を得ることができる。それにより、撮影範囲の拡大を図ることができる。そして、隣り合う格子片同士の連結部をX線遮蔽体で形成することによって、X線焦点18bを視点とするFPD30への投影において、連結部が投影される領域A1,A2に属する画素40の抽出が容易にかつ確実に行え、もって、その画素40の信号値の補完を確実に行って、得られる位相コントラスト画像の画質を向上させることができる。 As described above, according to the X-ray imaging system 10, each of the first and second absorption type gratings 31 and 32 is configured by connecting a plurality of grating pieces to each of the grating pieces. The first and second absorption gratings 31 and 32 having a large size can be obtained while maintaining the accuracy by using relatively small ones for 31A and 32A. Thereby, the imaging range can be expanded. Then, by forming a connecting portion between adjacent lattice pieces with an X-ray shield, in the projection onto the FPD 30 with the X-ray focal point 18b as a viewpoint, the pixels 40 belonging to the regions A1 and A2 in which the connecting portion is projected. Extraction can be performed easily and reliably, and the signal value of the pixel 40 can be reliably complemented to improve the image quality of the obtained phase contrast image.
 また、第1の吸収型格子31の連結部31cが投影される第1の領域A1に属する各画素40と、第2の吸収型格子32の連結部32cが投影される第2の領域A2に属する各画素40との間に、第3の領域A3に属する画素40を少なくとも一つ介在させることによって、第1及び第2の領域A1,A2に属する各画素40の極近傍に、縞走査によって被写体の位相情報を正確に検出可能な有効画素40を設けることができ、それらの有効画素40の信号値を用いて、第1及び第2の領域A1,A2に属する各画素40の信号値を精度よく補完することができる。それにより、得られる位相コントラスト画像の画質を向上させることができる。 In addition, each pixel 40 belonging to the first area A1 where the connection part 31c of the first absorption type grating 31 is projected and the second area A2 where the connection part 32c of the second absorption type grating 32 is projected. By interposing at least one pixel 40 belonging to the third region A3 between each pixel 40 belonging to the pixel 40, the pixels 40 belonging to the first and second regions A1 and A2 are in close proximity to each other by stripe scanning. The effective pixels 40 capable of accurately detecting the phase information of the subject can be provided, and the signal values of the pixels 40 belonging to the first and second regions A1 and A2 are obtained using the signal values of the effective pixels 40. Can be complemented with high accuracy. Thereby, the image quality of the obtained phase contrast image can be improved.
 また、第1の吸収型格子31で殆どのX線を回折させずに、第2の吸収型格子32にほぼ幾何学的に投影するため、照射X線には、高い空間的可干渉性は要求されず、X線源11として医療分野で用いられている一般的なX線源を用いることができる。そして、第1の吸収型格子31から第2の吸収型格子32までの距離Lを任意の値とすることができ、該距離Lを、タルボ干渉計での最小のタルボ干渉距離より小さく設定することができるため、撮影部12を小型化(薄型化)することができる。更に、本X線撮影システムでは、第1の吸収型格子31からの投影像(G1像)には、照射X線のほぼすべての波長成分が寄与し、モアレ縞のコントラストが向上するため、位相コントラスト画像の検出感度を向上させることができる。 In addition, since most X-rays are not diffracted by the first absorption type grating 31 and are projected almost geometrically onto the second absorption type grating 32, the irradiated X-rays have high spatial coherence. A general X-ray source used in the medical field can be used as the X-ray source 11 without being required. The distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned). Furthermore, in this X-ray imaging system, almost all wavelength components of irradiated X-rays contribute to the projection image (G1 image) from the first absorption type grating 31 and the contrast of moire fringes is improved. Contrast image detection sensitivity can be improved.
 なお、上述したX線撮影システム10は、第1の格子の投影像に対して縞走査を行って屈折角φを演算するものであって、そのため、第1及び第2の格子がいずれも吸収型格子であるものとして説明したが、本発明はこれに限定されるものではない。上述のとおり、タルボ干渉像に対して縞走査を行って屈折角φを演算する場合にも、本発明は有用である。よって、第1の格子は、吸収型格子に限らず位相型格子であってもよい。また、第1の格子のX線像と第2の格子との重ね合わせによって形成されるモアレ縞の解析方法は、前述した縞走査法に限られず、例えば「J. Opt. Soc. Am. Vol.72,No.1 (1982) P.156」により知られているフーリエ変換/フーリエ逆変換を用いた方法など、モアレ縞を利用した種々の方法も適用可能である。 Note that the above-described X-ray imaging system 10 calculates the refraction angle φ by performing fringe scanning on the projection image of the first grating, and therefore the first and second gratings absorb both. Although described as a mold lattice, the present invention is not limited to this. As described above, the present invention is also useful when the refraction angle φ is calculated by performing fringe scanning on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating. Further, the method of analyzing the moire fringes formed by superimposing the X-ray image of the first grating and the second grating is not limited to the above-described fringe scanning method. For example, “J. Opt. Soc. Am. Vol” Various methods using Moire fringes, such as a method using Fourier transform / inverse Fourier transform known as “.72, No. 1 1982 (1982) P.156”, can also be applied.
 また、本X線撮影システム10は、位相シフト分布Φを画像としたものを位相コントラスト画像として記憶ないし表示するものとして説明したが、上記のとおり、位相シフト分布Φは、屈折角φより求まる位相シフト分布Φの微分量を積分したものであって、屈折角φ及び位相シフト分布Φの微分量もまた被写体によるX線の位相変化に関連している。よって、屈折角φを画像としたもの、また、位相シフトΦの微分量を画像としたものも位相コントラスト画像に含まれる。 Further, although the X-ray imaging system 10 has been described as one that stores or displays an image of the phase shift distribution Φ as a phase contrast image, as described above, the phase shift distribution Φ is a phase determined from the refraction angle φ. The differential amount of the shift distribution Φ is integrated, and the differential amount of the refraction angle φ and the phase shift distribution Φ is also related to the phase change of the X-ray by the subject. Therefore, an image having the refraction angle φ as an image and an image having the differential amount of the phase shift Φ are also included in the phase contrast image.
 また、被写体がない状態で撮影(プレ撮影)して取得される画像群から位相微分像(位相シフト分布Φの微分量)を作成するようにしてもよい。この位相微分像は、検出系の位相ムラを反映している(モアレによる位相ズレ、グリッドの不均一性、等が含まれている)。そして、被写体がある状態で撮影(メイン撮影)して取得される画像群から位相微分像を作成し、これからプレ撮影で得られた位相微分像を引くことで、測定系の位相ムラを補正した位相微分像を得ることが出来る。 Further, a phase differential image (a differential amount of the phase shift distribution Φ) may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject. This phase differential image reflects the phase unevenness of the detection system (including phase shift due to moire, grid nonuniformity, etc.). Then, a phase differential image is created from a group of images acquired by shooting (main shooting) in the presence of a subject, and the phase differential image obtained by pre-shooting is subtracted from this to correct phase irregularity in the measurement system. A phase differential image can be obtained.
 図12は、図1の放射線撮影システムの変形例に関し、第1及び第2の格子の構成を示し、図13は、放射線画像検出器における欠陥領域の分布を示す。 FIG. 12 shows the configuration of the first and second gratings for a modification of the radiation imaging system of FIG. 1, and FIG. 13 shows the distribution of defect areas in the radiation image detector.
 本変形例において、第1の吸収型格子31は、複数の第1の格子片31Aがx方向及びy方向に配列されており、x方向に隣り合う第1の格子片31A同士、y方向に隣り合う第1の格子片31A同士が連結されて構成されている。第2の吸収型格子32もまた、複数の第2の格子片32Aがx方向及びy方向に配列されており、x方向に隣り合う第2の格子片32A同士、y方向に隣り合う第1の格子片32A同士が連結されて構成されている。隣り合う格子片同士の連結部は、いずれもX線遮蔽体によって形成されている。 In this modification, the first absorption grating 31 includes a plurality of first grating pieces 31A arranged in the x direction and the y direction, and the first grating pieces 31A adjacent in the x direction are arranged in the y direction. Adjacent first lattice pieces 31A are connected to each other. Also in the second absorption type grating 32, a plurality of second grating pieces 32A are arranged in the x direction and the y direction, and the second grating pieces 32A adjacent in the x direction are adjacent to each other in the y direction. The lattice pieces 32A are connected to each other. The connecting portions between adjacent lattice pieces are all formed by an X-ray shield.
 そして、x方向に隣り合う二つの第1の格子片31Aの連結部31cxが投影される第1の領域A1に属する各画素40と、同じくx方向に隣り合う二つの第2の格子片32Aの連結部32cxが投影される第2の領域A2に属する各画素40との間に、第1及び第2の領域A1,A2を除く第3の領域に属する少なくとも一つの画素40が介在している。換言すれば、第1の領域A1と第2の領域A2とが互いに重複せず、隣り合う両領域A1,A2の間にFPD30の画素40のピッチより大きい隙間が置かれている。それにより、第1及び第2の領域A1,A2に属する各画素40の極近傍に有効画素40を設けることができ、それらの有効画素40の信号値を用いて、第1及び第2の領域A1,A2に属する各画素40の信号値を精度よく補完することができる。 And each pixel 40 which belongs to 1st area | region A1 in which the connection part 31cx of two 1st grating | lattice pieces 31A adjacent to x direction is projected, and two 2nd grating | lattice pieces 32A adjacent to x direction similarly. At least one pixel 40 belonging to the third area excluding the first and second areas A1 and A2 is interposed between each pixel 40 belonging to the second area A2 onto which the connecting portion 32cx is projected. . In other words, the first area A1 and the second area A2 do not overlap each other, and a gap larger than the pitch of the pixels 40 of the FPD 30 is placed between the adjacent areas A1 and A2. Thereby, the effective pixel 40 can be provided in the immediate vicinity of each pixel 40 belonging to the first and second regions A1 and A2, and the first and second regions are used by using the signal values of these effective pixels 40. The signal values of the pixels 40 belonging to A1 and A2 can be complemented with high accuracy.
 更に、y方向に隣り合う二つの第1の格子片31Aの連結部31cyが投影される第4の領域A4に属する各画素40と、同じくy方向に隣り合う二つの第2の格子片32Aの連結32cy部が投影される第5の領域A5に属する各画素40との間に、第4及び第5の領域A4,A5を除く第6の領域A6に属する少なくとも一つの画素40が介在している。換言すれば、第4の領域A4と第5の領域A5とが互いに重複せず、隣り合う両領域A4,A5の間にFPD30の画素40のピッチより大きい隙間が置かれている。それにより、第4及び第5の領域A4,A5に属する各画素40の極近傍に有効画素40を設けることができ、それらの有効画素40の信号値を用いて、第4及び第5の領域A4,A5に属する各画素40の信号値を精度よく補完することができる。 Furthermore, each pixel 40 belonging to the fourth region A4 on which the connecting portion 31cy of the two first grid pieces 31A adjacent in the y direction is projected, and two second grid pieces 32A that are also adjacent in the y direction At least one pixel 40 belonging to the sixth area A6 excluding the fourth and fifth areas A4 and A5 is interposed between each pixel 40 belonging to the fifth area A5 on which the connection 32cy portion is projected. Yes. In other words, the fourth area A4 and the fifth area A5 do not overlap each other, and a gap larger than the pitch of the pixels 40 of the FPD 30 is placed between the adjacent areas A4 and A5. Thereby, the effective pixel 40 can be provided in the immediate vicinity of each pixel 40 belonging to the fourth and fifth regions A4, A5, and the fourth and fifth regions can be obtained using the signal values of the effective pixels 40. The signal values of the pixels 40 belonging to A4 and A5 can be complemented with high accuracy.
 なお、x方向に関して、第1の領域A1と第2の領域A2とが互いに重複せず、またy方向に関して、第4の領域A4と第5の領域A5とが互いに重複しないことが好ましいが、x方向及びy方向のいずれか一方向に関してのみ、両領域が重複していないものであってもよく、その方向に関しては、両領域に属する各画素40の極近傍に有効画素40を設けることができる。 In addition, it is preferable that the first region A1 and the second region A2 do not overlap with each other in the x direction, and the fourth region A4 and the fifth region A5 do not overlap with each other in the y direction. Only one of the x direction and the y direction may be such that the two regions do not overlap. In this direction, the effective pixel 40 may be provided in the immediate vicinity of each pixel 40 belonging to both regions. it can.
 図14は、図1の放射線撮影システムの他の変形例に関し、その第1及び第2の格子の構成を示す。 FIG. 14 shows the configuration of the first and second gratings for another modification of the radiation imaging system of FIG.
 本変形例において、第1の格子片31Aと第2の格子片32Aとは、その厚みを除く幾何学的な形状において、第1の吸収型格子31及び第2の吸収型格子32のX線焦点18bからの距離の比(L/(L+L))に応じた相似となっている。そして、第1の吸収型格子31における第1の格子片31Aの配列方向及び各方向の配列個数と、第2の吸収型格子32における第2の格子片32Aの配列方向及び各方向における配列個数とは同じであり、第1及び第2の吸収型格子31,32の中心は、いずれもX線の光軸A上に位置している。 In the present modification, the first grating piece 31A and the second grating piece 32A have X-rays of the first absorption type grating 31 and the second absorption type grating 32 in a geometric shape excluding their thickness. It is similar according to the ratio (L 1 / (L 1 + L 2 )) of the distance from the focal point 18b. Then, the arrangement direction of the first grating pieces 31A in the first absorption type grating 31 and the number of arrangements in each direction, and the arrangement direction of the second grating pieces 32A in the second absorption type grating 32 and the number of arrangements in each direction. The centers of the first and second absorption gratings 31 and 32 are both located on the optical axis A of X-rays.
 以上の構成によれば、第2の吸収型格子32の連結部32cが投影される領域は、第1の吸収型格子31の連結部31cが投影される領域に内包される。それにより、信号値が補完される画素40を少なくして、より高精度な被写体の位相情報の取得が可能となる。 According to the above configuration, the region where the connection part 32c of the second absorption type grating 32 is projected is included in the region where the connection part 31c of the first absorption type grating 31 is projected. Thereby, the number of pixels 40 whose signal values are complemented can be reduced, and the phase information of the subject can be acquired with higher accuracy.
 図15は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 15 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 図15に示すマンモグラフィ装置80は、被検体として乳房BのX線画像(位相コントラスト画像)を撮影する装置である。マンモグラフィ装置80は、基台(図示せず)に対して旋回可能に連結されたアーム部材81の一端に配設されたX線源収納部82と、アーム部材81の他端に配設された撮影台83と、撮影台83に対して上下方向に移動可能に構成された圧迫板84とを備える。 A mammography apparatus 80 shown in FIG. 15 is an apparatus that captures an X-ray image (phase contrast image) of a breast B as a subject. The mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81. An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
 X線源収納部82にはX線源11が収納されており、撮影台83には撮影部12が収納されている。X線源11と撮影部12とは、互いに対向するように配置されている。圧迫板84は、移動機構(図示せず)により移動し、撮影台83との間で乳房Bを挟み込んで圧迫する。この圧迫状態で、上記したX線撮影が行われる。 The X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12. The X-ray source 11 and the imaging unit 12 are arranged to face each other. The compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
 なお、X線源11及び撮影部12は、前述したX線撮影システム10のものと同様の構成であるため、各構成要素には、前述したX線撮影システム10と同一の符号を付している。その他の構成及び作用については、前述したX線撮影システム10と同様であるため説明は省略する。 Since the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 described above are attached to the respective components. Yes. Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
 図16は、図15の放射線撮影システムの変形例を示す。 FIG. 16 shows a modification of the radiation imaging system of FIG.
 図16に示すマンモグラフィ装置90は、第1の吸収型格子31がX線源11と圧迫板84との間に配設されている点が前述したマンモグラフィ装置80と異なる。第1の吸収型格子31は、アーム部材81に接続された格子収納部91に収納されている。撮影部92は、FPD30、第2の吸収型格子32、走査機構33により構成されている。 16 differs from the above-described mammography apparatus 80 in that the first absorption grating 31 is disposed between the X-ray source 11 and the compression plate 84. The mammography apparatus 90 illustrated in FIG. The first absorption type lattice 31 is accommodated in a lattice accommodation portion 91 connected to the arm member 81. The imaging unit 92 includes an FPD 30, a second absorption type grating 32, and a scanning mechanism 33.
 このように、被検体(乳房)Bが第1の吸収型格子31と第2の吸収型格子32との間に位置する場合であっても、第2の吸収型格子32の位置に形成される第1の吸収型格子31の投影像(G1像)が被検体Bにより変形する。したがって、この場合でも、被検体Bに起因して変調されたモアレ縞をFPD30により検出することができる。すなわち、本マンモグラフィ装置90でも前述した原理で被検体Bの位相コントラスト画像を得ることができる。 Thus, even when the subject (breast) B is located between the first absorption type grating 31 and the second absorption type grating 32, it is formed at the position of the second absorption type grating 32. The projection image (G1 image) of the first absorption type grating 31 is deformed by the subject B. Therefore, even in this case, the moiré fringes modulated due to the subject B can be detected by the FPD 30. That is, the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
 そして、本マンモグラフィ装置90では、第1の吸収型格子31による遮蔽により、線量がほぼ半減したX線が被検体Bに照射されることになるため、被検体Bの被曝量を、前述したマンモグラフィ装置80の場合の約半分に低減することができる。なお、本マンモグラフィ装置90のように、第1の吸収型格子31と第2の吸収型格子32との間に被検体を配置することは、前述したX線撮影システム10にも適用することが可能である。 In the present mammography apparatus 90, the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 90 can also be applied to the X-ray imaging system 10 described above. Is possible.
 図17は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 17 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 図17に示すX線撮影システム100は、X線源101のコリメータユニット102に、マルチスリット103を配設した点が、上記第1実施形態のX線撮影システム10と異なる。その他の構成については、前述したX線撮影システム10と同一であるので説明は省略する。 17 differs from the X-ray imaging system 10 of the first embodiment in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. The X-ray imaging system 100 shown in FIG. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
 前述したX線撮影システム10では、X線源11からFPD30までの距離を、一般的な病院の撮影室で設定されるような距離(1m~2m)とした場合に、X線焦点18bの焦点サイズ(一般的に0.1mm~1mm程度)によるG1像のボケが影響し、位相コントラスト画像の画質の低下をもたらす恐れがある。そこで、X線焦点18bの直後にピンホールを設置して実効的に焦点サイズを小さくすることが考えられるが、実効的な焦点サイズを縮小するためにピンホールの開口面積を小さくすると、X線強度が低下してしまう。本X線撮影システム100においては、この課題を解決するために、X線焦点18bの直後にマルチスリット103を配置する。 In the X-ray imaging system 10 described above, when the distance from the X-ray source 11 to the FPD 30 is a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b. The blur of the G1 image due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is lowered. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall. In the present X-ray imaging system 100, in order to solve this problem, the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
 マルチスリット103は、撮影部12に設けられた第1及び第2の吸収型格子31,32と同様な構成の吸収型格子(第3の吸収型格子)であり、一方向(y方向)に延伸した複数のX線遮蔽部が、第1及び第2の吸収型格子31,32のX線遮蔽部31b,32bと同一方向(x方向)に周期的に配列されている。このマルチスリット103は、X線焦点18bから放射される放射線を部分的に遮蔽することにより、x方向に所定のピッチで配列した多数の小焦点光源(分散光源)を形成することを目的としている。 The multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction). The extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32. The multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
 このマルチスリット103の格子ピッチpは、マルチスリット103から第1の吸収型格子31までの距離をLとして、次式(18)を満たすように設定する必要がある。 The lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following formula (18), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 式(18)は、マルチスリット103により分散形成された各小焦点光源から射出されたX線の第1の吸収型格子31による投影像(G1像)が、第2の吸収型格子32の位置で一致する(重なり合う)ための幾何学的な条件である。 Expression (18) indicates that the projection image (G1 image) of the X-rays emitted from the small-focus light sources dispersedly formed by the multi-slit 103 by the first absorption-type grating 31 is the position of the second absorption-type grating 32. This is a geometric condition for matching (overlapping).
 また、実質的にマルチスリット103の位置がX線焦点位置となるため、第2の吸収型格子32の格子ピッチpは、次式(19)の関係を満たすように決定される。 In addition, since the position of the multi slit 103 is substantially the X-ray focal position, the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (19).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 このように、本X線撮影システムでは、マルチスリット103により形成される複数の小焦点光源に基づくG1像が重ね合わせられることにより、X線強度を低下させずに、位相コントラスト画像の画質を向上させることができる。以上説明したマルチスリット103は、前述したいずれのX線撮影システムにおいても適用可能である。 As described above, in the present X-ray imaging system, the G1 images based on the plurality of small focus light sources formed by the multi-slit 103 are superimposed, thereby improving the image quality of the phase contrast image without reducing the X-ray intensity. Can be made. The multi slit 103 described above can be applied to any of the X-ray imaging systems described above.
 図18は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 18 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 前述したX線撮影システム10において、縞走査により得られる位相コントラスト画像は、第1及び第2の吸収型格子31,32のX線遮蔽部の周期配列方向(x方向)のX線の屈折成分に基づくものであり、X線遮蔽部の延伸方向(y方向)の屈折成分は含まれていない。このため、被検体Hの形状と向きによっては描出できない部位が存在する。例えば、関節軟骨の荷重面の方向をy方向に合わせると、荷重面に垂直な形状を有する軟骨周辺組織(腱や靭帯など)は描出が不十分になると考えられる。被写体Hを動かすことにより、描出が不十分な部位を再度撮影することは可能ではあるが、被検体H及び術者の負担が増えることに加え、再度撮影した画像との位置再現性を担保することが難しいといった問題がある。 In the X-ray imaging system 10 described above, the phase contrast image obtained by the fringe scanning is an X-ray refraction component in the periodic array direction (x direction) of the X-ray shielding portions of the first and second absorption gratings 31 and 32. And the refractive component in the extending direction (y direction) of the X-ray shielding part is not included. For this reason, there is a portion that cannot be depicted depending on the shape and orientation of the subject H. For example, when the direction of the load surface of the articular cartilage is matched with the y direction, it is considered that the peripheral tissue of the cartilage (such as tendons and ligaments) having a shape perpendicular to the load surface is insufficiently depicted. By moving the subject H, it is possible to recapture a region that is not sufficiently depicted, but in addition to increasing the burden on the subject H and the operator, the position reproducibility with the recaptured image is ensured. There is a problem that it is difficult.
 そこで、第1及び第2の吸収型格子31,32の格子面の中心に直交する仮想線(X線の光軸A)を中心として、第1及び第2の吸収型格子31,32を、第1の向きから一体的に回転させて、第2の向きとする格子回転機構105を設け、第1の向きと第2の向きとのそれぞれにおいて位相コントラスト画像を生成するように構成することもできる。 Accordingly, the first and second absorption gratings 31 and 32 are centered on a virtual line (X-ray optical axis A) orthogonal to the center of the grating surface of the first and second absorption gratings 31 and 32. It is also possible to provide a lattice rotation mechanism 105 that rotates integrally from the first direction and sets the second direction to generate a phase contrast image in each of the first direction and the second direction. it can.
 なお、図示の例では、第1及び第2の吸収型格子31,32を90°回転させ、第1の向きと第2の向きとが直交しているが、第1の向きと第2の向きとが交差する限りにおいて第1及び第2の吸収型格子31,32の回転角度は90°に限られるものではない。また、この格子回転機構105は、FPD30とは別に第1及び第2の吸収型格子31,32のみを一体的に回転させるものであってもよいし、第1及び第2の吸収型格子31,32とともにFPD30を一体的に回転させるものであってもよい。更に、マルチスリット103を備える場合は、第1及び第2の吸収型格子31,32と回転が一致するように、マルチスリット103及びコリメータユニット102、若しくはこれらが一体で形成されたX線源を回転させる。更に、格子回転機構105を用いた第1及び第2の向きにおける位相コントラスト画像の生成は、前述したいずれのX線撮影システムにおいても適用可能である。 In the illustrated example, the first and second absorption gratings 31 and 32 are rotated by 90 °, and the first direction and the second direction are orthogonal to each other. As long as the direction intersects, the rotation angle of the first and second absorption gratings 31 and 32 is not limited to 90 °. Further, the grating rotating mechanism 105 may be configured to rotate only the first and second absorption type gratings 31 and 32 separately from the FPD 30, or the first and second absorption type gratings 31. , 32 and the FPD 30 may be rotated together. Further, when the multi-slit 103 is provided, an X-ray source in which the multi-slit 103 and the collimator unit 102 are integrally formed so that the rotation coincides with the first and second absorption gratings 31 and 32 is used. Rotate. Furthermore, the generation of phase contrast images in the first and second orientations using the grating rotation mechanism 105 can be applied to any of the X-ray imaging systems described above.
 図19は、本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その第1及び第2の格子の構成を示す。 FIG. 19 shows the configuration of the first and second gratings for another example of the radiation imaging system for explaining the embodiment of the present invention.
 前述したX線撮影システム10においては、第1及び第2の吸収型格子31,32は、X線遮蔽部31b,32bの周期配列方向が直線状(すなわち、格子面が平面状)となるように構成されているが、これに代えて、図19に示すように、格子面を略凹曲面状に構成した第1及び第2の吸収型格子110,111を用いることもできる。 In the X-ray imaging system 10 described above, the first and second absorption gratings 31 and 32 are arranged such that the periodic arrangement direction of the X-ray shielding portions 31b and 32b is linear (that is, the grating surface is planar). However, instead of this, as shown in FIG. 19, it is also possible to use first and second absorption type gratings 110 and 111 having a substantially concave curved surface.
 第1の吸収型格子110は、複数の第1の格子片110Aを連結して構成されており、第1の格子片110Aの各々は、X線透過性でかつ平面状の基板110aの表面に、y方向に直線状に延伸する複数のX線遮蔽部110bが所定のピッチpで周期的に配列されている。そして、第1の吸収型格子110は、X線焦点18bを通りX線遮蔽部110bの延伸方向(y方向)に延びる仮想線を中心軸とする円筒面の周方向に複数の第1の格子片110Aが配列され、周方向に隣り合う第1の格子片110A同士が連結されることによって、その格子面が略凹曲面状に構成されている。隣り合う第1の格子片110A同士の連結部は、X線遮蔽体で形成されている。 The first absorption type grating 110 is configured by connecting a plurality of first grating pieces 110A, and each of the first grating pieces 110A is formed on the surface of a planar substrate 110a that is X-ray transparent. , a plurality of X-ray shielding section 110b that extends linearly in the y direction are periodically arranged at a predetermined pitch p 1. The first absorption type grating 110 includes a plurality of first gratings in the circumferential direction of the cylindrical surface with the imaginary line passing through the X-ray focal point 18b and extending in the extending direction (y direction) of the X-ray shielding part 110b as a central axis. When the pieces 110A are arranged and the first lattice pieces 110A adjacent in the circumferential direction are connected to each other, the lattice surface is formed in a substantially concave curved surface shape. A connecting portion between adjacent first lattice pieces 110A is formed of an X-ray shield.
 同様に、第2の吸収型格子111は、複数の第2の格子片111Aを連結して構成されており、第2の格子片111Aの各々は、X線透過性でかつ平面状の基板111aの表面に、y方向に直線状に延伸する複数のX線遮蔽部111bが所定のピッチpで周期的に配列されている。そして、第2の吸収型格子111は、X線焦点18bを通りX線遮蔽部111bの延伸方向(y方向)に延びる仮想線を中心軸とする円筒面の周方向に複数の第2の格子片111Aが配列され、周方向に隣り合う第1の格子片111A同士が連結されることによって、その格子面が略凹曲面状に構成されている。隣り合う第2の格子片111A同士の連結部は、X線遮蔽体で形成されている。 Similarly, the second absorption type grating 111 is configured by connecting a plurality of second grating pieces 111A, and each of the second grating pieces 111A is an X-ray transparent and planar substrate 111a. on the surface of a plurality of X-ray shielding section 111b that extends linearly in the y direction are periodically arranged at a predetermined pitch p 2. The second absorption type grating 111 includes a plurality of second gratings in the circumferential direction of the cylindrical surface with a virtual line passing through the X-ray focal point 18b and extending in the extending direction (y direction) of the X-ray shielding part 111b as a central axis. When the pieces 111A are arranged and the first lattice pieces 111A adjacent to each other in the circumferential direction are connected to each other, the lattice surface is formed in a substantially concave curved surface shape. A connecting portion between the adjacent second lattice pieces 111A is formed of an X-ray shield.
 X線焦点18bから第1の吸収型格子110までの距離をL、第1の吸収型格子110から第2の吸収型格子111までの距離をLとした場合に、格子ピッチpは、上記式(1)の関係を満たすように決定される。 L 1 the distance from the X-ray focal point 18b to the first absorption grating 110, when the distance from the first absorption grating 110 to the second absorption grating 111 was L 2, the grating pitch p 2 are Are determined so as to satisfy the relationship of the above formula (1).
 このように、第1及び第2の吸収型格子110,111を、それぞれ複数の格子片を連結して構成することで、それらの格子面を容易に略凹曲面状に構成することができる。そして、第1及び第2の吸収型格子110,111の格子面を略凹曲面状とすることにより、X線焦点18bから照射されるX線は、被検体Hが存在しない場合、格子面の各部に略垂直に入射することになるため、X線遮蔽部110bの厚みhとX線遮蔽部111bの厚みhとの上限の制約が緩和され、上記式(6)及び(7)を考慮する必要がない。 In this way, by configuring the first and second absorption type gratings 110 and 111 by connecting a plurality of grating pieces, respectively, the grating surfaces can be easily formed into a substantially concave curved surface shape. Then, by making the grating surfaces of the first and second absorption gratings 110 and 111 substantially concave curved surfaces, the X-rays irradiated from the X-ray focal point 18 b since made incident substantially perpendicularly to the respective units, the upper limit of the limitation of the thickness h 2 of the thickness h 1 and the X-ray shielding portion 111b of the X-ray shielding section 110b is reduced, the above expression (6) and (7) There is no need to consider.
 また、第1及び第2の吸収型格子110,111の格子面を凹曲面状とする場合に、第1及び第2の吸収型格子110,111のいずれか一方を、X線焦点18bを中心として、格子面に沿った方向に移動させることにより、前述の縞走査を行う。更に、第1及び第2の吸収型格子110,111の格子面を凹曲面状とする場合に、FPD112の検出面もまた、X線焦点18bを通りy方向に延びる直線を中心軸とする円筒面に沿った凹曲面状に形成することが好ましい。 Further, when the grating surfaces of the first and second absorption type gratings 110 and 111 are formed in a concave curved surface shape, one of the first and second absorption type gratings 110 and 111 is centered on the X-ray focal point 18b. As described above, the above-described fringe scanning is performed by moving in a direction along the lattice plane. Further, when the grating surfaces of the first and second absorption gratings 110 and 111 are formed in a concave curved surface, the detection surface of the FPD 112 is also a cylinder whose central axis is a straight line that extends in the y direction through the X-ray focal point 18b. It is preferable to form a concave curved surface along the surface.
 第1及び第2の吸収型格子110,111及びFPD112は、前述したいずれのX線撮影システムにおいても適用可能である。更に、マルチスリット103を、第1及び第2の吸収型格子110,111と同様な形状とすることも好適である。 The first and second absorption gratings 110 and 111 and the FPD 112 can be applied to any of the X-ray imaging systems described above. Furthermore, it is also preferable that the multi slit 103 has the same shape as the first and second absorption gratings 110 and 111.
 図20は、本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その放射線画像検出器の構成を示す。 FIG. 20 shows the configuration of the radiation image detector in relation to another example of the radiation imaging system for explaining the embodiment of the present invention.
 前述したX線撮影システム10では、第2の吸収型格子32がFPD30とは独立して設けられているが、第2の吸収型格子32あるいはそれと同等の構成をX線画像検出器自体が有していてもよい。具体的な実施態様としては、特開2009-133823号公報に開示された構成のX線画像検出器を用いることにより、第2の吸収型格子を排することができる。このX線画像検出器は、X線を電荷に変換する変換層と、変換層において変換された電荷を収集する電荷収集電極とを備えた直接変換型のX線画像検出器であって、各画素120の電荷収集電極121が、一定の周期で配列された線状電極を互いに電気的に接続してなる複数の線状電極群122~127を、互いに位相が異なるように配置することにより構成されている。 In the X-ray imaging system 10 described above, the second absorption type grating 32 is provided independently of the FPD 30, but the X-ray image detector itself has the second absorption type grating 32 or an equivalent configuration. You may do it. As a specific embodiment, the second absorption type grating can be eliminated by using an X-ray image detector having a configuration disclosed in Japanese Patent Laid-Open No. 2009-133823. This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges, and a charge collection electrode that collects electric charges converted in the conversion layer, The charge collecting electrode 121 of the pixel 120 is configured by arranging a plurality of linear electrode groups 122 to 127 formed by electrically connecting linear electrodes arranged at a constant period so that their phases are different from each other. Has been.
 画素120は、x方向及びy方向に沿って一定のピッチで2次元配列されており、各画素120には、X線を電荷に変換する変換層によって変換された電荷を収集するための電荷収集電極121が形成されている。電荷収集電極121は、第1~第6の線状電極群122~127から構成されており、各線状電極群の線状電極の配列周期の位相がπ/3ずつずれている。具体的には、第1の線状電極群122の位相を0とすると、第2の線状電極群123の位相はπ/3、第3の線状電極群124の位相は2π/3、第4の線状電極群125の位相はπ、第5の線状電極群126の位相は4π/3、第6の線状電極群127の位相は5π/3である。 The pixels 120 are two-dimensionally arranged at a constant pitch along the x direction and the y direction, and each pixel 120 has a charge collection for collecting the charges converted by the conversion layer that converts the X-rays into charges. An electrode 121 is formed. The charge collection electrode 121 includes first to sixth linear electrode groups 122 to 127, and the phase of the arrangement period of the linear electrodes of each linear electrode group is shifted by π / 3. Specifically, when the phase of the first linear electrode group 122 is 0, the phase of the second linear electrode group 123 is π / 3, the phase of the third linear electrode group 124 is 2π / 3, The phase of the fourth linear electrode group 125 is π, the phase of the fifth linear electrode group 126 is 4π / 3, and the phase of the sixth linear electrode group 127 is 5π / 3.
 第1~第6の線状電極群122~127はそれぞれ、y方向に延伸した線状電極をx方向に所定のピッチpで周期的に配列したものである。この線状電極の配列ピッチpの実質的なピッチp’(製造後の実質的なピッチ)と、電荷収集電極121の位置(X線画像検出器の位置)におけるG1像のパターン周期p’と、x方向に関する画素120の配列ピッチPとの関係は、前述したX線撮影システム10の第2の吸収型格子32と同様に、式(8)で表されるモアレ縞の周期Tに基づき、式(9)を満たす必要があり、更には、式(10)を満たすことが好ましい。 Linear electrode groups 122-127 of the first through sixth, respectively, in which the linear electrodes extend in the y-direction and periodically arranged at a predetermined pitch p 2 in the x-direction. The pattern period p of the G1 image at the substantial pitch p 2 ′ (substantial pitch after manufacture) of the arrangement pitch p 2 of the linear electrodes and the position of the charge collection electrode 121 (position of the X-ray image detector). The relationship between 1 ′ and the arrangement pitch P of the pixels 120 in the x direction is similar to the second absorption grating 32 of the X-ray imaging system 10 described above, and the period T of the moire fringes represented by the equation (8). Therefore, it is necessary to satisfy the formula (9), and it is preferable to satisfy the formula (10).
 更に、各画素120には、電荷収集電極121により収集された電荷を読み出すためのスイッチ群128が設けられている。スイッチ群128は、第1~第6の線状電極群121~126のそれぞれに設けられたTFTスイッチからなる。第1~第6の線状電極群121~126により収集された電荷を、スイッチ群128を制御してそれぞれ個別に読み出すことによって、一度の撮影により、互いに位相の異なる6種類の縞画像を取得することができ、この6種類の縞画像に基づいて位相コントラスト画像を生成することができる。 Further, each pixel 120 is provided with a switch group 128 for reading out the charges collected by the charge collecting electrode 121. The switch group 128 includes TFT switches provided in the first to sixth linear electrode groups 121 to 126, respectively. By collecting the charges collected by the first to sixth linear electrode groups 121 to 126 individually by controlling the switch group 128, six types of fringe images having different phases can be obtained by one imaging. A phase contrast image can be generated based on these six types of fringe images.
 このように構成されたX線画像検出器を、例えば前述したX線撮影システム10に適用した場合に、撮影部12から第2の吸収型格子32が不要となり、更に、一度の撮影で複数の位相成分の縞画像を取得することができるため、縞走査のための物理的な走査が不要となり、走査機構33も排することができる。それにより、コスト削減とともに、撮影部のさらなる薄型化を図ることができる。なお、電荷収集電極の構成には、上記構成に代えて、特開2009-133823号公報に記載のその他の構成を用いることも可能である。 For example, when the X-ray image detector configured as described above is applied to the X-ray imaging system 10 described above, the second absorption type grating 32 is not required from the imaging unit 12, and a plurality of images can be obtained by one imaging. Since a phase component fringe image can be acquired, physical scanning for fringe scanning becomes unnecessary, and the scanning mechanism 33 can be eliminated. Thereby, it is possible to reduce the cost and further reduce the thickness of the photographing unit. It should be noted that the structure of the charge collecting electrode may be replaced with another structure described in Japanese Patent Application Laid-Open No. 2009-133823.
 図21は、本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その演算部の構成を示す。 FIG. 21 shows the configuration of the calculation unit of another example of the radiation imaging system for explaining the embodiment of the present invention.
 前述した各X線撮影システムによれば、これまで描出が難しかったX線弱吸収物体の高コントラストな画像(位相コントラスト画像)が得られるが、更に、位相コントラスト画像と対応して吸収画像が参照できることは読影の助けになる。例えば、吸収画像と位相コントラスト画像を重み付けや階調、周波数処理などの適当な処理によって重ね合わせることにより吸収画像で表現できなかった部分を位相コントラスト画像の情報で補うことは有効である。しかし、位相コントラスト画像とは別に吸収画像を撮影することは、位相コントラスト画像の撮影と吸収画像の撮影の間の撮影肢位のズレによって良好な重ね合わせを困難にするのに加え、撮影回数が増えることにより被検者の負担となる。また、近年、位相コントラスト画像や吸収画像の他に、小角散乱画像が注目されている。小角散乱画像は、被検体組織内部の微細構造に起因する組織性状を表現可能であり、例えば、ガンや循環器疾患といった分野での新しい画像診断のための表現方法として期待されている。 According to each X-ray imaging system described above, a high-contrast image (phase contrast image) of an X-ray weakly absorbing object that has been difficult to draw can be obtained. In addition, an absorption image is referred to corresponding to the phase contrast image. What you can do will help you interpret. For example, it is effective to supplement the portion that could not be represented by the absorption image with the information of the phase contrast image by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing. However, capturing an absorption image separately from the phase contrast image makes it difficult to superimpose images due to the shift in the shooting position between the phase contrast image capture and the absorption image capture. Increasing the burden on the subject. In recent years, small-angle scattered images have attracted attention in addition to phase contrast images and absorption images. The small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in the fields of cancer and cardiovascular diseases.
 そこで、本X線撮影システムは、位相コントラスト画像のために取得した複数枚の画像から、吸収画像や小角散乱画像を生成することも可能とする演算処理部190を用いる。演算処理部190は、位相コントラスト画像生成部191、吸収画像生成部192、小角散乱画像生成部193が構成されている。これらは、いずれもk=0,1,2,・・・,M-1のM個の各走査位置で得られる画像データに基づいて演算処理を行う。このうち、位相コントラスト画像生成部191は、前述の手順に従って位相コントラスト画像を生成する。 Therefore, this X-ray imaging system uses an arithmetic processing unit 190 that can generate an absorption image and a small-angle scattered image from a plurality of images acquired for a phase contrast image. The arithmetic processing unit 190 includes a phase contrast image generation unit 191, an absorption image generation unit 192, and a small angle scattered image generation unit 193. These all perform arithmetic processing based on image data obtained at M scanning positions of k = 0, 1, 2,..., M−1. Among these, the phase contrast image generation unit 191 generates a phase contrast image according to the above-described procedure.
 吸収画像生成部192は、画素ごとに得られる画素データI(x,y)を、図22に示すように、kについて平均化して平均値を算出して画像化することにより吸収画像を生成する。なお、平均値の算出は、画素データI(x,y)をkについて単純に平均化することにより行なっても良いが、Mが小さい場合には誤差が大きくなるため、画素データI(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の平均値を求めるようにしてもよい。また、吸収画像の生成には、平均値に限られず、平均値に対応する量であれば、画素データI(x,y)をkについて加算した加算値等を用いることが可能である。 The absorption image generation unit 192 generates an absorption image by averaging pixel data I k (x, y) obtained for each pixel with respect to k, calculating an average value, and forming an image as shown in FIG. To do. The average value may be calculated by simply averaging the pixel data I k (x, y) with respect to k. However, when M is small, the error increases, so that the pixel data I k ( After fitting x, y) with a sine wave, an average value of the fitted sine wave may be obtained. The generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel data I k (x, y) with respect to k can be used as long as the amount corresponds to the average value.
 なお、被写体がない状態で撮影(プレ撮影)して取得される画像群から、吸収像を作成するようにしてもよい。この吸収像は、検出系の透過率ムラを反映している(グリッドの透過率ムラ、等の情報が含まれている)。そこで、この画像から、検出系の透過率ムラを補正するための補正係数マップを作成することが出来る。被写体がある状態で撮影(メイン撮影)して取得される画像群から、吸収像を作成し、前述の補正係数を各画素にかけることで、検出系の透過率ムラを補正した、被写体の吸収像を得ることが出来る。 Note that an absorption image may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject. This absorption image reflects the transmittance unevenness of the detection system (including information such as the transmittance unevenness of the grid). Therefore, a correction coefficient map for correcting the transmittance unevenness of the detection system can be created from this image. Absorption of the subject, in which an absorption image is created from a group of images obtained by shooting in the state of the subject (main shooting), and the above-described correction coefficient is applied to each pixel, thereby correcting the transmittance unevenness of the detection system. An image can be obtained.
 小角散乱画像生成部193は、画素ごとに得られる画素データI(x,y)の振幅値を算出して画像化することにより小角散乱画像を生成する。なお、振幅値の算出は、画素データI(x,y)の最大値と最小値との差を求めることによって行なっても良いが、Mが小さい場合には誤差が大きくなるため、画素データI(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の振幅値を求めるようにしても良い。また、小角散乱画像の生成には、振幅値に限られず、平均値を中心としたばらつきに対応する量として、分散値や標準偏差等を用いることが可能である。 The small angle scattered image generation unit 193 generates a small angle scattered image by calculating and imaging the amplitude value of the pixel data I k (x, y) obtained for each pixel. The amplitude value may be calculated by obtaining the difference between the maximum value and the minimum value of the pixel data I k (x, y). However, when M is small, the error increases, so that the pixel data After fitting I k (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained. In addition, the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
 本X線撮影システムによれば、被写体の位相コントラスト画像のために取得した複数枚の画像から吸収画像や小角散乱画像を生成するので、吸収画像や小角散乱画像の撮影の間の撮影肢位のズレが生じず、位相コントラスト画像と吸収画像や小角散乱画像との良好な重ね合わせが可能となる。 According to the present X-ray imaging system, an absorption image and a small angle scattered image are generated from a plurality of images acquired for the phase contrast image of the subject. No deviation occurs, and the phase contrast image can be satisfactorily superimposed with the absorption image or the small-angle scattered image.
 図23は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 23 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 本例のX線撮影システムは、X線源11から射出されたX線を通過させて第1の周期パターン像を形成する第1の格子131と、第1の格子131により形成された第1の周期パターン像を強度変調して第2の周期パターン像を形成する第2の格子132と、第2の格子132により形成された第2の周期パターン像を検出するX線画像検出器(放射線画像検出器)240と、X線画像検出器240により検出された第2の周期パターン像に基づいて縞画像を取得し、その取得した縞画像に基づいて位相コントラスト画像を生成する位相コントラスト画像生成部260とを備えている。なお、位相コントラスト画像生成部260は、コンソール13(図2)内の制御装置20の処理の一部及び演算処理部22の処理を構成する。 The X-ray imaging system of the present example has a first grating 131 that forms the first periodic pattern image by passing the X-rays emitted from the X-ray source 11 and the first grating 131. A second grating 132 that forms a second periodic pattern image by modulating the intensity of the periodic pattern image, and an X-ray image detector (radiation) that detects the second periodic pattern image formed by the second grating 132. Image detector) 240 and a second periodic pattern image detected by X-ray image detector 240 acquire a fringe image, and generate a phase contrast image based on the acquired fringe image Part 260. The phase contrast image generation unit 260 constitutes a part of the processing of the control device 20 in the console 13 (FIG. 2) and the processing of the arithmetic processing unit 22.
 X線源11は、被写体Hに向けてX線を射出するものであり、第1の格子131にX線を照射したとき、タルボ干渉効果を発生させうるだけの空間的干渉性を有するものである。たとえば、X線の発光点のサイズが小さいマイクロフォーカスX線管やプラズマX線源を利用することができる。また、通常の医療現場で用いられるような比較的X線の発光点(いわゆる焦点サイズ)の大きなX線源を用いる場合は、所定のピッチを有するマルチスリット(例えば、上述したマルチスリット103)をX線源11と第1の格子131との間に設置して使用することができる。 The X-ray source 11 emits X-rays toward the subject H, and has spatial coherence that can generate a Talbot interference effect when the first grating 131 is irradiated with X-rays. is there. For example, a microfocus X-ray tube or a plasma X-ray source having a small X-ray emission point size can be used. Further, when an X-ray source having a relatively large X-ray emission point (so-called focal spot size) as used in a normal medical field is used, a multi-slit (for example, the multi-slit 103 described above) having a predetermined pitch is used. It can be used by being installed between the X-ray source 11 and the first grating 131.
 第1の格子131は、照射されるX線に対して約90°又は約180°の位相変調を与える、いわゆる位相変調型格子であることが望ましく、たとえば、X線遮蔽部を金とした場合、通常の医療診断用のX線エネルギー領域において必要な厚さhは1μm~数μm程度になる。また、第1の格子131として、振幅変調型格子を用いることもできる。一方、第2の格子132は、振幅変調型格子であることが望ましい。 The first grating 131 is desirably a so-called phase modulation type grating that gives a phase modulation of about 90 ° or about 180 ° with respect to the irradiated X-ray. For example, when the X-ray shielding portion is gold In the normal X-ray energy region for medical diagnosis, the necessary thickness h 1 is about 1 μm to several μm. An amplitude modulation type grating can also be used as the first grating 131. On the other hand, the second grating 132 is preferably an amplitude modulation type grating.
 X線源11から照射されるX線が、平行ビームではなく、コーンビームである場合には、第1の格子131を通過して形成される第1の格子131の自己像は、X線源11からの距離に比例して拡大される。そして、本例においては、第2の格子132の格子ピッチPは、そのスリット部が、第2の格子132の位置における第1の格子131の自己像の明部の周期パターンとほぼ一致するように決定される。すなわち、X線源11の焦点から第1の格子131までの距離をL、第1の格子131から第2の格子132までの距離をLとした場合、第2の格子ピッチpは、上記の式(1)の関係を満たすように決定される。 When the X-ray irradiated from the X-ray source 11 is not a parallel beam but a cone beam, the self-image of the first grating 131 formed through the first grating 131 is an X-ray source. It is enlarged in proportion to the distance from 11. In this example, the grating pitch P 2 of the second grating 132 substantially matches the periodic pattern of the bright part of the self-image of the first grating 131 at the position of the second grating 132. To be determined. That is, when the distance from the focal point of the X-ray source 11 to the first grating 131 is L 1 and the distance from the first grating 131 to the second grating 132 is L 2 , the second grating pitch p 2 is Are determined so as to satisfy the relationship of the above formula (1).
 なお、X線源11から照射されるX線が平行ビームである場合には、p=pを満たすように決定される。 When the X-rays emitted from the X-ray source 11 are parallel beams, it is determined so as to satisfy p 2 = p 1 .
 第1の格子131は、前述したX線撮影システム10の第1の吸収型格子31と同様に、複数の第1の格子片が一次元又は二次元に配列され、これらの第1の格子片同士を連結して構成されており、隣り合う第1の格子片同士の連結部はX線遮蔽体によって構成されている。第2の格子132もまた、前述したX線撮影システム10の第2の吸収型格子32と同様に、複数の第2の格子片が一次元又は二次元に配列され、これらの第2の格子片を連結して構成されており、隣り合う第2の格子片同士の連結部はX線遮蔽体によって構成されている。 As in the first absorption type grating 31 of the X-ray imaging system 10 described above, the first grating 131 has a plurality of first grating pieces arranged one-dimensionally or two-dimensionally, and these first grating pieces. It is configured by connecting each other, and the connecting portion between the adjacent first lattice pieces is configured by an X-ray shield. Similarly to the second absorption grating 32 of the X-ray imaging system 10 described above, the second grating 132 also has a plurality of second grating pieces arranged one-dimensionally or two-dimensionally. The pieces are connected to each other, and the connecting portion between the adjacent second lattice pieces is formed of an X-ray shield.
 X線画像検出器240は、第1の格子131に入射したX線が形成する第1の格子131の自己像が第2の格子132によって強度変調された像を画像信号として検出するものである。このようなX線画像検出器240として、本例においては、直接変換型のX線画像検出器であって、線状の読取光によって走査されることによって画像信号が読み出される、いわゆる光読取方式のX線画像検出器を用いる。 The X-ray image detector 240 detects an image in which the self-image of the first grating 131 formed by the X-rays incident on the first grating 131 is intensity-modulated by the second grating 132 as an image signal. . In this example, the X-ray image detector 240 is a direct-conversion X-ray image detector that reads an image signal by scanning with linear reading light. X-ray image detector.
 図24は、X線画像検出器240の外観(FIG.24A)、xz面断面(FIG.24B)、及びyz面断面(FIG.24C)を示す。 FIG. 24 shows the appearance (FIG. 24A), xz plane cross section (FIG. 24B), and yz plane cross section (FIG. 24C) of the X-ray image detector 240.
 本例のX線画像検出器240は、X線を透過する第1の電極層241、第1の電極層241を透過したX線の照射を受けることにより電荷を発生する記録用光導電層242、記録用光導電層242において発生した電荷のうち一方の極性の電荷に対しては絶縁体として作用し、かつ他方の極性の電荷に対しては導電体として作用する電荷輸送層244、読取光の照射を受けることにより電荷を発生する読取用光導電層245、及び第2の電極層246をこの順に積層してなるものである。記録用光導電層242と電荷輸送層244との界面近傍には、記録用光導電層242内で発生した電荷を蓄積する蓄電部243が形成される。なお、上記各層は、ガラス基板247上に第2の電極層246から順に形成されている。 The X-ray image detector 240 of this example includes a first electrode layer 241 that transmits X-rays, and a recording photoconductive layer 242 that generates charges when irradiated with X-rays transmitted through the first electrode layer 241. The charge transport layer 244, which acts as an insulator for charges of one polarity among the charges generated in the recording photoconductive layer 242, and acts as a conductor for charges of the other polarity, reading light The photoconductive layer for reading 245 that generates an electric charge when irradiated with the first electrode layer 246 and the second electrode layer 246 are laminated in this order. In the vicinity of the interface between the recording photoconductive layer 242 and the charge transport layer 244, a power storage unit 243 that accumulates charges generated in the recording photoconductive layer 242 is formed. Note that each of the above layers is formed on the glass substrate 247 in order from the second electrode layer 246.
 第1の電極層241としては、X線を透過するものであればよく、たとえば、ネサ皮膜(SnO)、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、アモルファス状光透過性酸化膜であるIDIXO(Idemitsu Indium X-metal Oxide ;出光興産(株))などを50~200nm厚にして用いることができ、また、100nm厚のAlやAuなども用いることもできる。 The first electrode layer 241 only needs to transmit X-rays. For example, Nesa film (SnO 2 ), ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), amorphous light-transmitting oxide film IDIXO (Idemitsu Indium X-metal Oxide; Idemitsu Kosan Co., Ltd.) having a thickness of 50 to 200 nm can be used, and Al or Au having a thickness of 100 nm can also be used.
 記録用光導電層242は、X線の照射を受けることにより電荷を発生するものであればよく、X線に対して比較的量子効率が高く、また暗抵抗が高いなどの点で優れているa-Seを主成分とするものを使用する。厚さは10μm以上1500μm以下が適切である。また、特にマンモグラフィ用途である場合には、150μm以上250μm以下であることが好ましく、一般撮影用途である場合には、500μm以上1200μm以下であることが好ましい。 The recording photoconductive layer 242 only needs to generate charge when irradiated with X-rays, and is excellent in that it has relatively high quantum efficiency and high dark resistance with respect to X-rays. A material mainly composed of a-Se is used. The thickness is suitably 10 μm or more and 1500 μm or less. In particular, when it is used for mammography, it is preferably 150 μm or more and 250 μm or less, and when used for general photographing, it is preferably 500 μm or more and 1200 μm or less.
 電荷輸送層244としては、たとえば、X線画像の記録の際に第1の電極層241に帯電する電荷の移動度と、その逆極性となる電荷の移動度の差が大きい程良く(例えば102以上、望ましくは103以上)、たとえば、ポリN-ビニルカルバゾール(PVK)、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-〔1,1’-ビフェニル〕-4,4’-ジアミン(TPD)やディスコティック液晶等の有機系化合物、或いはTPDのポリマー(ポリカーボネート、ポリスチレン、PVK)分散物,Clを10~200ppmドープしたa-Se、AsSe等の半導体物質が適当である。厚さは0.2~2μm程度が適切である。 As the charge transport layer 244, for example, the larger the difference between the mobility of charges charged in the first electrode layer 241 during recording of an X-ray image and the mobility of charges having the opposite polarity, the better (for example, 102 Or more, preferably 103 or more), for example, poly N-vinylcarbazole (PVK), N, N′-diphenyl-N, N′-bis (3-methylphenyl)-[1,1′-biphenyl] -4, Organic compounds such as 4'-diamine (TPD) and discotic liquid crystal, or TPD polymer (polycarbonate, polystyrene, PVK) dispersion, semiconductor materials such as a-Se and As 2 Se 3 doped with 10 to 200 ppm of Cl Is appropriate. A thickness of about 0.2 to 2 μm is appropriate.
 読取用光導電層245としては、読取光の照射を受けることにより導電性を呈するものであればよく、たとえば、a-Se、Se-Te、Se-As-Te、無金属フタロシアニン、金属フタロシアニン、MgPc(Magnesium phtalocyanine),VoPc(phaseII of Vanadyl phthalocyanine)、CuPc(Cupper phtalocyanine)などのうち少なくとも1つを主成分とする光導電性物質が好適である。厚さは5~20μm程度が適切である。 The reading photoconductive layer 245 may be any material that exhibits conductivity when irradiated with reading light. For example, a-Se, Se-Te, Se-As-Te, metal-free phthalocyanine, metal phthalocyanine, A photoconductive substance mainly composed of at least one of MgPc (Magnesium phthalocyanine), VoPc (phase II of Vanadyl phthalocyanine), CuPc (Cupper phthalocyanine), and the like is preferable. A thickness of about 5 to 20 μm is appropriate.
 第2の電極層246は、読取光を透過する複数の透明線状電極246aと読取光を遮光する複数の遮光線状電極246bとを有するものである。透明線状電極246aと遮光線状電極246bとは、X線画像検出器240の画像形成領域の一方の端部から他方の端部まで連続して直線状に延びるものである。そして、透明線状電極246aと遮光線状電極246bとは、所定の間隔を空けて交互に平行に配列されている(FIG.24A,24B)。 The second electrode layer 246 includes a plurality of transparent linear electrodes 246a that transmit the reading light and a plurality of light shielding linear electrodes 246b that shield the reading light. The transparent linear electrode 246a and the light-shielding linear electrode 246b extend linearly continuously from one end of the image forming area of the X-ray image detector 240 to the other end. The transparent linear electrodes 246a and the light-shielding linear electrodes 246b are alternately arranged in parallel at predetermined intervals (FIG. 24A, 24B).
 透明線状電極246aは読取光を透過するとともに、導電性を有する材料から形成されている。たとえば、第1の電極層241と同様に、ITO、IZOやIDIXOを用いることができる。そして、その厚さは100~200nm程度である。 The transparent linear electrode 246a is made of a conductive material while transmitting reading light. For example, as with the first electrode layer 241, ITO, IZO, or IDIXO can be used. The thickness is about 100 to 200 nm.
 遮光線状電極246bは読取光を遮光するとともに、導電性を有する材料から形成されている。たとえば、上記の透明導電材料とカラーフィルターを組み合せて用いることができる。透明導電材料の厚さは100~200nm程度である。 The light shielding linear electrode 246b shields the reading light and is made of a conductive material. For example, the above transparent conductive material and a color filter can be used in combination. The thickness of the transparent conductive material is about 100 to 200 nm.
 そして、本例のX線画像検出器240においては、後で詳述するが、隣接する透明線状電極246aと遮光線状電極246bとの1組を用いて画像信号が読み出される。すなわち、1組の透明線状電極246aと遮光線状電極246bとによって1画素の画像信号が読み出されることになる(FIG.24B)。本例においては、1画素が略50μmとなるように透明線状電極246aと遮光線状電極246bとが配置されている。 In the X-ray image detector 240 of this example, as will be described in detail later, an image signal is read out using a pair of the adjacent transparent linear electrode 246a and the light shielding linear electrode 246b. That is, an image signal of one pixel is read out by one set of the transparent linear electrode 246a and the light shielding linear electrode 246b (FIG. 24B). In this example, the transparent linear electrode 246a and the light shielding linear electrode 246b are arranged so that one pixel is approximately 50 μm.
 そして、本例のX線撮影システムは、透明線状電極246aと遮光線状電極246bの延伸方向に直交する方向(x方向)に延設された線状読取光源250を備えている(FIG.24A)。本例の線状読取光源250は、LED(Light EmittingDiode)やLD(Laser Diode)などの光源と所定の光学系とから構成され、略10μmの幅の線状の読取光をX線画像検出器240に照射するように構成されている。そして、この線状読取光源250は、所定の移動機構(図示省略)によって透明線状電極246a及び遮光線状電極246bの延伸方向(y方向)について移動するものであり、この移動により線状読取光源250から発せられた線状の読取光によってX線画像検出器240が走査されて画像信号が読み出される。画像信号の読取りの作用については後で詳述する。 The X-ray imaging system of this example includes a linear reading light source 250 extending in a direction (x direction) orthogonal to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b (FIG. 24A). The linear reading light source 250 of this example is composed of a light source such as an LED (Light Emitting Diode) or LD (Laser Diode) and a predetermined optical system, and the linear reading light having a width of about 10 μm is detected as an X-ray image detector. It is comprised so that 240 may be irradiated. The linear reading light source 250 is moved in the extending direction (y direction) of the transparent linear electrode 246a and the light shielding linear electrode 246b by a predetermined moving mechanism (not shown). The X-ray image detector 240 is scanned by the linear reading light emitted from the light source 250 and the image signal is read out. The operation of reading the image signal will be described in detail later.
 そして、X線源11、第1の格子131、第2の格子132及びX線画像検出器240を備える構成をタルボ干渉計として機能させるためには、更にいくつかの条件をほぼ満たさねばならない。その条件について以下に説明する。 In order for the configuration including the X-ray source 11, the first grating 131, the second grating 132, and the X-ray image detector 240 to function as a Talbot interferometer, some conditions must be substantially satisfied. The conditions will be described below.
 まず、第1の格子131と第2の格子132とのグリッド面が、図23に示すxy平面に平行であることが必要である。 First, the grid surfaces of the first grating 131 and the second grating 132 must be parallel to the xy plane shown in FIG.
 そして、更に、第1の格子131と第2の格子132との距離Z(タルボ干渉距離Z)は、第1の格子131が90°の位相変調を与える位相変調型格子である場合、次式(20)をほぼ満たし、第1の格子131が180°の位相変調を与える位相変調型格子である場合、次式(21)をほぼ満たさなければならない。 Further, the distance Z 2 (Talbot interference distance Z) between the first grating 131 and the second grating 132 is the following when the first grating 131 is a phase modulation type grating that applies 90 ° phase modulation. When Expression (20) is substantially satisfied and the first grating 131 is a phase modulation type grating that gives 180 ° phase modulation, the following Expression (21) must be approximately satisfied.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 ただし、λはX線の波長(通常は実効波長)、mは0か正の整数、pは上述した第1の格子131の格子ピッチ、pは上述した第2の格子132の格子ピッチである。 Where λ is the X-ray wavelength (usually effective wavelength), m is 0 or a positive integer, p 1 is the lattice pitch of the first grating 131 described above, and p 2 is the grating pitch of the second grating 132 described above. It is.
 また、第1の格子131が振幅変調型格子である場合には、タルボ干渉距離Zに関して上述の式(2)をほぼ満たさなければならない。 Further, when the first grating 131 is an amplitude modulation type grating, the above formula (2) must be substantially satisfied with respect to the Talbot interference distance Z.
 また、第1、第2の格子131,132のそれぞれの厚みh,hに関しても、第1、第2の格子31,32に関して上述した式(6)及び式(7)を満たすように設定する必要がある。 Further, the thicknesses h 1 and h 2 of the first and second gratings 131 and 132 are also set so as to satisfy the expressions (6) and (7) described above with respect to the first and second gratings 31 and 32. Must be set.
 そして、更に本例のX線撮影システムにおいては、図25に示すように、第1の格子131と第2の格子132とが、第1の格子131の延伸方向と第2の格子132の延伸方向とが相対的に傾くように配置されるものである。そして、このように配置された第1の格子131と第2の格子132に対して、X線画像検出器240によって検出される画像信号の各画素の主走査方向(図24のx方向)の主画素サイズDxと副走査方向の副画素サイズDyとは、図25に示すような関係となる。 Further, in the X-ray imaging system of the present example, as shown in FIG. 25, the first grating 131 and the second grating 132 are formed by extending the first grating 131 and the second grating 132. It is arranged so that the direction is relatively inclined. Then, with respect to the first grating 131 and the second grating 132 arranged in this way, the main scanning direction (x direction in FIG. 24) of each pixel of the image signal detected by the X-ray image detector 240. The main pixel size Dx and the sub-pixel size Dy in the sub-scanning direction have a relationship as shown in FIG.
 主画素サイズDxは、上述したようにX線画像検出器240の透明線状電極246aと遮光線状電極246bの配列ピッチによって決定されるものであって、本例においては50μmに設定されている。また、副画素サイズDyは、線状読取光源250によってX線画像検出器240に照射される線状の読取光の幅によって決定されるものであって、本例においては10μmに設定されている。 As described above, the main pixel size Dx is determined by the arrangement pitch of the transparent linear electrodes 246a and the light shielding linear electrodes 246b of the X-ray image detector 240, and is set to 50 μm in this example. . The sub-pixel size Dy is determined by the width of the linear reading light irradiated to the X-ray image detector 240 by the linear reading light source 250, and is set to 10 μm in this example. .
 ここで、本例においては、複数の縞画像を取得し、その複数の縞画像に基づいて位相コントラスト画像を生成するが、その取得する縞画像の数をMとすると、M個の副画素サイズDyが位相コントラスト画像の副走査方向の1つの画像解像度Dとなるように第1の格子131が第2の格子132に対して傾けられる。 Here, in this example, a plurality of fringe images are acquired, and a phase contrast image is generated based on the plurality of fringe images. If the number of acquired fringe images is M, M subpixel sizes are obtained. The first grating 131 is tilted with respect to the second grating 132 so that Dy becomes one image resolution D in the sub-scanning direction of the phase contrast image.
 具体的には、図26に示すように、第2の格子132のピッチ及び第1の格子131によって第2の格子132の位置に形成される周期パターン像(以下、第1の格子131の自己像G1という)のピッチをp、第2の格子132に対する第1の格子131の自己像のxy面内の相対的な回転角をθ、位相コントラスト画像の副走査方向の画像解像度をD(=Dy×M)とすると、回転角θを次式(22)を満たすように設定することによって、副走査方向の画像解像度Dの長さに対して、第1の格子131の自己像G1と第2の格子132の位相がn周期分ずれることになる。なお、図26においては、M=5、n=1の場合を示している。 Specifically, as shown in FIG. 26, a periodic pattern image formed on the position of the second grating 132 by the pitch of the second grating 132 and the first grating 131 (hereinafter referred to as self of the first grating 131). The pitch of the image G1) is p, the relative rotation angle of the self-image of the first grating 131 with respect to the second grating 132 in the xy plane is θ, and the image resolution in the sub-scanning direction of the phase contrast image is D (= Dy × M), the rotation angle θ is set so as to satisfy the following expression (22), so that the self-image G1 of the first grating 131 and the first image G1 with respect to the length of the image resolution D in the sub scanning direction The phase of the second grating 132 is shifted by n periods. FIG. 26 shows a case where M = 5 and n = 1.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 したがって、位相コントラスト画像の副走査方向の画像解像度DをM分割したDx×Dyの各画素によって、第1の格子131の自己像のn周期分の強度変調をM分割した画像信号が検出できることになる。図26に示す例では、n=1としているので、副走査方向の画像解像度Dの長さに対して、第1の格子131の自己像G1と第2の格子132の位相が1周期分ずれることになる。もっとわかり易く言えば、第1の格子131の自己像G1の1周期分の第2の格子132を通過する範囲が、副走査方向の画像解像度Dの長さにわたって変化する。 Therefore, an image signal obtained by dividing the intensity modulation for n periods of the self-image of the first grating 131 by M can be detected by each pixel of Dx × Dy obtained by dividing the image resolution D of the phase contrast image in the sub-scanning direction by M. Become. In the example shown in FIG. 26, since n = 1, the phase of the self-image G1 of the first grating 131 and the second grating 132 is shifted by one period with respect to the length of the image resolution D in the sub-scanning direction. It will be. More simply, the range that passes through the second grating 132 for one period of the self-image G1 of the first grating 131 changes over the length of the image resolution D in the sub-scanning direction.
 そして、M=5としているので、Dx×Dyの各画素によって第1の格子131の自己像の1周期の強度変調を5分割した画像信号が検出できることになり、すなわち、Dx×Dyの各画素によって互いに異なる5つの縞画像の画像信号をそれぞれ検出することができることになる。なお、5つの縞画像の画像信号の取得方法については、後で詳述する。 Since M = 5, an image signal obtained by dividing the intensity modulation of one period of the self-image of the first grating 131 into five can be detected by each pixel of Dx × Dy, that is, each pixel of Dx × Dy. Thus, it is possible to detect image signals of five different fringe images. The method for acquiring the image signals of the five striped images will be described in detail later.
 なお、本例においては、上述したとおり、Dx=50μm、Dy=10μm、M=5としているので、位相コントラスト画像の主走査方向の画像解像度Dxと副走査方向の画像解像度D=Dy×Mが同じになるが、必ずしも主走査方向の画像解像度Dxと副走査方向の画像解像度Dとを合わせる必要はなく、任意の主副比としてもよい。 In this example, as described above, since Dx = 50 μm, Dy = 10 μm, and M = 5, the image resolution Dx in the main scanning direction and the image resolution D = Dy × M in the sub-scanning direction of the phase contrast image are obtained. Although it is the same, it is not always necessary to match the image resolution Dx in the main scanning direction and the image resolution D in the sub scanning direction, and an arbitrary main / sub ratio may be used.
 更に、本例においては、M=5としているが、Mは3以上であればよく、5以外であってもよい。また、上記説明ではn=1としたが、nは0以外の整数であれば1以外の整数でもよい。すなわち、nが負の整数の場合には上述した例に対して反対周りの回転となり、また、nを±1以外の整数としてn周期分の強度変調としてもよい。ただし、nがMの倍数の場合は、1組のM個の副走査方向画素Dyの間で第1の格子131の自己像G1と第2の格子132の位相が等しくなり、異なるM個の縞画像とならないため除外するものとする。 Furthermore, in this example, M = 5, but M may be 3 or more and may be other than 5. In the above description, n = 1, but n may be an integer other than 1 as long as n is an integer other than 0. That is, when n is a negative integer, the rotation is opposite to that in the above-described example, and n may be an intensity modulation for n periods with n being an integer other than ± 1. However, when n is a multiple of M, the phases of the self-image G1 of the first grating 131 and the second grating 132 are equal between one set of M sub-scanning direction pixels Dy, and M different numbers Since it is not a striped image, it is excluded.
 また、第2の格子132に対する第1の格子131の自己像の回転角θについては、たとえば、X線画像検出器240と第2の格子132の相対回転角を固定した後、第1の格子131を回転させることによって行うことができる。 Regarding the rotation angle θ of the self-image of the first grating 131 with respect to the second grating 132, for example, after fixing the relative rotation angle of the X-ray image detector 240 and the second grating 132, the first grating 131. This can be done by rotating 131.
 たとえば、式(22)でp=5μm、D=50μm、n=1とすると、理論上の回転角θは約5.7°である。そして、第2の格子132に対する第1の格子131の自己像の実際の回転角θ’は、たとえば、第1の格子の自己像と第2の格子132によるモアレのピッチによって検出することができる。 For example, when p = 5 μm, D = 50 μm, and n = 1 in the equation (22), the theoretical rotation angle θ is about 5.7 °. Then, the actual rotation angle θ ′ of the self-image of the first grating 131 relative to the second grating 132 can be detected by, for example, the self-image of the first grating and the moire pitch by the second grating 132. .
 具体的には、図27に示すように、実際の回転角をθ’、回転によって生じたx方向への見た目の自己像のピッチをP’とすると、観測されるモアレのピッチPmは、1/Pm=|1/P’-1/p|であるので、P’=p/cosθ’を上式に代入することによって実際の回転角θ’を求めることができる。なお、モアレのピッチPmについては、X線画像検出器240によって検出された画像信号に基づいて求めるようにすればよい。 Specifically, as shown in FIG. 27, if the actual rotation angle is θ ′ and the pitch of the apparent self-image in the x direction generated by the rotation is P ′, the observed moire pitch Pm is 1 Since / Pm = | 1 / P′−1 / p |, the actual rotation angle θ ′ can be obtained by substituting P ′ = p / cos θ ′ into the above equation. The moire pitch Pm may be obtained based on the image signal detected by the X-ray image detector 240.
 そして、理論上の回転角θと実際の回転角θ’とを比較し、その差の分だけで自動又は手動で第1の格子131の回転角を調整するようにすればよい。 Then, the theoretical rotation angle θ and the actual rotation angle θ ′ may be compared, and the rotation angle of the first grating 131 may be adjusted automatically or manually based on the difference.
 位相コントラスト画像生成部260は、X線画像検出器240により検出された互いに異なるM種類の縞画像の画像信号に基づいてX線位相コントラスト画像を生成するものである。 The phase contrast image generation unit 260 generates an X-ray phase contrast image based on image signals of M kinds of different fringe images detected by the X-ray image detector 240.
 次に、本例のX線撮影システムの作用について説明する。 Next, the operation of the X-ray imaging system of this example will be described.
 まず、図23に示すように、X線源11と第1の格子131との間に、被写体Hが配置された後、X線源11からX線が射出される。そして、そのX線は被写体Hを透過した後、第1の格子131に照射される。第1の格子131に照射されたX線は、第1の格子131で回折されることにより、第1の格子131からX線の光軸方向において所定の距離において、タルボ干渉像を形成する。 First, as shown in FIG. 23, after the subject H is arranged between the X-ray source 11 and the first grating 131, X-rays are emitted from the X-ray source 11. Then, the X-ray passes through the subject H and is then irradiated on the first grating 131. The X-rays irradiated to the first grating 131 are diffracted by the first grating 131 to form a Talbot interference image at a predetermined distance from the first grating 131 in the optical axis direction of the X-ray.
 これをタルボ効果と呼び、光波が第1の格子131を通過したとき、第1の格子131から所定の距離において、第1の格子131の自己像を形成する。たとえば、第1の格子131が、90°の位相変調を与える位相変調型格子の場合、式(20)(180°の位相変調型格子や強度変調型格子の場合は式(21))で与えられる距離において第1の格子131の自己像を形成する一方、被写体Hによって、第1の格子131に入射するX線の波面は歪むため、第1の格子131の自己像はそれに従って変形している。 This is called the Talbot effect. When a light wave passes through the first grating 131, a self-image of the first grating 131 is formed at a predetermined distance from the first grating 131. For example, when the first grating 131 is a phase modulation type grating that gives 90 ° phase modulation, it is given by Expression (20) (Expression (21) in the case of a 180 ° phase modulation type grating or intensity modulation type grating). While the self-image of the first grating 131 is formed at a given distance, the wavefront of the X-ray incident on the first grating 131 is distorted by the subject H, so that the self-image of the first grating 131 is deformed accordingly. Yes.
 続いて、X線は、第2の格子132を通過する。その結果、上記の変形した第1の格子131の自己像は第2の格子132との重ね合わせにより、強度変調を受け、上記波面の歪みを反映した画像信号としてX線画像検出器240により検出される。 Subsequently, the X-ray passes through the second grating 132. As a result, the self-image of the deformed first grating 131 is intensity-modulated by being superimposed on the second grating 132, and is detected by the X-ray image detector 240 as an image signal reflecting the wavefront distortion. Is done.
 ここで、図28,29を参照して、X線画像検出器240における画像検出と読出しの作用について説明する。 Here, with reference to FIGS. 28 and 29, the operation of image detection and readout in the X-ray image detector 240 will be described.
 まず、高圧電源400によってX線画像検出器240の第1の電極層241に負の電圧を印加した状態において、第1の格子131の自己像と第2の格子132との重ね合わせによって強度変調されたX線が、X線画像検出器240の第1の電極層241側から照射される(FIG.28A)。 First, in a state where a negative voltage is applied to the first electrode layer 241 of the X-ray image detector 240 by the high-voltage power supply 400, intensity modulation is performed by superposition of the self-image of the first grating 131 and the second grating 132. The X-rays thus emitted are irradiated from the first electrode layer 241 side of the X-ray image detector 240 (FIG. 28A).
 そして、X線画像検出器240に照射されたX線は、第1の電極層241を透過し、記録用光導電層242に照射される。そして、そのX線の照射によって記録用光導電層242において電荷対が発生し、そのうち正の電荷は第1の電極層241に帯電した負の電荷と結合して消滅し、負の電荷は潜像電荷として記録用光導電層242と電荷輸送層244との界面に形成される蓄電部243に蓄積される(FIG.28B)。 Then, the X-rays irradiated to the X-ray image detector 240 are transmitted through the first electrode layer 241 and irradiated to the recording photoconductive layer 242. The X-ray irradiation generates a charge pair in the recording photoconductive layer 242, and the positive charge is combined with the negative charge charged in the first electrode layer 241 and disappears, and the negative charge is latent. The image charges are accumulated in the power storage unit 243 formed at the interface between the recording photoconductive layer 242 and the charge transport layer 244 (FIG. 28B).
 次に、図29に示すように、第1の電極層241が接地された状態において、線状読取光源250から発せられた線状の読取光L1が第2の電極層246側から照射される。読取光L1は透明線状電極246aを透過して読取用光導電層245に照射され、その読取光L1の照射により読取用光導電層245において発生した正の電荷が電荷輸送層244を通過して蓄電部243における潜像電荷と結合するとともに、負の電荷が、透明線状電極246aに接続されたチャージアンプ200を介して遮光線状電極246bに帯電した正の電荷と結合する。 Next, as shown in FIG. 29, in the state where the first electrode layer 241 is grounded, the linear reading light L1 emitted from the linear reading light source 250 is irradiated from the second electrode layer 246 side. . The reading light L1 passes through the transparent linear electrode 246a and is applied to the reading photoconductive layer 245, and the positive charge generated in the reading photoconductive layer 245 by the irradiation of the reading light L1 passes through the charge transport layer 244. The negative charge is combined with the positive charge charged on the light shielding linear electrode 246b through the charge amplifier 200 connected to the transparent linear electrode 246a.
 そして、読取用光導電層245において発生した負の電荷と遮光線状電極246bに帯電した正の電荷との結合によって、チャージアンプ200に電流が流れ、この電流が積分されて画像信号として検出される。 A current flows through the charge amplifier 200 due to the combination of the negative charge generated in the reading photoconductive layer 245 and the positive charge charged in the light shielding linear electrode 246b, and this current is integrated and detected as an image signal. The
 そして、線状読取光源250が、副走査方向に移動することによって線状の読取光L1によってX線画像検出器240が走査され、線状の読取光L1の照射された読取ライン毎に上述した作用によって画像信号が順次検出され、その検出された読取ライン毎の画像信号が位相コントラスト画像生成部260に順次入力されて記憶される。 Then, the linear reading light source 250 moves in the sub-scanning direction to scan the X-ray image detector 240 with the linear reading light L1, and the above-described reading lines are irradiated with the linear reading light L1. The image signals are sequentially detected by the action, and the detected image signals for each reading line are sequentially input and stored in the phase contrast image generation unit 260.
 そして、X線画像検出器240の全面が読取光L1に走査されて1フレーム全体の画像信号が位相コントラスト画像生成部260に記憶された後、位相コントラスト画像生成部260は、その記憶された画像信号に基づいて、互いに異なる5つの縞画像の画像信号を取得する。 Then, after the entire surface of the X-ray image detector 240 is scanned with the reading light L1 and the image signal of one frame is stored in the phase contrast image generation unit 260, the phase contrast image generation unit 260 stores the stored image. Based on the signal, image signals of five different fringe images are acquired.
 具体的には、本例においては、図26に示すように、位相コントラスト画像の副走査方向の画像解像度Dを5分割し、第1の格子131の自己像の1周期の強度変調を5分割した画像信号が検出できるように第1の格子131を第2の格子132に対して傾けるようにしたので、図30に示すように、第1読取ラインから読み出された画像信号が第1の縞画像信号M1として取得され、第2読取ラインから読み出された画像信号が第2の縞画像信号M2として取得され、第3読取ラインから読み出された画像信号が第3の縞画像信号M3として取得され、第4読取ラインから読み出された画像信号が第4の縞画像信号M4として取得され、第5読取ラインから読み出された画像信号が第5の縞画像信号M5として取得される。なお、図30に示す第1~第5読取ラインは、図26に示す副画素サイズDyに相当する。 Specifically, in this example, as shown in FIG. 26, the image resolution D in the sub-scanning direction of the phase contrast image is divided into five, and the intensity modulation of one period of the self image of the first grating 131 is divided into five. Since the first grating 131 is inclined with respect to the second grating 132 so that the detected image signal can be detected, as shown in FIG. 30, the image signal read from the first reading line is the first The image signal acquired as the fringe image signal M1 and read from the second reading line is acquired as the second fringe image signal M2, and the image signal read from the third reading line is the third fringe image signal M3. And the image signal read from the fourth reading line is acquired as the fourth fringe image signal M4, and the image signal read from the fifth reading line is acquired as the fifth fringe image signal M5. . Note that the first to fifth reading lines shown in FIG. 30 correspond to the sub-pixel size Dy shown in FIG.
 また、図30においては、Dx×(Dy×5)の読取範囲しか示していないが、その他の読取範囲についても、上記と同様にして第1~第5の縞画像信号が取得される。すなわち、図31に示すように、副走査方向について4画素間隔毎の画素行(読取ライン)からなる画素行群の画像信号が取得されて1フレームの1つの縞画像信号が取得される。より具体的には、第1読取ラインの画素行群の画像信号が取得されて1フレームの第1の縞画像信号が取得され、第2読取ラインの画素行群の画像信号が取得されて1フレームの第2の縞画像信号が取得され、第3読取ラインの画素行群の画像信号が取得されて1フレームの第3の縞画像信号が取得され、第4読取ラインの画素行群の画像信号が取得されて1フレームの第4の縞画像信号が取得され、第5読取ラインの画素行群の画像信号が取得されて1フレームの第5の縞画像信号が取得される。 In FIG. 30, only the reading range of Dx × (Dy × 5) is shown, but the first to fifth fringe image signals are acquired in the same manner as described above for the other reading ranges. That is, as shown in FIG. 31, an image signal of a pixel row group composed of pixel rows (reading lines) every four pixel intervals in the sub-scanning direction is acquired, and one stripe image signal of one frame is acquired. More specifically, the image signal of the pixel row group of the first reading line is acquired to acquire the first stripe image signal of one frame, and the image signal of the pixel row group of the second reading line is acquired to 1 The second stripe image signal of the frame is acquired, the image signal of the pixel row group of the third reading line is acquired, the third stripe image signal of one frame is acquired, and the image of the pixel row group of the fourth reading line A signal is acquired to acquire a fourth stripe image signal of one frame, an image signal of a pixel row group of the fifth reading line is acquired, and a fifth stripe image signal of one frame is acquired.
 上記のようにして互いに異なる第1~第5の縞画像信号が取得され、この第1~第5の縞画像信号に基づいて、位相コントラスト画像生成部260において位相コントラスト画像が生成される。 As described above, the first to fifth fringe image signals different from each other are acquired, and the phase contrast image generation unit 260 generates a phase contrast image based on the first to fifth fringe image signals.
 本例における位相コントラスト画像の生成方法は、既に式(11)~(17)を参照して説明した内容と同様であるため、その説明を省略する。 The method for generating the phase contrast image in this example is the same as that already described with reference to the equations (11) to (17), and thus the description thereof is omitted.
 なお、上述した第1の格子131と第2の格子132とを傾ける構成において、第1の格子131と第2の格子132とをともに吸収型(振幅変調型)格子として構成し、タルボ干渉効果の有無に関わらず、スリット部を通過した放射線をほぼ幾何学的に投影する構成としてもよい。この場合には、第1の格子131の間隔dと第2の格子132の間隔dとを、X線源11から照射されるX線の実効波長より十分大きな値とすることで、照射X線に含まれる大部分をスリット部で回折せずに、直進性を保ったまま通過するように構成する。たとえば、X線源のターゲットとしてタングステンを用い、管電圧を50kVとした場合には、X線の実効波長は約0.4Åである。この場合には、第1の格子131の間隔dと第2の格子132の間隔dを、1μm~10μm程度とすればスリット部で大部分の放射線が回折されずにほぼ幾何学的に投影される。第1の格子131の格子ピッチpと第2の格子132の格子ピッチpとの関係については、上述した第1の格子131が位相変調型格子である場合と同様である。また、第2の格子132に対する第1の格子131の傾きについても、上述の例と同様であり、位相コントラスト画像の生成も、上述の例と同様に行われる。 In the above-described configuration in which the first grating 131 and the second grating 132 are tilted, both the first grating 131 and the second grating 132 are configured as absorption (amplitude modulation type) gratings, and the Talbot interference effect is obtained. Irrespective of the presence or absence of, it is good also as a structure which projects the radiation which passed the slit part substantially geometrically. In this case, by a distance d 1 of the first grating 131 and a distance d 2 of the second grating 132, and sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, illumination Most of the X-rays are configured to pass through while maintaining straightness without being diffracted by the slit portion. For example, when tungsten is used as the target of the X-ray source and the tube voltage is 50 kV, the effective wavelength of X-ray is about 0.4 mm. In this case, the distance d 1 of the first grating 131 spacing d 2 of the second grating 132, substantially geometrically without being most of the radiation is diffracted by the slit portion be about 1 [mu] m ~ 10 [mu] m Projected. The grating pitch p 1 of the first grating 131 for the relationship between the lattice pitch p 2 of the second grating 132 is the same as when the first grating 131 described above is a phase modulation type grating. Further, the inclination of the first grating 131 with respect to the second grating 132 is also the same as in the above example, and the generation of the phase contrast image is performed in the same manner as in the above example.
 なお、上記例においては、X線画像検出器240として、線状読取光源250から発せられた線状の読取光の走査によって画像信号が読み出される、いわゆる光読取方式のX線画像検出器を用いるようにしたが、これに限らず、たとえば、特開2002-26300号公報に記載されているような、TFTスイッチが2次元状に多数配列され、そのTFTスイッチをオンオフすることによって画像信号が読み出されるTFTスイッチを用いたX線画像検出器や、CMOSを用いたX線画像検出器などを用いるようにしてもよい。 In the above example, as the X-ray image detector 240, a so-called optical reading type X-ray image detector in which an image signal is read out by scanning linear reading light emitted from the linear reading light source 250 is used. However, the present invention is not limited to this. For example, as described in Japanese Patent Application Laid-Open No. 2002-26300, a large number of TFT switches are arranged two-dimensionally, and image signals are read by turning on and off the TFT switches. An X-ray image detector using a TFT switch or an X-ray image detector using a CMOS may be used.
 具体的には、TFTスイッチを用いたX線画像検出器は、たとえば、図32に示すように、X線の照射によって半導体膜において光電変換された電荷を収集する画素電極271と画素電極271によって収集された電荷を画像信号として読み出すためのTFTスイッチ272とを備えた画素回路270が2次元状に多数配列されたものである。そして、TFTスイッチを用いたX線画像検出器は、画素回路行毎に設けられ、TFTスイッチ272をオンオフするためのゲート走査信号が出力される多数のゲート電極273と、画素回路列毎に設けられ、各画素回路270から読み出された電荷信号が出力される多数のデータ電極274とを備えている。なお、各画素回路270の詳細な層構成については、特開2002-26300号公報に記載されている層構成と同様である。 Specifically, an X-ray image detector using a TFT switch includes, for example, a pixel electrode 271 and a pixel electrode 271 that collect charges photoelectrically converted in a semiconductor film by X-ray irradiation as shown in FIG. A number of pixel circuits 270 each including a TFT switch 272 for reading out the collected charges as an image signal are arranged in a two-dimensional manner. An X-ray image detector using a TFT switch is provided for each pixel circuit row, and is provided for each pixel circuit column and a large number of gate electrodes 273 from which a gate scanning signal for turning on and off the TFT switch 272 is output. And a plurality of data electrodes 274 from which the charge signal read from each pixel circuit 270 is output. The detailed layer configuration of each pixel circuit 270 is the same as the layer configuration described in Japanese Patent Laid-Open No. 2002-26300.
 そして、たとえば、第2の格子132と画素回路列(データ電極)とが平行になるように設置した場合、1つの画素回路列が、上記例において説明した主画素サイズDxに相当し、1つの画素回路行が、上記例において説明した副画素サイズDyに相当する。なお、主画素サイズDx及び副画素サイズDyは、たとえば、50μmとすることができる。 For example, when the second grid 132 and the pixel circuit array (data electrode) are installed in parallel, one pixel circuit array corresponds to the main pixel size Dx described in the above example, The pixel circuit row corresponds to the sub-pixel size Dy described in the above example. Note that the main pixel size Dx and the sub-pixel size Dy can be set to 50 μm, for example.
 そして、上記例と同様に、位相コントラスト画像を生成するためにM枚の縞画像を使用する場合、M行の画素回路行が、位相コントラスト画像の副走査方向の1つの画像解像度Dとなるように第1の格子131が第2の格子132に対して傾けられる。具体的な、第1の格子131の回転角については、上記例と同様に、式(22)によって算出される。 Similarly to the above example, when M striped images are used to generate the phase contrast image, the M pixel circuit rows have one image resolution D in the sub-scanning direction of the phase contrast image. The first grating 131 is inclined with respect to the second grating 132. The specific rotation angle of the first grating 131 is calculated by the equation (22) as in the above example.
 式(22)において、たとえば、M=5、n=1として第1の格子131の回転角θを設定した場合、図30の1つの画素回路270によって第1の格子131の自己像の1周期の強度変調を5分割した画像信号を検出できることになり、すなわち、図32に示す5本のゲート電極273に接続される5行の画素回路行によって、互いに異なる5つの縞画像の画像信号をそれぞれ検出することができることになる。なお、図32においては、1つの画素回路列に対して1本の第2の格子132と自己像G1とが対応して示されているが、実際には、1つの画素回路列に対して多数の第2の格子132及び自己像G1が存在していてもよく、図32は図示省略しているものとする。 In Expression (22), for example, when the rotation angle θ of the first grating 131 is set with M = 5 and n = 1, one period of the self-image of the first grating 131 by one pixel circuit 270 in FIG. In other words, image signals of five different fringe images can be detected by the five pixel circuit rows connected to the five gate electrodes 273 shown in FIG. 32, respectively. It will be possible to detect. In FIG. 32, one second grating 132 and the self-image G1 are shown corresponding to one pixel circuit array, but in actuality, one pixel circuit array corresponds to one pixel circuit array. A large number of second gratings 132 and self-images G1 may exist, and FIG. 32 is not shown.
 したがって、第1読取ライン用ゲート電極G11に接続される画素回路行から読み出された画像信号が第1の縞画像信号M1として取得され、第2読取ライン用ゲート電極G12に接続される画素回路行から読み出された画像信号が第2の縞画像信号M2として取得され、第3読取ライン用ゲート電極G13に接続される画素回路行から読み出された画像信号が第3の縞画像信号M3として取得され、第4読取ライン用ゲート電極G14に接続される画素回路行から読み出された画像信号が第4の縞画像信号M4として取得され、第5読取ライン用ゲート電極G15に接続される画素回路行から読み出された画像信号が第5の縞画像信号M5として取得される。 Therefore, the image signal read from the pixel circuit row connected to the first read line gate electrode G11 is acquired as the first stripe image signal M1, and the pixel circuit connected to the second read line gate electrode G12. The image signal read from the row is acquired as the second stripe image signal M2, and the image signal read from the pixel circuit row connected to the third read line gate electrode G13 is the third stripe image signal M3. The image signal read from the pixel circuit row connected to the fourth read line gate electrode G14 is acquired as the fourth stripe image signal M4 and connected to the fifth read line gate electrode G15. The image signal read from the pixel circuit row is acquired as the fifth fringe image signal M5.
 第1~第5の縞画像信号に基づいて位相コントラスト画像を生成する方法については、上記例と同様である。なお、上述したように1つの画素回路270の主走査方向及び副走査方向のサイズが50μmである場合には、位相コントラスト画像の主走査方向の画像解像度は50μmとなり、副走査方向の画像解像度は50μm×5=250μmとなる。 The method for generating the phase contrast image based on the first to fifth fringe image signals is the same as the above example. As described above, when the size of one pixel circuit 270 in the main scanning direction and the sub scanning direction is 50 μm, the image resolution in the main scanning direction of the phase contrast image is 50 μm, and the image resolution in the sub scanning direction is 50 μm × 5 = 250 μm.
 また、CMOSを用いたX線画像検出器としては、たとえば、X線の照射を受けて可視光を発生し、その可視光を光電変換することによって電荷信号を検出する画素回路280が、図33に示すように2次元状に多数配列されたものを用いることができる。そして、このCMOSを用いたX線画像検出器は、画素回路行毎に設けられ、画素回路280に含まれる信号読み出し回路を駆動するための駆動信号が出力される多数のゲート電極282及びリセット電極284と、画素回路列毎に設けられ、各画素回路280の信号読み出し回路から読み出された電荷信号が出力される多数のデータ電極283とを備えている。なお、ゲート電極282及びリセット電極284には、信号読み出し回路に駆動信号を出力する行選択走査部285が接続され、データ電極283には、各画素回路から出力された電荷信号に所定の処理を施す信号処理部286が接続されている。 As an X-ray image detector using CMOS, for example, a pixel circuit 280 that generates visible light upon receiving X-ray irradiation and photoelectrically converts the visible light to detect a charge signal is shown in FIG. As shown in FIG. 3, a plurality of two-dimensional arrays can be used. The X-ray image detector using CMOS is provided for each pixel circuit row, and includes a large number of gate electrodes 282 and reset electrodes from which a drive signal for driving a signal readout circuit included in the pixel circuit 280 is output. 284 and a plurality of data electrodes 283 that are provided for each pixel circuit column and output a charge signal read from the signal reading circuit of each pixel circuit 280. The gate electrode 282 and the reset electrode 284 are connected to a row selection scanning unit 285 that outputs a drive signal to the signal readout circuit, and the data electrode 283 performs predetermined processing on the charge signal output from each pixel circuit. A signal processing unit 286 to be applied is connected.
 各画素回路280は、図34に示すように、基板800の上方に絶縁膜803を介して形成された下部電極806と、下部電極806上に形成された光電変換膜807と、光電変換膜807上に形成された上部電極808と、上部電極808上に形成された保護膜809と、保護膜809上に形成されたX線変換膜810とを備えている。 As shown in FIG. 34, each pixel circuit 280 includes a lower electrode 806 formed above the substrate 800 via an insulating film 803, a photoelectric conversion film 807 formed on the lower electrode 806, and a photoelectric conversion film 807. An upper electrode 808 formed above, a protective film 809 formed on the upper electrode 808, and an X-ray conversion film 810 formed on the protective film 809 are provided.
 X線変換膜810は、たとえば、X線の照射を受けて550nmの波長の光を発するCsI:TIから形成される。その厚さは500μm程度とすることが望ましい。 The X-ray conversion film 810 is made of, for example, CsI: TI that emits light having a wavelength of 550 nm when irradiated with X-rays. The thickness is preferably about 500 μm.
 上部電極808は、光電変換膜807に550nmの波長の光を入射させる必要があるため、その入射光に対して透明な導電性材料で構成される。また、下部電極806は、画素回路280毎に分割された薄膜であり、透明又は不透明の導電性材料で形成される。 The upper electrode 808 is made of a conductive material that is transparent to the incident light because it is necessary to make light having a wavelength of 550 nm incident on the photoelectric conversion film 807. The lower electrode 806 is a thin film divided for each pixel circuit 280 and is formed of a transparent or opaque conductive material.
 光電変換膜807は、たとえば、550nmの波長の光を吸収してこの光に応じた電荷を発生する光電変換材料から形成される。このような光電変換材料としては、たとえば、有機半導体、有機色素を含む有機材料、及び直接遷移型のバンドギャップをもつ吸収係数の大きい無機半導体結晶等を単体又は組み合わせた材料などがある。 The photoelectric conversion film 807 is formed of, for example, a photoelectric conversion material that absorbs light having a wavelength of 550 nm and generates a charge corresponding to the light. As such a photoelectric conversion material, for example, an organic semiconductor, an organic material containing an organic dye, a material in which an inorganic semiconductor crystal having a direct transition type band gap and a large absorption coefficient is used alone or in combination are used.
 そして、上部電極808と下部電極806との間に所定のバイアス電圧を印加することで、光電変換膜807で発生した電荷のうち一方が上部電極808に移動し、他方が下部電極806に移動する。 Then, by applying a predetermined bias voltage between the upper electrode 808 and the lower electrode 806, one of the charges generated in the photoelectric conversion film 807 moves to the upper electrode 808 and the other moves to the lower electrode 806. .
 そして、下部電極806の下方の基板800内には、この下部電極806に対応させて、下部電極806に移動した電荷を蓄積するための電荷蓄積部802と、電荷蓄積部802に蓄積された電荷を電圧信号に変換して出力する信号読み出し回路801とが形成されている。 In the substrate 800 below the lower electrode 806, a charge accumulating portion 802 for accumulating the charges transferred to the lower electrode 806 corresponding to the lower electrode 806, and the charges accumulated in the charge accumulating portion 802. And a signal readout circuit 801 for converting the signal into a voltage signal and outputting it.
 電荷蓄積部802は、絶縁膜803を貫通して形成された導電性材料のプラグ804によって下部電極806に電気的に接続されている。信号読み出し回路801は、公知のCMOS回路によって構成されている。 The charge storage portion 802 is electrically connected to the lower electrode 806 by a conductive material plug 804 formed through the insulating film 803. The signal readout circuit 801 is configured by a known CMOS circuit.
 そして、上述したようなCMOSを用いたX線画像検出器を、図35に示すように、第2の格子132と画素回路列(データ電極)とが平行になるように設置した場合、1つの画素回路列が、上記例において説明した主画素サイズDxに相当し、1つの画素回路行が、上記例において説明した副画素サイズDyに相当する。なお、主画素サイズDx及び副画素サイズDyは、CMOSを用いたX線画像検出器の場合には、たとえば、10μmとすることができる。 When an X-ray image detector using a CMOS as described above is installed so that the second grating 132 and the pixel circuit array (data electrode) are parallel as shown in FIG. The pixel circuit column corresponds to the main pixel size Dx described in the above example, and one pixel circuit row corresponds to the sub pixel size Dy described in the above example. Note that the main pixel size Dx and the sub-pixel size Dy can be set to 10 μm, for example, in the case of an X-ray image detector using CMOS.
 そして、上記例と同様に、位相コントラスト画像を生成するためにM枚の縞画像を使用する場合、M行の画素回路行が、位相コントラスト画像の副走査方向の1つの画像解像度Dとなるように第1の格子131が第2の格子132に対して傾けられる。具体的な、第1の格子131の回転角については、上記例と同様に、式(22)によって算出される。 Similarly to the above example, when M striped images are used to generate the phase contrast image, the M pixel circuit rows have one image resolution D in the sub-scanning direction of the phase contrast image. The first grating 131 is inclined with respect to the second grating 132. The specific rotation angle of the first grating 131 is calculated by the equation (22) as in the above example.
 式(22)において、たとえば、M=5、n=1として第1の格子131の回転角θを設定した場合、図35の1つの画素回路280によって第1の格子131の自己像の1周期の強度変調を5分割した画像信号を検出できることになり、すなわち、図33に示す5本のゲート電極282に接続される5行の画素回路行によって、互いに異なる5つの縞画像の画像信号をそれぞれ検出することができることになる。なお、図35においては、1つの画素回路列に対して1本の第2の格子132と自己像G1とが対応して示されているが、実際には、1つの画素回路列に対して多数の第2の格子132及び自己像G1が存在していてもよく、図35は図示省略しているものとする。 In Expression (22), for example, when M = 5 and n = 1 and the rotation angle θ of the first grating 131 is set, one pixel circuit 280 in FIG. In other words, the image signals of five different fringe images can be detected by the five pixel circuit rows connected to the five gate electrodes 282 shown in FIG. 33, respectively. It will be possible to detect. In FIG. 35, one second grating 132 and the self-image G1 are shown corresponding to one pixel circuit array. However, in actuality, one pixel circuit array corresponds to one pixel circuit array. Many second gratings 132 and self-images G1 may exist, and FIG. 35 is not shown.
 したがって、TFTスイッチを用いたX線画像検出器の場合と同様に、第1読取ライン用ゲート電極G11に接続される画素回路行から読み出された画像信号が第1の縞画像信号M1として取得され、第2読取ライン用ゲート電極G12に接続される画素回路行から読み出された画像信号が第2の縞画像信号M2として取得され、第3読取ライン用ゲート電極G13に接続される画素回路行から読み出された画像信号が第3の縞画像信号M3として取得され、第4読取ライン用ゲート電極G14に接続される画素回路行から読み出された画像信号が第4の縞画像信号M4として取得され、第5読取ライン用ゲート電極G15に接続される画素回路行から読み出された画像信号が第5の縞画像信号M5として取得される。 Therefore, as in the case of the X-ray image detector using the TFT switch, the image signal read from the pixel circuit row connected to the first read line gate electrode G11 is acquired as the first fringe image signal M1. Then, the image signal read from the pixel circuit row connected to the second read line gate electrode G12 is acquired as the second stripe image signal M2, and the pixel circuit connected to the third read line gate electrode G13. The image signal read from the row is acquired as the third stripe image signal M3, and the image signal read from the pixel circuit row connected to the fourth read line gate electrode G14 is the fourth stripe image signal M4. And the image signal read from the pixel circuit row connected to the fifth read line gate electrode G15 is acquired as the fifth fringe image signal M5.
 第1~第5の縞画像信号に基づいて位相コントラスト画像を生成する方法については、上記例と同様である。なお、上述したように1つの画素回路280の主走査方向及び副走査方向のサイズが10μmである場合には、位相コントラスト画像の主走査方向の画像解像度は10μmとなり、副走査方向の画像解像度は10μm×5=50μmとなる。 The method for generating the phase contrast image based on the first to fifth fringe image signals is the same as the above example. As described above, when the size of one pixel circuit 280 in the main scanning direction and the sub scanning direction is 10 μm, the image resolution in the main scanning direction of the phase contrast image is 10 μm, and the image resolution in the sub scanning direction is 10 μm × 5 = 50 μm.
 なお、上述したようにTFTスイッチを用いたX線画像検出器やCMOSを用いたX線画像検出器も用いることは可能であるが、これらのX線画像検出器は、画素が正方形であるため、本発明を適用する場合には、副走査方向の解像度が主走査方向の解像度に対して悪くなる。これに対し、上記例で説明した光読取方式のX線画像検出器においては、主走査方向については線状電極の幅(延伸方向と垂直な方向)によって解像度Dxが制限されるが、副走査方向については、線状読取光源250の読取光の副走査方向の幅及び1ラインあたりのチャージアンプ200の蓄積時間と線状読取光源250の移動速度の積で解像度Dyが決まることになる。主副解像度ともに典型的には数10μmであるが、主走査方向の解像度を維持したまま副走査方向の解像度を高くする設計が可能である。たとえば、線状読取光源250の幅を小さくしたり、移動速度を遅くすることにより実現可能であって、光読取方式のX線画像検出器は、より有利な構成である。 As described above, an X-ray image detector using a TFT switch or an X-ray image detector using a CMOS can be used. However, these X-ray image detectors have square pixels. When the present invention is applied, the resolution in the sub-scanning direction becomes worse than the resolution in the main scanning direction. On the other hand, in the optical reading type X-ray image detector described in the above example, the resolution Dx is limited in the main scanning direction by the width of the linear electrode (direction perpendicular to the extending direction). Regarding the direction, the resolution Dy is determined by the product of the width of the reading light of the linear reading light source 250 in the sub-scanning direction, the accumulation time of the charge amplifier 200 per line, and the moving speed of the linear reading light source 250. Both the main and sub resolutions are typically several tens of μm, but it is possible to increase the sub scanning direction resolution while maintaining the main scanning direction resolution. For example, the X-ray image detector of the optical reading system can be realized by reducing the width of the linear reading light source 250 or reducing the moving speed, and has a more advantageous configuration.
 また、1回の撮影で複数の縞画像信号を取得することができるので、上述したような即座に繰り返し使用可能な半導体の検出器に限らず、蓄積性蛍光体シートや銀塩フイルムなども利用することができる。なお、この場合、蓄積性蛍光体シートや現像された銀塩フイルムなどを読み取る際の読取画素が請求項における画素に相当するものとする。 In addition, since a plurality of fringe image signals can be acquired in one shooting, not only the semiconductor detector that can be used immediately and repeatedly as described above, but also a stimulable phosphor sheet or silver salt film can be used. can do. In this case, the reading pixel when reading the stimulable phosphor sheet or the developed silver salt film corresponds to the pixel in the claims.
 図36は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 36 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 図36に示すX線撮影システムは、X線源11から射出されたX線を通過させて周期パターン像を形成する格子131と、格子131により形成された周期パターン像を検出するとともに、その周期パターン像に対して強度変調を施すX線画像検出器(放射線画像検出器)340と、X線画像検出器340をその線状電極の延伸方向に直交する方向に移動させる移動機構333と、X線画像検出器340において上記周期パターン像に対して強度変調の施された縞画像に基づいて位相コントラスト画像を生成する位相コントラスト画像生成部260とを備えている。 The X-ray imaging system shown in FIG. 36 detects the periodic pattern image formed by the grating 131 that forms the periodic pattern image by passing the X-rays emitted from the X-ray source 11, and the period. An X-ray image detector (radiation image detector) 340 that performs intensity modulation on the pattern image, a moving mechanism 333 that moves the X-ray image detector 340 in a direction orthogonal to the extending direction of the linear electrode, and X The line image detector 340 includes a phase contrast image generation unit 260 that generates a phase contrast image based on a fringe image obtained by intensity modulation of the periodic pattern image.
 本例においても、所定のピッチを有するマルチスリット(例えば、上述のマルチスリット103)をX線源11と第1の格子131との間に設置して使用することができる。 Also in this example, a multi-slit (for example, the multi-slit 103 described above) having a predetermined pitch can be installed between the X-ray source 11 and the first grating 131 and used.
 X線画像検出器340は、X線が格子131を通過することによって格子131によって形成された格子131の自己像を検出するとともに、その自己像に応じた電荷信号を後述する格子状に分割された電荷蓄積層に蓄積することによって自己像に強度変調を施して縞画像を生成し、その生成した縞画像を画像信号として出力するものである。このようなX線画像検出器340として、本例においては、直接変換型のX線画像検出器であって、線状の読取光によって走査されることによって画像信号が読み出される、いわゆる光読取方式のX線画像検出器を用いる。 The X-ray image detector 340 detects a self-image of the grating 131 formed by the grating 131 when the X-rays pass through the grating 131 and divides a charge signal corresponding to the self-image into a lattice shape to be described later. By accumulating in the charge storage layer, intensity modulation is performed on the self-image to generate a fringe image, and the generated fringe image is output as an image signal. In this example, the X-ray image detector 340 is a direct conversion type X-ray image detector that reads an image signal by scanning with a linear reading light. X-ray image detector.
 図37は、X線画像検出器340の外観(FIG.37A)、xz面断面(FIG.37B)、yz面断面(FIG.37C)を示す。 FIG. 37 shows the external appearance (FIG. 37A), xz plane cross section (FIG. 37B), and yz plane cross section (FIG. 37C) of the X-ray image detector 340.
 X線画像検出器340は、X線を透過する第1の電極層241、第1の電極層241を透過したX線の照射を受けることにより電荷を発生する記録用光導電層242、記録用光導電層242において発生した電荷のうち一方の極性の電荷に対しては絶縁体として作用し、かつ他方の極性の電荷に対しては導電体として作用する電荷蓄積層343、読取光の照射を受けることにより電荷を発生する読取用光導電層245、及び第2の電極層246をこの順に積層してなるものである。なお、上記各層は、ガラス基板247上に第2の電極層246から順に形成されている。 The X-ray image detector 340 includes a first electrode layer 241 that transmits X-rays, a recording photoconductive layer 242 that generates charges when irradiated with X-rays transmitted through the first electrode layer 241, and recording A charge storage layer 343 that acts as an insulator for charges of one polarity of the charges generated in the photoconductive layer 242 and acts as a conductor for charges of the other polarity, and is irradiated with reading light. A photoconductive layer for reading 245 that generates electric charges when received and a second electrode layer 246 are stacked in this order. Note that each of the above layers is formed on the glass substrate 247 in order from the second electrode layer 246.
 電荷蓄積層343は、蓄積したい極性の電荷に対して絶縁性の膜であれば良く、アクリル系有機樹脂、ポリイミド、BCB、PVA、アクリル、ポリエチレン、ポリカーボネート、ポリエーテルイミド等のポリマーやAs、Sb、ZnS等の硫化物、その他に酸化物、フッ化物より構成される。更には、蓄積したい極性の電荷に対して絶縁性であり、それと逆の極性の電荷に対しては導電性を有する方がより好ましく、移動度×寿命の積が、電荷の極性により3桁以上差がある物質が好ましい。 The charge storage layer 343 may be any film that is insulative with respect to the polar charge to be stored, such as an acrylic organic resin, polyimide, BCB, PVA, acrylic, polyethylene, polycarbonate, polyetherimide, or the like, or As 2 S. 3 , sulfides such as Sb 2 S 3 and ZnS, oxides and fluorides. Furthermore, it is more preferable that it is insulative with respect to the charge of the polarity to be accumulated and that it is conductive with respect to the charge of the opposite polarity, and the product of mobility × life is 3 digits or more depending on the polarity of the charge. Substances with differences are preferred.
 好ましい化合物としては、AsSe、AsSeにCl、Br、Iを500ppmから20000ppmまでドープしたもの、AsSeのSeをTeで50%程度まで置換したAs(SeTe1-x(0.5<x<1)、AsSeのSeをSで50%程度まで置換したもの、AsSeからAs濃度を±15%程度変化させたAsSe(x+y=100、34≦x≦46)、アモルファスSe-Te系でTeを5-30wt%のもの等が挙げられる。 Preferred compounds include As 2 Se 3 , As 2 Se 3 doped with Cl, Br, and I from 500 ppm to 20000 ppm, and As 2 Se 3 with Se 2 substituted to about 50% by Te. 1-x ) 3 (0.5 <x <1), As 2 Se 3 with Se replaced to about 50%, As x Se with As concentration changed by about ± 15% from As 2 Se 3 y (x + y = 100, 34 ≦ x ≦ 46), amorphous Se—Te system and Te of 5-30 wt%.
 なお、電荷蓄積層343の材料としては、第1の電極層241と第2の電極層246との間に形成される電気力線が曲がらないようにするため、その誘電率が、記録用光導電層242と読取用光導電層245の誘電率の1/2倍以上2倍以下のものを用いることが望ましい。 Note that as a material of the charge storage layer 343, in order to prevent bending of electric lines of force formed between the first electrode layer 241 and the second electrode layer 246, the dielectric constant thereof is a recording light. It is desirable to use a conductive layer 242 and a photoconductive layer for reading 245 having a dielectric constant that is 1/2 times or more and 2 times or less.
 そして、本例における電荷蓄積層343は、第2の電極層246の透明線状電極246a及び遮光線状電極246bの延伸方向に平行となるように線状に分割されている。 The charge storage layer 343 in this example is divided into lines so as to be parallel to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b of the second electrode layer 246.
 また、電荷蓄積層343は、透明線状電極246a若しくは遮光線状電極246bの配列ピッチよりも細かいピッチで分割されるが、その配列ピッチpと間隔dは、格子131との組み合わせによって位相イメージングを行うことができるように決定される。なお、透明線状電極246a若しくは遮光線状電極246bの配列ピッチp及び間隔dは、上述した第2の格子132に関するピッチp及び間隔dと同様に決められるため、同一符号を用いて説明する。 The charge storage layer 343 is divided at a pitch finer than the arrangement pitch of the transparent linear electrodes 246 a or the light shielding linear electrodes 246 b, and the arrangement pitch p 2 and the interval d 2 are different depending on the combination of the grating 131. It is determined so that imaging can be performed. Note that the arrangement pitch p 2 and the interval d 2 of the transparent linear electrodes 246 a or the light shielding linear electrodes 246 b are determined in the same manner as the pitch p 2 and the interval d 2 for the second grating 132 described above, and therefore the same reference numerals are used. I will explain.
 具体的には、X線源11から照射されるX線が、平行ビームではなく、コーンビームである場合には、格子131を通過して形成される格子131の自己像は、X線源11からの距離に比例して拡大される。そして、本例においては、電荷蓄積層343の配列ピッチpは、線状の電荷蓄積層343の部分が、電荷蓄積層343の位置における格子131の自己像の明部の周期パターンとほぼ一致するように決定される。すなわち、格子131の格子ピッチをp、格子131のX線遮蔽部の間隔をd、X線源11の焦点から格子131までの距離をL、格子131からX線画像検出器340の検出面までの距離をLとした場合、電荷蓄積層343の配列ピッチpは、上記の式(1)の関係を満たすように決定される。 Specifically, when the X-ray irradiated from the X-ray source 11 is not a parallel beam but a cone beam, the self-image of the grating 131 formed through the grating 131 is the X-ray source 11. Enlarged in proportion to the distance from Then, in this embodiment, the arrangement pitch p 2 of the charge storage layer 343, the portion of the linear charge accumulation layer 343 is approximately coincident with the periodic pattern of the light area of the self-image of the grating 131 at the position of the charge accumulation layer 343 To be decided. That is, the grating pitch of the grating 131 is p 1 , the distance between the X-ray shielding portions of the grating 131 is d 1 , the distance from the focal point of the X-ray source 11 to the grating 131 is L 1 , and the grating 131 to the X-ray image detector 340 When the distance to the detection surface is L 2 , the arrangement pitch p 2 of the charge storage layer 343 is determined so as to satisfy the relationship of the above formula (1).
 また、電荷蓄積層343は、積層方向(z方向)について2μm以下の厚さで形成される。 The charge storage layer 343 is formed with a thickness of 2 μm or less in the stacking direction (z direction).
 そして、電荷蓄積層343は、たとえば、上述したような材料と金属板に穴を空けたメタルマスクやファイバーなどによって形成されたマスクとを用いて抵抗加熱蒸着によって形成することができる。また、フォトリソグラフィを用いて形成するようにしてもよい。 The charge storage layer 343 can be formed by resistance heating vapor deposition using, for example, the above-described material and a mask formed of a metal mask or a fiber having a hole in a metal plate. Further, it may be formed using photolithography.
 そして、本例のX線画像検出器340においては、後で詳述するが、隣接する透明線状電極246aと遮光線状電極246bとの1組を用いて画像信号が読み出される。すなわち、1組の透明線状電極246aと遮光線状電極246bとによって1画素の画像信号が読み出されることになる(FIG.37B)。本例においては、1画素が略50μmとなるように透明線状電極246aと遮光線状電極246bとが配置されている。 In the X-ray image detector 340 of this example, as will be described in detail later, an image signal is read out using a pair of the adjacent transparent linear electrode 246a and the light shielding linear electrode 246b. That is, an image signal of one pixel is read out by one set of the transparent linear electrode 246a and the light shielding linear electrode 246b (FIG. 37B). In this example, the transparent linear electrode 246a and the light shielding linear electrode 246b are arranged so that one pixel is approximately 50 μm.
 そして、本例のX線撮影システムは、透明線状電極246aと遮光線状電極246bの延伸方向に直交する方向(x方向)に延設された線状読取光源250を備えている(FIG.37A)。 The X-ray imaging system of this example includes a linear reading light source 250 extending in a direction (x direction) orthogonal to the extending direction of the transparent linear electrode 246a and the light shielding linear electrode 246b (FIG. 37A).
 そして、X線源11、格子131、及び上記のように分割された電荷蓄積層343を有するX線画像検出器340を備える構成をタルボ干渉計として機能させるためには、更にいくつかの条件をほぼ満たさねばならない。その条件について以下に説明する。 In order to allow the configuration including the X-ray source 11, the grating 131, and the X-ray image detector 340 having the charge storage layer 343 divided as described above to function as a Talbot interferometer, several conditions are further satisfied. Must be almost satisfied. The conditions will be described below.
 まず、格子131とX線画像検出器340の検出面が、図36に示すxy平面に平行であることが必要である。 First, it is necessary that the detection surfaces of the grating 131 and the X-ray image detector 340 are parallel to the xy plane shown in FIG.
 そして、更に、格子131とX線画像検出器340の検出面までの距離Z(タルボ干渉距離Z)は、格子131が90°の位相変調を与える位相変調型格子である場合、上述の式(20)をほぼ満たし、格子131が180°の位相変調を与える位相変調型格子である場合、上述の式(21)をほぼ満たさなければならない。 Further, the distance Z 2 (Talbot interference distance Z) between the grating 131 and the detection surface of the X-ray image detector 340 is equal to the above formula when the grating 131 is a phase modulation type grating that applies 90 ° phase modulation. When (20) is substantially satisfied and the grating 131 is a phase modulation type grating that gives 180 ° phase modulation, the above equation (21) must be substantially satisfied.
 また、格子131が振幅変調型格子である場合には、タルボ干渉距離Zに関して上述の式(2)をほぼ満たさなければならない。 When the grating 131 is an amplitude modulation type grating, the above formula (2) must be substantially satisfied with respect to the Talbot interference distance Z.
 移動機構333は、上述したように、X線画像検出器340をその線状電極の延伸方向に直交する方向に並進移動させることにより、格子131とX線画像検出器340との相対位置を変化させるものである。移動機構333は、たとえば、圧電素子等のアクチュエータにより構成される。 As described above, the moving mechanism 333 changes the relative position between the grating 131 and the X-ray image detector 340 by translating the X-ray image detector 340 in a direction orthogonal to the extending direction of the linear electrode. It is something to be made. The moving mechanism 333 is configured by an actuator such as a piezoelectric element, for example.
 次に、本例のX線撮影システムの作用について説明する。 Next, the operation of the X-ray imaging system of this example will be described.
 X線は被写体Hを透過した後、格子131に照射される。格子131に照射されたX線は、格子131で回折されることにより、格子131からX線の光軸方向において所定の距離において、タルボ干渉像を形成する。 X-rays pass through the subject H and then irradiate the grating 131. The X-rays irradiated to the grating 131 are diffracted by the grating 131, thereby forming a Talbot interference image at a predetermined distance from the grating 131 in the optical axis direction of the X-ray.
 そして、格子131の自己像は、X線画像検出器340の第1の電極層241側から入射され、X線画像検出器340の電荷蓄積層343によって強度変調を受け、上記波面のみを反映した縞画像の画像信号としてX線画像検出器340により検出される。 The self-image of the grating 131 is incident from the first electrode layer 241 side of the X-ray image detector 340, undergoes intensity modulation by the charge storage layer 343 of the X-ray image detector 340, and reflects only the wavefront. An X-ray image detector 340 detects the image signal of the fringe image.
 ここで、図38,39を参照して、X線画像検出器340における縞画像の検出と読出しの作用について、より詳細に説明する。 Here, with reference to FIGS. 38 and 39, the operation of detecting and reading out the fringe image in the X-ray image detector 340 will be described in more detail.
 まず、高圧電源400によってX線画像検出器340の第1の電極層241に負の電圧を印加した状態において、格子131の自己像を担持したX線が、X線画像検出器340の第1の電極層241側から照射される(FIG.38A)。 First, in a state where a negative voltage is applied to the first electrode layer 241 of the X-ray image detector 340 by the high-voltage power supply 400, the X-ray carrying the self-image of the grating 131 is the first X-ray image detector 340. Is irradiated from the electrode layer 241 side (FIG. 38A).
 そして、X線画像検出器340に照射されたX線は、第1の電極層241を透過し、記録用光導電層242に照射される。そして、そのX線の照射によって記録用光導電層242において電荷対が発生し、そのうち正の電荷は第1の電極層241に帯電した負の電荷と結合して消滅し、負の電荷は潜像電荷として電荷蓄積層343に蓄積される(FIG.38B)。 Then, the X-rays irradiated to the X-ray image detector 340 are transmitted through the first electrode layer 241 and irradiated to the recording photoconductive layer 242. The X-ray irradiation generates a charge pair in the recording photoconductive layer 242, and the positive charge is combined with the negative charge charged in the first electrode layer 241 and disappears, and the negative charge is latent. The image charge is stored in the charge storage layer 343 (FIG. 38B).
 ここで、本例における電荷蓄積層343は、上述したような配列ピッチで線状に分割されているので、記録用光導電層242において格子131の自己像に応じて発生した電荷のうちその直下に電荷蓄積層343が存在する電荷のみが電荷蓄積層343によってトラップされて蓄積され、それ以外の電荷については線状の電荷蓄積層343の間(以下、非電荷蓄積領域という)を通過し、読取用光導電層245を通過した後、透明線状電極246aと遮光線状電極246bとに流れ出してしまう。 Here, since the charge storage layer 343 in this example is linearly divided at the arrangement pitch as described above, the charge storage layer 343 is directly below the charge generated according to the self-image of the lattice 131 in the recording photoconductive layer 242. Only the charges in which the charge storage layer 343 exists are trapped and stored by the charge storage layer 343, and other charges pass between the linear charge storage layers 343 (hereinafter referred to as non-charge storage regions), After passing through the reading photoconductive layer 245, it flows out to the transparent linear electrode 246a and the light shielding linear electrode 246b.
 このように記録用光導電層242において発生した電荷のうち、その直下に線状の電荷蓄積層343が存在する電荷のみを蓄積することによって、格子131の自己像は電荷蓄積層343の線状のパターンとの重ね合わせにより強度変調を受け、被写体Hによる自己像の波面の歪みを反映した縞画像の画像信号が電荷蓄積層343に蓄積されることになる。すなわち、本例の電荷蓄積層343は、従来の2つの格子を利用した位相イメージングにおける2つ目の格子と同等の機能を果たすことになる。 As described above, by accumulating only the electric charge generated in the recording photoconductive layer 242 and the linear electric charge accumulation layer 343 immediately below the electric charge, the self-image of the lattice 131 is changed into the linear shape of the electric charge accumulation layer 343. An image signal of a fringe image that is subjected to intensity modulation by superimposing the pattern and the distortion of the wavefront of the self-image by the subject H is accumulated in the charge accumulation layer 343. That is, the charge storage layer 343 of this example performs the same function as the second grating in phase imaging using two conventional gratings.
 そして、次に、図39に示すように、第1の電極層241が接地された状態において、線状読取光源250から発せられた線状の読取光L1が第2の電極層246側から照射される。読取光L1は透明線状電極246aを透過して読取用光導電層245に照射され、その読取光L1の照射により読取用光導電層245において発生した正の電荷が電荷蓄積層343における潜像電荷と結合するとともに、負の電荷が、透明線状電極246aに接続されたチャージアンプ200を介して遮光線状電極246bに帯電した正の電荷と結合する。 Next, as shown in FIG. 39, in the state where the first electrode layer 241 is grounded, the linear reading light L1 emitted from the linear reading light source 250 is irradiated from the second electrode layer 246 side. Is done. The reading light L1 passes through the transparent linear electrode 246a and is irradiated to the reading photoconductive layer 245, and the positive charge generated in the reading photoconductive layer 245 by the irradiation of the reading light L1 is a latent image in the charge storage layer 343. The negative charge is combined with the positive charge charged to the light shielding linear electrode 246b through the charge amplifier 200 connected to the transparent linear electrode 246a while being combined with the charge.
 そして、読取用光導電層245において発生した負の電荷と遮光線状電極246bに帯電した正の電荷との結合によって、チャージアンプ200に電流が流れ、この電流が積分されて画像信号として検出される。 A current flows through the charge amplifier 200 due to the combination of the negative charge generated in the reading photoconductive layer 245 and the positive charge charged in the light shielding linear electrode 246b, and this current is integrated and detected as an image signal. The
 そして、線状読取光源250が、副走査方向(y方向)に移動することによって線状の読取光L1によってX線画像検出器340が走査され、線状の読取光L1の照射された読取ライン毎に上述した作用によって画像信号が順次検出され、その検出された読取ライン毎の画像信号が位相コントラスト画像生成部260に順次入力されて記憶される。 Then, the linear reading light source 250 moves in the sub-scanning direction (y direction), the X-ray image detector 340 is scanned with the linear reading light L1, and the reading line irradiated with the linear reading light L1. The image signal is sequentially detected by the above-described operation every time, and the detected image signal for each reading line is sequentially input to the phase contrast image generation unit 260 and stored.
 そして、X線画像検出器340の全面が読取光L1に走査されて1フレーム全体の画像信号が位相コントラスト画像生成部260に記憶される。 Then, the entire surface of the X-ray image detector 340 is scanned with the reading light L 1, and the image signal of the entire frame is stored in the phase contrast image generation unit 260.
 本例における位相コントラスト画像の生成方法の原理は、式(11)~(17)を参照して説明した内容と同様であるため、その説明を省略する。位相コントラスト画像生成部260により、複数の縞画像に基づいて位相コントラスト画像が生成される。 The principle of the method for generating the phase contrast image in this example is the same as the content described with reference to the equations (11) to (17), and thus the description thereof is omitted. The phase contrast image generation unit 260 generates a phase contrast image based on the plurality of fringe images.
 なお、上述のX線撮影システムは、格子131からX線画像検出器340の検出面までの距離Zがタルボ干渉距離となるように、上述の式(20)若しくは式(21)又は式(2)を満たすようにしたが、格子131が入射X線を回折せずに投影させる構成としてもよい。この構成によれば、格子131を通過して射影される投影像が、格子131の後方の全ての位置で相似的に得られるため、格子131からX線画像検出器340の検出面までの距離Zを、タルボ干渉距離を無関係に設定することができる。 Incidentally, X-ray imaging system described above, so that the distance Z 2 from the grating 131 to the detection surface of the X-ray image detector 340 becomes Talbot interference distance, the above equation (20) or formula (21) or formula ( 2) is satisfied, but the grating 131 may be configured to project incident X-rays without being diffracted. According to this configuration, since the projected image projected through the grating 131 is obtained similarly at all positions behind the grating 131, the distance from the grating 131 to the detection surface of the X-ray image detector 340 is obtained. the Z 2, can be set independently of the Talbot interference distance.
 次に、上述のX線撮影システムの変形例について説明する。 Next, a modified example of the above X-ray imaging system will be described.
 上述のX線撮影システムは、移動機構333によってX線画像検出器340を並進移動させ、各位置においてX線画像の撮影を行うことによってM枚の縞画像信号を取得するようにしたが、本例のX線撮影システムは、上記のような移動機構333を必要とすることなく、1回のX線画像の撮影によってM枚の縞画像信号を取得可能に構成されたものである。 In the X-ray imaging system described above, the X-ray image detector 340 is translated by the moving mechanism 333, and X-ray images are captured at each position to acquire M fringe image signals. The X-ray imaging system of the example is configured to be able to acquire M striped image signals by capturing one X-ray image without requiring the moving mechanism 333 as described above.
 すなわち、図25~図31等を参照して説明したように、本例においても、格子131とX線画像検出器340とが、格子131の延伸方向とX線画像検出器340の電荷蓄積層343の延伸方向とが相対的に傾くように配置されるものである。そして、このように配置された格子131と電荷蓄積層343に対して、X線画像検出器340によって検出される画像信号の各画素の主走査方向(図37のx方向)の主画素サイズDxと副走査方向の副画素サイズDyとは、図26に示すような関係となる。 That is, as described with reference to FIGS. 25 to 31 and the like, also in this example, the grating 131 and the X-ray image detector 340 include the extension direction of the grating 131 and the charge storage layer of the X-ray image detector 340. It arrange | positions so that the extending | stretching direction of 343 may incline relatively. The main pixel size Dx in the main scanning direction (x direction in FIG. 37) of each pixel of the image signal detected by the X-ray image detector 340 with respect to the lattice 131 and the charge storage layer 343 thus arranged. And the sub-pixel size Dy in the sub-scanning direction have a relationship as shown in FIG.
 そして、図25~図31等を参照して説明した構成及び作用と同様にして、1回の放射線画像の撮影が行われた後、X線画像検出器340の全面が読取光L1に走査されて1フレーム全体の画像信号が位相コントラスト画像生成部260に記憶され、位相コントラスト画像生成部260は、その記憶された画像信号に基づいて、互いに異なる5つの縞画像の画像信号を取得する。この第1~第5の縞画像信号に基づいて、位相コントラスト画像生成部260により、上記例と同様にして位相コントラスト画像が生成される。 Similarly to the configuration and operation described with reference to FIGS. 25 to 31 and the like, after one radiographic image is taken, the entire surface of the X-ray image detector 340 is scanned with the reading light L1. Then, the image signal of the entire frame is stored in the phase contrast image generation unit 260, and the phase contrast image generation unit 260 acquires the image signals of five different fringe images based on the stored image signal. Based on the first to fifth fringe image signals, the phase contrast image generation unit 260 generates a phase contrast image in the same manner as in the above example.
 また、上記例においては、X線画像検出器340として、電極間に、記録用光導電層242、電荷蓄積層343及び読取用光導電層245の3層を設けたものを利用するようにしたが、必ずしもこの層構成である必要はなく、たとえば、図40に示すように、読取用光導電層245を設けることなく、第2の電極層の透明線状電極246a及び遮光線状電極246b上に直接接触するように線状の電荷蓄積層343を設け、その電荷蓄積層343の上に記録用光導電層242を設けるようにしてもよい。なお、この記録用光導電層242は、読取用光導電層としても機能するものである。 In the above example, the X-ray image detector 340 is provided with three layers of the recording photoconductive layer 242, the charge storage layer 343, and the reading photoconductive layer 245 between the electrodes. However, this layer configuration is not necessarily required. For example, as shown in FIG. 40, the transparent photoelectrode 246a and the light shielding electrode 246b of the second electrode layer are provided without providing the reading photoconductive layer 245. A linear charge storage layer 343 may be provided so as to be in direct contact with the recording medium, and a recording photoconductive layer 242 may be provided on the charge storage layer 343. The recording photoconductive layer 242 also functions as a reading photoconductive layer.
 この構造は、読取用光導電層245なしに第2の電極層246に直接電荷蓄積層343を設ける構造で、線状の電荷蓄積層343の形成を容易にする。すなわち、この線状の電荷蓄積層343は、蒸着で形成することができる。この蒸着工程において、選択的に線状パターンを形成するためにメタルマスクなどを用いるが、読取用光導電層245の上に線状の電荷蓄積層343を設ける構成では、読取用光導電層245の蒸着後のメタルマスクをセットする工程のため、読取用光導電層245の蒸着工程と記録用光導電層242の蒸着工程の間で大気中操作により、読取用光導電層245に劣化や、光導電層間に異物が混入して品質の劣化をもたらす虞がある。上述した読取用光導電層245を設けない構造とすることで、光導電層の蒸着後の大気中操作を減らすことができるため、上述の品質劣化の懸念を低減することができる。 This structure is a structure in which the charge storage layer 343 is provided directly on the second electrode layer 246 without the reading photoconductive layer 245, and the linear charge storage layer 343 can be easily formed. That is, the linear charge storage layer 343 can be formed by vapor deposition. In this vapor deposition step, a metal mask or the like is used to selectively form a linear pattern. However, in the configuration in which the linear charge storage layer 343 is provided on the reading photoconductive layer 245, the reading photoconductive layer 245 is provided. Because of the process of setting the metal mask after vapor deposition, the photoconductive layer 245 for reading is deteriorated by an operation in the atmosphere between the vapor deposition process of the read photoconductive layer 245 and the vapor deposition process of the recording photoconductive layer 242. There is a risk that foreign matter may enter between the photoconductive layers and cause degradation of quality. By adopting a structure in which the above-described reading photoconductive layer 245 is not provided, an operation in the air after the photoconductive layer is deposited can be reduced, so that the above-described fear of quality deterioration can be reduced.
 以下に、図40に示すX線画像検出器360のX線画像の記録と読み出しの作用について説明する。 Hereinafter, the operation of recording and reading out the X-ray image of the X-ray image detector 360 shown in FIG. 40 will be described.
 まず、高圧電源400によってX線画像検出器360の第1の電極層241に負の電圧を印加した状態において、格子131の自己像を担持したX線が、X線画像検出器360の第1の電極層241側から照射される(FIG.41A)。 First, in the state where a negative voltage is applied to the first electrode layer 241 of the X-ray image detector 360 by the high-voltage power supply 400, the X-ray carrying the self-image of the grating 131 is the first X-ray image detector 360. From the electrode layer 241 side (FIG. 41A).
 そして、X線画像検出器340に照射されたX線は、第1の電極層241を透過し、記録用光導電層242に照射される。そして、そのX線の照射によって記録用光導電層242において電荷対が発生し、そのうち正の電荷は第1の電極層241に帯電した負の電荷と結合して消滅し、負の電荷は潜像電荷として電荷蓄積層343に蓄積される(FIG.41B)。なお、第2の電極層246に接した線状の電荷蓄積層343は絶縁性の膜であるから、この電荷蓄積層343に到達した電荷はそこに捕えられ、第2の電極層246へ行くことができず、蓄積されて留まる。 Then, the X-rays irradiated to the X-ray image detector 340 are transmitted through the first electrode layer 241 and irradiated to the recording photoconductive layer 242. The X-ray irradiation generates a charge pair in the recording photoconductive layer 242, and the positive charge is combined with the negative charge charged in the first electrode layer 241 and disappears, and the negative charge is latent. The image charge is stored in the charge storage layer 343 (FIG. 41B). Note that since the linear charge storage layer 343 in contact with the second electrode layer 246 is an insulating film, charges that have reached the charge storage layer 343 are captured there and go to the second electrode layer 246. Can't, and stays accumulated.
 ここでも、上記例のX線画像検出器340と同様に、記録用光導電層242において発生した電荷のうち、その直下に線状の電荷蓄積層343が存在する電荷のみを蓄積することによって、格子131の自己像は電荷蓄積層343の線状のパターンとの重ね合わせにより強度変調を受け、被写体Hによる自己像の波面の歪みを反映した縞画像の画像信号が電荷蓄積層343に蓄積されることになる。 Here, as in the X-ray image detector 340 of the above example, by accumulating only the electric charge generated in the recording photoconductive layer 242 and the electric charge accumulating layer 343 directly below it, The self-image of the lattice 131 is intensity-modulated by being superimposed on the linear pattern of the charge storage layer 343, and an image signal of a fringe image reflecting the distortion of the wavefront of the self-image by the subject H is stored in the charge storage layer 343. Will be.
 そして、図42に示すように、第1の電極層241が接地された状態において、線状読取光源250から発せられた線状の読取光L1が第2の電極層246側から照射される。読取光L1は、透明線状電極246aを透過して電荷蓄積層343近傍の記録用光導電層242に照射され、その読取光L1の照射により発生した正の電荷が線状の電荷蓄積層343へ引き寄せられて再結合する。そして、もう一方の負の電荷は、透明線状電極246aへ引き寄せられ、透明線状電極246aに帯電した正の電荷及び透明線状電極246aに接続されたチャージアンプ200を介して遮光線状電極246bに帯電した正の電荷と結合する。これによりチャージアンプ200に電流が流れ、この電流が積分されて画像信号として検出される。 Then, as shown in FIG. 42, in the state where the first electrode layer 241 is grounded, the linear reading light L1 emitted from the linear reading light source 250 is irradiated from the second electrode layer 246 side. The reading light L1 passes through the transparent linear electrode 246a and is applied to the recording photoconductive layer 242 in the vicinity of the charge storage layer 343. Positive charges generated by the irradiation of the reading light L1 are linear charge storage layer 343. Attracted to recombine. The other negative charge is drawn to the transparent linear electrode 246a, and the light shielding linear electrode is connected to the positive charge charged in the transparent linear electrode 246a and the charge amplifier 200 connected to the transparent linear electrode 246a. It couple | bonds with the positive charge charged to 246b. As a result, a current flows through the charge amplifier 200, and this current is integrated and detected as an image signal.
 上述したX線画像検出器360を用いた場合においても、複数の縞画像信号の取得方法及び位相コントラスト画像の生成方法は上記各例と同様である。 Even when the above-described X-ray image detector 360 is used, the method for acquiring a plurality of fringe image signals and the method for generating a phase contrast image are the same as those in the above examples.
 また、上記各例においては、X線画像検出器340の電荷蓄積層343を、完全に線状に分離して形成するようにしたが、これに限らず、たとえば、図43に示すように、平板形状の上に線状のパターンを形成することによって格子状に形成するようにしてもよい。 In each of the above examples, the charge storage layer 343 of the X-ray image detector 340 is formed to be completely separated into a linear shape. However, the present invention is not limited to this, for example, as shown in FIG. You may make it form in a grid | lattice form by forming a linear pattern on flat plate shape.
 なお、上記例で説明した光読取方式のX線画像検出器においては、主走査方向については線状電極の幅(延伸方向と垂直な方向)によって解像度Dxが制限されるが、副走査方向については、線状読取光源250の読取光の副走査方向の幅及び1ラインあたりのチャージアンプ200の蓄積時間と線状読取光源250の移動速度の積で解像度Dyが決まることになる。主副解像度ともに典型的には数10μmであるが、主走査方向の解像度を維持したまま副走査方向の解像度を高くする設計が可能である。たとえば、線状読取光源250の幅を小さくしたり、移動速度を遅くすることにより実現可能である。 In the X-ray image detector of the optical reading system described in the above example, the resolution Dx is limited in the main scanning direction by the width of the linear electrode (direction perpendicular to the extending direction), but in the sub-scanning direction. The resolution Dy is determined by the product of the reading light of the linear reading light source 250 in the sub-scanning direction, the accumulation time of the charge amplifier 200 per line, and the moving speed of the linear reading light source 250. Both the main and sub resolutions are typically several tens of μm, but it is possible to increase the sub scanning direction resolution while maintaining the main scanning direction resolution. For example, this can be realized by reducing the width of the linear reading light source 250 or by reducing the moving speed.
 前述の各X線撮影システムでは、放射線として一般的なX線を用いる場合について説明したが、本発明に用いられる放射線はX線に限られるものではなく、α線、γ線等のX線以外の放射線を用いることも可能である。 In each of the above-described X-ray imaging systems, the case where general X-rays are used as radiation has been described. However, the radiation used in the present invention is not limited to X-rays, but other than X-rays such as α-rays and γ-rays. It is also possible to use other radiation.
 以上、説明したように、本明細書には、第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有する格子パターンと、前記格子パターンによってマスキングされた前記放射線像を検出する放射線画像検出器と、を備え、前記第1の格子は、該第1の格子を通過する放射線の進行方向と交差する面内において配列された複数の格子片を含み、隣り合う格子片同士を連結する連結部が放射線遮蔽体で形成されている放射線画像検出装置が開示されている。 As described above, the present specification includes a first grating and a grating pattern having a period substantially matching the pattern period of a radiation image formed by radiation that has passed through the first grating; A radiation image detector for detecting the radiation image masked by the grating pattern, wherein the first grating is arranged in a plane intersecting a traveling direction of the radiation passing through the first grating. A radiation image detection device is disclosed that includes a plurality of lattice pieces and a connecting portion that connects adjacent lattice pieces is formed of a radiation shield.
 また、本明細書に開示された放射線画像検出装置は、前記格子パターンが、第2の格子であり、前記第2の格子は、該第2の格子を通過する放射線の進行方向と交差する面内において配列された複数の格子片を含み、隣り合う格子片同士を連結する連結部が放射線遮蔽体で形成されている。 In the radiological image detection apparatus disclosed in this specification, the lattice pattern is a second lattice, and the second lattice intersects with the traveling direction of the radiation passing through the second lattice. A connecting portion that includes a plurality of lattice pieces arranged inside and connects adjacent lattice pieces is formed of a radiation shield.
 また、本明細書に開示された放射線画像検出装置は、前記放射線画像検出器が、放射線焦点を視点とする投影において、前記第1の格子の連結部が投影される第1の領域と、前記第2の格子の連結部が投影される第2の領域と、を含み、前記第1の領域及び前記第2の領域が一致するか、又は前記第1の領域及び前記第2の領域のうち一方の領域が他方の領域に内包される。 Further, the radiological image detection apparatus disclosed in the present specification is configured such that the radiographic image detector has a first area in which the connection portion of the first lattice is projected in a projection with a radiographic focal point as a viewpoint, A second region on which a connecting portion of the second lattice is projected, and the first region and the second region coincide with each other, or among the first region and the second region One area is included in the other area.
 また、本明細書に開示された放射線画像検出装置は、前記第1及び第2の格子の各々において、前記複数の格子片が第1の方向に配列されており、前記放射線画像検出器は、放射線焦点を視点とする投影において、前記第1の格子の前記第1の方向に隣り合う格子片同士の連結部が投影される第1の領域と、前記第2の格子の前記第1の方向に隣り合う格子片同士の連結部が投影される第2の領域と、前記第1の領域及び前記第2の領域を除く第3の領域とを含み、前記第1の領域に属する各画素と前記第2の領域に属する各画素との間には、前記第3の領域に属する少なくとも一つの画素が介在する。 Further, in the radiological image detection device disclosed in this specification, in each of the first and second grids, the plurality of grid pieces are arranged in a first direction, and the radiographic image detector includes: In projection from the viewpoint of the radiation focal point, a first region where a connecting portion of lattice pieces adjacent to each other in the first direction of the first lattice is projected, and the first direction of the second lattice Each of the pixels belonging to the first region, the second region on which the connecting portion of the lattice pieces adjacent to each other is projected, and the third region excluding the first region and the second region; At least one pixel belonging to the third region is interposed between each pixel belonging to the second region.
 また、本明細書に開示された放射線画像検出装置は、前記第1及び第2の格子の各々において、前記複数の格子片が、前記第1の方向と交差する第2の方向にも配列されており、前記放射線画像検出器は、放射線焦点を視点とする投影において、前記第1の格子の前記第2の方向に隣り合う格子片同士の連結部が投影される第4の領域と、前記第2の格子の前記第2の方向に隣り合う格子片同士の連結部が投影される第5の領域と、前記第4の領域及び前記第5の領域を除く第6の領域とを含み、前記第4の領域に属する各画素と前記第5の領域に属する各画素との間には、前記第6の領域に属する少なくとも一つの画素が介在する。 In the radiological image detection apparatus disclosed in this specification, in each of the first and second gratings, the plurality of grating pieces are also arranged in a second direction intersecting the first direction. The radiological image detector includes a fourth region in which a connection portion of lattice pieces adjacent to each other in the second direction of the first lattice is projected in a projection with a radiation focus as a viewpoint; A fifth region where a connecting portion of lattice pieces adjacent to each other in the second direction of the second lattice is projected, and a sixth region excluding the fourth region and the fifth region, At least one pixel belonging to the sixth area is interposed between each pixel belonging to the fourth area and each pixel belonging to the fifth area.
 また、本明細書に開示された放射線画像検出装置は、前記第1及び第2の格子の各々において、前記複数の格子片が配列される面が円筒面であり、その中心軸が放射線焦点を通る。 In the radiological image detection apparatus disclosed in this specification, in each of the first and second gratings, a surface on which the plurality of grating pieces are arranged is a cylindrical surface, and a central axis thereof has a radiation focus. Pass through.
 また、本明細書に開示された放射線画像検出装置は、前記連結部が、放射線吸収材を分散した接着剤で形成されている。 Further, in the radiological image detection apparatus disclosed in this specification, the connecting portion is formed of an adhesive in which a radiation absorbing material is dispersed.
 また、本明細書に開示された放射線画像検出装置は、前記放射線吸収材が、原子番号40以上の重金属の粒子である。 Further, in the radiological image detection apparatus disclosed in the present specification, the radiation absorbing material is heavy metal particles having an atomic number of 40 or more.
 また、本明細書に開示された放射線画像検出装置は、前記重金属が、金、白金、鉛の群から選ばれる少なくとも1種である。 In the radiological image detection apparatus disclosed in this specification, the heavy metal is at least one selected from the group consisting of gold, platinum, and lead.
 また、本明細書には、上記いずれかの放射線画像検出装置と、前記第1の格子に向けて放射線を照射する放射線源と、を備える放射線撮影装置が開示されている。 Also, the present specification discloses a radiation imaging apparatus including any one of the above-described radiation image detection apparatuses and a radiation source that irradiates radiation toward the first grating.
 また、本明細書には、上記の放射線撮影装置と、前記前記放射線画像検出器で取得される画像データにおいて、前記連結部が投影される欠陥領域に属する各画素のデータを、その画素の周囲にあって該欠陥領域を除く領域に属する画素のデータで補完する演算処理部を備える放射線撮影システムが開示されている。 Further, in the present specification, in the image data acquired by the radiation imaging apparatus and the radiation image detector, the data of each pixel belonging to the defect area onto which the connecting portion is projected is displayed around the pixel. A radiation imaging system is disclosed that includes an arithmetic processing unit that complements data of pixels belonging to an area excluding the defective area.
 また、本明細書に開示された放射線撮影システムは、前記演算処理部が、前記欠陥領域に属する各画素のデータが補完された画像データから、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、被写体の位相コントラスト画像を生成する。 Further, in the radiation imaging system disclosed in this specification, the arithmetic processing unit may calculate a refraction angle of radiation incident on the radiation image detector from image data in which data of each pixel belonging to the defect area is complemented. The distribution is calculated, and a phase contrast image of the subject is generated based on the distribution of the refraction angles.
 本発明によれば、複数の格子片を連結して格子を構成することにより、個々の格子片には比較的小型なものを用いてその精度を維持しつつ、大きなサイズの格子を得ることができる。そして、隣り合う格子片の連結部を放射線遮蔽体で形成することによって、欠陥領域に属する画素の抽出が容易にかつ確実に行え、もって、その画素のデータの補完を確実に行って、得られる画像の画質を向上させることができる。 According to the present invention, a plurality of lattice pieces are connected to form a lattice, thereby obtaining a large-size lattice while maintaining the accuracy by using a relatively small individual lattice piece. it can. Then, by forming the connecting portion of the adjacent lattice pieces with a radiation shield, the pixels belonging to the defect area can be easily and reliably extracted, and the data of the pixels can be complemented with certainty. The image quality can be improved.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年11月22日出願の日本特許出願(特願2010-260667)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on November 22, 2010 (Japanese Patent Application No. 2010-260667), the contents of which are incorporated herein by reference.
10   X線撮影システム
11   X線源
12   撮影部
13   コンソール
30   FPD
31   第1の吸収型格子
31A 第1の格子片
32   第2の吸収型格子
32A 第2の格子片
33   走査機構
40   画素
10 X-ray imaging system 11 X-ray source 12 Imaging unit 13 Console 30 FPD
31 First absorption grating 31A First grating piece 32 Second absorption grating 32A Second grating piece 33 Scanning mechanism 40 pixels

Claims (12)

  1.  第1の格子と、
     前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有する格子パターンと、
     前記格子パターンによってマスキングされた前記放射線像を検出する放射線画像検出器と、
     を備え、
     前記第1の格子は、該第1の格子を通過する放射線の進行方向と交差する面内において配列された複数の格子片を含み、隣り合う格子片同士を連結する連結部が放射線遮蔽体で形成されている放射線画像検出装置。
    A first lattice;
    A grating pattern having a period substantially matching a pattern period of a radiation image formed by radiation that has passed through the first grating;
    A radiation image detector for detecting the radiation image masked by the lattice pattern;
    With
    The first grating includes a plurality of grating pieces arranged in a plane that intersects the traveling direction of the radiation passing through the first grating, and a connecting portion that connects adjacent grating pieces is a radiation shield. The formed radiographic image detection apparatus.
  2.  請求項1に記載の放射線画像検出装置であって、
     前記格子パターンは、第2の格子であり、
     前記第2の格子は、該第2の格子を通過する放射線の進行方向と交差する面内において配列された複数の格子片を含み、隣り合う格子片同士を連結する連結部が放射線遮蔽体で形成されている放射線画像検出装置。
    The radiological image detection apparatus according to claim 1,
    The lattice pattern is a second lattice;
    The second grating includes a plurality of grating pieces arranged in a plane that intersects the traveling direction of the radiation passing through the second grating, and a connecting portion that connects adjacent grating pieces is a radiation shield. The formed radiographic image detection apparatus.
  3.  請求項2に記載の放射線画像検出装置であって、
     前記放射線画像検出器は、放射線焦点を視点とする投影において、前記第1の格子の連結部が投影される第1の領域と、前記第2の格子の連結部が投影される第2の領域と、を含み、
     前記第1の領域及び前記第2の領域が一致するか、又は前記第1の領域及び前記第2の領域のうち一方の領域が他方の領域に内包される放射線画像検出装置。
    The radiological image detection apparatus according to claim 2,
    The radiation image detector includes: a first region where the first lattice connection portion is projected and a second region where the second lattice connection portion is projected in a projection with a radiation focus as a viewpoint; And including
    The radiographic image detection apparatus in which the first area and the second area coincide with each other, or one of the first area and the second area is included in the other area.
  4.  請求項2に記載の放射線画像検出装置であって、
     前記第1及び第2の格子の各々において、前記複数の格子片は第1の方向に配列されており、
     前記放射線画像検出器は、放射線焦点を視点とする投影において、前記第1の格子の前記第1の方向に隣り合う格子片同士の連結部が投影される第1の領域と、前記第2の格子の前記第1の方向に隣り合う格子片同士の連結部が投影される第2の領域と、前記第1の領域及び前記第2の領域を除く第3の領域とを含み、
     前記第1の領域に属する各画素と前記第2の領域に属する各画素との間には、前記第3の領域に属する少なくとも一つの画素が介在する放射線画像検出装置。
    The radiological image detection apparatus according to claim 2,
    In each of the first and second gratings, the plurality of grating pieces are arranged in a first direction,
    The radiation image detector includes: a first region where a connection portion between lattice pieces adjacent to each other in the first direction of the first lattice is projected in a projection with a radiation focus as a viewpoint; and the second region A second region where a connection portion of lattice pieces adjacent to each other in the first direction of the lattice is projected, and a third region excluding the first region and the second region,
    The radiation image detection apparatus in which at least one pixel belonging to the third region is interposed between each pixel belonging to the first region and each pixel belonging to the second region.
  5.  請求項4に記載の放射線画像検出装置であって、
     前記第1及び第2の格子の各々において、前記複数の格子片は、前記第1の方向と交差する第2の方向にも配列されており、
     前記放射線画像検出器は、放射線焦点を視点とする投影において、前記第1の格子の前記第2の方向に隣り合う格子片同士の連結部が投影される第4の領域と、前記第2の格子の前記第2の方向に隣り合う格子片同士の連結部が投影される第5の領域と、前記第4の領域及び前記第5の領域を除く第6の領域とを含み、
     前記第4の領域に属する各画素と前記第5の領域に属する各画素との間には、前記第6の領域に属する少なくとも一つの画素が介在する放射線画像検出装置。
    The radiological image detection apparatus according to claim 4,
    In each of the first and second gratings, the plurality of grating pieces are also arranged in a second direction intersecting the first direction,
    The radiological image detector includes: a fourth region where a connection portion between lattice pieces adjacent to each other in the second direction of the first lattice is projected in the projection with a radiation focus as a viewpoint; and the second region A fifth region where a connecting portion of lattice pieces adjacent to each other in the second direction of the lattice is projected, and a sixth region excluding the fourth region and the fifth region,
    The radiation image detection apparatus in which at least one pixel belonging to the sixth area is interposed between each pixel belonging to the fourth area and each pixel belonging to the fifth area.
  6.  請求項2から5のいずれか一項に記載の放射線画像検出装置であって、
     前記第1及び第2の格子の各々において、前記複数の格子片が配列される面が円筒面であり、その中心軸が放射線焦点を通る放射線画像検出装置。
    The radiological image detection apparatus according to any one of claims 2 to 5,
    In each of the first and second gratings, a radiation image detection apparatus in which a surface on which the plurality of grating pieces are arranged is a cylindrical surface, and a central axis thereof passes through a radiation focus.
  7.  請求項1から5のいずれか一項に記載の放射線画像検出装置であって、
     前記連結部は、放射線吸収材を分散した接着剤で形成されている放射線画像検出装置。
    The radiological image detection apparatus according to any one of claims 1 to 5,
    The connection part is a radiographic image detection device formed of an adhesive in which a radiation absorbing material is dispersed.
  8.  請求項7に記載の放射線画像検出装置であって、
     前記放射線吸収材は、原子番号40以上の重金属の粒子である放射線画像検出装置。
    The radiological image detection apparatus according to claim 7,
    The radiation image detecting apparatus, wherein the radiation absorbing material is particles of heavy metal having an atomic number of 40 or more.
  9.  請求項8に記載の放射線画像検出装置であって、
     前記重金属は、金、白金、鉛の群から選ばれる少なくとも1種である放射線画像検出装置。
    The radiological image detection apparatus according to claim 8,
    The heavy metal is a radiological image detection apparatus which is at least one selected from the group consisting of gold, platinum and lead.
  10.  請求項1から9のいずれか一項に記載の放射線画像検出装置と、
     前記第1の格子に向けて放射線を照射する放射線源と、
     を備える放射線撮影装置。
    The radiological image detection apparatus according to any one of claims 1 to 9,
    A radiation source for irradiating radiation toward the first grating;
    A radiographic apparatus comprising:
  11.  請求項10に記載の放射線撮影装置と、
     前記放射線画像検出器で取得される画像データにおいて、前記連結部が投影される欠陥領域に属する各画素のデータを、その画素の周囲にあって該欠陥領域を除く領域に属する画素のデータで補完する演算処理部を備える放射線撮影システム。
    The radiation imaging apparatus according to claim 10;
    In the image data acquired by the radiation image detector, the data of each pixel belonging to the defect area projected by the connecting portion is supplemented with the data of the pixels belonging to the area around the pixel and excluding the defect area. A radiation imaging system including an arithmetic processing unit.
  12.  請求項11に記載の放射線撮影システムであって、
     前記演算処理部は、前記欠陥領域に属する各画素のデータが補完された画像データから、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、被写体の位相コントラスト画像を生成する放射線撮影システム。
    It is a radiography system of Claim 11, Comprising:
    The calculation processing unit calculates a distribution of refraction angles of radiation incident on the radiation image detector from image data supplemented with data of each pixel belonging to the defect area, and based on the distribution of refraction angles, A radiography system that generates a phase contrast image of a subject.
PCT/JP2011/076925 2010-11-22 2011-11-22 Radiograph detection device, radiography device, and radiography system WO2012070580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-260667 2010-11-22
JP2010260667A JP2014030437A (en) 2010-11-22 2010-11-22 Radiation image detection device, radiation imaging device and radiation imaging system

Publications (1)

Publication Number Publication Date
WO2012070580A1 true WO2012070580A1 (en) 2012-05-31

Family

ID=46145921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076925 WO2012070580A1 (en) 2010-11-22 2011-11-22 Radiograph detection device, radiography device, and radiography system

Country Status (2)

Country Link
JP (1) JP2014030437A (en)
WO (1) WO2012070580A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343921A (en) * 2017-12-26 2020-06-26 株式会社岛津制作所 X-ray imaging apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125833A1 (en) * 2006-04-24 2007-11-08 The University Of Tokyo X-ray image picking-up device and x-ray image picking-up method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125833A1 (en) * 2006-04-24 2007-11-08 The University Of Tokyo X-ray image picking-up device and x-ray image picking-up method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343921A (en) * 2017-12-26 2020-06-26 株式会社岛津制作所 X-ray imaging apparatus
CN111343921B (en) * 2017-12-26 2023-03-14 株式会社岛津制作所 X-ray imaging apparatus

Also Published As

Publication number Publication date
JP2014030437A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP5150711B2 (en) Radiography apparatus and radiation imaging system
JP2012130586A (en) X-ray image detecting apparatus, radiographing apparatus, and radiographing system
JP5796908B2 (en) Radiation phase imaging device
JP5475925B2 (en) Radiation imaging apparatus and image processing method
JP5331940B2 (en) Radiation imaging system and radiation image generation method
JP5150713B2 (en) Radiation image detection device, radiation imaging device, radiation imaging system
JP2012130451A (en) Radiographic apparatus and radiographic system
JP2012090944A (en) Radiographic system and radiographic method
WO2012005179A1 (en) Radiographic imaging system and image processing method of same
JP2012110472A (en) Radiation phase image obtainment method and radiation phase image radiographic apparatus
JP2012143550A (en) Radiation image capturing apparatus and radiation image obtaining method
JP2012095865A (en) Radiographic apparatus and radiographic system
JP2012143548A (en) Radiation image obtaining method, and radiation image capturing apparatus
JP2012143553A (en) Radiographic apparatus and radiation image detector
WO2012057047A1 (en) Radiation imaging system
JP2011206490A (en) Radiographic system and radiographic method
JP2012125423A (en) Radiation image detection apparatus, radiographic imaging apparatus, and radiographic imaging system
JP2012110395A (en) Radiographic system
WO2012070662A1 (en) Radiographic image detection apparatus, radiography apparatus, and radiography system
WO2012056725A1 (en) Radiation phase contrast imaging apparatus and radiation image detector
WO2013047011A1 (en) Radiographic image detector, method of manufacturing same, and radiography system employing radiographic image detector
WO2012070580A1 (en) Radiograph detection device, radiography device, and radiography system
JP2012147824A (en) Radiographing apparatus, and radiographic image detector
WO2012056992A1 (en) Radiograph detection device, radiography device, radiography system
JP2012110606A (en) Radiographic apparatus and radiographic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP