WO2013042853A1 - 유량 연동형 비례제어식 감압 밸브 시스템 - Google Patents

유량 연동형 비례제어식 감압 밸브 시스템 Download PDF

Info

Publication number
WO2013042853A1
WO2013042853A1 PCT/KR2012/003451 KR2012003451W WO2013042853A1 WO 2013042853 A1 WO2013042853 A1 WO 2013042853A1 KR 2012003451 W KR2012003451 W KR 2012003451W WO 2013042853 A1 WO2013042853 A1 WO 2013042853A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
outlet
pressure
inlet
valve
Prior art date
Application number
PCT/KR2012/003451
Other languages
English (en)
French (fr)
Inventor
조진식
Original Assignee
주식회사 바램
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바램 filed Critical 주식회사 바램
Publication of WO2013042853A1 publication Critical patent/WO2013042853A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • G05D7/0106Control of flow without auxiliary power the sensing element being a flexible member, e.g. bellows, diaphragm, capsule
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/126Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like

Definitions

  • the present invention relates to a flow rate linked proportional pressure reducing valve system, and more particularly, to a flow rate linked proportional pressure reducing valve system in which the secondary pressure is automatically set in proportion to the flow rate of the secondary side of the main valve.
  • Pressure reducing valve refers to a valve that depressurizes the fluid when the pressure of the fluid is higher than the intended use, and maintains the pressure after depressurization.
  • Many pilot pressure reducing valves are adopted to control the water pressure of the water.
  • the pilot pressure reducing valve adjusts the pressure adjusting screw to adjust the desired water pressure.
  • the pilot pressure reducing valve has a function of always reducing the pressure to a set pressure regardless of the amount of water used at the outlet side of the valve.
  • large pressure reducing valves and small capacity reducing valves are installed in parallel in the water supply system, and the set pressures of these valves are varied so that the large pressure reducing valve is used during the day and the small pressure reducing valve is used at night.
  • a method of controlling is proposed, the system is complicated and requires a lot of installation cost, and is supplied at low pressure when the flow rate is high and at high pressure when the flow rate is low. There was a problem that breakage of the pipe due to high pressure occurs or the leak rate increases.
  • control valve system when the electronic controller is used, the control valve system is often flooded or the controller is damaged due to moisture, so there is a problem in that it takes a lot of time and money to follow-up.
  • the application No. 10-2011-0003340 is a flow rate that can automatically change the supply pressure to a high pressure when the use flow rate is large, low pressure when the use flow rate is small according to the actual use flow rate change
  • An interlock pressure reducing valve system has been proposed.
  • Flow rate-linked proportional control pressure reducing valve system detects the flow rate actually used to gradually supply a high pressure when the water consumption is increased, the flow rate interlock can be supplied proportionally low pressure when the water usage is reduced
  • the purpose is to provide a type proportional pressure reducing valve system.
  • the flow-linked proportional control valve system has an inlet and an outlet connected in series to the main pipe to which the fluid is supplied, and the diaphragm is separated into an upper chamber in communication with the inlet and a lower chamber in communication with the outlet.
  • a main valve for selectively widening or narrowing a flow path between the inlet and the outlet according to the pressure in the upper chamber and the pressure difference between the outlet side, a support plate protruding from the outlet side of the main valve to the inner circumferential surface and at the center of the plate
  • a venturi part including a venturi formed, a pressure hole vertically penetrating the center of the venturi, and a first inlet and a first outlet connected to the inlet and the outlet of the main valve, respectively, the first inlet and the second outlet;
  • a main body having a sheet portion for opening and closing a flow path connected to the main body;
  • a first diaphragm portion which is installed at a portion and which opens or closes the flow path by operating the seat portion by a pressure of a main valve transmitted through the first inlet port, and is installed above the first diaphragm portion, the first diaphragm
  • a pilot valve including an elastic spring for urging the part downward, a hydraulic actuator installed with a second dia
  • venturi portion is characterized in that it is built in the outlet side of the main valve.
  • the hydraulic actuator includes a body, a second diaphragm installed on the body, an upper chamber formed through the second diaphragm, a second inlet connected to an outlet of the differential pressure control pilot valve, and a first outlet. And a second outlet connected to one end, and one end of which is connected to the second diaphragm, and the other end of which is in contact with the upper surface of the elastic spring.
  • the differential pressure control pilot valve is connected to the upper chamber to the pressure valve of the venturi and the needle valve for opening and closing the auxiliary flow path connecting the upper chamber of the first inlet and the second diaphragm, the lower chamber at the first outlet Is connected, characterized in that it comprises a diaphragm portion which is interlocked with the needle valve and the elastic spring for pressing the diaphragm portion downward and an adjustment switch for adjusting the tension of the elastic spring.
  • a pilot valve including a hydraulic actuator is operated in proportion to the use flow rate by detecting a change in the flow rate of the secondary valve of the main valve through the venturi part, so that the secondary pressure is automatically set. Therefore, when the actual water usage is low, the pressure set value and when the water usage is high, when the pressure set value is determined, there is an advantage that the secondary pressure value is automatically proportionally adjusted according to the water usage.
  • FIG. 1 is a conceptual diagram showing a flow rate linked proportional pressure reducing valve system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a pilot valve using a hydraulic actuator according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing a differential pressure control pilot valve according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating a venturi unit according to an exemplary embodiment of the present invention.
  • FIG. 5 is an exemplary diagram illustrating various embodiments of a proportional controlled pressure reducing valve system in accordance with a preferred embodiment of the present invention.
  • FIG. 1 is a conceptual diagram showing a flow rate linked proportional pressure reducing valve system according to an embodiment of the present invention.
  • the flow rate linked proportional pressure reducing valve system includes a main valve 10, a venturi part 400, a differential pressure control pilot valve 300, and a pilot valve 100 including a hydraulic actuator.
  • the main valve 10 has an inlet 11 and an outlet 12 connected in series with a main pipe to which fluid is supplied, and an upper chamber S1 communicating with the inlet and a lower chamber S2 communicating with the outlet.
  • the diaphragm 13 separating each other selectively widens or narrows the flow path between the inlet and the outlet according to the pressure difference between the pressure in the upper chamber and the outlet side.
  • the pilot valve 100 including the hydraulic actuator is formed with a first inlet and a first outlet connected to the inlet and outlet of the main valve, respectively, opening and closing the flow path connected to the first inlet and the second outlet.
  • a first diaphragm portion having a seat portion formed therein, a first diaphragm portion installed in the main body and operated to open or close the flow path by operating the seat portion by a pressure of a main valve transmitted through the first inlet port, and an upper side of the first diaphragm portion;
  • An elastic spring installed in the first diaphragm and a second diaphragm operated through a fluid flowing from the main valve, and a piston interlocked with the second diaphragm to pressurize the elastic spring; It includes a formula actuator.
  • FIG. 2 is a cross-sectional view of a pilot valve using a hydraulic actuator according to an embodiment of the present invention.
  • the pilot valve 100 using the hydraulic actuator according to the present invention includes a main body 110, a first diaphragm portion 120, an elastic spring 130, and a hydraulic actuator 200.
  • the main body 110 has a first inlet 112 and a first outlet 114 connected to the main valve, and the flow path 113 connected to the first inlet 112 and the second outlet 114.
  • the seat part 114 which opens and closes is formed.
  • the first diaphragm part is installed inside the main body 110, and operates the seat part 114 by the pressure of the main valve transmitted through the first inlet 112 to open or open the flow passage 113. It is closed.
  • the elastic spring 130 is installed above the first diaphragm portion 120, and is installed to press the first diaphragm portion 120 downward.
  • the operation of the pilot valve is determined by the difference between the secondary pressure of the main valve transmitted through the first inlet 112 and the bearing force of the elastic spring, and the actuator 200 determines the degree of compression of the elastic spring. .
  • the seat part 116 opens the flow path 113 by the actuator 200.
  • Actuator according to the present invention is operated hydraulically, looking at the hydraulic actuator in more detail,
  • the actuator 200 is provided with a second diaphragm 220 operated through a fluid flowing from the main valve, and is interlocked with the second diaphragm 220 to elastically spring the pilot valve 100.
  • the piston 230 for pressurizing the 130 is installed.
  • the hydraulic actuator according to the present invention includes a body 210, a second diaphragm 220 installed on the body 210, and an upper chamber formed through the second diaphragm 220.
  • a support plate 132 may be inserted between the piston 230 and the upper surface of the elastic spring 130 to allow smooth contact.
  • primary and secondary needle valves 240 and 250 may be installed at the second inlet 212 and the second outlet 214. By adjusting the needle valve (240, 250) it is possible to adjust the speed at which the pressure is changed.
  • FIG 3 is a cross-sectional view showing a differential pressure control pilot valve according to an embodiment of the present invention.
  • the differential pressure control pilot valve 300 shown in FIG. 3 is a needle valve for opening and closing an auxiliary flow path (which is the fourth auxiliary flow path in FIG. 1) connecting the first inlet of the main valve and the upper chamber of the second diaphragm.
  • An upper chamber is connected to the pressure hole 310 and the venturi part, and an elastic spring 330 presses the diaphragm part 320 and the diaphragm part 320 which are connected to the first outlet and cooperate with the needle valve.
  • an adjustment switch 340 for adjusting the tension of the elastic spring 330.
  • a needle valve 310 that opens and closes the flow path is installed in conjunction with the diaphragm 320, and an elastic spring for vertically pushing the diaphragm 320 on the upper side of the diaphragm 320 so that the needle valve opens and closes the flow path. 330 is installed.
  • control switch 340 for adjusting the elastic force of the elastic spring 330 is installed on the upper portion of the elastic spring 330.
  • venturi unit Next, the venturi unit will be described.
  • FIG. 4 is a conceptual diagram illustrating a venturi unit according to an exemplary embodiment of the present invention.
  • the venturi part perpendicularly to the center of the venturi 410 and the venturi 410 formed at the center of the plate 430 and the support plate 430 protruding from the outlet side of the main valve to the inner circumferential surface thereof. It includes a penetrating pressure hole 420.
  • the fluid flowing in the conduit shows the greatest velocity gradient in the center, and thus the lowest pressure is measured when the pressure is measured in the vicinity.
  • the venturi 410 is installed at the center of the outlet 12 (secondary side) of the main valve through the support plate 430 to measure the secondary pressure.
  • the venturi unit 400 is installed between the main valve 10 and the supply pipe (V), the auxiliary inlet (11a) at the inlet and outlet of the main valve (10). And an auxiliary outlet port 12a is connected to the first inlet port and the first outlet ports 112 and 114 of the pilot valve 100 including the hydraulic actuator through the first and second auxiliary flow paths P1 and P2.
  • first auxiliary flow path is connected to a third auxiliary flow path connected to the upper chamber S1 of the main valve and a fourth auxiliary flow path connected to the differential pressure control pilot valve 300.
  • the lower chamber of the differential pressure control pilot valve 300 is connected to the auxiliary outlet 12a, and the pressure hole of the upper chamber and the venturi part 400 is connected through the sixth auxiliary flow path.
  • the secondary needle valve 250 of the pilot valve 100 using the hydraulic actuator is connected to the second auxiliary flow path through the seventh auxiliary flow path.
  • the venturi part 400 rapidly increases the flow rate, and the pressure transmitted through the pressure hole drops rapidly.
  • the differential pressure control pilot valve 300 gradually starts to open and, depending on the degree of opening, the fluid passes through the secondary side and passes through the primary needle 240 of the pilot valve 100 using the hydraulic actuator to the upper chamber. Will be supplied.
  • the secondary needle valve 250 which is the discharge side of the upper chamber of the pilot valve 100 using the hydraulic actuator
  • the inflow and discharge amounts of the pilot valve 100 using the hydraulic actuator are balanced.
  • the set pressure at that time is maintained as it is.
  • FIG. 5 is an exemplary diagram illustrating various embodiments of a proportional controlled pressure reducing valve system in accordance with one preferred embodiment of the present invention.
  • FIG. 5A illustrates the venturi part 400 embedded in the outlet 12 side of the main valve 10, and the embodiment illustrated in FIG. 1 illustrates the main valve 10. Venturi is installed on the outlet side and the supply pipe (V).
  • 5 (b) and 5 (c) show an embodiment applied to a globe type and a Y-type, respectively, and a detailed description thereof will be omitted.
  • the present invention has as its main technical idea to provide a proportional control pressure reducing valve system that sets pressure proportionally according to actual capacity, and the embodiment described above with reference to the drawings is only one embodiment. The true scope of the invention should be determined by the claims.
  • the present invention relates to a flow rate linked proportional pressure reducing valve system, which can be used in the field of flow rate linked proportional pressure reducing valve system in which the secondary pressure is automatically set in proportion to the secondary flow rate of the main valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Driven Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

본 발명은 유량 연동형 비례제어식 감압 밸브 시스템에 관한 것으로서, 본 발명에 따른 유량 연동형 비례제어식 감압 밸브 시스템은 유체가 공급되는 주배관에 직렬로 연결되는 유입구와 유출구를 가지며 상기 유입구와 연통되는 상부 챔버와 상기 유출구와 연통되는 하부 챔버로 상호 분리하는 다이어프램에 의해 상기 상부 챔버 내의 압력과 상기 유출구측의 압력 차이에 따라 상기 유입구와 유출구 사이의 유로를 선택적으로 넓히거나 좁히는 메인밸브와, 상기 메인 밸브의 유출구측에서 내주면으로 돌출된 지지 플레이트와 상기 플레이트의 중심에 형성된 벤추리, 상기 벤추리의 중심에 수직으로 관통된 압력공을 포함하는 벤추리부와, 상기 메인 밸브의 유입구 및 유출구에 각각 연결되는 제1유입구와 제1유출구가 형성되며 상기 제1유입구와 제2유출구에 연결된 유로를 개폐시키는 시트부가 형성된 본체와, 상기 본체 내부에 설치되며 상기 제1유입구를 통해서 전달되는 메인 밸브의 압력에 의해서 상기 시트부를 작동시켜서 상기 유로를 개방 또는 폐쇄시키는 제1다이어프램부와, 상기 제1다이어프램부 상측에 설치되며, 상기 제1다이어프램부를 하방으로 가압시키는 탄성 스프링과, 메인 밸브로부터 유입되는 유체를 통해서 작동되는 제2다이어프램이 설치되고 상기 제2다이어프램에 연동되어 상기 탄성 스프링을 가압시키는 피스톤이 설치된 수압식 액추에이터를 포함하는 파일럿 밸브와, 상기 벤추리부의 압력공에 상부 챔버가 연결되고, 제1유출구에 하부 챔버가 연결되는 다이어프램부가 상기 제1유입구와 제2다이어프램의 상부 챔버를 연결하는 보조 유로를 개방 및 폐쇄시켜서 상기 수압식 액추에이터를 포함하는 파일럿 밸브의 제2다이어프램의 상부 챔버의 압력을 조절하는 차압 제어 파일럿 밸브를 포함하여 이루어지는 것을 특징으로 한다.

Description

유량 연동형 비례제어식 감압 밸브 시스템
본 발명은 유량 연동형 비례제어식 감압 밸브 시스템에 관한 것으로서, 메인 밸브의 2차측 사용 유량에 비례하여 2차측 압력이 자동으로 설정되는 유량 연동형 비례제어식 감압 밸브 시스템에 관한 것이다.
감압 밸브(pressure reducing valve)는 사용목적보다 유체의 압력이 높을 때 감압하고, 감압 후 압력을 일정하게 유지하는 밸브를 말하며, 용수의 수압을 조절할 수 있는 파일럿식 감압 밸브가 많이 채용되고 있으며, 이러한 파일럿식 감압 밸브는 압력 조절 나사를 조절하여 원하는 수압을 조절하게 되는데, 밸브의 유출구 측에서의 물 사용량에 관계없이 항상 설정된 압력으로만 감압시키는 기능을 가진다.
그러나 이러한 파일럿식 감압 밸브를 이용하는 경우에는 사용자가 물 사용량이 변화하는 시간대에 따라 작업자가 일일이 압력 조절 나사를 조절하여 감압 정도를 제어하여야 하는 불편함이 존재한다.
따라서 용량이 큰 감압 밸브와 용량이 작은 감압 밸브를 급수 시스템에 나란하게 병렬로 설치하고 이들 밸브의 설정 압력을 달리하여 주간에는 대용량의 감압밸브를 사용하고 야간에는 소용량의 감압 밸브를 사용함으로써 수압을 조절하는 방법이 제안되었으나, 시스템이 복잡하고 설치비가 많이 소요되며, 사용유량이 많을 때에는 저압으로, 사용 유량이 적을 때는 고압으로 공급하기 때문에 심야시간대와 같이 물 소모량이 거의 없을 때에는 배관 시스템의 말단부에서 고압으로 인한 배관의 파손이 발생되거나 누수율이 증가한다는 문제점이 있었다.
이러한 문제점을 해결하기 위해서 본 출원인에 의해서 대한민국 특허청에 출원된 출원번호 제10-2004-0063730호 등은 고압 및 저압 감압 밸브를 제어하는 별도의 콘트롤러를 설치하는 방안을 제안한 바 있지만, 이러한 기술들은 설치비용이 비싸고, 콘트롤러 등에 미리 저장된 프로그램에 의해서 실제적 사용 유량의 변화에 관계없이 고압 또는 저압으로 유체를 공급하게 되므로, 시간 변화에 따른 유량 변화를 정확히 알지 못하면 유수율을 크게 개선할 수 없다는 사용상의 문제점이 존재한다.
또한, 전자식 콘트롤러를 이용하는 경우 제어 밸브 시스템이 침수되거나 습기로 인하여 콘트롤러가 파손되는 경우가 많아서 사후관리에 많은 시간과 비용이 소요된다는 문제점이 있다.
이러한 문제점을 해결하기 위하여 출원번호 제10-2011-0003340호는 실제적인 사용 유량의 변화에 따라 사용 유량이 많은 경우에는 고압으로, 사용 유량이 적은 경우에는 저압으로 공급 압력을 자동으로 변경할 수 있는 유량 연동형 감압 밸브 시스템을 제안한 바 있다.
그러나, 이러한 유량 연동형 감압 밸브 시스템은 단순히 몇개의 감압 설정을 사전에 구현해 놓은 상태에서 조건에 따라 해당 파일럿 밸브를 구동시키는 구조이기 때문에 현장 상황에 맞게 세부적인 구동이 불가능하다는 단점이 있다.
본 발명에 따른 유량 연동형 비례제어식 감압 밸브 시스템은 실제적으로 사용되는 유량을 감지하여 물 사용량이 증가하면 점진적으로 고압으로 공급하고, 물 사용량이 줄어들면 그에 맞추어 비례적으로 저압으로 공급할 수 있는 유량 연동형 비례제어식 감압 밸브 시스템을 제공하는 데 그 목적이 있다.
본 발명에 따른 유량 연동형 비례제어식 감압 밸브 시스템은 유체가 공급되는 주배관에 직렬로 연결되는 유입구와 유출구를 가지며 상기 유입구와 연통되는 상부 챔버와 상기 유출구와 연통되는 하부 챔버로 상호 분리하는 다이어프램에 의해 상기 상부 챔버 내의 압력과 상기 유출구측의 압력 차이에 따라 상기 유입구와 유출구 사이의 유로를 선택적으로 넓히거나 좁히는 메인밸브와, 상기 메인 밸브의 유출구측에서 내주면으로 돌출된 지지 플레이트와 상기 플레이트의 중심에 형성된 벤추리, 상기 벤추리의 중심에 수직으로 관통된 압력공을 포함하는 벤추리부와, 상기 메인 밸브의 유입구 및 유출구에 각각 연결되는 제1유입구와 제1유출구가 형성되며 상기 제1유입구와 제2유출구에 연결된 유로를 개폐시키는 시트부가 형성된 본체와, 상기 본체 내부에 설치되며 상기 제1유입구를 통해서 전달되는 메인 밸브의 압력에 의해서 상기 시트부를 작동시켜서 상기 유로를 개방 또는 폐쇄시키는 제1다이어프램부와, 상기 제1다이어프램부 상측에 설치되며, 상기 제1다이어프램부를 하방으로 가압시키는 탄성 스프링과, 메인 밸브로부터 유입되는 유체를 통해서 작동되는 제2다이어프램이 설치되고 상기 제2다이어프램에 연동되어 상기 탄성 스프링을 가압시키는 피스톤이 설치된 수압식 액추에이터를 포함하는 파일럿 밸브와, 상기 벤추리부의 압력공에 상부 챔버가 연결되고, 제1유출구에 하부 챔버가 연결되는 다이어프램부가 상기 제1유입구와 제2다이어프램의 상부 챔버를 연결하는 보조 유로를 개방 및 폐쇄시켜서 상기 수압식 액추에이터를 포함하는 파일럿 밸브의 제2다이어프램의 상부 챔버의 압력을 조절하는 차압 제어 파일럿 밸브를 포함하여 이루어지는 것을 특징으로 한다.
여기서, 상기 벤추리부는 상기 메인 밸브의 유출구측에 내장됨을 특징으로 한다.
그리고, 상기 수압식 액추에이터는 몸체와, 상기 몸체에 설치되는 제2다이어프램과, 상기 제2다이어프램을 통해서 형성된 상부 챔버는 상기 차압 제어 파일럿 밸브의 유출구에 연결되는 제2유입구와, 상기 제1유출구에 연결되는 제2유출구와, 일단은 상기 제2다이어프램에 연결되고, 타단은 상기 탄성 스프링의 상부면에 접촉되는 피스톤;을 포함하여 구성되는 것을 특징으로 한다.
마지막으로, 상기 차압 제어 파일럿 밸브는 상기 제1유입구와 제2다이어프램의 상부 챔버를 연결하는 보조 유로를 개방 및 폐쇄시키는 니들 밸브와 벤추리부의 압력공에 상부 챔버가 연결되고, 제1유출구에 하부 챔버가 연결되고, 상기 니들 밸브와 연동되는 다이어프램부와 상기 다이어프램부를 하방으로 가압시키는 탄성스프링과 상기 탄성 스프링의 장력을 조절하기 위한 조절 스위치를 포함하여 이루어지는 것을 특징으로 한다.
본 발명에 따른 유량 연동형 비례제어식 감압 밸브 시스템은 벤추리부를 통해서 메인 밸브 2차측 유량의 변화를 감지하여 수압식 액추에이터를 포함하는 파일럿 밸브가 사용 유량에 비례적으로 작동되어 2차측 압력이 자동으로 설정되므로 실제적으로 물 사용량이 적을시 압력 설정값과 물 사용량이 많을시 압력 설정값이 정해졌을 경우 물 사용량에 따라 2차측 압력값이 비례적으로 자동 조절되는 장점이 있다.
도 1은 본 발명의 바람직한 일실시예에 따른 유량 연동형 비례제어식 감압 밸브 시스템을 도시하는 개념도.
도 2는 본 발명의 바람직한 일실시예에 따른 수압식 액추에이터를 이용한 파일럿 밸브의 단면도.
도 3은 본 발명의 바람직한 일실시예에 따른 차압 제어 파일럿 밸브를 도시하는 단면도.
도 4는 본 발명의 바람직한 일실시예에 따른 벤추리부를 도시하는 개념도.
도 5는 본 발명의 바람직한 일실시예에 따른 비례 제어 감압 밸브 시스템의 다양한 실시 태양을 도시하는 예시도.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 일 실시 예를 상세하게 설명하고자 한다.
도 1은 본 발명의 바람직한 일실시예에 따른 유량 연동형 비례제어식 감압 밸브 시스템을 도시하는 개념도이다.
도 1에 도시된 바와 같이 본 발명에 따른 유량 연동형 비례제어식 감압 밸브 시스템은 메인 밸브(10), 벤추리부(400), 차압 제어 파일럿 밸브(300) 및 수압식 액추에이터를 포함하는 파일럿 밸브(100)를 포함하여 이루어진다.
상기 메인 밸브(10)는 유체가 공급되는 주배관에 직렬로 연결되는 유입구(11)와 유출구(12)를 가지며 상기 유입구와 연통되는 상부 챔버(S1)와 상기 유출구와 연통되는 하부 챔버(S2)로 상호 분리하는 다이어프램(13)에 의해 상기 상부 챔버 내의 압력과 상기 유출구측의 압력 차이에 따라 상기 유입구와 유출구 사이의 유로를 선택적으로 넓히거나 좁히게 된다.
다음으로, 수압식 액추에이터를 포함하는 파일럿 밸브(100)는 상기 메인 밸브의 유입구 및 유출구에 각각 연결되는 제1유입구와 제1유출구가 형성되며 상기 제1유입구와 제2유출구에 연결된 유로를 개폐시키는 시트부가 형성된 본체와, 상기 본체 내부에 설치되며 상기 제1유입구를 통해서 전달되는 메인 밸브의 압력에 의해서 상기 시트부를 작동시켜서 상기 유로를 개방 또는 폐쇄시키는 제1다이어프램부와, 상기 제1다이어프램부 상측에 설치되며, 상기 제1다이어프램부를 하방으로 가압시키는 탄성 스프링과, 메인 밸브로부터 유입되는 유체를 통해서 작동되는 제2다이어프램이 설치되고 상기 제2다이어프램에 연동되어 상기 탄성 스프링을 가압시키는 피스톤이 설치된 수압식 액추에이터를 포함한다.
도 2는 본 발명의 바람직한 일실시예에 따른 수압식 액추에이터를 이용한 파일럿 밸브의 단면도이다.
도 2에 도시된 바와 같이 본 발명에 따른 수압식 액추에이터를 이용한 파일럿 밸브(100)는 본체(110), 제1다이어프램부(120), 탄성 스프링(130) 및 수압식 액추에이터(200)로 이루어진다.
먼저, 본체(110)는 메인 밸브에 연결되는 제1유입구(112)와 제1유출구(114)가 형성되며, 상기 제1유입구(112)와 제2유출구(114)에 연결된 유로(113)를 개폐시키는 시트부(114)가 형성된다.
그리고, 제1다이어프램부는 상기 본체(110) 내부에 설치되며, 상기 제1유입구(112)를 통해서 전달되는 메인 밸브의 압력에 의해서 상기 시트부(114)를 작동시켜서 상기 유로(113)를 개방 또는 폐쇄시키게 된다.
상기 탄성 스프링(130)은 상기 제1다이어프램부(120) 상측에 설치되며, 상기 제1다이어프램부(120)를 하방으로 가압시키도록 설치된다.
따라서, 제1유입구(112)를 통해서 전달되는 메인 밸브의 2차측 압력과 탄성 스프링의 지지력의 차이에 의해서 파일럿 밸브의 작동이 결정되며, 상기 탄성 스프링의 압축 정도를 결정하는 것이 액추에이터(200)이다.
도 2에 도시된 상태는 액추에이터(200)에 의해서 시트부(116)가 유로(113)를 개방시킨 상태이다.
본 발명에 따른 액추에이터는 수압식으로 작동되며, 보다 상세히 수압식 액추에이터에 대해 살펴보면,
도 2에 도시된 바와 같이 액추에이터(200)는 메인 밸브로부터 유입되는 유체를 통해서 작동되는 제2다이어프램(220)이 설치되고, 상기 제2다이어프램(220)에 연동되어 파일럿 밸브(100)의 탄성 스프링(130)을 가압시키는 피스톤(230)이 설치된다.
본 발명에 따른 수압식 액추에이터는 몸체(210)와, 상기 몸체(210)에 설치되는 제2다이어프램(220)과, 상기 제2다이어프램(220)을 통해서 형성된 상부 챔버와 연결되도록 상기 몸체(210)에 형성되며 메인 밸브로부터 유체가 유입되는 제2유입구(212) 및 제2유출구(214)와, 일단은 상기 제2다이어프램(220)에 연결되고 타단은 상기 탄성 스프링(130)의 상부면에 접촉되는 피스톤(230)을 포함하여 구성된다.
상기 피스톤(230)과 탄성 스프링(130)의 상부면 사이에는 지지판(132)이 삽입되어 원활한 접촉이 가능하도록 구성될 수도 있다.
그리고, 상기 제2유입구(212) 및 제2유출구(214)에는 1차 및 2차 니들 밸브(240, 250)가 설치될 수도 있다. 상기 니들 밸브(240, 250)를 조절하면 압력이 변경되는 속도를 조절할 수 있게 된다.
다음으로, 차압 제어 파일럿 밸브에 대해 살펴보기로 한다.
도 3은 본 발명의 바람직한 일실시예에 따른 차압 제어 파일럿 밸브를 도시하는 단면도이다.
도 3에 도시된 차압 제어 파일럿 밸브(300)는 메인 밸브의 제1유입구와 제2다이어프램의 상부 챔버를 연결하는 보조 유로(도 1에서 제4 보조 유로임)를 개방 및 폐쇄시켜는 니들 밸브(310)와 벤추리부의 압력공에 상부 챔버가 연결되고, 제1유출구에 하부 챔버가 연결되고 상기 니들 밸브와 연동되는 다이어프램부(320)와 상기 다이어프램부(320)를 하방으로 가압시키는 탄성스프링(330)과 상기 탄성 스프링(330)의 장력을 조절하기 위한 조절 스위치(340)를 포함하여 이루어진다.
유로를 개폐시키는 니들 밸브(310)가 다이어프램(320))에 연동되어 설치되고, 상기 다이어프램(320)의 상측에는 상기 다이어프램(320)을 수직 밀어서 니들 밸브가 유로를 개방 및 폐쇄시키도록 하는 탄성 스프링(330)가 설치된다.
여기서, 상기 탄성 스프링(330)의 상부에는 상기 탄성 스프링(330)의 탄성력을 조정하기 위한 조절 스위치(340)가 설치된다.
즉, 상기 조절 스위치(340)를 통해서 탄성 스프링(330)의 압축 상태를 조정하여 유입되는 유체의 압력에 니들 밸브(310)의 개폐 상태를 조절할 수 있다
다음으로, 벤추리부에 대해 살펴보기로 한다.
도 4는 본 발명의 바람직한 일실시예에 따른 벤추리부를 도시하는 개념도이다.
도 4의 (a)와 같이 벤추리부는 메인 밸브의 유출구측에서 내주면으로 돌출된 지지 플레이트(430)와 상기 플레이트(430)의 중심에 형성된 벤추리(410), 상기 벤추리(410)의 중심에 수직으로 관통된 압력공(420)을 포함한다.
도 4의 (c)에 도시된 바와 같이 관로 내부에 흐르는 유체는 중심부에서 가장 큰 속도 구배를 보이므로, 이 부근에서 압력을 측정하면 가장 낮게 측정된다.
따라서, 도 4의 (b)에 도시된 바와 같이 지지 플레이트(430)를 통해서 메인 밸브의 유출구(12: 2차측)의 중심에 벤추리(410)를 설치하여 2차측 압력을 측정하게 된다.
다음으로, 각 구성 요소의 결합 관계에 대해 살펴보면, 메인 밸브(10)와 공급 배관(V) 사이에는 벤추리부(400)가 설치되고, 메인 밸브(10)의 유입구 및 유출구에는 보조 유입구(11a) 및 보조 유출구(12a)가 설치되어 수압식 액추에이터를 포함하는 파일럿 밸브(100)의 제1유입구와 제1유출구(112,114)에 제1 및 제2 보조 유로(P1, P2)를 통해서 연결된다.
또한, 제1 보조 유로는 메인 밸브의 상부 챔버(S1)에 연결되는 제3 보조 유로, 차압 제어 파일럿 밸브(300)에 연결되는 제4 보조 유로가 연결된다.
그리고, 차압 제어 파일럿 밸브(300)의 하부 챔버는 보조 유출구(12a)에 연결되고, 상부 챔버와 벤추리부(400)의 압력공은 제6 보조 유로를 통해서 연결된다.
마지막으로, 수압식 액추에이터를 이용한 파일럿 밸브(100)의 2차 니들 밸브(250)는 제7 보조 유로를 통해서 제2 보조 유로를 연결된다.
다음으로 본 발명에 따른 유량 연동형 비례제어식 감압 밸브 시스템의 작동 태양에 대해서 살펴보기로 한다.(도 1를 참고하여 설명)
사용 유량이 많아져서 유속이 점점 빨라질 경우 벤추리부(400)에서는 유속이 급격히 증가하게 되고, 압력공을 통해서 전달되는 압력은 급속히 떨어지게 된다.
따라서, 차압 제어 파일럿 밸브(300)는 서서히 개방되기 시작하고 개방되는 정도에 따라서 유체가 2차측을 통과하여 수압식 액추에이터를 이용한 파일럿 밸브(100)의 1차 니들(240)을 통과하여 상부 챔버로 공급하게 된다.
이때 상부 챔버는 밀폐되어 있는 것이 아니라 2차 니들 밸브(250)을 통하여 메인 밸브(10)의 보조 유출구(12a)에 연결되어 있기 때문에 빠져 나가는 유체의 양보다 많은 양의 물이 차압 제어 파일럿 밸브(300)를 통하여 공급하게 되고, 수압식 액추에이터의 피스톤은 하강하게 되어 압력 설정점은 점진적으로 높아지게 된다.
반대로, 사용 유량이 줄어들게 되면 유속이 점점 느려지게 되어, 벤추리부(400)에서는 유속이 급격히 감소하게 되고, 압력공을 통해서 전달되는 압력도 다시 회복하고 차압 제어 파일럿 밸브(300)는 서서히 차단되기 시작한다.
따라서, 수압식 액추에이터를 이용한 파일럿 밸브(100)의 상부 챔버에서 토출되는 양보다 차압 제어 파일럿 밸브(300)를 통하여 공급되는 유체의 양이 점점 적어지게 되면 수압식 액추에이터의 피스톤은 점점 상승하게 되고 압력 설정점은 점점 낮아지게 된다.
여기서, 수압식 액추에이터를 이용한 파일럿 밸브(100)의 상부 챔버의 토출측인 2차 니들 밸브(250)를 실제 현장에서 적절히 조절하게 되면 수압식 액추에이터를 이용한 파일럿 밸브(100)의 유입량과 토출량이 균형을 이루어 메인 밸브(10) 2차측에 유량의 변화가 없는 경우에 그때의 설정 압력은 그대로 유지되는 특성을 가지게 된다.
도 5는 본 발명의 바람직한 일실시예에 따른 비례 제어 감압 밸브 시스템의 다양한 실시 태양을 도시하는 예시도이다.
도 5의 (a)에 도시된 실시예는 벤추리부(400)가 상기 메인 밸브(10)의 유출구(12)측에 내장된 형태이며, 도 1에 도시된 실시예는 메인 밸브(10)의 유출구측과 공급 배관(V)에 벤추리부가 설치된 것이다.
도 5의 (b)와 (c)는 글로브형(Globe type), 와이형(Y-type)에 각각 적용한 실시예이며, 상세한 설명은 생략하기로 한다.
이상과 같이 본 발명은 실사용량에 따라서 비례적으로 압력을 설정하는 비례제어형 감압 밸브 시스템을 제공하는 것을 주요한 기술적 사상으로 하고 있으며, 도면을 참고하여 상술한 실시 예는 단지 하나의 실시 예에 불과하므로 본 발명의 진정한 범위는 특허청구범위에 의해 결정되어야 한다.
본 발명은 유량 연동형 비례제어식 감압 밸브 시스템에 관한 것으로서, 메인 밸브의 2차측 사용 유량에 비례하여 2차측 압력이 자동으로 설정되는 유량 연동형 비례제어식 감압 밸브 시스템 분야에 이용가능하다.

Claims (4)

  1. 유체가 공급되는 주배관에 직렬로 연결되는 유입구와 유출구를 가지며 상기 유입구와 연통되는 상부 챔버와 상기 유출구와 연통되는 하부 챔버로 상호 분리하는 다이어프램에 의해 상기 상부 챔버 내의 압력과 상기 유출구측의 압력 차이에 따라 상기 유입구와 유출구 사이의 유로를 선택적으로 넓히거나 좁히는 메인밸브(10)와;
    상기 메인 밸브의 유출구측에서 내주면으로 돌출된 지지 플레이트(430)와 상기 플레이트의 중심에 형성된 벤추리(410), 상기 벤추리의 중심에 수직으로 관통된 압력공(420)을 포함하는 벤추리부(400)와;
    상기 메인 밸브(10)의 유입구 및 유출구에 각각 연결되는 제1유입구와 제1유출구가 형성되며 상기 제1유입구와 제2유출구에 연결된 유로를 개폐시키는 시트부가 형성된 본체(110)와, 상기 본체 내부에 설치되며 상기 제1유입구를 통해서 전달되는 메인 밸브의 압력에 의해서 상기 시트부를 작동시켜서 상기 유로를 개방 또는 폐쇄시키는 제1다이어프램부(120)와, 상기 제1다이어프램부 상측에 설치되며, 상기 제1다이어프램부를 하방으로 가압시키는 탄성 스프링(130)과, 메인 밸브로부터 유입되는 유체를 통해서 작동되는 제2다이어프램(220)이 설치되고 상기 제2다이어프램에 연동되어 상기 탄성 스프링을 가압시키는 피스톤이 설치된 수압식 액추에이터(200)를 포함하는 파일럿 밸브(100)와;
    상기 벤추리부(400)의 압력공에 상부 챔버가 연결되고, 제1유출구에 하부 챔버가 연결되는 다이어프램부(320)가 상기 제1유입구와 제2다이어프램(220)의 상부 챔버를 연결하는 보조 유로를 개방 및 폐쇄시켜서 상기 수압식 액추에이터를 포함하는 파일럿 밸브(100)의 제2다이어프램(220)의 상부 챔버의 압력을 조절하는 차압 제어 파일럿 밸브(300);를 포함하여 이루어지는 것을 특징으로 하는 유량 연동형 비례제어식 감압 밸브 시스템.
  2. 제 1 항에 있어서,
    상기 벤추리부(400)는,
    상기 메인 밸브(10)의 유출구(12)측에 내장됨을 특징으로 하는 유량 연동형 비례제어식 감압 밸브 시스템.
  3. 제 1 항에 있어서,
    상기 수압식 액추에이터(200)는,
    몸체(210)와, 상기 몸체에 설치되는 제2다이어프램(220)과, 상기 제2다이어프램을 통해서 형성된 상부 챔버는 상기 차압 제어 파일럿 밸브의 유출구에 연결되는 제2유입구(212)와, 상기 제1유출구에 연결되는 제2유출구(214)와, 일단은 상기 제2다이어프램에 연결되고 타단은 상기 탄성 스프링의 상부면에 접촉되는 피스톤(230)을 포함하여 구성되는 것을 특징으로 하는 유량 연동형 비례제어식 감압 밸브 시스템.
  4. 제 1 항에 있어서,
    상기 차압 제어 파일럿 밸브(300)는,
    상기 제1유입구와 제2다이어프램의 상부 챔버를 연결하는 보조 유로를 개방 및 폐쇄시키는 니들 밸브(310)와,
    벤추리부의 압력공에 상부 챔버가 연결되고, 제1유출구에 하부 챔버가 연결되고, 상기 니들 밸브와 연동되는 다이어프램부(320)와,
    상기 다이어프램부를 하방으로 가압시키는 탄성스프링(330)과,
    상기 탄성 스프링의 장력을 조절하기 위한 조절 스위치(340)를 포함하여 이루어지는 것을 특징으로 하는 유량 연동형 비례제어식 감압 밸브 시스템.
PCT/KR2012/003451 2011-09-19 2012-05-03 유량 연동형 비례제어식 감압 밸브 시스템 WO2013042853A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0094209 2011-09-19
KR1020110094209A KR101122763B1 (ko) 2011-09-19 2011-09-19 유량 연동형 비례제어식 감압 밸브 시스템

Publications (1)

Publication Number Publication Date
WO2013042853A1 true WO2013042853A1 (ko) 2013-03-28

Family

ID=46141779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003451 WO2013042853A1 (ko) 2011-09-19 2012-05-03 유량 연동형 비례제어식 감압 밸브 시스템

Country Status (2)

Country Link
KR (1) KR101122763B1 (ko)
WO (1) WO2013042853A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104235480A (zh) * 2014-08-29 2014-12-24 苏州福润机械有限公司 一种水力控制阀
CN106224611A (zh) * 2016-08-29 2016-12-14 永嘉汇正自控泵阀有限公司 一种微压自力式调节阀
CN107246498A (zh) * 2017-07-26 2017-10-13 中国长江电力股份有限公司 一种供水系统减压阀用双先导阀控制系统及控制方法
CN108087611A (zh) * 2017-12-27 2018-05-29 杭州春江阀门有限公司 一种输出压力响应流量变化的新型减压阀
CN108223867A (zh) * 2017-12-27 2018-06-29 杭州春江阀门有限公司 一种新型减压阀
CN108506537A (zh) * 2018-07-03 2018-09-07 江苏省华扬太阳能有限公司 新型供水减压装置
CN110159813A (zh) * 2019-05-23 2019-08-23 广东维宁科技有限公司 一种横向水路压力换向装置和热水循环系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101368379B1 (ko) 2012-12-26 2014-02-28 전승채 초저온 액화가스 저장탱크 시스템 및 이를 위한 자동 유로 전환 밸브
WO2014104643A1 (ko) * 2012-12-26 2014-07-03 Jeon Seung Chae 초저온 액화가스 저장탱크 시스템 및 초저온 액화가스 저장탱크용 자동 유로 전환 밸브
KR101388510B1 (ko) 2013-05-23 2014-04-23 전승채 초저온 액화가스 저장탱크용 자동 유로 전환 밸브
CN103671327B (zh) * 2013-12-13 2018-05-25 盐城工业职业技术学院 一种脉冲定量阀
KR101851560B1 (ko) * 2017-11-16 2018-04-24 주식회사 바램 자동 과압 해소 기능을 가지는 감압 밸브 시스템
JP6944407B2 (ja) * 2018-04-27 2021-10-06 Kyb株式会社 電磁比例弁付きキャップ
US11713828B2 (en) * 2019-04-30 2023-08-01 Dresser, Llc Pilot-operated pressure regulator
US11106227B2 (en) 2019-05-03 2021-08-31 Zurn Industries, Llc Pressure reducing valve with an integral venturi
CN113404919B (zh) * 2021-07-29 2022-09-06 四川长仪油气集输设备股份有限公司 一种控制器组件具有四级节流密封的调压器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109421A (ja) * 1996-06-20 1998-01-13 Kurimoto Ltd 圧力感知式パイロット弁
KR200327655Y1 (ko) * 2003-06-19 2003-09-22 신재보 감압밸브
KR100445944B1 (ko) * 1996-05-29 2004-11-03 가부시끼가이샤 요꼬따 세이사꾸쇼 자동 조정 밸브 장치
JP2005048796A (ja) * 2003-07-29 2005-02-24 Yokota Seisakusho:Kk 自動調整弁装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042289B1 (ko) 2011-01-13 2011-06-17 조진식 유량 연동형 감압 밸브 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445944B1 (ko) * 1996-05-29 2004-11-03 가부시끼가이샤 요꼬따 세이사꾸쇼 자동 조정 밸브 장치
JPH109421A (ja) * 1996-06-20 1998-01-13 Kurimoto Ltd 圧力感知式パイロット弁
KR200327655Y1 (ko) * 2003-06-19 2003-09-22 신재보 감압밸브
JP2005048796A (ja) * 2003-07-29 2005-02-24 Yokota Seisakusho:Kk 自動調整弁装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104235480A (zh) * 2014-08-29 2014-12-24 苏州福润机械有限公司 一种水力控制阀
CN106224611A (zh) * 2016-08-29 2016-12-14 永嘉汇正自控泵阀有限公司 一种微压自力式调节阀
CN107246498A (zh) * 2017-07-26 2017-10-13 中国长江电力股份有限公司 一种供水系统减压阀用双先导阀控制系统及控制方法
CN107246498B (zh) * 2017-07-26 2023-10-20 中国长江电力股份有限公司 一种供水系统减压阀用双先导阀控制系统及控制方法
CN108087611A (zh) * 2017-12-27 2018-05-29 杭州春江阀门有限公司 一种输出压力响应流量变化的新型减压阀
CN108223867A (zh) * 2017-12-27 2018-06-29 杭州春江阀门有限公司 一种新型减压阀
CN108506537A (zh) * 2018-07-03 2018-09-07 江苏省华扬太阳能有限公司 新型供水减压装置
CN110159813A (zh) * 2019-05-23 2019-08-23 广东维宁科技有限公司 一种横向水路压力换向装置和热水循环系统

Also Published As

Publication number Publication date
KR101122763B1 (ko) 2012-03-23

Similar Documents

Publication Publication Date Title
WO2013042853A1 (ko) 유량 연동형 비례제어식 감압 밸브 시스템
US9249896B2 (en) Control pilot valve apparatus
CA2704904C (en) Pressure management control valve assembly
RU2353823C1 (ru) Гидравлическое вентильное устройство
WO2010134716A2 (ko) 감압밸브
KR101285748B1 (ko) 유수 제어기능을 갖는 전자석 밸브
KR100481403B1 (ko) 감압 및 압력유지 제어밸브 시스템
KR20150134756A (ko) 건설기계를 위한 파일럿 신호용 블록 조립체 및 이를 갖는 컨트롤 밸브 조립체
KR101042289B1 (ko) 유량 연동형 감압 밸브 시스템
CN103573753B (zh) 液压阀瞬态试验回路
WO2012018151A1 (ko) 관로 압력을 이용한 체크 밸브 제어 장치
KR100540596B1 (ko) 수압 제어 밸브 시스템
EP0972948B1 (en) Pressure control valve for solenoid valve aggregate and solenoid valve assembly provided with the same
KR101811869B1 (ko) 유압 공급 장치
KR101042327B1 (ko) 수압식 액츄에이터를 이용한 파일럿 밸브
US9032861B2 (en) Arrangement for providing a variable throttle cross-section for a fluid flow
WO2021071174A1 (ko) 안전디스크가 마련되는 감압밸브
KR200215506Y1 (ko) 공기배출 압력을 이용한 압력조절밸브
WO2014027706A1 (ko) 건설기계용 유압 제어밸브
WO2013081213A1 (ko) 레귤레이터에 의해 제어되는 미터 아웃 유압 제어시스템
CN218598842U (zh) 出口控制模块及流体取样装置
CN217301725U (zh) 一种组合阀
KR100903292B1 (ko) 유량 연동 수압 제어 밸브 시스템
KR950005531Y1 (ko) 초고층빌딩용 공기압급수장치
CN218847516U (zh) 一种阀门检测用夹具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833425

Country of ref document: EP

Kind code of ref document: A1