WO2013044496A1 - 大悬臂波-桁钢-混凝土组合结构pc桥梁 - Google Patents

大悬臂波-桁钢-混凝土组合结构pc桥梁 Download PDF

Info

Publication number
WO2013044496A1
WO2013044496A1 PCT/CN2011/080421 CN2011080421W WO2013044496A1 WO 2013044496 A1 WO2013044496 A1 WO 2013044496A1 CN 2011080421 W CN2011080421 W CN 2011080421W WO 2013044496 A1 WO2013044496 A1 WO 2013044496A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
concrete
bridge
large cantilever
corrugated
Prior art date
Application number
PCT/CN2011/080421
Other languages
English (en)
French (fr)
Inventor
李勇
张建东
孙天明
郭帅
李敏
李军
Original Assignee
Li Yong
Zhang Jiandong
Sun Tianming
Guo Shuai
Li Min
Li Jun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Yong, Zhang Jiandong, Sun Tianming, Guo Shuai, Li Min, Li Jun filed Critical Li Yong
Priority to PCT/CN2011/080421 priority Critical patent/WO2013044496A1/zh
Publication of WO2013044496A1 publication Critical patent/WO2013044496A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/04Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/268Composite concrete-metal

Definitions

  • the invention relates to the technical field of bridges, in particular to an oversized cantilever streamlined wave- ⁇ steel-concrete composite structure PC bridge. Background technique
  • PC bridges are commonly used in existing bridges and have the advantages of high strength.
  • Existing bridges require that the main beam section be light and streamlined to reduce self-weight, reduce windage, reduce cable stress, make construction easier, and cost more economical.
  • the traditional PC bridge design adopts a smaller-sized cantilever.
  • the bridge deck is wider, due to the poor torsional performance of the corrugated steel web, there are defects in use.
  • Both PC bridges use corrugated steel webs to support the top and bottom plates.
  • the corrugated steel webs are subjected to large torque, which easily deforms the main beam of the bridge. Summary of the invention
  • the object of the present invention is to provide a large cantilever wave- ⁇ steel-concrete composite structure PC bridge, which can effectively reduce the self-weight, save steel, reduce the cost, and greatly increase the length of the cantilever. .
  • the present invention adopts the following technical solutions:
  • Large cantilever wave- ⁇ steel-concrete composite structure PC bridge including concrete roof, concrete floor, two corrugated steel webs between concrete roof and concrete floor, two The bottom end portions of the corrugated steel webs are respectively connected to the two sides of the concrete bottom plate, and the upper end portion is connected with the concrete top plate, and the angle between the two corrugated steel webs and the concrete bottom plate is not less than 90 degrees; the two corrugated steel webs There is a vertical steel truss pipe between the concrete roof and the concrete floor, and a steel slanting bracing is also arranged between the concrete roof and the concrete floor.
  • the steel slanting bracing includes two rows of inner steel slanting braces along the length direction of the large cantilever wave- ⁇ steel-concrete composite PC bridge, and the PC bridge along the large cantilever wave- ⁇ steel-concrete composite structure
  • Two rows of outer steel slanting braces are arranged in the longitudinal direction, and the lower ends of the two steel inner slanting braces are respectively connected to the two sides of the concrete floor, and the upper ends of the two inner steel slanting braces corresponding to the width direction are respectively The intersection intersects the vertical steel stern tube and the concrete roof.
  • the lower ends of the two outer steel slanting braces are respectively connected to the two sides of the concrete floor.
  • the upper end is connected to the concrete roof and the two outer steel slanting braces
  • the angle with the concrete floor is greater than
  • the angle between the two corrugated steel webs and the concrete floor is 90 degrees.
  • a longitudinal prestressed beam extending along the length of the large cantilever wave- ⁇ steel-concrete composite PC bridge is buried in the concrete roof and the concrete floor.
  • the concrete canopy is filled with the large cantilever wave- ⁇ steel-concrete combination.
  • the lower surface of the concrete roof is provided with connecting members corresponding to the corrugated steel webs respectively, and the upper ends of the two corrugated steel webs are fixedly connected to the two connecting members respectively.
  • the steel slanting bracing forms a large cantilever of the roof, which reduces the tensile stress and increases the compression resistance. It just compensates for the defects of the corrugated steel web which are not resistant to compression and torsion stiffness.
  • the main function is to fully The advantage of solving the lateral stress problem of the main beam;
  • the transverse bending stiffness of the corrugated steel web is good, and the longitudinal shear stiffness is large, which just makes up for the small lateral bending stiffness and small longitudinal shear stiffness of the steel slanting bracing.
  • the main function is to fully solve the longitudinal direction of the main beam.
  • FIG. 1 is a schematic structural view of a large cantilever wave- ⁇ steel-concrete composite PC bridge beam according to a first embodiment of the present invention
  • Figure 2 is a first phase construction drawing of the first embodiment
  • Figure 3 is a second construction drawing of the first embodiment
  • Figure 4 is a third phase construction drawing of the first embodiment
  • Figure 5 is a fourth construction drawing of the first embodiment
  • Figure 6 is a fifth construction drawing of the first embodiment
  • Figure 7 is a sixth construction drawing of the first embodiment
  • FIG. 8 is a schematic structural view of a large cantilever wave- ⁇ steel-concrete composite structure PC bridge beam according to a second embodiment of the present invention.
  • 9 is a schematic structural view of a large cantilever wave- ⁇ steel-concrete composite structure PC bridge according to a third embodiment of the present invention.
  • 10 is a schematic structural view of a large cantilever wave- ⁇ steel-concrete composite structure PC bridge according to Embodiment 4 of the present invention;
  • FIG. 11 is a schematic structural view of a large cantilever wave- ⁇ steel-concrete composite PC bridge beam according to Embodiment 5 of the present invention.
  • FIG. 12 is a schematic structural view of a large cantilever wave- ⁇ steel-concrete composite structure PC bridge according to Embodiment 6 of the present invention.
  • FIG. 13 is a schematic structural view of a large cantilever wave- ⁇ steel-concrete composite structure PC bridge beam according to Embodiment 7 of the present invention.
  • Fig. 14 is a structural schematic view showing a large cantilever wave- ⁇ steel-concrete composite structure PC bridge according to an eighth embodiment of the present invention. detailed description
  • Embodiment 1 Embodiment 1
  • a large cantilever wave- ⁇ steel-concrete composite PC bridge of the present invention comprises a concrete roof panel 1 and a concrete floor panel 2, and two corrugated steel belly portions are disposed between the concrete roof panel 1 and the concrete floor panel 1.
  • the bottom end portions of the two corrugated steel webs 5 are respectively connected to the two side edges of the concrete bottom plate 2, and the upper end portion is connected to the concrete top plate 1, and the two corrugated steel webs 5 are perpendicular to the concrete bottom plate 2, both of which are vertical
  • the direction serves as support for the sides of the concrete floor 2 and the concrete roof 1.
  • a vertical steel truss pipe 3 is disposed between the concrete corrugated web 1 and the concrete slab 2, and the upper and lower ends of the vertical steel truss pipe 3 are respectively connected to the concrete roof.
  • the intermediate portion of the panel 1 and the concrete floor 2 in the width direction serves as a vertical support for the intermediate portion of the concrete floor 2 and the concrete roof panel 1.
  • a connecting member 4 is provided on the lower surface of the concrete roof panel 1, and the upper end portion of the corrugated steel web 5 is fixedly coupled to the corresponding connecting member 4.
  • two rows of inner steel bellows braces 41 are disposed along the length direction of the two, and the two rows of inner steel bellows braces 41 are in the width direction of the combined PC beam - corresponding to each
  • the upper ends of the two corresponding inner steel slanting braces 41 intersect at the middle of the concrete roof panel 1, that is, the intersection of the vertical steel stern tube 3 and the concrete roof panel 1, and each of the two corresponding inner steel slanting braces
  • the bottoms of the 41 are respectively connected to the two side edges of the concrete floor 2, that is, the intersection of the two corrugated steel webs 5 and the concrete floor 2, and the angle between the two inner steel braces 41 and the concrete floor 2 are smaller than 90 degrees.
  • two rows of outer steel bellows braces 42 are disposed along the length direction of the two, and the two rows of outer steel bellows braces 42 are respectively located outside the two corrugated steel webs 5, and
  • the two outer steel bellows braces 42 correspond to each other in the width direction, and the bottom end portion of the Uygur steel bellows bracing joint 42 is connected to the side of the concrete floor panel 2, and the upper end portion thereof is obliquely connected to the concrete roof panel 1 On the same side, the angle between the outer steel slant bracing 42 and the concrete floor 2 is obtuse.
  • a corresponding connecting platform 1 is arranged on the concrete top plate 1.
  • the surface of the connecting platform 11 is perpendicular to the outer steel slanting bracing 42 so as to increase the connection area between the concrete top plate 1 and the outer steel slant bracing 42 to achieve a good docking effect.
  • a plurality of combined triangular supporting structures are formed, which effectively increases the strength.
  • a plurality of longitudinal prestressing bundles 6 are embedded in the concrete roof panel 1 and the concrete floor panel 1 along the length direction of both of them, and a transverse prestressing beam 7 is embedded in the concrete roof panel 1 along the width direction thereof.
  • the above-mentioned two corrugated steel webs 5 may extend in a direction away from the vertical direction such that they form an angle of more than 90 degrees with the concrete floor 2.
  • the second phase installation of vertical steel stern tube, corrugated steel web, inner steel slanting bracing and connecting parts on the concrete floor;
  • the third phase pouring the middle section of the concrete slab, and stretching the longitudinal prestressed beam;
  • the fourth period the outer steel squat bracing positioning installation
  • Phase 5 Pouring large cantilever concrete slabs and tensioning transverse prestressed bundles; Stage 6: Construction of ancillary facilities on the deck.
  • the difference between this embodiment and the first embodiment is that the concrete floor 2 of the first embodiment is replaced with the beam bottom steel tube 2a, and the corrugated steel web 5 is replaced with the steel sill web 5a.
  • this embodiment differs from the first embodiment only in that the concrete floor 2 of the first embodiment of the 4th bus is replaced with the beam bottom steel pipe 2b, and becomes a large cantilever wave-twist composite beam.
  • the difference between this embodiment and the first embodiment is only that the inner steel slanting braces 41 and the outer steel slanting braces 42 of the first embodiment are replaced by the streamlined inner steel slanting braces 41a. And the streamlined outer steel bellows bracing 42a becomes a large cantilever wave-curved composite PC beam.
  • the difference between this embodiment and the fifth embodiment is that the concrete floor of the fifth embodiment is replaced with the beam bottom steel pipe 2 c, and the corrugated steel web is replaced with the steel ball web 5 c.
  • the difference between the embodiment and the fifth embodiment is that the concrete floor of the fifth embodiment is replaced with the beam bottom steel pipe 2d to form a large cantilever wave-curved concrete composite beam.
  • the difference between this embodiment and the fifth embodiment is that the corrugated steel web of the fifth embodiment is replaced with the steel web 3d, and the large cantilever curved steel bellows combined PC beam is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

一种大悬臂波-桁钢-混凝土组合结构PC桥梁,包括混凝土顶板(1)、混凝土底板(2),混凝土顶板(1)与混凝土底板(2)之间设置有两波形钢腹板(5),两波形钢腹板(5)之间设置有位于混凝土顶板(1)和混凝土顶板(2)之间的竖向钢桁管(3),混凝土顶板(1)与混凝土底板(2)之间还设置有钢桁腹斜撑(41,42)。钢桁腹斜撑(41,42)解决主梁的横向受力问题,波形钢腹板(5)解决主梁的纵向受力问题,两者组合,充分发挥各自力学优势,应用于大跨度桥梁等工程。

Description

大悬臂波-桁钢-混凝土组合结构 PC桥梁 技术领域
本发明涉及桥梁技术领域, 具体涉及一种超大悬臂流线型波-桁 钢-混凝土组合结构 PC桥梁。 背景技术
PC桥梁是现有桥梁中的常用设计, 其具有强度高等优点。 现有 的桥梁要求主梁截面应轻巧、 流线型, 以此减轻自重、 减小风阻,降 低索的应力, 施工更容易, 造价更经济。
然而, 传统的 PC桥梁设计均采用较小尺寸的悬臂, 当桥面较宽 时, 由于波形钢腹板的抗扭性能较差, 导致存在使用缺陷, 现有的
PC桥梁均采用波形钢腹板支撑顶板和底板, 当波形钢腹板之间的尺 寸较大时, 波形钢腹板受到较大的扭矩, 容易使桥的主梁产生形变。 发明内容
针对现有技术的不足, 本发明的目的在于提供一种大悬臂波-桁 钢-混凝土组合结构 PC桥梁, 其能够有效的减轻自重、 节省钢材、降 低造价, 并大幅度的增加了悬臂的长度。
为实现上述目的, 本发明采用如下技术方案:
大悬臂波-桁钢-混凝土组合结构 PC桥梁, 包括混凝土顶板、 混 凝土底板, 混凝土顶板与混凝土底板之间还设置有两波形钢腹板,两 波形钢腹板的底端部分别连接在混凝土底板的两侧,上端部则与混凝 土顶板连接,该两波形钢腹板与混凝土底板之间的夹角不小于 90度; 两波形钢腹板之间设置有位于混凝土顶板和混凝土底板之间的竖向 钢桁管, 混凝土顶板与混凝土底板之间还设置有钢桁腹斜撑。
钢桁腹斜撑包括沿该大悬臂波-桁钢-混凝土组合结构 PC桥梁的 长度方向设置的两列内钢桁腹斜撑、以及沿该大悬臂波-桁钢-混凝土 组合结构 PC桥梁的长度方向设置的两列外钢桁腹斜撑, 两列内钢桁 腹斜撑的下端部分别连接在混凝土底板的两侧,其二者沿宽度方向对 应的两内钢桁腹斜撑的上端部相交于竖向钢桁管与混凝土顶板的连 接处, 两列外钢桁腹斜撑的下端部分别连接在混凝土底板的两侧,上 端部连接在混凝土顶板上,两外钢桁腹斜撑与混凝土底板的夹角大于
90度。
两波形钢腹板与混凝土底板之间的夹角为 90度。
混凝土顶板和混凝土底板内均填埋有沿该大悬臂波-桁钢-混凝 土组合结构 PC桥梁长度方向延伸的纵向预应力束, 混凝土顶板内填 埋有沿该大悬臂波-桁钢-混凝土组合结构 PC桥梁宽度方向延伸的横 向预应力束。
混凝土顶板的下表面设置有分别于梁波形钢腹板对应的连接件, 两波形钢腹板的上端部分别固定连接在两连接件上。
本发明的有益效果在于:
1、 钢桁腹斜撑形成顶板大悬臂, 降低拉应力、 增大了抗压性能, 正好弥补波形钢腹板不抗压、抗扭刚度小的缺陷, 主要作用是充分发 挥其解决主梁的横向受力问题的优势;
2、 波形钢腹板横向抗弯刚度好, 纵向抗剪刚度大, 正好弥补钢 桁腹斜撑横向抗弯刚度小、纵向抗剪刚度小的缺陷, 主要作用是充分 发挥其解决主梁的纵向受力问题的优势;大悬臂钢桁腹与波形钢腹板 组合结构, 充分发挥了其各自的力学优势, 在大跨度桥梁等工程应用 方面, 具有极其重要的意义;
3、 结构受力非常合理, 造型美观, 自重 4艮轻, 节省模板支架, 结构轻巧美观, 施工方便, 缩短施工周期, 造价经济。 附图说明
图 1为本发明实施例一的大悬臂波-桁钢-混凝土组合结构 PC桥 梁的结构示意图;
图 2为实施例一第一期施工图;
图 3为实施例一第二期施工图;
图 4为实施例一第三期施工图;
图 5为实施例一第四期施工图;
图 6为实施例一第五期施工图;
图 7为实施例一第六期施工图;
图 8为本发明实施例二的大悬臂波-桁钢-混凝土组合结构 PC桥 梁的结构示意图;
图 9为本发明实施例三的大悬臂波-桁钢-混凝土组合结构 PC桥 梁的结构示意图; 图 10为本发明实施例四的大悬臂波-桁钢-混凝土组合结构 PC桥 梁的结构示意图;
图 11为本发明实施例五的大悬臂波-桁钢-混凝土组合结构 PC桥 梁的结构示意图;
图 12为本发明实施例六的大悬臂波-桁钢-混凝土组合结构 PC桥 梁的结构示意图;
图 13为本发明实施例七的大悬臂波-桁钢-混凝土组合结构 PC桥 梁的结构示意图;
图 14为本发明实施例八的大悬臂波-桁钢-混凝土组合结构 PC桥 梁的结构示意图。 具体实施方式
下面, 结合附图以及具体实施方式, 对本发明做进一步描述: 实施例一
如图 1所示, 为本发明一种大悬臂波-桁钢-混凝土组合结构 PC 桥梁, 其包括混凝土顶板 1、 混凝土底板 2 , 混凝土顶板 1与混凝土 底板 1之间还设置有两波形钢腹板 5 , 两波形钢腹板 5的底端部分别 连接在混凝土底板 2的两侧边沿, 上端部则与混凝土顶板 1连接,两 波形钢腹板 5与混凝土底板 2垂直,其均沿竖直方向作为混凝土底板 2与混凝土顶板 1之间两侧边的支撑。
两波形钢腹板 5之间设置有位于混凝土顶板 1和混凝土底板 2之 间的竖向钢桁管 3 , 竖向钢桁管 3的上、 下端部分别连接在混凝土顶 板 1和混凝土底板 2宽度方向的中间部位,作为混凝土底板 2和混凝 土顶板 1中间部分的竖向支撑。 为了方便连接, 在混凝土顶板 1的下 表面设置有连接件 4 , 上述波形钢腹板 5的上端部固定连接在相应的 连接件 4上。
混凝土顶板 1和混凝土底板 2之间沿其二者的长度方向设置有两 列内钢桁腹斜撑 41 , 该两列内钢桁腹斜撑 41在组合 PC梁宽度方向 上——对应, 每两个对应的内钢桁腹斜撑 41上端部相交于混凝土顶 板 1的中间部位, 也就是竖向钢桁管 3与混凝土顶板 1的相交处,每 两个互相对应的内钢桁腹斜撑 41的底部均分别连接在混凝土底板 2 的两侧边缘, 也就是两个波形钢腹板 5与混凝土底板 2的相交处,两 个内钢桁腹斜撑 41与混凝土底板 2的夹角均小于 90度。
混凝土顶板 1和混凝土底板 2之间沿其二者的长度方向设置有两 列外钢桁腹斜撑 42 , 该两列外钢桁腹斜撑 42分别位于两波形钢腹板 5的外侧, 并且两列外钢桁腹斜撑 42在宽度方向上两两相对应, 夕卜 钢桁腹斜撑 42的底端部连接在混凝土底板 2的侧边, 其上端部朝外 倾斜连接在混凝土顶板 1的同一侧, 外钢桁腹斜撑 42与混凝土底板 2的夹角呈钝角, 为了实现外钢桁腹斜撑 42与混凝土顶板 1的连接, 在混凝土顶板 1上设置有对应的连接台 1 1 , 该连接台 11的表面与外 钢桁腹斜撑 42垂直,从而增大了混凝土顶板 1与外钢桁腹斜撑 42的 连接面积, 实现良好的对接效果。
上述组合 PC梁由于设置内钢桁腹斜撑 41及外钢桁腹斜撑 42 , 因此, 形成多个组合的三角支撑结构, 有效的增加了强度。 同时,在上述混凝土顶板 1和混凝土底板 1内沿其二者的长度方 向, 均预埋有多根纵向预应力束 6 , 在混凝土顶板 1内沿其宽度方向 预埋有横向预应力束 7。
根据公知技术常识, 上述的两波形钢腹板 5的延伸方向还可以 是偏离竖直方向, 使其与混凝土底板 2形成的夹角大于 90度。
如图 1至图 7所示, 为本实施例的桥梁的施工方法。
第一期: 施工混凝土底板;
第二期: 在混凝土底板上安装竖向钢桁管、 波形钢腹板、 内钢桁 腹斜撑及连接件;
第三期: 浇筑中段混凝土板, 并张拉纵向预应力束;
第四期: 外钢桁腹斜撑定位安装;
第五期: 浇筑大悬臂混凝土板, 并张拉横向预应力束; 第六期: 对桥面进行附属设施的施工。
实施例二
如图 8所示, 本实施例与实施例一的区别仅在于, 4巴实施例一的 混凝土底板 2替换为梁底钢桁管 2a, 波形钢腹板 5替换为钢桁腹板 5a, 成为大悬臂板 -桁组合梁。
实施例三
如图 9所示, 本实施例与实施例一的区别仅在于, 4巴实施例一的 混凝土底板 2替换为梁底钢桁管 2b, 成为大悬臂波 -桁组合梁。
实施例四
如图 10所示, 本实施例与实施例一的区别仅在于, 把实施例一 的波形钢腹板 5替换为钢桁腹板 5b , 成为大悬臂钢桁腹组合 PC梁。 实施例五
如图 1 1所示, 本实施例与实施例一的区别仅在于, 把实施例一 的内钢桁腹斜撑 41及外钢桁腹斜撑 42分别替换为流线型内钢桁腹斜 撑 41a及流线型外钢桁腹斜撑 42a , 成为大悬臂波-曲桁组合 PC梁。
实施例六
如图 1 2所示, 本实施例与实施例五的区别仅在于, 把实施例五 的混凝土底板替换为梁底钢桁管 2 c ,波形钢腹板替换为钢桁腹板 5 c, 成为大悬臂板-曲桁组合梁。
实施例七
如图 1 3所示, 本实施例与实施例五的区别仅在于, 把实施例五 的混凝土底板替换为梁底钢桁管 2d , 成为大悬臂波-曲线桁组合梁。
实施例八
如图 14所示, 本实施例与实施例五的区别仅在于, 把实施例五 的波形钢腹板替换为钢桁腹板 5d ,成为大悬臂曲线钢桁腹组合 PC梁。
对于本领域的技术人员来说,可根据以上描述的技术方案以及构 思,做出其它各种相应的改变以及变形, 而所有的这些改变以及变形 都应该属于本发明权利要求的保护范围之内。

Claims

权 利 要 求 书
1、 大悬臂波-桁钢-混凝土组合结构 PC桥梁, 包括混凝土顶板、 混凝土底板, 其特征在于, 混凝土顶板与混凝土底板之间还设置有两 波形钢腹板, 两波形钢腹板的底端部分别连接在混凝土底板的两侧, 上端部则与混凝土顶板连接,该两波形钢腹板与混凝土底板之间的夹 角不小于 90度; 两波形钢腹板之间设置有位于混凝土顶板和混凝土 底板之间的竖向钢桁管 ,混凝土顶板与混凝土底板之间还设置有钢桁 腹斜撑。
2、如权利要求 1所述的大悬臂波-桁钢-混凝土组合结构 PC桥梁, 其特征在于, 钢桁腹斜撑包括沿该大悬臂波-桁钢-混凝土组合结构
PC桥梁的长度方向设置的两列内钢桁腹斜撑、 以及沿该大悬臂波-桁 钢-混凝土组合结构 PC桥梁的长度方向设置的两列外钢桁腹斜撑,两 列内钢桁腹斜撑的下端部分别连接在混凝土底板的两侧,其二者沿宽 度方向对应的两内钢桁腹斜撑的上端部相交于竖向钢桁管与混凝土 顶板的连接处,两列外钢桁腹斜撑的下端部分别连接在混凝土底板的 两侧, 上端部连接在混凝土顶板上, 两外钢桁腹斜撑与混凝土底板的 夹角大于 90度。
3、如权利要求 1所述的大悬臂波-桁钢-混凝土组合结构 PC桥梁, 其特征在于, 两波形钢腹板与混凝土底板之间的夹角为 90度。
4、如权利要求 1所述的大悬臂波-桁钢-混凝土组合结构 PC桥梁, 其特征在于, 混凝土顶板和混凝土底板内均填埋有沿该大悬臂波-桁 钢-混凝土组合结构 PC桥梁长度方向延伸的纵向预应力束,混凝土顶 板内填埋有沿该大悬臂波-桁钢-混凝土组合结构 PC桥梁宽度方向延 伸的横向预应力束。
5、如权利要求 1所述的大悬臂波-桁钢-混凝土组合结构 PC桥梁, 其特征在于,混凝土顶板的下表面设置有分别于梁波形钢腹板对应的 连接件, 两波形钢腹板的上端部分别固定连接在两连接件上。
PCT/CN2011/080421 2011-09-30 2011-09-30 大悬臂波-桁钢-混凝土组合结构pc桥梁 WO2013044496A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/080421 WO2013044496A1 (zh) 2011-09-30 2011-09-30 大悬臂波-桁钢-混凝土组合结构pc桥梁

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/080421 WO2013044496A1 (zh) 2011-09-30 2011-09-30 大悬臂波-桁钢-混凝土组合结构pc桥梁

Publications (1)

Publication Number Publication Date
WO2013044496A1 true WO2013044496A1 (zh) 2013-04-04

Family

ID=47994161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080421 WO2013044496A1 (zh) 2011-09-30 2011-09-30 大悬臂波-桁钢-混凝土组合结构pc桥梁

Country Status (1)

Country Link
WO (1) WO2013044496A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103643625A (zh) * 2013-12-29 2014-03-19 长安大学 一种基于抗剪连接构造的钢桁架-混凝土板组合梁
CN103882797A (zh) * 2014-04-08 2014-06-25 西安公路研究院 一种波形钢腹板组合箱梁及其施工工艺
CN103938549A (zh) * 2014-05-14 2014-07-23 河南省交通规划勘察设计院有限责任公司 装配式波形钢斜腹板组合梁的施工方法
CN104099859A (zh) * 2014-06-20 2014-10-15 中铁大桥勘测设计院集团有限公司 公路和铁路双层钢-混结合梁
CN105178166A (zh) * 2015-10-15 2015-12-23 上海市政工程设计研究总院(集团)有限公司 一种带横肋组合钢箱梁桥
CN105507134A (zh) * 2016-01-08 2016-04-20 同济大学 一种用于连续梁桥地震作用下的机械式锁定装置
CN109252455A (zh) * 2018-10-11 2019-01-22 中铁大桥勘测设计院集团有限公司 一种多主桁钢桁梁结构的悬臂拼装施工方法
WO2021018119A1 (zh) * 2019-07-31 2021-02-04 中铁二院工程集团有限责任公司 公铁混合布置的箱-桁组合梁截面

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336117A (ja) * 2000-05-31 2001-12-07 Kajima Corp 断面分割型プレキャストセグメント工法
JP2003119718A (ja) * 2001-10-09 2003-04-23 Haltec:Kk 橋 梁
JP2006322182A (ja) * 2005-05-18 2006-11-30 Sumitomo Mitsui Construction Co Ltd 波形鋼板ウェブ橋
CN102140777A (zh) * 2011-04-01 2011-08-03 深圳市市政设计研究院有限公司 一种多弦杆组合梁结构
CN102425099A (zh) * 2011-09-30 2012-04-25 李勇 大悬臂波-桁组合pc桥梁及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336117A (ja) * 2000-05-31 2001-12-07 Kajima Corp 断面分割型プレキャストセグメント工法
JP2003119718A (ja) * 2001-10-09 2003-04-23 Haltec:Kk 橋 梁
JP2006322182A (ja) * 2005-05-18 2006-11-30 Sumitomo Mitsui Construction Co Ltd 波形鋼板ウェブ橋
CN102140777A (zh) * 2011-04-01 2011-08-03 深圳市市政设计研究院有限公司 一种多弦杆组合梁结构
CN102425099A (zh) * 2011-09-30 2012-04-25 李勇 大悬臂波-桁组合pc桥梁及其制造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103643625A (zh) * 2013-12-29 2014-03-19 长安大学 一种基于抗剪连接构造的钢桁架-混凝土板组合梁
CN103643625B (zh) * 2013-12-29 2015-08-05 长安大学 一种基于抗剪连接构造的钢桁架-混凝土板组合梁
CN103882797A (zh) * 2014-04-08 2014-06-25 西安公路研究院 一种波形钢腹板组合箱梁及其施工工艺
CN103882797B (zh) * 2014-04-08 2015-11-04 西安公路研究院 一种波形钢腹板组合箱梁及其施工工艺
CN103938549A (zh) * 2014-05-14 2014-07-23 河南省交通规划勘察设计院有限责任公司 装配式波形钢斜腹板组合梁的施工方法
CN103938549B (zh) * 2014-05-14 2016-05-04 河南省交通规划设计研究院股份有限公司 装配式波形钢斜腹板组合梁的施工方法
CN104099859A (zh) * 2014-06-20 2014-10-15 中铁大桥勘测设计院集团有限公司 公路和铁路双层钢-混结合梁
CN105178166A (zh) * 2015-10-15 2015-12-23 上海市政工程设计研究总院(集团)有限公司 一种带横肋组合钢箱梁桥
CN105507134A (zh) * 2016-01-08 2016-04-20 同济大学 一种用于连续梁桥地震作用下的机械式锁定装置
CN109252455A (zh) * 2018-10-11 2019-01-22 中铁大桥勘测设计院集团有限公司 一种多主桁钢桁梁结构的悬臂拼装施工方法
CN109252455B (zh) * 2018-10-11 2020-05-05 中铁大桥勘测设计院集团有限公司 一种多主桁钢桁梁结构的悬臂拼装施工方法
WO2021018119A1 (zh) * 2019-07-31 2021-02-04 中铁二院工程集团有限责任公司 公铁混合布置的箱-桁组合梁截面

Similar Documents

Publication Publication Date Title
WO2013044496A1 (zh) 大悬臂波-桁钢-混凝土组合结构pc桥梁
CN102535328B (zh) 管内预应力钢管桁架组合简支梁结构
CN101936054A (zh) 钢桁腹组合pc梁及其施工方法
CN103061243B (zh) 一种预应力钢管混凝土组合桁梁及其施工方法
CN104988844A (zh) 二次张拉预应力装配式波形钢腹板组合梁及其施工方法
CN109610310B (zh) 适用于悬臂状态的型钢-uhpc组合桥面结构及其施工方法
CN109797651B (zh) 一种带有波形钢板内模的扁平组合箱梁
CN113882238A (zh) 大跨度上承式索辅梁拱组合刚构桥及其施工方法
CN210596977U (zh) 一种钢管-钢板组合腹板钢混组合箱梁
CN102425099A (zh) 大悬臂波-桁组合pc桥梁及其制造方法
CN110029569B (zh) 一种波形钢腹板-桁式弦杆uhpc组合箱梁及其施工方法
CN201778436U (zh) 钢桁腹组合pc梁
CN111794423A (zh) 一种钢-混凝土组合梁结构、建筑物及施工方法
CN109629418B (zh) 一种密纵梁体系分段预应力叠合混凝土桥面板及施工方法
CN108265613B (zh) 一种钢桁拱的钢混拱圈弦杆构造
CN109594461B (zh) 一种拼装钢混凝土组合梁及其成型方法
CN213539440U (zh) 一种装配式叠合楼板
CN115748417A (zh) 波形钢腹板-分段预应力钢管砼连续组合桥梁及施工方法
JP2963879B2 (ja) 橋 桁
CN101294431B (zh) 钢-砼组合桁架楼板构建方法
CN208440963U (zh) 一种uhpc小箱梁结构
CN109972512B (zh) 一种压型钢板-混凝土组合桥面板的现浇施工方法
CN113216386A (zh) 全装配钢混组合框架-支撑建筑结构体系
CN203096595U (zh) 一种预应力钢管混凝土组合桁梁
CN113106846A (zh) 一种装配式拉筋钢管混凝土组合梁及其施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873221

Country of ref document: EP

Kind code of ref document: A1