WO2013042780A1 - Production method for positive electrode material for secondary battery - Google Patents

Production method for positive electrode material for secondary battery Download PDF

Info

Publication number
WO2013042780A1
WO2013042780A1 PCT/JP2012/074276 JP2012074276W WO2013042780A1 WO 2013042780 A1 WO2013042780 A1 WO 2013042780A1 JP 2012074276 W JP2012074276 W JP 2012074276W WO 2013042780 A1 WO2013042780 A1 WO 2013042780A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
electrode material
group
compound
Prior art date
Application number
PCT/JP2012/074276
Other languages
French (fr)
Japanese (ja)
Inventor
義久 別府
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013042780A1 publication Critical patent/WO2013042780A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode material for a secondary battery.
  • plug-in hybrid vehicles and electric vehicles are being developed from the viewpoint of carbon dioxide emission regulations and energy saving.
  • it is required to increase the capacity and the energy density while maintaining the safety of the secondary battery.
  • Non-Patent Document 1 discloses an olivine (olivine) silicic acid compound (Li 2 MSiO 4 ) containing two Li atoms in one molecule as a secondary battery material capable of increasing the capacity by a multi-electron reaction.
  • M Fe, Mn).
  • Non-Patent Document 2 discloses a method of obtaining a positive electrode material for a secondary battery having a predetermined crystal structure by once heating and melting a raw material mixture and then cooling it.
  • the positive electrode material for a secondary battery can be manufactured at low cost and in large quantities, and the uniformity of the chemical composition of the obtained positive electrode material can be improved.
  • Patent Document 1 discloses a method in which a raw material mixture containing a divalent transition metal compound is heated and melted at 1500 ° C. in an argon atmosphere and then rapidly cooled with a single roll to obtain an amorphous transition metal phosphate complex. Is disclosed.
  • Heat melting of the raw material mixture requires heat treatment at a high temperature, and a container used for heat melting requires characteristics such as heat resistance and corrosion resistance.
  • a raw material mixture composed of LiFePO 4 and LiF is placed in a platinum tube, the platinum tube is disposed in a quartz tube, heated by high-frequency induction heating to melt the raw material mixture, and then the melt is cooled.
  • a method for obtaining an active material composed of a phosphate complex containing a transition metal such as Fe or Mn is disclosed.
  • Patent Document 3 discloses that after heat-treating raw materials such as Li 2 CO 3 , NH 4 H 2 PO 4 , and Fe (II) C 2 O 4 in an alumina crucible with a lid at 300 ° C. in a nitrogen atmosphere. , Melting at 1200 ° C. for 10 minutes in an electric furnace, and then pouring the obtained melt onto an iron plate, pressing and quenching to form a precursor glass, and heat-treating it for a secondary battery A method for obtaining a positive electrode material is disclosed.
  • Patent Document 4 a raw material composition containing Li 2 CO 3 , Fe (COO) 2 .2H 2 O, NH 4 H 2 PO 4, etc. is filled in a crucible with a nozzle made of rhodium / platinum alloy. This is heated and melted in an electric furnace equipped with a heating element made of molybdenum silicide, and the obtained melt is dropped on a stainless steel double roller and rapidly cooled, and then (solidified product) is heated. A method for obtaining olivine-type lithium iron phosphate particles is disclosed.
  • Japanese Unexamined Patent Publication No. 2005-158673 Japanese Unexamined Patent Publication No. 2007-73360 Japanese Unexamined Patent Publication No. 2008-47412 Japanese Unexamined Patent Publication No. 2011-1242
  • Patent Document 2 is not suitable for mass production, and platinum components are mixed from the platinum tube into the internal melt during heating by high-frequency induction, leading to a decrease in product purity and an increase in production costs. There was a fear.
  • the crucible is easily worn out by the formation of platinum and rhodium contained in the crucible and the iron component in the melt, and the platinum and rhodium dissolved from the crucible are melted. It was easy to mix in a liquid, and there existed a possibility of causing the fall of the purity of a product and the increase in manufacturing cost.
  • An object of the present invention is to provide a mass-productive method for efficiently producing a positive electrode material for a secondary battery excellent in purity with reduced mixing of components derived from a container used for heating and melting a raw material mixture at low cost. It is to provide.
  • the method for producing a secondary battery positive electrode material according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having an olivine type, pyroxene type, or NASICON type crystal structure, wherein the raw materials are prepared.
  • the inert atmosphere is at least one selected from the group consisting of nitrogen (N 2 ), helium (He), argon (Ar), and neon (Ne). It is preferable that the gas conditions contain 99% by volume or more of the above inert gas.
  • the reducing atmosphere is formed by adding a reducing gas to at least one inert gas selected from nitrogen (N 2 ), helium (He), argon (Ar), and neon (Ne).
  • the gas condition is substantially free of oxygen.
  • the manufacturing method of the positive electrode material for secondary batteries of this invention has a cooling process which cools the said molten material obtained at the said melting process, and obtains a solidified material.
  • the melt is preferably cooled at a cooling rate of 1 ⁇ 10 3 ° C./second or more.
  • the phosphoric acid compound represented by following (1) Formula is mentioned.
  • A represents at least one atom selected from the group consisting of Li, Na, and K
  • M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni
  • X 1 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W
  • Z 1 represents at least one atom selected from the group consisting of Si, B, Al and V
  • A is 0 ⁇ a ⁇ 0.2
  • b is 0 ⁇ b ⁇ 0.2
  • c is the numerical value of a and b
  • the valence of M the valence of X 1 and Z 1 It depends on the valence of and satisfies the electrical neutrality.
  • the silicic acid compound represented by following (2) Formula is mentioned.
  • A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni;
  • X 2 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W, and
  • Z 2 represents at least one atom selected from the group consisting of P, B, Al and V D is 0 ⁇ d ⁇ 0.2, e is 0 ⁇ e ⁇ 0.2, f is the numerical value of d and e, and the valence of M, the valence of X 2 and Z 2 It depends on the valence of and satisfies the electrical neutrality.
  • arc melting means heating and melting by the energy of arc discharge. Heating by arc discharge is also called arc heating.
  • the positive electrode material for secondary batteries excellent in the purity in which mixing of the component derived from the container used for the heat melting of a raw material mixture was reduced can be manufactured efficiently at low cost.
  • the raw material mixture is melted by arc heating, compared with the conventional method using a heating furnace such as an electric furnace, rapid heating is possible with less energy loss and high thermal efficiency, and the melt can be shortened.
  • a heating furnace such as an electric furnace
  • olivine type compound “compound having an olivine type crystal structure” is also referred to as “olivine type compound”
  • compound having a pyroxene type crystal structure” is also referred to as “pyroxene type compound”
  • “Compound having” is also referred to as “Nashikon-type compound”.
  • the “compound having an olivine type, pyroxene type, or NASICON type crystal structure” is also referred to as “compound ( ⁇ )”.
  • the phosphoric acid compound having the composition represented by the formula (1) is also referred to as “phosphoric acid compound (1)”
  • the silicic acid compound having the composition represented by the formula (2) is referred to as “silicic acid”. Also referred to as “compound (2)”.
  • a method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having an olivine type, pyroxene type, or NASICON type crystal structure, wherein raw materials are prepared. Including a raw material preparation step of preparing a raw material preparation, and a melting step of arc melting the raw material preparation in a container formed of a refractory material in an inert atmosphere or a reducing atmosphere to obtain a melt.
  • the secondary battery positive electrode material according to the present invention is preferably a compound having an olivine type, pyroxene type, or NASICON type crystal structure.
  • Examples of the olivine type compounds include those represented by the general formula AMPO 4 , AVOPO 4 , A 2 MSiO 4 , A 2 VOSiO 4 , AMBO 3 , A 2 MPO 4 F, or AVOPO 4 F.
  • examples of pyroxene-type compounds include those represented by general formulas AMSi 2 O 6 and AVSi 2 O 6 .
  • a 2 MP 2 O 7 is also included in the pyroxene-type compound.
  • Examples of NASICON compounds include those represented by the general formula A 3 M 2 (PO 4 ) 3 or A 3 V 2 (PO 4 ) 3 .
  • atom A represents an alkali metal atom such as Li, Na, and K
  • atom M represents a transition metal atom such as Fe, Mn, Co, and Ni.
  • P, Si, B, and V may each be partially substituted with each other, or these may be substituted with atoms such as Al or S.
  • the olivine-type compound, pyroxene-type compound, and nasicon-type compound described above are selected from the group consisting of Zr, Ti, Nb, Ta, Mo, and W together with atoms A and M, in addition to the compounds represented by the general formula described above. It may contain at least one selected atom.
  • the phosphoric acid compound (1) represented by the following formula (1) is preferred as the phosphoric acid compound.
  • AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
  • A is at least one atom selected from the group consisting of Li, Na, and K
  • M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni
  • X 1 is Zr.
  • Z 1 represents at least one atom selected from the group consisting of Si, B, Al, and V.
  • a is 0.
  • c depends on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , It is a number that satisfies the target neutrality.
  • the raw material preparation can be satisfactorily melted in the melting step (ii) described later, and a uniform melt can be obtained.
  • the phosphoric acid compound (1) can be obtained by the heating step (v) described later, and further, the phosphoric acid compound (1) containing an olivine type crystal structure, particularly a phosphoric acid compound (1) comprising only an olivine type crystal structure ) Is preferable.
  • A is more preferably 0.001 ⁇ a ⁇ 0.1, and particularly preferably 0.001 ⁇ a ⁇ 0.05.
  • a and b are within the above ranges, a phosphoric acid compound (1) showing a multi-electron type reaction (reaction that pulls out more than 1 mol of atoms A per unit mole number) is obtained, and this phosphoric acid compound (1) is obtained.
  • the theoretical electric capacity can be increased.
  • the value of c in the phosphoric acid compound (1) is a number depending on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , from 1/2 of the total positive charge The value obtained by subtracting 4.
  • a silicate compound (2) represented by the following formula (2) is preferred.
  • A is at least one atom selected from the group consisting of Li, Na, and K
  • M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni
  • X 2 is Zr.
  • Z 2 represents at least one atom selected from the group consisting of P, B, Al, and V.
  • d represents 0.
  • f depends on the numerical values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2 , It is a number that satisfies the target neutrality.
  • the raw material preparation can be melted well in the melting step (ii) described later, and a uniform melt can be obtained.
  • the silicate compound (2) can be obtained by the heating step (v) described later, and further, the silicate compound (2) having an olivine type crystal structure, particularly a silicate compound (2) having only an olivine type crystal structure (2). ) Is preferable.
  • D is more preferably 0.001 ⁇ d ⁇ 0.1, and particularly preferably 0.001 ⁇ d ⁇ 0.05.
  • e is more preferably 0.001 ⁇ e ⁇ 0.1, and particularly preferably 0.001 ⁇ e ⁇ 0.05.
  • the value of f in the composition of the silicate compound is a number depending on the values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2. Is the value minus.
  • the atom A is suitable as a positive electrode material for a secondary battery, it is preferable to make Li essential, and it is particularly preferable to use only Li.
  • the phosphoric acid compound (1) containing Li and the silicic acid compound (2) containing Li increase the capacity per unit volume (mass) of the secondary battery.
  • the atom M is preferably composed of only one kind or two kinds. In particular, it is preferable in terms of cost that the atom M consists of Fe alone, Mn alone, or Fe and Mn.
  • the valence of atom M in phosphoric acid compound (1) or silicic acid compound (2) is in the range of +2 to +4.
  • the valence of atom M is +2, +8/3, +3 when atom M is Fe, +2, +3, +4 when Mn, +2, +8/3, +3 when Co, +2, when Ni is Ni, +4 is preferred.
  • the valence of atom M is preferably 2 to 2.2, more preferably 2.
  • the atoms X 1 and X 2 are at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W. From the viewpoint of performance, Zr, Ti or Nb is preferable, and Zr or Ti is particularly preferable.
  • the valences of the atoms X 1 and X 2 in the phosphoric acid compound (1) or the silicic acid compound (2) are basically +4 for Zr, +2 or +4 for Ti, +2 or +5 for Nb, Ta is +2 or +5, Mo is +4 or +6, and W is +4 or +6.
  • the atom Z 1 is at least one selected from the group consisting of Si, B, Al, and V. From the viewpoint of performance, B or Al is preferable, and B is particularly preferable.
  • the atom Z 2 is at least one selected from the group consisting of P, B, Al, and V. From the viewpoint of performance, B or Al is preferable, and B is particularly preferable.
  • the valences of the atoms Z 1 and Z 2 are basically +5 for P, +3 for B, +3 for Al, and +3 for V. +3, +4, +5.
  • the silicic acid compound (2) is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as the positive electrode material for the secondary battery.
  • a method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing the compound having the olivine type, pyroxene type, or NASICON type crystal structure described above, and preparing raw materials
  • the production method of the present invention preferably further includes a cooling step (iii), a pulverizing step (iv), and a heating step (v). Each step will be specifically described below.
  • each component source of an olivine type compound, pyroxene type compound, or NASICON type compound is selected and mixed so as to be a melt having a predetermined composition.
  • the compound containing atom A includes A carbonate (A 2 CO 3 ), A hydrogen carbonate (AHCO 3 ).
  • a 2 CO 3 , AHCO 3 , or AF is more preferable because it is inexpensive and easy to handle.
  • oxides of M FeO, Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , CoO, Co 3 O 4 , Co 2 O 3 , NiO, etc.
  • M oxyhydroxide MO (OH)
  • M silicate MO ⁇ SiO 2 , 2MO ⁇ SiO 2 etc.
  • M phosphate M 3 (PO 4 ) 2 etc.
  • Borate M 3 (BO 3 ) 2 etc.
  • M chloride MCl 2 , MCl 3 etc.
  • M nitrate M (NO 3 ) 2 , M ( NO 3 ) 3
  • M sulfate MSO 4 , M 2 (SO 4 ) 3 etc.
  • M organic acid salt acetate (M (CH 3 COO) 2 ) and oxalate (M (COO ) 2), etc.
  • M alkoxide M (OCH
  • At least one compound selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , Co 3 O 4 and NiO is more preferable.
  • the compound when the atom M is Fe Fe 3 O 4 and / or Fe 2 O 3 is preferable, and as the compound when the atom M is Mn, MnO 2 is preferable.
  • the compound containing atom M may be one type or two or more types.
  • SiO 2 silicon oxide
  • Si (OCH 3 ) 4 silicon alkoxide
  • a silicate, or M silicate is preferable.
  • the compound containing Si may be crystalline or amorphous. Among them, more preferable because SiO 2 is inexpensive.
  • anhydrous phosphoric acid P 2 O 5
  • ammonium hydrogen phosphate NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4
  • a or M phosphate is preferable.
  • the phosphate of A or M for example, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 is preferable.
  • the compound containing P may be crystalline or amorphous. Of these, NH 4 H 2 PO 4 is more preferable because it is inexpensive.
  • Examples of the compound containing atoms X 1 and X 2 include oxides of X 1 and X 2 such as ZrO 2 , TiO 2 , Nb 2 O 5 and Ta 2 O 5. , MoO 3 or WO 3 are preferred.
  • Compounds containing atoms Z 1 and Z 2 include Z 1 , Z 2 oxides (P 2 O 5 , B 2 O 3, etc.), A or M phosphorus Preference is given to at least one selected from the group consisting of acid salts, A or M silicates, A or M borates, A or M aluminates, A or M vanadates.
  • the atoms Z 1 and Z 2 contain P, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 , Si SiO 2 when contained, B 2 O 3 and / or H 3 BO 3 when containing B, at least one selected from the group consisting of Al 2 O 3 , AlO (OH) and aluminosilicate when containing Al , V is preferable because vanadium oxide (VO, V 2 O 3 , VO 2 , V 2 O 5, etc.) is inexpensive.
  • a suitable combination of raw material formulations is Si, where the compound containing atom A is a carbonate or bicarbonate of A, the compound containing atom M is an oxide of M, and the compound containing P is ammonium hydrogen phosphate. This is a combination when the compound to be contained is silicon oxide.
  • the composition of the raw material formulation corresponds theoretically to the composition of the melt obtained from the raw material formulation.
  • the composition of the obtained melt is based on an oxide standard calculated from the charged amount of each raw material. It may be slightly different from the mol%. In such a case, it is preferable to set the charging amount of each raw material in consideration of the amount lost due to volatilization or the like.
  • each raw material in the raw material formulation is not particularly limited. Considering reactivity and physical properties of the positive electrode positive electrode material, the purity excluding hydration water is preferably 99% by mass or more.
  • each raw material it is preferable to use a pulverized raw material.
  • Each raw material may be pulverized and mixed, or may be pulverized after mixing.
  • the pulverization is preferably performed by a dry method or a wet method using a mixer, a ball mill, a jet mill, a planetary mill or the like, and a dry method is preferable because a solvent removal step is unnecessary.
  • the particle diameter of each raw material in the raw material formulation is not limited as long as it does not adversely affect the mixing operation, the filling operation of the mixture into the melting container, the meltability of the mixture, and the like.
  • the raw material preparation obtained in the raw material preparation step (i) is accommodated in a container formed of a refractory material and generates an arc (hereinafter referred to as an arc electrode or simply an electrode). Installed in an arc melting apparatus (also referred to as an arc melting furnace). Then, in an inert atmosphere or a reducing atmosphere, the raw material composition is arc-heated and melted by arc discharge from the electrodes.
  • an arc melting apparatus also referred to as an arc melting furnace
  • the “refractory material” refers to a material that is excellent in fire resistance and whose composition and physical characteristics do not change at the melting temperature of the raw material formulation.
  • the refractory temperature of the refractory material is preferably 1,000 ° C. or higher. When the fireproof temperature is less than 1,000 ° C., the melt resistance of the container may be significantly lowered. However, if the refractory temperature of the refractory material is excessively high, the usable constituent materials may be excessively limited. Therefore, the refractory temperature is preferably in the range of 1,200 to 2,000 ° C., A range of 200 to 1,800 ° C. is more preferable.
  • the refractory temperature means a temperature at which no remarkable change in appearance is observed when the material is heated for 24 hours.
  • examples of the refractory material forming the container include carbon, non-oxide ceramics, and electrocast refractories.
  • electrocast refractory is an abbreviation for electromelted cast refractory, and is prepared according to a target component according to a target component and completely melted in an electric furnace. Refractories manufactured by casting into a mold having a predetermined shape are collectively referred to.
  • refractory is used in the same meaning as ceramics.
  • Carbon as the refractory material forming the container is preferable because graphite is inexpensive, easily available, and easy to process. Since such carbon may cause a reduction reaction with an oxide of heavy metal such as iron contained in the raw material preparation at high temperature, it is preferable to adjust the heating and melting temperature.
  • Non-oxide ceramics include silicon carbide (SiC), zirconium carbide (ZrC), titanium carbide (TiC), silicon nitride (Si 3 N 4 ), zirconium nitride (ZrN), titanium nitride (TiN), boron nitride (BN) ), Sialon (eg, Si 6-z Al z O z N 8-z , 0 ⁇ z ⁇ 4.2), zirconium boride (ZrB 2 ), and titanium boride (TiB 2 ).
  • non-oxide ceramics when the ceramic is mainly composed of at least one selected from the group consisting of silicon carbide, silicon nitride, sialon, zirconium boride, and titanium boride, it is an inert atmosphere or reduced. It is preferable because it can be used in an atmosphere. Further, ceramics containing 50 to 98% by mass of zirconium boride have a dense structure, and even when a raw material preparation containing a heavy metal element at a high rate is melted, these components are difficult to enter, and the contents It is difficult to cause problems such as leakage. Furthermore, carbon and the non-oxide ceramic are preferable because a fired product obtained by molding and heating the raw material powder is easily available.
  • Electrocast refractories include alumina-silica electrocast refractories, alumina electrocast refractories, alumina-zirconia-silica electrocast refractories, and high zirconia electrocast refractories.
  • alumina-zirconia-silica electrocast refractories, high zirconia electrocast refractories, or alumina electrocast refractories are preferably used from the viewpoint of easy availability and high corrosion resistance.
  • the alumina-zirconia-silica electrocast refractory is an electrocast refractory having a structure in which a matrix surrounds corundum, baderite, or eutectic thereof.
  • the content of the matrix glass phase in the alumina-zirconia-silica electrocast refractory is preferably 20% by mass or less, and more preferably 16% by mass or less.
  • the chemical composition when the entire alumina-zirconia-silica electrocast refractory containing the matrix glass phase is 100% by mass in terms of oxide, Al is 45 to 55% by mass in terms of Al 2 O 3 , Zr Is preferably 35 to 45% by mass in terms of ZrO 2 , Si is 10 to 16% by mass in terms of SiO 2 , and Na is 1 to 2% by mass in terms of Na 2 O.
  • Examples of the alumina-zirconia-silica electrocast refractories include ZB-1681 (trade name of AGC Ceramics), ZB-1711 (trade name of AGC Ceramics), SCIMOS CS-3 (trade name of Saint-Gobain tee M), SCIMOS CS-5 ( Saint-Gobain tee product name).
  • a high zirconia electrocast refractory is an electrocast refractory having a zirconia (ZrO 2 ) content of 90% by mass or more, and has, for example, a structure in which a small amount of matrix glass phase surrounds a bedrite crystal phase. Are preferably used.
  • the high zirconia electrocast refractory preferably has a matrix glass phase content of 4 to 12% by mass, and more preferably 4 to 7% by mass.
  • Zr is 90 to 97 in terms of mass% in terms of ZrO 2. %, Si containing 3 to 5% in terms of SiO 2 , Na containing 0.1 to 2% in terms of Na 2 O, and Al containing 0.5 to 2.5% in terms of Al 2 O 3 are preferred. It contains more than 92 to 97% in terms of ZrO 2 , Si to 3 to 4% in terms of SiO 2 , Na to 0.2 to 1% in terms of Na 2 O, and Al to 1 to 2% in terms of Al 2 O 3 preferable. Further, B may be contained in an amount of 0.1 to 0.5% in terms of B 2 O 3 , and P may be contained in an amount of 0.1 to 0.5% in terms of P 2 O 3 .
  • Examples of the high zirconia electrocast refractories include ZB-X950 (AGC Ceramics company name) and SCIMOS Z (Saint Govin T.M company name).
  • Alumina electrocast refractories are electrocast refractories with a total content of ⁇ -alumina and ⁇ -alumina of 95% by mass or more, depending on the ratio of ⁇ -alumina and ⁇ -alumina contained in the electrocast refractories. , ⁇ -alumina electrocast refractory, ⁇ , ⁇ -alumina electrocast refractory or ⁇ -alumina electrocast refractory.
  • ⁇ , ⁇ -alumina electrocast refractories are easy to obtain, have sufficient strength, and have a dense structure, so that they can be suitably used as containers for heating and melting.
  • the content of the matrix glass phase is preferably 10% by mass or less, and preferably 2% by mass or less.
  • the chemical composition of the alumina electrocast refractory when the entire alumina electrocast refractory including the matrix glass phase is 100% by mass in terms of oxide, Al is 93 to 99 in terms of mass% in terms of Al 2 O 3. 0.5%, Si containing 0.1 to 1.0% in terms of SiO 2 , Na containing 0.2 to 6.5% in terms of Na 2 O, Al being preferably 94.5 in terms of Al 2 O 3 More preferably, it contains ⁇ 99%, Si contains 0.1 to 1.0% in terms of SiO 2 , and Na contains 0.2 to 5% in terms of Na 2 O.
  • alumina electrocast refractories include ⁇ -alumina electrocast refractories, MB-A (trade name of AGC Ceramics), SCIMOS A (trade name of Saint-Gobain T.M), ⁇ , ⁇ -alumina As electroformed refractories, MB-G (product name of AGC Ceramics), SCIMOS M (product name of Saint-Gobain T.M.), Jaguar M (product name of Societe Europian de Prodisputedy Leflectre), ⁇ -alumina
  • electroformed refractories include MB-U (manufactured by AGC Ceramics), SCIMOS H (trade name of Saint-Gobain tee M), and Jaguar H (trade name of Societe Europian de Produy Leflectre).
  • alumina-zirconia-silica electrocast refractories have a dense structure composed of a eutectic of ⁇ -alumina and badelite and matrix glass surrounding these crystals, Even when a raw material composition containing a heavy metal element at a high rate is melted, these components are difficult to enter, and it is difficult to cause problems such as leakage of contents, which is preferable.
  • a phosphate compound having a relatively low melting temperature it is preferable to arc-melt the raw material formulation in a container formed of a high zirconia electroformed refractory that has low contamination from the refractory.
  • a container formed of carbon, non-oxide ceramics or electrocast refractory is not easily eroded by the melt of the raw material mixture.
  • melting of the raw material preparation by arc heating is performed in an inert atmosphere or a reducing atmosphere.
  • the above-described carbon, non-oxide ceramics, or electrocast refractory is in an inert atmosphere or reduced. Therefore, it is suitable as a container material in the melting step (ii).
  • the size and shape of the container formed of such a refractory material are not particularly limited, and can be a small cylindrical crucible or a large melting tank.
  • the refractory material may be used at least in the inner peripheral portion that comes into contact with the melt. May be.
  • it can melt
  • a direct arc heating method is a method in which the object to be heated is heated as an arc medium
  • the indirect arc heating method is a method in which the heat of the arc is transmitted to the object to be heated by radiation, conduction, or convection.
  • the electrode has a structure capable of moving up and down.
  • a graphite electrode, an iridium electrode, or the like can be used as the arc electrode.
  • Use of a graphite electrode is preferred because it is easy to process and inexpensive.
  • the number of electrodes may be one or more. When a plurality of electrodes are used, the heating of the raw material mixture can be made uniform, and the temperature distribution of the melt can be made uniform.
  • the power source used for arc heating may be a DC power source or an AC power source, or a single-phase power source or a three-phase power source.
  • the arc is stabilized and an arc is generated not only between the electrode and the melt but also between the electrodes to increase heating efficiency. Can be improved.
  • the inert atmosphere is a gas containing 99% by volume or more of at least one inert gas selected from the group consisting of nitrogen (N 2 ), helium (He), argon (Ar), and neon (Ne).
  • N 2 nitrogen
  • He helium
  • Ar argon
  • Ne neon
  • the reducing atmosphere refers to a gas condition in which a reducing gas is added to the above-described inert gas and substantially does not contain oxygen.
  • the reducing gas hereinafter referred to as reducing gas
  • examples of the reducing gas include hydrogen (H 2 ), carbon monoxide (CO), ammonia (NH 3 ), and the like.
  • the amount of the reducing gas added to the inert gas is preferably 0.1% by volume or more, more preferably 1 to 10% by volume of the reducing gas in the total gas.
  • the oxygen content is preferably 1% by volume or less, more preferably 0.1% by volume or less in the total gas.
  • the inert gas or a mixed gas obtained by adding the reducing gas to the inert gas is placed in the container.
  • the inert gas introduced in this manner is converted into plasma by arc discharge from the electrode and a plasma arc is generated, so that a high temperature can be obtained efficiently and stably.
  • the arc melting furnace may have a sealed structure in which gas does not leak so that the introduced gas is stably converted into plasma.
  • FIG. 1 is a cross-sectional view schematically showing an arc melting apparatus used in an embodiment of the present invention.
  • the arc melting apparatus 1 includes a melting container 2 made of the above-described refractory material, and a jacket (exterior housing) 3 with a lid for storing the melting container 2.
  • the jacket 3 is preferably attached with a cooling mechanism (not shown) such as a water-cooled tube.
  • the melting vessel 2 is composed of a furnace wall portion 2 a and a furnace bottom portion 2 b, and a graphite electrode 4 that is an arc electrode is installed in the melting vessel 2.
  • a raw material supply pipe 6 for supplying the raw material mixture 5 into the melting container 2 and an inert gas such as nitrogen (N 2 ) and argon (Ar) are introduced into the jacket 3.
  • the gas introduction pipe 7 and the gas exhaust pipe 8 for exhausting the gas in the jacket 3 to the outside are respectively connected.
  • a melt outlet pipe 9 is provided through the furnace wall 2 a and the jacket 3 of the melting container 2.
  • the arc melting apparatus 1 has a structure that can be tilted, and is configured such that the melt obtained in the melting vessel 2 can be directly led out from the melt outlet pipe 9 to the cooling and solidifying apparatus 10.
  • symbol 12 shows the solidified material obtained by the cooling solidification apparatus 10
  • symbol 11 shows the solidified material collection
  • FIG. As the cooling and solidifying device 10, as will be described later, a twin roller rotating at a high speed or a rotating single roller, or a device configured to press a melt on a cooled carbon plate or metal plate to obtain a solidified product, etc. Is used.
  • the raw material mixture 5 is supplied into the melting container 2 through the raw material supply pipe 6. Then, a voltage is applied to the graphite electrode 4 while an inert gas such as nitrogen (N 2 ) or argon (Ar) is blown into the melting container 2 from the gas introduction tube 7 to cause arc discharge. And the raw material preparation 5 in the melting container 2 is rapidly heated and melted by the plasma arc discharge of the inert gas.
  • an inert gas such as nitrogen (N 2 ) or argon (Ar)
  • the number of graphite electrodes 4 that are arc electrodes is one in FIG.
  • the graphite electrode 4 is installed in the center part of the melting container 2, for example.
  • the graphite electrode 4 may be installed so as to move up and down in accordance with the change in the molten metal surface position.
  • interval may be changed. That is, in the initial stage of melting, the graphite electrode 4 is brought into contact with the raw material preparation 5 and melted by contact arc discharge. After a melt is generated to some extent, the graphite electrode 4 is gradually raised and the electrode interval is widened. Then, it is completely melted by plasma arc discharge of the blown inert gas. In this way, a melt with few impurities can be obtained.
  • Such arc discharge is performed at an output of 100 kVA to 200 kVA, for example.
  • the raw material mixture is rapidly heated and melted to a high temperature of 1,100 ° C. to 1,800 ° C. by arc discharge accompanied by plasma formation of gas between the graphite electrode 4 and the raw material composition 5 or between the graphite electrodes 4.
  • Then, by rapidly raising the temperature in this way, the raw material mixture 5 having a predetermined composition corresponding to the olivine type compound, pyroxene type compound, or NASICON type compound is melted almost simultaneously even in the raw material mixture having different melting points. Therefore, a melt having a uniform composition can be obtained.
  • the heating temperature is 1,100 ° C.
  • the heating temperature is more preferably 1,200 ° C. to 1,600 ° C.
  • the heating temperature refers to the temperature of the melt itself and can be measured with a thermocouple or a pyrometer. Melting means that each raw material melts and becomes transparent with the naked eye.
  • the heating time can be appropriately set in consideration of the type of raw material, the melting scale, the homogeneity of the melt, etc., but is preferably 0.5 to 4 hours, particularly preferably 1 to 2 hours. When the heating time is 0.5 hours or more, the uniformity of the melt is sufficient, and when it is 4 hours or less, the raw material is difficult to volatilize.
  • arc melting of the raw material mixture 5 in the present invention is performed while blowing an inert gas such as nitrogen (N 2 ) or argon (Ar) from the gas introduction pipe 7 into the melting vessel 2, and is inert. Performed under atmosphere.
  • an inert gas such as nitrogen (N 2 ) or argon (Ar) from the gas introduction pipe 7 into the melting vessel 2, and is inert. Performed under atmosphere.
  • the melt obtained by melting the raw material mixture 5 in the melting vessel 2 is led out from the melt outlet tube 9 by tilting the arc melting device 1. Then, it is supplied to a cooling and solidifying device 10 such as a single roller or double roller, which will be described later, and cooled to recover the solidified product 12.
  • a cooling and solidifying device 10 such as a single roller or double roller, which will be described later
  • the melt in the melting step (ii) of the present invention, since the raw material mixture 5 accommodated in the melting vessel 2 is heated and melted by plasma arc discharge, the melt can be obtained in a short time. Suitable for mass production.
  • the energy loss is small and the thermal efficiency is high.
  • rapid heating is possible and a high temperature can be obtained in a short time, it is possible to obtain a melt having a uniform composition by melting the raw material mixture in a short time.
  • various raw material formulations can be easily melted, and the composition range of the resulting melt is widened.
  • the solidified product is preferably an amorphous material, but a part of the solidified product may be a crystallized product.
  • the next pulverization step (iv) can be easily performed, and the composition and particle size of the resulting compound can be easily controlled.
  • the crystallized product becomes a crystal nucleus in the heating step (v) described later, and it is easy to crystallize.
  • the amount of crystallized material in the solidified product is preferably 0 to 30% by mass with respect to the total mass of the solidified product. When a large amount of crystallized material is contained, it becomes difficult to obtain a granular or flaky solidified material. Moreover, the wear of the cooling device is accelerated, and the burden of the subsequent pulverization step (iv) is increased.
  • the cooling of the melt is preferably performed in the air, under an inert atmosphere, or under a reducing atmosphere because the equipment is simple.
  • Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii).
  • the cooling rate from the temperature of the melt to 50 ° C. is preferably more than 1 ⁇ 10 3 °C / sec, more 1 ⁇ 10 4 °C / sec is particularly preferable.
  • the cooling rate is 1 ⁇ 10 3 ° C./second or more, an amorphous material is easily obtained.
  • the cooling rate is preferably 1 ⁇ 10 10 ° C./second or less, and 1 ⁇ 10 8 ° C./second from the practical point of view. Particularly preferred is seconds or less.
  • Cooling methods include, for example, a method in which a melt is dropped between twin rollers rotating at high speed to obtain a flake-like solidified product, and a flake-like or plate-like solidified product by dropping the melt on a rotating single roller , A method of obtaining a lump solidified product by pressing a melt on a cooled carbon plate or a metal plate, a method of obtaining a lump solidified product by spraying the melt into air or water in small particles, Is preferably adopted.
  • a cooling method using twin rollers is more preferable because the cooling rate is high and a large amount of processing can be performed.
  • the double roller it is preferable to use one made of metal, carbon or ceramic.
  • the obtained solidified product tends to be an amorphous material, and the chemical composition of the solidified product This is preferable because uniformity is improved.
  • the so-called rapid cooling treatment at a cooling rate of 1 ⁇ 10 3 ° C./second or more may be performed as it is on the melt flowed out from the container formed of the refractory material, and the melt melted in the container May be performed on the remelted material once cooled at a normal rate.
  • the melt melted in the container may be continuously transferred to another container, heated to re-homogenize the components, and cooled.
  • the solidified product is preferably flaky, massive or fibrous.
  • the average thickness is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the average diameter of the surface perpendicular to the flake thickness direction is not particularly limited. In the case of a lump, the average diameter is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less. In the case of a fibrous form, the average diameter is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the average thickness or the average diameter is not more than the upper limit value, the burden of the subsequent pulverization step (iv) can be reduced, and the crystallization efficiency in the heating step (v) can be increased.
  • the average thickness of the flaky solidified product can be measured with a caliper or a micrometer. Further, the average diameter of the fibrous solidified product can be measured by the above method or observation with a microscope.
  • the solidified product obtained in the cooling step (iii) usually contains a large amount of an amorphous material or consists of an amorphous material, there is an advantage that it can be easily pulverized.
  • the apparatus used for pulverization can be pulverized without imposing a burden, and the particle diameter can be easily controlled.
  • pulverization is performed after firing. In that case, residual stress may be generated by pulverization and battery characteristics may be deteriorated.
  • the pulverization step (iv) before the heating step (v) described later the residual stress generated by the pulverization can be reduced or removed by the heat treatment.
  • the pulverization step (iv) at least one selected from the group consisting of an organic compound and a carbon-based conductive material may be added as a carbon source. Since the organic compound and / or the carbon-based conductive material functions as a conductive material after the heating step (v) described later, the conductivity of the positive electrode material for secondary batteries can be increased. Further, by adding an organic compound and / or a carbon-based conductive material, oxidation in the pulverization step (iv) and the heating step (v) can be prevented, and further reduction can be promoted.
  • the solidified product and the carbon source are mixed and then pulverized, the solidified product and the carbon source are pulverized and mixed, or the solidified product is pulverized. After that, it is preferable to add the carbon source.
  • a carbon source is only an organic compound, it can mix with a solidified material, without grind
  • the compound ( ⁇ ) obtained in the heating step (v) of the next step is an insulator, it is preferable to increase the electrical conductivity for use as a positive electrode material for a secondary battery.
  • the carbon-based conductive material serves as conductive carbon and covers at least a part of the surface of the compound ( ⁇ ).
  • an organic compound is used, at least a part of the organic compound is carbonized by performing the heating step (v) of the next step, and at least a part of the surface of the compound ( ⁇ ) is formed as conductive carbon. Cover. Since the conductive carbon functions as a conductive material for the compound ( ⁇ ), the electrical conductivity of the positive electrode material for a secondary battery can be increased.
  • the organic compound as the carbon source is preferably a compound that undergoes a thermal decomposition reaction when heated in an inert atmosphere or a reducing atmosphere, and oxygen and hydrogen are released and carbonized.
  • the organic compound is at least one selected from the group consisting of saccharides, amino acids, peptides, aldehydes, ketones, carboxylic acids, terpenes, heterocyclic amines, fatty acids and aliphatic acyclic polymers having functional groups. Species are preferred.
  • the carbon conductive material as the carbon source is preferably at least one selected from the group consisting of carbon black, graphite, acetylene black, carbon fiber, and amorphous carbon.
  • amorphous carbon those in which the CO bond peak and CH bond peak causing the decrease in the conductivity of the positive electrode material are not substantially detected in the FTIR analysis are preferable.
  • the ratio of the mass of the carbon source is such that the carbon equivalent (mass) in the carbon source is 0.1 to 20 with respect to the total mass of the mass of the solidified product and the carbon equivalent (mass) in the carbon source.
  • An amount of mass% is preferable, and an amount of 2 to 10 mass% is more preferable.
  • the total amount is adjusted so as to fall within the above range.
  • the pulverization is preferably performed using a cutter mill, jaw crusher, hammer mill, ball mill, jet mill, planetary mill or the like. Moreover, pulverization can be efficiently advanced by using various methods stepwise depending on the particle diameter. For example, preliminarily pulverizing with a cutter mill and then pulverizing with a planetary mill or ball mill is preferable because the time required for pulverization can be shortened. From the viewpoint of productivity, it is particularly preferable to use a ball mill. As the grinding media, it is preferable to use zirconia balls, alumina balls, glass balls or the like. In particular, zirconia balls are preferable because they have a low wear rate and can suppress the mixing of impurities.
  • the diameter of the grinding media is preferably 0.1 to 30 mm.
  • the pulverization medium and the pulverized product may be separated and pulverized using a smaller pulverization medium. With this method, the remaining of unground particles can be suppressed.
  • the pulverization container is not particularly limited, but the pulverization efficiency is good when the pulverization medium and the solidified material are placed in the container up to 30 to 80% of the container volume.
  • the pulverization time is preferably 6 to 360 hours, more preferably 6 to 120 hours, and particularly preferably 12 to 96 hours. If the pulverization time is 6 hours or more, the pulverization can be sufficiently advanced, and if it is 360 hours or less, excessive pulverization can be suppressed.
  • the pulverization may be performed either dry or wet, but is preferably performed in a wet manner from the viewpoint that the particle size of the pulverized product can be reduced.
  • the pulverization step (iv) is preferably performed using a solvent (pulverization solvent).
  • a solvent pulverization solvent
  • the heating step (v) When the pulverization step (iv) is performed in a wet manner, it is preferable to carry out the heating step (v) after removing the pulverization solvent by sedimentation, filtration, drying under reduced pressure, drying by heating, or the like. However, when the ratio of the solid content with respect to the grinding solvent is 30% or more, the pulverized product containing the grinding solvent may be used in the heating step (v).
  • the pulverization solvent a solvent having an appropriate polarity that is difficult to dissolve the solidified product and is compatible with the carbon source, and does not significantly increase the viscosity when mixed with the solidified product and the carbon source is preferable.
  • Water is preferable from the viewpoint of cost and safety.
  • an organic solvent is preferable. Examples of the organic solvent include ethanol, isopropyl alcohol, acetone, hexane, toluene and the like.
  • the grinding solvent is more preferably at least one selected from water, acetone and isopropyl alcohol, and acetone is particularly preferred.
  • the amount of the grinding solvent used is preferably such that the total concentration of the solidified product and the carbon source is 1 to 80%, particularly preferably 10 to 40%.
  • Productivity can be improved by making the usage-amount of a grinding
  • pulverization of a solidified material and a carbon source can be advanced efficiently because the usage-amount of a grinding
  • the average particle size of the pulverized product is preferably 10 nm to 10 ⁇ m, particularly preferably 10 nm to 5 ⁇ m in terms of volume-based median diameter, from the viewpoint of obtaining higher conductivity when applied to a positive electrode material for a secondary battery.
  • the average particle size is 10 nm or more, when the heating step (v) is performed, the particles of the compound ( ⁇ ) do not sinter and the particle size does not become too large.
  • the average particle size is 10 ⁇ m or less, it is easy to obtain a secondary battery positive electrode material exhibiting high conductivity, and it becomes easy to realize a higher capacity and a higher energy density.
  • the sintering aid acts when the heating step (v) is performed, and the average particle size after heating is increased.
  • the average particle size is obtained mainly by a laser diffraction / scattering particle size measuring device (trade name: LA-950, manufactured by Horiba, Ltd.). If this is difficult, a sedimentation method or a flow image analyzer can be used.
  • the obtained pulverized product is heated in an inert atmosphere or a reducing atmosphere to synthesize a compound ( ⁇ ) having a predetermined composition from the pulverized product of the solidified product. Preferably it is done.
  • the heating step (v) preferably includes relaxation of stress generated by pulverization, crystal nucleation of the pulverized product, and grain growth.
  • the heating step (v) for example, it is preferable to obtain particles of the phosphoric acid compound (1) or particles of the silicic acid compound (2), and crystal particles of the phosphoric acid compound (1) or the silicic acid compound (2) are obtained. It is more preferable to obtain, and it is particularly preferable to obtain crystal particles of the phosphoric acid compound (1) having an olivine type crystal structure or crystal particles of the silicate compound (2) having an olivine type crystal structure. It is preferable that the obtained compound does not contain an amorphous substance. When the compound does not contain an amorphous substance, a halo pattern is not detected by X-ray diffraction.
  • the organic compound or carbon-based conductive substance adhering to the surface of the pulverized product in the pulverization step (iv) is bonded to the surface of the compound ( ⁇ ), preferably its crystal particles, generated in the heating step (v), and functions as a conductive material.
  • the organic compound is thermally decomposed in the heating step (v), and at least a part thereof becomes a carbide to function as a conductive material.
  • the dispersion medium may be removed simultaneously with heating.
  • the heating temperature for synthesizing the compound ( ⁇ ) is preferably 400 to 1,000 ° C., particularly preferably 500 to 900 ° C.
  • the heating temperature is 400 ° C. or higher, a reaction is likely to occur, and when it is 1,000 ° C. or lower, the pulverized product is difficult to melt and the crystal system and particle diameter are easily controlled. Further, at the heating temperature, it becomes easy to obtain a compound ( ⁇ ) having an appropriate crystallinity, particle size, particle size distribution, etc., preferably its crystal particles, more preferably olivine type crystal particles.
  • the heating is not limited to being held at a constant temperature, and may be performed by setting the holding temperature in multiple stages. As the heating temperature is increased, the particle diameter of the generated particles tends to increase. Therefore, it is preferable to set the heating temperature according to a desired particle diameter.
  • the heating time (holding time depending on the heating temperature) is preferably 1 to 72 hours in consideration of the desired particle size. Heating is preferably performed in a box furnace, tunnel kiln, roller hearth kiln, rotary kiln, microwave heating furnace, or the like that uses electricity, oil, gas, or the like as a heat source.
  • the heating step (v) is preferably performed in the air, in an inert atmosphere, or in a reducing atmosphere.
  • Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii).
  • the atmospheric pressure may be any of normal pressure, pressurization, and reduced pressure (0.9 ⁇ 10 5 Pa or less).
  • you may charge the container which put the reducing agent (for example, graphite) in the heating furnace.
  • the cooling rate in the cooling is preferably 30 ° C./hour to 300 ° C./hour. By setting the cooling rate within this range, distortion due to heating can be removed, and when the product is a crystal, the target product can be obtained while maintaining the crystal structure.
  • the cooling is preferably allowed to cool to room temperature. Cooling is preferably performed in an inert atmosphere or a reducing atmosphere.
  • Carbon source can be added in the heating step (v).
  • the pulverized product obtained in the pulverization step (iv) (preferably a pulverized product containing no carbon source) is heated to obtain the compound ( ⁇ ), and then the compound ( ⁇ ) and the carbon source are obtained. It is preferable to adopt a production method in which a pulverized product containing the following is obtained and then the pulverized product is heated.
  • the compound ( ⁇ ) having a predetermined composition as a positive electrode material for a secondary battery is manufactured through the above-described melting, cooling, pulverization, and heating steps.
  • the compound ( ⁇ ) preferably contains crystal particles and is preferably an olivine type. With such a composition and crystal system, as described above, a multi-electron type material having a theoretical electric capacity can be obtained.
  • a silicate compound is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as a positive electrode material for a secondary battery.
  • the silicate compound is preferably an olivine type, and the olivine type silicate compound is suitable as a positive electrode material for a secondary battery.
  • a phosphoric acid compound is preferable when used as a positive electrode material for a secondary battery because the reliability of the performance of the secondary battery can be increased.
  • the phosphate compound is preferably an olivine type, and the olivine type phosphate compound is suitable as a positive electrode material for a secondary battery.
  • the specific surface area of the positive electrode material for a secondary battery obtained by the present invention is preferably 0.2 m 2 / g to 200 m 2 / g, more preferably 1 m 2 / g to 100 m 2 / g. By setting the specific surface area within this range, the conductivity is increased.
  • the specific surface area can be measured by, for example, a specific surface area measuring apparatus using a nitrogen adsorption method.
  • the average particle diameter of the particles of the positive electrode material for secondary batteries is preferably 10 nm to 10 ⁇ m, more preferably 10 nm to 2 ⁇ m in terms of volume median diameter in order to increase the conductivity of the particles.
  • the average particle diameter of the positive electrode material for a secondary battery obtained by the present invention is preferably 10 nm to 10 ⁇ m in terms of volume median diameter even if it contains not only crystal particles but also amorphous particles. More preferably, it is ⁇ 2 ⁇ m.
  • a raw material formulation of an olivine type compound, pyroxene type compound, or NASICON type compound is heated and melted by arc discharge in a container formed of a refractory material and in an inert atmosphere or a reducing atmosphere. Therefore, compared with the conventional method of heating and melting in a heating furnace such as an electric furnace, the thermal efficiency is high, rapid heating is possible, and mass productivity is high. A production amount of 10 kg or more per batch can be realized in the melting step (ii).
  • the container can be prevented from being eroded by heavy metal elements such as Fe and Mn contained in the melt, and the container used for heating and melting can be prevented from being worn.
  • the frequency of maintenance is reduced and the manufacturing cost of the positive electrode material for the secondary battery is reduced. Can be reduced. Furthermore, it can suppress that the component derived from a container mixes in the melt in the said container, and can obtain the positive electrode material for secondary batteries excellent in purity.
  • a secondary battery positive electrode and a secondary battery By using the secondary battery positive electrode material obtained by the production method of the present invention, a secondary battery positive electrode and a secondary battery can be produced.
  • the secondary battery include a metal lithium secondary battery, a lithium ion secondary battery, and a lithium polymer secondary battery, and a lithium ion secondary battery is preferable.
  • the battery shape is not limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
  • the positive electrode for a secondary battery can be manufactured according to a known electrode manufacturing method using the positive electrode material for a secondary battery obtained by the manufacturing method of the present invention.
  • a positive electrode material for a secondary battery obtained according to the present invention may be prepared by using a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene as required.
  • the structure of the secondary battery a structure in a known secondary battery can be adopted except that the positive electrode material for a secondary battery obtained by the production method of the present invention is used as an electrode.
  • the negative electrode a known negative electrode active material can be used as the active material, and at least one selected from the group consisting of carbon materials, alkali metal materials, and alkaline earth metal materials is preferably used.
  • the electrolytic solution a non-aqueous electrolytic solution is preferable. That is, as the secondary battery using the positive electrode material for a secondary battery obtained by the production method of the present invention, a nonaqueous electrolyte lithium ion secondary battery is preferable.
  • Example 1 (Raw material preparation step (i))
  • the composition of the melt is 25.0 mol%, 50.0 mol%, and 25.0 mol% in terms of Li 2 O, FeO, and P 2 O 5 (unit: mol%), respectively.
  • Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) were weighed and mixed dry to obtain a raw material formulation.
  • Heating step (v) The finely pulverized product obtained in the pulverization step (iv) was used for 8 hours at 700 ° C. in an Ar gas atmosphere containing 3% by volume of H 2 gas using an electric furnace (manufactured by Motoyama, model name: SKM-3035). Heated and then cooled to room temperature to precipitate lithium iron phosphate particles.
  • the mineral phase of the obtained lithium iron phosphate particles was measured using an X-ray diffraction apparatus (manufactured by Rigaku Corporation, apparatus name: RINT TTRIII). From the diffraction pattern, it was confirmed that the obtained lithium iron phosphate particles were orthorhombic olivine type LiFePO 4 . Moreover, it was 23 m ⁇ 2 > / g when the specific surface area was measured using the specific surface area measuring apparatus (The Shimadzu Corp. make, apparatus name: ASAP2020).
  • the volume-converted median diameter was 0.42 ⁇ m. there were.
  • Example 2 After melting the raw material formulation having the same composition as that of Example 1 in the same process as the melting process (ii) of Example 1, the obtained melt was directly put into tap water (temperature 15 ° C.) in a stainless steel container. It was charged and cooled to obtain a solidified product. The cooling rate was estimated at about 200 ° C./second.
  • the mineral phase of the obtained lithium iron phosphate particles was measured, it was confirmed to be orthorhombic olivine-type LiFePO 4 . Moreover, it was 25 m ⁇ 2 > / g when the specific surface area was measured. Furthermore, when the average particle diameter of the particles was measured, the median diameter in terms of volume was 0.36 ⁇ m.
  • Example 3 Carbonic acid so that the composition of the melt is 33.3 mol%, 33.3 mol%, and 33.3 mol% in terms of Li 2 O, FeO, and SiO 2 (unit: mol%), respectively.
  • Lithium (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), and silicon dioxide (SiO 2 ) were weighed, mixed and pulverized in a dry process to obtain a raw material formulation.
  • the obtained raw material formulation is melted in the same step as the melting step (ii) of Example 1, and then the cooling step (iii), the pulverizing step (iv) and the heating step in the same manner as in Example 1. (V) was performed in order to deposit lithium iron silicate particles.
  • the mineral phase of the obtained lithium iron silicate particles was measured, it was confirmed to be orthorhombic olivine type Li 2 FeSiO 4 . Moreover, it was 16 m ⁇ 2 > / g when the specific surface area was measured. Furthermore, when the average particle diameter of the crystal particles was measured, the median diameter in terms of volume was 0.67 ⁇ m.
  • Example 3 A raw material formulation having the same composition as in Example 3 was filled into an alumina sintered crucible (made by Nikkato, trade name: SSA-S) with a lid and an outer diameter of 46 mm and a height of 53 mm.
  • the crucible was placed in an electric furnace (manufactured by Motoyama, apparatus name: NH-3035) equipped with a heating element made of molybdenum silicide. While circulating N 2 gas at a rate of 2 L / min in the electric furnace, the temperature was raised at a rate of 5 ° C./min, held at 1450 ° C. for 0.5 hours, and heated to obtain a melt. The melt was cooled to room temperature at 5 ° C./min. When the crucible after the heating and cooling treatment was visually observed, cracks were generated on the surface of the crucible, and a solid product with high purity was not obtained.
  • the positive electrode material for secondary batteries excellent in purity can be manufactured efficiently at low cost. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-2007028 filed on September 22, 2011 are cited herein as disclosure of the specification of the present invention. Incorporated.

Abstract

Provided is a production method for a secondary battery positive electrode material, whereby a secondary battery positive electrode material having high uniformity of chemical composition and high reliability over the long term can be efficiently produced. The method is for producing a secondary battery positive electrode material including an olivine-, augite-, or nasicon-type compound, and has a melting step in which a raw material mixture is arc-melted inside a container formed using a fire-resistant material, in a non-volatile atmosphere or a reducing atmosphere, and a melted product is obtained.

Description

二次電池用正極材料の製造方法Method for producing positive electrode material for secondary battery
 本発明は、二次電池用正極材料の製造方法に関する。 The present invention relates to a method for producing a positive electrode material for a secondary battery.
 近年、次世代リチウム二次電池用正極材料等として、資源面、安全面、コスト面、性能の安定性等の点での優位性から、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物が注目されている。例えばリン酸鉄リチウムは、実用化に向けた開発が進んでいる。 In recent years, it has an olivine type, pyroxene type, or NASICON type crystal structure as a positive electrode material for next-generation lithium secondary batteries because of its advantages in terms of resources, safety, cost, and performance stability. Compounds are attracting attention. For example, lithium iron phosphate is being developed for practical use.
 また、二酸化炭素の排出規制や省エネルギーの観点から、プラグインハイブリッド自動車や電気自動車の開発が進められている。電気自動車の普及の実現には、二次電池の安全性を維持しつつ、高容量化、高エネルギー密度化を図ることが求められている。 Also, plug-in hybrid vehicles and electric vehicles are being developed from the viewpoint of carbon dioxide emission regulations and energy saving. In order to realize the popularization of electric vehicles, it is required to increase the capacity and the energy density while maintaining the safety of the secondary battery.
 例えば非特許文献1には、多電子反応による高容量化が可能な二次電池用材料として、1分子中に2個のLi原子を含むオリビン(カンラン石)型ケイ酸化合物(LiMSiO、M=Fe、Mn)が開示されている。 For example, Non-Patent Document 1 discloses an olivine (olivine) silicic acid compound (Li 2 MSiO 4 ) containing two Li atoms in one molecule as a secondary battery material capable of increasing the capacity by a multi-electron reaction. , M = Fe, Mn).
 上述したオリビン型、輝石型、またはナシコン型の結晶構造を有する化合物の製造方法としては、例えば固相法、液相法等の方法が提案され実施されているが、近年、二次電池の普及に伴い、電極材料のさらなる低コスト化が求められている。 As a method for producing the above-mentioned compound having an olivine type, pyroxene type, or NASICON type crystal structure, for example, methods such as a solid phase method and a liquid phase method have been proposed and implemented. Accordingly, there is a demand for further cost reduction of the electrode material.
 例えば非特許文献2には、原料混合物を一旦加熱溶融した後、これを冷却することにより、所定の結晶構造を有する二次電池用正極材料を得る方法が開示されている。
 このように、原料混合物を一旦溶融状態とすることで、二次電池用正極材料を安価にかつ大量に製造できるうえ、得られる正極材料の化学組成の均一性を向上させることが可能となる。
For example, Non-Patent Document 2 discloses a method of obtaining a positive electrode material for a secondary battery having a predetermined crystal structure by once heating and melting a raw material mixture and then cooling it.
Thus, once the raw material mixture is in a molten state, the positive electrode material for a secondary battery can be manufactured at low cost and in large quantities, and the uniformity of the chemical composition of the obtained positive electrode material can be improved.
 例えば特許文献1には、二価遷移金属化合物を含有する原料混合物を、アルゴン雰囲気中にて1500℃で加熱溶融した後、単ロールにより急冷して非晶質の遷移金属リン酸錯体を得る方法が開示されている。 For example, Patent Document 1 discloses a method in which a raw material mixture containing a divalent transition metal compound is heated and melted at 1500 ° C. in an argon atmosphere and then rapidly cooled with a single roll to obtain an amorphous transition metal phosphate complex. Is disclosed.
 原料混合物の加熱溶融には、高温での熱処理が必要であり、加熱溶融に用いる容器には、耐熱性や耐蝕性等の特性が求められる。
 例えば特許文献2には、LiFePOおよびLiFからなる原料混合物を白金チューブに入れ、当該白金チューブを石英管内に配設し、高周波誘導加熱によって加熱して原料混合物を溶融した後、溶融物を冷却することで、FeまたはMn等の遷移金属を含むリン酸錯体からなる活物質を得る方法が開示されている。
Heat melting of the raw material mixture requires heat treatment at a high temperature, and a container used for heat melting requires characteristics such as heat resistance and corrosion resistance.
For example, in Patent Document 2, a raw material mixture composed of LiFePO 4 and LiF is placed in a platinum tube, the platinum tube is disposed in a quartz tube, heated by high-frequency induction heating to melt the raw material mixture, and then the melt is cooled. Thus, a method for obtaining an active material composed of a phosphate complex containing a transition metal such as Fe or Mn is disclosed.
 また、特許文献3には、蓋付きアルミナルツボに入れたLiCO、NHPO、Fe(II)C等の原料を、窒素雰囲気中300℃にて熱処理した後、電気炉中で1200℃、10分間の条件で溶融し、次いで得られた融液を鉄板上に流し出し、プレス急冷して前駆体ガラスとし、これを加熱処理することで、二次電池用正極材料を得る方法が開示されている。 Patent Document 3 discloses that after heat-treating raw materials such as Li 2 CO 3 , NH 4 H 2 PO 4 , and Fe (II) C 2 O 4 in an alumina crucible with a lid at 300 ° C. in a nitrogen atmosphere. , Melting at 1200 ° C. for 10 minutes in an electric furnace, and then pouring the obtained melt onto an iron plate, pressing and quenching to form a precursor glass, and heat-treating it for a secondary battery A method for obtaining a positive electrode material is disclosed.
 さらに、特許文献4には、LiCO、Fe(COO)・2HO、NHPO等を含む原料調合物を、ロジウム・白金合金製のノズル付きルツボ内に充填し、これをケイ化モリブデン製の発熱体を備えた電気炉で加熱溶融した後、得られた溶融物を、ステンレス製双ローラに滴下して急冷し、次いで(固化物を)加熱処理することで、オリビン型のリン酸鉄リチウム粒子を得る方法が開示されている。 Furthermore, in Patent Document 4, a raw material composition containing Li 2 CO 3 , Fe (COO) 2 .2H 2 O, NH 4 H 2 PO 4, etc. is filled in a crucible with a nozzle made of rhodium / platinum alloy. This is heated and melted in an electric furnace equipped with a heating element made of molybdenum silicide, and the obtained melt is dropped on a stainless steel double roller and rapidly cooled, and then (solidified product) is heated. A method for obtaining olivine-type lithium iron phosphate particles is disclosed.
日本特開2005-158673号公報Japanese Unexamined Patent Publication No. 2005-158673 日本特開2007-73360号公報Japanese Unexamined Patent Publication No. 2007-73360 日本特開2008-47412号公報Japanese Unexamined Patent Publication No. 2008-47412 日本特開2011-1242号公報Japanese Unexamined Patent Publication No. 2011-1242
 しかしながら、特許文献2の方法は、大量生産に不向きであり、また高周波誘導による加熱時に、白金チューブから白金成分が内部の溶融体に混入し、生成物の純度低下や、生産コストの増大を招くおそれがあった。 However, the method of Patent Document 2 is not suitable for mass production, and platinum components are mixed from the platinum tube into the internal melt during heating by high-frequency induction, leading to a decrease in product purity and an increase in production costs. There was a fear.
 特許文献3の方法では、ルツボを構成するアルミナの耐蝕性が必ずしも高くないため、加熱溶融時にFe等の侵食によりルツボの損耗が進行しやすく、交換頻度が増す。また、アルミナ成分がルツボから融液中に混入しやすく、純度低下を招くおそれがあった。さらに、アルミナは熱膨張係数が比較的高いため、急激な温度変化により、ルツボの破損を生じるおそれもあった。 In the method of Patent Document 3, since the corrosion resistance of alumina constituting the crucible is not necessarily high, the crucible wears easily due to erosion of Fe or the like during heating and melting, and the replacement frequency increases. In addition, the alumina component is likely to be mixed into the melt from the crucible, which may cause a decrease in purity. Furthermore, since alumina has a relatively high coefficient of thermal expansion, the crucible may be damaged by a sudden temperature change.
 特許文献4の方法では、高温下において、ルツボに含まれる白金やロジウムと、溶融物中の鉄成分との合金生成により、ルツボの損耗が進行しやすいうえ、ルツボから溶解した白金やロジウムが融液中に混入しやすく、生成物の純度低下や、製造コストの増大を招くおそれがあった。 According to the method of Patent Document 4, at high temperatures, the crucible is easily worn out by the formation of platinum and rhodium contained in the crucible and the iron component in the melt, and the platinum and rhodium dissolved from the crucible are melted. It was easy to mix in a liquid, and there existed a possibility of causing the fall of the purity of a product and the increase in manufacturing cost.
 さらに、特許文献3および4の方法においては、上記した所定の原料混合物を、ルツボ等の容器に収容した状態で電気炉により加熱処理しているため、熱効率が悪く、量産性に劣るうえ、炉内全体を昇温する必要があり、十分な加熱速度を得られず、生産効率に劣るという問題があった。 Furthermore, in the methods of Patent Documents 3 and 4, since the above-described predetermined raw material mixture is heat-treated by an electric furnace in a state of being contained in a container such as a crucible, the thermal efficiency is poor and the mass productivity is inferior. There was a problem that it was necessary to raise the temperature of the inside, and a sufficient heating rate could not be obtained, resulting in poor production efficiency.
 本発明の目的は、原料混合物の加熱溶融に用いる容器に由来する成分の混入が低減された、純度に優れる二次電池用正極材料を、低コストで効率的に製造する量産性の高い方法を提供することにある。 An object of the present invention is to provide a mass-productive method for efficiently producing a positive electrode material for a secondary battery excellent in purity with reduced mixing of components derived from a container used for heating and melting a raw material mixture at low cost. It is to provide.
 すなわち、本発明の二次電池正極用材料の製造方法は、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であって、原料を調合して原料調合物を準備する原料調合工程と、前記原料調合物を、耐火材料により形成された容器内で不活性雰囲気下または還元性雰囲気下でアーク溶融し、溶融物を得る溶融工程とを含むことを特徴とする。 That is, the method for producing a secondary battery positive electrode material according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having an olivine type, pyroxene type, or NASICON type crystal structure, wherein the raw materials are prepared. A raw material preparation step of preparing a raw material preparation, and a melting step of arc melting the raw material preparation in a container formed of a refractory material in an inert atmosphere or a reducing atmosphere to obtain a melt. It is characterized by including.
 本発明の二次電池正極用材料の製造方法において、前記不活性雰囲気は、窒素(N)、ヘリウム(He)、アルゴン(Ar)、およびネオン(Ne)からなる群より選ばれる少なくとも1種の不活性ガスを99体積%以上含む気体条件であることが好ましい。また、前記還元性雰囲気は、窒素(N)、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)から選ばれる少なくとも1種の不活性ガスに、還元性を有するガスを添加してなり、実質的に酸素を含まない気体条件であることが好ましい。 In the method for producing a secondary battery positive electrode material of the present invention, the inert atmosphere is at least one selected from the group consisting of nitrogen (N 2 ), helium (He), argon (Ar), and neon (Ne). It is preferable that the gas conditions contain 99% by volume or more of the above inert gas. The reducing atmosphere is formed by adding a reducing gas to at least one inert gas selected from nitrogen (N 2 ), helium (He), argon (Ar), and neon (Ne). The gas condition is substantially free of oxygen.
 本発明の二次電池用正極材料の製造方法は、前記溶融工程で得られた前記溶融物を冷却して固化物を得る冷却工程を有することが好ましい。そして、前記冷却工程において、前記溶融物を1×10℃/秒以上の冷却速度で冷却することが好ましい。また、前記冷却工程で得られた固化物を粉砕して粉砕物を得る粉砕工程を有することが好ましい。そして、前記粉砕工程において、前記固化物に、有機化合物および炭素系導電物質からなる群より選ばれる少なくとも1種を添加して粉砕することが好ましい。さらに、前記粉砕工程で得られた粉砕物を加熱する加熱工程を有することが好ましい。 It is preferable that the manufacturing method of the positive electrode material for secondary batteries of this invention has a cooling process which cools the said molten material obtained at the said melting process, and obtains a solidified material. In the cooling step, the melt is preferably cooled at a cooling rate of 1 × 10 3 ° C./second or more. Moreover, it is preferable to have the crushing process which grind | pulverizes the solidified material obtained at the said cooling process, and obtains a ground material. And in the said grinding | pulverization process, it is preferable to add and grind | pulverize at least 1 sort (s) chosen from the group which consists of an organic compound and a carbonaceous electrically conductive material to the said solidified material. Furthermore, it is preferable to have a heating step of heating the pulverized product obtained in the pulverization step.
 本発明の目的とする二次電池用正極材料が有する化合物の例としては、下記の(1)式で表されるリン酸化合物が挙げられる。
AM1-a 1-b 4+c   (1)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子を示し、ZはSi、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。aは0≦a≦0.2であり、bは0≦b≦0.2であり、cは、aおよびbの数値、ならびにMの価数、Xの価数およびZの価数に依存し、電気的中性を満たす数である。)
As an example of the compound which the positive electrode material for secondary batteries made into the objective of this invention has, the phosphoric acid compound represented by following (1) Formula is mentioned.
AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
(In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 1 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W, and Z 1 represents at least one atom selected from the group consisting of Si, B, Al and V A is 0 ≦ a ≦ 0.2, b is 0 ≦ b ≦ 0.2, c is the numerical value of a and b, and the valence of M, the valence of X 1 and Z 1 It depends on the valence of and satisfies the electrical neutrality.)
 また、本発明の目的とする二次電池用正極材料が有する他の化合物の例としては、下記の(2)式で表されるケイ酸化合物が挙げられる。
1-d Si1-e 4+f   (2)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子を示し、ZはP、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。dは0≦d≦0.2であり、eは0≦e≦0.2であり、fは、dおよびeの数値、ならびにMの価数、Xの価数およびZの価数に依存し、電気的中性を満たす数である。)
Moreover, as an example of the other compound which the positive electrode material for secondary batteries made into the objective of this invention has, the silicic acid compound represented by following (2) Formula is mentioned.
A 2 M 1-d X 2 d Si 1-e Z 2 e O 4 + f (2)
(In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 2 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W, and Z 2 represents at least one atom selected from the group consisting of P, B, Al and V D is 0 ≦ d ≦ 0.2, e is 0 ≦ e ≦ 0.2, f is the numerical value of d and e, and the valence of M, the valence of X 2 and Z 2 It depends on the valence of and satisfies the electrical neutrality.)
 なお、本明細書において、「アーク溶融」とは、アーク放電のエネルギーにより加熱し溶融することをいう。アーク放電による加熱は、アーク加熱ともいう。 In the present specification, “arc melting” means heating and melting by the energy of arc discharge. Heating by arc discharge is also called arc heating.
 本発明によれば、原料混合物の加熱溶融に用いる容器に由来する成分の混入が低減された、純度に優れる二次電池用正極材料を、低コストで効率的に製造することができる。
また、原料調合物をアーク加熱により溶融しているので、電気炉等の加熱炉を使用する従来の方法に比べて、エネルギーロスが少なく熱効率が高い、急速加熱が可能であり、溶融物を短時間で得ることができる、量産性が高いなどの利点がある。
ADVANTAGE OF THE INVENTION According to this invention, the positive electrode material for secondary batteries excellent in the purity in which mixing of the component derived from the container used for the heat melting of a raw material mixture was reduced can be manufactured efficiently at low cost.
In addition, since the raw material mixture is melted by arc heating, compared with the conventional method using a heating furnace such as an electric furnace, rapid heating is possible with less energy loss and high thermal efficiency, and the melt can be shortened. There are advantages such as being able to be obtained in time and having high mass productivity.
本発明の実施形態に用いる溶融装置の一例の構成を示す断面図である。It is sectional drawing which shows the structure of an example of the melting apparatus used for embodiment of this invention.
 本明細書において、「オリビン型の結晶構造を有する化合物」を「オリビン型化合物」ともいい、「輝石型の結晶構造を有する化合物」を「輝石型化合物」ともいい、「ナシコン型の結晶構造を有する化合物」を「ナシコン型化合物」ともいう。また、「オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物」を「化合物(α)」ともいう。
 本明細書において、前記式(1)で表される組成を有するリン酸化合物を「リン酸化合物(1)」ともいい、前記式(2)で表わされる組成を有するケイ酸化合物を「ケイ酸化合物(2)」ともいう。
In the present specification, “compound having an olivine type crystal structure” is also referred to as “olivine type compound”, “compound having a pyroxene type crystal structure” is also referred to as “pyroxene type compound”, and “ "Compound having" is also referred to as "Nashikon-type compound". The “compound having an olivine type, pyroxene type, or NASICON type crystal structure” is also referred to as “compound (α)”.
In the present specification, the phosphoric acid compound having the composition represented by the formula (1) is also referred to as “phosphoric acid compound (1)”, and the silicic acid compound having the composition represented by the formula (2) is referred to as “silicic acid”. Also referred to as “compound (2)”.
<二次電池用正極材料の製造方法>
 本発明の二次電池用正極材料の製造方法は、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であって、原料を調合して原料調合物を準備する原料調合工程と、前記原料調合物を、耐火材料により形成された容器内で不活性雰囲気下または還元雰囲気下でアーク溶融し、溶融物を得る溶融工程とを含むことを特徴とする。本発明に係る二次電池正極材料は、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物であるのが好ましい。
<Method for producing positive electrode material for secondary battery>
A method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having an olivine type, pyroxene type, or NASICON type crystal structure, wherein raw materials are prepared. Including a raw material preparation step of preparing a raw material preparation, and a melting step of arc melting the raw material preparation in a container formed of a refractory material in an inert atmosphere or a reducing atmosphere to obtain a melt. Features. The secondary battery positive electrode material according to the present invention is preferably a compound having an olivine type, pyroxene type, or NASICON type crystal structure.
 オリビン型化合物としては、例えば、一般式AMPO、AVOPO、AMSiO、AVOSiO、AMBO、AMPOF、またはAVOPOFで示されるものを挙げることができる。
 また、輝石型化合物としては、例えば、一般式AMSi、AVSiで示されるものを挙げることができる。本明細書において、AMPも輝石型化合物に含まれるものとする。
 また、ナシコン型化合物としては、例えば、一般式A(PO、またはA(POで示されるものを挙げることができる。
Examples of the olivine type compounds include those represented by the general formula AMPO 4 , AVOPO 4 , A 2 MSiO 4 , A 2 VOSiO 4 , AMBO 3 , A 2 MPO 4 F, or AVOPO 4 F.
In addition, examples of pyroxene-type compounds include those represented by general formulas AMSi 2 O 6 and AVSi 2 O 6 . In the present specification, A 2 MP 2 O 7 is also included in the pyroxene-type compound.
Examples of NASICON compounds include those represented by the general formula A 3 M 2 (PO 4 ) 3 or A 3 V 2 (PO 4 ) 3 .
 上記一般式中、原子AはLi、Na、およびK等のアルカリ金属原子を示し、原子MはFe、Mn、Co、およびNi等の遷移金属原子を示す。
 上記一般式において、P、Si、B、およびVは、それぞれ相互に部分的に置換したものであってもよく、これらがAlまたはS等の原子と置換したものであってもよい。
In the above general formula, atom A represents an alkali metal atom such as Li, Na, and K, and atom M represents a transition metal atom such as Fe, Mn, Co, and Ni.
In the above general formula, P, Si, B, and V may each be partially substituted with each other, or these may be substituted with atoms such as Al or S.
 また、上述したオリビン型化合物、輝石型化合物、ナシコン型化合物としては、上述した一般式で示される化合物のほか、原子A、原子MとともにZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子を含むものであってもよい。 The olivine-type compound, pyroxene-type compound, and nasicon-type compound described above are selected from the group consisting of Zr, Ti, Nb, Ta, Mo, and W together with atoms A and M, in addition to the compounds represented by the general formula described above. It may contain at least one selected atom.
 上述した一般式で表わされるオリビン型化合物のうち、リン酸化合物としては、下記式(1)で表されるリン酸化合物(1)が好適である。
AM1-a 1-b 4+c   (1)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子、ZはSi、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。aは0≦a≦0.2、bは0≦b≦0.2であり、cは、aおよびbの数値、ならびにMの価数、Xの価数およびZの価数に依存し、電気的中性を満たす数である。)
Of the olivine compounds represented by the general formula described above, the phosphoric acid compound (1) represented by the following formula (1) is preferred as the phosphoric acid compound.
AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
Wherein A is at least one atom selected from the group consisting of Li, Na, and K, M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni, and X 1 is Zr. , Ti, Nb, Ta, Mo, and W, Z 1 represents at least one atom selected from the group consisting of Si, B, Al, and V. a is 0. ≦ a ≦ 0.2, b is 0 ≦ b ≦ 0.2, c depends on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , It is a number that satisfies the target neutrality.)
 0≦a≦0.2および0≦b≦0.2である場合に、後述する溶融工程(ii)で原料調合物を良好に溶融することができ、均一な溶融物が得られる。また、後述する加熱工程(v)でリン酸化合物(1)を得ることができ、さらにはオリビン型結晶構造を含むリン酸化合物(1)、特にオリビン型結晶構造のみからなるリン酸化合物(1)が得られるので好ましい。 When 0 ≦ a ≦ 0.2 and 0 ≦ b ≦ 0.2, the raw material preparation can be satisfactorily melted in the melting step (ii) described later, and a uniform melt can be obtained. In addition, the phosphoric acid compound (1) can be obtained by the heating step (v) described later, and further, the phosphoric acid compound (1) containing an olivine type crystal structure, particularly a phosphoric acid compound (1) comprising only an olivine type crystal structure ) Is preferable.
 aは、0.001≦a≦0.1がより好ましく、0.001≦a≦0.05が特に好ましい。bは、0.001≦b≦0.1がより好ましく、0.001≦b≦0.05が特に好ましい。aおよびbが上記範囲内であると、多電子型の反応(単位モル数当たり1molを超える原子Aを引き抜く反応)を示すリン酸化合物(1)が得られ、このリン酸化合物(1)を二次電池用正極材料として用いたときに理論電気容量を高めることができる。 A is more preferably 0.001 ≦ a ≦ 0.1, and particularly preferably 0.001 ≦ a ≦ 0.05. As for b, 0.001 <= b <= 0.1 is more preferable, and 0.001 <= b <= 0.05 is especially preferable. When a and b are within the above ranges, a phosphoric acid compound (1) showing a multi-electron type reaction (reaction that pulls out more than 1 mol of atoms A per unit mole number) is obtained, and this phosphoric acid compound (1) is obtained. When used as a positive electrode material for a secondary battery, the theoretical electric capacity can be increased.
 リン酸化合物(1)におけるcの値はaおよびbの数値、ならびにMの価数、Xの価数およびZの価数に依存する数であり、正電荷の総和の1/2から4を引いた値である。 The value of c in the phosphoric acid compound (1) is a number depending on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , from 1/2 of the total positive charge The value obtained by subtracting 4.
 また、上記一般式で表わされるオリビン型化合物のうち、ケイ酸化合物としては、下記式(2)で表されるケイ酸化合物(2)が好適である。
1-d Si1-e 4+f   (2)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子、ZはP、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。dは0≦d≦0.2、eは0≦e≦0.2であり、fは、dおよびeの数値、ならびにMの価数、Xの価数およびZの価数に依存し、電気的中性を満たす数である。)
Of the olivine compounds represented by the above general formula, as the silicate compound, a silicate compound (2) represented by the following formula (2) is preferred.
A 2 M 1-d X 2 d Si 1-e Z 2 e O 4 + f (2)
Wherein A is at least one atom selected from the group consisting of Li, Na, and K, M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni, and X 2 is Zr. , Ti, Nb, Ta, Mo and W, Z 2 represents at least one atom selected from the group consisting of P, B, Al, and V. d represents 0. ≦ d ≦ 0.2, e is 0 ≦ e ≦ 0.2, f depends on the numerical values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2 , It is a number that satisfies the target neutrality.)
 0≦d≦0.2および0≦e≦0.2である場合に、後述する溶融工程(ii)で原料調合物を良好に溶融することができ、均一な溶融物が得られる。また、後述する加熱工程(v)でケイ酸化合物(2)を得ることができ、さらにはオリビン型結晶構造を含むケイ酸化合物(2)、特にオリビン型結晶構造のみからなるケイ酸化合物(2)が得られるので好ましい。 When 0 ≦ d ≦ 0.2 and 0 ≦ e ≦ 0.2, the raw material preparation can be melted well in the melting step (ii) described later, and a uniform melt can be obtained. In addition, the silicate compound (2) can be obtained by the heating step (v) described later, and further, the silicate compound (2) having an olivine type crystal structure, particularly a silicate compound (2) having only an olivine type crystal structure (2). ) Is preferable.
 dは、0.001≦d≦0.1がより好ましく、0.001≦d≦0.05が特に好ましい。eは、0.001≦e≦0.1がより好ましく、0.001≦e≦0.05が特に好ましい。dおよびeが上記範囲内であると、多電子型の反応(単位モル数当たり1molを超えるAを引き抜く反応)を示すケイ酸化合物(2)が得られ、このケイ酸化合物(2)を二次電池用正極材料として用いたときに理論電気容量を高めることができる。 D is more preferably 0.001 ≦ d ≦ 0.1, and particularly preferably 0.001 ≦ d ≦ 0.05. e is more preferably 0.001 ≦ e ≦ 0.1, and particularly preferably 0.001 ≦ e ≦ 0.05. When d and e are within the above ranges, a silicic acid compound (2) showing a multi-electron type reaction (a reaction of extracting A exceeding 1 mol per mole of unit) is obtained. When used as a positive electrode material for a secondary battery, the theoretical electric capacity can be increased.
 ケイ酸化合物の組成におけるfの値はdおよびeの数値、ならびにMの価数、Xの価数およびZの価数に依存する数であり、正電荷の総和の1/2から4を引いた値である。 The value of f in the composition of the silicate compound is a number depending on the values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2. Is the value minus.
 リン酸化合物(1)またはケイ酸化合物(2)において、原子Aは二次電池用正極材料として適しているため、Liを必須とするのが好ましく、Liのみであることが特に好ましい。Liを含むリン酸化合物(1)、Liを含むケイ酸化合物(2)は、二次電池の単位体積(質量)当たりの容量を高くする。 In the phosphoric acid compound (1) or the silicic acid compound (2), since the atom A is suitable as a positive electrode material for a secondary battery, it is preferable to make Li essential, and it is particularly preferable to use only Li. The phosphoric acid compound (1) containing Li and the silicic acid compound (2) containing Li increase the capacity per unit volume (mass) of the secondary battery.
 リン酸化合物(1)またはケイ酸化合物(2)において、原子Mは1種のみ、または、2種からなるのが好ましい。特に、原子MはFeのみ、Mnのみ、またはFeおよびMnからなるのが、コストの点で好ましい。
 リン酸化合物(1)またはケイ酸化合物(2)における原子Mの価数は、+2~+4の範囲である。原子Mの価数は、原子MがFeの場合は+2、+8/3、+3、Mnの場合は+2、+3、+4、Coの場合は+2、+8/3、+3、Niの場合は+2、+4が好ましい。原子Mの価数は2 ~2.2であるのが好ましく、2であるのがより好ましい。
In the phosphoric acid compound (1) or the silicic acid compound (2), the atom M is preferably composed of only one kind or two kinds. In particular, it is preferable in terms of cost that the atom M consists of Fe alone, Mn alone, or Fe and Mn.
The valence of atom M in phosphoric acid compound (1) or silicic acid compound (2) is in the range of +2 to +4. The valence of atom M is +2, +8/3, +3 when atom M is Fe, +2, +3, +4 when Mn, +2, +8/3, +3 when Co, +2, when Ni is Ni, +4 is preferred. The valence of atom M is preferably 2 to 2.2, more preferably 2.
 リン酸化合物(1)またはケイ酸化合物(2)において、原子X、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子である。性能の面から、Zr、TiまたはNbが好ましく、ZrまたはTiが特に好ましい。
 リン酸化合物(1)またはケイ酸化合物(2)における原子X、Xの価数は、基本的にZrの場合は+4、Tiの場合は+2または+4、Nbの場合は+2または+5、Taの場合は+2または+5、Moの場合は+4または+6、Wの場合は+4または+6である。
In the phosphoric acid compound (1) or the silicic acid compound (2), the atoms X 1 and X 2 are at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W. From the viewpoint of performance, Zr, Ti or Nb is preferable, and Zr or Ti is particularly preferable.
The valences of the atoms X 1 and X 2 in the phosphoric acid compound (1) or the silicic acid compound (2) are basically +4 for Zr, +2 or +4 for Ti, +2 or +5 for Nb, Ta is +2 or +5, Mo is +4 or +6, and W is +4 or +6.
 リン酸化合物(1)において、原子ZはSi、B、Al、およびVからなる群より選ばれる少なくとも1種である。性能の面から、BまたはAlが好ましく、Bが特に好ましい。ケイ酸化合物(2)において、原子ZはP、B、Al、およびVからなる群より選ばれる少なくとも1種である。性能の面から、BまたはAlが好ましく、Bが特に好ましい。リン酸化合物(1)またはケイ酸化合物(2)における原子Z、Zの価数は、基本的にPの場合は+5、Bの場合は+3、Alの場合は+3、Vの場合は+3、+4、+5である。 In the phosphoric acid compound (1), the atom Z 1 is at least one selected from the group consisting of Si, B, Al, and V. From the viewpoint of performance, B or Al is preferable, and B is particularly preferable. In the silicic acid compound (2), the atom Z 2 is at least one selected from the group consisting of P, B, Al, and V. From the viewpoint of performance, B or Al is preferable, and B is particularly preferable. In the phosphoric acid compound (1) or the silicic acid compound (2), the valences of the atoms Z 1 and Z 2 are basically +5 for P, +3 for B, +3 for Al, and +3 for V. +3, +4, +5.
 特に、ケイ酸化合物(2)は、二次電池用正極材料に使用する場合に、二次電池の単位体積(質量)当たりの容量を高くできるため好ましい。 In particular, the silicic acid compound (2) is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as the positive electrode material for the secondary battery.
 本発明に係る二次電池用正極材料の製造方法は、上述したオリビン型、輝石型、またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であり、原料を調合して原料調合物を準備する原料調合工程(i)と、原料調合物を耐火材料により形成された容器内で、不活性雰囲気下または還元性雰囲気下でアーク溶融して溶融物を得る溶融工程(ii)とを有する。本発明の製造方法は、さらに冷却工程(iii)、粉砕工程(iv)、および加熱工程(v)を有することが好ましい。各工程について、以下に具体的に説明する。 A method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing the compound having the olivine type, pyroxene type, or NASICON type crystal structure described above, and preparing raw materials A raw material preparation step (i) for preparing a raw material preparation, and a melting step for obtaining a melt by arc melting the raw material preparation in an inert atmosphere or a reducing atmosphere in a container formed of a refractory material (Ii). The production method of the present invention preferably further includes a cooling step (iii), a pulverizing step (iv), and a heating step (v). Each step will be specifically described below.
[原料調合工程(i)]
 本発明の二次電池用正極材料の製造方法では、まず、オリビン型化合物、輝石型化合物、またはナシコン型化合物の各成分源を、所定の組成を有する溶融物となるように選択し、混合して原料調合物を準備する。
[Raw material preparation step (i)]
In the method for producing a positive electrode material for a secondary battery of the present invention, first, each component source of an olivine type compound, pyroxene type compound, or NASICON type compound is selected and mixed so as to be a melt having a predetermined composition. Prepare the raw material formulation.
 オリビン型化合物、輝石型化合物、またはナシコン型化合物の構成原子を含む出発原料のうち、原子Aを含む化合物としては、Aの炭酸塩(ACO)、Aの炭酸水素塩(AHCO)、Aの水酸化物(AOH)、Aのケイ酸塩(AO・2SiO、AO・SiO、2AO・SiO等)、Aのリン酸塩(APO等)、Aのホウ酸塩(ABO)、Aのフッ化物(AF)、Aの塩化物(ACl)、Aの硝酸塩(ANO)、Aの硫酸塩(ASO)、およびAの有機酸塩(酢酸塩(CHCOOA)やシュウ酸塩((COOA))等)からなる群より選ばれる少なくとも1種(ただし、該少なくとも1種の一部または全部は、それぞれ水和塩を形成していてもよい。)が好ましい。なかでも、安価でかつ取扱いが容易な点で、ACO、AHCO、またはAFがより好ましい。 Among the starting materials containing the constituent atoms of the olivine type compound, pyroxene type compound, or NASICON type compound, the compound containing atom A includes A carbonate (A 2 CO 3 ), A hydrogen carbonate (AHCO 3 ). , A hydroxide (AOH), A silicate (A 2 O · 2SiO 2 , A 2 O · SiO 2 , 2A 2 O · SiO 2 etc.), A phosphate (A 3 PO 4 etc.) ), A borate (A 3 BO 3 ), A fluoride (AF), A chloride (ACl), A nitrate (ANO 3 ), A sulfate (A 2 SO 4 ), and At least one selected from the group consisting of an organic acid salt of A (acetate (CH 3 COOA), oxalate ((COOA) 2 ), etc.). And may form a Japanese salt). Among these, A 2 CO 3 , AHCO 3 , or AF is more preferable because it is inexpensive and easy to handle.
 原子Mを含む化合物としては、Mの酸化物(FeO、Fe、Fe、MnO、Mn、MnO、CoO、Co、Co、NiO等)、Mのオキシ水酸化物(MO(OH))、Mのケイ酸塩(MO・SiO、2MO・SiO等)、Mのリン酸塩(M(PO等)、Mのホウ酸塩(M(BO等)、Mのフッ化物(MF等)、Mの塩化物(MCl、MCl等)、Mの硝酸塩(M(NO、M(NO等)、Mの硫酸塩(MSO、M(SO等)、Mの有機酸塩(酢酸塩(M(CHCOO))やシュウ酸塩(M(COO))等)およびMのアルコキシド(M(OCH、M(OC等)からなる群より選ばれる少なくとも1種が好ましい。 As the compound containing the atom M, oxides of M (FeO, Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , CoO, Co 3 O 4 , Co 2 O 3 , NiO, etc.) , M oxyhydroxide (MO (OH)), M silicate (MO · SiO 2 , 2MO · SiO 2 etc.), M phosphate (M 3 (PO 4 ) 2 etc.), Borate (M 3 (BO 3 ) 2 etc.), M fluoride (MF 2 etc.), M chloride (MCl 2 , MCl 3 etc.), M nitrate (M (NO 3 ) 2 , M ( NO 3 ) 3 ), M sulfate (MSO 4 , M 2 (SO 4 ) 3 etc.), M organic acid salt (acetate (M (CH 3 COO) 2 ) and oxalate (M (COO ) 2), etc.) and M alkoxide (M (OCH 3) selected from 2, the group consisting of M (OC 2 H 5) 2, etc.) At least one that is preferable.
 入手のしやすさやコストから、Fe、Fe、MnO、Mn、MnO、CoおよびNiOからなる群より選ばれる少なくとも1種の化合物がより好ましい。特に原子Mが、Feである場合の該化合物としては、Feおよび/またはFeが好ましく、原子MがMnである場合の該化合物としては、MnOが好ましい。原子Mを含む化合物は、1種であっても、2種以上であってもよい。 In view of availability and cost, at least one compound selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , Co 3 O 4 and NiO is more preferable. In particular, as the compound when the atom M is Fe, Fe 3 O 4 and / or Fe 2 O 3 is preferable, and as the compound when the atom M is Mn, MnO 2 is preferable. The compound containing atom M may be one type or two or more types.
 Siを含む化合物としては、酸化ケイ素(SiO)、ケイ素のアルコキシド(Si(OCH、Si(OC等)、Aのケイ酸塩、またはMのケイ酸塩が好ましい。Siを含む化合物は結晶質であっても、非晶質であってもよい。なかでも、SiOが安価であるのでより好ましい。 As the compound containing Si, silicon oxide (SiO 2 ), silicon alkoxide (Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4, etc.), A silicate, or M silicate is preferable. . The compound containing Si may be crystalline or amorphous. Among them, more preferable because SiO 2 is inexpensive.
 Pを含む化合物としては、無水リン酸(P)、リン酸水素アンモニウム(NHPO、(NHHPO)、AまたはMのリン酸塩が好ましい。
 AまたはMのリン酸塩としては、例えばLiPO、Fe(PO、FePOおよびMn(POからなる群より選ばれる少なくとも1種が好ましい。
 Pを含む化合物は結晶質であっても、非晶質であってもよい。なかでも、NHPOが安価であるのでより好ましい。
As the compound containing P, anhydrous phosphoric acid (P 2 O 5 ), ammonium hydrogen phosphate (NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 ), A or M phosphate is preferable.
As the phosphate of A or M, for example, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 is preferable.
The compound containing P may be crystalline or amorphous. Of these, NH 4 H 2 PO 4 is more preferable because it is inexpensive.
 原子X、X(Zr、Ti、Nb、Ta、MoおよびW)を含む化合物としては、X、Xの酸化物、例えばZrO、TiO、Nb、Ta、MoOまたはWOが好ましい。 Examples of the compound containing atoms X 1 and X 2 (Zr, Ti, Nb, Ta, Mo and W) include oxides of X 1 and X 2 such as ZrO 2 , TiO 2 , Nb 2 O 5 and Ta 2 O 5. , MoO 3 or WO 3 are preferred.
 原子Z、Z(P、Si、B、Al、およびV)を含む化合物としては、Z、Zの酸化物(P、B等)、AまたはMのリン酸塩、AまたはMのケイ酸塩、AまたはMのホウ酸塩、AまたはMのアルミン酸塩、AまたはMのバナジン酸塩からなる群より選ばれる少なくとも1種が好ましい。
 なかでも、原子Z、ZがPを含む場合はLiPO、Fe(PO、FePOおよびMn(POからなる群より選ばれる少なくとも1種、Siを含む場合はSiO、Bを含む場合はBおよび/またはHBO、Alを含む場合はAl、AlO(OH)およびアルミノケイ酸塩からなる群より選ばれる少なくとも1種、Vを含む場合は酸化バナジウム(VO、V、VO、V等)が安価であるので好ましい。
Compounds containing atoms Z 1 and Z 2 (P, Si, B, Al, and V) include Z 1 , Z 2 oxides (P 2 O 5 , B 2 O 3, etc.), A or M phosphorus Preference is given to at least one selected from the group consisting of acid salts, A or M silicates, A or M borates, A or M aluminates, A or M vanadates.
Among them, when the atoms Z 1 and Z 2 contain P, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 , Si SiO 2 when contained, B 2 O 3 and / or H 3 BO 3 when containing B, at least one selected from the group consisting of Al 2 O 3 , AlO (OH) and aluminosilicate when containing Al , V is preferable because vanadium oxide (VO, V 2 O 3 , VO 2 , V 2 O 5, etc.) is inexpensive.
 原料調合物の好適な組み合わせは、原子Aを含む化合物がAの炭酸塩または炭酸水素塩、原子Mを含む化合物がMの酸化物、Pを含む化合物がリン酸水素アンモニウムである場合、Siを含む化合物が酸化ケイ素である場合の組み合わせである。 A suitable combination of raw material formulations is Si, where the compound containing atom A is a carbonate or bicarbonate of A, the compound containing atom M is an oxide of M, and the compound containing P is ammonium hydrogen phosphate. This is a combination when the compound to be contained is silicon oxide.
 原料調合物の組成は、原則として、当該原料調合物から得られる溶融物の組成と理論上対応するものである。ただし、該原料調合物中には、溶融処理中に揮発等により失われやすい成分(例えばLi等)が存在するため、得られる溶融物の組成は各原料の仕込み量から計算される酸化物基準のモル%と若干相違する場合がある。そのような場合には、揮発等により失われる量を考慮して、各原料の仕込み量を設定することが好ましい。 In principle, the composition of the raw material formulation corresponds theoretically to the composition of the melt obtained from the raw material formulation. However, since there are components (such as Li) that are easily lost due to volatilization or the like during the melting process in the raw material preparation, the composition of the obtained melt is based on an oxide standard calculated from the charged amount of each raw material. It may be slightly different from the mol%. In such a case, it is preferable to set the charging amount of each raw material in consideration of the amount lost due to volatilization or the like.
 原料調合物中の各原料の純度は特に限定されない。反応性や二次電池用正極材料の物性等を考慮すると、水和水を除く純度が99質量%以上であることが好ましい。
 各原料としては、粉砕した原料を用いるのが好ましい。各原料は、粉砕してから混合しても、混合した後に粉砕してもよい。粉砕は、ミキサー、ボールミル、ジェットミル、遊星ミル等を用いて、乾式または湿式で行うことが好ましく、溶媒の除去工程が不要なことから、乾式が好ましい。原料調合物中の各原料の粒子径は、混合操作、混合物の溶融容器への充填操作、混合物の溶融性等に悪影響を及ぼさない範囲であれば、限定されない。
The purity of each raw material in the raw material formulation is not particularly limited. Considering reactivity and physical properties of the positive electrode positive electrode material, the purity excluding hydration water is preferably 99% by mass or more.
As each raw material, it is preferable to use a pulverized raw material. Each raw material may be pulverized and mixed, or may be pulverized after mixing. The pulverization is preferably performed by a dry method or a wet method using a mixer, a ball mill, a jet mill, a planetary mill or the like, and a dry method is preferable because a solvent removal step is unnecessary. The particle diameter of each raw material in the raw material formulation is not limited as long as it does not adversely affect the mixing operation, the filling operation of the mixture into the melting container, the meltability of the mixture, and the like.
[溶融工程(ii)]
 溶融工程(ii)では、原料調合工程(i)で得られた原料調合物を、耐火材料により形成された容器に収容し、アークを発生する電極(以下、アーク電極または単に電極と示す。)を備えたアーク溶融装置(アーク溶融炉ともいう。)に設置する。そして、不活性雰囲気下または還元性雰囲気下において、電極からのアーク放電によって原料調合物をアーク加熱して溶融させる。
[Melting step (ii)]
In the melting step (ii), the raw material preparation obtained in the raw material preparation step (i) is accommodated in a container formed of a refractory material and generates an arc (hereinafter referred to as an arc electrode or simply an electrode). Installed in an arc melting apparatus (also referred to as an arc melting furnace). Then, in an inert atmosphere or a reducing atmosphere, the raw material composition is arc-heated and melted by arc discharge from the electrodes.
 本明細書において、「耐火材料」とは、耐火性に優れ、原料調合物の溶融温度において組成や物理的特性が変化することがない材料をいう。耐火材料の耐火温度は、1,000℃以上であることが好ましい。耐火温度が1,000℃未満であると、容器の耐溶損性が著しく低下する場合がある。
 ただし、耐火材料の耐火温度が過度に高くなると、使用可能な構成材料が過度に制限される場合があるため、耐火温度は1,200~2,000℃の範囲とすることが好ましく、1,200~1,800℃の範囲とすることがより好ましい。なお、耐火温度は、材料を24時間加熱した場合に、顕著な外観変化が観察されない温度を意味する。
In the present specification, the “refractory material” refers to a material that is excellent in fire resistance and whose composition and physical characteristics do not change at the melting temperature of the raw material formulation. The refractory temperature of the refractory material is preferably 1,000 ° C. or higher. When the fireproof temperature is less than 1,000 ° C., the melt resistance of the container may be significantly lowered.
However, if the refractory temperature of the refractory material is excessively high, the usable constituent materials may be excessively limited. Therefore, the refractory temperature is preferably in the range of 1,200 to 2,000 ° C., A range of 200 to 1,800 ° C. is more preferable. The refractory temperature means a temperature at which no remarkable change in appearance is observed when the material is heated for 24 hours.
 本発明において、容器を形成する耐火材料としては、炭素、非酸化物セラミックス、電鋳耐火物等を挙げることができる。なお、本明細書において、「電鋳耐火物」とは、電気溶融鋳造耐火物を略したものであり、精選された原料を目標成分に応じて調合し、電気炉で完全に溶融した後、所定の形状の鋳型に鋳造することによって製造された耐火物を総称していう。ここで、「耐火物」とは、セラミックスとほぼ同じ意味で使用するものとする。 In the present invention, examples of the refractory material forming the container include carbon, non-oxide ceramics, and electrocast refractories. In the present specification, “electrocast refractory” is an abbreviation for electromelted cast refractory, and is prepared according to a target component according to a target component and completely melted in an electric furnace. Refractories manufactured by casting into a mold having a predetermined shape are collectively referred to. Here, “refractory” is used in the same meaning as ceramics.
 容器を形成する耐火材料としての炭素は、黒鉛が、安価であり、入手しやすく、また加工しやすいので、好ましい。このような炭素は、高温においては、原料調合物に含まれる鉄等の重金属の酸化物と還元反応するおそれがあるので、加熱溶融の温度を調整することが好ましい。 Carbon as the refractory material forming the container is preferable because graphite is inexpensive, easily available, and easy to process. Since such carbon may cause a reduction reaction with an oxide of heavy metal such as iron contained in the raw material preparation at high temperature, it is preferable to adjust the heating and melting temperature.
 非酸化物セラミックスとしては、炭化ケイ素(SiC)、炭化ジルコニウム(ZrC)、炭化チタン(TiC)、窒化ケイ素(Si)、窒化ジルコニウム(ZrN)、窒化チタン(TiN)、窒化ホウ素(BN)、サイアロン(例えば、Si6-zAl8-z、0<z≦4.2)、ホウ化ジルコニウム(ZrB)、およびホウ化チタン(TiB)からなる群より選ばれる少なくとも1種を主体とするセラミックスを挙げることができる。なお、本明細書において、「主体とする」とは、その成分を50質量%以上含有することをいう。 Non-oxide ceramics include silicon carbide (SiC), zirconium carbide (ZrC), titanium carbide (TiC), silicon nitride (Si 3 N 4 ), zirconium nitride (ZrN), titanium nitride (TiN), boron nitride (BN) ), Sialon (eg, Si 6-z Al z O z N 8-z , 0 <z ≦ 4.2), zirconium boride (ZrB 2 ), and titanium boride (TiB 2 ). There may be mentioned ceramics mainly composed of at least one kind. In the present specification, “mainly” means containing 50% by mass or more of the component.
 これらの非酸化物セラミックスの中で、炭化ケイ素、窒化ケイ素、サイアロン、ホウ化ジルコニウム、およびホウ化チタンからなる群より選ばれる少なくとも1種を主体とするセラミックスであると、不活性雰囲気下または還元雰囲気下での使用が可能であるので好ましい。また、ホウ化ジルコニウムを50~98質量%含むセラミックスは、緻密な構造を有し、重金属元素を高率で含む原料調合物の溶融を行う場合でも、それらの成分が侵入しにくく、また内容物の漏れ出し等の不具合を生じにくい。
 さらに、炭素および前記非酸化物セラミックスは、原料粉末を成型し加熱した焼成物が入手しやすいので、好ましい。
Among these non-oxide ceramics, when the ceramic is mainly composed of at least one selected from the group consisting of silicon carbide, silicon nitride, sialon, zirconium boride, and titanium boride, it is an inert atmosphere or reduced. It is preferable because it can be used in an atmosphere. Further, ceramics containing 50 to 98% by mass of zirconium boride have a dense structure, and even when a raw material preparation containing a heavy metal element at a high rate is melted, these components are difficult to enter, and the contents It is difficult to cause problems such as leakage.
Furthermore, carbon and the non-oxide ceramic are preferable because a fired product obtained by molding and heating the raw material powder is easily available.
 電鋳耐火物としては、アルミナ-シリカ質電鋳耐火物、アルミナ質電鋳耐火物、アルミナ-ジルコニア-シリカ質電鋳耐火物、および高ジルコニア質電鋳耐火物が挙げられる。これらの中でも、入手のし易さや、耐食性の高さの点から、アルミナ-ジルコニア-シリカ質電鋳耐火物、高ジルコニア質電鋳耐火物、またはアルミナ質電鋳耐火物が好適に用いられる。 Electrocast refractories include alumina-silica electrocast refractories, alumina electrocast refractories, alumina-zirconia-silica electrocast refractories, and high zirconia electrocast refractories. Among these, alumina-zirconia-silica electrocast refractories, high zirconia electrocast refractories, or alumina electrocast refractories are preferably used from the viewpoint of easy availability and high corrosion resistance.
 アルミナ-ジルコニア-シリカ質電鋳耐火物は、コランダム、バデライト、またはこれらの共晶をマトリックスが取り囲む組織構造を有する電鋳耐火物である。アルミナ-ジルコニア-シリカ質電鋳耐火物は、マトリクスガラス相の含有量が20質量%以下であることが好ましく、16質量%以下であることがより好ましい。 The alumina-zirconia-silica electrocast refractory is an electrocast refractory having a structure in which a matrix surrounds corundum, baderite, or eutectic thereof. The content of the matrix glass phase in the alumina-zirconia-silica electrocast refractory is preferably 20% by mass or less, and more preferably 16% by mass or less.
 化学組成としては、マトリクスガラス相を含むアルミナ-ジルコニア-シリカ質電鋳耐火物全体を酸化物換算で100質量%としたとき、AlがAl換算で45~55質量%であり、ZrがZrO換算で35~45質量%であり、SiがSiO換算で10~16質量%であり、NaをNaO換算で1~2質量%であるように構成したものが好ましい。 As the chemical composition, when the entire alumina-zirconia-silica electrocast refractory containing the matrix glass phase is 100% by mass in terms of oxide, Al is 45 to 55% by mass in terms of Al 2 O 3 , Zr Is preferably 35 to 45% by mass in terms of ZrO 2 , Si is 10 to 16% by mass in terms of SiO 2 , and Na is 1 to 2% by mass in terms of Na 2 O.
 アルミナ-ジルコニア-シリカ質電鋳耐火物としては、例えばZB-1681(AGCセラミックス社商品名)、ZB-1711(AGCセラミックス社商品名)、SCIMOS CS-3(サンゴバン ティー エム社商品名)、SCIMOS CS-5(サンゴバン ティー エム社商品名)が挙げられる。 Examples of the alumina-zirconia-silica electrocast refractories include ZB-1681 (trade name of AGC Ceramics), ZB-1711 (trade name of AGC Ceramics), SCIMOS CS-3 (trade name of Saint-Gobain tee M), SCIMOS CS-5 (Saint-Gobain tee product name).
 高ジルコニア質電鋳耐火物は、ジルコニア(ZrO)の含有量が90質量%以上の電鋳耐火物であり、例えば、バデライト結晶相の周りを少量のマトリックスガラス相が取り囲む組織構造を有するものが好適に用いられる。高ジルコニア質電鋳耐火物は、マトリクスガラス相の含有量が4~12質量%であることが好ましく、4~7質量%であることがより好ましい。 A high zirconia electrocast refractory is an electrocast refractory having a zirconia (ZrO 2 ) content of 90% by mass or more, and has, for example, a structure in which a small amount of matrix glass phase surrounds a bedrite crystal phase. Are preferably used. The high zirconia electrocast refractory preferably has a matrix glass phase content of 4 to 12% by mass, and more preferably 4 to 7% by mass.
 高ジルコニア質電鋳耐火物の化学組成としては、マトリクスガラス相を含む高ジルコニア質電鋳耐火物全体を酸化物換算で100質量%としたとき、質量%でZrをZrO換算で90~97%、SiをSiO換算で3~5%、NaをNaO換算で0.1~2%、AlをAl換算で0.5~2.5%含むものが好ましく、ZrをZrO換算で92~97%、SiをSiO換算で3~4%、NaをNaO換算で0.2~1%、AlをAl換算で1~2%含むものがより好ましい。
 また、BをB換算で0.1~0.5%含んでもよく、PをP換算で0.1~0.5%含んでもよい。
As the chemical composition of the high zirconia electrocast refractory, when the entire high zirconia electrocast refractory including the matrix glass phase is 100% by mass in terms of oxide, Zr is 90 to 97 in terms of mass% in terms of ZrO 2. %, Si containing 3 to 5% in terms of SiO 2 , Na containing 0.1 to 2% in terms of Na 2 O, and Al containing 0.5 to 2.5% in terms of Al 2 O 3 are preferred. It contains more than 92 to 97% in terms of ZrO 2 , Si to 3 to 4% in terms of SiO 2 , Na to 0.2 to 1% in terms of Na 2 O, and Al to 1 to 2% in terms of Al 2 O 3 preferable.
Further, B may be contained in an amount of 0.1 to 0.5% in terms of B 2 O 3 , and P may be contained in an amount of 0.1 to 0.5% in terms of P 2 O 3 .
 高ジルコニア質電鋳耐火物としては、例えば、ZB-X950(AGCセラミックス社商品名)、SCIMOS Z(サンゴバン ティー エム社商品名)が挙げられる。 Examples of the high zirconia electrocast refractories include ZB-X950 (AGC Ceramics company name) and SCIMOS Z (Saint Govin T.M company name).
 アルミナ質電鋳耐火物は、α-アルミナおよびβ-アルミナの含有量が合計で95質量%以上の電鋳耐火物であり、電鋳耐火物に含まれるα-アルミナ、β-アルミナの比率によって、α-アルミナ質電鋳耐火物、α,β-アルミナ質電鋳耐火物またはβ-アルミナ質電鋳耐火物に分類される。 Alumina electrocast refractories are electrocast refractories with a total content of α-alumina and β-alumina of 95% by mass or more, depending on the ratio of α-alumina and β-alumina contained in the electrocast refractories. , Α-alumina electrocast refractory, α, β-alumina electrocast refractory or β-alumina electrocast refractory.
 これらの中でも、α,β-アルミナ質電鋳耐火物は、入手しやすく、十分な強度を有し、かつ緻密な構造を有するため、加熱溶融に用いる容器として好適に用いることができる。 Among these, α, β-alumina electrocast refractories are easy to obtain, have sufficient strength, and have a dense structure, so that they can be suitably used as containers for heating and melting.
 アルミナ質電鋳耐火物は、マトリクスガラス相の含有量が10質量%以下であることが好ましく、2質量%以下であることが好ましい。 In the alumina electrocast refractory, the content of the matrix glass phase is preferably 10% by mass or less, and preferably 2% by mass or less.
 アルミナ質電鋳耐火物の化学組成としては、マトリクスガラス相を含むアルミナ質電鋳耐火物全体を酸化物換算で100質量%としたとき、質量%でAlをAl換算で93~99.5%、SiをSiO換算で0.1~1.0%、NaをNaO換算で0.2~6.5%含むものが好ましく、AlをAl換算で94.5~99%、SiをSiO換算で0.1~1.0%、NaをNaO換算で0.2~5%含むものがより好ましい。 As the chemical composition of the alumina electrocast refractory, when the entire alumina electrocast refractory including the matrix glass phase is 100% by mass in terms of oxide, Al is 93 to 99 in terms of mass% in terms of Al 2 O 3. 0.5%, Si containing 0.1 to 1.0% in terms of SiO 2 , Na containing 0.2 to 6.5% in terms of Na 2 O, Al being preferably 94.5 in terms of Al 2 O 3 More preferably, it contains ˜99%, Si contains 0.1 to 1.0% in terms of SiO 2 , and Na contains 0.2 to 5% in terms of Na 2 O.
 アルミナ質電鋳耐火物の具体例としては、α-アルミナ質電鋳耐火物として、MB-A(AGCセラミックス社商品名)、SCIMOS A(サンゴバン ティー エム社商品名)、α,β-アルミナ質電鋳耐火物として、MB-G(AGCセラミックス社商品名)、SCIMOS M(サンゴバン ティー エム社商品名)、ジャガーM(ソシエテ・ユーロピアンヌ・デ・プロデュイ・レフラクテール社商品名)、β-アルミナ質電鋳耐火物として、MB-U(AGCセラミックス社製)、SCIMOS H(サンゴバン ティー エム社商品名)、ジャガーH(ソシエテ・ユーロピアンヌ・デ・プロデュイ・レフラクテール社商品名)が挙げられる。 Specific examples of alumina electrocast refractories include α-alumina electrocast refractories, MB-A (trade name of AGC Ceramics), SCIMOS A (trade name of Saint-Gobain T.M), α, β-alumina As electroformed refractories, MB-G (product name of AGC Ceramics), SCIMOS M (product name of Saint-Gobain T.M.), Jaguar M (product name of Societe Europian de Prodéy Leflectre), β-alumina Examples of electroformed refractories include MB-U (manufactured by AGC Ceramics), SCIMOS H (trade name of Saint-Gobain tee M), and Jaguar H (trade name of Societe Europian de Produy Leflectre).
 これらの電鋳耐火物の中でも、アルミナ-ジルコニア-シリカ質電鋳耐火物は、α-アルミナとバデライトとの共晶、およびこれら結晶質を取り巻くマトリックスガラスからなる緻密な構造を有しており、重金属元素を高率で含む原料調合物の溶融を行う場合でも、これらの成分が侵入し難く、また、内容物の漏れ出し等の不具合を生じ難いため、好ましい。特に、相対的に溶融温度の低いリン酸塩化合物の製造においては、耐火物からの汚染が低い高ジルコニア質電鋳耐火物で形成した容器内で、原料調合物をアーク溶融することが好ましい。 Among these electrocast refractories, alumina-zirconia-silica electrocast refractories have a dense structure composed of a eutectic of α-alumina and badelite and matrix glass surrounding these crystals, Even when a raw material composition containing a heavy metal element at a high rate is melted, these components are difficult to enter, and it is difficult to cause problems such as leakage of contents, which is preferable. In particular, in the production of a phosphate compound having a relatively low melting temperature, it is preferable to arc-melt the raw material formulation in a container formed of a high zirconia electroformed refractory that has low contamination from the refractory.
 前記した炭素、非酸化物セラミックスまたは電鋳耐火物で形成された容器は、前記原料調合物の溶融物により侵食されにくい。また、後述するように、原料調合物のアーク加熱による溶融は不活性雰囲気下または還元性雰囲気下で行うが、前記した炭素、非酸化物セラミックスまたは電鋳耐火物は、不活性雰囲気下または還元性雰囲気下での使用が可能であるので、溶融工程(ii)での容器の材料として好適である。 A container formed of carbon, non-oxide ceramics or electrocast refractory is not easily eroded by the melt of the raw material mixture. In addition, as will be described later, melting of the raw material preparation by arc heating is performed in an inert atmosphere or a reducing atmosphere. However, the above-described carbon, non-oxide ceramics, or electrocast refractory is in an inert atmosphere or reduced. Therefore, it is suitable as a container material in the melting step (ii).
 このような耐火材料により形成された容器の大きさや形状は、特に限定されず、小型の円筒状ルツボとすることもでき、大型の溶融タンクとして用いることもできる。特に、容器が大型の溶融タンクの場合、前記耐火材料は少なくとも溶融物と接触する内周部に用いればよく、溶融タンク上部構造等の、溶融物との非接触部分は他の材料で構成してもよい。また、小型の円筒状ルツボとして用いる場合、原料調合物または溶融物の揮発および蒸発を防止するために、当該容器に蓋を装着して溶融を行うことができる。 The size and shape of the container formed of such a refractory material are not particularly limited, and can be a small cylindrical crucible or a large melting tank. In particular, when the container is a large melting tank, the refractory material may be used at least in the inner peripheral portion that comes into contact with the melt. May be. Moreover, when using as a small cylindrical crucible, in order to prevent volatilization and evaporation of a raw material formulation or a molten material, it can melt | dissolve by attaching the lid | cover to the said container.
 本発明の溶融工程(ii)におけるアーク加熱には、直接アーク加熱方式と間接アーク加熱方式のいずれの方式も用いることができる。なお、直接アーク加熱方式は、被加熱物自体をアークの媒質として加熱する方式であり、間接アーク加熱方式は、アークの熱を放射、伝導、対流により被加熱物に伝えて加熱する方式である。いずれの加熱方式でも、電極は昇降できる構造であることが好ましい。 For the arc heating in the melting step (ii) of the present invention, either a direct arc heating method or an indirect arc heating method can be used. The direct arc heating method is a method in which the object to be heated is heated as an arc medium, and the indirect arc heating method is a method in which the heat of the arc is transmitted to the object to be heated by radiation, conduction, or convection. . In any heating method, it is preferable that the electrode has a structure capable of moving up and down.
 また、本発明の溶融工程(ii)において、アーク電極としては黒鉛電極、イリジウム電極等を使用することができる。加工しやすく、安価であるので、黒鉛電極の使用が好ましい。電極の本数は1本でも複数本でもよい。複数本の電極を使用した場合は、原料調合物の加熱を均一化して、溶融物の温度分布を均一にすることができる。 In the melting step (ii) of the present invention, a graphite electrode, an iridium electrode, or the like can be used as the arc electrode. Use of a graphite electrode is preferred because it is easy to process and inexpensive. The number of electrodes may be one or more. When a plurality of electrodes are used, the heating of the raw material mixture can be made uniform, and the temperature distribution of the melt can be made uniform.
 アーク加熱に使用する電源は、直流電源でも交流電源でもよく、また単相電源でも三相電源でもよい。特に、アーク電極を複数本にするとともに三相交流電源を使用することにより、アークを安定化させるとともに、電極と溶融物との間だけでなく、電極間にもアークを発生させて加熱効率を向上させることができる。 The power source used for arc heating may be a DC power source or an AC power source, or a single-phase power source or a three-phase power source. In particular, by using multiple arc electrodes and using a three-phase AC power supply, the arc is stabilized and an arc is generated not only between the electrode and the melt but also between the electrodes to increase heating efficiency. Can be improved.
 本発明においては、前記容器内の原料調合物のアーク加熱による溶融を、不活性雰囲気下または還元性雰囲気下で行う。ここで、不活性雰囲気とは、窒素(N)、ヘリウム(He)、アルゴン(Ar)、およびネオン(Ne)からなる群より選ばれる少なくとも1種の不活性ガスを99体積%以上含む気体条件をいう。また、還元性雰囲気とは、上記した不活性ガスに、還元性を有するガスを添加し、実質的に酸素を含まない気体条件をいう。還元性を有するガス(以下、還元性ガスという。)としては、水素(H)、一酸化炭素(CO)、アンモニア(NH)等が挙げられる。不活性ガスに添加される還元性ガスの量は、全ガス中に還元性ガスが0.1体積%以上であるのが好ましく、1~10体積%がより好ましい。酸素の含有量は、全ガス中に1体積%以下が好ましく、0.1体積%以下がより好ましい。 In the present invention, melting of the raw material mixture in the container by arc heating is performed in an inert atmosphere or a reducing atmosphere. Here, the inert atmosphere is a gas containing 99% by volume or more of at least one inert gas selected from the group consisting of nitrogen (N 2 ), helium (He), argon (Ar), and neon (Ne). Say conditions. The reducing atmosphere refers to a gas condition in which a reducing gas is added to the above-described inert gas and substantially does not contain oxygen. Examples of the reducing gas (hereinafter referred to as reducing gas) include hydrogen (H 2 ), carbon monoxide (CO), ammonia (NH 3 ), and the like. The amount of the reducing gas added to the inert gas is preferably 0.1% by volume or more, more preferably 1 to 10% by volume of the reducing gas in the total gas. The oxygen content is preferably 1% by volume or less, more preferably 0.1% by volume or less in the total gas.
 本発明の溶融工程(ii)においては、容器内を不活性雰囲気または還元性雰囲気にするために、前記不活性ガス、または前記不活性ガスに前記還元性ガスが添加された混合ガスを容器内に導入する。こうして導入された不活性ガス等は、前記電極からのアーク放電によりプラズマ化し、プラズマアークが発生するので、高い温度を効率的に安定して得ることができる。なお、導入される前記ガスが安定してプラズマ化されるように、アーク溶融炉をガスが漏れない密閉構造としてもよい。 In the melting step (ii) of the present invention, in order to make the inside of the container an inert atmosphere or a reducing atmosphere, the inert gas or a mixed gas obtained by adding the reducing gas to the inert gas is placed in the container. To introduce. The inert gas introduced in this manner is converted into plasma by arc discharge from the electrode and a plasma arc is generated, so that a high temperature can be obtained efficiently and stably. Note that the arc melting furnace may have a sealed structure in which gas does not leak so that the introduced gas is stably converted into plasma.
 以下、本発明の溶融工程(ii)に使用されるアーク溶融装置について、図面に基いて説明する。
 図1は、本発明の一実施形態で用いられるアーク溶融装置を模式的に示す断面図である。このアーク溶融装置1は、前記した耐火材料により形成された溶融容器2と、この溶融容器2を収納する蓋付きのジャケット(外装筐体)3を備えている。ジャケット3には、水冷管のような冷却機構(図示を省略。)を取り付けることが好ましい。
Hereinafter, an arc melting apparatus used in the melting step (ii) of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing an arc melting apparatus used in an embodiment of the present invention. The arc melting apparatus 1 includes a melting container 2 made of the above-described refractory material, and a jacket (exterior housing) 3 with a lid for storing the melting container 2. The jacket 3 is preferably attached with a cooling mechanism (not shown) such as a water-cooled tube.
 溶融容器2は、炉壁部2aと炉底部2bとから構成されており、溶融容器2内にはアーク電極である黒鉛電極4が設置されている。ジャケット3の上部には、原料調合物5を溶融容器2内に供給するための原料供給管6と、ジャケット3内に窒素(N)、アルゴン(Ar)等の不活性ガスを導入するためのガス導入管7、およびジャケット3内のガスを外部に排出するためのガス排出管8がそれぞれ接続されている。また、溶融容器2の炉壁部2aとジャケット3を貫通して、溶融物導出管9が設けられている。さらに、このアーク溶融装置1は傾動できる構造となっており、溶融容器2内で得られた溶融物を、溶融物導出管9から冷却固化装置10に直接導出できるよう構成されている。 The melting vessel 2 is composed of a furnace wall portion 2 a and a furnace bottom portion 2 b, and a graphite electrode 4 that is an arc electrode is installed in the melting vessel 2. In the upper part of the jacket 3, a raw material supply pipe 6 for supplying the raw material mixture 5 into the melting container 2 and an inert gas such as nitrogen (N 2 ) and argon (Ar) are introduced into the jacket 3. The gas introduction pipe 7 and the gas exhaust pipe 8 for exhausting the gas in the jacket 3 to the outside are respectively connected. Further, a melt outlet pipe 9 is provided through the furnace wall 2 a and the jacket 3 of the melting container 2. Further, the arc melting apparatus 1 has a structure that can be tilted, and is configured such that the melt obtained in the melting vessel 2 can be directly led out from the melt outlet pipe 9 to the cooling and solidifying apparatus 10.
 なお、図1において、符号12は、冷却固化装置10により得られた固化物を示し、符号11は、固化物12を回収する固化物回収装置を示す。冷却固化装置10としては、後述するように、高速で回転する双ローラや回転する単ローラ、あるいは冷却したカーボン板や金属板に溶融物をプレスして固化物を得るように構成された装置等が用いられる。 In addition, in FIG. 1, the code | symbol 12 shows the solidified material obtained by the cooling solidification apparatus 10, and the code | symbol 11 shows the solidified material collection | recovery apparatus which collect | recovers the solidified material 12. FIG. As the cooling and solidifying device 10, as will be described later, a twin roller rotating at a high speed or a rotating single roller, or a device configured to press a melt on a cooled carbon plate or metal plate to obtain a solidified product, etc. Is used.
 このようなアーク溶融装置1を使用して、本発明における溶融工程(ii)を実施するには、まず溶融容器2内に、原料供給管6を通して原料調合物5を供給する。そして、ガス導入管7から溶融容器2内に、窒素(N)、アルゴン(Ar)等の不活性ガスを吹き込みながら、黒鉛電極4に電圧を印加しアーク放電を行わせる。そして、前記不活性ガスのプラズマアーク放電により、溶融容器2内の原料調合物5を急速に加熱して溶融させる。 In order to perform the melting step (ii) in the present invention using such an arc melting apparatus 1, first, the raw material mixture 5 is supplied into the melting container 2 through the raw material supply pipe 6. Then, a voltage is applied to the graphite electrode 4 while an inert gas such as nitrogen (N 2 ) or argon (Ar) is blown into the melting container 2 from the gas introduction tube 7 to cause arc discharge. And the raw material preparation 5 in the melting container 2 is rapidly heated and melted by the plasma arc discharge of the inert gas.
 アーク電極である黒鉛電極4は、図1では1本であるが、複数本でもよい。黒鉛電極4は、例えば、溶融容器2の中心部に設置される。黒鉛電極4は、溶融物の湯面位置の変化に応じて上下に移動できるように設置してもよい。また、複数本の黒鉛電極4を設置する場合、電極間隔を変化させるように設置してもよい。すなわち、溶融の初期段階では、黒鉛電極4を原料調合物5に接触させて、接触アーク放電により溶融し、ある程度溶融物が生成された後、少しずつ黒鉛電極4を上昇させかつ電極間隔を広げて、吹き込まれた不活性ガスのプラズマアーク放電により完全に溶融する。こうして不純物の少ない溶融物を得ることができる。 The number of graphite electrodes 4 that are arc electrodes is one in FIG. The graphite electrode 4 is installed in the center part of the melting container 2, for example. The graphite electrode 4 may be installed so as to move up and down in accordance with the change in the molten metal surface position. Moreover, when installing the several graphite electrode 4, you may install so that an electrode space | interval may be changed. That is, in the initial stage of melting, the graphite electrode 4 is brought into contact with the raw material preparation 5 and melted by contact arc discharge. After a melt is generated to some extent, the graphite electrode 4 is gradually raised and the electrode interval is widened. Then, it is completely melted by plasma arc discharge of the blown inert gas. In this way, a melt with few impurities can be obtained.
 このようなアーク放電は、例えば、出力が100kVA~200kVAで行う。黒鉛電極4と原料調合物5との間または黒鉛電極4の間のガスのプラズマ化を伴うアーク放電により、原料調合物は1,100℃~1,800℃の高温に急速に加熱され溶融される。そして、このように急速に昇温させることで、オリビン型化合物、輝石型化合物、またはナシコン型化合物に対応する所定の配合とした原料調合物5は、融点の異なる原料混合物でもほとんど同時に溶融されるので、均一な組成を有する溶融物を得ることができる。加熱温度が1,100℃以上であると、溶融が容易になり、1,800℃以下であると原料が揮発しにくくなる。加熱温度は1,200℃~1,600℃がより好ましい。ここで、加熱温度とは、溶融物自体の温度をいい、熱電対やパイロメーターで測定できる。溶融とは各原料が融解し、目視で透明な状態となることをいう。 Such arc discharge is performed at an output of 100 kVA to 200 kVA, for example. The raw material mixture is rapidly heated and melted to a high temperature of 1,100 ° C. to 1,800 ° C. by arc discharge accompanied by plasma formation of gas between the graphite electrode 4 and the raw material composition 5 or between the graphite electrodes 4. The Then, by rapidly raising the temperature in this way, the raw material mixture 5 having a predetermined composition corresponding to the olivine type compound, pyroxene type compound, or NASICON type compound is melted almost simultaneously even in the raw material mixture having different melting points. Therefore, a melt having a uniform composition can be obtained. When the heating temperature is 1,100 ° C. or higher, melting becomes easy, and when it is 1,800 ° C. or lower, the raw material is difficult to volatilize. The heating temperature is more preferably 1,200 ° C. to 1,600 ° C. Here, the heating temperature refers to the temperature of the melt itself and can be measured with a thermocouple or a pyrometer. Melting means that each raw material melts and becomes transparent with the naked eye.
 加熱時間は、原料の種類、溶融規模、溶融物の均一度等を考慮して適宜設定できるが、0.5~4時間が好ましく、1~2時間が特に好ましい。加熱時間が0.5時間以上であると溶融物の均一性が充分になり、4時間以下であると原料が揮発しにくい。 The heating time can be appropriately set in consideration of the type of raw material, the melting scale, the homogeneity of the melt, etc., but is preferably 0.5 to 4 hours, particularly preferably 1 to 2 hours. When the heating time is 0.5 hours or more, the uniformity of the melt is sufficient, and when it is 4 hours or less, the raw material is difficult to volatilize.
 本発明における原料調合物5のアーク溶融は、前記したように、ガス導入管7から溶融容器2内に窒素(N)、アルゴン(Ar)等の不活性ガスを吹き込みながら行われ、不活性雰囲気下で実施される。 As described above, arc melting of the raw material mixture 5 in the present invention is performed while blowing an inert gas such as nitrogen (N 2 ) or argon (Ar) from the gas introduction pipe 7 into the melting vessel 2, and is inert. Performed under atmosphere.
 こうして溶融容器2内で原料調合物5を溶融して得られた溶融物を、アーク溶融装置1を傾動することで溶融物導出管9から導出する。そして、そのまま後述する単ローラや双ローラ等の冷却固化装置10に供給して冷却し、固化物12を回収する。 Thus, the melt obtained by melting the raw material mixture 5 in the melting vessel 2 is led out from the melt outlet tube 9 by tilting the arc melting device 1. Then, it is supplied to a cooling and solidifying device 10 such as a single roller or double roller, which will be described later, and cooled to recover the solidified product 12.
 このように、本発明の溶融工程(ii)においては、溶融容器2内に収容された原料調合物5をプラズマアーク放電により加熱し溶融しているので、溶融物を短時間で得ることができ、量産に適している。また、溶融容器を電気炉等の加熱炉内に収納して加熱する従来の方法に比べ、エネルギーロスが少なく熱効率が高い。さらに、急速加熱が可能で高温を短時間で得られるので、原料混合物を短時間で溶融して均一な組成の溶融物を得ることが可能である。またさらに、アーク放電による加熱では、より高い温度を得ることが可能であるので、多種の原料調合物を容易に溶融することができ、得られる溶融物の組成範囲が広がる。 Thus, in the melting step (ii) of the present invention, since the raw material mixture 5 accommodated in the melting vessel 2 is heated and melted by plasma arc discharge, the melt can be obtained in a short time. Suitable for mass production. In addition, compared with a conventional method in which the melting container is housed in a heating furnace such as an electric furnace and heated, the energy loss is small and the thermal efficiency is high. Furthermore, since rapid heating is possible and a high temperature can be obtained in a short time, it is possible to obtain a melt having a uniform composition by melting the raw material mixture in a short time. Furthermore, since it is possible to obtain a higher temperature by heating by arc discharge, various raw material formulations can be easily melted, and the composition range of the resulting melt is widened.
[冷却工程(iii)]
 冷却工程(iii)では、前記溶融工程(ii)で得られた溶融物を、室温(20~25℃)付近まで冷却して固化物を得る。
[Cooling step (iii)]
In the cooling step (iii), the melt obtained in the melting step (ii) is cooled to around room temperature (20 to 25 ° C.) to obtain a solidified product.
 固化物は非晶質物であることが好ましいが、固化物の一部は結晶化物であってもよい。固化物が非晶質物を含むことで、次の粉砕工程(iv)が実施しやすくなり、得られる化合物の組成および粒子径を制御しやすくなる。固化物が結晶化物を含む場合、後述する加熱工程(v)で結晶化物が結晶核となり、結晶化しやすくなる。固化物中の結晶化物量は、固化物の全質量に対して0~30質量%であることが好ましい。結晶化物を多く含むと粒状やフレーク状の固化物を得ることが困難となる。また、冷却機器の損耗を早め、その後の粉砕工程(iv)の負担が大きくなる。 The solidified product is preferably an amorphous material, but a part of the solidified product may be a crystallized product. When the solidified product contains an amorphous material, the next pulverization step (iv) can be easily performed, and the composition and particle size of the resulting compound can be easily controlled. In the case where the solidified product contains a crystallized product, the crystallized product becomes a crystal nucleus in the heating step (v) described later, and it is easy to crystallize. The amount of crystallized material in the solidified product is preferably 0 to 30% by mass with respect to the total mass of the solidified product. When a large amount of crystallized material is contained, it becomes difficult to obtain a granular or flaky solidified material. Moreover, the wear of the cooling device is accelerated, and the burden of the subsequent pulverization step (iv) is increased.
 溶融物の冷却は、設備等が簡便であることから、大気中、不活性雰囲気下、または還元性雰囲気下で冷却する方法が好ましい。不活性雰囲気および還元性雰囲気の好ましい条件は、溶融工程(ii)で説明したのと同様である。 The cooling of the melt is preferably performed in the air, under an inert atmosphere, or under a reducing atmosphere because the equipment is simple. Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii).
 溶融物の温度から50℃までの冷却速度は1×10℃/秒以上が好ましく、1×10℃/秒以上が特に好ましい。冷却速度を1×10℃/秒以上にすると非晶質物が得られやすい。冷却速度が速いほど非晶質物を得やすくなるが、製造設備や大量生産性を考慮すると、冷却速度は1×1010℃/秒以下が好ましく、実用性の点からは1×10℃/秒以下が特に好ましい。 The cooling rate from the temperature of the melt to 50 ° C. is preferably more than 1 × 10 3 ℃ / sec, more 1 × 10 4 ℃ / sec is particularly preferable. When the cooling rate is 1 × 10 3 ° C./second or more, an amorphous material is easily obtained. The higher the cooling rate, the easier it is to obtain an amorphous material, but considering the production equipment and mass productivity, the cooling rate is preferably 1 × 10 10 ° C./second or less, and 1 × 10 8 ° C./second from the practical point of view. Particularly preferred is seconds or less.
 冷却方法としては、例えば、高速で回転する双ローラの間に溶融物を滴下してフレーク状の固化物を得る方法、回転する単ローラに溶融物を滴下してフレーク状または板状の固化物を掃引して得る方法、冷却したカーボン板や金属板に溶融物をプレスして塊状の固化物を得る方法、溶融物を空気中または水中に小粒状に吹き付けて塊状の固化物を得る方法、を採用することが好ましい。
 なかでも、双ローラを用いた冷却方法が、冷却速度が速く、大量に処理できるのでより好ましい。双ローラとしては、金属製、カーボン製、セラミックス製のものを用いることが好ましい。
Cooling methods include, for example, a method in which a melt is dropped between twin rollers rotating at high speed to obtain a flake-like solidified product, and a flake-like or plate-like solidified product by dropping the melt on a rotating single roller , A method of obtaining a lump solidified product by pressing a melt on a cooled carbon plate or a metal plate, a method of obtaining a lump solidified product by spraying the melt into air or water in small particles, Is preferably adopted.
Among these, a cooling method using twin rollers is more preferable because the cooling rate is high and a large amount of processing can be performed. As the double roller, it is preferable to use one made of metal, carbon or ceramic.
 上記のように、溶融工程(ii)の後、冷却速度1×10℃/秒以上で溶融物を急速冷却することで、得られる固化物が非晶質物となりやすく、固化物の化学組成の均一性が高められるため好ましい。
 なお、冷却速度1×10℃/秒以上での、いわゆる急冷処理は、耐火材料により形成された容器から流し出した溶融物に対してそのまま行ってもよく、当該容器内で溶融した溶融物を、一旦通常の速度で冷却した後、再溶融したものに対して行ってもよい。また、当該容器内で溶融した溶融物を、連続して別の容器に移動し、加熱して成分の再均一化を行い、冷却してもよい。
As described above, after the melting step (ii), by rapidly cooling the melt at a cooling rate of 1 × 10 3 ° C./second or more, the obtained solidified product tends to be an amorphous material, and the chemical composition of the solidified product This is preferable because uniformity is improved.
The so-called rapid cooling treatment at a cooling rate of 1 × 10 3 ° C./second or more may be performed as it is on the melt flowed out from the container formed of the refractory material, and the melt melted in the container May be performed on the remelted material once cooled at a normal rate. Alternatively, the melt melted in the container may be continuously transferred to another container, heated to re-homogenize the components, and cooled.
 固化物は、フレーク状、塊状または繊維状が好ましい。フレーク状の場合には、その平均厚さが200μm以下が好ましく、100μm以下がより好ましい。フレーク状の厚さ方向に垂直な面の平均直径は、特に限定されない。塊状の場合には、その平均直径が50μm以下が好ましく、30μm以下がより好ましい。繊維状の場合には、その平均直径が50μm以下が好ましく、30μm以下がより好ましい。
 平均厚さや平均直径の上限値以下であると、続く粉砕工程(iv)の負担を軽減でき、加熱工程(v)における結晶化効率を高くすることができる。
 フレーク状の固化物の平均厚さは、ノギスやマイクロメータにより測定することができる。また、繊維状の固化物の平均直径は、上記方法または顕微鏡での観察により測定することができる。
The solidified product is preferably flaky, massive or fibrous. In the case of flakes, the average thickness is preferably 200 μm or less, and more preferably 100 μm or less. The average diameter of the surface perpendicular to the flake thickness direction is not particularly limited. In the case of a lump, the average diameter is preferably 50 μm or less, and more preferably 30 μm or less. In the case of a fibrous form, the average diameter is preferably 50 μm or less, and more preferably 30 μm or less.
When the average thickness or the average diameter is not more than the upper limit value, the burden of the subsequent pulverization step (iv) can be reduced, and the crystallization efficiency in the heating step (v) can be increased.
The average thickness of the flaky solidified product can be measured with a caliper or a micrometer. Further, the average diameter of the fibrous solidified product can be measured by the above method or observation with a microscope.
[粉砕工程(iv)]
 冷却工程(iii)の後、得られた固化物を粉砕して粉砕物を得る粉砕工程(iv)を行うことが好ましい。
[Crushing step (iv)]
After the cooling step (iii), it is preferable to perform a pulverization step (iv) in which the obtained solidified product is pulverized to obtain a pulverized product.
 冷却工程(iii)で得られる固化物は通常の場合、非晶質物を多く含むか、または非晶質物からなるため、粉砕がしやすい利点がある。また粉砕に使用する装置に負担をかけずに粉砕でき、かつ粒子径の制御がしやすい利点がある。
 また、例えば固相反応により正極材料を得る場合には、焼成の後に粉砕を行うが、その場合には、粉砕によって残留応力が生じ、電池特性を悪化させる場合がある。これに対して、後述する加熱工程(v)の前に粉砕工程(iv)を行うことで、粉砕によって生じた残留応力を、加熱処理によって低減または除去することができる。
Since the solidified product obtained in the cooling step (iii) usually contains a large amount of an amorphous material or consists of an amorphous material, there is an advantage that it can be easily pulverized. In addition, there is an advantage that the apparatus used for pulverization can be pulverized without imposing a burden, and the particle diameter can be easily controlled.
In addition, for example, when a positive electrode material is obtained by a solid phase reaction, pulverization is performed after firing. In that case, residual stress may be generated by pulverization and battery characteristics may be deteriorated. In contrast, by performing the pulverization step (iv) before the heating step (v) described later, the residual stress generated by the pulverization can be reduced or removed by the heat treatment.
 粉砕工程(iv)では、有機化合物および炭素系導電物質からなる群より選ばれる少なくとも1種を炭素源として添加してもよい。
 有機化合物および/または炭素系導電物質は、後述する加熱工程(v)後に導電材として機能するため、二次電池用正極材料の導電性を高めることができる。また、有機化合物および/または炭素系導電物質を添加することによって、粉砕工程(iv)や加熱工程(v)における酸化を防止し、さらに還元を促進することもできる。
In the pulverization step (iv), at least one selected from the group consisting of an organic compound and a carbon-based conductive material may be added as a carbon source.
Since the organic compound and / or the carbon-based conductive material functions as a conductive material after the heating step (v) described later, the conductivity of the positive electrode material for secondary batteries can be increased. Further, by adding an organic compound and / or a carbon-based conductive material, oxidation in the pulverization step (iv) and the heating step (v) can be prevented, and further reduction can be promoted.
 粉砕工程(iv)で炭素源を添加する場合には、固化物と炭素源とを混合した後に粉砕する工程、固化物と炭素源とをそれぞれ粉砕した後に混合する工程、または、固化物を粉砕した後に炭素源を添加する工程であるのが好ましい。なお、炭素源が有機化合物のみである場合には、粉砕せずに固化物と混合できる。 When a carbon source is added in the pulverization step (iv), the solidified product and the carbon source are mixed and then pulverized, the solidified product and the carbon source are pulverized and mixed, or the solidified product is pulverized. After that, it is preferable to add the carbon source. In addition, when a carbon source is only an organic compound, it can mix with a solidified material, without grind | pulverizing.
 次工程の加熱工程(v)で得られる化合物(α)は絶縁体であるため、二次電池用正極材料として使用するためには、電気伝導度を高めることが好ましい。
 該炭素源として炭素系導電物質を用いた場合、炭素系導電物質が導電性炭素として、化合物(α)の表面の少なくとも一部を被覆する。また、有機化合物を用いた場合には、次工程の加熱工程(v)を行うことで、有機化合物の少なくとも一部が炭化され、導電性炭素として、化合物(α)の表面の少なくとも一部を被覆する。該導電性炭素は化合物(α)の導電材として機能するため、二次電池用正極材料の電気伝導性を高めることができる。
Since the compound (α) obtained in the heating step (v) of the next step is an insulator, it is preferable to increase the electrical conductivity for use as a positive electrode material for a secondary battery.
When a carbon-based conductive material is used as the carbon source, the carbon-based conductive material serves as conductive carbon and covers at least a part of the surface of the compound (α). Further, when an organic compound is used, at least a part of the organic compound is carbonized by performing the heating step (v) of the next step, and at least a part of the surface of the compound (α) is formed as conductive carbon. Cover. Since the conductive carbon functions as a conductive material for the compound (α), the electrical conductivity of the positive electrode material for a secondary battery can be increased.
 炭素源としての有機化合物は、不活性雰囲気下または還元雰囲気下で加熱した際に熱分解反応し、酸素や水素が離脱して炭化する化合物が好ましい。有機化合物としては、糖類、アミノ酸類、ペプチド類、アルデヒド類、ケトン類、カルボン酸類、テルペン類、複素環式アミン類、脂肪酸および官能基を有する脂肪族非環状ポリマーからなる群より選ばれる少なくとも1種が好ましい。 The organic compound as the carbon source is preferably a compound that undergoes a thermal decomposition reaction when heated in an inert atmosphere or a reducing atmosphere, and oxygen and hydrogen are released and carbonized. The organic compound is at least one selected from the group consisting of saccharides, amino acids, peptides, aldehydes, ketones, carboxylic acids, terpenes, heterocyclic amines, fatty acids and aliphatic acyclic polymers having functional groups. Species are preferred.
 炭素源としての炭素系導電物質は、カーボンブラック、グラファイト、アセチレンブラック、カーボンファイバおよびアモルファスカーボンからなる群より選ばれる少なくとも1種が好ましい。アモルファスカーボンとしては、FTIR分析において、正極材料の導電性低下の原因となるC-O結合ピークやC-H結合ピークが実質的に検出されないものが好ましい。 The carbon conductive material as the carbon source is preferably at least one selected from the group consisting of carbon black, graphite, acetylene black, carbon fiber, and amorphous carbon. As the amorphous carbon, those in which the CO bond peak and CH bond peak causing the decrease in the conductivity of the positive electrode material are not substantially detected in the FTIR analysis are preferable.
 炭素源の質量の割合は、炭素源中の炭素換算量(質量)が、固化物の質量と、該炭素源中の炭素換算量(質量)との合計質量に対して、0.1~20質量%となる量が好ましく、2~10質量%となる量がより好ましい。
 有機化合物と炭素系導電物質を併用する場合には、これらの合計量が上記範囲となるように調整する。炭素量を0.1質量%以上にすることで、化合物(α)からなる二次電池用正極材料の導電性を十分に高めることができる。また、炭素量を20質量%以下とすることで、二次電池用正極材料としての特性を高いまま保持しつつ、導電性を十分に高めることができる。
The ratio of the mass of the carbon source is such that the carbon equivalent (mass) in the carbon source is 0.1 to 20 with respect to the total mass of the mass of the solidified product and the carbon equivalent (mass) in the carbon source. An amount of mass% is preferable, and an amount of 2 to 10 mass% is more preferable.
When the organic compound and the carbon-based conductive material are used in combination, the total amount is adjusted so as to fall within the above range. By making the amount of carbon 0.1% by mass or more, the conductivity of the positive electrode material for a secondary battery made of the compound (α) can be sufficiently increased. Moreover, electroconductivity can fully be improved, keeping the characteristic as a positive electrode material for secondary batteries high by making carbon amount 20 mass% or less.
 粉砕は、カッターミル、ジョークラッシャー、ハンマーミル、ボールミル、ジェットミル、遊星ミル等を用いて行うのが好ましい。また、粒子径により各種方法を段階的に用いることで、効率よく粉砕を進めることができる。例えば、カッターミルで予備的に粉砕した後、遊星ミルやボールミルで粉砕することによって、粉砕にかかる時間を短縮できるので好ましい。生産性の観点から、特にボールミルを用いることが好ましい。粉砕メディアとしては、ジルコニアボール、アルミナボール、ガラスボール等を用いることが好ましい。特に、ジルコニアボールは磨耗率が低く、不純物の混入を抑制できるので好ましい。 The pulverization is preferably performed using a cutter mill, jaw crusher, hammer mill, ball mill, jet mill, planetary mill or the like. Moreover, pulverization can be efficiently advanced by using various methods stepwise depending on the particle diameter. For example, preliminarily pulverizing with a cutter mill and then pulverizing with a planetary mill or ball mill is preferable because the time required for pulverization can be shortened. From the viewpoint of productivity, it is particularly preferable to use a ball mill. As the grinding media, it is preferable to use zirconia balls, alumina balls, glass balls or the like. In particular, zirconia balls are preferable because they have a low wear rate and can suppress the mixing of impurities.
 粉砕メディアの径は0.1~30mmが好ましい。粉砕を多段階にし、大きい粉砕メディアで粉砕を行った後、粉砕メディアと粉砕物を分離し、さらに小さい粉砕メディアを用いて粉砕してもよい。該方法であると、未粉砕粒子の残存を抑制できる。
 粉砕容器は特に限定されないが、容器内に粉砕メディアと固化物とを容器容積の30~80%まで入れると粉砕効率がよい。ボールミルを用いる場合、粉砕時間は6~360時間が好ましく、6~120時間がより好ましく、12~96時間が特に好ましい。粉砕時間が6時間以上であると充分に粉砕を進めることができ、360時間以下であると過粉砕が抑制できる。
The diameter of the grinding media is preferably 0.1 to 30 mm. After pulverization is performed in multiple stages and pulverization is performed with a large pulverization medium, the pulverization medium and the pulverized product may be separated and pulverized using a smaller pulverization medium. With this method, the remaining of unground particles can be suppressed.
The pulverization container is not particularly limited, but the pulverization efficiency is good when the pulverization medium and the solidified material are placed in the container up to 30 to 80% of the container volume. When a ball mill is used, the pulverization time is preferably 6 to 360 hours, more preferably 6 to 120 hours, and particularly preferably 12 to 96 hours. If the pulverization time is 6 hours or more, the pulverization can be sufficiently advanced, and if it is 360 hours or less, excessive pulverization can be suppressed.
 粉砕は乾式または湿式のいずれで行ってもよいが、粉砕物の粒子径を小さくできる点から、湿式で行うのが好ましい。また、粉砕工程(iv)で炭素源を添加する場合には、固化物と炭素源とを均一に混合できる点からも、湿式で行うのが好ましい。すなわち、粉砕工程(iv)は溶媒(粉砕溶媒)を用いて実施するのが好ましい。粉砕溶媒は、粉砕メディアが入った状態で、容器容積の30~80%まで充填すると粉砕効率がよくなる。粉砕工程(iv)を湿式で行った場合は、粉砕溶媒を沈降、濾過、減圧乾燥、加熱乾燥等で除去した後に、加熱工程(v)を実施するのが好ましい。ただし、粉砕溶媒に対する固形分の割合が30%以上の場合には、粉砕溶媒を含んだ粉砕物のままで加熱工程(v)に供してもよい。 The pulverization may be performed either dry or wet, but is preferably performed in a wet manner from the viewpoint that the particle size of the pulverized product can be reduced. Moreover, when adding a carbon source at the grinding | pulverization process (iv), it is preferable to carry out by a wet point also from the point which can mix a solidified material and a carbon source uniformly. That is, the pulverization step (iv) is preferably performed using a solvent (pulverization solvent). When the grinding solvent is filled up to 30 to 80% of the container volume with the grinding media contained, the grinding efficiency is improved. When the pulverization step (iv) is performed in a wet manner, it is preferable to carry out the heating step (v) after removing the pulverization solvent by sedimentation, filtration, drying under reduced pressure, drying by heating, or the like. However, when the ratio of the solid content with respect to the grinding solvent is 30% or more, the pulverized product containing the grinding solvent may be used in the heating step (v).
 粉砕溶媒としては、固化物が溶けにくく、炭素源となじみのよい適度の極性を持つ溶媒であって、固化物および炭素源と混合した際に粘度が著しく上昇しない溶媒が好ましい。コストや安全性の面からは水が好ましい。一方、固化物が溶出してしまう等の問題が発生する場合には、有機溶媒が好ましい。有機溶媒としては、エタノール、イソプロピルアルコール、アセトン、ヘキサン、トルエン等が挙げられる。粉砕溶媒は、水、アセトンおよびイソプロピルアルコールから選ばれる少なくとも1種がより好ましく、特にアセトンが好ましい。 As the pulverization solvent, a solvent having an appropriate polarity that is difficult to dissolve the solidified product and is compatible with the carbon source, and does not significantly increase the viscosity when mixed with the solidified product and the carbon source is preferable. Water is preferable from the viewpoint of cost and safety. On the other hand, when a problem such as elution of the solidified product occurs, an organic solvent is preferable. Examples of the organic solvent include ethanol, isopropyl alcohol, acetone, hexane, toluene and the like. The grinding solvent is more preferably at least one selected from water, acetone and isopropyl alcohol, and acetone is particularly preferred.
 粉砕溶媒の使用量は、固化物および炭素源の合計量の濃度が1~80%となる量が好ましく、10~40%となる量が特に好ましい。粉砕溶媒の使用量を1%以上とすることで、生産性を高めることができる。また、粉砕溶媒の使用量を80%以下とすることで、固化物および炭素源の混合、粉砕を効率よく進めることができる。 The amount of the grinding solvent used is preferably such that the total concentration of the solidified product and the carbon source is 1 to 80%, particularly preferably 10 to 40%. Productivity can be improved by making the usage-amount of a grinding | pulverization solvent into 1% or more. Moreover, mixing and grinding | pulverization of a solidified material and a carbon source can be advanced efficiently because the usage-amount of a grinding | pulverization solvent shall be 80% or less.
 粉砕物の平均粒子径は、二次電池用正極材料に適用した場合により高い導電性を得る観点から、体積基準のメディアン径で10nm~10μmが好ましく、10nm~5μmが特に好ましい。平均粒子径が10nm以上であると、加熱工程(v)を実施するときに、化合物(α)の粒子同士が焼結して粒子径が大きくなりすぎることがない。平均粒子径が10μm以下であると、高い導電性を示す二次電池正極材料を得やすく、その高容量化、および高エネルギー密度化を実現しやすくなる。ただし、粒子径が10nm未満というような非常に細かい粒子が多く含まれると、加熱工程(v)を実施するときに焼結助剤の作用をし、加熱後の平均粒子径を大きくする。
 本明細書において、平均粒子径は、主にはレーザ回折/散乱式粒子径測定装置(堀場製作所製、商品名:LA-950)により得られるものであるが、上記の装置により粒子径の測定が困難な場合は、沈降法、フロー式画像分析装置を用いることができる。
The average particle size of the pulverized product is preferably 10 nm to 10 μm, particularly preferably 10 nm to 5 μm in terms of volume-based median diameter, from the viewpoint of obtaining higher conductivity when applied to a positive electrode material for a secondary battery. When the average particle size is 10 nm or more, when the heating step (v) is performed, the particles of the compound (α) do not sinter and the particle size does not become too large. When the average particle size is 10 μm or less, it is easy to obtain a secondary battery positive electrode material exhibiting high conductivity, and it becomes easy to realize a higher capacity and a higher energy density. However, if a lot of very fine particles having a particle size of less than 10 nm are contained, the sintering aid acts when the heating step (v) is performed, and the average particle size after heating is increased.
In this specification, the average particle size is obtained mainly by a laser diffraction / scattering particle size measuring device (trade name: LA-950, manufactured by Horiba, Ltd.). If this is difficult, a sedimentation method or a flow image analyzer can be used.
[加熱工程(v)]
 粉砕工程(iv)の後、得られた粉砕物を不活性雰囲気下または還元雰囲気下で加熱し、固化物の粉砕物から所定の組成を有する化合物(α)を合成する加熱工程(v)を行うことが好ましい。
 加熱工程(v)は、粉砕により生じた応力の緩和、粉砕物の結晶核生成および粒成長を含むことが好ましい。このような加熱工程(v)を、上述した粉砕工程(iv)後に行うことで、粉砕による残留応力を低減または除去しつつ、結晶成長させた二次電池用正極材料を得ることができる。
[Heating step (v)]
After the pulverization step (iv), the obtained pulverized product is heated in an inert atmosphere or a reducing atmosphere to synthesize a compound (α) having a predetermined composition from the pulverized product of the solidified product. Preferably it is done.
The heating step (v) preferably includes relaxation of stress generated by pulverization, crystal nucleation of the pulverized product, and grain growth. By performing such a heating step (v) after the pulverization step (iv) described above, it is possible to obtain a positive electrode material for a secondary battery in which crystals are grown while reducing or removing residual stress due to pulverization.
 加熱工程(v)においては、例えばリン酸化合物(1)の粒子、またはケイ酸化合物(2)の粒子を得ることが好ましく、リン酸化合物(1)またはケイ酸化合物(2)の結晶粒子を得ることがより好ましく、オリビン型の結晶構造を有するリン酸化合物(1)の結晶粒子またはオリビン型の結晶構造を有するケイ酸化合物(2)の結晶粒子を得ることが特に好ましい。
 得られた化合物は、非晶質物を含まないことが好ましい。化合物が非晶質物を含まない場合には、X線回折でハローパターンが検出されない。
In the heating step (v), for example, it is preferable to obtain particles of the phosphoric acid compound (1) or particles of the silicic acid compound (2), and crystal particles of the phosphoric acid compound (1) or the silicic acid compound (2) are obtained. It is more preferable to obtain, and it is particularly preferable to obtain crystal particles of the phosphoric acid compound (1) having an olivine type crystal structure or crystal particles of the silicate compound (2) having an olivine type crystal structure.
It is preferable that the obtained compound does not contain an amorphous substance. When the compound does not contain an amorphous substance, a halo pattern is not detected by X-ray diffraction.
 粉砕工程(iv)で粉砕物の表面に付着した有機化合物や炭素系導電物質は、加熱工程(v)で生成した化合物(α)、好ましくはその結晶粒子の表面に結合して導電材として機能する。有機化合物は加熱工程(v)で熱分解され、さらに少なくとも一部が炭化物となって導電材として機能する。粉砕工程(iv)を湿式で行った場合には、分散媒の除去を加熱時に同時に行なってもよい。 The organic compound or carbon-based conductive substance adhering to the surface of the pulverized product in the pulverization step (iv) is bonded to the surface of the compound (α), preferably its crystal particles, generated in the heating step (v), and functions as a conductive material. To do. The organic compound is thermally decomposed in the heating step (v), and at least a part thereof becomes a carbide to function as a conductive material. When the pulverization step (iv) is performed in a wet manner, the dispersion medium may be removed simultaneously with heating.
 化合物(α)を合成するための加熱温度は、400~1,000℃が好ましく、500~900℃が特に好ましい。加熱温度が400℃以上であると、反応が生じやすく、1,000℃以下であると粉砕物が融解しにくく、結晶系や粒子径を制御しやすい。また、該加熱温度であると、適度な結晶性、粒子径、粒子径分布等を有する化合物(α)、好ましくはその結晶粒子、さらに好ましくはオリビン型の結晶粒子が得られやすくなる。加熱は、一定温度で保持することに限らず、多段階に保持温度を設定して行ってもよい。加熱温度を高くするほど、生成する粒子の粒子径が大きくなる傾向があるため、所望の粒子径に応じて加熱温度を設定するのが好ましい。 The heating temperature for synthesizing the compound (α) is preferably 400 to 1,000 ° C., particularly preferably 500 to 900 ° C. When the heating temperature is 400 ° C. or higher, a reaction is likely to occur, and when it is 1,000 ° C. or lower, the pulverized product is difficult to melt and the crystal system and particle diameter are easily controlled. Further, at the heating temperature, it becomes easy to obtain a compound (α) having an appropriate crystallinity, particle size, particle size distribution, etc., preferably its crystal particles, more preferably olivine type crystal particles. The heating is not limited to being held at a constant temperature, and may be performed by setting the holding temperature in multiple stages. As the heating temperature is increased, the particle diameter of the generated particles tends to increase. Therefore, it is preferable to set the heating temperature according to a desired particle diameter.
 加熱時間(加熱温度による保持時間)は所望の粒子径を考慮して1~72時間が好ましい。加熱は、電気、石油、ガス等を熱源とする、ボックス炉、トンネルキルン、ローラーハースキルン、ロータリーキルン、マイクロウェーブ加熱炉等で行うのが好ましい。 The heating time (holding time depending on the heating temperature) is preferably 1 to 72 hours in consideration of the desired particle size. Heating is preferably performed in a box furnace, tunnel kiln, roller hearth kiln, rotary kiln, microwave heating furnace, or the like that uses electricity, oil, gas, or the like as a heat source.
 加熱工程(v)は大気下、不活性雰囲気下または還元性雰囲気下で実施することが好ましい。不活性雰囲気および還元性雰囲気の好ましい条件は、溶融工程(ii)で説明したのと同様である。雰囲気圧力は、常圧、加圧、減圧(0.9×105Pa以下)のいずれであってもよい。
 また、加熱炉内に還元剤(例えばグラファイト)を入れた容器を装填してもよい。加熱工程(v)を不活性雰囲気下または還元雰囲気下で実施すれば、粉砕物中のMイオンの還元(例えばM3+からM2+への変化)を促進できる。
The heating step (v) is preferably performed in the air, in an inert atmosphere, or in a reducing atmosphere. Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii). The atmospheric pressure may be any of normal pressure, pressurization, and reduced pressure (0.9 × 10 5 Pa or less).
Moreover, you may charge the container which put the reducing agent (for example, graphite) in the heating furnace. When the heating step (v) is performed in an inert atmosphere or a reducing atmosphere, reduction of M ions in the pulverized product (for example, change from M 3+ to M 2+ ) can be promoted.
 加熱の後は、通常は室温まで冷却する。該冷却における冷却速度は30℃/時間~300℃/時間が好ましい。冷却速度を該範囲にすることにより、加熱による歪みを除去でき、生成物が結晶体である場合は、結晶構造を保ったまま目的物を得ることができる。冷却は、放置して室温まで冷却させるのが好ましい。冷却は不活性雰囲気下または還元雰囲気下で行うのが好ましい。 After heating, it is usually cooled to room temperature. The cooling rate in the cooling is preferably 30 ° C./hour to 300 ° C./hour. By setting the cooling rate within this range, distortion due to heating can be removed, and when the product is a crystal, the target product can be obtained while maintaining the crystal structure. The cooling is preferably allowed to cool to room temperature. Cooling is preferably performed in an inert atmosphere or a reducing atmosphere.
 加熱工程(v)で炭素源を添加することもできる。この場合、粉砕工程(iv)で得られた粉砕物(炭素源を含まない粉砕物であることが好ましい。)を加熱して化合物(α)を得た後、該化合物(α)と炭素源とを含む粉砕物を得て、次いで該粉砕物を加熱する製法を採ることが好ましい。 Carbon source can be added in the heating step (v). In this case, the pulverized product obtained in the pulverization step (iv) (preferably a pulverized product containing no carbon source) is heated to obtain the compound (α), and then the compound (α) and the carbon source are obtained. It is preferable to adopt a production method in which a pulverized product containing the following is obtained and then the pulverized product is heated.
 上述した溶融、冷却、粉砕、加熱の各工程を経ることによって、二次電池用正極材料としての所定の組成を有する化合物(α)が製造される。化合物(α)は結晶粒子を含むことが好ましく、またオリビン型であることが好ましい。このような組成および結晶系であると、前述したように多電子型の理論電気容量の材料を得ることができる。 The compound (α) having a predetermined composition as a positive electrode material for a secondary battery is manufactured through the above-described melting, cooling, pulverization, and heating steps. The compound (α) preferably contains crystal particles and is preferably an olivine type. With such a composition and crystal system, as described above, a multi-electron type material having a theoretical electric capacity can be obtained.
 特にケイ酸化合物は、二次電池用正極材料に使用する場合に、二次電池の単位体積(質量)当たりの容量を高くできるため好ましい。ケイ酸化合物はオリビン型が好ましく、該オリビン型ケイ酸化合物は二次電池用正極材料として好適である。また、リン酸化合物は、二次電池用正極材料に使用する場合には、二次電池の性能の信頼性を高くできるため好ましい。リン酸化合物はオリビン型が好ましく、該オリビン型リン酸化合物は二次電池用正極材料として好適である。 Particularly, a silicate compound is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as a positive electrode material for a secondary battery. The silicate compound is preferably an olivine type, and the olivine type silicate compound is suitable as a positive electrode material for a secondary battery. A phosphoric acid compound is preferable when used as a positive electrode material for a secondary battery because the reliability of the performance of the secondary battery can be increased. The phosphate compound is preferably an olivine type, and the olivine type phosphate compound is suitable as a positive electrode material for a secondary battery.
 本発明により得られる二次電池用正極材料の比表面積は0.2m/g~200m/gが好ましく、1m/g~100m/gがより好ましい。比表面積を該範囲とすることにより、導電性が高くなる。比表面積は、例えば窒素吸着法による比表面積測定装置で測定できる。 The specific surface area of the positive electrode material for a secondary battery obtained by the present invention is preferably 0.2 m 2 / g to 200 m 2 / g, more preferably 1 m 2 / g to 100 m 2 / g. By setting the specific surface area within this range, the conductivity is increased. The specific surface area can be measured by, for example, a specific surface area measuring apparatus using a nitrogen adsorption method.
 また、二次電池用正極材料の粒子の平均粒子径は、粒子の導電性を高めるために、体積換算のメディアン径で10nm~10μmが好ましく、10nm~2μmがより好ましい。なお、本発明により得られる二次電池用正極材料の平均粒子径は、結晶粒子だけでなく非晶質粒子を含んでいたとしても同様に、体積換算のメディアン径で10nm~10μmが好ましく、10nm~2μmがより好ましい。 Further, the average particle diameter of the particles of the positive electrode material for secondary batteries is preferably 10 nm to 10 μm, more preferably 10 nm to 2 μm in terms of volume median diameter in order to increase the conductivity of the particles. The average particle diameter of the positive electrode material for a secondary battery obtained by the present invention is preferably 10 nm to 10 μm in terms of volume median diameter even if it contains not only crystal particles but also amorphous particles. More preferably, it is ˜2 μm.
 本発明によれば、オリビン型化合物、輝石型化合物、またはナシコン型化合物の原料調合物を、耐火材料により形成された容器内でかつ不活性雰囲気下または還元雰囲気下で、アーク放電により加熱し溶融しているので、電気炉等の加熱炉内で加熱溶融を行う従来の方法に比べて、熱効率が高く、急速加熱が可能であるうえに、量産性が高い。溶融工程(ii)において1バッチあたり10kg以上の生産量を実現可能である。
 また、溶融物に含まれるFe、Mn等の重金属元素による容器の侵食を抑制でき、加熱溶融に用いる容器の損耗を防止できるため、メンテナンスの頻度を低減し、二次電池用正極材料の製造コストを低減することができる。さらに、容器に由来する成分が、当該容器内の溶融物中に混入するのを抑制でき、純度に優れた二次電池用正極材料を得ることができる。
According to the present invention, a raw material formulation of an olivine type compound, pyroxene type compound, or NASICON type compound is heated and melted by arc discharge in a container formed of a refractory material and in an inert atmosphere or a reducing atmosphere. Therefore, compared with the conventional method of heating and melting in a heating furnace such as an electric furnace, the thermal efficiency is high, rapid heating is possible, and mass productivity is high. A production amount of 10 kg or more per batch can be realized in the melting step (ii).
In addition, the container can be prevented from being eroded by heavy metal elements such as Fe and Mn contained in the melt, and the container used for heating and melting can be prevented from being worn. Therefore, the frequency of maintenance is reduced and the manufacturing cost of the positive electrode material for the secondary battery is reduced. Can be reduced. Furthermore, it can suppress that the component derived from a container mixes in the melt in the said container, and can obtain the positive electrode material for secondary batteries excellent in purity.
<二次電池用正極および二次電池の製造方法>
 本発明の製造方法によって得られる二次電池用正極材料を用いることによって、二次電池用正極および二次電池を製造できる。二次電池としては、金属リチウム二次電池、リチウムイオン二次電池、リチウムポリマー二次電池等が挙げられるが、リチウムイオン二次電池が好ましい。電池形状は制限されることはなく、例えば円筒状、角型、コイン型等の種々の形状およびサイズを適宜採用できる。
<Positive electrode for secondary battery and method for producing secondary battery>
By using the secondary battery positive electrode material obtained by the production method of the present invention, a secondary battery positive electrode and a secondary battery can be produced. Examples of the secondary battery include a metal lithium secondary battery, a lithium ion secondary battery, and a lithium polymer secondary battery, and a lithium ion secondary battery is preferable. The battery shape is not limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
 二次電池用正極は、本発明の製造方法で得られる二次電池用正極材料を用いて、公知の電極の製造方法にしたがって製造できる。例えば、本発明により得られる二次電池用正極材料を必要に応じて公知の結着材(ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等)と混合した後、さらに、公知の有機溶媒(N-メチルピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N-N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等)を用いてスラリーとし、公知の集電体(アルミニウム、またはステンレスの金属箔等)に塗布する等の方法によって、製造できる。 The positive electrode for a secondary battery can be manufactured according to a known electrode manufacturing method using the positive electrode material for a secondary battery obtained by the manufacturing method of the present invention. For example, a positive electrode material for a secondary battery obtained according to the present invention may be prepared by using a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene as required. After mixing with rubber, fluoro rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, etc., further known organic solvents (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate) , Methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc.) to form a slurry, and a known current collector (aluminum, By a method such as coating to the metal foil or the like) of stainless steel, it can be produced.
 二次電池の構造は、本発明の製造方法で得られる二次電池用正極材料を電極として用いる以外は、公知の二次電池における構造を採用することができる。セパレータ、電池ケース等についても同様である。負極としては、活物質として公知の負極用活物質を使用でき、炭素材料、アルカリ金属材料およびアルカリ土類金属材料からなる群から選ばれる少なくとも1種を用いることが好ましい。電解液としては、非水系の電解液が好ましい。すなわち、本発明の製造方法で得られる二次電池用正極材料を用いた二次電池としては、非水電解質リチウムイオン二次電池が好ましい。 As the structure of the secondary battery, a structure in a known secondary battery can be adopted except that the positive electrode material for a secondary battery obtained by the production method of the present invention is used as an electrode. The same applies to separators, battery cases, and the like. As the negative electrode, a known negative electrode active material can be used as the active material, and at least one selected from the group consisting of carbon materials, alkali metal materials, and alkaline earth metal materials is preferably used. As the electrolytic solution, a non-aqueous electrolytic solution is preferable. That is, as the secondary battery using the positive electrode material for a secondary battery obtained by the production method of the present invention, a nonaqueous electrolyte lithium ion secondary battery is preferable.
 本発明を、実施例を挙げて具体的に説明するが、本発明は以下の実施例に限定されない。 The present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
<実施例1>
(原料調合工程(i))
 溶融物の組成が、LiO、FeO、およびP換算量(単位:モル%)でそれぞれ、25.0モル%、50.0モル%、および25.0モル%となるように、炭酸リチウム(LiCO)、四酸化三鉄(Fe)、およびリン酸水素アンモニウム(NHPO)を秤量し、乾式で混合して原料調合物を得た。
<Example 1>
(Raw material preparation step (i))
The composition of the melt is 25.0 mol%, 50.0 mol%, and 25.0 mol% in terms of Li 2 O, FeO, and P 2 O 5 (unit: mol%), respectively. , Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) were weighed and mixed dry to obtain a raw material formulation.
(溶融工程(ii))
 得られた原料調合物を、ステンレス鋼製の水冷装置に搭載された、内径40mm、深さ40mmの高ジルコニア質電鋳耐火物(AGCセラミックス社製、製品名ZB-X950)製のルツボに充填し、アーク発生装置(圧力モーション社製)を用い、カーボンを電極として、1L/分でArガスを流しながらプラズマアークを発生させた。そして、アーク放電により、ルツボ内の原料調合物を約10分で約1250℃まで昇温させ、その後1250℃で3分間保持して完全に溶融させた。
(Melting step (ii))
The obtained raw material mixture is filled in a crucible made of a high zirconia electroformed refractory (AGC Ceramics, product name ZB-X950) having an inner diameter of 40 mm and a depth of 40 mm mounted on a stainless steel water cooling device. Then, using an arc generator (manufactured by Pressure Motion), a plasma arc was generated while flowing Ar gas at 1 L / min using carbon as an electrode. Then, the raw material formulation in the crucible was heated to about 1250 ° C. in about 10 minutes by arc discharge, and then held at 1250 ° C. for 3 minutes to be completely melted.
(冷却工程(iii))
 アーク放電を停止した後、溶融工程(ii)で得られた溶融物を、ステンレス製の双ローラ(外径10cm、回転数200rpm)に注下して急速冷却して、固化物を得た。冷却速度は約1×10℃/秒であった。
(Cooling step (iii))
After stopping the arc discharge, the melt obtained in the melting step (ii) was poured into a stainless steel double roller (outer diameter 10 cm, rotation speed 200 rpm) and rapidly cooled to obtain a solidified product. The cooling rate was about 1 × 10 4 ° C./second.
(粉砕工程(iv))
 得られた固化物を、乳棒と乳鉢を用いて粗粉砕した。さらに、粗粉砕後の固化物を、粉砕メディアとしてジルコニア製ボールを用いた遊星ミル(伊藤製作所製、装置名:LP-4)を用いてアセトン中で粉砕して、粉砕物を得た。得られた粉砕物の平均粒子径を、レーザ回折/散乱式粒度分析計(堀場製作所製、装置名:LA-950)を用いて測定したところ、体積基準のメディアン径は0.40μmであった。
(Crushing step (iv))
The obtained solidified product was coarsely pulverized using a pestle and a mortar. Further, the solidified product after coarse pulverization was pulverized in acetone using a planetary mill (manufactured by Ito Seisakusho, device name: LP-4) using zirconia balls as pulverization media to obtain a pulverized product. When the average particle diameter of the obtained pulverized product was measured using a laser diffraction / scattering particle size analyzer (manufactured by Horiba, Ltd., apparatus name: LA-950), the volume-based median diameter was 0.40 μm. .
(加熱工程(v))
 粉砕工程(iv)で得られた微粉砕物を、電気炉(モトヤマ社製、型式名;SKM-3035)を用いて、Hガスを3体積%含むArガス雰囲気下において700℃で8時間加熱し、次いで室温まで冷却し、リン酸鉄リチウム粒子を析出させた。
(Heating step (v))
The finely pulverized product obtained in the pulverization step (iv) was used for 8 hours at 700 ° C. in an Ar gas atmosphere containing 3% by volume of H 2 gas using an electric furnace (manufactured by Motoyama, model name: SKM-3035). Heated and then cooled to room temperature to precipitate lithium iron phosphate particles.
 得られたリン酸鉄リチウム粒子の鉱物相を、X線回折装置(リガク社製、装置名:RINT TTRIII)を用いて測定した。回折パターンから、得られたリン酸鉄リチウム粒子は、斜方晶のオリビン型LiFePOであることが確認された。また、比表面積を比表面積測定装置(島津製作所社製、装置名:ASAP2020)を用いて測定したところ、23m/gであった。さらに、リン酸鉄リチウム粒子の平均粒子径をレーザ回折/散乱式粒度分析計(堀場製作所社製、装置名:LA-950)を用いて測定したところ、体積換算のメディアン径は0.42μmであった。
 なお、溶融物を取り出して冷却した後のルツボを切断し、侵食量をフラックスラインで測定したところ、0.6mmであった。
The mineral phase of the obtained lithium iron phosphate particles was measured using an X-ray diffraction apparatus (manufactured by Rigaku Corporation, apparatus name: RINT TTRIII). From the diffraction pattern, it was confirmed that the obtained lithium iron phosphate particles were orthorhombic olivine type LiFePO 4 . Moreover, it was 23 m < 2 > / g when the specific surface area was measured using the specific surface area measuring apparatus (The Shimadzu Corp. make, apparatus name: ASAP2020). Further, when the average particle diameter of the lithium iron phosphate particles was measured using a laser diffraction / scattering particle size analyzer (manufactured by Horiba, Ltd., apparatus name: LA-950), the volume-converted median diameter was 0.42 μm. there were.
In addition, when the crucible after taking out and cooling a melt was cut | disconnected and the amount of erosion was measured with the flux line, it was 0.6 mm.
<実施例2>
 実施例1と同じ組成の原料調合物を、実施例1の溶融工程(ii)と同様の工程で溶融した後、得られた溶融物を、ステンレス容器内の水道水(温度15℃)に直接投入して冷却し、固化物を得た。冷却速度は約200℃/秒と推定された。
<Example 2>
After melting the raw material formulation having the same composition as that of Example 1 in the same process as the melting process (ii) of Example 1, the obtained melt was directly put into tap water (temperature 15 ° C.) in a stainless steel container. It was charged and cooled to obtain a solidified product. The cooling rate was estimated at about 200 ° C./second.
 次いで、固化物を回収し、乾燥した後、実施例1と同様にして、粉砕工程(iv)および(v)加熱工程を順に行い、リン酸鉄リチウム粒子を析出させた。 Next, the solidified material was collected and dried, and then the pulverization step (iv) and (v) heating step were performed in the same manner as in Example 1 to precipitate lithium iron phosphate particles.
 得られたリン酸鉄リチウム粒子の鉱物相を測定したところ、斜方晶のオリビン型LiFePOであることが確認された。また、比表面積を測定したところ、25m/gであった。さらに、粒子の平均粒子径を測定したところ、体積換算のメディアン径は0.36μmであった。 When the mineral phase of the obtained lithium iron phosphate particles was measured, it was confirmed to be orthorhombic olivine-type LiFePO 4 . Moreover, it was 25 m < 2 > / g when the specific surface area was measured. Furthermore, when the average particle diameter of the particles was measured, the median diameter in terms of volume was 0.36 μm.
<実施例3>
 溶融物の組成が、LiO、FeO、およびSiO換算量(単位:モル%)でそれぞれ、33.3モル%、33.3モル%、および33.3モル%となるように、炭酸リチウム(LiCO)、四酸化三鉄(Fe)、および二酸化ケイ素(SiO)を秤量し、乾式で混合・粉砕して原料調合物を得た。
<Example 3>
Carbonic acid so that the composition of the melt is 33.3 mol%, 33.3 mol%, and 33.3 mol% in terms of Li 2 O, FeO, and SiO 2 (unit: mol%), respectively. Lithium (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), and silicon dioxide (SiO 2 ) were weighed, mixed and pulverized in a dry process to obtain a raw material formulation.
 次いで、得られた原料調合物を、実施例1の溶融工程(ii)と同様の工程で溶融した後、実施例1と同様にして、冷却工程(iii)、粉砕工程(iv)および加熱工程(v)を順に行い、ケイ酸鉄リチウム粒子を析出させた。 Subsequently, the obtained raw material formulation is melted in the same step as the melting step (ii) of Example 1, and then the cooling step (iii), the pulverizing step (iv) and the heating step in the same manner as in Example 1. (V) was performed in order to deposit lithium iron silicate particles.
 得られたケイ酸鉄リチウム粒子の鉱物相を測定したところ、斜方晶のオリビン型LiFeSiOであることが確認された。また、比表面積を測定したところ、16m/gであった。さらに、結晶粒子の平均粒子径を測定したところ、体積換算のメディアン径は0.67μmであった。 When the mineral phase of the obtained lithium iron silicate particles was measured, it was confirmed to be orthorhombic olivine type Li 2 FeSiO 4 . Moreover, it was 16 m < 2 > / g when the specific surface area was measured. Furthermore, when the average particle diameter of the crystal particles was measured, the median diameter in terms of volume was 0.67 μm.
<比較例>
 実施例3と同様の組成を有する原料調合物を、蓋付の、外径46mm、高さ53mmのアルミナ製の焼結ルツボ(ニッカトー社製、商品名:SSA-S)に充填した。次に、ルツボをケイ化モリブデン製の発熱体を備えた電気炉(モトヤマ社製、装置名:NH-3035)の中に入れた。該電気炉内を2L/分でNガスを流通しつつ、5℃/分の速度で昇温し、1450℃で0.5時間保持、加熱して、溶融物を得た。溶融物を、5℃/分で室温になるまで冷却した。加熱、冷却処理終了後のルツボを目視で観察したところ、ルツボ表面に亀裂が生じており、純度の高い固化物を得ることがなかった。
<Comparative example>
A raw material formulation having the same composition as in Example 3 was filled into an alumina sintered crucible (made by Nikkato, trade name: SSA-S) with a lid and an outer diameter of 46 mm and a height of 53 mm. Next, the crucible was placed in an electric furnace (manufactured by Motoyama, apparatus name: NH-3035) equipped with a heating element made of molybdenum silicide. While circulating N 2 gas at a rate of 2 L / min in the electric furnace, the temperature was raised at a rate of 5 ° C./min, held at 1450 ° C. for 0.5 hours, and heated to obtain a melt. The melt was cooled to room temperature at 5 ° C./min. When the crucible after the heating and cooling treatment was visually observed, cracks were generated on the surface of the crucible, and a solid product with high purity was not obtained.
 本発明によれば、純度に優れた二次電池用正極材料を、低コストでかつ効率的に製造することができる。
 なお、2011年9月22日に出願された日本特許出願2011-207028号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
ADVANTAGE OF THE INVENTION According to this invention, the positive electrode material for secondary batteries excellent in purity can be manufactured efficiently at low cost.
It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-2007028 filed on September 22, 2011 are cited herein as disclosure of the specification of the present invention. Incorporated.
1…アーク溶融装置、2…溶融容器、2a…炉壁部、2b…炉底部、3…ジャケット、4…黒鉛電極、5…原料調合物、6…原料供給管、7…ガス導入管、8…ガス排出管、9…溶融物導出管、10…冷却固化装置、11…固化物回収装置、12…固化物。 DESCRIPTION OF SYMBOLS 1 ... Arc melting apparatus, 2 ... Melting container, 2a ... Furnace wall part, 2b ... Furnace bottom part, 3 ... Jacket, 4 ... Graphite electrode, 5 ... Raw material preparation, 6 ... Raw material supply pipe, 7 ... Gas introduction pipe, 8 DESCRIPTION OF SYMBOLS ... Gas discharge pipe, 9 ... Melt discharge pipe | tube, 10 ... Cooling solidification apparatus, 11 ... Solidified substance recovery apparatus, 12 ... Solidified substance.

Claims (10)

  1.  オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であって、
     原料を調合して原料調合物を準備する原料調合工程と、
     前記原料調合物を、耐火材料により形成された容器内で不活性雰囲気下または還元性雰囲気下でアーク溶融し、溶融物を得る溶融工程と、
    を含むことを特徴とする二次電池用正極材料の製造方法。
    A method for producing a positive electrode material for a secondary battery comprising a compound having an olivine type, pyroxene type, or NASICON type crystal structure,
    Raw material preparation step of preparing raw material preparation by preparing raw materials,
    A melting step of arc melting the raw material formulation in a container formed of a refractory material under an inert atmosphere or a reducing atmosphere to obtain a melt;
    The manufacturing method of the positive electrode material for secondary batteries characterized by including.
  2.  前記不活性雰囲気は、窒素(N)、ヘリウム(He)、アルゴン(Ar)、およびネオン(Ne)からなる群より選ばれる少なくとも1種の不活性ガスを99体積%以上含む気体条件である、請求項1に記載の二次電池用正極材料の製造方法。 The inert atmosphere is a gas condition containing 99% by volume or more of at least one inert gas selected from the group consisting of nitrogen (N 2 ), helium (He), argon (Ar), and neon (Ne). The manufacturing method of the positive electrode material for secondary batteries of Claim 1.
  3.  前記還元性雰囲気は、窒素(N)、ヘリウム(He)、アルゴン(Ar)、およびネオン(Ne)からなる群より選ばれる少なくとも1種の不活性ガスに、還元性を有するガスを添加してなり、実質的に酸素を含まない気体条件である、請求項1に記載の二次電池用正極材料の製造方法。 The reducing atmosphere is obtained by adding a reducing gas to at least one inert gas selected from the group consisting of nitrogen (N 2 ), helium (He), argon (Ar), and neon (Ne). The method for producing a positive electrode material for a secondary battery according to claim 1, wherein the gas condition is substantially free of oxygen.
  4.  前記溶融工程で得られた前記溶融物を冷却して固化物を得る冷却工程を有する、請求項1~3のいずれか1項に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to any one of claims 1 to 3, further comprising a cooling step of cooling the melt obtained in the melting step to obtain a solidified product.
  5.  前記冷却工程において、前記溶融物を1×10℃/秒以上の冷却速度で冷却する、請求項4に記載の二次電池用正極材料の製造方法。 5. The method for producing a positive electrode material for a secondary battery according to claim 4, wherein, in the cooling step, the melt is cooled at a cooling rate of 1 × 10 3 ° C./second or more.
  6.  前記冷却工程で得られた固化物を粉砕して粉砕物を得る粉砕工程を有する、請求項4または5に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to claim 4 or 5, further comprising a pulverization step of pulverizing the solidified product obtained in the cooling step to obtain a pulverized product.
  7.  前記粉砕工程において、前記固化物に、有機化合物および炭素系導電物質からなる群より選ばれる少なくとも1種を添加して粉砕する、請求項6に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to claim 6, wherein, in the pulverization step, at least one selected from the group consisting of an organic compound and a carbon-based conductive material is added to the solidified product and pulverized.
  8.  前記粉砕工程で得られた粉砕物を加熱する加熱工程を有する、請求項6または7に記載の二次電池用正極材料の製造方法。 The manufacturing method of the positive electrode material for secondary batteries of Claim 6 or 7 which has a heating process which heats the ground material obtained at the said grinding | pulverization process.
  9.  前記二次電池用正極材料が下記式(1)で表されるリン酸化合物を含む、請求項1~8のいずれか1項に記載の二次電池用正極材料の製造方法。
    AM1-a 1-b 4+c   (1)
    (式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子を示し、ZはSi、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。aは0≦a≦0.2であり、bは0≦b≦0.2であり、cは、aおよびbの数値、ならびにMの価数、Xの価数およびZの価数に依存し、電気的中性を満たす数である。)
    The method for producing a positive electrode material for a secondary battery according to any one of claims 1 to 8, wherein the positive electrode material for a secondary battery contains a phosphoric acid compound represented by the following formula (1).
    AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
    (In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 1 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W, and Z 1 represents at least one atom selected from the group consisting of Si, B, Al and V A is 0 ≦ a ≦ 0.2, b is 0 ≦ b ≦ 0.2, c is the numerical value of a and b, and the valence of M, the valence of X 1 and Z 1 It depends on the valence of and satisfies the electrical neutrality.)
  10.  前記二次電池用正極材料が下記式(2)で表されるケイ酸化合物を含む、請求項1~8のいずれか1項に記載の二次電池用正極材料の製造方法。
    1-d Si1-e 4+f   (2)
    (式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子を示し、ZはP、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。dは0≦d≦0.2であり、eは0≦e≦0.2であり、fは、dおよびeの数値、ならびにMの価数、Xの価数およびZの価数に依存し、電気的中性を満たす数である。)
    The method for producing a positive electrode material for a secondary battery according to any one of claims 1 to 8, wherein the positive electrode material for a secondary battery contains a silicate compound represented by the following formula (2).
    A 2 M 1-d X 2 d Si 1-e Z 2 e O 4 + f (2)
    (In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 2 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W, and Z 2 represents at least one atom selected from the group consisting of P, B, Al and V D is 0 ≦ d ≦ 0.2, e is 0 ≦ e ≦ 0.2, f is the numerical value of d and e, and the valence of M, the valence of X 2 and Z 2 It depends on the valence of and satisfies the electrical neutrality.)
PCT/JP2012/074276 2011-09-22 2012-09-21 Production method for positive electrode material for secondary battery WO2013042780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011207028 2011-09-22
JP2011-207028 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042780A1 true WO2013042780A1 (en) 2013-03-28

Family

ID=47914538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074276 WO2013042780A1 (en) 2011-09-22 2012-09-21 Production method for positive electrode material for secondary battery

Country Status (2)

Country Link
JP (1) JPWO2013042780A1 (en)
WO (1) WO2013042780A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050086A1 (en) * 2012-09-28 2014-04-03 トヨタ自動車株式会社 Negative electrode for batteries, battery, vehicle and battery-equipped device
JP2019102198A (en) * 2017-11-29 2019-06-24 国立研究開発法人産業技術総合研究所 Potassium compound, and potassium ion secondary battery cathode active material containing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123156A (en) * 1997-07-01 1999-01-26 Nippon Sanso Kk Fusion furnace for metal, and fusion method for metal
JP2001276791A (en) * 2000-04-03 2001-10-09 Shigeru Nagano System for treating waste and method for treating waste
WO2008050798A1 (en) * 2006-10-25 2008-05-02 Kabushiki Kaisha Shofu Infrared lamp heating type casting apparatus and method of casting
JP2008293661A (en) * 2007-05-22 2008-12-04 Nec Tokin Corp Positive electrode for lithium secondary battery, and lithium secondary battery using it
JP2011001242A (en) * 2009-06-22 2011-01-06 Asahi Glass Co Ltd Method for producing lithium iron phosphate particle and lithium iron phosphate particle
JP2011076793A (en) * 2009-09-29 2011-04-14 Furukawa Battery Co Ltd:The Method of synthesizing olivine-type m lithium silicate, and lithium ion secondary cell
WO2011065337A1 (en) * 2009-11-24 2011-06-03 旭硝子株式会社 Process for production of phosphoric acid compound, and process for production of secondary battery
WO2011111628A1 (en) * 2010-03-09 2011-09-15 旭硝子株式会社 Phosphate compound, positive electrode for secondary battery and method for producing secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123156A (en) * 1997-07-01 1999-01-26 Nippon Sanso Kk Fusion furnace for metal, and fusion method for metal
JP2001276791A (en) * 2000-04-03 2001-10-09 Shigeru Nagano System for treating waste and method for treating waste
WO2008050798A1 (en) * 2006-10-25 2008-05-02 Kabushiki Kaisha Shofu Infrared lamp heating type casting apparatus and method of casting
JP2008293661A (en) * 2007-05-22 2008-12-04 Nec Tokin Corp Positive electrode for lithium secondary battery, and lithium secondary battery using it
JP2011001242A (en) * 2009-06-22 2011-01-06 Asahi Glass Co Ltd Method for producing lithium iron phosphate particle and lithium iron phosphate particle
JP2011076793A (en) * 2009-09-29 2011-04-14 Furukawa Battery Co Ltd:The Method of synthesizing olivine-type m lithium silicate, and lithium ion secondary cell
WO2011065337A1 (en) * 2009-11-24 2011-06-03 旭硝子株式会社 Process for production of phosphoric acid compound, and process for production of secondary battery
WO2011111628A1 (en) * 2010-03-09 2011-09-15 旭硝子株式会社 Phosphate compound, positive electrode for secondary battery and method for producing secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050086A1 (en) * 2012-09-28 2014-04-03 トヨタ自動車株式会社 Negative electrode for batteries, battery, vehicle and battery-equipped device
JPWO2014050086A1 (en) * 2012-09-28 2016-08-22 トヨタ自動車株式会社 Negative electrode for secondary battery, secondary battery, vehicle and battery-equipped equipment
JP2019102198A (en) * 2017-11-29 2019-06-24 国立研究開発法人産業技術総合研究所 Potassium compound, and potassium ion secondary battery cathode active material containing the same
JP7126234B2 (en) 2017-11-29 2022-08-26 国立研究開発法人産業技術総合研究所 Potassium compound and positive electrode active material for potassium ion secondary battery containing the same

Also Published As

Publication number Publication date
JPWO2013042780A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
KR101769872B1 (en) Particulate anode materials and methods for their preparation
JP5501105B2 (en) Method for preparing electroactive insertion compound and resulting electrode material
WO2011162348A1 (en) Silicic acid compound, positive electrode for secondary cell, and method for producing secondary cell
US9620778B2 (en) Method for producing a fused product
JP6525869B2 (en) Method of making crystalline electrode material and material obtained therefrom
JP2014056722A (en) Phosphate compound, positive electrode material for secondary battery, and method for producing secondary battery
JP2011001242A (en) Method for producing lithium iron phosphate particle and lithium iron phosphate particle
WO2012133584A1 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
WO2012133581A1 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
WO2011138964A1 (en) (silicic acid)-(phosphoric acid) compound, positive electrode for secondary battery, and process for production of secondary battery
WO2012067249A1 (en) Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
JP2013067543A (en) Silicate compound, positive electrode for secondary battery, and method for producing secondary battery
WO2013042777A1 (en) Production method for positive electrode material for secondary battery
WO2012086722A1 (en) Silicic acid-vanadic acid compound, positive electrode for secondary battery, and manufacturing method for secondary battery
WO2012057341A1 (en) Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
TW201124338A (en) Process for production of phosphoric acid compound, and process for production of secondary battery
US20210343996A1 (en) Solid-state lithium ion conductor
WO2013042780A1 (en) Production method for positive electrode material for secondary battery
JP2013069526A (en) Method of manufacturing positive electrode material for secondary battery
JP2013047162A (en) Methods for production of silicic acid compound, positive electrode for secondary battery and secondary battery
WO2012057340A1 (en) Silicate-phosphate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
WO2013042778A1 (en) Production method for positive electrode material for secondary battery
WO2012067250A1 (en) Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
JP2013047161A (en) Silicate compound, positive electrode for secondary battery, and method for producing secondary battery
JP2012126589A (en) Method for producing fluorine-containing phosphoric acid compound, positive electrode for secondary battery, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534773

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833790

Country of ref document: EP

Kind code of ref document: A1