WO2013046779A1 - Electrostatic protective component and method for manufacturing same - Google Patents

Electrostatic protective component and method for manufacturing same Download PDF

Info

Publication number
WO2013046779A1
WO2013046779A1 PCT/JP2012/061018 JP2012061018W WO2013046779A1 WO 2013046779 A1 WO2013046779 A1 WO 2013046779A1 JP 2012061018 W JP2012061018 W JP 2012061018W WO 2013046779 A1 WO2013046779 A1 WO 2013046779A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
nickel
copper
electrostatic protection
paste
Prior art date
Application number
PCT/JP2012/061018
Other languages
French (fr)
Japanese (ja)
Inventor
孝宏 若狭
平野 立樹
篤司 戸田
Original Assignee
釜屋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 釜屋電機株式会社 filed Critical 釜屋電機株式会社
Priority to KR1020147007875A priority Critical patent/KR101572769B1/en
Priority to JP2013535961A priority patent/JP5671149B2/en
Priority to CN201280046961.5A priority patent/CN103918144B/en
Publication of WO2013046779A1 publication Critical patent/WO2013046779A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel

Definitions

  • the present invention relates to an electrostatic protection component and a manufacturing method thereof.
  • electrostatic protection components have been used to protect electronic devices from overvoltage due to external noise and the like.
  • the electrostatic protection component is composed of a surface electrode opposed to the gap, an electrostatic protection film provided in the gap, and the like between the line where the overvoltage may be applied in the electronic device and the ground.
  • the electronic device is protected from the overvoltage by discharging between the surface electrodes (that is, an electrostatic protection film) when the overvoltage is applied to the line.
  • Such an electrostatic protection component is required to withstand a strict ESD (Electro-Static Discharge) test (contact discharge test) in order to ensure that the electrostatic protection function is reliably exhibited.
  • ESD Electro-Static Discharge
  • contact discharge test contact discharge test
  • the ESD suppression peak voltage is 500 V or less. It is required to satisfy the condition of being maintained.
  • tungsten films are known as conventional electrode materials (Patent Documents 1 and 2).
  • a tungsten paste is screen-printed on a green sheet, which is a pre-firing stage of an alumina substrate, and this screen-printed tungsten paste is peaked in a firing furnace in a hydrogen (H 2 ) -nitrogen (N 2 ) mixed gas atmosphere. Firing is performed at a high temperature of about 1500 ° C. for 3 to 5 hours. As a result, an alumina substrate having a tungsten film electrode is completed.
  • the present invention can form a surface electrode that can withstand an ESD test (contact discharge test) of 500 times or more and maintain an ESD suppression peak voltage at 500 V or less at a low cost. It is an object to provide an electrostatic protection component and a manufacturing method thereof.
  • the inventors of the present application eagerly searched for a material for the surface electrode, and as a result, obtained the knowledge that a copper-nickel film and a copper-nickel-silver film were suitable for the surface electrode material. That is, the present invention has the following features.
  • the electrostatic protection component of the first invention that solves the above-mentioned problem is formed on the surface of the insulating substrate and is opposed to the surface electrode through the first gap, An insulating film formed on the surface electrode, covering an upper surface and both side surfaces of the surface electrode, and facing each other via a second gap connected to the first gap; An electrostatic protection film having a central part and both side parts, wherein the central part is provided in the first gap and the second gap, and the both side parts overlap an upper surface of the insulating film; In electrostatic protection parts having The material of the front electrode is a copper-nickel film or a copper-nickel-silver film.
  • the electrostatic protection component of the second invention is the electrostatic protection component of the first invention. It has a back electrode formed on the back surface of the insulating substrate and electrically connected to the front electrode.
  • the manufacturing method of the electrostatic protection component of the third invention is a method of manufacturing the electrostatic protection component of the first invention
  • the surface of the insulating substrate is screen-printed with a copper-nickel paste or a copper-nickel-silver paste, and the screen-printed copper-nickel paste film or copper-nickel-silver paste film is 800 ° C. to 950 ° C. in a nitrogen atmosphere.
  • a first step of forming a surface electrode film by firing at a peak temperature in the range of The insulating film paste is screen-printed to cover the upper surface and both side surfaces of the surface electrode film formed in the first step, and the insulating film is formed by baking the screen-printed insulating film paste film
  • a shape having the central portion and the both side portions, the central portion is provided in the first gap and the second gap, and an electrostatic protection paste is screen printed so that the both side portions are overlaid on the upper surface of the insulating film.
  • a fourth step of forming the static electricity protection film by baking the screen printed static electricity protection paste film It is characterized by having.
  • the manufacturing method of the electrostatic protection component of the fourth invention is a method of manufacturing the electrostatic protection component of the second invention
  • the surface of the insulating substrate is screen-printed with a copper-nickel paste or a copper-nickel-silver paste, and the screen-printed copper-nickel paste film or copper-nickel-silver paste film is 800 ° C. to 950 ° C. in a nitrogen atmosphere.
  • a first step of forming a surface electrode film by firing at a peak temperature in the range of A second step of forming the back electrode by screen-printing an electrode paste on the back surface of the insulating substrate and firing the screen-printed electrode paste film;
  • the insulating film paste is screen-printed so as to cover the upper surface and both side surfaces of the surface electrode film formed in the first step, and the screen-printed insulating film paste film is baked to form an insulating film.
  • a shape having the central portion and the both side portions is provided in the first gap and the second gap, and an electrostatic protection paste is screen printed so that the both side portions are overlaid on the upper surface of the insulating film. And baking the screen-printed electrostatic protection paste film to form the electrostatic protection film, It is characterized by having.
  • the manufacturing method of the static electricity protection component of 5th invention is the manufacturing method of the static electricity protection component of 4th invention, Performing the second step after the first step; And in the second step, firing the back electrode at a peak temperature lower than the peak temperature when firing the front electrode film in the first step, It is characterized by.
  • a method for manufacturing an electrostatic protection component according to any one of the third to fifth aspects of the invention.
  • the peak temperature when firing the surface electrode film in the first step is 900 ° C.
  • the surface electrode is made of a copper-nickel film or copper-nickel-silver. Since it was set as the film
  • the copper-nickel film or the copper-nickel-silver film as the surface electrode material has a peak temperature in the range of 800 ° C. to 950 ° C. in a nitrogen atmosphere (for example, a copper-nickel paste film or a copper-nickel-silver paste film).
  • the copper-nickel film or the copper-nickel-silver film is It can be formed at low cost. For this reason, the manufacturing cost of an electrostatic protection component can be reduced.
  • the three types of copper-nickel film, copper-nickel-silver film and tungsten film can withstand 500 times ESD test and satisfy the regulation of leakage current of 10 ⁇ A or less, but the copper-nickel film and copper-nickel film.
  • the fluctuation of the leakage current due to the number of times of the ESD voltage application is very small compared to the case of the tungsten film, and the dielectric strength against ESD voltage application is high. Furthermore, in the case of a copper-nickel-silver film, the number of ESD voltage applications where the peak of leak current (large fluctuation) first occurs is larger than in the case of a copper-nickel film, and the dielectric strength against ESD voltage application is high. .
  • the second step is performed after the first step, and the surface electrode film is baked in the first step in the second step. Since the back electrode is baked at a peak temperature lower than the peak temperature at that time, the back electrode can be prevented from being altered. That is, if the first step is performed after the second step, the back electrode baked in the previous second step when the surface electrode film is baked at a high peak temperature in the subsequent first step. In this case, the back electrode may be altered because it is refired at a high peak temperature. On the other hand, if the second step is performed after the first step, there is no possibility that the back electrode will be altered.
  • the material of the surface electrode film fired in the first step is a copper-nickel film or a copper-nickel-silver film. Even if the back electrode is baked in the air atmosphere in the second step, at this time, the appearance of the surface electrode film baked in the first step does not change significantly. Therefore, since the back electrode can be baked in an air atmosphere in the subsequent second step, it is easy to form the back electrode.
  • FIG. 3 is a cross-sectional view (a cross-sectional view taken along line BB in FIG. 2) showing the structure of the electrostatic protection component according to the embodiment of the present invention. It is a top view (A direction arrow view of FIG. 1) which shows the structure of the electrostatic protection component which concerns on the example of embodiment of this invention.
  • (A) is a cross-sectional view taken along the line CC of FIG. 1
  • (b) is a cross-sectional view taken along the line DD of FIG. 4 is a table showing a Cu—Ni compounding ratio (wt%) and a Cu—Ni—Ag compounding ratio (wt%) of the surface electrode material in the electrostatic protection component according to the embodiment of the present invention.
  • FIG. 14 is a cross-sectional view (cross-sectional view taken along line FF in FIG.
  • FIG. 13 shows another structural example (a structural example of a glass film portion) of the electrostatic protection component according to the embodiment of the present invention.
  • FIG. 12 shows the other structural example (Structural example of a glass film part) of the electrostatic protection component which concerns on the embodiment of this invention.
  • (A) is a cross-sectional view taken along line GG in FIG. 12, and (b) is a cross-sectional view taken along line HH in FIG.
  • FIG. 17 is a cross-sectional view (a cross-sectional view taken along the line JJ in FIG. 16) showing another structural example (a structural example of the glass film portion) of the electrostatic protection component according to the embodiment of the present invention.
  • It is a top view (I direction view arrow view of FIG. 15) which shows the other structural example (structure example of a glass film part) of the electrostatic protection component which concerns on the embodiment of this invention.
  • An electrostatic protection component 100 shown in FIG. 1 is a component for surface mounting on a printed circuit board such as an in-vehicle electronic device, and an electronic circuit (electronic component) mounted on the printed circuit board is subjected to overvoltage due to external noise or the like.
  • the electronic device is provided between a line to which the overvoltage may be applied and a ground.
  • surface electrodes 2a and 2b are formed on a surface 1a of a ceramic substrate 1 which is an insulating substrate.
  • the surface electrodes 2a and 2b are made of a copper (Cu) -nickel (Ni) film or a copper (Cu) -nickel (Ni) -silver (Ag) film.
  • the copper-nickel film is a composite film containing copper, nickel, and glass
  • the copper-nickel-silver film is a composite film containing copper, nickel, silver, and glass.
  • the optimum value of the film thickness of the surface electrodes 2a and 2b (copper-nickel film or copper-nickel-silver film) is 17 ⁇ 2 ⁇ m.
  • the material of the surface electrodes 2a and 2b (copper-nickel film or copper-nickel-silver film), for example, surface electrode materials A and B shown in FIG. 4 can be used.
  • the surface electrode material A is a material of a composite film containing copper, nickel, and glass
  • the surface electrode material B is a material of a composite film containing copper, nickel, silver, and glass.
  • the Cu—Ni compounding ratio of the surface electrode material A is 62.5 wt% for Cu and 37.5 wt% for Ni.
  • the Cu—Ni—Ag mixture ratio of the surface electrode material B is 68.2 wt% for Cu, 29.8 wt% for Ni, and 2 wt% for Ag.
  • back electrodes 3a and 3b are formed on the back surface 1b of the ceramic substrate 1.
  • the front electrodes 2a and 2b are formed over the entire length of the substrate surface 1a, while the back electrodes 3a and 3b are formed at both ends of the substrate back surface 1b.
  • a gap (narrow portion) 4a (first gap) is formed between the surface electrodes 2a and 2b. That is, the surface electrodes 2a and 2b are opposed to each other with the gap 4a interposed therebetween.
  • the gap 4a is formed by cutting the surface electrode film by a cutting means such as a laser method, and has a width d of about 17 ⁇ m.
  • a glass film 21a which is an insulating film is formed on the front electrode 2a (near the gap), and a glass film 21b which is an insulating film is formed on the front electrode 2b (near the gap).
  • a gap (narrow portion) 4b (second gap) is formed between the glass films 21a and 21b. That is, the glass films 21a and 21b are opposed to each other through the gap 4b.
  • the gap 4b has a width d of about 17 ⁇ m formed by cutting a glass film with a cutting means such as a laser method, and is continuous with the gap 4a. That is, the lower layer gap 4a and the upper layer gap 4b overlap.
  • the end 2a-1 on the gap side of the surface electrode 2a has its upper surface 2a-3 and both side surfaces 2a-4 and 2a-5 (that is, the portion other than the end surface 2a-6 on the gap side) covered with the glass film 21a.
  • the gap-side end 2b-1 of the surface electrode 2b has an upper surface 2b-3 and both side surfaces 2b-4 and 2b-5 (that is, a portion other than the gap-side end surface 2b-6) and a glass film. 21b (see in particular FIG. 3 (b)).
  • An electrostatic protection film 5 is formed in the gaps 4a and 4b, and the electrostatic protection film 5 and the surface electrodes 2a and 2b are connected.
  • the end portion 2a-1 of the front electrode 2a is covered with the glass film 21a except for the end surface 2a-6 on the gap side.
  • the electrostatic protection film 5 is in contact with only the end face 2a-6 of the surface electrode 2a, and is not in contact with any part other than the end face 2a-6.
  • the end portion 2b-1 of the surface electrode 2b is covered with the glass film 21b except for the end surface 2b-6 on the gap side. For this reason, the electrostatic protection film 5 is in contact with only the end surface 2b-6 of the surface electrode 2b, and is not in contact with the portion other than the end surface 2b-6.
  • the electrostatic protection film 5 has a T-shaped longitudinal cross-sectional shape (see FIG. 1), and has a central portion 5c and both side portions 5a and 5b.
  • the central portion 5c of the electrostatic protection film 5 is provided in the gaps 4a and 4b (that is, the gaps 4a and 4b are filled to close the gaps 4a and 4b).
  • 5b respectively overlap the upper surfaces 21a-2, 21b-2 of the end portions 21a-1, 21b-1 on the gap side of the glass films 21a, 21b (that is, end portions 21a- inside the glass films 21a, 21b). 1 and 21b-1).
  • the glass films 21a and 21b can prevent the both end portions 5a and 5b of the electrostatic protection film 5 from overlapping the upper surfaces 2a-3 and 2b-3.
  • the electrostatic protection film 5 (center part 5c) could be provided only on 4a.
  • the electrostatic protection film 5 is formed using a material obtained by mixing two kinds of conductive particles and insulating particles with a silicone resin as a binder.
  • the conductive particles and the insulating particles are not subjected to a special treatment such as providing a passive layer on the surface of the conductive particles or doping other materials on the surface of the insulating particles.
  • the conductive particles are aluminum (Al) powder of conductive metal particles, and the insulating particles are zinc oxide (ZnO) powder.
  • ZnO zinc oxide
  • the zinc oxide powder JIS standard type 1 zinc oxide, that is, zinc oxide having a volume resistivity of 200 M ⁇ cm or more is used.
  • the mixing ratio of the three components of silicone resin, aluminum powder, and zinc oxide is such that the silicone resin is 100 parts by weight, whereas the aluminum powder is 160 parts by weight, and the zinc oxide powder is 120 parts by weight.
  • the ESD suppression peak voltage is a voltage generated at the start of discharge.
  • Thick film upper electrodes 6a and 6b are formed on the surface electrodes 2a and 2b, respectively. Since the front electrodes 2a and 2b are also thick, the upper electrodes 6a and 6b improve the current capacity of the front electrodes 2a and 2b. However, the upper electrodes 6a and 6b are formed so as not to contact the electrostatic protection film 5 (at a position away from the electrostatic protection film 5). The reason is that when the upper electrodes 6a and 6b are in contact with the electrostatic protection film 5, when an overvoltage due to external noise or the like is applied to the electrostatic protection component 100, not between the surface electrodes 2a and 2b but the upper electrodes 6a and 6b.
  • the glass films 21a and 21b which are insulating films, are not formed below the upper electrodes 6a and 6b.
  • the electrostatic protection film 5 is covered with an intermediate layer 7, and the intermediate layer 7 is covered with a protective film 8.
  • the protective film 8 has both end portions 8a and 8b overlapping with parts of the upper electrodes 6a and 6b (portions on the gap side).
  • the glass films 21a and 21b are not only interposed between the side portions 5a and 5b of the electrostatic protection film 5 and the surface electrodes 2a and 2b, but are also interposed between the intermediate layer 7 and the surface electrodes 2a and 2b. ing.
  • the protective film 8 is excellent in moisture resistance and the like, and is provided to protect the electrostatic protective film 5 and the like from an external environment such as humidity. However, since the protective film 8 has insufficient heat resistance, the electrostatic protective film 5 that generates heat during discharge is not directly covered with the protective film 8, and the intermediate protective layer 7 is excellent in heat resistance. The intermediate layer 7 is covered and covered with a protective film 8.
  • the intermediate layer 7 also has a function of avoiding the occurrence of abnormal discharge between the surface electrodes 2a and 2b.
  • the intermediate layer 7 is an elastic material (elastomer) in which an appropriate amount of an inorganic filler such as silica is added to a resin material such as a silicone resin, and is discharged at the gap 4a (electrostatic protection film 5) between the surface electrodes 2a and 2b. It also has a function (buffer function) that suppresses an increase in internal energy (internal pressure) (absorbs the internal energy) and prevents damage to the electrostatic protection component 100 due to an impact due to the increase in internal energy. is doing.
  • End face electrodes 9a and 9b are respectively formed on both end faces 1c and 1d of the ceramic substrate 1.
  • the end face electrodes 9a and 9b electrically connect the front electrodes 2a and 2b and the back electrodes 3a and 3b, respectively.
  • the end portions 9a-1, 9a-2, 9b-1, 9b-2 of the end face electrodes 9a, 9b are connected to the end portions 2a-2, 2b-2 of the front electrodes 2a, 2b and the back electrodes 3a, 3b. Since they overlap with the end portions 3a-1 and 3b-1, respectively, the connection between the end face electrodes 9a and 9b and the front electrodes 2a and 2b and the back electrodes 3a and 3b is more reliable.
  • nickel (Ni) plating films 10a and 10b and tin (Sn) plating films 11a and 11b are formed in this order in order to improve the reliability of the terminal electrodes with respect to the end face electrodes 9a and 9b. ing.
  • the nickel plating films 10a and 10b cover the end face electrodes 9a and 9b, the back electrodes 3a and 3b, the front electrodes 2a and 2b, and the upper electrodes 6a and 6b, respectively, and the tin plating film 11a.
  • 11b cover the nickel plating films 10a and 10b, respectively.
  • FIGS. 8 a method for manufacturing the electrostatic protection component 100 of the present embodiment will be described with reference to FIGS.
  • Each manufacturing process (step) in the flowchart of FIG. 5 is denoted by reference numerals S1 to S20. 6 (a) to (d), FIG. 7 (a) to (d), and FIGS. 8 (a) to (d) sequentially show the manufacturing state of the electrostatic protection component 100 in each manufacturing process.
  • a 1608 type electrostatic protection component 100 (having a width W of 0.8 mm and a length L of 1.6 mm shown in FIG. 2) was manufactured.
  • step S1 the ceramic substrate 1 is received in a manufacturing process (not shown) of the electrostatic protection component 100.
  • an alumina substrate was used as the ceramic substrate 1.
  • This alumina substrate is manufactured by using 96% alumina as a ceramic material.
  • Reference numeral 1 denotes a sheet shape in which a plurality of primary slits and secondary slits are formed vertically and horizontally, and a plurality of individual regions are connected vertically and horizontally.
  • step S2 the surface electrode film 2 (film for forming the surface electrodes 2a and 2b in the subsequent step) is formed on the surface 1a of the ceramic substrate 1.
  • the surface electrode film 2 is formed by applying and patterning a copper-nickel paste or a copper-nickel-silver paste on the substrate surface 1a by screen printing. Copper-nickel paste is made by kneading copper powder, nickel powder, vehicle, glass powder and solvent. Copper-nickel-silver paste is made of copper powder, nickel powder, silver powder, vehicle, glass powder and solvent. Are kneaded.
  • the copper—Ni-containing ratio of Cu—Ni is 62.5 wt% and Ni is 37.5 wt%.
  • Nickel paste is used. Specifically, a copper-nickel paste obtained by kneading 62.5 wt% copper powder, 37.5 wt% nickel powder, an organic material vehicle, a solvent, and glass powder is used.
  • the above-mentioned surface electrode material B see FIG.
  • a Cu—Ni—Ag compound containing 68.2 wt% Cu, 29.8 wt% Ni, and 2 wt% Ag is used as the material of the surface electrodes 2a and 2b.
  • a ratio copper-nickel-silver paste is used. Specifically, copper-nickel-, which is obtained by kneading 68.2 wt% copper powder, 29.8 wt% nickel powder, 2 wt% silver powder, an organic material vehicle, a solvent, and glass powder. Use silver paste.
  • the copper-nickel paste and the copper-nickel-silver paste used as the materials for the surface electrodes 2a and 2b are both 100 parts by weight of metal powder (that is, in the case of copper-nickel paste, the combined weight of copper powder and nickel powder). Parts are 100 parts by weight, and in the case of copper-nickel-silver paste, the weight of the copper powder, nickel powder and silver powder is 100 parts by weight).
  • the blending ratio is 3.5 to 15 parts by weight.
  • the optimum values are 0.4 parts by weight of vehicle and 7 parts by weight of glass powder.
  • the screen printed surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) is dried to evaporate the solvent in the copper-nickel paste or the solvent in the copper-nickel-silver paste.
  • step S3 the surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) formed in step S2 is subjected to a peak temperature in a firing furnace in a nitrogen (N 2 ) atmosphere. Bake at 900 ° C. for 1 hour.
  • the firing temperature of the surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) at this time is not necessarily limited to the peak temperature of 900 ° C., and the peak temperature is 800 ° C. to 950 ° C. It may be in the range of ° C.
  • the surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) is fired, the vehicle in the copper-nickel paste or the vehicle in the copper-nickel-silver paste burns out, and the copper- The glass powder in the nickel paste or the glass powder in the copper-nickel-silver paste melts.
  • the nitrogen atmosphere of the firing furnace contains a slight amount of oxygen (O 2 ), and the oxygen burns out the vehicle in the copper-nickel paste or the vehicle in the copper-nickel-silver paste.
  • a vehicle that can be burned out in a low oxygen atmosphere is used for the copper-nickel paste or the copper-nickel-silver paste.
  • Such vehicles are generally known.
  • the surface electrode film 2 (copper-nickel film or copper-nickel-silver film) that has been fired evaporates the solvent in the copper-nickel paste or the solvent in the copper-nickel-silver paste at the time of drying as described above. Since the vehicle burns out, it becomes a composite film of copper, nickel and glass (in the case of the surface electrode material A) or a composite film of copper, nickel, silver and glass (in the case of the surface electrode material B).
  • the optimum value of the thickness of the fired surface electrode film 2 (copper-nickel film or copper-nickel-silver film) is 17 ⁇ 2 ⁇ m as described above.
  • the surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) is fired at a peak temperature lower than 800 ° C., glass powder in the copper-nickel paste or Since the glass powder in the copper-nickel-silver paste is not completely melted and becomes a porous film, the film strength of the surface electrode film 2 (copper-nickel film or copper-nickel-silver film) after firing is lowered. End up.
  • the surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) is fired at a peak temperature higher than 950 ° C., glass or copper in the melted copper-nickel paste Since the glass in the nickel-silver paste spreads and the printed pattern is blurred, the thickness of the surface electrode film 2 (copper-nickel film or copper-nickel-silver film) after firing is larger than a predetermined film thickness. It will be thinner. Accordingly, an appropriate peak temperature when firing the surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) is in the range of 800 ° C. to 950 ° C. as described above.
  • the back electrodes 3a and 3b are formed on the back surface 1b of the ceramic substrate 1 as shown in FIG.
  • the back electrodes 3a and 3b are formed by applying and patterning an electrode paste on the substrate back surface 1b by screen printing.
  • a silver (Ag) paste was used as the electrode paste.
  • the screen printed back electrodes 3a and 3b are dried to evaporate the solvent in the electrode paste.
  • a silver / palladium (Ag / Pd) paste may be used as an electrode paste for forming the back electrodes 3a and 3b.
  • a glass film 21 (a film for forming glass films 21a and 21b in a subsequent process) is formed at the center of the surface electrode film 2.
  • the glass film 21 is formed by applying and patterning a borosilicate glass paste, which is an insulating film paste, on the surface electrode film 2 (so as to cover the central portion of the surface electrode film 2) by screen printing. Is done.
  • step S6 the back electrodes 3a and 3b (electrode paste film) formed in step 4 and the glass film 21 (borosilicate glass paste film which is an insulating film paste) formed in step S5.
  • the back electrodes 3a and 3b and the glass film 21 are simultaneously fired at a peak temperature of 600 ° C. for 30 minutes in a firing furnace in an air (atmosphere) atmosphere.
  • the back electrodes 3a and 3b and the glass film 21 can be fired in an air atmosphere.
  • the material of the surface electrode film 2 (that is, the surface electrodes 2a and 2b) is a copper-nickel film or a copper-nickel-silver film
  • an appropriate range of the Cu-Ni compound ratio or the Cu-Ni-Ag compound ratio is set.
  • the confirmed results are as follows.
  • the material of the surface electrode film 2 is a copper-nickel film in which 70% ⁇ copper content ⁇ 100% and the remaining nickel content, the back electrodes 3a and 3b and the glass film 21 are formed in an air atmosphere.
  • the surface electrode film 2 (copper-nickel film) was significantly oxidized to cause abnormal appearance, and the conductor resistance was so high that it could not be measured due to the influence of the oxide film.
  • the surface electrode film 2 When the material of the surface electrode film 2 is a copper-nickel film in which 0% ⁇ copper content ⁇ 50% and the rest is nickel, the surface electrode film 2 (copper-nickel film) The film strength was lowered, and the problem that the surface electrode film 2 (copper-nickel film) peeled during the production occurred. On the other hand, when the material of the surface electrode film 2 is a copper-nickel film where 50% ⁇ copper content ⁇ 70% and 30% ⁇ nickel content ⁇ 50%, Even when the electrodes 3a and 3b and the glass film 21 were baked, the surface electrode film 2 (copper-nickel film) did not change significantly in appearance or the like.
  • the appropriate range of the Cu—Ni mixing ratio is 50% ⁇ copper content ⁇ 70%, 30% ⁇ nickel content ⁇ 50%. It is. If the material of the surface electrode film 2 is a copper-nickel-silver film in which 69% ⁇ copper content ⁇ 98%, silver content 2%, and the remaining nickel content, air atmosphere When the back electrodes 3a and 3b and the glass film 21 are fired, the surface electrode film 2 (copper-nickel-silver film) is remarkably oxidized to cause abnormal appearance, and the conductor resistance cannot be measured due to the influence of the oxide film. It became high enough.
  • the material of the surface electrode film 2 is a copper-nickel-silver film in which 0% ⁇ copper content ⁇ 49%, silver content 2%, and the rest is nickel content
  • the film strength of the film 20 (copper-nickel-silver film) was lowered, resulting in a problem that the surface electrode film 2 (copper-nickel-silver film) was peeled off during production.
  • the material of the surface electrode film 2 was a copper-nickel-silver film with 49% ⁇ copper content ⁇ 69%, 29% ⁇ nickel content ⁇ 49%, and silver content 2%.
  • the surface electrode film 2 (copper-nickel-silver film) did not change significantly in appearance or the like. Therefore, when the material of the surface electrode film 2 is a copper-nickel-silver film, the appropriate range of the Cu—Ni—Ag mixture ratio is 49% ⁇ copper content ⁇ 69%, 29% ⁇ nickel content The rate is 49% and the silver content is 2%. In addition, the content rate of each said metal is a weight percent (wt%), and is the median value of variation. Note that the baking of the back electrodes 3a and 3b and the glass film 21 is not necessarily limited to an air atmosphere, and may be performed in a nitrogen atmosphere.
  • the back electrodes 3a and 3b and the front electrode film 2 are separately fired.
  • the present invention is not limited to this, and the back electrodes 3a and 3b are made of a copper-nickel paste or copper as in the case of the front electrode film 2. -When formed of nickel-silver paste, the back electrodes 3a, 3b and the front electrode film 2 may be fired simultaneously in a nitrogen atmosphere.
  • step S7 the central portion of the glass film 21 baked in step S6 and the baked in step S3 by a laser method using a fundamental wavelength laser (not shown).
  • a fundamental wavelength laser (not shown)
  • cutting was performed using a YAG laser having a fundamental wavelength (wavelength: 1064 nm).
  • the width d of the gaps 4a and 4b was 17 ⁇ m.
  • step S8 a conductive paste is applied to each of the surface electrodes 2a and 2b by a screen printing method to form a pattern.
  • Upper electrodes 6a and 6b are formed on 2b, respectively.
  • the number of screen printings at this time is one.
  • the upper electrodes 6 a and 6 b are formed so as to overlap the surface electrodes 2 a and 2 b at positions away from the electrostatic protection film 5 so as not to contact the electrostatic protection film 5.
  • the upper electrodes 6a and 6b (film of conductive paste) after screen printing are dried to evaporate the solvent in the conductive paste.
  • the screen mesh used in this screen printing has a mesh size of 400 and an emulsion thickness of 8 ⁇ 2 ⁇ m (product number: st400).
  • a paste obtained by kneading silver powder and an epoxy resin was used as the conductive paste.
  • the present invention is not limited thereto, and a thick film electrode paste obtained by kneading nickel (Ni) powder, copper (Cu) powder, and the like and an epoxy resin may be used as the conductive paste for the upper electrode.
  • an electrostatic protection film 5 is formed by applying an electrostatic protection paste to the gaps 4a and 4b and patterning by screen printing. Form.
  • the electrostatic protection film 5 has a shape having a central portion 5c and both side portions 5a and 5b.
  • the central portion 5c of the electrostatic protection film 5 is provided only in the gap 4a (filled in the gap 4a to close the gap 4a), and is connected to the surface electrodes 2a and 2b.
  • a central portion 5c of the electrostatic protection film 5 is provided in the gap 4b (filled in the gap 4b and closes the gap 4b), and both ends 5a and 5b of the electrostatic protection film 5 are made of glass. It overlaps part of the upper surfaces 21a-2 and 21b-2 (ends on the gap side) of the films 21a and 21b.
  • the electrostatic protective film 5 (electrostatic protective paste film) after screen printing is dried at a temperature of 100 ° C. for 10 minutes to evaporate the solvent in the electrostatic protective paste.
  • the screen mesh used in the screen printing of the electrostatic protection paste is a calendar mesh having a mesh size of 400, a wire diameter of 18 ⁇ m, and an emulsion thickness of 5 ⁇ 2 ⁇ m (part number: cal400 / 18).
  • the paste for electrostatic protection used here uses a silicone resin binder as a basic material, and this silicone resin is kneaded with two types of powders: aluminum powder used as conductive particles and zinc oxide powder used as insulating particles. It is a thing.
  • the compounding ratio of these three components was 100 parts by weight of the silicone resin, 160 parts by weight of the aluminum powder, and 120 parts by weight of the zinc oxide powder.
  • the ESD suppression peak voltage is 500 V or less
  • silicone resin an addition reaction type silicone resin having a volume resistivity of 2 ⁇ 10 15 ⁇ cm and a dielectric constant of 2.7 was used.
  • aluminum powder aluminum powder having an average particle diameter of 3.0 to 3.6 ⁇ m obtained by melting aluminum, spraying at high pressure and solidifying by cooling was used.
  • zinc oxide powder zinc oxide having JIS standard type 1 insulation (volume resistivity of 200 M ⁇ cm or more) was used.
  • zinc oxide powder having a particle size distribution of 0.3 to 1.5 ⁇ m, an average particle size of 0.6 ⁇ m, and a primary aggregation particle size of 1.5 ⁇ m is applied to the zinc oxide powder. did.
  • step S10 the upper electrodes 6a and 6b formed in step S8 and the electrostatic protection film 5 formed in step S9 are simultaneously baked at a temperature of 200 ° C. for 30 minutes.
  • step S11 a silicone resin paste is applied to the electrostatic protection film 5 and the glass films 21a and 21b by a screen printing method and patterned.
  • An intermediate layer 7 that covers the protective film 5 and the like is formed.
  • the number of screen printings at this time is one.
  • a silicone resin paste containing 40 to 50% silica was used as the silicone resin paste.
  • the screen mesh used in this screen printing is a calendar mesh having a mesh size of 400, a wire diameter of 18 ⁇ m, and an emulsion thickness of 5 ⁇ 2 ⁇ m (product number: cal400 / 18).
  • step S12 the intermediate layer 7 formed in step S11 is baked at a temperature of 150 ° C. for 30 minutes.
  • step S13 an epoxy resin paste is applied to the intermediate layer 7, the glass films 21a and 21b, the surface electrodes 2a and 2b, and the upper electrodes 6a and 6b by screen printing.
  • the protective film 8 which covers the intermediate
  • the number of screen printings at this time is 3 to 4 times.
  • the screen mesh used in this screen printing has a mesh size of 250 and an emulsion thickness of 20 ⁇ 2 ⁇ m (product number: St250 / 30).
  • step S14 the protective film 8 formed in step S13 is baked at a temperature of 200 ° C. for 30 minutes.
  • the ceramic substrate 1 is primarily divided along the primary slit formed in the sheet-like ceramic substrate 1.
  • the ceramic substrate 1 has a strip shape in which a plurality of individual regions are arranged in a horizontal line, and end faces 1c and 1d are generated.
  • step S16 the conductive paste is transferred to the end surfaces 1c and 1d of the ceramic substrate 1, a part of the front electrodes 2a and 2b, the back electrodes 3a, It is applied to a part of 3b, and this is baked for 30 minutes at a temperature of 200 ° C. in the next step (step S17), thereby forming end face electrodes 9a and 9b.
  • the end face electrodes 9a and 9b partially overlap the front electrodes 2a and 2b and the back electrodes 3a and 3b, and electrically connect the front electrodes 2a and 2b to the back electrodes 3a and 3b.
  • a paste obtained by kneading silver powder and an epoxy resin was used as the conductive paste.
  • step S18 the ceramic substrate 1 is secondarily divided along the secondary slit formed in the band-shaped ceramic substrate 1. As a result, the ceramic substrate 1 is divided into individual pieces to form individual pieces.
  • step S19 end face electrodes 9a and 9b, back electrodes 3a and 3b, part of front electrodes 2a and 2b, and upper electrode are formed by barrel plating. Electroplating is performed on part of 6a and 6b to form nickel plating films 10a and 10b.
  • step S20 the tin plating films 11a and 11b are electroplated on the nickel plating films 10a and 10b formed in step S19 by a barrel plating method. Form.
  • the electrostatic protection component 100 is completed.
  • the ESD test (contact discharge test) will be described.
  • the ESD test was performed by applying an ESD voltage in accordance with “IEC61000-4-2 8 kV” to the sample (electrostatic protection component).
  • the electrostatic protection component 100 of the present embodiment in which the material of the surface electrodes 2a and 2b is a copper-nickel film or the copper-nickel-silver film and the static electricity of a comparative example in which the material of the surface electrode is a tungsten film. Made for protective parts.
  • the electrostatic protection component 100 of the present embodiment there are two types, one using the surface electrode material A (copper-nickel film) and one using the surface electrode material B (copper-nickel-silver film). An ESD test was conducted on the types.
  • a discharge voltage (ESD voltage) is applied to the electrostatic protection component 100 of the embodiment, the electrostatic protection component 100 of the embodiment using the surface electrode material B, and the electrostatic protection component of a comparative example using tungsten as the surface electrode material. Apply. And the voltage V which generate
  • a DC voltage of 30 V is applied to each sample 200 after the ESD voltage is applied, and a current flowing through the sample 200 at this time (referred to as a leakage current) is measured, and the leakage current is defined to be 10 ⁇ A or less. Also determine if you are satisfied.
  • the ESD test was performed 500 times for each sample 200.
  • the measurement result of the ESD suppression peak voltage and the measurement result of the leak current in the 500 ESD tests are shown in FIGS. 10 and 11, ⁇ indicates the ESD suppression peak voltage measurement result and leakage current measurement result when the sample 200 is the electrostatic protection component 100 using the surface electrode material A (copper-nickel film), and ⁇ indicates the sample.
  • the case of the surface electrode materials A and B (copper-nickel film, copper-nickel-silver film) is better than the case of the tungsten film. It can be seen that the fluctuation of the leakage current due to the number of times of ESD voltage application is very small.
  • the surface electrode material A (copper-nickel film) and the surface electrode material B (copper-nickel-silver film) In comparison with the case of the electrode material A (copper-nickel film), in the case of the surface electrode material B (copper-nickel-silver film), when the ESD voltage is applied about 20 times more, the leakage current It can be seen that a peak has occurred. From the above, it can be judged that the surface electrode materials A and B (copper-nickel film, copper-nickel-silver film) have a higher dielectric strength against ESD voltage application than the tungsten film. it can.
  • the surface electrode material B (copper-nickel-silver film) has a higher dielectric strength against ESD voltage application than the surface electrode material A (copper-nickel film). Therefore, the functions and effects of the present invention are also expressed from the above viewpoint.
  • FIGS. 12 to 16 show other structural examples of the electrostatic protection component according to the embodiment of the present invention.
  • the structure of the electrostatic protection components 300 and 400 shown in FIGS. 12 to 16 is different from the structure of the electrostatic protection component 100 shown in FIGS. 1 to 3 in the structure of the glass films 21a and 21b.
  • a copper-nickel film or a copper-nickel-silver film is used as in the case of the surface electrodes 2a and 2b in the electrostatic protection component 100.
  • the glass films 21a and 21b are wider than the electrostatic protection component 100 shown in FIGS. 1 to 3 (see FIGS. 2 and 3 in particular) (see FIG. 2 to FIG. 3).
  • the vertical direction of FIG. 12 is the width direction of the glass films 21a and 21b).
  • the glass films 21 a and 21 b in the electrostatic protection component 100 are wider than the widths of the surface electrodes 2 a and 2 b but narrower than the width of the electrostatic protection film 5.
  • the side surfaces 2a-4, 2a-5, 2b-4, 2b-5 cover the side surfaces 2a-4, 2a-5 of the surface electrode 2a and the side surfaces 2b-4, 2b of the surface electrode 2b. It has a minimum width that can prevent contact with the electrostatic protection film 5.
  • the glass films 21 a and 21 b in the electrostatic protection component 300 have the widths of the surface electrodes 2 a and 2 b, the width of the electrostatic protection film 5, and the width of the intermediate layer 7. It has a wider width than either.
  • Other structures of the electrostatic protection component 300 are the same as those of the electrostatic protection component 100.
  • the method for manufacturing the electrostatic protection component 300 is the same as the method for manufacturing the electrostatic protection component 100 (see FIGS. 5 to 8).
  • the electrostatic protection component 400 is longer than the electrostatic protection component 100 shown in FIGS. 1 to 3 (see FIG. 1 and FIG. 2 in particular) in the length of the glass films 21 a and 21 b. (See FIGS. 14 and 15 in particular: the horizontal direction in these drawings is the length direction of the glass films 21a and 21b).
  • the glass films 21 a and 21 b in the electrostatic protection component 100 are longer than both the length of the electrostatic protection film 5 and the length of the intermediate layer 7. Yes.
  • the glass films 21 a and 21 b in the electrostatic protection component 400 are longer than the length of the electrostatic protection film 5 but shorter than the length of the intermediate layer 7. It is interposed between both side portions 5a and 5b of the electrostatic protection film 5 and the surface electrodes 2a and 2b (that is, the surfaces 2a-3 and 2b-3 of the end portions 2a-1 and 2b-1 of the surface electrodes 2a and 2b are connected).
  • electrostatic protection component 400 It has a minimum length that can prevent both side portions 5a and 5b of the electrostatic protection film 5 from coming into contact with the surface electrodes 2a and 2b.
  • Other structures of the electrostatic protection component 400 are the same as those of the electrostatic protection component 100. Further, the manufacturing method of the electrostatic protection component 400 is the same as the manufacturing method of the electrostatic protection component 100 (see FIGS. 5 to 8).
  • the electrostatic protection components 100, 300, and 400 according to the present embodiment are formed on the surface 1a of the ceramic substrate (insulating substrate) 1 and face each other through the first gap 4a.
  • It has glass films (insulating films) 21a and 21b facing each other through the second gap 4b, a central portion 5c, and both side portions 5a and 5b, and the central portion 5c is the first gap 4a and the second gap.
  • the material of the surface electrodes 2a and 2b is provided in the structure including the electrostatic protection film 5 provided on the upper surface 21a-2 and 21b-2 of the glass films (insulating films) 21a and 21b.
  • the electrostatic protection film 5 provided on the upper surface 21a-2 and 21b-2 of the glass films (insulating films) 21a and 21b.
  • copper-nickel film or Copper - Nickel - are characterized by a silver film.
  • the electrostatic protection components 100, 300, and 400 of the present embodiment include back electrodes 3a and 3b that are formed on the back surface 1b of the ceramic substrate (insulating substrate) 1 and are electrically connected to the front electrodes 2a and 2b. It is characterized by having.
  • a copper-nickel paste or a copper-nickel-silver paste is screen-printed on the surface 1a of the ceramic substrate (insulating substrate) 1, and this screen
  • the printed copper-nickel paste film or copper-nickel-silver paste film is baked at a peak temperature in the range of 800 ° C. to 950 ° C. (eg, 900 ° C.) in a nitrogen atmosphere to form the surface electrode film 2.
  • the glass paste (insulating film paste) is screen-printed so as to cover the upper surface and both side surfaces of the surface electrode film 2 baked in the first process and the first process, and the screen-printed glass paste (insulating film paste) )
  • the second film and forming the glass film (insulating film) 21 and the surface electrode formed in the first process By firing the second film and forming the glass film (insulating film) 21 and the surface electrode formed in the first process. 2 and the third step of cutting the glass film (insulating film) 21 formed in the second step to form the first gap 4a and the second gap 4b, the central portion 5c and both sides
  • the central portion 5c is provided in the first gap 4a and the second gap 4b, and both side portions 5a and 5b are provided on the upper surfaces 21a-2 and 21b- of the glass films (insulating films) 21a and 21b.
  • a fourth step of forming the electrostatic protection film 5 by screen-printing the electrostatic protection paste so as to be superimposed on layer 2 and baking the screen-printed electrostatic protection paste
  • a copper-nickel paste or a copper-nickel-silver paste is screen-printed on the surface 1a of the ceramic substrate (insulating substrate) 1.
  • the screen-printed copper-nickel paste film or copper-nickel-silver paste film is baked at a peak temperature in the range of 800 ° C. to 950 ° C. (eg, 900 ° C.) in a nitrogen atmosphere to form the surface electrode film 2
  • a second step of forming the back electrodes 3a and 3b by screen printing an electrode paste on the back surface 1b of the ceramic substrate (insulating substrate) 1 and baking the screen-printed electrode paste film.
  • a glass paste (insulating film paste) so as to cover the upper surface and both side surfaces of the surface electrode film 2 baked in the step and the first step
  • a fifth step of forming the electrostatic protection film 5 by screen-printing the electrostatic protection paste so as to be superimposed on -2 and baking the screen-printed electrostatic protection paste film. It is characterized.
  • the second step is performed after the first step, and the second step is a peak when the surface electrode film 2 is baked in the first step in an air atmosphere.
  • the back electrodes 3a and 3b are also fired at a peak temperature lower than the temperature.
  • the material of the surface electrodes 2a, 2b is a copper-nickel film or a copper-nickel-silver film. Withstands an ESD test (contact discharge test), the ESD suppression peak voltage can be maintained at 500 V or less.
  • the copper-nickel film or the copper-nickel-silver film as the surface electrode material has a peak temperature in the range of 800 ° C. to 950 ° C. in a nitrogen atmosphere (for example, a copper-nickel paste film or a copper-nickel-silver paste film).
  • the manufacturing equipment Since it can be formed by firing at a peak temperature of 900 ° C., a high-temperature firing furnace is not necessary, and it is not necessary to strictly control the explosive gas. Therefore, since the manufacturing equipment becomes inexpensive and there is no possibility of causing a life-threatening situation by neglecting the production management, strict production management is not required, so the copper-nickel film or the copper-nickel-silver film is It can be formed at low cost. For this reason, the manufacturing cost of the electrostatic protection components 100, 300, and 400 can be reduced.
  • the three types of copper-nickel film, copper-nickel-silver film and tungsten film can withstand 500 times ESD test and satisfy the regulation of leakage current of 10 ⁇ A or less, but the copper-nickel film and copper-nickel film.
  • the fluctuation of the leakage current due to the number of times of the ESD voltage application is very small as compared with the case of the tungsten film, and the dielectric strength against the ESD voltage application is high.
  • the number of ESD voltage applications where the peak of leak current (large fluctuation) first occurs is larger than in the case of a copper-nickel film, and the dielectric strength against ESD voltage application is high. .
  • the second step is performed after the first step, and in the second step, the peak temperature (for example, 900 ° C.) when the surface electrode film 2 is baked in the first step in an air atmosphere. Since the back electrodes 3a and 3b are also fired at a low peak temperature (600 ° C.), the back electrodes 3a and 3b can be prevented from being altered. That is, if the first step is performed after the second step, the back electrodes 3a and 3b are also formed when the front electrode film 2 is baked at a high peak temperature (for example, 900 ° C.) in the first step. Since it is refired at a high peak temperature, the back electrodes 3a and 3b may be altered.
  • the peak temperature for example, 900 ° C.
  • the material of the surface electrode film 2 (surface electrodes 2a and 2b) to be baked in the first step is a copper-nickel film or a copper-nickel- Since it is a silver film, even if the back electrodes 3a and 3b are baked in an air atmosphere in the second step later, a noticeable change occurs in the appearance of the surface electrode film 2 (front electrodes 2a and 2b) at this time. There is no. Therefore, since the back electrodes 3a and 3b can be fired in an air atmosphere, the back electrodes 3a and 3b can be easily formed.
  • the present invention is not limited to this, and two electrostatic protection components are provided on one ceramic substrate 1.
  • the electrostatic protection component formed with the above-described electrostatic protection film 5 is also within the scope of the present invention.
  • an electrostatic protective film was formed using the paste which knead
  • the structure of the component can also be applied to an electrostatic protection component in which an electrostatic protection film is formed of a material having a component different from the above.
  • the present invention relates to an electrostatic protection component and a manufacturing method thereof, and a surface electrode capable of withstanding an ESD test (contact discharge test) of 500 times or more and maintaining an ESD suppression peak voltage at 500 V or less. It is useful when applied at low cost.

Abstract

The purpose of the present invention is to provide an electrostatic protective component and a method for manufacturing the same whereby it is possible to form at low cost a front electrode capable of withstanding electrostatic discharge tests (contact discharge tests) for 500 times or more and maintaining the electrostatic discharge suppression peak voltage below 500 V. For this purpose, an electrostatic protective component (100) is configured with front electrodes (2a, 2b) which are formed on a ceramic substrate (1) and are opposite each other via a gap (4a), glass films (21a, 21b) which are formed on the front electrodes so as to cover the upper surfaces (2a-3, 2b-3) and both side surfaces (2a-4, 2b-4) of the front electrodes and are opposite each other via a gap (4b) communicating with the gap (4a), and an electrostatic protective film (5) which has a center portion (5c) and two side portions (5a, 5b) such that the center portion (5c) is provided at the gaps (4a, 4b) and both side portions are overlapped onto the upper surfaces (21a-2, 21b-2) of the glass films, and the material of the front electrodes is a copper-nickel film or a copper-nickel-silver film.

Description

静電気保護部品及びその製造方法Static electricity protection component and method for manufacturing the same
 本発明は静電気保護部品及びその製造方法に関するものである。 The present invention relates to an electrostatic protection component and a manufacturing method thereof.
 近年、電子機器を外来ノイズ等による過電圧から保護するために静電気保護部品が用いられている。静電気保護部品はギャップを介して対向する表電極や、前記ギャップに設けられた静電気保護膜などから成るものであり、前記電子機器において前記過電圧が印加されるおそれのあるラインとグランドとの間に設けられ、前記ラインに前記過電圧が印加されたときに前記表電極間(即ち静電気保護膜)で放電することによって前記過電圧から前記電子機器を保護する。 In recent years, electrostatic protection components have been used to protect electronic devices from overvoltage due to external noise and the like. The electrostatic protection component is composed of a surface electrode opposed to the gap, an electrostatic protection film provided in the gap, and the like between the line where the overvoltage may be applied in the electronic device and the ground. The electronic device is protected from the overvoltage by discharging between the surface electrodes (that is, an electrostatic protection film) when the overvoltage is applied to the line.
 かかる静電気保護部品は、その静電気保護機能が確実に発揮されることを保証するため、厳しいESD(Electro-Static Discharge)試験(接触放電試験)に耐えることが求められている。特に、車載用の電子機器などに適用される静電気保護部品に対しては、±8kV接触放電試験(図9参照:詳細後述)を500回以上実施しても、ESD抑制ピーク電圧が500V以下に維持されるという条件を満たすことが求められている。 Such an electrostatic protection component is required to withstand a strict ESD (Electro-Static Discharge) test (contact discharge test) in order to ensure that the electrostatic protection function is reliably exhibited. In particular, for electrostatic protection components applied to in-vehicle electronic devices, etc., even if the ± 8 kV contact discharge test (see FIG. 9: detailed later) is performed 500 times or more, the ESD suppression peak voltage is 500 V or less. It is required to satisfy the condition of being maintained.
 なお、従来の電極材料としては、タングステン膜が知られている(特許文献1,2)。この場合、アルミナ基板の焼成前段階であるグリーンシート上にタングステンペーストをスクリーン印刷し、このスクリーン印刷したタングステンペーストを、水素(H2)-窒素(N2)混合ガス雰囲気の焼成炉において、ピーク温度1500℃程度の高温で3~5時間焼成する。その結果、タングステン膜の電極が形成されたアルミナ基板が出来上がる。 Note that tungsten films are known as conventional electrode materials (Patent Documents 1 and 2). In this case, a tungsten paste is screen-printed on a green sheet, which is a pre-firing stage of an alumina substrate, and this screen-printed tungsten paste is peaked in a firing furnace in a hydrogen (H 2 ) -nitrogen (N 2 ) mixed gas atmosphere. Firing is performed at a high temperature of about 1500 ° C. for 3 to 5 hours. As a result, an alumina substrate having a tungsten film electrode is completed.
特表平1-501465号公報JP-T-1-501465 特開平5-267809号公報Japanese Patent Laid-Open No. 5-267809
 しかしながら、タングステン膜を表電極材料として用いる場合には、タングステンペーストを水素-窒素混合ガス雰囲気においてピーク温度1500℃で焼成するため、高温の焼成炉が必要であり、且つ、爆発性ガスである水素ガスの管理を厳しくする必要がある。従って、製造設備が高価になり、且つ、製造管理を怠ると人命にかかわる事態となる可能性があるため、厳しい製造管理も必要になることから、タングステン膜の形成にはコストがかかる。このため、静電気保護部品の製造コストが高くなってしまう。 However, when a tungsten film is used as a surface electrode material, a tungsten paste is baked in a hydrogen-nitrogen mixed gas atmosphere at a peak temperature of 1500 ° C., so a high-temperature baking furnace is required and hydrogen, which is an explosive gas, is used. It is necessary to tighten gas management. Therefore, the manufacturing equipment becomes expensive, and if the manufacturing management is neglected, there is a possibility that it may be a life-threatening situation, so that strict manufacturing management is also required, so that the formation of the tungsten film is expensive. For this reason, the manufacturing cost of an electrostatic protection component will become high.
 従って本発明は上記の事情に鑑み、500回以上のESD試験(接触放電試験)に耐えてESD抑制ピーク電圧を500V以下に維持することが可能な表電極を、低コストで形成することができる静電気保護部品及びその製造方法を提供することを課題としている。 Therefore, in view of the above circumstances, the present invention can form a surface electrode that can withstand an ESD test (contact discharge test) of 500 times or more and maintain an ESD suppression peak voltage at 500 V or less at a low cost. It is an object to provide an electrostatic protection component and a manufacturing method thereof.
 上記課題を解決するため、本願の発明者等は表電極の材料を鋭意探求した結果、表電極の材料には銅-ニッケル膜と銅-ニッケル-銀膜が適しているという知見を得た。即ち、本願発明は以下のような特徴を有している。 In order to solve the above problems, the inventors of the present application eagerly searched for a material for the surface electrode, and as a result, obtained the knowledge that a copper-nickel film and a copper-nickel-silver film were suitable for the surface electrode material. That is, the present invention has the following features.
 上記課題を解決する第1発明の静電気保護部品は、絶縁基板の表面に形成され、第1のギャップを介して対向している表電極と、
 前記表電極上に形成されて前記表電極の上面及び両側面を覆い、且つ、前記第1のギャップに連なる第2のギャップを介して対向している絶縁膜と、
 中央部と両側部を有し、前記中央部が前記第1のギャップ及び第2のギャップに設けられ、前記両側部が前記絶縁膜の上面に重なっている静電気保護膜と、
を有する静電気保護部品において、
 前記表電極の材料が、銅-ニッケル膜又は銅-ニッケル-銀膜であることを特徴とする。
The electrostatic protection component of the first invention that solves the above-mentioned problem is formed on the surface of the insulating substrate and is opposed to the surface electrode through the first gap,
An insulating film formed on the surface electrode, covering an upper surface and both side surfaces of the surface electrode, and facing each other via a second gap connected to the first gap;
An electrostatic protection film having a central part and both side parts, wherein the central part is provided in the first gap and the second gap, and the both side parts overlap an upper surface of the insulating film;
In electrostatic protection parts having
The material of the front electrode is a copper-nickel film or a copper-nickel-silver film.
 また、第2発明の静電気保護部品は、第1発明の静電気保護部品において、
 前記絶縁基板の裏面に形成され、前記表電極に電気的に接続された裏電極を有することを特徴とする。
The electrostatic protection component of the second invention is the electrostatic protection component of the first invention.
It has a back electrode formed on the back surface of the insulating substrate and electrically connected to the front electrode.
 また、第3発明の静電気保護部品の製造方法は、第1発明の静電気保護部品を製造する方法であって、
 前記絶縁基板の表面に銅-ニッケルペースト又は銅-ニッケル-銀ペーストをスクリーン印刷し、このスクリーン印刷した銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜を窒素雰囲気において800℃~950℃の範囲のピーク温度で焼成することにより、表電極膜を形成する第1の工程と、
 この第1の工程で形成した前記表電極膜の上面及び両側面を覆うように絶縁膜用ペーストをスクリーン印刷し、このスクリーン印刷した絶縁膜用ペーストの膜を焼成することにより、絶縁膜を形成する第2の工程と、
 前記第1の工程で形成した前記表電極膜と、前記第2の工程で形成した前記絶縁膜とを切断して、前記第1のギャップと前記第2のギャップとを形成する第3の工程と、
 前記中央部と前記両側部を有する形状とし、前記中央部を前記第1のギャップ及び前記第2のギャップに設け、前記両側部を前記絶縁膜の上面に重ねるように静電気保護用ペーストをスクリーン印刷し、このスクリーン印刷した静電気保護用ペーストの膜を焼き付けすることにより、前記静電気保護膜を形成する第4の工程と、
を有することを特徴とする。
Moreover, the manufacturing method of the electrostatic protection component of the third invention is a method of manufacturing the electrostatic protection component of the first invention,
The surface of the insulating substrate is screen-printed with a copper-nickel paste or a copper-nickel-silver paste, and the screen-printed copper-nickel paste film or copper-nickel-silver paste film is 800 ° C. to 950 ° C. in a nitrogen atmosphere. A first step of forming a surface electrode film by firing at a peak temperature in the range of
The insulating film paste is screen-printed to cover the upper surface and both side surfaces of the surface electrode film formed in the first step, and the insulating film is formed by baking the screen-printed insulating film paste film A second step of:
A third step of cutting the surface electrode film formed in the first step and the insulating film formed in the second step to form the first gap and the second gap. When,
A shape having the central portion and the both side portions, the central portion is provided in the first gap and the second gap, and an electrostatic protection paste is screen printed so that the both side portions are overlaid on the upper surface of the insulating film. A fourth step of forming the static electricity protection film by baking the screen printed static electricity protection paste film;
It is characterized by having.
 また、第4発明の静電気保護部品の製造方法は、第2発明の静電気保護部品を製造する方法であって、
 前記絶縁基板の表面に銅-ニッケルペースト又は銅-ニッケル-銀ペーストをスクリーン印刷し、このスクリーン印刷した銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜を窒素雰囲気において800℃~950℃の範囲のピーク温度で焼成することにより、表電極膜を形成する第1の工程と、
 前記絶縁基板の裏面に電極ペーストをスクリーン印刷し、このスクリーン印刷した電極ペーストの膜を焼成することにより、前記裏電極を形成する第2の工程と、
 前記第1工程で形成した前記表電極膜の上面及び両側面を覆うように絶縁膜用ペーストをスクリーン印刷し、このスクリーン印刷した絶縁膜用ペーストの膜を焼成することにより、絶縁膜を形成する第3の工程と、
 前記第1の工程で形成した前記表電極膜と、前記第3の工程で形成した前記絶縁膜とを切断して、前記第1のギャップと前記第2のギャップとを形成する第4の工程と、
 前記中央部と前記両側部を有する形状とし、前記中央部を前記第1のギャップ及び前記第2のギャップに設け、前記両側部を前記絶縁膜の上面に重ねるように静電気保護用ペーストをスクリーン印刷し、このスクリーン印刷した静電気保護用ペーストの膜を焼き付けすることにより、前記静電気保護膜を形成する第5の工程と、
を有することを特徴とする。
Moreover, the manufacturing method of the electrostatic protection component of the fourth invention is a method of manufacturing the electrostatic protection component of the second invention,
The surface of the insulating substrate is screen-printed with a copper-nickel paste or a copper-nickel-silver paste, and the screen-printed copper-nickel paste film or copper-nickel-silver paste film is 800 ° C. to 950 ° C. in a nitrogen atmosphere. A first step of forming a surface electrode film by firing at a peak temperature in the range of
A second step of forming the back electrode by screen-printing an electrode paste on the back surface of the insulating substrate and firing the screen-printed electrode paste film;
The insulating film paste is screen-printed so as to cover the upper surface and both side surfaces of the surface electrode film formed in the first step, and the screen-printed insulating film paste film is baked to form an insulating film. A third step;
A fourth step of cutting the surface electrode film formed in the first step and the insulating film formed in the third step to form the first gap and the second gap. When,
A shape having the central portion and the both side portions, the central portion is provided in the first gap and the second gap, and an electrostatic protection paste is screen printed so that the both side portions are overlaid on the upper surface of the insulating film. And baking the screen-printed electrostatic protection paste film to form the electrostatic protection film,
It is characterized by having.
 また、第5発明の静電気保護部品の製造方法は、第4発明の静電気保護部品の製造方法において、
 前記第1の工程の後に前記第2の工程を実施し、
 且つ、前記第2の工程では、前記第1の工程で前記表電極膜を焼成するときのピーク温度よりも低いピーク温度で前記裏電極を焼成すること、
を特徴とする。
Moreover, the manufacturing method of the static electricity protection component of 5th invention is the manufacturing method of the static electricity protection component of 4th invention,
Performing the second step after the first step;
And in the second step, firing the back electrode at a peak temperature lower than the peak temperature when firing the front electrode film in the first step,
It is characterized by.
 また、第6発明の静電気保護部品の製造方法は、第3~第5発明の何れか1つの静電気保護部品の製造方法において、
 前記第1の工程で前記表電極膜を焼成するときのピーク温度は、900℃であることを特徴とする。
According to a sixth aspect of the present invention, there is provided a method for manufacturing an electrostatic protection component according to any one of the third to fifth aspects of the invention.
The peak temperature when firing the surface electrode film in the first step is 900 ° C.
 第1又は第2発明の静電気保護部品、或いは第3,第4,第5又は第6発明の静電気保護部品の製造方法によれば、表電極の材料を銅-ニッケル膜又は銅-ニッケル-銀膜としたため、500回以上のESD試験(接触放電試験)に耐えてESD抑制ピーク電圧を500V以下に維持することができる。しかも、表電極材料の銅-ニッケル膜又は銅-ニッケル-銀膜は、銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜を窒素雰囲気において800℃~950℃の範囲のピーク温度(例えばピーク温度900℃)で焼成して形成することができるため、高温の焼成炉は不要であり、且つ、爆発性ガスの管理を厳しくする必要もない。従って、製造設備が安価になり、且つ、製造管理を怠って人命にかかわる事態となる可能性がないことから、厳しい製造管理も不要になるため、銅-ニッケル膜又は銅-ニッケル-銀膜は低コストで形成することができる。このため、静電気保護部品の製造コストを低減することができる。
 また、銅-ニッケル膜、銅-ニッケル-銀膜及びタングステン膜の3種とも500回のESD試験に耐えてリーク電流10μA以下の規定を満足することはできるが、銅-ニッケル膜及び銅-ニッケル-銀膜の場合は、タングステン膜の場合に比べてESD電圧印加回数によるリーク電流の変動が非常に小さく、ESD電圧印加に対する絶縁性の耐力が高い。更に銅-ニッケル-銀膜の場合は、銅-ニッケル膜の場合に比べて最初にリーク電流のピーク(大きな変動)が発生するESD電圧印加回数が多く、ESD電圧印加に対する絶縁性の耐力が高い。
According to the method for manufacturing the electrostatic protection component of the first or second invention, or the electrostatic protection component of the third, fourth, fifth or sixth invention, the surface electrode is made of a copper-nickel film or copper-nickel-silver. Since it was set as the film | membrane, it can endure an ESD test (contact discharge test) 500 times or more, and can maintain an ESD suppression peak voltage at 500V or less. In addition, the copper-nickel film or the copper-nickel-silver film as the surface electrode material has a peak temperature in the range of 800 ° C. to 950 ° C. in a nitrogen atmosphere (for example, a copper-nickel paste film or a copper-nickel-silver paste film). Since it can be formed by firing at a peak temperature of 900 ° C., a high-temperature firing furnace is not necessary, and it is not necessary to strictly control the explosive gas. Therefore, since the manufacturing equipment becomes inexpensive and there is no possibility of causing a life-threatening situation by neglecting the production management, strict production management is not required, so the copper-nickel film or the copper-nickel-silver film is It can be formed at low cost. For this reason, the manufacturing cost of an electrostatic protection component can be reduced.
In addition, the three types of copper-nickel film, copper-nickel-silver film and tungsten film can withstand 500 times ESD test and satisfy the regulation of leakage current of 10 μA or less, but the copper-nickel film and copper-nickel film. -In the case of the silver film, the fluctuation of the leakage current due to the number of times of the ESD voltage application is very small compared to the case of the tungsten film, and the dielectric strength against ESD voltage application is high. Furthermore, in the case of a copper-nickel-silver film, the number of ESD voltage applications where the peak of leak current (large fluctuation) first occurs is larger than in the case of a copper-nickel film, and the dielectric strength against ESD voltage application is high. .
 また、第5発明の静電気保護部品の製造方法によれば、第1の工程の後に前記第2の工程を実施し、且つ、第2の工程では、第1の工程で表電極膜を焼成するときのピーク温度よりも低いピーク温度で前記裏電極を焼成することを特徴としているため、裏電極が変質するのを防止することができる。即ち、仮に第2の工程の後に第1の工程を実施したとすると、後の第1の工程において表電極膜を高いピーク温度で焼成するとき、先の第2の工程で焼成された裏電極も高いピーク温度で再焼成されるため、裏電極が変質してしまうおそれがある。これに対して、第1の工程の後に前記第2の工程を実施すれば、裏電極が変質するおそれはない。
 しかも、第1の工程の後に前記第2の工程を実施する場合、先の第1の工程で焼成する表電極膜の材料が銅-ニッケル膜又は銅-ニッケル-銀膜であるため、後の第2の工程において裏電極を空気雰囲気で焼成したとしても、このとき、先の第1の工程で焼成した表電極膜の外観に顕著な変化が生じることはない。従って、後の第2の工程において裏電極を空気雰囲気で焼成することも可能であるため、裏電極の形成が容易である。
According to the method for manufacturing an electrostatic protection component of the fifth invention, the second step is performed after the first step, and the surface electrode film is baked in the first step in the second step. Since the back electrode is baked at a peak temperature lower than the peak temperature at that time, the back electrode can be prevented from being altered. That is, if the first step is performed after the second step, the back electrode baked in the previous second step when the surface electrode film is baked at a high peak temperature in the subsequent first step. In this case, the back electrode may be altered because it is refired at a high peak temperature. On the other hand, if the second step is performed after the first step, there is no possibility that the back electrode will be altered.
In addition, when the second step is performed after the first step, the material of the surface electrode film fired in the first step is a copper-nickel film or a copper-nickel-silver film. Even if the back electrode is baked in the air atmosphere in the second step, at this time, the appearance of the surface electrode film baked in the first step does not change significantly. Therefore, since the back electrode can be baked in an air atmosphere in the subsequent second step, it is easy to form the back electrode.
本発明の実施の形態例に係る静電気保護部品の構造を示す断面図(図2のB-B線矢視断面図)である。FIG. 3 is a cross-sectional view (a cross-sectional view taken along line BB in FIG. 2) showing the structure of the electrostatic protection component according to the embodiment of the present invention. 本発明の実施の形態例に係る静電気保護部品の構造を示す上面図(図1のA方向矢視図)である。It is a top view (A direction arrow view of FIG. 1) which shows the structure of the electrostatic protection component which concerns on the example of embodiment of this invention. (a)は図1のC-C線矢視断面図、(b)は図1のD-D線矢視断面図である。(A) is a cross-sectional view taken along the line CC of FIG. 1, and (b) is a cross-sectional view taken along the line DD of FIG. 本発明の実施の形態例に係る静電気保護部品における表電極材料のCu-Niの配合比(wt%)とCu-Ni-Agの配合比(wt%)を示す表である。4 is a table showing a Cu—Ni compounding ratio (wt%) and a Cu—Ni—Ag compounding ratio (wt%) of the surface electrode material in the electrostatic protection component according to the embodiment of the present invention. 本発明の実施の形態例に係る静電気保護部品の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the electrostatic protection component which concerns on the embodiment of this invention. 本発明の実施の形態例に係る静電気保護部品の製造工程の第1説明図である。It is 1st explanatory drawing of the manufacturing process of the electrostatic protection component which concerns on the embodiment of this invention. 本発明の実施の形態例に係る静電気保護部品の製造工程の第2説明図である。It is 2nd explanatory drawing of the manufacturing process of the electrostatic protection component which concerns on the embodiment of this invention. 本発明の実施の形態例に係る静電気保護部品の製造工程の第3説明図である。It is 3rd explanatory drawing of the manufacturing process of the electrostatic protection component which concerns on the embodiment of this invention. ESD試験(接触放電試験)の方法を説明する図である。It is a figure explaining the method of an ESD test (contact discharge test). ESD抑制ピーク電圧の測定結果を示すグラフである。It is a graph which shows the measurement result of ESD suppression peak voltage. リーク電流の測定結果を示すグラフである。It is a graph which shows the measurement result of leakage current. 本発明の実施の形態例に係る静電気保護部品の他の構造例(ガラス膜部分の構造例)を示す断面図(図13のF-F線矢視断面図)である。FIG. 14 is a cross-sectional view (cross-sectional view taken along line FF in FIG. 13) showing another structural example (a structural example of a glass film portion) of the electrostatic protection component according to the embodiment of the present invention. 本発明の実施の形態例に係る静電気保護部品の他の構造例(ガラス膜部分の構造例)を示す上面図(図12のE方向矢視図)である。It is a top view (E direction arrow view of FIG. 12) which shows the other structural example (Structural example of a glass film part) of the electrostatic protection component which concerns on the embodiment of this invention. (a)は図12のG-G線矢視断面図、(b)は図12のH-H線矢視断面図である。(A) is a cross-sectional view taken along line GG in FIG. 12, and (b) is a cross-sectional view taken along line HH in FIG. 本発明の実施の形態例に係る静電気保護部品の他の構造例(ガラス膜部分の構造例)を示す断面図(図16のJ-J線矢視断面図)である。FIG. 17 is a cross-sectional view (a cross-sectional view taken along the line JJ in FIG. 16) showing another structural example (a structural example of the glass film portion) of the electrostatic protection component according to the embodiment of the present invention. 本発明の実施の形態例に係る静電気保護部品の他の構造例(ガラス膜部分の構造例)を示す上面図(図15のI方向矢視図)である。It is a top view (I direction view arrow view of FIG. 15) which shows the other structural example (structure example of a glass film part) of the electrostatic protection component which concerns on the embodiment of this invention.
 以下、本発明の実施の形態例を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 まず、図1~図4に基づき、本発明の実施の形態例に係る静電気保護部品の構造などについて説明する。 First, the structure of the electrostatic protection component according to the embodiment of the present invention will be described with reference to FIGS.
 図1に示す静電気保護部品100は、車載用の電子機器などのプリント基板に表面実装するための部品であり、前記プリント基板に実装されている電子回路(電子部品)を、外来ノイズ等による過電圧から保護するため、前記電子機器において前記過電圧が印加されるおそれのあるラインとグランドとの間に設けられる。 An electrostatic protection component 100 shown in FIG. 1 is a component for surface mounting on a printed circuit board such as an in-vehicle electronic device, and an electronic circuit (electronic component) mounted on the printed circuit board is subjected to overvoltage due to external noise or the like. In order to protect the electronic device, the electronic device is provided between a line to which the overvoltage may be applied and a ground.
 図1~図3に示すように、絶縁基板であるセラミックス基板1の表面1aには、表電極2a,2bが形成されている。そして、この表電極2a,2bの材料には、銅(Cu)-ニッケル(Ni)膜又は銅(Cu)-ニッケル(Ni)-銀(Ag)膜が用いられている。この銅-ニッケル膜は、銅とニッケルとガラスを含む複合膜であり、銅-ニッケル-銀膜は、銅とニッケルと銀とガラスを含む複合膜である。表電極2a,2b(銅-ニッケル膜又は銅-ニッケル-銀膜)の膜厚の最適値は、17±2μmである。 As shown in FIGS. 1 to 3, surface electrodes 2a and 2b are formed on a surface 1a of a ceramic substrate 1 which is an insulating substrate. The surface electrodes 2a and 2b are made of a copper (Cu) -nickel (Ni) film or a copper (Cu) -nickel (Ni) -silver (Ag) film. The copper-nickel film is a composite film containing copper, nickel, and glass, and the copper-nickel-silver film is a composite film containing copper, nickel, silver, and glass. The optimum value of the film thickness of the surface electrodes 2a and 2b (copper-nickel film or copper-nickel-silver film) is 17 ± 2 μm.
 表電極2a,2bの材料(銅-ニッケル膜又は銅-ニッケル-銀膜)としては、例えば図4に示す表電極材料A,Bを用いることができる。表電極材料Aは銅とニッケルとガラスを含む複合膜の材料であり、表電極材料Bは銅とニッケルと銀とガラスを含む複合膜の材料である。そして、表電極材料AのCu-Ni配合比は、Cuが62.5wt%、Niが37.5wt%である。表電極材料BのCu-Ni-Ag配合比は、Cuが68.2wt%、Niが29.8wt%、Agが2wt%である。 As the material of the surface electrodes 2a and 2b (copper-nickel film or copper-nickel-silver film), for example, surface electrode materials A and B shown in FIG. 4 can be used. The surface electrode material A is a material of a composite film containing copper, nickel, and glass, and the surface electrode material B is a material of a composite film containing copper, nickel, silver, and glass. The Cu—Ni compounding ratio of the surface electrode material A is 62.5 wt% for Cu and 37.5 wt% for Ni. The Cu—Ni—Ag mixture ratio of the surface electrode material B is 68.2 wt% for Cu, 29.8 wt% for Ni, and 2 wt% for Ag.
 静電気保護部品100の構造について更に説明すると、図1~図3に示すように、セラミックス基板1の裏面1bには、裏電極3a,3bが形成されている。表電極2a,2bは、基板表面1aの長さ方向全体に亘って形成される一方、裏電極3a,3bは、基板裏面1bの両端部分に形成されている。 The structure of the electrostatic protection component 100 will be further described. As shown in FIGS. 1 to 3, back electrodes 3a and 3b are formed on the back surface 1b of the ceramic substrate 1. The front electrodes 2a and 2b are formed over the entire length of the substrate surface 1a, while the back electrodes 3a and 3b are formed at both ends of the substrate back surface 1b.
 基板表面1aの中央部において、表電極2a,2bの間には、ギャップ(狭小部)4a(第1のギャップ)が形成されている。即ち、表電極2a,2bは、ギャップ4aを介して対向している。ギャップ4aはレーザ法等の切断手段により表電極膜を切断加工して形成されており、幅dが17μm程度のものである。 In the central portion of the substrate surface 1a, a gap (narrow portion) 4a (first gap) is formed between the surface electrodes 2a and 2b. That is, the surface electrodes 2a and 2b are opposed to each other with the gap 4a interposed therebetween. The gap 4a is formed by cutting the surface electrode film by a cutting means such as a laser method, and has a width d of about 17 μm.
 表電極2a上(ギャップ近傍)には絶縁膜であるガラス膜21aが形成され、表電極2b上(ギャップ近傍)には絶縁膜であるガラス膜21bが形成されている。ガラス膜21a,21bの間には、ギャップ(狭小部)4b(第2のギャップ)が形成されている。即ち、ガラス膜21a,21bは、ギャップ4bを介して対向している。ギャップ4bは、ギャップ4aと同様にレーザ法等の切断手段でガラス膜を切断加工して形成された幅dが17μm程度のものであり、ギャップ4aに連なっている。即ち、下層のギャップ4aと上層のギャップ4bは重なり合っている。 A glass film 21a which is an insulating film is formed on the front electrode 2a (near the gap), and a glass film 21b which is an insulating film is formed on the front electrode 2b (near the gap). A gap (narrow portion) 4b (second gap) is formed between the glass films 21a and 21b. That is, the glass films 21a and 21b are opposed to each other through the gap 4b. Like the gap 4a, the gap 4b has a width d of about 17 μm formed by cutting a glass film with a cutting means such as a laser method, and is continuous with the gap 4a. That is, the lower layer gap 4a and the upper layer gap 4b overlap.
 表電極2aのギャップ側の端部2a-1は、その上面2a-3と両側面2a-4,2a-5が(即ちギャップ側の端面2a-6以外の部分が)、ガラス膜21aによって覆われている(特に図3(a)を参照)。同様に、表電極2bのギャップ側の端部2b-1は、その上面2b-3と両側面2b-4,2b-5が(即ちギャップ側の端面2b-6以外の部分が)、ガラス膜21bによって覆われている(特に図3(b)を参照)。 The end 2a-1 on the gap side of the surface electrode 2a has its upper surface 2a-3 and both side surfaces 2a-4 and 2a-5 (that is, the portion other than the end surface 2a-6 on the gap side) covered with the glass film 21a. (See particularly FIG. 3 (a)). Similarly, the gap-side end 2b-1 of the surface electrode 2b has an upper surface 2b-3 and both side surfaces 2b-4 and 2b-5 (that is, a portion other than the gap-side end surface 2b-6) and a glass film. 21b (see in particular FIG. 3 (b)).
 ギャップ4a,4bには静電気保護膜5が形成され、この静電気保護膜5と表電極2a,2bとが接続されている。しかも、表電極2aの端部2a-1はギャップ側の端面2a-6以外の部分がガラス膜21aに覆われている。このため、静電気保護膜5は、表電極2aに対しては、その端面2a-6のみに接し、前記端面2a-6以外の部分には接していない。同様に、表電極2bの端部2b-1はギャップ側の端面2b-6以外の部分がガラス膜21bに覆われている。このため、静電気保護膜5は、表電極2bに対しては、その端面2b-6のみに接し、前記端面2b-6以外の部分には接していない。 An electrostatic protection film 5 is formed in the gaps 4a and 4b, and the electrostatic protection film 5 and the surface electrodes 2a and 2b are connected. In addition, the end portion 2a-1 of the front electrode 2a is covered with the glass film 21a except for the end surface 2a-6 on the gap side. For this reason, the electrostatic protection film 5 is in contact with only the end face 2a-6 of the surface electrode 2a, and is not in contact with any part other than the end face 2a-6. Similarly, the end portion 2b-1 of the surface electrode 2b is covered with the glass film 21b except for the end surface 2b-6 on the gap side. For this reason, the electrostatic protection film 5 is in contact with only the end surface 2b-6 of the surface electrode 2b, and is not in contact with the portion other than the end surface 2b-6.
 詳述すると、静電気保護膜5は縦断面形状(図1参照)がT字状を成しており、中央部5cと両側部5a,5bとを有している。静電気保護膜5の中央部5cは、前述の如くギャップ4a,4bに設けられており(即ちギャップ4a,4bに充填されてギャップ4a,4bを塞いでおり)、静電気保護膜5の両側部5a,5bは、ガラス膜21a,21bのギャップ側の端部21a-1,21b-1の上面21a-2,21b-2にそれぞれ重なっている(即ちガラス膜21a,21bの内側の端部21a-1,21b-1を覆っている)。 More specifically, the electrostatic protection film 5 has a T-shaped longitudinal cross-sectional shape (see FIG. 1), and has a central portion 5c and both side portions 5a and 5b. As described above, the central portion 5c of the electrostatic protection film 5 is provided in the gaps 4a and 4b (that is, the gaps 4a and 4b are filled to close the gaps 4a and 4b). , 5b respectively overlap the upper surfaces 21a-2, 21b-2 of the end portions 21a-1, 21b-1 on the gap side of the glass films 21a, 21b (that is, end portions 21a- inside the glass films 21a, 21b). 1 and 21b-1).
 ESD電圧を印加後の絶縁抵抗の低下を極力少なくするには、静電気保護膜5を表電極2a,2bの間のギャップ4aのみに設けることが望ましい。このため、図1等に示すように表電極2a,2bの上にガラス膜21a,21bを形成した後、ガラス膜21a,21bの上からスクリーン印刷法によって静電気保護膜5を形成する方法を実施した。その結果、ガラス膜21a,21bに対しては、ギャップ4bに静電気保護膜5(中央部5c)が設けられるだけでなく、静電気保護膜5の両端部5a,5bがガラス膜21a,21bの上面に重なるが、表電極2a,2bに対しては、静電気保護膜5の両端部5a,5bが上面2a-3,2b-3に重なるのをガラス膜21a,21bによって防ぐことができるため、ギャップ4aにだけ静電気保護膜5(中央部5c)を設けることができた。外来ノイズ等による過電圧が印加されたときには、表電極2a,2bの端面2a-6,2b-6間(静電気保護膜5の中央部5c)で放電することにより、電子機器(電子部品)を保護する。 In order to minimize the decrease in insulation resistance after applying the ESD voltage, it is desirable to provide the electrostatic protection film 5 only in the gap 4a between the surface electrodes 2a and 2b. Therefore, as shown in FIG. 1 and the like, after forming the glass films 21a and 21b on the surface electrodes 2a and 2b, the method of forming the electrostatic protection film 5 by screen printing from the glass films 21a and 21b is performed. did. As a result, for the glass films 21a and 21b, not only the electrostatic protection film 5 (center part 5c) is provided in the gap 4b, but both ends 5a and 5b of the electrostatic protection film 5 are the upper surfaces of the glass films 21a and 21b. However, for the surface electrodes 2a and 2b, the glass films 21a and 21b can prevent the both end portions 5a and 5b of the electrostatic protection film 5 from overlapping the upper surfaces 2a-3 and 2b-3. The electrostatic protection film 5 (center part 5c) could be provided only on 4a. When an overvoltage due to external noise or the like is applied, the electronic device (electronic component) is protected by discharging between the end surfaces 2a-6 and 2b-6 of the surface electrodes 2a and 2b (central portion 5c of the electrostatic protection film 5). To do.
 静電気保護膜5は、バインダであるシリコーン樹脂に導電性粒子と絶縁性粒子の2種を混合してなる材料を用いて形成したものである。導電性粒子及び絶縁性粒子は、導電性粒子の表面に不動態層を設けることや、絶縁性粒子の表面に他の物質をドープすることなどの特殊な処理を行なっていないものである。 The electrostatic protection film 5 is formed using a material obtained by mixing two kinds of conductive particles and insulating particles with a silicone resin as a binder. The conductive particles and the insulating particles are not subjected to a special treatment such as providing a passive layer on the surface of the conductive particles or doping other materials on the surface of the insulating particles.
 また、導電性粒子は、導電性金属粒子のアルミニウム(Al)粉であり、絶縁性粒子は、酸化亜鉛(ZnO)粉である。酸化亜鉛粉には、JIS規格の第1種の絶縁性を有する酸化亜鉛、即ち体積抵抗率200MΩcm以上の酸化亜鉛を用いている。更に、シリコーン樹脂とアルミニウム粉と酸化亜鉛の3成分の配合比は、前記シリコーン樹脂が100重量部であるのに対して、前記アルミニウム粉が160重量部、前記酸化亜鉛粉が120重量部である。この静電気保護用ペーストの配合比は、ESD抑制ピーク電圧が500V以下で、ESD耐量が規格値のリーク電流10μA以下(絶縁抵抗R=3MΩ以上)という目標値を満足するものである。なお、ESD抑制ピーク電圧とは、放電開始時に生じる電圧である。 The conductive particles are aluminum (Al) powder of conductive metal particles, and the insulating particles are zinc oxide (ZnO) powder. As the zinc oxide powder, JIS standard type 1 zinc oxide, that is, zinc oxide having a volume resistivity of 200 MΩcm or more is used. Furthermore, the mixing ratio of the three components of silicone resin, aluminum powder, and zinc oxide is such that the silicone resin is 100 parts by weight, whereas the aluminum powder is 160 parts by weight, and the zinc oxide powder is 120 parts by weight. . The blending ratio of the electrostatic protection paste satisfies the target value of an ESD suppression peak voltage of 500 V or less and an ESD tolerance of 10 μA or less (insulation resistance R = 3 MΩ or more) with a standard value. The ESD suppression peak voltage is a voltage generated at the start of discharge.
 表電極2a,2b上には、厚膜の上部電極6a,6bがそれぞれ形成されている。表電極2a,2bも厚膜であるため、上部電極6a,6bによって表電極2a,2bの電流容量を向上させている。但し、静電気保護膜5には接しないように(静電気保護膜5から離れた位置に)、上部電極6a,6bを形成している。その理由は、上部電極6a,6bが静電気保護膜5に接していると、外来ノイズ等による過電圧が静電気保護部品100に印加されたとき、表電極2a,2b間ではなく、上部電極6a,6b間や上部電極6a,6bと表電極2a,2bとの間で放電が開始されるおそれがあり、その場合には静電気保護部品本来の静電気保護機能を発揮することができなくなってしまうからである。なお、絶縁膜であるガラス膜21a,21bは、上部電極6a,6bの下層には形成されていない。 Thick film upper electrodes 6a and 6b are formed on the surface electrodes 2a and 2b, respectively. Since the front electrodes 2a and 2b are also thick, the upper electrodes 6a and 6b improve the current capacity of the front electrodes 2a and 2b. However, the upper electrodes 6a and 6b are formed so as not to contact the electrostatic protection film 5 (at a position away from the electrostatic protection film 5). The reason is that when the upper electrodes 6a and 6b are in contact with the electrostatic protection film 5, when an overvoltage due to external noise or the like is applied to the electrostatic protection component 100, not between the surface electrodes 2a and 2b but the upper electrodes 6a and 6b. This is because the discharge may start between the upper electrodes 6a and 6b and the surface electrodes 2a and 2b, and in that case, the original electrostatic protection function of the electrostatic protection component cannot be exhibited. . The glass films 21a and 21b, which are insulating films, are not formed below the upper electrodes 6a and 6b.
 静電気保護膜5は中間層7に覆われており、中間層7は保護膜8に覆われている。保護膜8は、両端部8a,8bが、上部電極6a,6bの一部(ギャップ側の部分)にそれぞれ重なっている。そして、ガラス膜21a,21bは、静電気保護膜5の両側部5a,5bと表電極2a,2bの間に介在するだけでなく、中間層7と表電極2a,2bとの間にも介在している。 The electrostatic protection film 5 is covered with an intermediate layer 7, and the intermediate layer 7 is covered with a protective film 8. The protective film 8 has both end portions 8a and 8b overlapping with parts of the upper electrodes 6a and 6b (portions on the gap side). The glass films 21a and 21b are not only interposed between the side portions 5a and 5b of the electrostatic protection film 5 and the surface electrodes 2a and 2b, but are also interposed between the intermediate layer 7 and the surface electrodes 2a and 2b. ing.
 保護膜8は耐湿性などに優れており、静電気保護膜5などを湿度などの外部環境等から保護するために設けられている。しかし、保護膜8は耐熱性が不十分であるため、放電時に発熱する静電気保護膜5を直接保護膜8で覆うことはせず、耐熱性に優れている中間層7で静電気保護膜5を覆い、この中間層7を保護膜8で覆う構造としている。 The protective film 8 is excellent in moisture resistance and the like, and is provided to protect the electrostatic protective film 5 and the like from an external environment such as humidity. However, since the protective film 8 has insufficient heat resistance, the electrostatic protective film 5 that generates heat during discharge is not directly covered with the protective film 8, and the intermediate protective layer 7 is excellent in heat resistance. The intermediate layer 7 is covered and covered with a protective film 8.
 中間層7は、表電極2a,2b間で異常放電が発生するのを回避する機能も有している。また、中間層7はシリコーン樹脂などの樹脂材料にシリカなどの無機フィラーを適量加えた弾力性のあるもの(エラストマー)であり、表電極2a,2b間のギャップ4a(静電気保護膜5)で放電したときの内部エネルギ(内圧)の上昇を抑制して(前記内部エネルギを吸収して)、前記内部エネルギの上昇による衝撃で静電気保護部品100が破損するのを防止する機能(緩衝機能)も有している。 The intermediate layer 7 also has a function of avoiding the occurrence of abnormal discharge between the surface electrodes 2a and 2b. The intermediate layer 7 is an elastic material (elastomer) in which an appropriate amount of an inorganic filler such as silica is added to a resin material such as a silicone resin, and is discharged at the gap 4a (electrostatic protection film 5) between the surface electrodes 2a and 2b. It also has a function (buffer function) that suppresses an increase in internal energy (internal pressure) (absorbs the internal energy) and prevents damage to the electrostatic protection component 100 due to an impact due to the increase in internal energy. is doing.
 セラミックス基板1の両端面1c,1dには端面電極9a,9bがそれぞれ形成されており、これらの端面電極9a,9bによって表電極2a,2bと裏電極3a,3bとをそれぞれ電気的に接続している。また、端面電極9a,9bの端部9a-1,9a-2,9b-1,9b-2が、表電極2a,2bの端部2a-2,2b-2と、裏電極3a,3bの端部3a-1,3b-1とにそれぞれ重なっているため、端面電極9a,9bと表電極2a,2b及び裏電極3a,3bとの接続が、より確実になっている。 End face electrodes 9a and 9b are respectively formed on both end faces 1c and 1d of the ceramic substrate 1. The end face electrodes 9a and 9b electrically connect the front electrodes 2a and 2b and the back electrodes 3a and 3b, respectively. ing. Further, the end portions 9a-1, 9a-2, 9b-1, 9b-2 of the end face electrodes 9a, 9b are connected to the end portions 2a-2, 2b-2 of the front electrodes 2a, 2b and the back electrodes 3a, 3b. Since they overlap with the end portions 3a-1 and 3b-1, respectively, the connection between the end face electrodes 9a and 9b and the front electrodes 2a and 2b and the back electrodes 3a and 3b is more reliable.
 更に、端面電極9a,9bなどに対して、端子電極としての信頼性を向上させるため、ニッケル(Ni)のめっき膜10a,10bと、スズ(Sn)のめっき膜11a,11bとが順に形成されている。ニッケルめっき膜10a,10bは端面電極9a,9bと、裏電極3a,3bと、表電極2a,2bの一部と、上部電極6a,6bの一部とをそれぞれ覆っており、スズめっき膜11a,11bはニッケルめっき膜10a,10bをそれぞれ覆っている。 Furthermore, nickel (Ni) plating films 10a and 10b and tin (Sn) plating films 11a and 11b are formed in this order in order to improve the reliability of the terminal electrodes with respect to the end face electrodes 9a and 9b. ing. The nickel plating films 10a and 10b cover the end face electrodes 9a and 9b, the back electrodes 3a and 3b, the front electrodes 2a and 2b, and the upper electrodes 6a and 6b, respectively, and the tin plating film 11a. 11b cover the nickel plating films 10a and 10b, respectively.
 次に、図5~図8に基づき、本実施の形態例の静電気保護部品100の製造方法について説明する。図5のフローチャートの各製造工程(ステップ)にはS1~S20の符号を付した。また、図6の(a)~(d)、図7の(a)~(d)及び図8(a)~(d)には、各製造工程における静電気保護部品100の製造状態を順に示している。なお、本実施の形態例では1608タイプの静電気保護部品100(図2に示す幅Wが0.8mm、長さLが1.6mmのもの)を製造した。 Next, a method for manufacturing the electrostatic protection component 100 of the present embodiment will be described with reference to FIGS. Each manufacturing process (step) in the flowchart of FIG. 5 is denoted by reference numerals S1 to S20. 6 (a) to (d), FIG. 7 (a) to (d), and FIGS. 8 (a) to (d) sequentially show the manufacturing state of the electrostatic protection component 100 in each manufacturing process. ing. In this embodiment, a 1608 type electrostatic protection component 100 (having a width W of 0.8 mm and a length L of 1.6 mm shown in FIG. 2) was manufactured.
 最初の工程(ステップS1)では、図6(a)に示すように、セラミックス基板1を、静電気保護部品100の製造工程(図示省略)に受け入れる。ここではセラミックス基板1として、アルミナ基板を用いた。このアルミナ基板は、96%アルミナをセラミックス材料として用いることにより製造したものである。 In the first process (step S1), as shown in FIG. 6A, the ceramic substrate 1 is received in a manufacturing process (not shown) of the electrostatic protection component 100. Here, an alumina substrate was used as the ceramic substrate 1. This alumina substrate is manufactured by using 96% alumina as a ceramic material.
 なお、図6(a)には1個片の静電気保護部品100に対応する1つの個片領域のセラミックス基板1のみを図示しているが、ステップS16で一次分割される前の実際のセラミックス基板1は、一次スリットと二次スリットが縦横に複数本形成されて、個片領域が縦横に複数個連なったシート状のものである。 6A shows only one ceramic substrate 1 in one piece region corresponding to one piece of electrostatic protection component 100, but the actual ceramic substrate before being primarily divided in step S16. Reference numeral 1 denotes a sheet shape in which a plurality of primary slits and secondary slits are formed vertically and horizontally, and a plurality of individual regions are connected vertically and horizontally.
 そして、次の工程(ステップS2)では、図6(b)に示すように、セラミックス基板1の表面1aに表電極膜2(後の工程で表電極2a,2bを形成するための膜)を形成する。表電極膜2は、スクリーン印刷法により、銅-ニッケルペースト又は銅-ニッケル-銀ペーストを基板表面1aに塗布してパターン化することにより形成される。銅-ニッケルペーストは、銅粉とニッケル粉とビヒクルとガラス粉と溶剤とを混練して成るものであり、銅-ニッケル-銀ペーストは銅粉とニッケル粉と銀粉とビヒクルとガラス粉と溶剤とを混練して成るものである。 In the next step (step S2), as shown in FIG. 6B, the surface electrode film 2 (film for forming the surface electrodes 2a and 2b in the subsequent step) is formed on the surface 1a of the ceramic substrate 1. Form. The surface electrode film 2 is formed by applying and patterning a copper-nickel paste or a copper-nickel-silver paste on the substrate surface 1a by screen printing. Copper-nickel paste is made by kneading copper powder, nickel powder, vehicle, glass powder and solvent. Copper-nickel-silver paste is made of copper powder, nickel powder, silver powder, vehicle, glass powder and solvent. Are kneaded.
 例えば、表電極2a,2bの材料として前述の表電極材料A(図4参照)を用いる場合には、Cuが62.5wt%、Niが37.5wt%のCu-Ni配合比である銅-ニッケルペーストを用いる。具体的には、62.5wt%の銅粉と、37.5wt%のニッケル粉と、有機材料のビヒクルと、溶剤と、ガラス粉とを混練して成る銅-ニッケルペーストを用いる。表電極2a,2bの材料として前述の表電極材料B(図4参照)を用いる場合には、Cuが68.2wt%、Niが29.8wt%、Agが2wt%のCu-Ni-Ag配合比である銅-ニッケル-銀ペーストを用いる。具体的には、68.2wt%の銅粉と、29.8wt%のニッケル粉と、2wt%の銀粉と、有機材料のビヒクルと、溶剤と、ガラス粉とを混練して成る銅-ニッケル-銀ペーストを用いる。
 また、表電極2a,2bの材料として用いる銅-ニッケルペーストと銅-ニッケル-銀ペーストは何れも、金属粉100重量部(即ち銅-ニッケルペーストの場合には銅粉とニッケル粉を合わせた重量部が100重量部、銅-ニッケル-銀ペーストの場合には銅粉とニッケル粉と銀粉を合わせた重量部が100重量部)に対して、ビヒクル0.35~0.5重量部、ガラス粉3.5~15重量部の配合比とする。その最適値はビヒクル0.4重量部、ガラス粉7重量部である。
For example, when the above-mentioned surface electrode material A (see FIG. 4) is used as the material of the surface electrodes 2a and 2b, the copper—Ni-containing ratio of Cu—Ni is 62.5 wt% and Ni is 37.5 wt%. Nickel paste is used. Specifically, a copper-nickel paste obtained by kneading 62.5 wt% copper powder, 37.5 wt% nickel powder, an organic material vehicle, a solvent, and glass powder is used. When the above-mentioned surface electrode material B (see FIG. 4) is used as the material of the surface electrodes 2a and 2b, a Cu—Ni—Ag compound containing 68.2 wt% Cu, 29.8 wt% Ni, and 2 wt% Ag is used. A ratio copper-nickel-silver paste is used. Specifically, copper-nickel-, which is obtained by kneading 68.2 wt% copper powder, 29.8 wt% nickel powder, 2 wt% silver powder, an organic material vehicle, a solvent, and glass powder. Use silver paste.
The copper-nickel paste and the copper-nickel-silver paste used as the materials for the surface electrodes 2a and 2b are both 100 parts by weight of metal powder (that is, in the case of copper-nickel paste, the combined weight of copper powder and nickel powder). Parts are 100 parts by weight, and in the case of copper-nickel-silver paste, the weight of the copper powder, nickel powder and silver powder is 100 parts by weight). The blending ratio is 3.5 to 15 parts by weight. The optimum values are 0.4 parts by weight of vehicle and 7 parts by weight of glass powder.
 スクリーン印刷した表電極膜2(銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜)を乾燥させて、銅-ニッケルペースト中の溶剤又は銅-ニッケル-銀ペースト中の溶剤を蒸発させる。 The screen printed surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) is dried to evaporate the solvent in the copper-nickel paste or the solvent in the copper-nickel-silver paste.
 次の工程(ステップS3)では、ステップS2で形成した表電極膜2(銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜)を、窒素(N2)雰囲気の焼成炉において、ピーク温度900℃で1時間焼成する。なお、このときの表電極膜2(銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜)の焼成温度としては、必ずしもピーク温度900℃に限定するものではなく、ピーク温度800℃~950℃の範囲であればよい。 In the next step (step S3), the surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) formed in step S2 is subjected to a peak temperature in a firing furnace in a nitrogen (N 2 ) atmosphere. Bake at 900 ° C. for 1 hour. The firing temperature of the surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) at this time is not necessarily limited to the peak temperature of 900 ° C., and the peak temperature is 800 ° C. to 950 ° C. It may be in the range of ° C.
 表電極膜2(銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜)を焼成したとき、銅-ニッケルペースト中のビヒクル又は銅-ニッケル-銀ペースト中のビヒクルはバーンアウトし、銅-ニッケルペースト中のガラス粉又は銅-ニッケル-銀ペースト中のガラス粉は溶融する。焼成炉の窒素雰囲気には僅かに酸素(O2)も含まれており、この酸素によって銅-ニッケルペースト中のビヒクル又は銅-ニッケル-銀ペースト中のビヒクルがバーンアウトする。換言すれば、上記の銅-ニッケルペースト又は銅-ニッケル-銀ペーストには、低酸素雰囲気でもバーンアウト可能なビヒクルが用いられる。このようなビヒクルは一般に知られているものである。焼成された表電極膜2(銅-ニッケル膜又は銅-ニッケル-銀膜)は、上記の如く乾燥時に銅-ニッケルペースト中の溶剤又は銅-ニッケル-銀ペースト中の溶剤が蒸発し且つ焼成時にビヒクルがバーンアウトするため、銅とニッケルとガラスの複合膜(表電極材料Aの場合)、或いは、銅とニッケルと銀とガラスの複合膜(表電極材料Bの場合)となる。また、焼成された表電極膜2(銅-ニッケル膜又は銅-ニッケル-銀膜)の膜厚の最適値は、前述のとおり17±2μmである。
 なお、このときに800℃よりも低いピーク温度で表電極膜2(銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜)を焼成した場合には、銅-ニッケルペースト中のガラス粉又は銅-ニッケル-銀ペースト中のガラス粉が溶けきらずにポーラスな膜になってしまうため、焼成後の表電極膜2(銅-ニッケル膜又は銅-ニッケル-銀膜)の膜強度が低くなってしまう。
 一方、950℃よりも高いピーク温度で表電極膜2(銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜)を焼成した場合には、溶けた銅-ニッケルペースト中のガラス又は銅-ニッケル-銀ペースト中のガラスが広がって、印刷パターンににじみが生じるため、焼成後の表電極膜2(銅-ニッケル膜又は銅-ニッケル-銀膜)の膜厚が、所定の膜厚よりも薄くなってしまう。
 従って、表電極膜2(銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜)を焼成するときの適切なピーク温度は、上記の如く、800℃~950℃の範囲である。
When the surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) is fired, the vehicle in the copper-nickel paste or the vehicle in the copper-nickel-silver paste burns out, and the copper- The glass powder in the nickel paste or the glass powder in the copper-nickel-silver paste melts. The nitrogen atmosphere of the firing furnace contains a slight amount of oxygen (O 2 ), and the oxygen burns out the vehicle in the copper-nickel paste or the vehicle in the copper-nickel-silver paste. In other words, a vehicle that can be burned out in a low oxygen atmosphere is used for the copper-nickel paste or the copper-nickel-silver paste. Such vehicles are generally known. The surface electrode film 2 (copper-nickel film or copper-nickel-silver film) that has been fired evaporates the solvent in the copper-nickel paste or the solvent in the copper-nickel-silver paste at the time of drying as described above. Since the vehicle burns out, it becomes a composite film of copper, nickel and glass (in the case of the surface electrode material A) or a composite film of copper, nickel, silver and glass (in the case of the surface electrode material B). The optimum value of the thickness of the fired surface electrode film 2 (copper-nickel film or copper-nickel-silver film) is 17 ± 2 μm as described above.
At this time, when the surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) is fired at a peak temperature lower than 800 ° C., glass powder in the copper-nickel paste or Since the glass powder in the copper-nickel-silver paste is not completely melted and becomes a porous film, the film strength of the surface electrode film 2 (copper-nickel film or copper-nickel-silver film) after firing is lowered. End up.
On the other hand, when the surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) is fired at a peak temperature higher than 950 ° C., glass or copper in the melted copper-nickel paste Since the glass in the nickel-silver paste spreads and the printed pattern is blurred, the thickness of the surface electrode film 2 (copper-nickel film or copper-nickel-silver film) after firing is larger than a predetermined film thickness. It will be thinner.
Accordingly, an appropriate peak temperature when firing the surface electrode film 2 (copper-nickel paste film or copper-nickel-silver paste film) is in the range of 800 ° C. to 950 ° C. as described above.
 次の工程(ステップS4)では、図6(c)に示すように、セラミックス基板1の裏面1bに裏電極3a,3bを形成する。裏電極3a,3bは、スクリーン印刷法により、電極ペーストを基板裏面1bに塗布してパターン化することにより形成される。ここでは電極ペーストとして、銀(Ag)ペーストを用いた。スクリーン印刷した裏電極3a,3b(電極ペーストの膜)を乾燥させて、電極ペースト中の溶剤を蒸発させる。なお、裏電極3a,3bを形成するための電極ペーストとしては、銀・パラジウム(Ag・Pd)ペーストを用いることもできる。 In the next step (step S4), the back electrodes 3a and 3b are formed on the back surface 1b of the ceramic substrate 1 as shown in FIG. The back electrodes 3a and 3b are formed by applying and patterning an electrode paste on the substrate back surface 1b by screen printing. Here, a silver (Ag) paste was used as the electrode paste. The screen printed back electrodes 3a and 3b (electrode paste film) are dried to evaporate the solvent in the electrode paste. As an electrode paste for forming the back electrodes 3a and 3b, a silver / palladium (Ag / Pd) paste may be used.
 次の工程(ステップS5)では、図6(d)に示すように、表電極膜2の中央部にガラス膜21(後の工程でガラス膜21a,21bを形成するための膜)を形成する。ガラス膜21は、スクリーン印刷法により、絶縁膜用ペーストである硼珪酸系ガラスペーストを表電極膜2上に(表電極膜2の中央部を覆うように)塗布してパターン化することにより形成される。 In the next step (step S5), as shown in FIG. 6D, a glass film 21 (a film for forming glass films 21a and 21b in a subsequent process) is formed at the center of the surface electrode film 2. . The glass film 21 is formed by applying and patterning a borosilicate glass paste, which is an insulating film paste, on the surface electrode film 2 (so as to cover the central portion of the surface electrode film 2) by screen printing. Is done.
 次の工程(ステップS6)では、ステップ4で形成した裏電極3a,3b(電極ペーストの膜)と、ステップS5で形成したガラス膜21(絶縁膜用ペーストである硼珪酸系ガラスペーストの膜)とを、空気(大気)雰囲気の焼成炉において、ピーク温度600℃で30分間、同時に焼成する。このとき、表電極膜2の外観に顕著な変化はなかった。従って、裏電極3a,3b及びガラス膜21を空気雰囲気で焼成可能であることが、確認された。
 また、表電極膜2(即ち表電極2a,2b)の材料が銅-ニッケル膜又は銅-ニッケル-銀膜である場合の適切なCu-Ni配合比又はCu-Ni-Ag配合比の範囲を確認した結果は、次のとおりである。
 表電極膜2の材料を、70%<銅の含有率<100%、残りがニッケルの含有率である銅-ニッケル膜とした場合には、空気雰囲気で裏電極3a,3b及びガラス膜21を焼成したとき、表電極膜2(銅-ニッケル膜)は顕著に酸化して外観に異常が発生し且つ酸化膜の影響によって導体抵抗が測定不能になるほど高くなった。また、表電極膜2の材料を、0%<銅の含有率<50%、残りがニッケルの含有率である銅-ニッケル膜とした場合には、表電極膜2(銅-ニッケル膜)の膜強度が低くなり、製造中に表電極膜2(銅-ニッケル膜)が剥離するという不具合が生じた。これに対して、表電極膜2の材料を、50%≦銅の含有率≦70%、30%≦ニッケルの含有率≦50%である銅-ニッケル膜とした場合には、空気雰囲気で裏電極3a,3b及びガラス膜21を焼成しても、表電極膜2(銅-ニッケル膜)には外観等に顕著な変化がなかった。従って、表電極膜2の材料が銅-ニッケル膜である場合の適切なCu-Niの配合比の範囲は、50%≦銅の含有率≦70%、30%≦ニッケルの含有率≦50%である。
 また、表電極膜2の材料を、69%<銅の含有率<98%、銀の含有率2%、残りがニッケルの含有率である銅-ニッケル-銀膜とした場合には、空気雰囲気で裏電極3a,3b及びガラス膜21を焼成したとき、表電極膜2(銅-ニッケル-銀膜)は顕著に酸化して外観に異常が発生し且つ酸化膜の影響によって導体抵抗が測定不能になるほど高くなった。また、表電極膜2の材料を、0%<銅の含有率<49%、銀の含有率2%、残りがニッケルの含有率である銅-ニッケル-銀膜とした場合には、表電極膜20(銅-ニッケル-銀膜)の膜強度が低くなり、製造中に表電極膜2(銅-ニッケル-銀膜)が剥離するという不具合が生じた。これに対して、表電極膜2の材料を、49%≦銅の含有率≦69%、29%≦ニッケルの含有率≦49%、銀の含有率2%の銅-ニッケル-銀膜とした場合には、空気雰囲気で裏電極3a,3b及びガラス膜21を焼成しても、表電極膜2(銅-ニッケル-銀膜)には外観等に顕著な変化がなかった。従って、表電極膜2の材料が銅-ニッケル-銀膜である場合の適切なCu-Ni-Agの配合比の範囲は、49%≦銅の含有率≦69%、29%≦ニッケルの含有率≦49%、銀の含有率2%である。
 なお、上記の各金属の含有率は、重量パーセント(wt%)であり、バラツキの中央値である。
 なお、この裏電極3a,3b及びガラス膜21の焼成は、必ずしも空気雰囲気に限定するものではなく、窒素雰囲気で行ってもよい。
In the next step (step S6), the back electrodes 3a and 3b (electrode paste film) formed in step 4 and the glass film 21 (borosilicate glass paste film which is an insulating film paste) formed in step S5. Are simultaneously fired at a peak temperature of 600 ° C. for 30 minutes in a firing furnace in an air (atmosphere) atmosphere. At this time, there was no significant change in the appearance of the surface electrode film 2. Therefore, it was confirmed that the back electrodes 3a and 3b and the glass film 21 can be fired in an air atmosphere.
Further, when the material of the surface electrode film 2 (that is, the surface electrodes 2a and 2b) is a copper-nickel film or a copper-nickel-silver film, an appropriate range of the Cu-Ni compound ratio or the Cu-Ni-Ag compound ratio is set. The confirmed results are as follows.
When the material of the surface electrode film 2 is a copper-nickel film in which 70% <copper content <100% and the remaining nickel content, the back electrodes 3a and 3b and the glass film 21 are formed in an air atmosphere. When baked, the surface electrode film 2 (copper-nickel film) was significantly oxidized to cause abnormal appearance, and the conductor resistance was so high that it could not be measured due to the influence of the oxide film. When the material of the surface electrode film 2 is a copper-nickel film in which 0% <copper content <50% and the rest is nickel, the surface electrode film 2 (copper-nickel film) The film strength was lowered, and the problem that the surface electrode film 2 (copper-nickel film) peeled during the production occurred. On the other hand, when the material of the surface electrode film 2 is a copper-nickel film where 50% ≦ copper content ≦ 70% and 30% ≦ nickel content ≦ 50%, Even when the electrodes 3a and 3b and the glass film 21 were baked, the surface electrode film 2 (copper-nickel film) did not change significantly in appearance or the like. Therefore, when the material of the surface electrode film 2 is a copper-nickel film, the appropriate range of the Cu—Ni mixing ratio is 50% ≦ copper content ≦ 70%, 30% ≦ nickel content ≦ 50%. It is.
If the material of the surface electrode film 2 is a copper-nickel-silver film in which 69% <copper content <98%, silver content 2%, and the remaining nickel content, air atmosphere When the back electrodes 3a and 3b and the glass film 21 are fired, the surface electrode film 2 (copper-nickel-silver film) is remarkably oxidized to cause abnormal appearance, and the conductor resistance cannot be measured due to the influence of the oxide film. It became high enough. When the material of the surface electrode film 2 is a copper-nickel-silver film in which 0% <copper content <49%, silver content 2%, and the rest is nickel content, The film strength of the film 20 (copper-nickel-silver film) was lowered, resulting in a problem that the surface electrode film 2 (copper-nickel-silver film) was peeled off during production. On the other hand, the material of the surface electrode film 2 was a copper-nickel-silver film with 49% ≦ copper content ≦ 69%, 29% ≦ nickel content ≦ 49%, and silver content 2%. In this case, even when the back electrodes 3a and 3b and the glass film 21 were fired in an air atmosphere, the surface electrode film 2 (copper-nickel-silver film) did not change significantly in appearance or the like. Therefore, when the material of the surface electrode film 2 is a copper-nickel-silver film, the appropriate range of the Cu—Ni—Ag mixture ratio is 49% ≦ copper content ≦ 69%, 29% ≦ nickel content The rate is 49% and the silver content is 2%.
In addition, the content rate of each said metal is a weight percent (wt%), and is the median value of variation.
Note that the baking of the back electrodes 3a and 3b and the glass film 21 is not necessarily limited to an air atmosphere, and may be performed in a nitrogen atmosphere.
 また、ここでは裏電極3a,3bと表電極膜2とを別々に焼成したが、これに限定するものではなく、裏電極3a,3bを、表電極膜2と同様に銅-ニッケルペースト又は銅-ニッケル-銀ペーストによって形成した場合には、裏電極3a,3bと表電極膜2とを同時に窒素雰囲気で焼成してもよい。 Here, the back electrodes 3a and 3b and the front electrode film 2 are separately fired. However, the present invention is not limited to this, and the back electrodes 3a and 3b are made of a copper-nickel paste or copper as in the case of the front electrode film 2. -When formed of nickel-silver paste, the back electrodes 3a, 3b and the front electrode film 2 may be fired simultaneously in a nitrogen atmosphere.
 次の工程(ステップS7)では、図7(a)に示すように、基本波長のレーザ(図示省略)を用いたレーザ法によって、ステップS6で焼成したガラス膜21の中央部とステップS3で焼成した表電極膜2の中央部とを同時に切断加工することにより、一列に連なる(重なり合う)上層のギャップ4bと下層のギャップ4aとを同時に形成する。ここでは基本波長のYAGレーザ(波長:1064nm)を用いて切断加工を行った。ギャップ4a,4bの幅dは17μmとした。ギャップ4a,4bを形成した結果、ギャップ4aを介して一対の表電極2a,2bが対向する構造となり、且つ、ギャップ4bを介して一対のガラス膜21a,21bが対向する構造となる。 In the next step (step S7), as shown in FIG. 7A, the central portion of the glass film 21 baked in step S6 and the baked in step S3 by a laser method using a fundamental wavelength laser (not shown). By cutting the central portion of the surface electrode film 2 simultaneously, an upper layer gap 4b and a lower layer gap 4a that are continuous (overlapped) in a row are formed simultaneously. Here, cutting was performed using a YAG laser having a fundamental wavelength (wavelength: 1064 nm). The width d of the gaps 4a and 4b was 17 μm. As a result of forming the gaps 4a and 4b, a pair of front electrodes 2a and 2b are opposed to each other via the gap 4a, and a pair of glass films 21a and 21b are opposed to each other via the gap 4b.
 次の工程(ステップS8)では、図7(b)に示すように、スクリーン印刷法により、導電性ペーストを、表電極2a,2bのそれぞれに塗布してパターン化することより、表電極2a,2bの上に上部電極6a,6bをそれぞれ形成する。このときのスクリーン印刷の回数は1回である。上部電極6a,6bは、静電気保護膜5に接触しなようにするため、静電気保護膜5から離れた位置において、表電極2a,2bの上に重なるように形成される。スクリーン印刷後の上部電極6a,6b(導電性ペーストの膜)は、乾燥させて導電性ペースト中の溶剤を蒸発させる。 In the next step (step S8), as shown in FIG. 7B, a conductive paste is applied to each of the surface electrodes 2a and 2b by a screen printing method to form a pattern. Upper electrodes 6a and 6b are formed on 2b, respectively. The number of screen printings at this time is one. The upper electrodes 6 a and 6 b are formed so as to overlap the surface electrodes 2 a and 2 b at positions away from the electrostatic protection film 5 so as not to contact the electrostatic protection film 5. The upper electrodes 6a and 6b (film of conductive paste) after screen printing are dried to evaporate the solvent in the conductive paste.
 このスクリーン印刷で用いたスクリーンメッシュは、メッシュサイズ400で、エマルジョン厚8±2μmのものである(品番:st400)。また、導電性ペーストとしては、銀粉とエポキシ樹脂とを混練したものを用いた。なお、これに限らず、ニッケル(Ni)粉,銅(Cu)粉などと、エポキシ樹脂とを混練した厚膜電極ペーストなどを、上部電極用の導電性ペーストとして用いてもよい。 The screen mesh used in this screen printing has a mesh size of 400 and an emulsion thickness of 8 ± 2 μm (product number: st400). In addition, as the conductive paste, a paste obtained by kneading silver powder and an epoxy resin was used. However, the present invention is not limited thereto, and a thick film electrode paste obtained by kneading nickel (Ni) powder, copper (Cu) powder, and the like and an epoxy resin may be used as the conductive paste for the upper electrode.
 次の工程(ステップS9)では、図7(c)に示すように、スクリーン印刷法により、静電気保護用ペーストを、ギャップ4a,4b部分に塗布してパターン化することにより、静電気保護膜5を形成する。このとき静電気保護膜5は中央部5cと両側部5a,5bとを有する形状となる。表電極2a,2bに対しては、静電気保護膜5の中央部5cがギャップ4aのみに設けられて(ギャップ4aに充填されてギャップ4aを塞いで)、表電極2a,2bに接続され、ガラス膜21a,21bに対しては、静電気保護膜5の中央部5cがギャップ4bに設けられ(ギャップ4bに充填されてギャップ4bを塞ぎ)、且つ、静電気保護膜5の両端部5a,5bがガラス膜21a,21bの上面21a-2,21b-2の一部(ギャップ側の端部)に重なる。 In the next step (step S9), as shown in FIG. 7C, an electrostatic protection film 5 is formed by applying an electrostatic protection paste to the gaps 4a and 4b and patterning by screen printing. Form. At this time, the electrostatic protection film 5 has a shape having a central portion 5c and both side portions 5a and 5b. For the surface electrodes 2a and 2b, the central portion 5c of the electrostatic protection film 5 is provided only in the gap 4a (filled in the gap 4a to close the gap 4a), and is connected to the surface electrodes 2a and 2b. For the films 21a and 21b, a central portion 5c of the electrostatic protection film 5 is provided in the gap 4b (filled in the gap 4b and closes the gap 4b), and both ends 5a and 5b of the electrostatic protection film 5 are made of glass. It overlaps part of the upper surfaces 21a-2 and 21b-2 (ends on the gap side) of the films 21a and 21b.
 スクリーン印刷後の静電気保護膜5(静電気保護用ペーストの膜)は、100℃の温度で10分間乾燥させて静電気保護用ペースト中の溶剤を蒸発させる。 The electrostatic protective film 5 (electrostatic protective paste film) after screen printing is dried at a temperature of 100 ° C. for 10 minutes to evaporate the solvent in the electrostatic protective paste.
 なお、この静電気保護用ペーストのスクリーン印刷で用いたスクリーンメッシュはカレンダーメッシュであり、メッシュサイズ400で線径18μm、エマルジョン厚5±2μmのものである(品番:cal400/18)。また、ここで用いた静電気保護用ペーストは、シリコーン樹脂のバインダを基本材料とし、このシリコーン樹脂に、導電性粒子として用いたアルミニウム粉と、絶縁性粒子として用いた酸化亜鉛粉の2種を混練したものである。更に、これら3成分の配合比は、シリコーン樹脂が100重量部であるのに対して、アルミニウム粉が160重量部、酸化亜鉛粉が120重量部とした。この場合、ESD抑制ピーク電圧が500V以下で、ESD耐量が規格値のリーク電流10μA以下(絶縁抵抗R=3MΩ以上)という目標値を満足する。 The screen mesh used in the screen printing of the electrostatic protection paste is a calendar mesh having a mesh size of 400, a wire diameter of 18 μm, and an emulsion thickness of 5 ± 2 μm (part number: cal400 / 18). Moreover, the paste for electrostatic protection used here uses a silicone resin binder as a basic material, and this silicone resin is kneaded with two types of powders: aluminum powder used as conductive particles and zinc oxide powder used as insulating particles. It is a thing. Furthermore, the compounding ratio of these three components was 100 parts by weight of the silicone resin, 160 parts by weight of the aluminum powder, and 120 parts by weight of the zinc oxide powder. In this case, the ESD suppression peak voltage is 500 V or less, and the ESD tolerance satisfies the target value of a leakage current of 10 μA or less (insulation resistance R = 3 MΩ or more) with a standard value.
 また、シリコーン樹脂としては、体積抵抗率2×1015Ωcm、誘電率2.7の付加反応型シリコーン樹脂を用いた。アルミニウム粉としては、アルミニウムを溶融し、高圧噴霧し冷却固化して成る平均粒径3.0~3.6μmのアルミニウム粉を用いた。酸化亜鉛粉としては、JIS規格の第1種絶縁性(体積抵抗率200MΩcm以上)を有する酸化亜鉛を用いた。また、この酸化亜鉛粉には、粒径が0.3~1.5μmで分布し、平均粒径が0.6μmであり、一次凝集での粒径が1.5μmである酸化亜鉛粉を適用した。 As the silicone resin, an addition reaction type silicone resin having a volume resistivity of 2 × 10 15 Ωcm and a dielectric constant of 2.7 was used. As the aluminum powder, aluminum powder having an average particle diameter of 3.0 to 3.6 μm obtained by melting aluminum, spraying at high pressure and solidifying by cooling was used. As the zinc oxide powder, zinc oxide having JIS standard type 1 insulation (volume resistivity of 200 MΩcm or more) was used. In addition, zinc oxide powder having a particle size distribution of 0.3 to 1.5 μm, an average particle size of 0.6 μm, and a primary aggregation particle size of 1.5 μm is applied to the zinc oxide powder. did.
 次の工程(ステップS10)では、ステップS8で形成した上部電極6a,6bとステップS9で形成した静電気保護膜5とを、200℃の温度で30分間、同時に焼付けする。 In the next step (step S10), the upper electrodes 6a and 6b formed in step S8 and the electrostatic protection film 5 formed in step S9 are simultaneously baked at a temperature of 200 ° C. for 30 minutes.
 次の工程(ステップS11)では、図7(d)に示すように、スクリーン印刷法により、シリコーン樹脂ペーストを、静電気保護膜5及びガラス膜21a,21bに塗布してパターン化することより、静電気保護膜5などを覆う中間層7を形成する。このときのスクリーン印刷の回数は1回である。ここではシリコーン樹脂ペーストとして、40~50%のシリカを含有するシリコーン樹脂ペーストを用いた。また、このスクリーン印刷で用いたスクリーンメッシュはカレンダーメッシュであり、メッシュサイズ400で線径18μm、エマルジョン厚5±2μmのものである(品番:cal400/18)。 In the next step (step S11), as shown in FIG. 7 (d), a silicone resin paste is applied to the electrostatic protection film 5 and the glass films 21a and 21b by a screen printing method and patterned. An intermediate layer 7 that covers the protective film 5 and the like is formed. The number of screen printings at this time is one. Here, a silicone resin paste containing 40 to 50% silica was used as the silicone resin paste. The screen mesh used in this screen printing is a calendar mesh having a mesh size of 400, a wire diameter of 18 μm, and an emulsion thickness of 5 ± 2 μm (product number: cal400 / 18).
 次の工程(ステップS12)では、ステップS11で形成した中間層7を、150℃の温度で30分間焼付けをする。 In the next step (step S12), the intermediate layer 7 formed in step S11 is baked at a temperature of 150 ° C. for 30 minutes.
 次の工程(ステップS13)では、図8(a)に示すように、スクリーン印刷法により、エポキシ樹脂ペーストを、中間層7、ガラス膜21a,21b、表電極2a,2b及び上部電極6a,6bに塗布してパターン化することにより、中間層7などを覆う保護膜8を形成する。このときのスクリーン印刷の回数は3~4回である。このスクリーン印刷で用いたスクリーンメッシュは、メッシュサイズ250で、エマルジョン厚20±2μmのものである(品番:St250/30)。 In the next step (step S13), as shown in FIG. 8A, an epoxy resin paste is applied to the intermediate layer 7, the glass films 21a and 21b, the surface electrodes 2a and 2b, and the upper electrodes 6a and 6b by screen printing. The protective film 8 which covers the intermediate | middle layer 7 etc. is formed by apply | coating and patterning. The number of screen printings at this time is 3 to 4 times. The screen mesh used in this screen printing has a mesh size of 250 and an emulsion thickness of 20 ± 2 μm (product number: St250 / 30).
 次の工程(ステップS14)では、ステップS13で形成した保護膜8を、200℃の温度で30分間焼付けする。 In the next step (step S14), the protective film 8 formed in step S13 is baked at a temperature of 200 ° C. for 30 minutes.
 次の工程(ステップS15)では、シート状のセラミックス基板1に形成されている1次スリットに沿って、セラミックス基板1を1次分割する。その結果、セラミックス基板1は複数個の個片領域が横一列に連なった帯状のものとなり、端面1c,1dが生じる。 In the next step (step S15), the ceramic substrate 1 is primarily divided along the primary slit formed in the sheet-like ceramic substrate 1. As a result, the ceramic substrate 1 has a strip shape in which a plurality of individual regions are arranged in a horizontal line, and end faces 1c and 1d are generated.
 次の工程(ステップS16)では、図8(b)に示すように、転写法により、導電性ペーストを、セラミックス基板1の端面1c,1d、表電極2a,2bの一部、裏電極3a,3bの一部に塗布し、これを次の工程(ステップS17)で、200℃の温度で30分間焼付けすることにより、端面電極9a,9bを形成する。このとき端面電極9a,9bは表電極2a,2b及び裏電極3a,3bに一部重なり、表電極2a,2bと裏電極3a,3bとを電気的に接続する。ここでは導電性ペーストとして、銀粉とエポキシ樹脂とを混練したペーストを用いた。 In the next step (step S16), as shown in FIG. 8B, the conductive paste is transferred to the end surfaces 1c and 1d of the ceramic substrate 1, a part of the front electrodes 2a and 2b, the back electrodes 3a, It is applied to a part of 3b, and this is baked for 30 minutes at a temperature of 200 ° C. in the next step (step S17), thereby forming end face electrodes 9a and 9b. At this time, the end face electrodes 9a and 9b partially overlap the front electrodes 2a and 2b and the back electrodes 3a and 3b, and electrically connect the front electrodes 2a and 2b to the back electrodes 3a and 3b. Here, a paste obtained by kneading silver powder and an epoxy resin was used as the conductive paste.
 次の工程(ステップS18)では、帯状のセラミックス基板1に形成されている2次スリットに沿って、セラミックス基板1を2次分割する。その結果、セラミックス基板1は各個片領域ごとに分割されて、個片となる。 In the next step (step S18), the ceramic substrate 1 is secondarily divided along the secondary slit formed in the band-shaped ceramic substrate 1. As a result, the ceramic substrate 1 is divided into individual pieces to form individual pieces.
 次の工程(ステップS19)では、図8(c)に示すように、バレルめっき方式により、端面電極9a,9bと、裏電極3a,3bと、表電極2a,2bの一部と、上部電極6a,6bの一部の上に電気めっきして、ニッケルめっき膜10a,10bを形成する。 In the next step (step S19), as shown in FIG. 8C, end face electrodes 9a and 9b, back electrodes 3a and 3b, part of front electrodes 2a and 2b, and upper electrode are formed by barrel plating. Electroplating is performed on part of 6a and 6b to form nickel plating films 10a and 10b.
 最後の工程(ステップS20)では、図8(d)に示すように、バレルめっき方式により、ステップS19で形成したニッケルめっき膜10a,10bの上に電気めっきして、スズめっき膜11a,11bを形成する。かくして、静電気保護部品100が完成する。 In the last step (step S20), as shown in FIG. 8D, the tin plating films 11a and 11b are electroplated on the nickel plating films 10a and 10b formed in step S19 by a barrel plating method. Form. Thus, the electrostatic protection component 100 is completed.
 次に、ESD試験(接触放電試験)について説明する。ESD試験は「IEC61000‐4‐2 8kV」に準拠したESD電圧を試料(静電気保護部品)に印加する方法で行った。ESD試験は、表電極2a,2bの材料が銅-ニッケル膜又は銅-ニッケル-銀膜である本実施の形態例の静電気保護部品100と、表電極の材料がタングステン膜である比較例の静電気保護部品に対して行った。また、本実施の形態例の静電気保護部品100に関しては、表電極材料A(銅-ニッケル膜)を用いたものと、表電極材料B(銅-ニッケル-銀膜)を用いたものとの2種類についてESD試験を行った。 Next, the ESD test (contact discharge test) will be described. The ESD test was performed by applying an ESD voltage in accordance with “IEC61000-4-2 8 kV” to the sample (electrostatic protection component). In the ESD test, the electrostatic protection component 100 of the present embodiment in which the material of the surface electrodes 2a and 2b is a copper-nickel film or the copper-nickel-silver film and the static electricity of a comparative example in which the material of the surface electrode is a tungsten film. Made for protective parts. Further, regarding the electrostatic protection component 100 of the present embodiment, there are two types, one using the surface electrode material A (copper-nickel film) and one using the surface electrode material B (copper-nickel-silver film). An ESD test was conducted on the types.
 ESD試験(接触放電試験)の方法について説明すると、図9に示すように、スイッチSWを開放した状態で、直流電源(図示省略)から+8kVの直流電圧V0を、53MΩの抵抗R1を介して150pFのコンデンサCに印加することにより、コンデンサCに充電する。その後、スイッチSWを閉じることにより、コンデンサCから、330Ωの抵抗R2を介して、50Ω±1%の負荷抵抗R3に並列接続された各試料200(即ち表電極材料Aを用いた本実施の形態例の静電気保護部品100、表電極材料Bを用いた本実施の形態例の静電気保護部品100、タングステンを表電極材料として用いた比較例の静電気保護部品)へ、放電電圧(ESD電圧)を印加する。そして、このESD電圧を印加直後に各試料200に発生する電圧Vを測定し、この電圧Vの最大値であるESD抑制ピーク電圧が、500V以下の規定を満足するか否かを判定する。 The method of the ESD test (contact discharge test) will be described. As shown in FIG. 9, with the switch SW opened, a +8 kV DC voltage V 0 is supplied from a DC power source (not shown) through a 53 MΩ resistor R 1 . The capacitor C is charged by being applied to the capacitor C of 150 pF. Thereafter, by closing the switch SW, the capacitor C, through the resistor R 2 of 330Ω, 50Ω ± 1% of each sample 200 which is connected in parallel to a load resistor R3 (i.e. this embodiment using the front electrode material A A discharge voltage (ESD voltage) is applied to the electrostatic protection component 100 of the embodiment, the electrostatic protection component 100 of the embodiment using the surface electrode material B, and the electrostatic protection component of a comparative example using tungsten as the surface electrode material. Apply. And the voltage V which generate | occur | produces in each sample 200 immediately after this ESD voltage is applied is measured, and it is determined whether the ESD suppression peak voltage which is the maximum value of this voltage V satisfies the regulation of 500V or less.
 また、ESD電圧印加後の各試料200に30Vの直流電圧を印加して、このときに当該試料200に流れる電流(これをリーク電流と称する)を測定し、このリーク電流が10μA以下の規定を満足するか否かも判定する。 Further, a DC voltage of 30 V is applied to each sample 200 after the ESD voltage is applied, and a current flowing through the sample 200 at this time (referred to as a leakage current) is measured, and the leakage current is defined to be 10 μA or less. Also determine if you are satisfied.
 ESD試験は、各試料200に対して500回実施した。この500回のESD試験におけるESD抑制ピーク電圧の測定結果とリーク電流の測定結果を、図10と図11に示す。図10及び図11において、◇は試料200が表電極材料A(銅-ニッケル膜)を用いた静電気保護部品100である場合のESD抑制ピーク電圧の測定結果とリーク電流の測定結果、□は試料200が表電極材料B(銅-ニッケル-銀膜)を用いた本実施の形態例の静電気保護部品100である場合のESD抑制ピーク電圧の測定結果とリーク電流の測定結果、△は試料200がタングステン膜を表電極材料として用いた静電気保護部品である場合のESD抑制ピーク電圧の測定結果とリーク電流の測定結果である。 The ESD test was performed 500 times for each sample 200. The measurement result of the ESD suppression peak voltage and the measurement result of the leak current in the 500 ESD tests are shown in FIGS. 10 and 11, ◇ indicates the ESD suppression peak voltage measurement result and leakage current measurement result when the sample 200 is the electrostatic protection component 100 using the surface electrode material A (copper-nickel film), and □ indicates the sample. Measurement results of ESD suppression peak voltage and leakage current when 200 is the electrostatic protection component 100 of this embodiment using the surface electrode material B (copper-nickel-silver film). It is the measurement result of the ESD suppression peak voltage in the case of being an electrostatic protection component using a tungsten film as a surface electrode material, and the measurement result of leakage current.
 図10に示すように、表電極材料A,B(銅-ニッケル膜、銅-ニッケル-銀膜)を用いた静電気保護部品100の何れの測定結果(◇,□)においても、500回のESD試験に耐えてESD抑制ピーク電圧が500V以下の規定を満足しており、タングステンを表電極材料として用いた静電気保護部品の測定結果(△)と同程度の結果が得られた。
 また、図11に示すように、表電極材料A,B(銅-ニッケル膜、銅-ニッケル-銀膜)を用いた静電気保護部品100の何れの測定結果(◇,□)においても、500回のESD試験に耐えてリーク電流が10μA以下の規定を満足しており、タングステン膜を表電極材料として用いた静電気保護部品の測定結果(△)と同程度の結果が得られた。
 また、3種の表電極材料ともリーク電流10μA以下を規定を満足しているが、表電極材料がタングステン膜の場合(△)にはESD電圧印加回数によりリーク電流の変動が大きいのに対して、表電極材料A,B(銅-ニッケル膜、銅-ニッケル-銀膜)の場合(◇,□)には、ESD電圧印加回数によるリーク電流の変動が小さく、ESD電圧印加回数10~60回において比較的大きなリーク電流の変動がみられるだけである。更には、表電極材料A(銅-ニッケル膜)の場合(◇)にはESD電圧印加回数10~50回でリーク電流が大きく変動しているのに対して、表電極材料B(銅-ニッケル-銀膜)の場合(□)にはESD電圧印加回数30~60回でリーク電流が大きく変動している。
 即ち、図11の表電極材料をパラメータとしたリーク電流のグラフより、タングステン膜の場合に比べて表電極材料A,B(銅-ニッケル膜、銅-ニッケル-銀膜)の場合の方が、ESD電圧印加回数によるリーク電流の変動が非常に小さいことがわかる。更には、最初にリーク電流のピーク(大きな変動)が発生するESD電圧印加回数の観点より、表電極材料A(銅-ニッケル膜)の場合と表電極材料B(銅-ニッケル-銀膜)の場合とを比較すると、電極材料A(銅-ニッケル膜)の場合よりも表電極材料B(銅-ニッケル-銀膜)の場合の方が20回程度多くESD電圧を印加したときにリーク電流のピークが発生していることがわかる。
 以上のことから、表電極材料A,B(銅-ニッケル膜、銅-ニッケル-銀膜)の場合は、タングステン膜の場合に比べてESD電圧印加に対する絶縁性の耐力が高いと判断することができる。また、表電極材料B(銅-ニッケル-銀膜)の場合は、表電極材料A(銅-ニッケル膜)の場合に比べてESD電圧印加に対する絶縁性の耐力が高いと判断することもできる。よって、上記の観点からも、本願発明の作用・効果が発現されている。
As shown in FIG. 10, 500 times of ESD is observed in any measurement results (◇, □) of the electrostatic protection component 100 using the surface electrode materials A and B (copper-nickel film, copper-nickel-silver film). Withstanding the test, the ESD suppression peak voltage satisfied the regulation of 500 V or less, and a result comparable to the measurement result (Δ) of the electrostatic protection component using tungsten as the surface electrode material was obtained.
Further, as shown in FIG. 11, in any measurement result (◇, □) of the electrostatic protection component 100 using the surface electrode materials A and B (copper-nickel film, copper-nickel-silver film), 500 times The leakage current was 10 μA or less withstanding the ESD test, and a result comparable to the measurement result (Δ) of the electrostatic protection component using the tungsten film as the surface electrode material was obtained.
In addition, the three types of surface electrode materials satisfy the regulation of a leakage current of 10 μA or less. However, when the surface electrode material is a tungsten film (Δ), the leakage current varies greatly depending on the number of ESD voltage applications. In the case of surface electrode materials A and B (copper-nickel film, copper-nickel-silver film) (◇, □), the fluctuation of leakage current due to the number of times of ESD voltage application is small, and the number of times of ESD voltage application is 10 to 60 times. Only a relatively large fluctuation in the leakage current is observed. Furthermore, in the case of the surface electrode material A (copper-nickel film) (◇), the leakage current fluctuates greatly when the ESD voltage is applied 10 to 50 times, whereas the surface electrode material B (copper-nickel film) In the case of (-silver film), the leakage current greatly fluctuates after 30 to 60 times of ESD voltage application.
That is, from the graph of the leakage current with the surface electrode material of FIG. 11 as a parameter, the case of the surface electrode materials A and B (copper-nickel film, copper-nickel-silver film) is better than the case of the tungsten film. It can be seen that the fluctuation of the leakage current due to the number of times of ESD voltage application is very small. Furthermore, from the viewpoint of the number of times of ESD voltage application at which the peak (large fluctuation) of leakage current first occurs, the surface electrode material A (copper-nickel film) and the surface electrode material B (copper-nickel-silver film) In comparison with the case of the electrode material A (copper-nickel film), in the case of the surface electrode material B (copper-nickel-silver film), when the ESD voltage is applied about 20 times more, the leakage current It can be seen that a peak has occurred.
From the above, it can be judged that the surface electrode materials A and B (copper-nickel film, copper-nickel-silver film) have a higher dielectric strength against ESD voltage application than the tungsten film. it can. It can also be determined that the surface electrode material B (copper-nickel-silver film) has a higher dielectric strength against ESD voltage application than the surface electrode material A (copper-nickel film). Therefore, the functions and effects of the present invention are also expressed from the above viewpoint.
 図12~図16には本発明の実施の形態例に係る静電気保護部品の他の構造例を示す。この図12~図16に示す静電気保護部品300,400の構造は、図1~図3に示す静電気保護部品100の構造と比べると、ガラス膜21a,21bの構造が異なっている。なお、静電気保護部品300,400における表電極2a,2bの材料に関しては、静電気保護部品100における表電極2a,2bと同様に銅-ニッケル膜又は銅-ニッケル-銀膜を用いている。 12 to 16 show other structural examples of the electrostatic protection component according to the embodiment of the present invention. The structure of the electrostatic protection components 300 and 400 shown in FIGS. 12 to 16 is different from the structure of the electrostatic protection component 100 shown in FIGS. 1 to 3 in the structure of the glass films 21a and 21b. As for the materials of the surface electrodes 2a and 2b in the electrostatic protection components 300 and 400, a copper-nickel film or a copper-nickel-silver film is used as in the case of the surface electrodes 2a and 2b in the electrostatic protection component 100.
 図12~図14に示す静電気保護部品300では、図1~図3に示す静電気保護部品100に比べて(特に図2,図3参照)、ガラス膜21a,21bの幅が広くなっている(特に図12,図13参照:図12の上下方向がガラス膜21a,21bの幅方向である)。 In the electrostatic protection component 300 shown in FIGS. 12 to 14, the glass films 21a and 21b are wider than the electrostatic protection component 100 shown in FIGS. 1 to 3 (see FIGS. 2 and 3 in particular) (see FIG. 2 to FIG. 3). In particular, see FIGS. 12 and 13: The vertical direction of FIG. 12 is the width direction of the glass films 21a and 21b).
 具体的には、図2及び図3に示すように、静電気保護部品100におけるガラス膜21a,21bは、表電極2a,2bの幅よりは広いが、静電気保護膜5の幅よりは狭い幅となっており、表電極2aの両側面2a-4,2a-5や表電極2bの両側面2b-4,2bを覆って前記側面2a-4,2a-5,2b-4,2b-5が静電気保護膜5に接するのを防ぐことが可能な最小限の幅を有している。これに対して、図13及び図14に示すように、静電気保護部品300におけるガラス膜21a,21bは、表電極2a,2bの幅、静電気保護膜5の幅、及び、中間層7の幅の何れよりも広い幅を有している。静電気保護部品300の他の構造については、静電気保護部品100の構造と同様である。また、静電気保護部品300の製造方法についても、静電気保護部品100の製造方法(図5~図8を参照)と同様である。 Specifically, as shown in FIGS. 2 and 3, the glass films 21 a and 21 b in the electrostatic protection component 100 are wider than the widths of the surface electrodes 2 a and 2 b but narrower than the width of the electrostatic protection film 5. The side surfaces 2a-4, 2a-5, 2b-4, 2b-5 cover the side surfaces 2a-4, 2a-5 of the surface electrode 2a and the side surfaces 2b-4, 2b of the surface electrode 2b. It has a minimum width that can prevent contact with the electrostatic protection film 5. On the other hand, as shown in FIGS. 13 and 14, the glass films 21 a and 21 b in the electrostatic protection component 300 have the widths of the surface electrodes 2 a and 2 b, the width of the electrostatic protection film 5, and the width of the intermediate layer 7. It has a wider width than either. Other structures of the electrostatic protection component 300 are the same as those of the electrostatic protection component 100. The method for manufacturing the electrostatic protection component 300 is the same as the method for manufacturing the electrostatic protection component 100 (see FIGS. 5 to 8).
 図15のK-K線矢視断面及びL-L線矢視断面の構造については、図3(a)に示す断面構造及び図3(b)に示す断面構造と同様であるため、図3を参照する。図3,図15及び図16に示すように、静電気保護部品400は、図1~図3に示す静電気保護部品100に比べて(特に図1,図2参照)、ガラス膜21a,21bの長さが短くなっている(特に図14,図15参照:これらの図の左右方向がガラス膜21a,21bの長さ方向である)。 15 are the same as the cross-sectional structure shown in FIG. 3 (a) and the cross-sectional structure shown in FIG. 3 (b). Refer to As shown in FIGS. 3, 15 and 16, the electrostatic protection component 400 is longer than the electrostatic protection component 100 shown in FIGS. 1 to 3 (see FIG. 1 and FIG. 2 in particular) in the length of the glass films 21 a and 21 b. (See FIGS. 14 and 15 in particular: the horizontal direction in these drawings is the length direction of the glass films 21a and 21b).
 具体的には、図1及び図2に示すように、静電気保護部品100におけるガラス膜21a,21bは、静電気保護膜5の長さ、及び、中間層7の長さの何れよりも長くなっている。これに対して、図15及び図16に示すように、静電気保護部品400におけるガラス膜21a,21bは、静電気保護膜5の長さよりは長いが、中間層7の長さよりは短くなっており、静電気保護膜5の両側部5a,5bと表電極2a,2bとの間に介在して(即ち表電極2a,2bの端部2a-1,2b-1の表面2a-3,2b-3を覆って)静電気保護膜5の両側部5a,5bが表電極2a,2bに接するのを防ぐことが可能な最小限の長さを有している。静電気保護部品400の他の構造については、静電気保護部品100の構造と同様である。また、静電気保護部品400の製造方法についても、静電気保護部品100の製造方法(図5~図8を参照)と同様である。 Specifically, as shown in FIGS. 1 and 2, the glass films 21 a and 21 b in the electrostatic protection component 100 are longer than both the length of the electrostatic protection film 5 and the length of the intermediate layer 7. Yes. On the other hand, as shown in FIGS. 15 and 16, the glass films 21 a and 21 b in the electrostatic protection component 400 are longer than the length of the electrostatic protection film 5 but shorter than the length of the intermediate layer 7. It is interposed between both side portions 5a and 5b of the electrostatic protection film 5 and the surface electrodes 2a and 2b (that is, the surfaces 2a-3 and 2b-3 of the end portions 2a-1 and 2b-1 of the surface electrodes 2a and 2b are connected). It has a minimum length that can prevent both side portions 5a and 5b of the electrostatic protection film 5 from coming into contact with the surface electrodes 2a and 2b. Other structures of the electrostatic protection component 400 are the same as those of the electrostatic protection component 100. Further, the manufacturing method of the electrostatic protection component 400 is the same as the manufacturing method of the electrostatic protection component 100 (see FIGS. 5 to 8).
 以上のように、本実施の形態例の静電気保護部品100,300,400は、セラミックス基板(絶縁基板)1の表面1aに形成され、第1のギャップ4aを介して対向している表電極2a,2bと、表電極2a,2b上に形成されて表電極2a,2bの上面2a-3,2b-3及び両側面2a-4,2b-4を覆い、且つ、第1のギャップ4aに連なる第2のギャップ4bを介して対向しているガラス膜(絶縁膜)21a,21bと、中央部5cと両側部5a,5bを有し、中央部5cが第1のギャップ4a及び第2のギャップ4bに設けられ、両側部5a,5bがガラス膜(絶縁膜)21a,21bの上面21a-2,21b-2に重なっている静電気保護膜5とを有する構成において、表電極2a,2bの材料が、銅-ニッケル膜又は銅-ニッケル-銀膜であることを特徴としている。 As described above, the electrostatic protection components 100, 300, and 400 according to the present embodiment are formed on the surface 1a of the ceramic substrate (insulating substrate) 1 and face each other through the first gap 4a. , 2b and the upper surfaces 2a-3, 2b-3 and both side surfaces 2a-4, 2b-4 of the surface electrodes 2a, 2b, which are formed on the surface electrodes 2a, 2b, and are connected to the first gap 4a. It has glass films (insulating films) 21a and 21b facing each other through the second gap 4b, a central portion 5c, and both side portions 5a and 5b, and the central portion 5c is the first gap 4a and the second gap. The material of the surface electrodes 2a and 2b is provided in the structure including the electrostatic protection film 5 provided on the upper surface 21a-2 and 21b-2 of the glass films (insulating films) 21a and 21b. However, copper-nickel film or Copper - Nickel - are characterized by a silver film.
 また、本実施の形態例の静電気保護部品100,300,400は、セラミックス基板(絶縁基板)1の裏面1bに形成され、表電極2a,2bに電気的に接続された裏電極3a,3bを有することを特徴としている。 In addition, the electrostatic protection components 100, 300, and 400 of the present embodiment include back electrodes 3a and 3b that are formed on the back surface 1b of the ceramic substrate (insulating substrate) 1 and are electrically connected to the front electrodes 2a and 2b. It is characterized by having.
 また、本実施の形態例の静電気保護部品100,300,400の製造方法は、セラミックス基板(絶縁基板)1の表面1aに銅-ニッケルペースト又は銅-ニッケル-銀ペーストをスクリーン印刷し、このスクリーン印刷した銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜を窒素雰囲気において800℃~950℃(例えば900℃)の範囲のピーク温度で焼成することにより、表電極膜2を形成する第1の工程と、この第1の工程で焼成した表電極膜2の上面及び両側面を覆うようにガラスペースト(絶縁膜用ペースト)をスクリーン印刷し、このスクリーン印刷したガラスペースト(絶縁膜用ペースト)の膜を焼成することにより、ガラス膜(絶縁膜)21を形成する第2の工程と、前記第1の工程で形成した表電極膜2と、前記第2の工程で形成したガラス膜(絶縁膜)21とを切断して、第1のギャップ4aと第2のギャップ4bとを形成する第3の工程と、中央部5cと両側部5a,5bを有する形状とし、中央部5cを第1のギャップ4a及び第2のギャップ4bに設け、両側部5a,5bをガラス膜(絶縁膜)21a,21bの上面21a-2,21b-2に重ねるように静電気保護用ペーストをスクリーン印刷し、このスクリーン印刷した静電気保護用ペーストの膜を焼き付けすることにより、静電気保護膜5を形成する第4の工程とを有することを特徴としている。 Further, in the method of manufacturing the electrostatic protection component 100, 300, 400 according to the present embodiment, a copper-nickel paste or a copper-nickel-silver paste is screen-printed on the surface 1a of the ceramic substrate (insulating substrate) 1, and this screen The printed copper-nickel paste film or copper-nickel-silver paste film is baked at a peak temperature in the range of 800 ° C. to 950 ° C. (eg, 900 ° C.) in a nitrogen atmosphere to form the surface electrode film 2. The glass paste (insulating film paste) is screen-printed so as to cover the upper surface and both side surfaces of the surface electrode film 2 baked in the first process and the first process, and the screen-printed glass paste (insulating film paste) ) By firing the second film and forming the glass film (insulating film) 21 and the surface electrode formed in the first process. 2 and the third step of cutting the glass film (insulating film) 21 formed in the second step to form the first gap 4a and the second gap 4b, the central portion 5c and both sides The central portion 5c is provided in the first gap 4a and the second gap 4b, and both side portions 5a and 5b are provided on the upper surfaces 21a-2 and 21b- of the glass films (insulating films) 21a and 21b. And a fourth step of forming the electrostatic protection film 5 by screen-printing the electrostatic protection paste so as to be superimposed on layer 2 and baking the screen-printed electrostatic protection paste film.
 或るいは、本実施の形態例の静電気保護部品100,300,400の製造方法は、セラミックス基板(絶縁基板)1の表面1aに銅-ニッケルペースト又は銅-ニッケル-銀ペーストをスクリーン印刷し、このスクリーン印刷した銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜を窒素雰囲気において800℃~950℃(例えば900℃)の範囲のピーク温度で焼成することにより、表電極膜2を形成する第1の工程と、セラミックス基板(絶縁基板)1の裏面1bに電極ペーストをスクリーン印刷し、このスクリーン印刷した電極ペーストの膜を焼成することにより、裏電極3a,3bを形成する第2の工程と、前記第1の工程で焼成した表電極膜2の上面及び両側面を覆うようにガラスペースト(絶縁膜用ペースト)をスクリーン印刷し、このスクリーン印刷したガラスペースト(絶縁膜用ペースト)の膜を焼成することにより、ガラス膜(絶縁膜)21を形成する第3の工程と、前記第1の工程で形成した表電極膜2と、前記第3の工程で形成したガラス膜(絶縁膜)21とを切断して、第1のギャップ4aと第2のギャップ4bとを形成する第4の工程と、中央部5cと両側部5a,5bを有する形状とし、中央部5cを第1のギャップ4a及び第2のギャップ4bに設け、両側部5a,5bをガラス膜(絶縁膜)21a,21bの上面21a-2,21b-2に重ねるように静電気保護用ペーストをスクリーン印刷し、このスクリーン印刷した静電気保護用ペーストの膜を焼き付けすることにより、静電気保護膜5を形成する第5の工程とを有することを特徴としている。 Alternatively, in the method of manufacturing the electrostatic protection component 100, 300, 400 according to the present embodiment, a copper-nickel paste or a copper-nickel-silver paste is screen-printed on the surface 1a of the ceramic substrate (insulating substrate) 1. The screen-printed copper-nickel paste film or copper-nickel-silver paste film is baked at a peak temperature in the range of 800 ° C. to 950 ° C. (eg, 900 ° C.) in a nitrogen atmosphere to form the surface electrode film 2 A second step of forming the back electrodes 3a and 3b by screen printing an electrode paste on the back surface 1b of the ceramic substrate (insulating substrate) 1 and baking the screen-printed electrode paste film. And a glass paste (insulating film paste) so as to cover the upper surface and both side surfaces of the surface electrode film 2 baked in the step and the first step A third step of forming a glass film (insulating film) 21 by baking the screen-printed glass paste (insulating film paste) film, and the surface electrode formed in the first step A fourth step of cutting the film 2 and the glass film (insulating film) 21 formed in the third step to form a first gap 4a and a second gap 4b, a central portion 5c, It has a shape having both side portions 5a and 5b, a central portion 5c is provided in the first gap 4a and the second gap 4b, and both side portions 5a and 5b are upper surfaces 21a-2 and 21b of glass films (insulating films) 21a and 21b. And a fifth step of forming the electrostatic protection film 5 by screen-printing the electrostatic protection paste so as to be superimposed on -2 and baking the screen-printed electrostatic protection paste film. It is characterized.
 しかも、この場合、前記第1の工程の後に前記第2の工程を実施し、且つ、前記第2の工程では、空気雰囲気において、前記第1の工程で表電極膜2を焼成するときのピーク温度よりも低いピーク温度で裏電極3a,3bを焼成することも特徴としている。 Moreover, in this case, the second step is performed after the first step, and the second step is a peak when the surface electrode film 2 is baked in the first step in an air atmosphere. The back electrodes 3a and 3b are also fired at a peak temperature lower than the temperature.
 従って、本実施の形態例の静電気保護部品100,300,400又はその製造方法によれば、表電極2a,2bの材料を銅-ニッケル膜又は銅-ニッケル-銀膜としたため、500回以上のESD試験(接触放電試験)に耐えてESD抑制ピーク電圧を500V以下に維持することができる。しかも、表電極材料の銅-ニッケル膜又は銅-ニッケル-銀膜は、銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜を窒素雰囲気において800℃~950℃の範囲のピーク温度(例えばピーク温度900℃)で焼成して形成することができるため、高温の焼成炉は不要であり、且つ、爆発性ガスの管理を厳しくする必要もない。従って、製造設備が安価になり、且つ、製造管理を怠って人命にかかわる事態となる可能性がないことから、厳しい製造管理も不要になるため、銅-ニッケル膜又は銅-ニッケル-銀膜は低コストで形成することができる。このため、静電気保護部品100,300,400の製造コストを低減することができる。
 また、銅-ニッケル膜、銅-ニッケル-銀膜及びタングステン膜の3種とも500回のESD試験に耐えてリーク電流10μA以下の規定を満足することはできるが、銅-ニッケル膜及び銅-ニッケル-銀膜の場合は、タングステン膜の場合に比べてESD電圧印加回数によるリーク電流の変動が非常に小さく、ESD電圧印加に対する絶縁性の耐力が高い。更に銅-ニッケル-銀膜の場合は、銅-ニッケル膜の場合に比べて最初にリーク電流のピーク(大きな変動)が発生するESD電圧印加回数が多く、ESD電圧印加に対する絶縁性の耐力が高い。
Therefore, according to the electrostatic protection component 100, 300, 400 or the manufacturing method thereof according to the present embodiment, the material of the surface electrodes 2a, 2b is a copper-nickel film or a copper-nickel-silver film. Withstands an ESD test (contact discharge test), the ESD suppression peak voltage can be maintained at 500 V or less. In addition, the copper-nickel film or the copper-nickel-silver film as the surface electrode material has a peak temperature in the range of 800 ° C. to 950 ° C. in a nitrogen atmosphere (for example, a copper-nickel paste film or a copper-nickel-silver paste film). Since it can be formed by firing at a peak temperature of 900 ° C., a high-temperature firing furnace is not necessary, and it is not necessary to strictly control the explosive gas. Therefore, since the manufacturing equipment becomes inexpensive and there is no possibility of causing a life-threatening situation by neglecting the production management, strict production management is not required, so the copper-nickel film or the copper-nickel-silver film is It can be formed at low cost. For this reason, the manufacturing cost of the electrostatic protection components 100, 300, and 400 can be reduced.
In addition, the three types of copper-nickel film, copper-nickel-silver film and tungsten film can withstand 500 times ESD test and satisfy the regulation of leakage current of 10 μA or less, but the copper-nickel film and copper-nickel film. -In the case of the silver film, the fluctuation of the leakage current due to the number of times of the ESD voltage application is very small as compared with the case of the tungsten film, and the dielectric strength against the ESD voltage application is high. Furthermore, in the case of a copper-nickel-silver film, the number of ESD voltage applications where the peak of leak current (large fluctuation) first occurs is larger than in the case of a copper-nickel film, and the dielectric strength against ESD voltage application is high. .
 また、第1の工程の後に第2の工程を実施し、且つ、第2の工程では、空気雰囲気において、第1の工程で表電極膜2を焼成するときのピーク温度(例えば900℃)よりも低いピーク温度(600℃)で裏電極3a,3bを焼成することも特徴としているため、裏電極3a,3bが変質するのを防止することができる。即ち、仮に第2の工程の後に第1の工程を実施したとすると、後の第1の工程において表電極膜2を高いピーク温度(例えば900℃)で焼成するときに裏電極3a,3bも高いピーク温度で再焼成されるため、裏電極3a,3bが変質してしまうおそれがある。これに対して、第1の工程の後に前記第2の工程を実施すれば、裏電極3a,3bが変質するおそれはない。
 しかも、第1の工程の後に前記第2の工程を実施する場合、先の第1の工程で焼成する表電極膜2(表電極2a,2b)の材料が銅-ニッケル膜又は銅-ニッケル-銀膜であるため、後の第2の工程において裏電極3a,3bを空気雰囲気で焼成しても、このときに表電極膜2(表電極2a,2b)の外観に顕著な変化が生じることはない。従って、裏電極3a,3bを空気雰囲気で焼成することが可能であるため、裏電極3a,3bの形成が容易である。
In addition, the second step is performed after the first step, and in the second step, the peak temperature (for example, 900 ° C.) when the surface electrode film 2 is baked in the first step in an air atmosphere. Since the back electrodes 3a and 3b are also fired at a low peak temperature (600 ° C.), the back electrodes 3a and 3b can be prevented from being altered. That is, if the first step is performed after the second step, the back electrodes 3a and 3b are also formed when the front electrode film 2 is baked at a high peak temperature (for example, 900 ° C.) in the first step. Since it is refired at a high peak temperature, the back electrodes 3a and 3b may be altered. On the other hand, if the second step is performed after the first step, there is no possibility that the back electrodes 3a and 3b are altered.
Moreover, when the second step is performed after the first step, the material of the surface electrode film 2 ( surface electrodes 2a and 2b) to be baked in the first step is a copper-nickel film or a copper-nickel- Since it is a silver film, even if the back electrodes 3a and 3b are baked in an air atmosphere in the second step later, a noticeable change occurs in the appearance of the surface electrode film 2 ( front electrodes 2a and 2b) at this time. There is no. Therefore, since the back electrodes 3a and 3b can be fired in an air atmosphere, the back electrodes 3a and 3b can be easily formed.
 なお、上記では1つのセラミックス基板1上に1つの静電気保護膜5を形成した静電気保護部品の実施の形態例を述べたが、これに限定するものではなく、1つのセラミックス基板1上に2つ以上の静電気保護膜5を形成した静電気保護部品も、本発明の範囲内とする。 In the above description, the embodiment of the electrostatic protection component in which one electrostatic protection film 5 is formed on one ceramic substrate 1 has been described. However, the present invention is not limited to this, and two electrostatic protection components are provided on one ceramic substrate 1. The electrostatic protection component formed with the above-described electrostatic protection film 5 is also within the scope of the present invention.
 また、上記では、シリコーン樹脂とアルミニウム粉と酸化亜鉛粉の3成分を混練したペーストを用いて静電気保護膜を形成する場合について説明したが、必ずしもこれに限定するものではなく、本発明の静電気保護部品の構造は、上記とは異なる成分の材料で静電気保護膜が形成されている静電気保護部品にも適用することができる。 Moreover, although the above demonstrated the case where an electrostatic protective film was formed using the paste which knead | mixed three components of silicone resin, aluminum powder, and zinc oxide powder, it does not necessarily limit to this and the electrostatic protection of this invention The structure of the component can also be applied to an electrostatic protection component in which an electrostatic protection film is formed of a material having a component different from the above.
 本発明は静電気保護部品及びその製造方法に関するものであり、静電気保護部品の500回以上のESD試験(接触放電試験)に耐えてESD抑制ピーク電圧を500V以下に維持することが可能な表電極を、低コストで形成する場合に適用して有用なものである。 The present invention relates to an electrostatic protection component and a manufacturing method thereof, and a surface electrode capable of withstanding an ESD test (contact discharge test) of 500 times or more and maintaining an ESD suppression peak voltage at 500 V or less. It is useful when applied at low cost.
 1 セラミックス基板
 1a 基板表面
 1b 基板裏面
 1c,1d 基板端面
 2 表電極膜
 2a,2b 表電極
 2a-1,2a-2,2b-1,2b-2 表電極の端部
 2a-3,2b-3 表電極の上面
 2a-4,2a-5,2b-4,2b-5 表電極の側面
 2a-6,2b-6 表電極の端面
 3a,3b 裏電極
 3a-1,3b-1 裏電極の端部
 4a,4b ギャップ
 5 静電気保護膜
 5a,5b 静電気保護膜の側部
 5c 静電気保護膜の中央部
 6a,6b 上部電極
 7 中間層
 8 保護膜
 8a,8b 保護膜の端部
 9a,9b 端面電極
 9a-1,9a-2,9b-1,9b-2 端面電極の端部
 10a,10b ニッケルめっき膜
 11a,11b スズめっき膜
 21,21a,21b ガラス膜
 21a-1,21b-1 ガラス膜の端部
 21a-2,21b-2 ガラス膜の上面
 100 静電気保護部品
 200 試料(静電気保護部品)
 300,400 静電気保護部品
DESCRIPTION OF SYMBOLS 1 Ceramic substrate 1a Substrate surface 1b Substrate back surface 1c, 1d Substrate end surface 2 Front electrode film 2a, 2b Front electrode 2a-1, 2a-2, 2b-1, 2b-2 End portion of front electrode 2a-3, 2b-3 Front electrode upper surface 2a-4, 2a-5, 2b-4, 2b-5 Front electrode side surface 2a-6, 2b-6 Front electrode end surface 3a, 3b Back electrode 3a-1, 3b-1 End of back electrode 4a, 4b Gap 5 Electrostatic protective film 5a, 5b Side of electrostatic protective film 5c Central part of electrostatic protective film 6a, 6b Upper electrode 7 Intermediate layer 8 Protective film 8a, 8b End of protective film 9a, 9b End electrode 9a -1, 9a-2, 9b-1, 9b-2 Ends of end face electrodes 10a, 10b Nickel plating films 11a, 11b Tin plating films 21, 21a, 21b Glass films 21a-1, 21b-1 Ends of glass films 21a-2 , 21b-2 Top surface of glass film 100 Electrostatic protective component 200 Sample (electrostatic protective component)
300,400 ESD protection parts

Claims (6)

  1.  絶縁基板の表面に形成され、第1のギャップを介して対向している表電極と、
     前記表電極上に形成されて前記表電極の上面及び両側面を覆い、且つ、前記第1のギャップに連なる第2のギャップを介して対向している絶縁膜と、
     中央部と両側部を有し、前記中央部が前記第1のギャップ及び第2のギャップに設けられ、前記両側部が前記絶縁膜の上面に重なっている静電気保護膜と、
    を有する静電気保護部品において、
     前記表電極の材料が、銅-ニッケル膜又は銅-ニッケル-銀膜であることを特徴とする静電気保護部品。
    A surface electrode formed on the surface of the insulating substrate and facing through the first gap;
    An insulating film formed on the surface electrode, covering an upper surface and both side surfaces of the surface electrode, and facing each other via a second gap connected to the first gap;
    An electrostatic protection film having a central part and both side parts, wherein the central part is provided in the first gap and the second gap, and the both side parts overlap an upper surface of the insulating film;
    In electrostatic protection parts having
    An electrostatic protection component wherein the material of the surface electrode is a copper-nickel film or a copper-nickel-silver film.
  2.  請求項1に記載する静電気保護部品において、
     前記絶縁基板の裏面に形成され、前記表電極に電気的に接続された裏電極を有することを特徴とする静電気保護部品。
    In the electrostatic protection component according to claim 1,
    An electrostatic protection component comprising a back electrode formed on the back surface of the insulating substrate and electrically connected to the front electrode.
  3.  請求項1に記載の静電気保護部品を製造する方法であって、
     前記絶縁基板の表面に銅-ニッケルペースト又は銅-ニッケル-銀ペーストをスクリーン印刷し、このスクリーン印刷した銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜を窒素雰囲気において800℃~950℃の範囲のピーク温度で焼成することにより、表電極膜を形成する第1の工程と、
     この第1の工程で形成した前記表電極膜の上面及び両側面を覆うように絶縁膜用ペーストをスクリーン印刷し、このスクリーン印刷した絶縁膜用ペーストの膜を焼成することにより、絶縁膜を形成する第2の工程と、
     前記第1の工程で形成した前記表電極膜と、前記第2の工程で形成した前記絶縁膜とを切断して、前記第1のギャップと前記第2のギャップとを形成する第3の工程と、
     前記中央部と前記両側部を有する形状とし、前記中央部を前記第1のギャップ及び前記第2のギャップに設け、前記両側部を前記絶縁膜の上面に重ねるように静電気保護用ペーストをスクリーン印刷し、このスクリーン印刷した静電気保護用ペーストの膜を焼き付けすることにより、前記静電気保護膜を形成する第4の工程と、
    を有することを特徴とする静電気保護部品の製造方法。
    A method of manufacturing the electrostatic protection component according to claim 1,
    The surface of the insulating substrate is screen-printed with a copper-nickel paste or a copper-nickel-silver paste, and the screen-printed copper-nickel paste film or copper-nickel-silver paste film is 800 ° C. to 950 ° C. in a nitrogen atmosphere. A first step of forming a surface electrode film by firing at a peak temperature in the range of
    The insulating film paste is screen-printed to cover the upper surface and both side surfaces of the surface electrode film formed in the first step, and the insulating film is formed by baking the screen-printed insulating film paste film A second step of:
    A third step of cutting the surface electrode film formed in the first step and the insulating film formed in the second step to form the first gap and the second gap. When,
    A shape having the central portion and the both side portions, the central portion is provided in the first gap and the second gap, and an electrostatic protection paste is screen printed so that the both side portions are overlaid on the upper surface of the insulating film. A fourth step of forming the static electricity protection film by baking the screen printed static electricity protection paste film;
    A method for producing an electrostatic protection component, comprising:
  4.  請求項2に記載の静電気保護部品を製造する方法であって、
     前記絶縁基板の表面に銅-ニッケルペースト又は銅-ニッケル-銀ペーストをスクリーン印刷し、このスクリーン印刷した銅-ニッケルペーストの膜又は銅-ニッケル-銀ペーストの膜を窒素雰囲気において800℃~950℃の範囲のピーク温度で焼成することにより、表電極膜を形成する第1の工程と、
     前記絶縁基板の裏面に電極ペーストをスクリーン印刷し、このスクリーン印刷した電極ペーストの膜を焼成することにより、前記裏電極を形成する第2の工程と、
     前記第1工程で形成した前記表電極膜の上面及び両側面を覆うように絶縁膜用ペーストをスクリーン印刷し、このスクリーン印刷した絶縁膜用ペーストの膜を焼成することにより、絶縁膜を形成する第3の工程と、
     前記第1の工程で形成した前記表電極膜と、前記第3の工程で形成した前記絶縁膜とを切断して、前記第1のギャップと前記第2のギャップとを形成する第4の工程と、
     前記中央部と前記両側部を有する形状とし、前記中央部を前記第1のギャップ及び前記第2のギャップに設け、前記両側部を前記絶縁膜の上面に重ねるように静電気保護用ペーストをスクリーン印刷し、このスクリーン印刷した静電気保護用ペーストの膜を焼き付けすることにより、前記静電気保護膜を形成する第5の工程と、
    を有することを特徴とする静電気保護部品の製造方法。
    A method of manufacturing the electrostatic protection component according to claim 2,
    The surface of the insulating substrate is screen-printed with a copper-nickel paste or a copper-nickel-silver paste, and the screen-printed copper-nickel paste film or copper-nickel-silver paste film is 800 ° C. to 950 ° C. in a nitrogen atmosphere. A first step of forming a surface electrode film by firing at a peak temperature in the range of
    A second step of forming the back electrode by screen-printing an electrode paste on the back surface of the insulating substrate and firing the screen-printed electrode paste film;
    The insulating film paste is screen-printed so as to cover the upper surface and both side surfaces of the surface electrode film formed in the first step, and the screen-printed insulating film paste film is baked to form an insulating film. A third step;
    A fourth step of cutting the surface electrode film formed in the first step and the insulating film formed in the third step to form the first gap and the second gap. When,
    A shape having the central portion and the both side portions, the central portion is provided in the first gap and the second gap, and an electrostatic protection paste is screen printed so that the both side portions are overlaid on the upper surface of the insulating film. And baking the screen-printed electrostatic protection paste film to form the electrostatic protection film,
    A method for producing an electrostatic protection component, comprising:
  5.  請求項4に記載する静電気保護部品の製造方法において、
     前記第1の工程の後に前記第2の工程を実施し、
     且つ、前記第2の工程では、前記第1の工程で前記表電極膜を焼成するときのピーク温度よりも低いピーク温度で前記裏電極を焼成すること、
    を特徴とする静電気保護部品の製造方法。
    In the manufacturing method of the electrostatic protection component described in Claim 4,
    Performing the second step after the first step;
    And in the second step, firing the back electrode at a peak temperature lower than the peak temperature when firing the front electrode film in the first step,
    A method of manufacturing an electrostatic protection component characterized by the above.
  6.  請求項3~5の何れか1項に記載する静電気保護部品の製造方法において、
     前記第1の工程で前記表電極膜を焼成するときのピーク温度は、900℃であることを特徴とする静電気保護部品の製造方法。
    In the method for manufacturing an electrostatic protection component according to any one of claims 3 to 5,
    The peak temperature when baking the said surface electrode film | membrane at a said 1st process is 900 degreeC, The manufacturing method of the electrostatic protection component characterized by the above-mentioned.
PCT/JP2012/061018 2011-09-28 2012-04-25 Electrostatic protective component and method for manufacturing same WO2013046779A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147007875A KR101572769B1 (en) 2011-09-28 2012-04-25 Electrostatic protective component and method for manufacturing same
JP2013535961A JP5671149B2 (en) 2011-09-28 2012-04-25 Method for manufacturing electrostatic protection parts
CN201280046961.5A CN103918144B (en) 2011-09-28 2012-04-25 The manufacture method of electrostatic protection element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-211934 2011-09-28
JP2011211934 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013046779A1 true WO2013046779A1 (en) 2013-04-04

Family

ID=47994846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061018 WO2013046779A1 (en) 2011-09-28 2012-04-25 Electrostatic protective component and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP5671149B2 (en)
KR (1) KR101572769B1 (en)
CN (1) CN103918144B (en)
TW (1) TWI469307B (en)
WO (1) WO2013046779A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600568B (en) * 2015-02-12 2017-03-01 苏州晶讯科技股份有限公司 A kind of ceramic electrostatic suppressor and preparation method thereof
KR101808794B1 (en) * 2015-05-07 2018-01-18 주식회사 모다이노칩 Laminated device
CN105336839A (en) * 2015-11-16 2016-02-17 格力电器(合肥)有限公司 Pad, light emitting diode (LED) and pad printing template
TWI616044B (en) * 2016-08-02 2018-02-21 久尹股份有限公司 Electrostatic discharge protection device and method of producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108865A (en) * 2003-08-06 2005-04-21 Taiyosha Electric Co Ltd Chip resistor and manufacturing method thereof
JP2005191206A (en) * 2003-12-25 2005-07-14 Matsushita Electric Ind Co Ltd Resistor and manufacturing method thereof
WO2008053717A1 (en) * 2006-10-31 2008-05-08 Panasonic Corporation Anti-static part and its manufacturing method
WO2011104849A1 (en) * 2010-02-25 2011-09-01 釜屋電機株式会社 Electrostatic protection component and production method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200625591A (en) * 2005-01-13 2006-07-16 Jumbotek Advanced Technologies Inc A structure of the monolithic chip electrostatic discharge protective device
JP2009267202A (en) * 2008-04-28 2009-11-12 Panasonic Corp Static electricity countermeasure component
CN101752790B (en) * 2008-12-17 2012-05-30 乾坤科技股份有限公司 Overvoltage protection element and manufacturing method thereof
KR101415477B1 (en) * 2009-11-26 2014-07-04 가마야 덴끼 가부시끼가이샤 Paste for electrostatic protection, electrostatic protection component, and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108865A (en) * 2003-08-06 2005-04-21 Taiyosha Electric Co Ltd Chip resistor and manufacturing method thereof
JP2005191206A (en) * 2003-12-25 2005-07-14 Matsushita Electric Ind Co Ltd Resistor and manufacturing method thereof
WO2008053717A1 (en) * 2006-10-31 2008-05-08 Panasonic Corporation Anti-static part and its manufacturing method
WO2011104849A1 (en) * 2010-02-25 2011-09-01 釜屋電機株式会社 Electrostatic protection component and production method therefor

Also Published As

Publication number Publication date
TW201314860A (en) 2013-04-01
KR20140065429A (en) 2014-05-29
CN103918144B (en) 2016-03-02
JPWO2013046779A1 (en) 2015-03-26
JP5671149B2 (en) 2015-02-18
TWI469307B (en) 2015-01-11
CN103918144A (en) 2014-07-09
KR101572769B1 (en) 2015-11-27

Similar Documents

Publication Publication Date Title
JP5439500B2 (en) Electrostatic protective paste, electrostatic protective component and method for manufacturing the same
KR101392455B1 (en) Esd protection device and method for manufacturing same
WO2011040435A1 (en) Esd protection device and manufacturing method thereof
JP5671149B2 (en) Method for manufacturing electrostatic protection parts
US20140240878A1 (en) Esd protective device
JP5649391B2 (en) ESD protection device
US20150223369A1 (en) Electrostatic protection element and method for manufacturing same
JP5378589B2 (en) Static electricity protection component and method for manufacturing the same
JP2009117735A (en) Antistatic component, and manufacturing method thereof
US8618904B2 (en) ESD protection device
JP2010027636A (en) Electrostatic countermeasure component
JP5079632B2 (en) ESD protection element
JP2007266478A (en) Electrostatic discharge protection element and manufacturing method thereof
JP6187001B2 (en) ESD protection parts
JP5614563B2 (en) Manufacturing method of ESD protection device
JP2020004581A (en) Surge protection element and method of manufacturing the same
JP2009194130A (en) Component for dealing with static electricity
JP2020004580A (en) Surge protection element and method of manufacturing the same
JP2011258490A (en) Overvoltage protection component and method of manufacturing the same
JP2010097791A (en) Overvoltage protection component
JP2011114187A (en) Overvoltage protective component
JP2011103224A (en) Overvoltage protection component
JP2010086841A (en) Overvoltage protection component and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535961

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147007875

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834930

Country of ref document: EP

Kind code of ref document: A1