WO2013042778A1 - Production method for positive electrode material for secondary battery - Google Patents

Production method for positive electrode material for secondary battery Download PDF

Info

Publication number
WO2013042778A1
WO2013042778A1 PCT/JP2012/074273 JP2012074273W WO2013042778A1 WO 2013042778 A1 WO2013042778 A1 WO 2013042778A1 JP 2012074273 W JP2012074273 W JP 2012074273W WO 2013042778 A1 WO2013042778 A1 WO 2013042778A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
melt
electrode material
melting
Prior art date
Application number
PCT/JP2012/074273
Other languages
French (fr)
Japanese (ja)
Inventor
義久 別府
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013042778A1 publication Critical patent/WO2013042778A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode material for a secondary battery.
  • plug-in hybrid vehicles and electric vehicles are being developed from the viewpoint of carbon dioxide emission regulations and energy saving.
  • it is required to increase the capacity and the energy density while maintaining the safety of the secondary battery.
  • Non-Patent Document 1 discloses an olivine (olivine) silicic acid compound (Li 2 MSiO 4 ) containing two Li atoms in one molecule as a secondary battery material capable of increasing the capacity by a multi-electron reaction.
  • M Fe, Mn).
  • Non-Patent Document 2 discloses a method of obtaining a positive electrode material for a secondary battery having a predetermined crystal structure by once heating and melting a raw material mixture and then cooling it.
  • the positive electrode material for a secondary battery can be manufactured at low cost and in large quantities, and the uniformity of the chemical composition of the obtained positive electrode material can be improved.
  • Patent Document 1 discloses a method in which a raw material mixture containing a divalent transition metal compound is heated and melted at 1500 ° C. in an argon atmosphere and then rapidly cooled with a single roll to obtain an amorphous transition metal phosphate complex. Is disclosed.
  • Heat melting of the raw material mixture requires heat treatment at a high temperature, and a container used for heat melting requires characteristics such as heat resistance and corrosion resistance.
  • a raw material mixture composed of LiFePO 4 and LiF is placed in a platinum tube, the platinum tube is disposed in a quartz tube, heated by high-frequency induction heating to melt the raw material mixture, and then the melt is cooled.
  • a method for obtaining an active material composed of a phosphate complex containing a transition metal such as Fe or Mn is disclosed.
  • Patent Document 3 discloses that after heat-treating raw materials such as Li 2 CO 3 , NH 4 H 2 PO 4 , and Fe (II) C 2 O 4 in an alumina crucible with a lid at 300 ° C. in a nitrogen atmosphere. , Melting at 1200 ° C. for 10 minutes in an electric furnace, and then pouring the obtained melt onto an iron plate, pressing and quenching to form a precursor glass, and heat-treating it for a secondary battery A method for obtaining a positive electrode material is disclosed.
  • Patent Document 4 a raw material composition containing Li 2 CO 3 , Fe (COO) 2 .2H 2 O, NH 4 H 2 PO 4, etc. is filled in a crucible with a nozzle made of rhodium / platinum alloy. This is heated and melted in an electric furnace equipped with a heating element made of molybdenum silicide, and the obtained melt is dropped on a stainless steel double roller and rapidly cooled, and then (solidified product) is heated. A method for obtaining olivine-type lithium iron phosphate particles is disclosed.
  • Japanese Unexamined Patent Publication No. 2005-158673 Japanese Unexamined Patent Publication No. 2007-73360 Japanese Unexamined Patent Publication No. 2008-47412 Japanese Unexamined Patent Publication No. 2011-1242
  • Patent Document 2 is not suitable for mass production, and platinum components are mixed from the platinum tube into the internal melt during heating by high-frequency induction, leading to a decrease in product purity and an increase in production costs. There was a fear.
  • the crucible is easily worn out by the formation of platinum and rhodium contained in the crucible and the iron component in the melt, and the platinum and rhodium dissolved from the crucible are melted. It was easy to mix in a liquid, and there existed a possibility of causing the fall of the purity of a product and the increase in manufacturing cost.
  • An object of the present invention is to provide a mass-productive method for efficiently producing a positive electrode material for a secondary battery excellent in purity with reduced mixing of components derived from a container used for heating and melting a raw material mixture at low cost. It is to provide.
  • the method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having an olivine type, pyroxene type, or NASICON type crystal structure, wherein the raw materials are prepared.
  • the raw material preparation step of preparing a raw material preparation and the raw material preparation are melted by induction heating at least the inner peripheral portion of the container in a container having at least an inner peripheral portion formed of a conductive refractory material. And a melting step for obtaining a melt.
  • a melt outlet part having a diameter smaller than that of the container is connected to the bottom part of the container, and the melt outlet part is heated independently of the container.
  • the melt in the container can be led out from the melt lead-out part.
  • the melt outlet part is formed of a conductive refractory material, and the melt outlet part can be heated by induction heating.
  • the conductive refractory material is preferably carbon or conductive non-oxide ceramics, and the conductive non-oxide ceramics include at least one selected from silicon carbide, zirconium boride, and titanium boride. It is preferable that the ceramic is a main component. Furthermore, it is preferable that the melting step is performed in an inert atmosphere or a reducing atmosphere. In the melting step, the raw material preparation is preferably melted by heating to 1100 ° C. to 1800 ° C.
  • the manufacturing method of the positive electrode material for secondary batteries of the present invention includes a cooling step of cooling the melt obtained in the melting step to obtain a solidified product.
  • the melt is preferably cooled at a cooling rate of 1 ⁇ 10 3 ° C./second or more.
  • the phosphoric acid compound represented by following (1) Formula is mentioned.
  • A represents at least one atom selected from the group consisting of Li, Na, and K
  • M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni
  • X 1 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W
  • Z 1 represents at least one atom selected from the group consisting of Si, B, Al and V
  • A is 0 ⁇ a ⁇ 0.2
  • b is 0 ⁇ b ⁇ 0.2
  • c is the numerical value of a and b
  • the valence of M the valence of X 1 and Z 1 It depends on the valence of and satisfies the electrical neutrality.
  • the silicic acid compound represented by following (2) Formula is mentioned.
  • A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni;
  • X 2 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W, and
  • Z 2 represents at least one atom selected from the group consisting of P, B, Al and V D is 0 ⁇ d ⁇ 0.2, e is 0 ⁇ e ⁇ 0.2, f is the numerical value of d and e, and the valence of M, the valence of X 2 and Z 2 It depends on the valence of and satisfies the electrical neutrality.
  • the “inner peripheral part” refers to a part that comes into direct contact with the raw material formulation and the melt contained in the container. Specifically, it refers to the inner peripheral portion and inner bottom portion of the side wall of the container.
  • the positive electrode material for secondary batteries excellent in the purity in which mixing of the component derived from the container used for the heat melting of a raw material mixture was reduced can be manufactured efficiently at low cost.
  • the raw material preparation is melted by induction heating at least the inner periphery of the container formed of a conductive refractory material, compared to the conventional method using a heating furnace such as an electric furnace, There are advantages such as low energy loss, high thermal efficiency, rapid heating, the ability to obtain a melt in a short time, and high mass productivity.
  • olivine type compound “compound having an olivine type crystal structure” is also referred to as “olivine type compound”
  • compound having a pyroxene type crystal structure” is also referred to as “pyroxene type compound”
  • “Compound having” is also referred to as “Nashikon-type compound”.
  • the “compound having an olivine type, pyroxene type, or NASICON type crystal structure” is also referred to as “compound ( ⁇ )”.
  • the phosphoric acid compound having the composition represented by the formula (1) is also referred to as “phosphoric acid compound (1)”
  • the silicic acid compound having the composition represented by the formula (2) is referred to as “silicic acid”. Also referred to as “compound (2)”.
  • the method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having a crystal structure of olivine type, pyroxene type or NASICON type, wherein the raw material is prepared and the raw material is prepared
  • the raw material preparation step for preparing the composition and the raw material preparation are melted by induction heating at least the inner peripheral part of the container in a container in which at least the inner peripheral part is formed of a conductive refractory material. And a melting step for obtaining a product.
  • the secondary battery positive electrode material according to the present invention is preferably a compound having an olivine type, pyroxene type, or NASICON type crystal structure.
  • Examples of the olivine type compounds include those represented by the general formula AMPO 4 , AVOPO 4 , A 2 MSiO 4 , A 2 VOSiO 4 , AMBO 3 , A 2 MPO 4 F, or AVOPO 4 F.
  • examples of pyroxene-type compounds include those represented by general formulas AMSi 2 O 6 and AVSi 2 O 6 .
  • a 2 MP 2 O 7 is also included in the pyroxene-type compound.
  • Examples of NASICON compounds include those represented by the general formula A 3 M 2 (PO 4 ) 3 or A 3 V 2 (PO 4 ) 3 .
  • atom A represents an alkali metal atom such as Li, Na, and K
  • atom M represents a transition metal atom such as Fe, Mn, Co, and Ni.
  • P, Si, B, and V may each be partially substituted with each other, or these may be substituted with atoms such as Al or S.
  • the olivine-type compound, pyroxene-type compound, and nasicon-type compound described above are selected from the group consisting of Zr, Ti, Nb, Ta, Mo, and W together with atoms A and M, in addition to the compounds represented by the general formula described above. It may contain at least one selected atom.
  • the phosphoric acid compound (1) represented by the following formula (1) is preferred as the phosphoric acid compound.
  • AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
  • A is at least one atom selected from the group consisting of Li, Na, and K
  • M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni
  • X 1 is Zr.
  • Z 1 represents at least one atom selected from the group consisting of Si, B, Al, and V.
  • a is 0.
  • c depends on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , It is a number that satisfies the target neutrality.
  • the raw material preparation can be satisfactorily melted in the melting step (ii) described later, and a uniform melt can be obtained.
  • the phosphoric acid compound (1) can be obtained by the heating step (v) described later, and further, the phosphoric acid compound (1) containing an olivine type crystal structure, particularly a phosphoric acid compound (1) comprising only an olivine type crystal structure ) Is preferable.
  • A is more preferably 0.001 ⁇ a ⁇ 0.1, and particularly preferably 0.001 ⁇ a ⁇ 0.05.
  • a and b are within the above ranges, a phosphoric acid compound (1) showing a multi-electron type reaction (reaction that pulls out more than 1 mol of atoms A per unit mole number) is obtained, and this phosphoric acid compound (1) is obtained.
  • the theoretical electric capacity can be increased.
  • the value of c in the phosphoric acid compound (1) is a number depending on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , from 1/2 of the total positive charge The value obtained by subtracting 4.
  • a silicate compound (2) represented by the following formula (2) is preferred.
  • A is at least one atom selected from the group consisting of Li, Na, and K
  • M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni
  • X 2 is Zr.
  • Z 2 represents at least one atom selected from the group consisting of P, B, Al, and V.
  • d represents 0.
  • f depends on the numerical values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2 , It is a number that satisfies the target neutrality.
  • the raw material preparation can be melted well in the melting step (ii) described later, and a uniform melt can be obtained.
  • the silicate compound (2) can be obtained by the heating step (v) described later, and further, the silicate compound (2) having an olivine type crystal structure, particularly a silicate compound (2) having only an olivine type crystal structure (2). ) Is preferable.
  • D is more preferably 0.001 ⁇ d ⁇ 0.1, and particularly preferably 0.001 ⁇ d ⁇ 0.05.
  • e is more preferably 0.001 ⁇ e ⁇ 0.1, and particularly preferably 0.001 ⁇ e ⁇ 0.05.
  • the value of f in the composition of the silicate compound (2) is a number that depends on the values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2 , and is 1 / The value obtained by subtracting 4 from 2.
  • the atom A is suitable as a positive electrode material for a secondary battery, it is preferable to make Li essential, and it is particularly preferable to use only Li.
  • the phosphoric acid compound (1) containing Li and the silicic acid compound (2) containing Li increase the capacity per unit volume (mass) of the secondary battery.
  • the atom M is preferably composed of only one kind or two kinds. In particular, it is preferable in terms of cost that the atom M consists of Fe alone, Mn alone, or Fe and Mn.
  • the valence of atom M in phosphoric acid compound (1) or silicic acid compound (2) is in the range of +2 to +4.
  • the valence of atom M is +2, +8/3, +3 when atom M is Fe, +2, +3, +4 when Mn, +2, +8/3, +3 when Co, +2, when Ni is Ni, +4 is preferred.
  • the valence of atom M is preferably 2 to 2.2, more preferably 2.
  • the atoms X 1 and X 2 are at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W. From the viewpoint of performance, Zr, Ti or Nb is preferable, and Zr or Ti is particularly preferable.
  • the valences of the atoms X 1 and X 2 in the phosphoric acid compound (1) or the silicic acid compound (2) are basically +4 for Zr, +2 or +4 for Ti, +2 or +5 for Nb, Ta is +2 or +5, Mo is +4 or +6, and W is +4 or +6.
  • the atom Z 1 is at least one selected from the group consisting of Si, B, Al, and V. From the viewpoint of performance, B or Al is preferable, and B is particularly preferable.
  • the atom Z 2 is at least one selected from the group consisting of P, B, Al, and V. From the viewpoint of performance, B or Al is preferable, and B is particularly preferable.
  • the valences of the atoms Z 1 and Z 2 are basically +5 for P, +3 for B, +3 for Al, and +3 for V. +3, +4, +5.
  • the silicic acid compound (2) is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as the positive electrode material for the secondary battery.
  • a method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing the compound having the olivine type, pyroxene type, or NASICON type crystal structure described above, and preparing raw materials
  • the production method of the present invention preferably further includes a cooling step (iii), a pulverizing step (iv), and a heating step (v). Each step will be specifically described below.
  • each component source of an olivine type compound, pyroxene type compound, or NASICON type compound is selected and mixed so as to be a melt having a predetermined composition.
  • the compound containing atom A includes A carbonate (A 2 CO 3 ), A hydrogen carbonate (AHCO 3 ).
  • a 2 CO 3 , AHCO 3 , or AF is more preferable because it is inexpensive and easy to handle.
  • oxides of M FeO, Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , CoO, Co 3 O 4 , Co 2 O 3 , NiO, etc.
  • M oxyhydroxide MO (OH)
  • M silicate MO ⁇ SiO 2 , 2MO ⁇ SiO 2 etc.
  • M phosphate M 3 (PO 4 ) 2 etc.
  • Borate M 3 (BO 3 ) 2 etc.
  • M chloride MCl 2 , MCl 3 etc.
  • M nitrate M (NO 3 ) 2 , M ( NO 3 ) 3
  • M sulfate MSO 4 , M 2 (SO 4 ) 3 etc.
  • M organic acid salt acetate (M (CH 3 COO) 2 ) and oxalate (M (COO ) 2), etc.
  • M alkoxide M (OCH
  • At least one compound selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , Co 3 O 4 and NiO is more preferable.
  • the compound when the atom M is Fe Fe 3 O 4 and / or Fe 2 O 3 is preferable, and as the compound when the atom M is Mn, MnO 2 is preferable.
  • the compound containing atom M may be one type or two or more types.
  • SiO 2 silicon oxide
  • Si (OCH 3 ) 4 silicon alkoxide
  • a silicate, or M silicate is preferable.
  • the compound containing Si may be crystalline or amorphous. Among them, more preferable because SiO 2 is inexpensive.
  • anhydrous phosphoric acid P 2 O 5
  • ammonium hydrogen phosphate NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4
  • a or M phosphate is preferable.
  • the phosphate of A or M for example, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 is preferable.
  • the compound containing P may be crystalline or amorphous. Of these, NH 4 H 2 PO 4 is more preferable because it is inexpensive.
  • Examples of the compound containing atoms X 1 and X 2 include oxides of X 1 and X 2 such as ZrO 2 , TiO 2 , Nb 2 O 5 and Ta 2 O 5. , MoO 3 or WO 3 are preferred.
  • Compounds containing atoms Z 1 and Z 2 include Z 1 , Z 2 oxides (P 2 O 5 , B 2 O 3, etc.), A or M phosphorus Preferred are at least one selected from the group consisting of acid salts, A or M silicates, A or M borates, A or M aluminates, and A or M vanadates.
  • the atoms Z 1 and Z 2 contain P, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 , Si SiO 2 when contained, B 2 O 3 and / or H 3 BO 3 when containing B, at least one selected from the group consisting of Al 2 O 3 , AlO (OH) and aluminosilicate when containing Al , V is preferable because vanadium oxide (VO, V 2 O 3 , VO 3 , V 2 O 5, etc.) is inexpensive.
  • a suitable combination of raw material formulations is Si, where the compound containing atom A is a carbonate or bicarbonate of A, the compound containing atom M is an oxide of M, and the compound containing P is ammonium hydrogen phosphate. This is a combination when the compound to be contained is silicon oxide.
  • the composition of the raw material formulation corresponds theoretically to the composition of the melt obtained from the raw material formulation.
  • the composition of the obtained melt is based on an oxide standard calculated from the charged amount of each raw material. It may be slightly different from the mol%. In such a case, it is preferable to set the charging amount of each raw material in consideration of the amount lost due to volatilization or the like.
  • each raw material in the raw material formulation is not particularly limited. Considering reactivity and physical properties of the positive electrode positive electrode material, the purity excluding hydration water is preferably 99% by mass or more.
  • each raw material it is preferable to use a pulverized raw material.
  • Each raw material may be pulverized and mixed, or may be pulverized after mixing.
  • the pulverization is preferably performed by a dry method or a wet method using a mixer, a ball mill, a jet mill, a planetary mill or the like, and a dry method is preferable because a solvent removal step is unnecessary.
  • the particle diameter of each raw material in the raw material formulation is not limited as long as it does not adversely affect the mixing operation, the filling operation of the mixture into the melting container, the meltability of the mixture, and the like.
  • the raw material composition obtained in the raw material preparation step (i) is put in a container having at least an inner peripheral portion formed of an electrically conductive refractory material, and the electric conductivity constituting at least the inner peripheral portion of the container. Inductively heat the refractory material. Then, the raw material preparation that is in direct contact with the conductive refractory material housed in the container is heated and melted by the heat generated from the conductive refractory material heated by induction.
  • the “conductive refractory material” means that it has sufficient conductivity to be heated by electromagnetic induction and has excellent fire resistance, appearance, composition and physical properties at the melting temperature of the raw material formulation. A material that does not change.
  • the fireproof temperature of the conductive refractory material is preferably 800 ° C. or higher. When the fireproof temperature is less than 800 ° C., the melt resistance of the container may be significantly lowered. However, if the fireproof temperature of the conductive refractory material is excessively high, usable constituent materials may be excessively limited. Therefore, the fireproof temperature is preferably in the range of 900 to 2,000 ° C., More preferably, the temperature is in the range of 000 to 1,800 ° C.
  • the refractory temperature means a temperature at which no remarkable change in appearance is observed when the material is heated for 24 hours.
  • examples of the conductive refractory material forming at least the inner periphery of the container include carbon or conductive non-oxide ceramics.
  • carbon graphite is preferable because it is inexpensive, easily available, and easy to process.
  • carbon since there exists a possibility that carbon may carry out a reductive reaction with the oxides of heavy metals, such as iron, contained in a raw material formulation at high temperature, it is preferable to adjust the temperature of induction heating.
  • a lining layer made of a refractory material other than carbon can be provided.
  • the container having such a two-layer structure damage to the container due to reaction with the heavy metal component in the melt can be prevented, and in addition, by induction heating of the conductive non-oxide ceramic constituting the inner peripheral portion.
  • the raw material preparation can be efficiently heated by combining the heat generation and the heat generation by induction heating of carbon constituting the outer container.
  • the conductive non-oxide ceramic examples include ceramics mainly composed of at least one selected from silicon carbide (SiC), zirconium boride (ZrB 2 ), and titanium boride (TiB 2 ).
  • “mainly” means containing 50% by mass or more of the component.
  • a ceramic containing 50 to 98% by mass of zirconium boride is particularly preferable because of its good corrosion resistance.
  • a container having at least an inner periphery made of carbon or the conductive non-oxide ceramics is not easily eroded by the melt.
  • carbon and the conductive non-oxide ceramics are used in an inert atmosphere or a reducing atmosphere. Therefore, it is suitable as a material constituting a container for melting the raw material formulation.
  • carbon or the conductive non-oxide ceramic is preferable as a constituent material of the container because a fired product obtained by molding a raw material powder, heating and firing is easily available.
  • the constituent material of the container other than the inner periphery a material transparent to the applied electromagnetic wave can be used.
  • the outer peripheral part of the container may be made of alumina ceramics, for example.
  • the container having at least the inner periphery made of the conductive refractory material is not particularly limited in size and shape, and can be used as a small cylindrical crucible or a large melting tank.
  • the conductive refractory material may be used at least on the inner peripheral portion that comes into contact with the melt, and the non-contact portion with the melt such as the upper structure of the melt tank is made of other materials. It may be configured.
  • it can also melt
  • FIG. 1 shows an example of an apparatus for melting the raw material mixture.
  • the melting apparatus 1 includes a melting container 2 formed of the conductive refractory material, and an induction heating coil 3 disposed so as to surround the outer periphery of the melting container 2.
  • the induction heating coil 3 is arranged so that the direction of the generated magnetic field is parallel to the longitudinal direction of the melting vessel 2.
  • the shape of the melting container 2 is not particularly limited, and may be a cylindrical shape, for example. Further, not the entire melting container 2 but only the inner peripheral portion can be formed of a conductive refractory material. Furthermore, the conductive refractory material constituting the entire melting container 2 or the inner periphery thereof may not be a single body, but may be a structure in which members divided into a plurality are arranged at a predetermined interval. In such a divided structure, since the induced current flows in each divided part to form a loop, even if a part of the divided part is damaged, the influence is stopped only in that part, Heat generation can be continued.
  • the manufacturing is difficult and the manufacturing cost is high.
  • the manufacturing is easy and the manufacturing cost can be reduced.
  • an insulating member is interposed between the divided parts, there is an advantage that the induced current is less likely to interfere between the parts.
  • the melting container 2 around which the induction heating coil 3 is provided outside is housed in a jacket (exterior housing) 4 formed of a metal material such as stainless steel or a fireproof material such as ceramics.
  • the jacket 4 has an openable / closable part (for example, a lid part) (not shown) for carrying in and taking out the melting container 2.
  • a raw material supply pipe 6 for supplying the raw material mixture 5 into the melting container 2 is connected to the upper portion of the jacket 4.
  • a gas introduction pipe 7 for introducing an inert gas or a reducing gas, which will be described later, into the jacket 4, and a gas discharge pipe 8 for discharging the gas in the jacket 4 to the outside. are attached to each.
  • the jacket 4 is preferably hermetically sealed except for the attachment parts of the raw material supply pipe 6, the gas introduction pipe 7 and the gas discharge pipe 8.
  • the raw material mixture 5 is introduced into the melting container 2 accommodated in the jacket 4 through the raw material supply pipe 6. Supply. Then, an alternating current is supplied to the induction heating coil 3 to inductively heat the conductive refractory material constituting at least the inner peripheral portion of the melting vessel 2. And the raw material formulation 5 accommodated in the melting container 2 is heated and melted by the heat generated by the induction heating.
  • the frequency of the alternating current supplied to the induction heating coil 3 is preferably 1 kHz to 5 GHz, for example.
  • the heating temperature of the raw material formulation 5 is preferably 1100 ° C. to 1800 ° C.
  • the heating temperature refers to the temperature of the melt itself and can be measured with a thermocouple or a pyrometer. Heating the raw material formulation 5 to a temperature of 1100 ° C. to 1800 ° C. is preferable because the olivine type, pyroxene type, or NASICON type compound raw material formulation 5 is melted to obtain a melt having a uniform composition.
  • “melting” means that each raw material melts and becomes transparent with the naked eye. When the heating temperature is 1100 ° C. or higher, melting is facilitated, and when it is 1800 ° C. or lower, the raw material formulation 5 is difficult to volatilize.
  • the heating temperature of the raw material formulation 5 is more preferably 1200 ° C to 1600 ° C. By performing heating at a temperature of 1200 ° C. or higher, melting can be performed more easily. Further, by heating at a temperature of 1600 ° C. or lower, the wear of the conductive refractory material due to heating is further suppressed.
  • the heating time can be appropriately set in consideration of the melting method, the melting scale, the molten metal uniformity, etc., but is preferably 0.2 to 24 hours, particularly preferably 0.5 to 2 hours. If the heating time is 0.2 hours or more, the uniformity of the melt is sufficient, and if it is 24 hours or less, the raw material formulation 5 is difficult to volatilize.
  • stirring may be performed to increase the uniformity of the melt. Further, the melt may be clarified at a temperature lower than the maximum temperature during melting until the next cooling step (iii) is performed. Furthermore, the raw material may be charged once or a plurality of times.
  • the melting conditions conditions suitable for the size and type of the container can be selected.
  • the pressure may be carried out under any conditions of normal pressure, pressurization, and reduced pressure (0.9 ⁇ 10 5 Pa or less).
  • it can be replaced by introducing an inert gas or a reducing gas before heating.
  • the inert atmosphere is a gas condition containing 99% by volume or more of at least one inert gas selected from nitrogen (N 2 ) and a rare gas such as helium (He) and argon (Ar).
  • the reducing atmosphere refers to a gas condition in which a reducing gas is added to the above-described inert gas and substantially does not contain oxygen.
  • the reducing gas include hydrogen (H 2 ), carbon monoxide (CO), and ammonia (NH 3 ).
  • the amount of the reducing gas added to the inert gas is preferably 0.1% by volume or more, more preferably 1 to 10% by volume of the reducing gas in the total gas.
  • the oxygen content is preferably 1% by volume or less in the gas, and more preferably 0.1% by volume or less.
  • the melt heated and melted in the melting container 2 is taken out and cooled in the next cooling step (iii).
  • the melting apparatus 1 shown in FIG. 1 when the melting apparatus 1 shown in FIG. 1 is used, after the melting container 2 containing the melt is taken out from the jacket 4, the melting container 2 is tilted so that the melt flows out from the opening such as the upper end. Then, the discharged melt is supplied to a cooling and solidifying device described later.
  • the melting step (ii) of the present invention carried out using such a melting apparatus at least the inner periphery of the melting vessel 2 containing the raw material mixture 5 is formed of a conductive refractory material, and this conductive Since the raw material mixture 5 in direct contact with the conductive refractory material is heated and melted by induction heating of the refractory refractory material, the melting container is housed in a heating furnace such as an electric furnace and heated. Compared with energy loss, heat efficiency is high. In addition, the heating rate is high, rapid heating is possible, and mass productivity is high.
  • the melting step (ii) of the present invention convection occurs in the melt due to the interaction between the magnetic field generated by the induction heating coil 3 and the induced current in the melt, and this convection causes a melt having a uniform composition. can get. Therefore, it is not necessary to perform external stirring.
  • the melting container 2 containing the raw material mixture 5 since at least the inner peripheral portion of the melting container 2 containing the raw material mixture 5 is formed of an electrically conductive refractory material having excellent fire resistance, it can be used at a high temperature, and the raw material mixture 5 can be melted. It is difficult for the melting container 2 to be worn at a temperature. Furthermore, since the melting container 2 is not easily eroded by the raw material formulation 5, the components constituting the melting container 2 are difficult to mix in the melt.
  • the melting apparatus 1 shown in FIG. 2 has, as a melting container, a melting space in which the horizontal opening cross section gradually decreases from the middle in the vertical direction downward, and at least the inner periphery is formed of the conductive refractory material. It has a molten part 2a. Then, a melt outlet part is connected to the melting part 2a. That is, a melt outlet pipe 2b having a diameter smaller than that of the melting section 2a is connected to the bottom of the melting section 2a so as to communicate with the melting space, and a melt outlet section is formed by the melt outlet pipe 2b. ing.
  • the position to which the melt outlet pipe 2b is connected may be the bottom part or the side part of the melt part 2a, but is preferably connected vertically downward to the bottom part of the melt part 2a from the viewpoint of the lead property of the melt.
  • the melt outlet tube 2b can be formed of an electrically conductive refractory material at least on the inner periphery as in the molten portion 2a, but the entire melt outlet tube 2b is preferably formed of an electrically conductive refractory material.
  • an induction heating coil (hereinafter, referred to as a first induction heating coil) 3a for heating the melting part is disposed outside the melting part 2a so as to surround the melting part 2a in the circumferential direction.
  • an induction heating coil (hereinafter, referred to as a second induction heating coil) 3b for heating the melt outlet tube is disposed outside the melt outlet tube 2b so as to surround the outer periphery thereof.
  • the melted part 2a around which the first induction heating coil 3a is provided outside is housed in a jacket 4 formed of a fireproof material such as a metal material or ceramics.
  • the through-hole is provided in the bottom part of the jacket 4,
  • the lower part of the melt outlet pipe 2b is arrange
  • a cooling mechanism such as a cooling gas jetting mechanism is disposed in the vicinity of the opened lower end of the melt outlet pipe 2b, and the cooling gas is introduced by a method such as introducing a cooling gas.
  • the melt outlet pipe 2b is cooled.
  • the conductive refractory material for forming at least the inner peripheral portion of the melting portion 2a and the melt outlet tube 2b carbon or conductive non-oxide ceramic described as a constituent material of the melting vessel 2 in the melting apparatus 1 shown in FIG. Can be mentioned.
  • the melting part 2a and the melt outlet pipe 2b may be formed of different materials, but are preferably formed of the same material because they are easy to manufacture.
  • the first induction heating coil 3a for induction heating the melting part 2a and the second induction heating coil 3b for induction heating the melt outlet pipe 2b can be connected to different power sources and controlled independently. preferable.
  • reference numeral 9 indicates a cooling and solidifying apparatus used in a cooling step described later
  • reference numeral 10 indicates a solidified product obtained by the cooling and solidifying apparatus 9.
  • the cooling and solidifying device 9 As the cooling and solidifying device 9, as will be described later, a twin roller rotating at a high speed or a rotating single roller, or a device configured to press a melt on a cooled carbon plate or metal plate to obtain a solidified product, etc. Is used.
  • the melting apparatus 1 shown in FIG. 2 since the other part is comprised similarly to the melting apparatus 1 shown in FIG. 1, the same code
  • the raw material mixture 5 is supplied to the melting part 2 a housed in the jacket 4 using the raw material supply pipe 6.
  • the solidified product (plug 11) of the melt having the same composition as that of the raw material preparation 5 is placed inside the melt outlet pipe 2b (for example, a connecting portion with the melting part 2a). It is preferable to close the melt outlet pipe 2b by prepacking at least a part of the melt.
  • the plug 11 made of a melt-solidified product of the raw material mixture a stay-solidified product formed in the melt-derived tube 2b in the melt-derived step described later can also be used. That is, when heating to the melt outlet tube 2b is stopped in the melt outlet step, the melt obtained in the melting part 2a is solidified in the melt outlet tube 2b to form a solidified product having a plug function. Sometimes. By using this solidified material as it is, the outflow of the melt from the melt outlet pipe 2b can be closed.
  • the inside of the melt outlet tube 2b is introduced by a method such as introducing a cooling gas from the lower end of the melt outlet tube 2b. Is preferably cooled.
  • the first induction heating coil 3a induction heats the melting part 2a to heat and melt the raw material mixture 5 accommodated in the melting part 2a, and then the second induction heating coil 3b is also supplied with current. Then, the melt outlet pipe 2b is induction-heated. Since the plug 11 is melted and dropped by the induction heating of the melt outlet pipe 2b and the blockage of the melt outlet pipe 2b is released, the melt in the melted part 2a quickly passes through the melt outlet pipe 2b. Derived externally.
  • the cooling process (iii) is continuously performed from the melting process (ii) by supplying the melt derived from the melt discharge pipe 2b as it is to a cooling solidification device 9 (for example, a twin roll) described later. Can do.
  • a cooling solidification device 9 for example, a twin roll
  • the inside of the melt outlet pipe 2b is cooled by a method such as interrupting the power supply to the second induction heating coil 3b and introducing a cooling gas into the melt outlet pipe 2b, Due to the temperature drop, the melt is solidified in the melt outlet pipe 2b to form a solidified product having a plug function.
  • By closing the melt outlet tube 2b again with the solidified material thus formed it is possible to prevent the melt from flowing out, and thus the steps from melting to cooling and solidification can be performed intermittently.
  • the melt outlet tube 2b can be heated not by induction heating as described above but by energization heating. That is, the melt discharge pipe is formed of the conductive refractory material or metal material, and current is supplied from the electrodes respectively disposed at the upper and lower ends thereof to form the melt discharge pipe. It is also possible to heat the inside of the melt outlet pipe by causing the material to generate heat. Further, when the melt outlet tube 2b is electrically heated, the same effect as that obtained when induction heating can be achieved.
  • the solidified product is preferably an amorphous material, but a part of the solidified product may be a crystallized product.
  • the next pulverization step (iv) can be easily performed, and the composition and particle size of the resulting compound can be easily controlled.
  • the crystallized product becomes a crystal nucleus in the heating step (v) described later, and it is easy to crystallize.
  • the amount of crystallized material in the solidified product is preferably 0 to 30% by mass with respect to the total mass of the solidified product. When a large amount of crystallized material is contained, it becomes difficult to obtain a granular or flaky solidified material. Moreover, the wear of the cooling device is accelerated, and the burden of the subsequent pulverization step (iv) is increased.
  • the cooling of the melt is preferably performed in the air, under an inert atmosphere, or under a reducing atmosphere because the equipment is simple.
  • Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii).
  • the cooling rate is preferably more than 1 ⁇ 10 3 °C / sec from 1000 ° C. to 50 ° C., more 1 ⁇ 10 4 °C / sec is particularly preferable.
  • the cooling rate is 1 ⁇ 10 3 ° C./second or more, an amorphous material is easily obtained.
  • the cooling rate is preferably 1 ⁇ 10 10 ° C./second or less, and 1 ⁇ 10 8 ° C./second from the practical point of view. Particularly preferred is seconds or less.
  • Cooling methods include, for example, a method in which a melt is dropped between twin rollers rotating at high speed to obtain a flake-like solidified product, and a flake-like or plate-like solidified product by dropping the melt on a rotating single roller , A method of obtaining a lump solidified product by pressing a melt on a cooled carbon plate or a metal plate, a method of obtaining a lump solidified product by spraying the melt in air or water in small particles, Is preferably adopted.
  • a cooling method using twin rollers is more preferable because the cooling rate is high and a large amount of processing can be performed.
  • the double roller it is preferable to use one made of metal, carbon or ceramic.
  • the resulting solidified product tends to be amorphous, and the chemical composition of the solidified product This is preferable because uniformity is improved.
  • the so-called rapid cooling treatment at a cooling rate of 1 ⁇ 10 3 ° C./second or more may be carried out as it is with respect to the melt flowed out from the container formed of the conductive refractory material, and melted in the container. The melt may be once cooled at a normal rate and then remelted.
  • the solidified product is preferably flaky or fibrous.
  • the average thickness is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the average diameter of the surface perpendicular to the flake thickness direction is not particularly limited. In the case of a fibrous form, the average diameter is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the burden of the subsequent pulverization step (iv) can be reduced, and the crystallization efficiency in the heating step (v) can be increased.
  • the average thickness of the flaky solidified product can be measured with a caliper or a micrometer. Further, the average diameter of the fibrous solidified product can be measured by the above method or observation with a microscope.
  • the solidified product obtained in the cooling step (iii) usually contains a large amount of an amorphous material or consists of an amorphous material, there is an advantage that it can be easily pulverized. Further, there is an advantage that the apparatus used for pulverization can be pulverized without imposing a burden and the particle diameter can be easily controlled. For example, when a positive electrode material is obtained by a solid phase reaction, pulverization is performed after firing. In this case, residual stress may be generated by pulverization and battery characteristics may be deteriorated. In contrast, by performing the pulverization step (iv) before the heating step (v) described later, the residual stress generated by the pulverization can be reduced or removed by the heat treatment.
  • the pulverization step (iv) at least one selected from the group consisting of an organic compound and a carbon-based conductive material may be added as a carbon source. Since the organic compound and / or the carbon-based conductive material functions as a conductive material after the heating step (v) described later, the conductivity of the positive electrode material for secondary batteries can be increased. Further, by adding an organic compound and / or a carbon-based conductive material, oxidation in the pulverization step (iv) and the heating step (v) can be prevented, and further reduction can be promoted.
  • the carbon source is added in the pulverization step (iv)
  • the solidified product and the carbon source are mixed and then pulverized, the solidified product and the carbon source are pulverized and mixed, or the solidified product is added.
  • a step of adding a carbon source after pulverization is preferred.
  • a carbon source is only an organic compound, it can mix with a solidified material, without grind
  • the compound ( ⁇ ) obtained in the heating step (v) of the next step is an insulator, it is preferable to increase the electrical conductivity for use as a positive electrode material for a secondary battery.
  • the carbon-based conductive material serves as conductive carbon and covers at least a part of the surface of the compound ( ⁇ ).
  • an organic compound is used, at least a part of the organic compound is carbonized by performing the heating step (v) of the next step, and at least a part of the surface of the compound ( ⁇ ) is formed as conductive carbon. Cover. Since the conductive carbon functions as a conductive material for the compound ( ⁇ ), the electrical conductivity of the positive electrode material for a secondary battery can be increased.
  • the organic compound as the carbon source is preferably a compound that undergoes a thermal decomposition reaction when heated in an inert atmosphere or a reducing atmosphere, and oxygen and hydrogen are released and carbonized.
  • the organic compound is at least one selected from the group consisting of saccharides, amino acids, peptides, aldehydes, ketones, carboxylic acids, terpenes, heterocyclic amines, fatty acids and aliphatic acyclic polymers having functional groups. Species are preferred.
  • the carbon conductive material as the carbon source is preferably at least one selected from the group consisting of carbon black, graphite, acetylene black, carbon fiber, and amorphous carbon.
  • amorphous carbon those in which the CO bond peak and CH bond peak causing the decrease in the conductivity of the positive electrode material are not substantially detected in the FTIR analysis are preferable.
  • the ratio of the mass of the carbon source is such that the carbon equivalent (mass) in the carbon source is 0.1 to 20 with respect to the total mass of the mass of the solidified product and the carbon equivalent (mass) in the carbon source.
  • An amount of mass% is preferable, and an amount of 2 to 10 mass% is more preferable.
  • the total amount is adjusted so as to fall within the above range.
  • the pulverization is preferably performed using a cutter mill, jaw crusher, hammer mill, ball mill, jet mill, planetary mill or the like. Moreover, pulverization can be efficiently advanced by using various methods stepwise depending on the particle diameter. For example, preliminarily pulverizing with a cutter mill and then pulverizing with a planetary mill or ball mill is preferable because the time required for pulverization can be shortened. From the viewpoint of productivity, it is particularly preferable to use a ball mill. As the grinding media, it is preferable to use zirconia balls, alumina balls, glass balls or the like. In particular, zirconia balls are preferable because they have a low wear rate and can suppress the mixing of impurities.
  • the diameter of the grinding media is preferably 0.1 to 30 mm.
  • the pulverization medium and the pulverized product may be separated and pulverized using a smaller pulverization medium. With this method, the remaining of unground particles can be suppressed.
  • the pulverization container is not particularly limited, but the pulverization efficiency is good when the pulverization medium and the solidified material are placed in the container up to 30 to 80% of the container volume.
  • the pulverization time is preferably 6 to 360 hours, more preferably 6 to 120 hours, and particularly preferably 12 to 96 hours. If the pulverization time is 6 hours or more, the pulverization can be sufficiently advanced, and if it is 360 hours or less, excessive pulverization can be suppressed.
  • the pulverization may be performed either dry or wet, but is preferably performed in a wet manner from the viewpoint that the particle size of the pulverized product can be reduced.
  • the pulverization step (iv) is preferably performed using a solvent (pulverization solvent).
  • a solvent pulverization solvent
  • the heating step (v) When the pulverization step (iv) is performed in a wet manner, it is preferable to carry out the heating step (v) after removing the pulverization solvent by sedimentation, filtration, drying under reduced pressure, drying by heating, or the like. However, when the ratio of the solid content with respect to the grinding solvent is 30% or more, the pulverized product containing the grinding solvent may be used in the heating step (v).
  • the pulverization solvent a solvent having an appropriate polarity that is difficult to dissolve the solidified product and is compatible with the carbon source, and does not significantly increase the viscosity when mixed with the solidified product and the carbon source is preferable.
  • Water is preferable from the viewpoint of cost and safety.
  • an organic solvent is preferable. Examples of the organic solvent include ethanol, isopropyl alcohol, acetone, hexane, toluene and the like.
  • the grinding solvent is more preferably at least one selected from the group consisting of water, acetone and isopropyl alcohol, and acetone is particularly preferred.
  • the amount of the grinding solvent used is preferably such that the total concentration of the solidified product and the carbon source is 1 to 80%, particularly preferably 10 to 40%.
  • Productivity can be improved by making the usage-amount of a grinding
  • pulverization of a solidified material and a carbon source can be advanced efficiently because the usage-amount of a grinding
  • the average particle size of the pulverized product is preferably 10 nm to 10 ⁇ m, particularly preferably 10 nm to 5 ⁇ m in terms of volume-based median diameter, from the viewpoint of obtaining higher conductivity when applied to a positive electrode material for a secondary battery.
  • the average particle size is 10 nm or more, when the heating step (v) is performed, the particles of the compound ( ⁇ ) do not sinter and the particle size does not become too large.
  • the average particle size is 10 ⁇ m or less, it is easy to obtain a secondary battery positive electrode material exhibiting high conductivity, and it becomes easy to realize a higher capacity and a higher energy density.
  • the sintering aid acts when the heating step (v) is performed, and the average particle size after heating is increased.
  • the average particle size is obtained mainly by a laser diffraction / scattering particle size measuring device (trade name: LA-950, manufactured by Horiba, Ltd.).
  • LA-950 laser diffraction / scattering particle size measuring device
  • a sedimentation method or a flow image analyzer can be used.
  • the obtained pulverized product is heated in an inert atmosphere or a reducing atmosphere to synthesize a compound ( ⁇ ) having a predetermined composition from the pulverized product of the solidified product. Preferably it is done.
  • the heating step (v) preferably includes relaxation of stress generated by pulverization, crystal nucleation of the pulverized product, and grain growth.
  • the heating step (v) for example, it is preferable to obtain particles of the phosphoric acid compound (1) or particles of the silicic acid compound (2), and crystal particles of the phosphoric acid compound (1) or the silicic acid compound (2) are obtained. It is more preferable to obtain, and it is particularly preferable to obtain crystal particles of the phosphoric acid compound (1) having an olivine type crystal structure or crystal particles of the silicate compound (2) having an olivine type crystal structure. It is preferable that the obtained compound does not contain an amorphous substance. When the compound does not contain an amorphous substance, a halo pattern is not detected by X-ray diffraction.
  • the organic compound or carbon-based conductive substance adhering to the surface of the pulverized product in the pulverization step (iv) is bonded to the surface of the compound ( ⁇ ), preferably its crystal particles, generated in the heating step (v), and functions as a conductive material.
  • the organic compound is thermally decomposed in the heating step (v), and at least a part thereof becomes a carbide to function as a conductive material.
  • the dispersion medium may be removed simultaneously with heating.
  • the heating temperature for synthesizing the compound ( ⁇ ) is preferably 400 to 1,000 ° C., particularly preferably 500 to 900 ° C.
  • the heating temperature is 400 ° C. or higher, a reaction is likely to occur, and when it is 1,000 ° C. or lower, the pulverized product is difficult to melt and the crystal system and particle diameter are easily controlled. Further, at the heating temperature, it becomes easy to obtain a compound ( ⁇ ) having an appropriate crystallinity, particle size, particle size distribution, etc., preferably its crystal particles, more preferably olivine type crystal particles.
  • the heating is not limited to being held at a constant temperature, and may be performed by setting the holding temperature in multiple stages. As the heating temperature is increased, the particle diameter of the generated particles tends to increase. Therefore, it is preferable to set the heating temperature according to a desired particle diameter.
  • the heating time (holding time depending on the heating temperature) is preferably 1 to 72 hours in consideration of the desired particle size. Heating is preferably performed in a box furnace, tunnel kiln, roller hearth kiln, rotary kiln, microwave heating furnace, or the like that uses electricity, oil, gas, or the like as a heat source.
  • the heating step (v) is preferably performed in the air, in an inert atmosphere, or in a reducing atmosphere.
  • Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii).
  • the atmospheric pressure may be any of normal pressure, pressurization, and reduced pressure (0.9 ⁇ 10 5 Pa or less).
  • the cooling rate in the cooling is preferably 30 ° C./hour to 300 ° C./hour. By setting the cooling rate within this range, distortion due to heating can be removed, and when the product is a crystal, the target product can be obtained while maintaining the crystal structure.
  • the cooling is preferably allowed to cool to room temperature. Cooling is preferably performed in an inert atmosphere or a reducing atmosphere.
  • Carbon source can be added in the heating step (v).
  • the pulverized product obtained in the pulverization step (iv) (preferably a pulverized product containing no carbon source) is heated to obtain the compound ( ⁇ ), and then the compound ( ⁇ ) and the carbon source are obtained. It is preferable to adopt a production method in which a pulverized product containing the following is obtained and then the pulverized product is heated.
  • the compound ( ⁇ ) having a predetermined composition as a positive electrode material for a secondary battery is manufactured through the melting, cooling, pulverization, and heating steps described above.
  • the compound ( ⁇ ) preferably contains crystal particles and is preferably an olivine type. With such a composition and crystal system, as described above, a multi-electron type material having a theoretical electric capacity can be obtained.
  • a silicate compound is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as a positive electrode material for a secondary battery.
  • the silicate compound is preferably an olivine type, and the olivine type silicate compound is suitable as a positive electrode material for a secondary battery.
  • a phosphoric acid compound is preferable when used as a positive electrode material for a secondary battery because the reliability of the performance of the secondary battery can be increased.
  • the phosphate compound is preferably an olivine type, and the olivine type phosphate compound is suitable as a positive electrode material for a secondary battery.
  • the specific surface area of the positive electrode material for a secondary battery obtained by the present invention is preferably 0.2 m 2 / g to 200 m 2 / g, more preferably 1 m 2 / g to 100 m 2 / g. By setting the specific surface area within this range, the conductivity is increased.
  • the specific surface area can be measured by, for example, a specific surface area measuring apparatus using a nitrogen adsorption method.
  • the average particle diameter of the crystal particles of the positive electrode material for secondary batteries is preferably 10 nm to 10 ⁇ m, more preferably 10 nm to 2 ⁇ m, in terms of volume median diameter in order to increase the conductivity of the particles.
  • the average particle diameter of the positive electrode material for a secondary battery obtained by the present invention is preferably 10 nm to 10 ⁇ m in terms of volume median diameter even if it contains not only crystal particles but also amorphous particles. More preferably, it is ⁇ 2 ⁇ m.
  • a raw material preparation of an olivine type compound, pyroxene type compound, or NASICON type compound is induction-heated in a container having at least an inner peripheral portion formed of the conductive refractory material.
  • a melting vessel is housed in a heating furnace such as an electric furnace and heat melting is performed, heat efficiency is high, rapid heating is possible, and mass productivity is high.
  • a production amount of 10 kg or more, preferably 100 kg or more per batch can be realized.
  • the container can be prevented from being eroded by heavy metal elements such as Fe and Mn contained in the melt, and the container used for heating and melting can be prevented from being worn.
  • the frequency of maintenance is reduced and the manufacturing cost of the positive electrode material for the secondary battery is reduced. Can be reduced. Furthermore, it can suppress that the component derived from a container mixes in the melt in the said container, and can obtain the positive electrode material for secondary batteries excellent in purity.
  • a secondary battery positive electrode and a secondary battery By using the secondary battery positive electrode material obtained by the production method of the present invention, a secondary battery positive electrode and a secondary battery can be produced.
  • the secondary battery include a metal lithium secondary battery, a lithium ion secondary battery, and a lithium polymer secondary battery, and a lithium ion secondary battery is preferable.
  • the battery shape is not limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
  • the positive electrode for a secondary battery can be manufactured according to a known electrode manufacturing method using the positive electrode material for a secondary battery obtained by the manufacturing method of the present invention.
  • a positive electrode material for a secondary battery obtained according to the present invention may be prepared by using a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene as required.
  • the structure of the secondary battery a structure in a known secondary battery can be adopted except that the positive electrode material for a secondary battery obtained by the production method of the present invention is used as an electrode.
  • the negative electrode a known negative electrode active material can be used as the active material, and at least one selected from the group consisting of carbon materials, alkali metal materials, and alkaline earth metal materials is preferably used.
  • the electrolytic solution a non-aqueous electrolytic solution is preferable. That is, as the secondary battery using the positive electrode material for a secondary battery obtained by the production method of the present invention, a nonaqueous electrolyte lithium ion secondary battery is preferable.
  • Example 1 (Raw material preparation step (i))
  • the composition of the melt is 25.0 mol%, 50.0 mol%, and 25.0 mol% in terms of Li 2 O, FeO, and P 2 O 5 (unit: mol%), respectively.
  • Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) are weighed, mixed and pulverized dry to obtain a raw material formulation It was.
  • the obtained raw material formulation was heated and melted as shown below using a melting apparatus. That is, first, the raw material mixture was filled into a cylindrical crucible made of graphite and having an outer diameter of 50 mm, an inner diameter of 40 mm, and a height of 100 mm. Next, this crucible was loaded inside a copper induction coil (made by Keddy Corporation) having an inner diameter of 70 mm, which was installed in a stainless steel lidded outer container (jacket) having a volume of 50 L. Then, while flowing N 2 gas at a flow rate of 10 L / min in the outer container, an alternating current of 5 kHz was passed through the induction heating coil to inductively heat the crucible. The temperature in the crucible was raised at a rate of 20 ° C./minute, and when it reached 1250 ° C., this temperature was maintained for 10 minutes. Thus, the raw material formulation in the crucible was heated and melted to obtain a melt.
  • a copper induction coil made by Keddy Corporation
  • Heating step (v) The pulverized product obtained in the pulverization step (iv) is heated at 700 ° C. for 8 hours in an Ar gas atmosphere containing 3% by volume of H 2 gas using an electric furnace (manufactured by Motoyama, model name: SKM-3035). Then, the mixture was cooled to room temperature to precipitate lithium iron phosphate particles.
  • the mineral phase of the obtained lithium iron phosphate particles was measured using an X-ray diffraction apparatus (manufactured by Rigaku Corporation, apparatus name: RINT TTRIII). From the diffraction pattern, it was confirmed that the obtained lithium iron phosphate particles were orthorhombic olivine type LiFePO 4 . Moreover, it was 25 m ⁇ 2 > / g when the specific surface area was measured using the specific surface area measuring apparatus (The Shimadzu Corp. make, apparatus name: ASAP2020). Furthermore, when the average particle diameter of the obtained lithium iron phosphate particles was measured using a laser diffraction / scattering particle size analyzer (Horiba, Ltd., apparatus name: LA-950), the volume-converted median diameter was 0. .23 ⁇ m. In addition, when the crucible after taking out and cooling a melt was cut
  • Example 2 Carbonic acid so that the composition of the melt is 33.3 mol%, 33.3 mol%, and 33.3 mol% in terms of Li 2 O, FeO, and SiO 2 (unit: mol%), respectively.
  • Lithium (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), and silicon dioxide (SiO 2 ) were weighed and mixed dry to obtain a raw material formulation.
  • the obtained raw material mixture was melted in the same manner as in Example 1 except that the temperature in the crucible was held at 1450 ° C. for 30 minutes using the same melting apparatus as in Example 1, to obtain a melt.
  • the cooling step (iii) and the pulverization step (iv) were sequentially performed to obtain a pulverized product.
  • the pulverized product obtained in the pulverization step (iv) was heated in the same manner as in Example 1 to precipitate lithium iron silicate particles.
  • the mineral phase of the obtained lithium iron silicate particles was measured, it was confirmed to be orthorhombic olivine type Li 2 FeSiO 4 . Moreover, it was 23 m ⁇ 2 > / g when the specific surface area was measured. Furthermore, when the average particle diameter of the lithium iron silicate particles was measured, the median diameter in terms of volume was 0.45 ⁇ m. After the melt was taken out and cooled, the crucible was cut, and the amount of erosion was measured with a flux line.
  • Example 3 The composition of the melt, Li 2 O, Fe 2 O 3, and SiO 2 in terms of the amount (unit: mol%), respectively, 16.7 mol%, 16.7 mol%, and become as 66.7 mol% Lithium carbonate (Li 2 CO 3 ), diiron trioxide (Fe 2 O 3 ), and silicon dioxide (SiO 2 ) were weighed, mixed and pulverized in a dry process to obtain a raw material formulation.
  • Li 2 CO 3 Lithium carbonate
  • Fe 2 O 3 diiron trioxide
  • SiO 2 silicon dioxide
  • the obtained raw material mixture was heated and melted as shown below using a melting apparatus. That is, first, the raw material formulation was filled in a crucible made of silicon carbide having an inner diameter of 35 mm and a height of 60 mm fitted and arranged inside a graphite crucible having an outer diameter of 50 mm, an inner diameter of 40 mm, and a height of 100 mm. Next, this double-structured crucible was loaded inside a copper induction heating coil (made by Kydeky Corp.) having an inner diameter of 70 mm installed in a stainless steel lid with a volume of 50 L. Then, induction heating was performed in the same manner as in Example 2, and the raw material formulation was melted by holding the inside of the silicon carbide crucible at 1450 ° C. for 30 minutes to obtain a melt.
  • a copper induction heating coil made by Kydeky Corp.
  • the pulverized product obtained in the pulverization step (iv) was heated in the same manner as in Example 1 to precipitate lithium iron silicate particles.
  • the mineral phase of the obtained lithium iron silicate particles was measured, it was confirmed to be monoclinic pyroxene-type LiFeSi 2 O 6 . Moreover, it was 23 m ⁇ 2 > / g when the specific surface area was measured. Furthermore, when the average particle diameter of the lithium iron silicate particles was measured, the median diameter in terms of volume was 0.38 ⁇ m.
  • the silicon carbide crucible after the melt was taken out and cooled was cut, and the amount of erosion measured with a flux line was 0.2 mm or less.
  • Example 4 The composition of the melt, Li 2 O, Fe 2 O 3, and P 2 O 5 equivalent amount (unit: mol%), respectively, 37.5 mol%, and 25.0 mol%, and 37.5 mol% Lithium carbonate (Li 2 CO 3 ), diiron trioxide (Fe 2 O 3 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) are weighed, mixed and pulverized in a dry manner I got a thing.
  • Li 2 O, Fe 2 O 3, and P 2 O 5 equivalent amount (unit: mol%)
  • the obtained raw material composition was filled in a silicon carbide crucible installed inside a graphite crucible in the same manner as in Example 3, and the inside of the crucible was held at 1200 ° C. for 10 minutes, as in Example 3. The same heating was performed to obtain a melt.
  • the obtained pulverized product was heated in the atmosphere at 650 ° C. for 8 hours using the same electric furnace as in Example 1, and then cooled to room temperature to precipitate lithium iron phosphate particles.
  • the mineral phase of the obtained lithium iron phosphate particles was measured, it was confirmed to be monoclinic NASICON type Li 3 Fe 2 (PO 4 ) 3 . Moreover, it was 31 m ⁇ 2 > / g when the specific surface area was measured. Furthermore, when the average particle diameter of the lithium iron phosphate particles was measured, the median diameter in terms of volume was 0.35 ⁇ m.
  • the silicon carbide crucible after the melt was taken out and cooled was cut, and the amount of erosion measured with a flux line was 0.2 mm or less.
  • Example 5 A raw material formulation having the same composition as that of Example 1 was heated and melted as shown below using the melting apparatus shown in FIG.
  • a graphite nozzle portion (melt discharge) having an outer diameter of 15 mm, an inner diameter of 5 mm, and a length of 10 mm is formed at the bottom of a melting portion made of graphite having an outer diameter of 50 mm, an inner diameter of 40 mm, and a height of 100 mm. Tube).
  • a copper induction coil having an inner diameter of 70 mm (manufactured by Keddy Corp.), which is the first induction heating coil, is provided outside the melting portion, and a copper induction coil having an inner diameter of 25 mm, which is the second induction heating coil, is provided outside the nozzle portion.
  • the melting part, the nozzle part, and the first and second induction heating coils are housed in a stainless steel lidded outer container (jacket) having a volume of 50 L and a through-hole having a diameter of 20 mm at the bottom part. It installed so that a lower end part might extend outside from the through-hole of an exterior container.
  • the raw material mixture was filled in the melting part of the melting apparatus having such a structure.
  • the nozzle part was previously filled with a plug prepared by melting and solidifying the same composition as the raw material formulation filled in the melting part.
  • an alternating current of 5 kHz was passed through the first induction heating coil installed outside the melting part to inductively heat the melting part.
  • the temperature in the melting part was increased at a rate of 20 ° C./min. When the temperature reached 1250 ° C., this temperature was maintained for 10 minutes to melt the raw material formulation in the melting part.
  • N 2 gas was introduced at a flow rate of 2 L / min from the lower end opening of the nozzle portion to cool the inside of the nozzle portion.
  • the introduction of N 2 gas into the nozzle part is stopped, and an AC current of 8 kHz is supplied to the second induction heating coil installed outside the nozzle part while continuing to energize the first induction heating coil. did.
  • the nozzle part was induction-heated to melt the plug made of the above-mentioned melted and solidified material mixture, and the nozzle part was closed.
  • the molten material which flowed down through the nozzle part was dripped at the stainless steel double roller (the outer diameter of 10 cm, the rotation speed of 200 rpm) installed under the nozzle part, and it cooled rapidly, and the solidified material was obtained.
  • the cooling rate was about 1 ⁇ 10 4 ° C./second.
  • the mineral phase of the obtained lithium iron phosphate particles was measured, it was confirmed to be orthorhombic olivine-type LiFePO 4 . Moreover, it was 32 m ⁇ 2 > / g when the specific surface area was measured. Furthermore, when the average particle diameter of the lithium iron phosphate particles was measured, the median diameter in terms of volume was 0.30 ⁇ m.
  • Example 1 A raw material composition having the same composition as that of Example 1 was filled in a platinum alloy crucible containing 20% by mass of rhodium (with an internal volume of 100 mL), and then the crucible was equipped with a heating element made of molybdenum silicide. It was put in a furnace (manufactured by Motoyama, apparatus name: NH-3035). While flowing N 2 gas at a rate of 2 L / min in the electric furnace, the temperature was increased at a rate of 300 ° C./hour, held at 1250 ° C. for 0.5 hours, and heated to obtain a melt. The melt was cooled to room temperature at 1 ⁇ 10 5 ° C./second by passing through a stainless steel twin roller having a diameter of about 15 cm rotating at 400 revolutions per minute to obtain a flaky solidified product.
  • the Pt content and Rh content in the obtained solidified product were quantified as follows. That is, the solidified product was decomposed with HF-HClO 4 and then redissolved with HCl, and the Pt content and Rh content in the solution were measured by ICP emission spectroscopy. As a result, the Pt content in the solidified product was 9.6 ⁇ g / g, and the Rh content was 23 ⁇ g / g. For the solidified product obtained in Example 1, the Pt content and Rh content were measured in the same manner as described above, and both were 0.1 ⁇ g / g or less.
  • Example 2 A raw material formulation having the same composition as in Example 1 was filled in an alumina sintered crucible (made by Nikkato, trade name: SSA-S) with an outer diameter of 46 mm and a height of 53 mm. Next, the crucible was placed in an electric furnace (manufactured by Motoyama, apparatus name: NH-3035) equipped with a heating element made of molybdenum silicide. While flowing N 2 gas at a rate of 2 L / min in the electric furnace, the temperature was raised at a rate of 300 ° C./hour, held at 1450 ° C. for 0.5 hours, and heated to obtain a melt. The melt was cooled to room temperature at 5 ° C./min without rapid cooling. When the crucible after the heating and cooling treatment was visually observed, a crack was generated on the surface of the crucible. Moreover, it was 900 micrometers when a part of crucible was cut
  • the positive electrode material for secondary batteries excellent in purity can be manufactured efficiently at low cost. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-207026 filed on September 22, 2011 is cited here as the disclosure of the specification of the present invention. Incorporated.
  • SYMBOLS 1 ... Melting apparatus, 2 ... Melting container, 2a ... Melting part, 2b ... Melt outlet pipe, 3 ... Induction heating coil, 3a ... 1st induction heating coil, 3b ... 2nd induction heating coil, 4 ... Jacket, DESCRIPTION OF SYMBOLS 5 ... Raw material preparation, 6 ... Raw material supply pipe, 7 ... Gas introduction pipe, 8 ... Gas discharge pipe, 9 ... Cooling solidification apparatus, 10 ... Solidified material. 11: A plug made of a melt-solidified material mixture.

Abstract

Provided is a production method for a secondary battery positive electrode material, whereby a secondary battery positive electrode material having high uniformity of chemical composition and high reliability over the long term can be efficiently produced at low cost. The method is for producing a secondary battery positive electrode material including an olivine-, augite-, or nasicon-type compound, and has a melting step in which a raw material mixture is housed inside a container formed using a conductive fire-resistant material for at least the inner peripheral section thereof, and the raw material mixture is melted by induction heating of at least the inner peripheral section of the container.

Description

二次電池用正極材料の製造方法Method for producing positive electrode material for secondary battery
 本発明は、二次電池用正極材料の製造方法に関する。 The present invention relates to a method for producing a positive electrode material for a secondary battery.
 近年、次世代リチウム二次電池用正極材料等として、資源面、安全面、コスト面、性能の安定性等の点での優位性から、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物が注目されている。例えばリン酸鉄リチウムは、実用化に向けた開発が進んでいる。 In recent years, it has an olivine type, pyroxene type, or NASICON type crystal structure as a positive electrode material for next-generation lithium secondary batteries because of its advantages in terms of resources, safety, cost, and performance stability. Compounds are attracting attention. For example, lithium iron phosphate is being developed for practical use.
 また、二酸化炭素の排出規制や省エネルギーの観点から、プラグインハイブリッド自動車や電気自動車の開発が進められている。電気自動車の普及の実現には、二次電池の安全性を維持しつつ、高容量化、高エネルギー密度化を図ることが求められている。 Also, plug-in hybrid vehicles and electric vehicles are being developed from the viewpoint of carbon dioxide emission regulations and energy saving. In order to realize the popularization of electric vehicles, it is required to increase the capacity and the energy density while maintaining the safety of the secondary battery.
 例えば非特許文献1には、多電子反応による高容量化が可能な二次電池用材料として、1分子中に2個のLi原子を含むオリビン(カンラン石)型ケイ酸化合物(LiMSiO、M=Fe、Mn)が開示されている。 For example, Non-Patent Document 1 discloses an olivine (olivine) silicic acid compound (Li 2 MSiO 4 ) containing two Li atoms in one molecule as a secondary battery material capable of increasing the capacity by a multi-electron reaction. , M = Fe, Mn).
 上述したオリビン型、輝石型、またはナシコン型の結晶構造を有する化合物の製造方法としては、例えば固相法、液相法等の方法が提案され実施されているが、近年、二次電池の普及に伴い、電極材料のさらなる低コスト化が求められている。 As a method for producing the above-mentioned compound having an olivine type, pyroxene type, or NASICON type crystal structure, for example, methods such as a solid phase method and a liquid phase method have been proposed and implemented. Accordingly, there is a demand for further cost reduction of the electrode material.
 例えば非特許文献2には、原料混合物を一旦加熱溶融した後、これを冷却することにより、所定の結晶構造を有する二次電池用正極材料を得る方法が開示されている。
 このように、原料混合物を一旦溶融状態とすることで、二次電池用正極材料を安価にかつ大量に製造できるうえ、得られる正極材料の化学組成の均一性を向上させることが可能となる。
For example, Non-Patent Document 2 discloses a method of obtaining a positive electrode material for a secondary battery having a predetermined crystal structure by once heating and melting a raw material mixture and then cooling it.
Thus, once the raw material mixture is in a molten state, the positive electrode material for a secondary battery can be manufactured at low cost and in large quantities, and the uniformity of the chemical composition of the obtained positive electrode material can be improved.
 例えば特許文献1には、二価遷移金属化合物を含有する原料混合物を、アルゴン雰囲気中にて1500℃で加熱溶融した後、単ロールにより急冷して非晶質の遷移金属リン酸錯体を得る方法が開示されている。 For example, Patent Document 1 discloses a method in which a raw material mixture containing a divalent transition metal compound is heated and melted at 1500 ° C. in an argon atmosphere and then rapidly cooled with a single roll to obtain an amorphous transition metal phosphate complex. Is disclosed.
 原料混合物の加熱溶融には、高温での熱処理が必要であり、加熱溶融に用いる容器には、耐熱性や耐蝕性等の特性が求められる。
 例えば特許文献2には、LiFePOおよびLiFからなる原料混合物を白金チューブに入れ、当該白金チューブを石英管内に配設し、高周波誘導加熱によって加熱して原料混合物を溶融した後、溶融物を冷却することで、FeまたはMn等の遷移金属を含むリン酸錯体からなる活物質を得る方法が開示されている。
Heat melting of the raw material mixture requires heat treatment at a high temperature, and a container used for heat melting requires characteristics such as heat resistance and corrosion resistance.
For example, in Patent Document 2, a raw material mixture composed of LiFePO 4 and LiF is placed in a platinum tube, the platinum tube is disposed in a quartz tube, heated by high-frequency induction heating to melt the raw material mixture, and then the melt is cooled. Thus, a method for obtaining an active material composed of a phosphate complex containing a transition metal such as Fe or Mn is disclosed.
 また、特許文献3には、蓋付きアルミナルツボに入れたLiCO、NHPO、Fe(II)C等の原料を、窒素雰囲気中300℃にて熱処理した後、電気炉中で1200℃、10分間の条件で溶融し、次いで得られた融液を鉄板上に流し出し、プレス急冷して前駆体ガラスとし、これを加熱処理することで、二次電池用正極材料を得る方法が開示されている。 Patent Document 3 discloses that after heat-treating raw materials such as Li 2 CO 3 , NH 4 H 2 PO 4 , and Fe (II) C 2 O 4 in an alumina crucible with a lid at 300 ° C. in a nitrogen atmosphere. , Melting at 1200 ° C. for 10 minutes in an electric furnace, and then pouring the obtained melt onto an iron plate, pressing and quenching to form a precursor glass, and heat-treating it for a secondary battery A method for obtaining a positive electrode material is disclosed.
 さらに、特許文献4には、LiCO、Fe(COO)・2HO、NHPO等を含む原料調合物を、ロジウム・白金合金製のノズル付きルツボ内に充填し、これをケイ化モリブデン製の発熱体を備えた電気炉で加熱溶融した後、得られた溶融物を、ステンレス製双ローラに滴下して急冷し、次いで(固化物を)加熱処理することで、オリビン型のリン酸鉄リチウム粒子を得る方法が開示されている。 Furthermore, in Patent Document 4, a raw material composition containing Li 2 CO 3 , Fe (COO) 2 .2H 2 O, NH 4 H 2 PO 4, etc. is filled in a crucible with a nozzle made of rhodium / platinum alloy. This is heated and melted in an electric furnace equipped with a heating element made of molybdenum silicide, and the obtained melt is dropped on a stainless steel double roller and rapidly cooled, and then (solidified product) is heated. A method for obtaining olivine-type lithium iron phosphate particles is disclosed.
日本特開2005-158673号公報Japanese Unexamined Patent Publication No. 2005-158673 日本特開2007-73360号公報Japanese Unexamined Patent Publication No. 2007-73360 日本特開2008-47412号公報Japanese Unexamined Patent Publication No. 2008-47412 日本特開2011-1242号公報Japanese Unexamined Patent Publication No. 2011-1242
 しかしながら、特許文献2の方法は、大量生産に不向きであり、また高周波誘導による加熱時に、白金チューブから白金成分が内部の溶融体に混入し、生成物の純度低下や、生産コストの増大を招くおそれがあった。 However, the method of Patent Document 2 is not suitable for mass production, and platinum components are mixed from the platinum tube into the internal melt during heating by high-frequency induction, leading to a decrease in product purity and an increase in production costs. There was a fear.
 特許文献3の方法では、ルツボを構成するアルミナの耐蝕性が必ずしも高くないため、加熱溶融時にFe等の侵食によりルツボの損耗が進行しやすく、交換頻度が増す。また、アルミナ成分がルツボから融液中に混入しやすく、純度低下を招くおそれがあった。さらに、アルミナは熱膨張係数が比較的高いため、急激な温度変化により、ルツボの破損を生じるおそれもあった。 In the method of Patent Document 3, since the corrosion resistance of alumina constituting the crucible is not necessarily high, the crucible wears easily due to erosion of Fe or the like during heating and melting, and the replacement frequency increases. In addition, the alumina component is likely to be mixed into the melt from the crucible, which may cause a decrease in purity. Furthermore, since alumina has a relatively high coefficient of thermal expansion, the crucible may be damaged by a sudden temperature change.
 特許文献4の方法では、高温下において、ルツボに含まれる白金やロジウムと、溶融物中の鉄成分との合金生成により、ルツボの損耗が進行しやすいうえ、ルツボから溶解した白金やロジウムが融液中に混入しやすく、生成物の純度低下や、製造コストの増大を招くおそれがあった。 According to the method of Patent Document 4, at high temperatures, the crucible is easily worn out by the formation of platinum and rhodium contained in the crucible and the iron component in the melt, and the platinum and rhodium dissolved from the crucible are melted. It was easy to mix in a liquid, and there existed a possibility of causing the fall of the purity of a product and the increase in manufacturing cost.
 さらに、特許文献3および4の方法においては、上記した所定の原料混合物を、ルツボ等の容器に収容した状態で電気炉により加熱処理しているため、熱効率が悪く、量産性に劣るうえ、炉内全体を昇温する必要があり、十分な加熱速度を得られず、生産効率に劣るという問題があった。 Furthermore, in the methods of Patent Documents 3 and 4, since the above-described predetermined raw material mixture is heat-treated by an electric furnace in a state of being contained in a container such as a crucible, the thermal efficiency is poor and the mass productivity is inferior. There was a problem that it was necessary to raise the temperature of the inside, and a sufficient heating rate could not be obtained, resulting in poor production efficiency.
 本発明の目的は、原料混合物の加熱溶融に用いる容器に由来する成分の混入が低減された、純度に優れる二次電池用正極材料を、低コストで効率的に製造する量産性の高い方法を提供することにある。 An object of the present invention is to provide a mass-productive method for efficiently producing a positive electrode material for a secondary battery excellent in purity with reduced mixing of components derived from a container used for heating and melting a raw material mixture at low cost. It is to provide.
 すなわち、本発明の二次電池用正極材料の製造方法は、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であって、原料を調合して原料調合物を準備する原料調合工程と、前記原料調合物を、少なくとも内周部が導電性耐火材料により形成された容器内で、該容器の少なくとも内周部を誘導加熱することにより溶融し、溶融物を得る溶融工程と、を含むことを特徴とする。 That is, the method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having an olivine type, pyroxene type, or NASICON type crystal structure, wherein the raw materials are prepared. The raw material preparation step of preparing a raw material preparation and the raw material preparation are melted by induction heating at least the inner peripheral portion of the container in a container having at least an inner peripheral portion formed of a conductive refractory material. And a melting step for obtaining a melt.
 本発明の二次電池用正極材料の製造方法において、前記容器の底部に該容器より細径の溶融物導出部が接続され、該溶融物導出部を前記容器とは独立して加熱することにより、前記容器内の溶融物を前記溶融物導出部から導出させることができる。そして、前記溶融物導出部は導電性耐火材料により形成されており、該溶融物導出部の加熱を誘導加熱により行うことができる。 In the method for producing a positive electrode material for a secondary battery according to the present invention, a melt outlet part having a diameter smaller than that of the container is connected to the bottom part of the container, and the melt outlet part is heated independently of the container. The melt in the container can be led out from the melt lead-out part. The melt outlet part is formed of a conductive refractory material, and the melt outlet part can be heated by induction heating.
 また、前記導電性耐火材料は、炭素または導電性非酸化物セラミックスであることが好ましく、前記導電性非酸化物セラミックスは、炭化ケイ素、ホウ化ジルコニウム、およびホウ化チタンから選ばれる少なくとも1種を主体とするセラミックスであることが好ましい。さらに、前記溶融工程を不活性雰囲気下または還元性雰囲気下で行うことが好ましい。また、前記溶融工程において、前記原料調合物を1100℃~1800℃に加熱して溶融することが好ましい。 The conductive refractory material is preferably carbon or conductive non-oxide ceramics, and the conductive non-oxide ceramics include at least one selected from silicon carbide, zirconium boride, and titanium boride. It is preferable that the ceramic is a main component. Furthermore, it is preferable that the melting step is performed in an inert atmosphere or a reducing atmosphere. In the melting step, the raw material preparation is preferably melted by heating to 1100 ° C. to 1800 ° C.
 またさらに、本発明の二次電池用正極材料の製造方法は、前記溶融工程で得られた前記溶融物を冷却して固化物を得る冷却工程を有することが好ましい。そして、前記冷却工程において、前記溶融物を1×10℃/秒以上の冷却速度で冷却することが好ましい。また、前記冷却工程で得られた固化物を粉砕して粉砕物を得る粉砕工程を有することが好ましい。そして、前記粉砕工程において、前記固化物に、有機化合物および炭素系導電物質からなる群より選ばれる少なくとも1種を添加して粉砕することが好ましい。さらに、前記粉砕工程で得られた粉砕物を加熱する加熱工程を有することが好ましい。 Furthermore, it is preferable that the manufacturing method of the positive electrode material for secondary batteries of the present invention includes a cooling step of cooling the melt obtained in the melting step to obtain a solidified product. In the cooling step, the melt is preferably cooled at a cooling rate of 1 × 10 3 ° C./second or more. Moreover, it is preferable to have the crushing process which grind | pulverizes the solidified material obtained at the said cooling process, and obtains a ground material. And in the said grinding | pulverization process, it is preferable to add and grind | pulverize at least 1 sort (s) chosen from the group which consists of an organic compound and a carbonaceous electrically conductive material to the said solidified material. Furthermore, it is preferable to have a heating step of heating the pulverized product obtained in the pulverization step.
 本発明の目的とする二次電池用正極材料が有する化合物の例としては、下記の(1)式で表されるリン酸化合物が挙げられる。
AM1-a 1-b 4+c   (1)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子を示し、ZはSi、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。aは0≦a≦0.2であり、bは0≦b≦0.2であり、cは、aおよびbの数値、ならびにMの価数、Xの価数およびZの価数に依存し、電気的中性を満たす数である。)
As an example of the compound which the positive electrode material for secondary batteries made into the objective of this invention has, the phosphoric acid compound represented by following (1) Formula is mentioned.
AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
(In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 1 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W, and Z 1 represents at least one atom selected from the group consisting of Si, B, Al and V A is 0 ≦ a ≦ 0.2, b is 0 ≦ b ≦ 0.2, c is the numerical value of a and b, and the valence of M, the valence of X 1 and Z 1 It depends on the valence of and satisfies the electrical neutrality.)
 また、本発明の目的とする二次電池用正極材料が有する他の化合物の例としては、下記の(2)式で表されるケイ酸化合物が挙げられる。
1-d Si1-e 4+f   (2)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子を示し、ZはP、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。dは0≦d≦0.2であり、eは0≦e≦0.2であり、fは、dおよびeの数値、ならびにMの価数、Xの価数およびZの価数に依存し、電気的中性を満たす数である。)
Moreover, as an example of the other compound which the positive electrode material for secondary batteries made into the objective of this invention has, the silicic acid compound represented by following (2) Formula is mentioned.
A 2 M 1-d X 2 d Si 1-e Z 2 e O 4 + f (2)
(In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 2 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W, and Z 2 represents at least one atom selected from the group consisting of P, B, Al and V D is 0 ≦ d ≦ 0.2, e is 0 ≦ e ≦ 0.2, f is the numerical value of d and e, and the valence of M, the valence of X 2 and Z 2 It depends on the valence of and satisfies the electrical neutrality.)
 なお、本明細書において、「内周部」とは、容器内に収容された原料調合物および溶融物と直接接触する部分をいう。具体的には、容器の側壁内周部および内底部をいう。 In the present specification, the “inner peripheral part” refers to a part that comes into direct contact with the raw material formulation and the melt contained in the container. Specifically, it refers to the inner peripheral portion and inner bottom portion of the side wall of the container.
 本発明によれば、原料混合物の加熱溶融に用いる容器に由来する成分の混入が低減された、純度に優れる二次電池用正極材料を、低コストで効率的に製造することができる。
 また、少なくとも内周部が導電性耐火材料により形成された容器を誘導加熱することにより、原料調合物の溶融を行っているので、電気炉等の加熱炉を使用する従来の方法に比べて、エネルギーロスが少なく熱効率が高い、急速加熱が可能であり、溶融物を短時間で得ることができる、量産性が高い、などの利点がある。
ADVANTAGE OF THE INVENTION According to this invention, the positive electrode material for secondary batteries excellent in the purity in which mixing of the component derived from the container used for the heat melting of a raw material mixture was reduced can be manufactured efficiently at low cost.
In addition, since the raw material preparation is melted by induction heating at least the inner periphery of the container formed of a conductive refractory material, compared to the conventional method using a heating furnace such as an electric furnace, There are advantages such as low energy loss, high thermal efficiency, rapid heating, the ability to obtain a melt in a short time, and high mass productivity.
本発明の実施形態に用いる溶融装置の一例の構成を示す断面図である。It is sectional drawing which shows the structure of an example of the melting apparatus used for embodiment of this invention. 本発明の実施形態に用いる溶融装置の別の例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the melting apparatus used for embodiment of this invention.
 本明細書において、「オリビン型の結晶構造を有する化合物」を「オリビン型化合物」ともいい、「輝石型の結晶構造を有する化合物」を「輝石型化合物」ともいい、「ナシコン型の結晶構造を有する化合物」を「ナシコン型化合物」ともいう。また、「オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物」を「化合物(α)」ともいう。
 本明細書において、前記式(1)で表される組成を有するリン酸化合物を「リン酸化合物(1)」ともいい、前記式(2)で表わされる組成を有するケイ酸化合物を「ケイ酸化合物(2)」ともいう。
In the present specification, “compound having an olivine type crystal structure” is also referred to as “olivine type compound”, “compound having a pyroxene type crystal structure” is also referred to as “pyroxene type compound”, and “ "Compound having" is also referred to as "Nashikon-type compound". The “compound having an olivine type, pyroxene type, or NASICON type crystal structure” is also referred to as “compound (α)”.
In the present specification, the phosphoric acid compound having the composition represented by the formula (1) is also referred to as “phosphoric acid compound (1)”, and the silicic acid compound having the composition represented by the formula (2) is referred to as “silicic acid”. Also referred to as “compound (2)”.
<二次電池用正極材料の製造方法>
 本発明の二次電池用正極材料の製造方法は、オリビン型、輝石型またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であって、原料を調合して原料調合物を準備する原料調合工程と、前記原料調合物を、少なくとも内周部が導電性耐火材料により形成された容器内で、該容器の少なくとも内周部を誘導加熱することにより溶融し、溶融物を得る溶融工程とを含むことを特徴とする。本発明に係る二次電池正極材料は、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物であるのが好ましい。
<Method for producing positive electrode material for secondary battery>
The method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having a crystal structure of olivine type, pyroxene type or NASICON type, wherein the raw material is prepared and the raw material is prepared The raw material preparation step for preparing the composition and the raw material preparation are melted by induction heating at least the inner peripheral part of the container in a container in which at least the inner peripheral part is formed of a conductive refractory material. And a melting step for obtaining a product. The secondary battery positive electrode material according to the present invention is preferably a compound having an olivine type, pyroxene type, or NASICON type crystal structure.
 オリビン型化合物としては、例えば、一般式AMPO、AVOPO、AMSiO、AVOSiO、AMBO、AMPOF、またはAVOPOFで示されるものを挙げることができる。
 また、輝石型化合物としては、例えば、一般式AMSi、AVSiで示されるものを挙げることができる。本明細書において、AMPも輝石型化合物に含まれるものとする。
 また、ナシコン型化合物としては、例えば、一般式A(PO、またはA(POで示されるものを挙げることができる。
Examples of the olivine type compounds include those represented by the general formula AMPO 4 , AVOPO 4 , A 2 MSiO 4 , A 2 VOSiO 4 , AMBO 3 , A 2 MPO 4 F, or AVOPO 4 F.
In addition, examples of pyroxene-type compounds include those represented by general formulas AMSi 2 O 6 and AVSi 2 O 6 . In the present specification, A 2 MP 2 O 7 is also included in the pyroxene-type compound.
Examples of NASICON compounds include those represented by the general formula A 3 M 2 (PO 4 ) 3 or A 3 V 2 (PO 4 ) 3 .
 上記一般式中、原子AはLi、Na、およびK等のアルカリ金属原子を示し、原子MはFe、Mn、Co、およびNi等の遷移金属原子を示す。
 上記一般式において、P、Si、B、およびVは、それぞれ相互に部分的に置換したものであってもよく、これらがAlまたはS等の原子と置換したものであってもよい。
In the above general formula, atom A represents an alkali metal atom such as Li, Na, and K, and atom M represents a transition metal atom such as Fe, Mn, Co, and Ni.
In the above general formula, P, Si, B, and V may each be partially substituted with each other, or these may be substituted with atoms such as Al or S.
 また、上述したオリビン型化合物、輝石型化合物、ナシコン型化合物としては、上述した一般式で示される化合物のほか、原子A、原子MとともにZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子を含むものであってもよい。 The olivine-type compound, pyroxene-type compound, and nasicon-type compound described above are selected from the group consisting of Zr, Ti, Nb, Ta, Mo, and W together with atoms A and M, in addition to the compounds represented by the general formula described above. It may contain at least one selected atom.
 上述した一般式で表わされるオリビン型化合物のうち、リン酸化合物としては、下記式(1)で表されるリン酸化合物(1)が好適である。
AM1-a 1-b 4+c   (1)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子、ZはSi、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。aは0≦a≦0.2、bは0≦b≦0.2であり、cは、aおよびbの数値、ならびにMの価数、Xの価数およびZの価数に依存し、電気的中性を満たす数である。)
Of the olivine compounds represented by the general formula described above, the phosphoric acid compound (1) represented by the following formula (1) is preferred as the phosphoric acid compound.
AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
Wherein A is at least one atom selected from the group consisting of Li, Na, and K, M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni, and X 1 is Zr. , Ti, Nb, Ta, Mo, and W, Z 1 represents at least one atom selected from the group consisting of Si, B, Al, and V. a is 0. ≦ a ≦ 0.2, b is 0 ≦ b ≦ 0.2, c depends on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , It is a number that satisfies the target neutrality.)
 0≦a≦0.2および0≦b≦0.2である場合に、後述する溶融工程(ii)で原料調合物を良好に溶融することができ、均一な溶融物が得られる。また、後述する加熱工程(v)でリン酸化合物(1)を得ることができ、さらにはオリビン型結晶構造を含むリン酸化合物(1)、特にオリビン型結晶構造のみからなるリン酸化合物(1)が得られるので好ましい。 When 0 ≦ a ≦ 0.2 and 0 ≦ b ≦ 0.2, the raw material preparation can be satisfactorily melted in the melting step (ii) described later, and a uniform melt can be obtained. In addition, the phosphoric acid compound (1) can be obtained by the heating step (v) described later, and further, the phosphoric acid compound (1) containing an olivine type crystal structure, particularly a phosphoric acid compound (1) comprising only an olivine type crystal structure ) Is preferable.
 aは、0.001≦a≦0.1がより好ましく、0.001≦a≦0.05が特に好ましい。bは、0.001≦b≦0.1がより好ましく、0.001≦b≦0.05が特に好ましい。aおよびbが上記範囲内であると、多電子型の反応(単位モル数当たり1molを超える原子Aを引き抜く反応)を示すリン酸化合物(1)が得られ、このリン酸化合物(1)を二次電池用正極材料として用いたときに理論電気容量を高めることができる。 A is more preferably 0.001 ≦ a ≦ 0.1, and particularly preferably 0.001 ≦ a ≦ 0.05. As for b, 0.001 <= b <= 0.1 is more preferable, and 0.001 <= b <= 0.05 is especially preferable. When a and b are within the above ranges, a phosphoric acid compound (1) showing a multi-electron type reaction (reaction that pulls out more than 1 mol of atoms A per unit mole number) is obtained, and this phosphoric acid compound (1) is obtained. When used as a positive electrode material for a secondary battery, the theoretical electric capacity can be increased.
 リン酸化合物(1)におけるcの値はaおよびbの数値、ならびにMの価数、Xの価数およびZの価数に依存する数であり、正電荷の総和の1/2から4を引いた値である。 The value of c in the phosphoric acid compound (1) is a number depending on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , from 1/2 of the total positive charge The value obtained by subtracting 4.
 また、上記一般式で表わされるオリビン型化合物のうち、ケイ酸化合物としては、下記式(2)で表されるケイ酸化合物(2)が好適である。
1-d Si1-e 4+f   (2)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子、ZはP、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。dは0≦d≦0.2、eは0≦e≦0.2であり、fは、dおよびeの数値、ならびにMの価数、Xの価数およびZの価数に依存し、電気的中性を満たす数である。)
Of the olivine compounds represented by the above general formula, as the silicate compound, a silicate compound (2) represented by the following formula (2) is preferred.
A 2 M 1-d X 2 d Si 1-e Z 2 e O 4 + f (2)
Wherein A is at least one atom selected from the group consisting of Li, Na, and K, M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni, and X 2 is Zr. , Ti, Nb, Ta, Mo and W, Z 2 represents at least one atom selected from the group consisting of P, B, Al, and V. d represents 0. ≦ d ≦ 0.2, e is 0 ≦ e ≦ 0.2, f depends on the numerical values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2 , It is a number that satisfies the target neutrality.)
 0≦d≦0.2および0≦e≦0.2である場合に、後述する溶融工程(ii)で原料調合物を良好に溶融することができ、均一な溶融物が得られる。また、後述する加熱工程(v)でケイ酸化合物(2)を得ることができ、さらにはオリビン型結晶構造を含むケイ酸化合物(2)、特にオリビン型結晶構造のみからなるケイ酸化合物(2)が得られるので好ましい。 When 0 ≦ d ≦ 0.2 and 0 ≦ e ≦ 0.2, the raw material preparation can be melted well in the melting step (ii) described later, and a uniform melt can be obtained. In addition, the silicate compound (2) can be obtained by the heating step (v) described later, and further, the silicate compound (2) having an olivine type crystal structure, particularly a silicate compound (2) having only an olivine type crystal structure (2). ) Is preferable.
 dは、0.001≦d≦0.1がより好ましく、0.001≦d≦0.05が特に好ましい。eは、0.001≦e≦0.1がより好ましく、0.001≦e≦0.05が特に好ましい。dおよびeが上記範囲内であると、多電子型の反応(単位モル数当たり1molを超えるAを引き抜く反応)を示すケイ酸化合物(2)が得られ、このケイ酸化合物(2)を二次電池用正極材料として用いたときに理論電気容量を高めることができる。 D is more preferably 0.001 ≦ d ≦ 0.1, and particularly preferably 0.001 ≦ d ≦ 0.05. e is more preferably 0.001 ≦ e ≦ 0.1, and particularly preferably 0.001 ≦ e ≦ 0.05. When d and e are within the above ranges, a silicic acid compound (2) showing a multi-electron type reaction (a reaction of extracting A exceeding 1 mol per mole of unit) is obtained. When used as a positive electrode material for a secondary battery, the theoretical electric capacity can be increased.
 ケイ酸化合物(2)の組成におけるfの値はdおよびeの数値、ならびにMの価数、Xの価数およびZの価数に依存する数であり、正電荷の総和の1/2から4を引いた値である。 The value of f in the composition of the silicate compound (2) is a number that depends on the values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2 , and is 1 / The value obtained by subtracting 4 from 2.
 リン酸化合物(1)またはケイ酸化合物(2)において、原子Aは二次電池用正極材料として適しているため、Liを必須とするのが好ましく、Liのみであることが特に好ましい。Liを含むリン酸化合物(1)、Liを含むケイ酸化合物(2)は、二次電池の単位体積(質量)当たりの容量を高くする。 In the phosphoric acid compound (1) or the silicic acid compound (2), since the atom A is suitable as a positive electrode material for a secondary battery, it is preferable to make Li essential, and it is particularly preferable to use only Li. The phosphoric acid compound (1) containing Li and the silicic acid compound (2) containing Li increase the capacity per unit volume (mass) of the secondary battery.
 リン酸化合物(1)またはケイ酸化合物(2)において、原子Mは1種のみ、または、2種からなるのが好ましい。特に、原子MはFeのみ、Mnのみ、またはFeおよびMnからなるのが、コストの点で好ましい。
 リン酸化合物(1)またはケイ酸化合物(2)における原子Mの価数は、+2~+4の範囲である。原子Mの価数は、原子MがFeの場合は+2、+8/3、+3、Mnの場合は+2、+3、+4、Coの場合は+2、+8/3、+3、Niの場合は+2、+4が好ましい。原子Mの価数は2 ~2.2であるのが好ましく、2であるのがより好ましい。
In the phosphoric acid compound (1) or the silicic acid compound (2), the atom M is preferably composed of only one kind or two kinds. In particular, it is preferable in terms of cost that the atom M consists of Fe alone, Mn alone, or Fe and Mn.
The valence of atom M in phosphoric acid compound (1) or silicic acid compound (2) is in the range of +2 to +4. The valence of atom M is +2, +8/3, +3 when atom M is Fe, +2, +3, +4 when Mn, +2, +8/3, +3 when Co, +2, when Ni is Ni, +4 is preferred. The valence of atom M is preferably 2 to 2.2, more preferably 2.
 リン酸化合物(1)またはケイ酸化合物(2)において、原子X、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子である。性能の面から、Zr、TiまたはNbが好ましく、ZrまたはTiが特に好ましい。
 リン酸化合物(1)またはケイ酸化合物(2)における原子X、Xの価数は、基本的にZrの場合は+4、Tiの場合は+2または+4、Nbの場合は+2または+5、Taの場合は+2または+5、Moの場合は+4または+6、Wの場合は+4または+6である。
In the phosphoric acid compound (1) or the silicic acid compound (2), the atoms X 1 and X 2 are at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W. From the viewpoint of performance, Zr, Ti or Nb is preferable, and Zr or Ti is particularly preferable.
The valences of the atoms X 1 and X 2 in the phosphoric acid compound (1) or the silicic acid compound (2) are basically +4 for Zr, +2 or +4 for Ti, +2 or +5 for Nb, Ta is +2 or +5, Mo is +4 or +6, and W is +4 or +6.
 リン酸化合物(1)において、原子ZはSi、B、Al、およびVからなる群より選ばれる少なくとも1種である。性能の面から、BまたはAlが好ましく、Bが特に好ましい。ケイ酸化合物(2)において、原子ZはP、B、Al、およびVからなる群より選ばれる少なくとも1種である。性能の面から、BまたはAlが好ましく、Bが特に好ましい。リン酸化合物(1)またはケイ酸化合物(2)における原子Z、Zの価数は、基本的にPの場合は+5、Bの場合は+3、Alの場合は+3、Vの場合は+3、+4、+5である。 In the phosphoric acid compound (1), the atom Z 1 is at least one selected from the group consisting of Si, B, Al, and V. From the viewpoint of performance, B or Al is preferable, and B is particularly preferable. In the silicic acid compound (2), the atom Z 2 is at least one selected from the group consisting of P, B, Al, and V. From the viewpoint of performance, B or Al is preferable, and B is particularly preferable. In the phosphoric acid compound (1) or the silicic acid compound (2), the valences of the atoms Z 1 and Z 2 are basically +5 for P, +3 for B, +3 for Al, and +3 for V. +3, +4, +5.
 特に、ケイ酸化合物(2)は、二次電池用正極材料に使用する場合に、二次電池の単位体積(質量)当たりの容量を高くできるため好ましい。 In particular, the silicic acid compound (2) is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as the positive electrode material for the secondary battery.
 本発明に係る二次電池用正極材料の製造方法は、上述したオリビン型、輝石型、またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であり、原料を調合して原料調合物を準備する原料調合工程(i)と、原料調合物を容器の少なくとも内周部を誘導加熱することにより溶融して溶融物を得る溶融工程(ii)とを有する。本発明の製造方法は、さらに冷却工程(iii)、粉砕工程(iv)、および加熱工程(v)を有することが好ましい。各工程について、以下に具体的に説明する。 A method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing the compound having the olivine type, pyroxene type, or NASICON type crystal structure described above, and preparing raw materials The raw material preparation step (i) for preparing the raw material preparation, and the melting step (ii) for melting the raw material preparation by induction heating at least the inner peripheral portion of the container. The production method of the present invention preferably further includes a cooling step (iii), a pulverizing step (iv), and a heating step (v). Each step will be specifically described below.
[原料調合工程(i)]
 本発明の二次電池用正極材料の製造方法では、まず、オリビン型化合物、輝石型化合物、またはナシコン型化合物の各成分源を、所定の組成を有する溶融物となるように選択し、混合して原料調合物を準備する。
[Raw material preparation step (i)]
In the method for producing a positive electrode material for a secondary battery of the present invention, first, each component source of an olivine type compound, pyroxene type compound, or NASICON type compound is selected and mixed so as to be a melt having a predetermined composition. Prepare the raw material formulation.
 オリビン型化合物、輝石型化合物、またはナシコン型化合物の構成原子を含む出発原料のうち、原子Aを含む化合物としては、Aの炭酸塩(ACO)、Aの炭酸水素塩(AHCO)、Aの水酸化物(AOH)、Aのケイ酸塩(AO・2SiO、AO・SiO、2AO・SiO等)、Aのリン酸塩(APO等)、Aのホウ酸塩(ABO)、Aのフッ化物(AF)、Aの塩化物(ACl)、Aの硝酸塩(ANO)、Aの硫酸塩(ASO)、およびAの有機酸塩(酢酸塩(CHCOOA)やシュウ酸塩((COOA))等)からなる群より選ばれる少なくとも1種(ただし、該少なくとも1種の一部または全部は、それぞれ水和塩を形成していてもよい。)が好ましい。なかでも、安価でかつ取扱いが容易な点で、ACO、AHCO、またはAFがより好ましい。 Among the starting materials containing the constituent atoms of the olivine type compound, pyroxene type compound, or NASICON type compound, the compound containing atom A includes A carbonate (A 2 CO 3 ), A hydrogen carbonate (AHCO 3 ). , A hydroxide (AOH), A silicate (A 2 O · 2SiO 2 , A 2 O · SiO 2 , 2A 2 O · SiO 2 etc.), A phosphate (A 3 PO 4 etc.) ), A borate (A 3 BO 3 ), A fluoride (AF), A chloride (ACl), A nitrate (ANO 3 ), A sulfate (A 2 SO 4 ), and At least one selected from the group consisting of an organic acid salt of A (acetate (CH 3 COOA), oxalate ((COOA) 2 ), etc.). And may form a Japanese salt). Among these, A 2 CO 3 , AHCO 3 , or AF is more preferable because it is inexpensive and easy to handle.
 原子Mを含む化合物としては、Mの酸化物(FeO、Fe、Fe、MnO、Mn、MnO、CoO、Co、Co、NiO等)、Mのオキシ水酸化物(MO(OH))、Mのケイ酸塩(MO・SiO、2MO・SiO等)、Mのリン酸塩(M(PO等)、Mのホウ酸塩(M(BO等)、Mのフッ化物(MF等)、Mの塩化物(MCl、MCl等)、Mの硝酸塩(M(NO、M(NO等)、Mの硫酸塩(MSO、M(SO等)、Mの有機酸塩(酢酸塩(M(CHCOO))やシュウ酸塩(M(COO))等)およびMのアルコキシド(M(OCH、M(OC等)からなる群より選ばれる少なくとも1種が好ましい。 As the compound containing the atom M, oxides of M (FeO, Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , CoO, Co 3 O 4 , Co 2 O 3 , NiO, etc.) , M oxyhydroxide (MO (OH)), M silicate (MO · SiO 2 , 2MO · SiO 2 etc.), M phosphate (M 3 (PO 4 ) 2 etc.), Borate (M 3 (BO 3 ) 2 etc.), M fluoride (MF 2 etc.), M chloride (MCl 2 , MCl 3 etc.), M nitrate (M (NO 3 ) 2 , M ( NO 3 ) 3 ), M sulfate (MSO 4 , M 2 (SO 4 ) 3 etc.), M organic acid salt (acetate (M (CH 3 COO) 2 ) and oxalate (M (COO ) 2), etc.) and M alkoxide (M (OCH 3) selected from 2, the group consisting of M (OC 2 H 5) 2, etc.) At least one that is preferable.
 入手のしやすさやコストから、Fe、Fe、MnO、Mn、MnO、CoおよびNiOからなる群より選ばれる少なくとも1種の化合物がより好ましい。特に原子Mが、Feである場合の該化合物としては、Feおよび/またはFeが好ましく、原子MがMnである場合の該化合物としては、MnOが好ましい。原子Mを含む化合物は、1種であっても、2種以上であってもよい。 In view of availability and cost, at least one compound selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , Co 3 O 4 and NiO is more preferable. In particular, as the compound when the atom M is Fe, Fe 3 O 4 and / or Fe 2 O 3 is preferable, and as the compound when the atom M is Mn, MnO 2 is preferable. The compound containing atom M may be one type or two or more types.
 Siを含む化合物としては、酸化ケイ素(SiO)、ケイ素のアルコキシド(Si(OCH、Si(OC等)、Aのケイ酸塩、またはMのケイ酸塩が好ましい。Siを含む化合物は結晶質であっても、非晶質であってもよい。なかでも、SiOが安価であるのでより好ましい。 As the compound containing Si, silicon oxide (SiO 2 ), silicon alkoxide (Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4, etc.), A silicate, or M silicate is preferable. . The compound containing Si may be crystalline or amorphous. Among them, more preferable because SiO 2 is inexpensive.
 Pを含む化合物としては、無水リン酸(P)、リン酸水素アンモニウム(NHPO、(NHHPO)、AまたはMのリン酸塩が好ましい。
 AまたはMのリン酸塩としては、例えばLiPO、Fe(PO、FePOおよびMn(POからなる群より選ばれる少なくとも1種が好ましい。
 Pを含む化合物は結晶質であっても、非晶質であってもよい。なかでも、NHPOが安価であるのでより好ましい。
As the compound containing P, anhydrous phosphoric acid (P 2 O 5 ), ammonium hydrogen phosphate (NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 ), A or M phosphate is preferable.
As the phosphate of A or M, for example, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 is preferable.
The compound containing P may be crystalline or amorphous. Of these, NH 4 H 2 PO 4 is more preferable because it is inexpensive.
 原子X、X(Zr、Ti、Nb、Ta、MoおよびW)を含む化合物としては、X、Xの酸化物、例えばZrO、TiO、Nb、Ta、MoOまたはWOが好ましい。 Examples of the compound containing atoms X 1 and X 2 (Zr, Ti, Nb, Ta, Mo and W) include oxides of X 1 and X 2 such as ZrO 2 , TiO 2 , Nb 2 O 5 and Ta 2 O 5. , MoO 3 or WO 3 are preferred.
 原子Z、Z(P、Si、B、Al、およびV)を含む化合物としては、Z、Zの酸化物(P、B等)、AまたはMのリン酸塩、AまたはMのケイ酸塩、AまたはMのホウ酸塩、AまたはMのアルミン酸塩、および、AまたはMのバナジン酸塩からなる群より選ばれる少なくとも1種が好ましい。
 なかでも、原子Z、ZがPを含む場合はLiPO、Fe(PO、FePOおよびMn(POからなる群より選ばれる少なくとも1種、Siを含む場合はSiO2、Bを含む場合はBおよび/またはH3BO3、Alを含む場合はAl、AlO(OH)およびアルミノケイ酸塩からなる群より選ばれる少なくとも1種、Vを含む場合は酸化バナジウム(VO、V、VO、V等)が安価であるので好ましい。
Compounds containing atoms Z 1 and Z 2 (P, Si, B, Al, and V) include Z 1 , Z 2 oxides (P 2 O 5 , B 2 O 3, etc.), A or M phosphorus Preferred are at least one selected from the group consisting of acid salts, A or M silicates, A or M borates, A or M aluminates, and A or M vanadates.
Among them, when the atoms Z 1 and Z 2 contain P, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 , Si SiO 2 when contained, B 2 O 3 and / or H 3 BO 3 when containing B, at least one selected from the group consisting of Al 2 O 3 , AlO (OH) and aluminosilicate when containing Al , V is preferable because vanadium oxide (VO, V 2 O 3 , VO 3 , V 2 O 5, etc.) is inexpensive.
 原料調合物の好適な組み合わせは、原子Aを含む化合物がAの炭酸塩または炭酸水素塩、原子Mを含む化合物がMの酸化物、Pを含む化合物がリン酸水素アンモニウムである場合、Siを含む化合物が酸化ケイ素である場合の組み合わせである。 A suitable combination of raw material formulations is Si, where the compound containing atom A is a carbonate or bicarbonate of A, the compound containing atom M is an oxide of M, and the compound containing P is ammonium hydrogen phosphate. This is a combination when the compound to be contained is silicon oxide.
 原料調合物の組成は、原則として、当該原料調合物から得られる溶融物の組成と理論上対応するものである。ただし、該原料調合物中には、溶融処理中に揮発等により失われやすい成分(例えばLi等)が存在するため、得られる溶融物の組成は各原料の仕込み量から計算される酸化物基準のモル%と若干相違する場合がある。そのような場合には、揮発等により失われる量を考慮して、各原料の仕込み量を設定することが好ましい。 In principle, the composition of the raw material formulation corresponds theoretically to the composition of the melt obtained from the raw material formulation. However, since there are components (such as Li) that are easily lost due to volatilization or the like during the melting process in the raw material preparation, the composition of the obtained melt is based on an oxide standard calculated from the charged amount of each raw material. It may be slightly different from the mol%. In such a case, it is preferable to set the charging amount of each raw material in consideration of the amount lost due to volatilization or the like.
 原料調合物中の各原料の純度は特に限定されない。反応性や二次電池用正極材料の物性等を考慮すると、水和水を除く純度が99質量%以上であることが好ましい。
 各原料としては、粉砕した原料を用いるのが好ましい。各原料は、粉砕してから混合しても、混合した後に粉砕してもよい。粉砕は、ミキサー、ボールミル、ジェットミル、遊星ミル等を用いて、乾式または湿式で行うことが好ましく、溶媒の除去工程が不要なことから、乾式が好ましい。原料調合物中の各原料の粒子径は、混合操作、混合物の溶融容器への充填操作、混合物の溶融性等に悪影響を及ぼさない範囲であれば、限定されない。
The purity of each raw material in the raw material formulation is not particularly limited. Considering reactivity and physical properties of the positive electrode positive electrode material, the purity excluding hydration water is preferably 99% by mass or more.
As each raw material, it is preferable to use a pulverized raw material. Each raw material may be pulverized and mixed, or may be pulverized after mixing. The pulverization is preferably performed by a dry method or a wet method using a mixer, a ball mill, a jet mill, a planetary mill or the like, and a dry method is preferable because a solvent removal step is unnecessary. The particle diameter of each raw material in the raw material formulation is not limited as long as it does not adversely affect the mixing operation, the filling operation of the mixture into the melting container, the meltability of the mixture, and the like.
[溶融工程(ii)]
 溶融工程(ii)では、原料調合工程(i)で得られた原料調合物を、少なくとも内周部が導電性耐火材料により形成された容器に入れ、容器の少なくとも内周部を構成する導電性耐火材料を誘導加熱する。そして、誘導加熱された導電性耐火材料からの発熱により、容器内に収容された導電性耐火材料と直接接する原料調合物を加熱して、溶融させる。
[Melting step (ii)]
In the melting step (ii), the raw material composition obtained in the raw material preparation step (i) is put in a container having at least an inner peripheral portion formed of an electrically conductive refractory material, and the electric conductivity constituting at least the inner peripheral portion of the container. Inductively heat the refractory material. Then, the raw material preparation that is in direct contact with the conductive refractory material housed in the container is heated and melted by the heat generated from the conductive refractory material heated by induction.
 本明細書において、「導電性耐火材料」とは、電磁誘導作用によって加熱されるに十分な導電性を有し、かつ耐火性に優れ、原料調合物の溶融温度において外観や組成、物理的特性等が変化することがない材料をいう。導電性耐火材料の耐火温度は、800℃以上であることが好ましい。耐火温度が800℃未満であると、容器の耐溶損性が著しく低下する場合がある。
 ただし、導電性耐火材料の耐火温度が過度に高くなると、使用可能な構成材料が過度に制限される場合があるため、耐火温度は900~2,000℃の範囲とすることが好ましく、1,000~1,800℃の範囲とすることがより好ましい。なお、耐火温度は、材料を24時間加熱した場合に、顕著な外観変化が観察されない温度を意味する。
In the present specification, the “conductive refractory material” means that it has sufficient conductivity to be heated by electromagnetic induction and has excellent fire resistance, appearance, composition and physical properties at the melting temperature of the raw material formulation. A material that does not change. The fireproof temperature of the conductive refractory material is preferably 800 ° C. or higher. When the fireproof temperature is less than 800 ° C., the melt resistance of the container may be significantly lowered.
However, if the fireproof temperature of the conductive refractory material is excessively high, usable constituent materials may be excessively limited. Therefore, the fireproof temperature is preferably in the range of 900 to 2,000 ° C., More preferably, the temperature is in the range of 000 to 1,800 ° C. The refractory temperature means a temperature at which no remarkable change in appearance is observed when the material is heated for 24 hours.
 本発明において、容器の少なくとも内周部を形成する導電性耐火材料としては、炭素または導電性の非酸化物セラミックスを挙げることができる。 In the present invention, examples of the conductive refractory material forming at least the inner periphery of the container include carbon or conductive non-oxide ceramics.
 炭素としては、黒鉛が、安価であり、入手しやすく、また加工しやすいので、好ましい。なお、炭素は、高温においては、原料調合物に含まれる鉄等の重金属の酸化物と還元反応するおそれがあるので、誘導加熱の温度を調整することが好ましい。また、導電性耐火材料として炭素を用いる場合は、炭素以外の耐火材料からなる内張り層を設けることもできる。そして、内張り層は導電性非酸化物セラミックスにより形成することが好ましい。すなわち、炭素製の外側容器の内側に、後述する導電性非酸化物セラミックスにより形成された内周部を積層して配置した構造の容器を使用することが好ましい。このような2層構造の容器によれば、溶融物中の重金属成分との反応による容器の損傷を防止することができるうえに、内周部を構成する導電性非酸化物セラミックスの誘導加熱による発熱と、外側容器を構成する炭素の誘導加熱による発熱とを合わせて、効率的に原料調合物を加熱することができる。 As the carbon, graphite is preferable because it is inexpensive, easily available, and easy to process. In addition, since there exists a possibility that carbon may carry out a reductive reaction with the oxides of heavy metals, such as iron, contained in a raw material formulation at high temperature, it is preferable to adjust the temperature of induction heating. When carbon is used as the conductive refractory material, a lining layer made of a refractory material other than carbon can be provided. And it is preferable to form a lining layer with electroconductive non-oxide ceramics. That is, it is preferable to use a container having a structure in which inner peripheral portions formed of conductive non-oxide ceramics described later are stacked inside a carbon outer container. According to the container having such a two-layer structure, damage to the container due to reaction with the heavy metal component in the melt can be prevented, and in addition, by induction heating of the conductive non-oxide ceramic constituting the inner peripheral portion. The raw material preparation can be efficiently heated by combining the heat generation and the heat generation by induction heating of carbon constituting the outer container.
 導電性非酸化物セラミックスとしては、炭化ケイ素(SiC)、ホウ化ジルコニウム(ZrB)、ホウ化チタン(TiB)から選ばれる少なくとも1種を主体とするセラミックスを挙げることができる。なお、本明細書において、「主体とする」とは、その成分を50質量%以上含有することをいう。前記導電性非酸化物セラミックスのうちでも、ホウ化ジルコニウムを50~98質量%含むセラミックスは、特に耐蝕性が良好であり好ましい。 Examples of the conductive non-oxide ceramic include ceramics mainly composed of at least one selected from silicon carbide (SiC), zirconium boride (ZrB 2 ), and titanium boride (TiB 2 ). In the present specification, “mainly” means containing 50% by mass or more of the component. Among the conductive non-oxide ceramics, a ceramic containing 50 to 98% by mass of zirconium boride is particularly preferable because of its good corrosion resistance.
 少なくとも内周部が炭素または前記導電性非酸化物セラミックスにより形成された容器は、溶融物により侵食されにくい。また、後述するように、原料調合物の溶融は不活性雰囲気下または還元性雰囲気下で行うことが好ましいが、炭素および前記導電性非酸化物セラミックスは、不活性雰囲気下または還元性雰囲気下での使用が可能であるので、前記原料調合物の溶融のための容器を構成する材料として好適である。さらに、炭素または前記導電性非酸化物セラミックスは、原料粉末を成型し加熱・焼成した焼成物が入手しやすいので、容器の構成材料として好ましい。 A container having at least an inner periphery made of carbon or the conductive non-oxide ceramics is not easily eroded by the melt. In addition, as described later, it is preferable to melt the raw material preparation in an inert atmosphere or a reducing atmosphere. However, carbon and the conductive non-oxide ceramics are used in an inert atmosphere or a reducing atmosphere. Therefore, it is suitable as a material constituting a container for melting the raw material formulation. Furthermore, carbon or the conductive non-oxide ceramic is preferable as a constituent material of the container because a fired product obtained by molding a raw material powder, heating and firing is easily available.
 内周部以外の容器の構成材料として、印加する電磁波に透明な材料を用いることができる。容器の外周部は、例えば、アルミナ系セラミックスで構成されていてもよい。 As the constituent material of the container other than the inner periphery, a material transparent to the applied electromagnetic wave can be used. The outer peripheral part of the container may be made of alumina ceramics, for example.
 前記導電性耐火材料により少なくとも内周部を形成した容器としては、大きさや形状は特に限定されず、小型の円筒状ルツボとして用いることもでき、大型の溶融タンクとして用いることもできる。特に、容器が大型の溶融タンクの場合、前記導電性耐火材料は少なくとも溶融物と接触する内周部に用いればよく、溶融タンク上部構造等の、溶融物との非接触部分は他の材料で構成してもよい。また、小型の円筒状ルツボとして用いる場合、原料調合物または溶融物の揮発および蒸発を防止するために、当該容器に蓋を装着して溶融を行うこともできる。 The container having at least the inner periphery made of the conductive refractory material is not particularly limited in size and shape, and can be used as a small cylindrical crucible or a large melting tank. In particular, when the container is a large melting tank, the conductive refractory material may be used at least on the inner peripheral portion that comes into contact with the melt, and the non-contact portion with the melt such as the upper structure of the melt tank is made of other materials. It may be configured. Moreover, when using as a small cylindrical crucible, in order to prevent volatilization and evaporation of a raw material preparation or a molten material, it can also melt | dissolve by attaching the lid | cover to the said container.
 以下、本発明の溶融工程(ii)に使用される溶融装置について、図面に基いて説明する。
 図1は、前記原料調合物の溶融装置の一例を示すものである。この溶融装置1は、前記導電性耐火材料により形成された溶融容器2と、この溶融容器2の外周を取り囲むように配設された誘導加熱コイル3とを備えている。誘導加熱コイル3は、発生する磁界の方向が溶融容器2の縦軸方向に平行になるように配置されている。
Hereinafter, the melting apparatus used in the melting step (ii) of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of an apparatus for melting the raw material mixture. The melting apparatus 1 includes a melting container 2 formed of the conductive refractory material, and an induction heating coil 3 disposed so as to surround the outer periphery of the melting container 2. The induction heating coil 3 is arranged so that the direction of the generated magnetic field is parallel to the longitudinal direction of the melting vessel 2.
 溶融容器2の形状は特に限定されず、例えば円筒状とすることができる。また、溶融容器2全体ではなく、内周部のみを導電性耐火材料により形成することもできる。さらに、溶融容器2全体またはその内周部を構成する導電性耐火材料は、一体物ではなく、複数に分割された部材を所定の間隔をおいて配設した構造物とすることもできる。このような分割構造物とした場合は、分割された各部において、誘導電流がループを形成して流れるので、分割された部位の一部に破損が生じても、影響をその部位だけに止め、発熱を継続させることができる。また、一体物で構成する場合は、溶融容器2のサイズが大きくなると、製作が難しく製作費用も高くなるが、分割することで製作が容易となり製作費用も低減できる。なお、分割された各部の間に絶縁部材を介在させた場合は、誘導電流が各部の間で干渉しにくくなるという利点もある。 The shape of the melting container 2 is not particularly limited, and may be a cylindrical shape, for example. Further, not the entire melting container 2 but only the inner peripheral portion can be formed of a conductive refractory material. Furthermore, the conductive refractory material constituting the entire melting container 2 or the inner periphery thereof may not be a single body, but may be a structure in which members divided into a plurality are arranged at a predetermined interval. In such a divided structure, since the induced current flows in each divided part to form a loop, even if a part of the divided part is damaged, the influence is stopped only in that part, Heat generation can be continued. Further, in the case of being configured as a single body, if the size of the melting container 2 is increased, the manufacturing is difficult and the manufacturing cost is high. However, by dividing, the manufacturing is easy and the manufacturing cost can be reduced. In addition, when an insulating member is interposed between the divided parts, there is an advantage that the induced current is less likely to interfere between the parts.
 このように、外側に誘導加熱コイル3が周設された溶融容器2は、ステンレス等の金属材料またはセラミックス等の耐火材料により形成されたジャケット(外装筐体)4内に収納されている。ジャケット4は、溶融容器2の搬入および取り出しのための開閉自在部(例えば蓋部)(図示を省略。)を有している。そして、ジャケット4の上部には、原料調合物5を溶融容器2内に供給するための原料供給管6が接続されている。また、ジャケット4の側部には、ジャケット4内に後述する不活性ガスまたは還元性ガスを導入するためのガス導入管7と、ジャケット4内のガスを外部に排出するためのガス排出管8がそれぞれ取り付けられている。ジャケット4は、これら原料供給管6、ガス導入管7およびガス排出管8の取付け部以外は密閉されていることが好ましい。 As described above, the melting container 2 around which the induction heating coil 3 is provided outside is housed in a jacket (exterior housing) 4 formed of a metal material such as stainless steel or a fireproof material such as ceramics. The jacket 4 has an openable / closable part (for example, a lid part) (not shown) for carrying in and taking out the melting container 2. A raw material supply pipe 6 for supplying the raw material mixture 5 into the melting container 2 is connected to the upper portion of the jacket 4. Further, on the side of the jacket 4, a gas introduction pipe 7 for introducing an inert gas or a reducing gas, which will be described later, into the jacket 4, and a gas discharge pipe 8 for discharging the gas in the jacket 4 to the outside. Are attached to each. The jacket 4 is preferably hermetically sealed except for the attachment parts of the raw material supply pipe 6, the gas introduction pipe 7 and the gas discharge pipe 8.
 このような溶融装置1を使用して、本発明における溶融工程(ii)を実施するには、まず、ジャケット4内に収納された溶融容器2内に、原料供給管6を通して原料調合物5を供給する。そして、誘導加熱コイル3に交流電流を供給して、溶融容器2の少なくとも内周部を構成する導電性耐火材料を誘導加熱する。そして、この誘導加熱により発生した熱により、溶融容器2内に収容された原料調合物5を加熱して溶融させる。 In order to perform the melting step (ii) in the present invention using such a melting apparatus 1, first, the raw material mixture 5 is introduced into the melting container 2 accommodated in the jacket 4 through the raw material supply pipe 6. Supply. Then, an alternating current is supplied to the induction heating coil 3 to inductively heat the conductive refractory material constituting at least the inner peripheral portion of the melting vessel 2. And the raw material formulation 5 accommodated in the melting container 2 is heated and melted by the heat generated by the induction heating.
 誘導加熱コイル3に供給する交流電流の周波数は、例えば、1kHz~5GHzとすることが好ましい。 The frequency of the alternating current supplied to the induction heating coil 3 is preferably 1 kHz to 5 GHz, for example.
 また、原料調合物5の加熱温度は、1100℃~1800℃が好ましい。ここで、加熱温度とは、溶融物自体の温度をいい、熱電対やパイロメーターで測定できる。原料調合物5を1100℃~1800℃の温度に加熱することで、オリビン型、輝石型、またはナシコン型化合物の原料調合物5を溶融し、均一な組成を有する溶融物が得られるため好ましい。ここで、「溶融」とは各原料が融解し、目視で透明な状態になることをいう。加熱温度が1100℃以上であると、溶融が容易になり、1800℃以下であると原料調合物5の揮発がしにくくなる。
 原料調合物5の加熱温度は、1200℃~1600℃がより好ましい。加熱を1200℃以上の温度で行うことで、溶融をより容易に行うことができる。また、1600℃以下の温度で加熱を行うことで、加熱による導電性耐火材料の損耗がより抑制される。
The heating temperature of the raw material formulation 5 is preferably 1100 ° C. to 1800 ° C. Here, the heating temperature refers to the temperature of the melt itself and can be measured with a thermocouple or a pyrometer. Heating the raw material formulation 5 to a temperature of 1100 ° C. to 1800 ° C. is preferable because the olivine type, pyroxene type, or NASICON type compound raw material formulation 5 is melted to obtain a melt having a uniform composition. Here, “melting” means that each raw material melts and becomes transparent with the naked eye. When the heating temperature is 1100 ° C. or higher, melting is facilitated, and when it is 1800 ° C. or lower, the raw material formulation 5 is difficult to volatilize.
The heating temperature of the raw material formulation 5 is more preferably 1200 ° C to 1600 ° C. By performing heating at a temperature of 1200 ° C. or higher, melting can be performed more easily. Further, by heating at a temperature of 1600 ° C. or lower, the wear of the conductive refractory material due to heating is further suppressed.
 加熱時間は、溶融方法、溶融規模、溶湯の均一度等を考慮して適宜設定できるが、0.2~24時間が好ましく、0.5~2時間が特に好ましい。加熱時間が0.2時間以上であると溶融物の均一性が十分になり、24時間以下であると原料調合物5が揮発しにくい。溶融工程(ii)において、溶融物の均一性を上げるために撹拌してもよい。また、次の冷却工程(iii)を行うまで、溶融時の最高温度より低い温度で溶融物を清澄させてもよい。さらに、原料の投入は、1回または複数回で行ってよい。 The heating time can be appropriately set in consideration of the melting method, the melting scale, the molten metal uniformity, etc., but is preferably 0.2 to 24 hours, particularly preferably 0.5 to 2 hours. If the heating time is 0.2 hours or more, the uniformity of the melt is sufficient, and if it is 24 hours or less, the raw material formulation 5 is difficult to volatilize. In the melting step (ii), stirring may be performed to increase the uniformity of the melt. Further, the melt may be clarified at a temperature lower than the maximum temperature during melting until the next cooling step (iii) is performed. Furthermore, the raw material may be charged once or a plurality of times.
 本発明における溶融工程(ii)は、大気下で行うことができるが、ガス導入管7からジャッケット4内に不活性ガスまたは還元性ガスを導入して、不活性雰囲気下または還元性雰囲気下で溶融を行うことが好ましい。特に、オリビン型化合物、一部の輝石型化合物を製造する場合には、溶融物中の元素Mが低酸化数状態(例えば、M=Feの場合はFe2+)であることが好ましいため、また溶融容器の酸化による損耗を抑制するため、溶融工程(ii)を不活性雰囲気下または還元性雰囲気下で行う。なお、溶融物は、より還元的である方が好ましいが、より酸化的であっても、後述する加熱工程(iv)において還元(例えばM3+からM2+への変化)することができる。 The melting step (ii) in the present invention can be performed in the atmosphere, but an inert gas or a reducing gas is introduced into the jacket 4 from the gas introduction pipe 7 and is performed in an inert atmosphere or a reducing atmosphere. It is preferable to perform melting. In particular, when producing an olivine type compound or a part of pyroxene type compound, it is preferable that the element M in the melt is in a low oxidation number state (for example, Fe 2+ when M = Fe). In order to suppress wear due to oxidation of the melting vessel, the melting step (ii) is performed in an inert atmosphere or a reducing atmosphere. The melt is preferably more reductive, but even if it is more oxidative, it can be reduced (for example, change from M 3+ to M 2+ ) in the heating step (iv) described later.
 溶融の条件は、容器の大きさや種類に適した条件を選択することができる。圧力は、常圧、加圧、減圧(0.9×10Pa以下)のいずれの条件下で実施してもよい。また、原料調合物5を溶融容器2に充填後、加熱前に不活性ガスまたは還元性ガスを導入して、置換することもできる。 As the melting conditions, conditions suitable for the size and type of the container can be selected. The pressure may be carried out under any conditions of normal pressure, pressurization, and reduced pressure (0.9 × 10 5 Pa or less). Moreover, after filling the raw material formulation 5 into the melting vessel 2, it can be replaced by introducing an inert gas or a reducing gas before heating.
 ここで、不活性雰囲気とは、窒素(N)、およびヘリウム(He)、アルゴン(Ar)等の希ガスから選ばれる少なくとも1種の不活性ガスを99体積%以上含む気体条件であることをいう。
 また、還元性雰囲気とは、上記した不活性ガスに、還元性を有するガスを添加し、実質的に酸素を含まない気体条件であることをいう。還元性を有するガスとしては、水素(H)、一酸化炭素(CO)、アンモニア(NH)等が挙げられる。不活性ガスに添加される還元性ガスの量は、全ガス中に還元性ガスが0.1体積%以上であるのが好ましく、1~10体積%がより好ましい。酸素の含有量は、該ガス中に1体積%以下が好ましく、0.1体積%以下がより好ましい。
Here, the inert atmosphere is a gas condition containing 99% by volume or more of at least one inert gas selected from nitrogen (N 2 ) and a rare gas such as helium (He) and argon (Ar). Say.
Further, the reducing atmosphere refers to a gas condition in which a reducing gas is added to the above-described inert gas and substantially does not contain oxygen. Examples of the reducing gas include hydrogen (H 2 ), carbon monoxide (CO), and ammonia (NH 3 ). The amount of the reducing gas added to the inert gas is preferably 0.1% by volume or more, more preferably 1 to 10% by volume of the reducing gas in the total gas. The oxygen content is preferably 1% by volume or less in the gas, and more preferably 0.1% by volume or less.
 こうして溶融容器2の誘導加熱により、溶融容器2内で加熱され溶融された溶融物を取り出し、次の冷却工程(iii)で冷却する。図1に示す溶融装置1を使用する場合、溶融物の入った溶融容器2をジャケット4から取り出した後、溶融容器2を傾動して、上端部等の開口部から溶融物を流出させる。そして、流出させた溶融物を後述する冷却固化装置に供給する。 Thus, by the induction heating of the melting container 2, the melt heated and melted in the melting container 2 is taken out and cooled in the next cooling step (iii). When the melting apparatus 1 shown in FIG. 1 is used, after the melting container 2 containing the melt is taken out from the jacket 4, the melting container 2 is tilted so that the melt flows out from the opening such as the upper end. Then, the discharged melt is supplied to a cooling and solidifying device described later.
 このような溶融装置1を使用して実施される本発明の溶融工程(ii)においては、原料調合物5を収容する溶融容器2の少なくとも内周部を導電性耐火材料により形成し、この導電性耐火材料を誘導加熱することにより、導電性耐火材料に直接接する原料調合物5を加熱し溶融しているので、溶融容器を電気炉等の加熱炉内に収納して加熱する従来の方法に比べて、エネルギーロスが少なく熱効率が高い。また、加熱速度が大きく急速加熱が可能であり、量産性が高い。 In the melting step (ii) of the present invention carried out using such a melting apparatus 1, at least the inner periphery of the melting vessel 2 containing the raw material mixture 5 is formed of a conductive refractory material, and this conductive Since the raw material mixture 5 in direct contact with the conductive refractory material is heated and melted by induction heating of the refractory refractory material, the melting container is housed in a heating furnace such as an electric furnace and heated. Compared with energy loss, heat efficiency is high. In addition, the heating rate is high, rapid heating is possible, and mass productivity is high.
 さらに、本発明の溶融工程(ii)においては、誘導加熱コイル3により発生する磁界と溶融物中の誘導電流との相互作用により溶融物に対流が生じ、この対流により均一な組成の溶融物が得られる。したがって、外的な撹拌を行う必要がない。 Furthermore, in the melting step (ii) of the present invention, convection occurs in the melt due to the interaction between the magnetic field generated by the induction heating coil 3 and the induced current in the melt, and this convection causes a melt having a uniform composition. can get. Therefore, it is not necessary to perform external stirring.
 また、原料調合物5を収容する溶融容器2の少なくとも内周部が、耐火性に優れた導電性耐火材料により形成されているので、高温での使用が可能であり、原料調合物5の溶融温度で溶融容器2に損耗が生じにくい。さらに、この溶融容器2は原料調合物5により侵食されにくいので、溶融物中に溶融容器2を構成する成分が混入しがたい。 Moreover, since at least the inner peripheral portion of the melting container 2 containing the raw material mixture 5 is formed of an electrically conductive refractory material having excellent fire resistance, it can be used at a high temperature, and the raw material mixture 5 can be melted. It is difficult for the melting container 2 to be worn at a temperature. Furthermore, since the melting container 2 is not easily eroded by the raw material formulation 5, the components constituting the melting container 2 are difficult to mix in the melt.
 次に、本発明の溶融工程(ii)において使用される溶融装置の別の例について説明する。
 図2に示す溶融装置1は、溶融容器として、上下方向中間部から下方に向って水平開口断面が徐々に縮径する溶融空間を有し、少なくとも内周部が前記導電性耐火材料により形成された溶融部2aを有する。そして、この溶融部2aに、溶融物導出部が接続されている。すなわち、溶融部2aの底部に、該溶融部2aより細径の溶融物導出管2bが前記溶融空間に連通するように接続されており、この溶融物導出管2bにより溶融物導出部が形成されている。溶融物導出管2bが接続される位置は、溶融部2aの底部でも側面部でもよいが、溶融物の導出性の点で、溶融部2aの底部に垂直下方に向けて接続されることが好ましい。
 また、溶融物導出管2bは、溶融部2aと同様に、少なくとも内周部を導電性耐火材料により形成することができるが、溶融物導出管2b全体を導電性耐火材料により形成することが好ましい。
Next, another example of the melting apparatus used in the melting step (ii) of the present invention will be described.
The melting apparatus 1 shown in FIG. 2 has, as a melting container, a melting space in which the horizontal opening cross section gradually decreases from the middle in the vertical direction downward, and at least the inner periphery is formed of the conductive refractory material. It has a molten part 2a. Then, a melt outlet part is connected to the melting part 2a. That is, a melt outlet pipe 2b having a diameter smaller than that of the melting section 2a is connected to the bottom of the melting section 2a so as to communicate with the melting space, and a melt outlet section is formed by the melt outlet pipe 2b. ing. The position to which the melt outlet pipe 2b is connected may be the bottom part or the side part of the melt part 2a, but is preferably connected vertically downward to the bottom part of the melt part 2a from the viewpoint of the lead property of the melt. .
In addition, the melt outlet tube 2b can be formed of an electrically conductive refractory material at least on the inner periphery as in the molten portion 2a, but the entire melt outlet tube 2b is preferably formed of an electrically conductive refractory material. .
 そして、溶融部2aの外側には、溶融部加熱用の誘導加熱コイル(以下、第1の誘導加熱コイルと示す。)3aが、溶融部2aを周方向に取り囲むように配設されている。また、溶融物導出管2bの外側には、その外周を取り囲むように溶融物導出管加熱用の誘導加熱コイル(以下、第2の誘導加熱コイルと示す。)3bが配設されている。 In addition, an induction heating coil (hereinafter, referred to as a first induction heating coil) 3a for heating the melting part is disposed outside the melting part 2a so as to surround the melting part 2a in the circumferential direction. In addition, an induction heating coil (hereinafter, referred to as a second induction heating coil) 3b for heating the melt outlet tube is disposed outside the melt outlet tube 2b so as to surround the outer periphery thereof.
 さらに、外側に第1の誘導加熱コイル3aが周設された溶融部2aは、金属材料またはセラミックス等の耐火材料により形成されたジャケット4内に収納されている。そして、ジャケット4の底部には貫通孔が設けられ、この貫通孔を通って、溶融物導出管2bの下部が外部に配設されている。また、溶融物導出管2bの開口した下端部の近傍には、冷却用ガスの噴出機構のような冷却機構(図示を省略。)が配置されており、冷却用ガスを導入する等の方法で、溶融物導出管2b内を冷却するように構成されている。なお、溶融物導出管2bが挿通された貫通孔の隙間は、例えば、耐火材料を充填する等の方法でシールすることが好ましい。 Further, the melted part 2a around which the first induction heating coil 3a is provided outside is housed in a jacket 4 formed of a fireproof material such as a metal material or ceramics. And the through-hole is provided in the bottom part of the jacket 4, The lower part of the melt outlet pipe 2b is arrange | positioned outside through this through-hole. In addition, a cooling mechanism (not shown) such as a cooling gas jetting mechanism is disposed in the vicinity of the opened lower end of the melt outlet pipe 2b, and the cooling gas is introduced by a method such as introducing a cooling gas. The melt outlet pipe 2b is cooled. In addition, it is preferable to seal the clearance gap of the through-hole by which the melt | dissolution lead-out tube 2b was penetrated by methods, such as filling with a refractory material, for example.
 溶融部2aの少なくとも内周部および溶融物導出管2bを形成する導電性耐火材料としては、図1に示す溶融装置1において、溶融容器2の構成材料として説明した炭素または導電性非酸化物セラミックスを挙げることができる。溶融部2aと溶融物導出管2bとは、互いに異なる材料で形成してもよいが、製作が容易であることから、同じ材料で形成することが好ましい。 As the conductive refractory material for forming at least the inner peripheral portion of the melting portion 2a and the melt outlet tube 2b, carbon or conductive non-oxide ceramic described as a constituent material of the melting vessel 2 in the melting apparatus 1 shown in FIG. Can be mentioned. The melting part 2a and the melt outlet pipe 2b may be formed of different materials, but are preferably formed of the same material because they are easy to manufacture.
 溶融部2aを誘導加熱する第1の誘導加熱コイル3aと、溶融物導出管2bを誘導加熱する第2の誘導加熱コイル3bとは、それぞれ別の電源に接続し、独立して制御することが好ましい。 The first induction heating coil 3a for induction heating the melting part 2a and the second induction heating coil 3b for induction heating the melt outlet pipe 2b can be connected to different power sources and controlled independently. preferable.
 図2において、符号9は、後述する冷却工程で使用される冷却固化装置を示し、符号10は冷却固化装置9により得られる固化物を示す。冷却固化装置9としては、後述するように、高速で回転する双ローラや回転する単ローラ、あるいは冷却したカーボン板や金属板に溶融物をプレスして固化物を得るように構成された装置等が用いられる。図2に示す溶融装置1において、その他の部分は図1に示す溶融装置1と同様に構成されているので、同じ符号を付して説明を省略する。 2, reference numeral 9 indicates a cooling and solidifying apparatus used in a cooling step described later, and reference numeral 10 indicates a solidified product obtained by the cooling and solidifying apparatus 9. As the cooling and solidifying device 9, as will be described later, a twin roller rotating at a high speed or a rotating single roller, or a device configured to press a melt on a cooled carbon plate or metal plate to obtain a solidified product, etc. Is used. In the melting apparatus 1 shown in FIG. 2, since the other part is comprised similarly to the melting apparatus 1 shown in FIG. 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図2に示す溶融装置1を使用して溶融工程(ii)を実施するには、まず、ジャケット4内に収納された溶融部2aに、原料供給管6を用いて原料調合物5を供給する。ここで、原料調合物5を供給する前に、原料調合物5と同じ組成の溶融物の固化物(プラグ11)を、溶融物導出管2bの内部(例えば、溶融部2aとの接続部)の少なくとも一部に予め詰めることで、溶融物導出管2bを閉塞しておくことが好ましい。 In order to perform the melting step (ii) using the melting apparatus 1 shown in FIG. 2, first, the raw material mixture 5 is supplied to the melting part 2 a housed in the jacket 4 using the raw material supply pipe 6. . Here, before supplying the raw material preparation 5, the solidified product (plug 11) of the melt having the same composition as that of the raw material preparation 5 is placed inside the melt outlet pipe 2b (for example, a connecting portion with the melting part 2a). It is preferable to close the melt outlet pipe 2b by prepacking at least a part of the melt.
 このようにすることで、原料調合物5が加熱工程中に、溶融物導出管2bから吐出されるのを防ぐことができる。原料調合物の溶融固化物からなるプラグ11としては、後述する溶融物の導出工程で溶融物導出管2b内に形成される滞留固化物を使用することもできる。すなわち、溶融物の導出工程で、溶融物導出管2bへの加熱を中止すると、溶融部2aで得られた溶融物が溶融物導出管2b内で固化し、プラグ機能を有する固化物を形成することがある。この固化物をそのまま用いて、溶融物導出管2bからの溶融物の流出を閉止することができる。 By doing in this way, it can prevent that the raw material preparation 5 is discharged from the melt outlet pipe 2b during a heating process. As the plug 11 made of a melt-solidified product of the raw material mixture, a stay-solidified product formed in the melt-derived tube 2b in the melt-derived step described later can also be used. That is, when heating to the melt outlet tube 2b is stopped in the melt outlet step, the melt obtained in the melting part 2a is solidified in the melt outlet tube 2b to form a solidified product having a plug function. Sometimes. By using this solidified material as it is, the outflow of the melt from the melt outlet pipe 2b can be closed.
 次に、第2の誘導加熱コイル3bに電流を供給することなく、第1の誘導加熱コイル3aにのみ電流を供給し、溶融部2aの少なくとも内周部を構成する導電性耐火材料を誘導加熱する。そして、この誘導加熱により、溶融部2aに収容された原料調合物5を加熱して溶融させる。なおこのとき、原料調合物5の溶融固化物からなるプラグ11が溶融するのを防ぐために、溶融物導出管2bの下端部から冷却用ガスを導入する等の方法で、溶融物導出管2b内を冷却することが好ましい。 Next, without supplying current to the second induction heating coil 3b, current is supplied only to the first induction heating coil 3a, and the conductive refractory material constituting at least the inner periphery of the melting portion 2a is induction heated. To do. And by this induction heating, the raw material preparation 5 accommodated in the melting part 2a is heated and melted. At this time, in order to prevent the plug 11 made of the melted and solidified product of the raw material mixture 5 from being melted, the inside of the melt outlet tube 2b is introduced by a method such as introducing a cooling gas from the lower end of the melt outlet tube 2b. Is preferably cooled.
 原料調合物5の加熱温度、加熱時間、加熱雰囲気等については、図1に示す溶融装置を用いて溶融工程(ii)を行う場合と同様である。
 こうして第1の誘導加熱コイル3aにより溶融部2aを誘導加熱することで、溶融部2aに収容された原料調合物5を加熱して溶融させた後、第2の誘導加熱コイル3bにも電流を供給して、溶融物導出管2bを誘導加熱する。溶融物導出管2bの誘導加熱により、前記プラグ11が溶融・落下して溶融物導出管2bの閉塞が解除されるので、溶融部2a内の溶融物は溶融物導出管2bを通って速やかに外部に導出される。
About the heating temperature, heating time, heating atmosphere, etc. of the raw material formulation 5, it is the same as that of the case where a melting process (ii) is performed using the melting apparatus shown in FIG.
In this way, the first induction heating coil 3a induction heats the melting part 2a to heat and melt the raw material mixture 5 accommodated in the melting part 2a, and then the second induction heating coil 3b is also supplied with current. Then, the melt outlet pipe 2b is induction-heated. Since the plug 11 is melted and dropped by the induction heating of the melt outlet pipe 2b and the blockage of the melt outlet pipe 2b is released, the melt in the melted part 2a quickly passes through the melt outlet pipe 2b. Derived externally.
 このような溶融装置1を使用した場合も、図1に示す溶融装置1を使用する場合と同様に、電気炉等の加熱炉内に収納して加熱する従来の方法に比べて、エネルギーロスが少なく熱効率が高いうえに、加熱速度が大きく急速加熱が可能であり、量産性が高い。
 また、溶融部2aおよび溶融物導出管2bが原料調合物5により侵食されにくいので、溶融物中に溶融部2a等を構成する成分が混入しがたい。
Even when such a melting apparatus 1 is used, energy loss is reduced as compared with the conventional method of storing and heating in a heating furnace such as an electric furnace as in the case of using the melting apparatus 1 shown in FIG. It has low heat efficiency and high heating speed, enabling rapid heating and high mass productivity.
In addition, since the melted part 2a and the melt outlet pipe 2b are not easily eroded by the raw material mixture 5, the components constituting the melted part 2a and the like are hardly mixed in the melt.
 さらに、溶融物導出管2bから導出された溶融物を、後述する冷却固化装置9(例えば双ロール)にそのまま供給することで、溶融工程(ii)から連続して冷却工程(iii)を行うことができる。また、前記したように、第2の誘導加熱コイル3bへの電力供給を中断し、溶融物導出管2b内に冷却用ガスを導入する等の方法で、溶融物導出管2b内を冷却すると、温度降下により溶融物導出管2b内で溶融物が固化してプラグ機能を有する固化物を形成する。このようにして形成された固化物によって再び溶融物導出管2bを閉塞することで、溶融物の流出を阻止することができ、こうして溶融から冷却固化の工程を断続的に行うこともできる。 Furthermore, the cooling process (iii) is continuously performed from the melting process (ii) by supplying the melt derived from the melt discharge pipe 2b as it is to a cooling solidification device 9 (for example, a twin roll) described later. Can do. Further, as described above, when the inside of the melt outlet pipe 2b is cooled by a method such as interrupting the power supply to the second induction heating coil 3b and introducing a cooling gas into the melt outlet pipe 2b, Due to the temperature drop, the melt is solidified in the melt outlet pipe 2b to form a solidified product having a plug function. By closing the melt outlet tube 2b again with the solidified material thus formed, it is possible to prevent the melt from flowing out, and thus the steps from melting to cooling and solidification can be performed intermittently.
 なお、溶融物導出管2bの加熱を、前記したような誘導加熱ではなく、通電加熱により行うことも可能である。すなわち、溶融物導出管を前記導電性耐火材料または金属材料により形成し、その上下両端部にそれぞれ配設された電極から電流を供給し、溶融物導出管を構成する前記導電性耐火材料または金属材料を発熱させることで、溶融物導出管内を加熱することもできる。そして、溶融物導出管2bを通電加熱した場合も、誘導加熱した場合と同様な効果を上げることができる。 It should be noted that the melt outlet tube 2b can be heated not by induction heating as described above but by energization heating. That is, the melt discharge pipe is formed of the conductive refractory material or metal material, and current is supplied from the electrodes respectively disposed at the upper and lower ends thereof to form the melt discharge pipe. It is also possible to heat the inside of the melt outlet pipe by causing the material to generate heat. Further, when the melt outlet tube 2b is electrically heated, the same effect as that obtained when induction heating can be achieved.
[冷却工程(iii)]
 冷却工程(iii)では、前記溶融工程(ii)で得られた溶融物を、室温(20~25℃)付近まで冷却して固化物を得る。
[Cooling step (iii)]
In the cooling step (iii), the melt obtained in the melting step (ii) is cooled to around room temperature (20 to 25 ° C.) to obtain a solidified product.
 固化物は非晶質物であることが好ましいが、固化物の一部は結晶化物であってもよい。固化物が非晶質物を含むことで、次の粉砕工程(iv)が実施しやすくなり、得られる化合物の組成および粒子径を制御しやすくなる。固化物が結晶化物を含む場合、後述する加熱工程(v)で結晶化物が結晶核となり、結晶化しやすくなる。固化物中の結晶化物量は、固化物の全質量に対して0~30質量%であることが好ましい。結晶化物を多く含むと粒状やフレーク状の固化物を得ることが困難となる。また、冷却機器の損耗を早め、その後の粉砕工程(iv)の負担が大きくなる。 The solidified product is preferably an amorphous material, but a part of the solidified product may be a crystallized product. When the solidified product contains an amorphous material, the next pulverization step (iv) can be easily performed, and the composition and particle size of the resulting compound can be easily controlled. In the case where the solidified product contains a crystallized product, the crystallized product becomes a crystal nucleus in the heating step (v) described later, and it is easy to crystallize. The amount of crystallized material in the solidified product is preferably 0 to 30% by mass with respect to the total mass of the solidified product. When a large amount of crystallized material is contained, it becomes difficult to obtain a granular or flaky solidified material. Moreover, the wear of the cooling device is accelerated, and the burden of the subsequent pulverization step (iv) is increased.
 溶融物の冷却は、設備等が簡便であることから、大気中、不活性雰囲気下、または還元性雰囲気下で冷却する方法が好ましい。不活性雰囲気および還元性雰囲気の好ましい条件は、溶融工程(ii)で説明したのと同様である。 The cooling of the melt is preferably performed in the air, under an inert atmosphere, or under a reducing atmosphere because the equipment is simple. Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii).
 1000℃から50℃までの冷却速度は1×10℃/秒以上が好ましく、1×10℃/秒以上が特に好ましい。冷却速度を1×10℃/秒以上にすると非晶質物が得られやすい。冷却速度が速いほど非晶質物を得やすくなるが、製造設備や大量生産性を考慮すると、冷却速度は1×1010℃/秒以下が好ましく、実用性の点からは1×10℃/秒以下が特に好ましい。 The cooling rate is preferably more than 1 × 10 3 ℃ / sec from 1000 ° C. to 50 ° C., more 1 × 10 4 ℃ / sec is particularly preferable. When the cooling rate is 1 × 10 3 ° C./second or more, an amorphous material is easily obtained. The higher the cooling rate, the easier it is to obtain an amorphous material, but considering the production equipment and mass productivity, the cooling rate is preferably 1 × 10 10 ° C./second or less, and 1 × 10 8 ° C./second from the practical point of view. Particularly preferred is seconds or less.
 冷却方法としては、例えば、高速で回転する双ローラの間に溶融物を滴下してフレーク状の固化物を得る方法、回転する単ローラに溶融物を滴下してフレーク状または板状の固化物を掃引して得る方法、冷却したカーボン板や金属板に溶融物をプレスして塊状の固化物を得る方法、溶融物を空気中または水中に小粒状で吹き付けて塊状の固化物を得る方法、を採用することが好ましい。
 なかでも、双ローラを用いた冷却方法が、冷却速度が速く、大量に処理できるのでより好ましい。双ローラとしては、金属製、カーボン製、セラミックス製のものを用いることが好ましい。
Cooling methods include, for example, a method in which a melt is dropped between twin rollers rotating at high speed to obtain a flake-like solidified product, and a flake-like or plate-like solidified product by dropping the melt on a rotating single roller , A method of obtaining a lump solidified product by pressing a melt on a cooled carbon plate or a metal plate, a method of obtaining a lump solidified product by spraying the melt in air or water in small particles, Is preferably adopted.
Among these, a cooling method using twin rollers is more preferable because the cooling rate is high and a large amount of processing can be performed. As the double roller, it is preferable to use one made of metal, carbon or ceramic.
 上記のように、溶融工程(ii)の後、冷却速度1×10℃/秒以上で溶融物を急速冷却することで、得られる固化物が非晶質となりやすく、固化物の化学組成の均一性が高められるため好ましい。
 なお、冷却速度1×10℃/秒以上での、いわゆる急冷処理は、導電性耐火材料により形成された容器から流し出した溶融物に対してそのまま行ってもよく、当該容器内で溶融した溶融物を、一旦通常の速度で冷却した後、再溶融したものに対して行ってもよい。
As described above, after the melting step (ii), by rapidly cooling the melt at a cooling rate of 1 × 10 3 ° C./second or more, the resulting solidified product tends to be amorphous, and the chemical composition of the solidified product This is preferable because uniformity is improved.
The so-called rapid cooling treatment at a cooling rate of 1 × 10 3 ° C./second or more may be carried out as it is with respect to the melt flowed out from the container formed of the conductive refractory material, and melted in the container. The melt may be once cooled at a normal rate and then remelted.
 固化物は、フレーク状または繊維状が好ましい。フレーク状の場合には、その平均厚さが200μm以下が好ましく、100μm以下がより好ましい。フレーク状の厚さ方向に垂直な面の平均直径は、特に限定されない。繊維状の場合には、その平均直径が50μm以下が好ましく、30μm以下がより好ましい。
 平均厚さや平均直径の上限値以下であると、続く粉砕工程(iv)の負担を軽減でき、加熱工程(v)における結晶化効率を高くすることができる。フレーク状の固化物の平均厚さは、ノギスやマイクロメータにより測定することができる。また、繊維状の固化物の平均直径は、上記方法または顕微鏡での観察により測定することができる。
The solidified product is preferably flaky or fibrous. In the case of flakes, the average thickness is preferably 200 μm or less, and more preferably 100 μm or less. The average diameter of the surface perpendicular to the flake thickness direction is not particularly limited. In the case of a fibrous form, the average diameter is preferably 50 μm or less, and more preferably 30 μm or less.
When the average thickness or the average diameter is not more than the upper limit value, the burden of the subsequent pulverization step (iv) can be reduced, and the crystallization efficiency in the heating step (v) can be increased. The average thickness of the flaky solidified product can be measured with a caliper or a micrometer. Further, the average diameter of the fibrous solidified product can be measured by the above method or observation with a microscope.
[粉砕工程(iv)]
 冷却工程(iii)の後、得られた固化物を粉砕して粉砕物を得る粉砕工程(iv)を行うことが好ましい。
[Crushing step (iv)]
After the cooling step (iii), it is preferable to perform a pulverization step (iv) in which the obtained solidified product is pulverized to obtain a pulverized product.
 冷却工程(iii)で得られる固化物は通常の場合、非晶質物を多く含むか、または非晶質物からなるため、粉砕がしやすい利点がある。また粉砕に使用する装置に負担をかけずに粉砕ができかつ粒子径の制御がしやすい利点がある。
 また、例えば固相反応により正極材料を得る場合には、焼成の後に粉砕を行うが、この場合には、粉砕によって残留応力が生じ、電池特性を悪化させる場合がある。これに対し、後述する加熱工程(v)の前に粉砕工程(iv)を行うことで、粉砕によって生じた残留応力を、加熱処理によって低減または除去することができる。
Since the solidified product obtained in the cooling step (iii) usually contains a large amount of an amorphous material or consists of an amorphous material, there is an advantage that it can be easily pulverized. Further, there is an advantage that the apparatus used for pulverization can be pulverized without imposing a burden and the particle diameter can be easily controlled.
For example, when a positive electrode material is obtained by a solid phase reaction, pulverization is performed after firing. In this case, residual stress may be generated by pulverization and battery characteristics may be deteriorated. In contrast, by performing the pulverization step (iv) before the heating step (v) described later, the residual stress generated by the pulverization can be reduced or removed by the heat treatment.
 粉砕工程(iv)では、有機化合物および炭素系導電物質からなる群より選ばれる少なくとも1種を炭素源として添加してもよい。
 有機化合物および/または炭素系導電物質は、後述する加熱工程(v)後に導電材として機能するため、二次電池用正極材料の導電性を高めることができる。また、有機化合物および/または炭素系導電物質を添加することによって、粉砕工程(iv)や加熱工程(v)における酸化を防止し、さらに還元を促進することもできる。
In the pulverization step (iv), at least one selected from the group consisting of an organic compound and a carbon-based conductive material may be added as a carbon source.
Since the organic compound and / or the carbon-based conductive material functions as a conductive material after the heating step (v) described later, the conductivity of the positive electrode material for secondary batteries can be increased. Further, by adding an organic compound and / or a carbon-based conductive material, oxidation in the pulverization step (iv) and the heating step (v) can be prevented, and further reduction can be promoted.
 該粉砕工程(iv)で炭素源を添加する場合には、固化物と炭素源とを混合した後に粉砕する工程、固化物と炭素源とをそれぞれ粉砕した後に混合する工程、または、固化物を粉砕した後に炭素源を添加する工程であるのが好ましい。なお、炭素源が有機化合物のみである場合には、粉砕せずに、固化物と混合できる。 When the carbon source is added in the pulverization step (iv), the solidified product and the carbon source are mixed and then pulverized, the solidified product and the carbon source are pulverized and mixed, or the solidified product is added. A step of adding a carbon source after pulverization is preferred. In addition, when a carbon source is only an organic compound, it can mix with a solidified material, without grind | pulverizing.
 次工程の加熱工程(v)で得られる化合物(α)は絶縁体であるため、二次電池用正極材料として使用するためには、電気伝導度を高めることが好ましい。
 該炭素源として炭素系導電物質を用いた場合、炭素系導電物質が導電性炭素として、化合物(α)の表面の少なくとも一部を被覆する。また、有機化合物を用いた場合には、次工程の加熱工程(v)を行うことで、有機化合物の少なくとも一部が炭化され、導電性炭素として、化合物(α)の表面の少なくとも一部を被覆する。該導電性炭素は化合物(α)の導電材として機能するため、二次電池用正極材料の電気伝導性を高めることができる。
Since the compound (α) obtained in the heating step (v) of the next step is an insulator, it is preferable to increase the electrical conductivity for use as a positive electrode material for a secondary battery.
When a carbon-based conductive material is used as the carbon source, the carbon-based conductive material serves as conductive carbon and covers at least a part of the surface of the compound (α). Further, when an organic compound is used, at least a part of the organic compound is carbonized by performing the heating step (v) of the next step, and at least a part of the surface of the compound (α) is formed as conductive carbon. Cover. Since the conductive carbon functions as a conductive material for the compound (α), the electrical conductivity of the positive electrode material for a secondary battery can be increased.
 炭素源としての有機化合物は、不活性雰囲気下または還元雰囲気下で加熱した際に熱分解反応し、酸素や水素が離脱して炭化する化合物が好ましい。有機化合物としては、糖類、アミノ酸類、ペプチド類、アルデヒド類、ケトン類、カルボン酸類、テルペン類、複素環式アミン類、脂肪酸および官能基を有する脂肪族非環状ポリマーからなる群より選ばれる少なくとも1種が好ましい。 The organic compound as the carbon source is preferably a compound that undergoes a thermal decomposition reaction when heated in an inert atmosphere or a reducing atmosphere, and oxygen and hydrogen are released and carbonized. The organic compound is at least one selected from the group consisting of saccharides, amino acids, peptides, aldehydes, ketones, carboxylic acids, terpenes, heterocyclic amines, fatty acids and aliphatic acyclic polymers having functional groups. Species are preferred.
 炭素源としての炭素系導電物質は、カーボンブラック、グラファイト、アセチレンブラック、カーボンファイバおよびアモルファスカーボンからなる群より選ばれる少なくとも1種が好ましい。アモルファスカーボンとしては、FTIR分析において、正極材料の導電性低下の原因となるC-O結合ピークやC-H結合ピークが実質的に検出されないものが好ましい。 The carbon conductive material as the carbon source is preferably at least one selected from the group consisting of carbon black, graphite, acetylene black, carbon fiber, and amorphous carbon. As the amorphous carbon, those in which the CO bond peak and CH bond peak causing the decrease in the conductivity of the positive electrode material are not substantially detected in the FTIR analysis are preferable.
 炭素源の質量の割合は、炭素源中の炭素換算量(質量)が、固化物の質量と、該炭素源中の炭素換算量(質量)との合計質量に対して、0.1~20質量%となる量が好ましく、2~10質量%となる量がより好ましい。
 有機化合物と炭素系導電物質を併用する場合には、これらの合計量が上記範囲となるように調整する。炭素量を0.1質量%以上にすることで、化合物(α)からなる二次電池用正極材料の導電性を十分に高めることができる。また、炭素量を20質量%以下とすることで、二次電池用正極材料としての特性を高いまま保持しつつ、導電性を十分に高めることができる。
The ratio of the mass of the carbon source is such that the carbon equivalent (mass) in the carbon source is 0.1 to 20 with respect to the total mass of the mass of the solidified product and the carbon equivalent (mass) in the carbon source. An amount of mass% is preferable, and an amount of 2 to 10 mass% is more preferable.
When the organic compound and the carbon-based conductive material are used in combination, the total amount is adjusted so as to fall within the above range. By making the amount of carbon 0.1% by mass or more, the conductivity of the positive electrode material for a secondary battery made of the compound (α) can be sufficiently increased. Moreover, electroconductivity can fully be improved, keeping the characteristic as a positive electrode material for secondary batteries high by making carbon amount 20 mass% or less.
 粉砕は、カッターミル、ジョークラッシャー、ハンマーミル、ボールミル、ジェットミル、遊星ミル等を用いて行うのが好ましい。また、粒子径により各種法を段階的に用いることで、効率よく粉砕を進めることができる。例えば、カッターミルで予備的に粉砕した後、遊星ミルやボールミルで粉砕することによって、粉砕にかかる時間を短縮できるので好ましい。生産性の観点から、特にボールミルを用いることが好ましい。粉砕メディアとしては、ジルコニアボール、アルミナボール、ガラスボール等を用いることが好ましい。特に、ジルコニアボールは磨耗率が低く、不純物の混入を抑制できるので好ましい。 The pulverization is preferably performed using a cutter mill, jaw crusher, hammer mill, ball mill, jet mill, planetary mill or the like. Moreover, pulverization can be efficiently advanced by using various methods stepwise depending on the particle diameter. For example, preliminarily pulverizing with a cutter mill and then pulverizing with a planetary mill or ball mill is preferable because the time required for pulverization can be shortened. From the viewpoint of productivity, it is particularly preferable to use a ball mill. As the grinding media, it is preferable to use zirconia balls, alumina balls, glass balls or the like. In particular, zirconia balls are preferable because they have a low wear rate and can suppress the mixing of impurities.
 粉砕メディアの径は0.1~30mmが好ましい。粉砕を多段階にし、大きい粉砕メディアで粉砕を行った後、粉砕メディアと粉砕物を分離し、さらに小さい粉砕メディアを用いて粉砕してもよい。該方法であると、未粉砕粒子の残存を抑制できる。
 粉砕容器は特に限定されないが、容器内に粉砕メディアと固化物とを容器容積の30~80%まで入れると粉砕効率がよい。ボールミルを用いる場合、粉砕時間は6~360時間が好ましく、6~120時間がより好ましく、12~96時間が特に好ましい。粉砕時間が6時間以上であると充分に粉砕を進めることができ、360時間以下であると過粉砕が抑制できる。
The diameter of the grinding media is preferably 0.1 to 30 mm. After pulverization is performed in multiple stages and pulverization is performed with a large pulverization medium, the pulverization medium and the pulverized product may be separated and pulverized using a smaller pulverization medium. With this method, the remaining of unground particles can be suppressed.
The pulverization container is not particularly limited, but the pulverization efficiency is good when the pulverization medium and the solidified material are placed in the container up to 30 to 80% of the container volume. When a ball mill is used, the pulverization time is preferably 6 to 360 hours, more preferably 6 to 120 hours, and particularly preferably 12 to 96 hours. If the pulverization time is 6 hours or more, the pulverization can be sufficiently advanced, and if it is 360 hours or less, excessive pulverization can be suppressed.
 粉砕は乾式または湿式のいずれで行ってもよいが、粉砕物の粒子径を小さくできる点から、湿式で行うのが好ましい。また、粉砕工程(iv)で炭素源を添加する場合には、固化物と炭素源とを均一に混合できる点からも、湿式で行うのが好ましい。すなわち、粉砕工程(iv)は溶媒(粉砕溶媒)を用いて実施するのが好ましい。粉砕溶媒は、粉砕メディアが入った状態で、容器容積の30~80%まで充填すると粉砕効率がよくなる。粉砕工程(iv)を湿式で行った場合は、粉砕溶媒を沈降、濾過、減圧乾燥、加熱乾燥等で除去した後に、加熱工程(v)を実施するのが好ましい。ただし、粉砕溶媒に対する固形分の割合が30%以上の場合には、粉砕溶媒を含んだ粉砕物のままで加熱工程(v)に供してもよい。 The pulverization may be performed either dry or wet, but is preferably performed in a wet manner from the viewpoint that the particle size of the pulverized product can be reduced. Moreover, when adding a carbon source at the grinding | pulverization process (iv), it is preferable to carry out by a wet point also from the point which can mix a solidified material and a carbon source uniformly. That is, the pulverization step (iv) is preferably performed using a solvent (pulverization solvent). When the grinding solvent is filled up to 30 to 80% of the container volume with the grinding media contained, the grinding efficiency is improved. When the pulverization step (iv) is performed in a wet manner, it is preferable to carry out the heating step (v) after removing the pulverization solvent by sedimentation, filtration, drying under reduced pressure, drying by heating, or the like. However, when the ratio of the solid content with respect to the grinding solvent is 30% or more, the pulverized product containing the grinding solvent may be used in the heating step (v).
 粉砕溶媒としては、固化物が溶けにくく、炭素源となじみのよい適度の極性を持つ溶媒であって、固化物および炭素源と混合した際に粘度が著しく上昇しない溶媒が好ましい。コストや安全性の面からは水が好ましい。一方、固化物が溶出してしまう等の問題が発生する場合には、有機溶媒が好ましい。有機溶媒としては、エタノール、イソプロピルアルコール、アセトン、ヘキサン、トルエン等が挙げられる。粉砕溶媒は、水、アセトンおよびイソプロピルアルコールからなる群より選ばれる少なくとも1種がより好ましく、特にアセトンが好ましい。 As the pulverization solvent, a solvent having an appropriate polarity that is difficult to dissolve the solidified product and is compatible with the carbon source, and does not significantly increase the viscosity when mixed with the solidified product and the carbon source is preferable. Water is preferable from the viewpoint of cost and safety. On the other hand, when a problem such as elution of the solidified product occurs, an organic solvent is preferable. Examples of the organic solvent include ethanol, isopropyl alcohol, acetone, hexane, toluene and the like. The grinding solvent is more preferably at least one selected from the group consisting of water, acetone and isopropyl alcohol, and acetone is particularly preferred.
 粉砕溶媒の使用量は、固化物および炭素源の合計量の濃度が1~80%となる量が好ましく、10~40%となる量が特に好ましい。粉砕溶媒の使用量を1%以上とすることで、生産性を高めることができる。また、粉砕溶媒の使用量を80%以下とすることで、固化物および炭素源の混合、粉砕を効率よく進めることができる。 The amount of the grinding solvent used is preferably such that the total concentration of the solidified product and the carbon source is 1 to 80%, particularly preferably 10 to 40%. Productivity can be improved by making the usage-amount of a grinding | pulverization solvent into 1% or more. Moreover, mixing and grinding | pulverization of a solidified material and a carbon source can be advanced efficiently because the usage-amount of a grinding | pulverization solvent shall be 80% or less.
 粉砕物の平均粒子径は、二次電池用正極材料に適用した場合により高い導電性を得る観点から、体積基準のメディアン径で10nm~10μmが好ましく、10nm~5μmが特に好ましい。平均粒子径が10nm以上であると、加熱工程(v)を実施するときに、化合物(α)の粒子同士が焼結して粒子径が大きくなりすぎることがない。平均粒子径が10μm以下であると、高い導電性を示す二次電池正極材料を得やすく、その高容量化、および高エネルギー密度化を実現しやすくなる。ただし、粒子径が10nm未満というような非常に細かい粒子が多く含まれると、加熱工程(v)を実施するときに焼結助剤の作用をし、加熱後の平均粒子径を大きくする。
 本明細書において、平均粒子径は、主にはレーザ回折/散乱式粒子径測定装置(堀場製作所社製、商品名:LA-950)により得られるものであるが、上記の装置により粒子径の測定が困難な場合は、沈降法、フロー式画像分析装置を用いることができる。
The average particle size of the pulverized product is preferably 10 nm to 10 μm, particularly preferably 10 nm to 5 μm in terms of volume-based median diameter, from the viewpoint of obtaining higher conductivity when applied to a positive electrode material for a secondary battery. When the average particle size is 10 nm or more, when the heating step (v) is performed, the particles of the compound (α) do not sinter and the particle size does not become too large. When the average particle size is 10 μm or less, it is easy to obtain a secondary battery positive electrode material exhibiting high conductivity, and it becomes easy to realize a higher capacity and a higher energy density. However, if a lot of very fine particles having a particle size of less than 10 nm are contained, the sintering aid acts when the heating step (v) is performed, and the average particle size after heating is increased.
In the present specification, the average particle size is obtained mainly by a laser diffraction / scattering particle size measuring device (trade name: LA-950, manufactured by Horiba, Ltd.). When measurement is difficult, a sedimentation method or a flow image analyzer can be used.
[加熱工程(v)]
 粉砕工程(iv)の後、得られた粉砕物を不活性雰囲気下または還元雰囲気下で加熱し、固化物の粉砕物から所定の組成を有する化合物(α)を合成する加熱工程(v)を行うことが好ましい。
 加熱工程(v)は、粉砕により生じた応力の緩和、粉砕物の結晶核生成および粒成長を含むことが好ましい。このような加熱工程(v)を、上述した粉砕工程(iv)後に行うことで、粉砕による残留応力を低減または除去しつつ、結晶成長させた二次電池用正極材料を得ることができる。
[Heating step (v)]
After the pulverization step (iv), the obtained pulverized product is heated in an inert atmosphere or a reducing atmosphere to synthesize a compound (α) having a predetermined composition from the pulverized product of the solidified product. Preferably it is done.
The heating step (v) preferably includes relaxation of stress generated by pulverization, crystal nucleation of the pulverized product, and grain growth. By performing such a heating step (v) after the pulverization step (iv) described above, it is possible to obtain a positive electrode material for a secondary battery in which crystals are grown while reducing or removing residual stress due to pulverization.
 加熱工程(v)においては、例えばリン酸化合物(1)の粒子、またはケイ酸化合物(2)の粒子を得ることが好ましく、リン酸化合物(1)またはケイ酸化合物(2)の結晶粒子を得ることがより好ましく、オリビン型の結晶構造を有するリン酸化合物(1)の結晶粒子またはオリビン型の結晶構造を有するケイ酸化合物(2)の結晶粒子を得ることが特に好ましい。
 得られた化合物は非晶質物を含まないことが好ましい。化合物が非晶質物を含まない場合には、X線回折でハローパターンが検出されない。
In the heating step (v), for example, it is preferable to obtain particles of the phosphoric acid compound (1) or particles of the silicic acid compound (2), and crystal particles of the phosphoric acid compound (1) or the silicic acid compound (2) are obtained. It is more preferable to obtain, and it is particularly preferable to obtain crystal particles of the phosphoric acid compound (1) having an olivine type crystal structure or crystal particles of the silicate compound (2) having an olivine type crystal structure.
It is preferable that the obtained compound does not contain an amorphous substance. When the compound does not contain an amorphous substance, a halo pattern is not detected by X-ray diffraction.
 粉砕工程(iv)で粉砕物の表面に付着した有機化合物や炭素系導電物質は、加熱工程(v)で生成した化合物(α)、好ましくはその結晶粒子の表面に結合して導電材として機能する。有機化合物は加熱工程(v)で熱分解され、さらに少なくとも一部が炭化物となって導電材として機能する。粉砕工程(iv)を湿式で行った場合には、分散媒の除去を加熱時に同時に行なってもよい。 The organic compound or carbon-based conductive substance adhering to the surface of the pulverized product in the pulverization step (iv) is bonded to the surface of the compound (α), preferably its crystal particles, generated in the heating step (v), and functions as a conductive material. To do. The organic compound is thermally decomposed in the heating step (v), and at least a part thereof becomes a carbide to function as a conductive material. When the pulverization step (iv) is performed in a wet manner, the dispersion medium may be removed simultaneously with heating.
 化合物(α)を合成するための加熱温度は、400~1,000℃が好ましく、500~900℃が特に好ましい。加熱温度が400℃以上であると、反応が生じやすく、1,000℃以下であると粉砕物が融解しにくく、結晶系や粒子径を制御しやすい。また、該加熱温度であると、適度な結晶性、粒子径、粒子径分布等を有する化合物(α)、好ましくはその結晶粒子、さらに好ましくはオリビン型の結晶粒子が得られやすくなる。加熱は、一定温度で保持することに限らず、多段階に保持温度を設定して行ってもよい。加熱温度を高くするほど、生成する粒子の粒子径が大きくなる傾向があるため、所望の粒子径に応じて加熱温度を設定するのが好ましい。 The heating temperature for synthesizing the compound (α) is preferably 400 to 1,000 ° C., particularly preferably 500 to 900 ° C. When the heating temperature is 400 ° C. or higher, a reaction is likely to occur, and when it is 1,000 ° C. or lower, the pulverized product is difficult to melt and the crystal system and particle diameter are easily controlled. Further, at the heating temperature, it becomes easy to obtain a compound (α) having an appropriate crystallinity, particle size, particle size distribution, etc., preferably its crystal particles, more preferably olivine type crystal particles. The heating is not limited to being held at a constant temperature, and may be performed by setting the holding temperature in multiple stages. As the heating temperature is increased, the particle diameter of the generated particles tends to increase. Therefore, it is preferable to set the heating temperature according to a desired particle diameter.
 加熱時間(加熱温度による保持時間)は所望の粒子径を考慮して1~72時間が好ましい。加熱は、電気、石油、ガス等を熱源とする、ボックス炉、トンネルキルン、ローラーハースキルン、ロータリーキルン、マイクロウェーブ加熱炉等で行うのが好ましい。 The heating time (holding time depending on the heating temperature) is preferably 1 to 72 hours in consideration of the desired particle size. Heating is preferably performed in a box furnace, tunnel kiln, roller hearth kiln, rotary kiln, microwave heating furnace, or the like that uses electricity, oil, gas, or the like as a heat source.
 加熱工程(v)は大気下、不活性雰囲気下または還元性雰囲気下で実施することが好ましい。不活性雰囲気および還元性雰囲気の好ましい条件は、溶融工程(ii)で説明したのと同様である。雰囲気圧力は、常圧、加圧、減圧(0.9×10Pa以下)のいずれであってもよい。
 また、加熱炉内に還元剤(例えばグラファイト)を入れた容器を装填してもよい。加熱工程(v)を不活性雰囲気下または還元性雰囲気下で実施すれば、粉砕物中のMイオンの還元(例えばM3+からM2+への変化)を促進できる。
The heating step (v) is preferably performed in the air, in an inert atmosphere, or in a reducing atmosphere. Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii). The atmospheric pressure may be any of normal pressure, pressurization, and reduced pressure (0.9 × 10 5 Pa or less).
Moreover, you may charge the container which put the reducing agent (for example, graphite) in the heating furnace. If the heating step (v) is performed in an inert atmosphere or a reducing atmosphere, reduction of M ions in the pulverized product (for example, change from M 3+ to M 2+ ) can be promoted.
 加熱の後は、通常は室温まで冷却する。該冷却における冷却速度は30℃/時間~300℃/時間が好ましい。冷却速度を該範囲にすることにより、加熱による歪みを除去でき、生成物が結晶体である場合は、結晶構造を保ったまま目的物を得ることができる。冷却は、放置して室温まで冷却させるのが好ましい。冷却は不活性雰囲気下または還元雰囲気下で行うのが好ましい。 After heating, it is usually cooled to room temperature. The cooling rate in the cooling is preferably 30 ° C./hour to 300 ° C./hour. By setting the cooling rate within this range, distortion due to heating can be removed, and when the product is a crystal, the target product can be obtained while maintaining the crystal structure. The cooling is preferably allowed to cool to room temperature. Cooling is preferably performed in an inert atmosphere or a reducing atmosphere.
 加熱工程(v)で炭素源を添加することもできる。この場合、粉砕工程(iv)で得られた粉砕物(炭素源を含まない粉砕物であることが好ましい。)を加熱して化合物(α)を得た後、該化合物(α)と炭素源とを含む粉砕物を得て、次いで該粉砕物を加熱する製法を採ることが好ましい。 Carbon source can be added in the heating step (v). In this case, the pulverized product obtained in the pulverization step (iv) (preferably a pulverized product containing no carbon source) is heated to obtain the compound (α), and then the compound (α) and the carbon source are obtained. It is preferable to adopt a production method in which a pulverized product containing the following is obtained and then the pulverized product is heated.
 上述した溶融、冷却、粉砕、加熱の各工程を経ることによって、二次電池用正極材料としての、所定の組成を有する化合物(α)が製造される。化合物(α)は結晶粒子を含むことが好ましく、またオリビン型であることが好ましい。このような組成および結晶系であると、前述したように多電子型の理論電気容量の材料を得ることができる。 The compound (α) having a predetermined composition as a positive electrode material for a secondary battery is manufactured through the melting, cooling, pulverization, and heating steps described above. The compound (α) preferably contains crystal particles and is preferably an olivine type. With such a composition and crystal system, as described above, a multi-electron type material having a theoretical electric capacity can be obtained.
 特にケイ酸化合物は、二次電池用正極材料に使用する場合に、二次電池の単位体積(質量)当たりの容量を高くできるため好ましい。ケイ酸化合物はオリビン型が好ましく、該オリビン型ケイ酸化合物は二次電池用正極材料として好適である。また、リン酸化合物は、二次電池用正極材料に使用する場合には、二次電池の性能の信頼性を高くできるため好ましい。リン酸化合物はオリビン型が好ましく、該オリビン型リン酸化合物は二次電池用正極材料として好適である。 Particularly, a silicate compound is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as a positive electrode material for a secondary battery. The silicate compound is preferably an olivine type, and the olivine type silicate compound is suitable as a positive electrode material for a secondary battery. A phosphoric acid compound is preferable when used as a positive electrode material for a secondary battery because the reliability of the performance of the secondary battery can be increased. The phosphate compound is preferably an olivine type, and the olivine type phosphate compound is suitable as a positive electrode material for a secondary battery.
 本発明により得られる二次電池用正極材料の比表面積は0.2m/g~200m/gが好ましく、1m/g~100m/gがより好ましい。比表面積を該範囲とすることにより、導電性が高くなる。比表面積は、例えば窒素吸着法による比表面積測定装置で測定できる。 The specific surface area of the positive electrode material for a secondary battery obtained by the present invention is preferably 0.2 m 2 / g to 200 m 2 / g, more preferably 1 m 2 / g to 100 m 2 / g. By setting the specific surface area within this range, the conductivity is increased. The specific surface area can be measured by, for example, a specific surface area measuring apparatus using a nitrogen adsorption method.
 また、二次電池用正極材料の結晶粒子の平均粒子径は、粒子の導電性を高めるために、体積換算のメディアン径で10nm~10μmが好ましく、10nm~2μmがより好ましい。なお、本発明により得られる二次電池用正極材料の平均粒子径は、結晶粒子だけでなく非晶質粒子を含んでいたとしても同様に、体積換算のメディアン径で10nm~10μmが好ましく、10nm~2μmがより好ましい。 In addition, the average particle diameter of the crystal particles of the positive electrode material for secondary batteries is preferably 10 nm to 10 μm, more preferably 10 nm to 2 μm, in terms of volume median diameter in order to increase the conductivity of the particles. The average particle diameter of the positive electrode material for a secondary battery obtained by the present invention is preferably 10 nm to 10 μm in terms of volume median diameter even if it contains not only crystal particles but also amorphous particles. More preferably, it is ˜2 μm.
 本発明によれば、オリビン型化合物、輝石型化合物、またはナシコン型化合物の原料調合物を、少なくとも内周部が導電性耐火材料により形成された容器内で、この導電性耐火材料を誘導加熱することにより溶融しているので、溶融容器を電気炉等の加熱炉内に収納して加熱溶融を行う従来の方法に比べて、熱効率が高く、急速加熱が可能であるうえに、量産性が高い。溶融工程(ii)において1バッチあたり10kg以上、好ましくは100kg以上の生産量を実現可能である。
 また、溶融物に含まれるFe、Mn等の重金属元素による容器の侵食を抑制でき、加熱溶融に用いる容器の損耗を防止できるため、メンテナンスの頻度を低減し、二次電池用正極材料の製造コストを低減することができる。さらに、容器に由来する成分が、当該容器内の溶融物中に混入するのを抑制でき、純度に優れた二次電池用正極材料を得ることができる。
According to the present invention, a raw material preparation of an olivine type compound, pyroxene type compound, or NASICON type compound is induction-heated in a container having at least an inner peripheral portion formed of the conductive refractory material. Compared to the conventional method in which a melting vessel is housed in a heating furnace such as an electric furnace and heat melting is performed, heat efficiency is high, rapid heating is possible, and mass productivity is high. . In the melting step (ii), a production amount of 10 kg or more, preferably 100 kg or more per batch can be realized.
In addition, the container can be prevented from being eroded by heavy metal elements such as Fe and Mn contained in the melt, and the container used for heating and melting can be prevented from being worn. Therefore, the frequency of maintenance is reduced and the manufacturing cost of the positive electrode material for the secondary battery is reduced. Can be reduced. Furthermore, it can suppress that the component derived from a container mixes in the melt in the said container, and can obtain the positive electrode material for secondary batteries excellent in purity.
<二次電池用正極および二次電池の製造方法>
 本発明の製造方法によって得られる二次電池用正極材料を用いることによって、二次電池用正極および二次電池を製造できる。二次電池としては、金属リチウム二次電池、リチウムイオン二次電池、リチウムポリマー二次電池等が挙げられるが、リチウムイオン二次電池が好ましい。電池形状は制限されることはなく、例えば円筒状、角型、コイン型等の種々の形状およびサイズを適宜採用できる。
<Positive electrode for secondary battery and method for producing secondary battery>
By using the secondary battery positive electrode material obtained by the production method of the present invention, a secondary battery positive electrode and a secondary battery can be produced. Examples of the secondary battery include a metal lithium secondary battery, a lithium ion secondary battery, and a lithium polymer secondary battery, and a lithium ion secondary battery is preferable. The battery shape is not limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
 二次電池用正極は、本発明の製造方法で得られる二次電池用正極材料を用いて、公知の電極の製造方法にしたがって製造できる。例えば、本発明により得られる二次電池用正極材料を必要に応じて公知の結着材(ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等)と混合した後、さらに、公知の有機溶媒(N-メチルピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N-N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等)を用いてスラリーとし、公知の集電体(アルミニウム、またはステンレスの金属箔等)に塗布する等の方法によって、製造できる。 The positive electrode for a secondary battery can be manufactured according to a known electrode manufacturing method using the positive electrode material for a secondary battery obtained by the manufacturing method of the present invention. For example, a positive electrode material for a secondary battery obtained according to the present invention may be prepared by using a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene as required. After mixing with rubber, fluoro rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, etc., further known organic solvents (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate) , Methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc.) to form a slurry, and a known current collector (aluminum, By a method such as coating to the metal foil or the like) of stainless steel, it can be produced.
 二次電池の構造は、本発明の製造方法で得られる二次電池用正極材料を電極として用いる以外は、公知の二次電池における構造を採用することができる。セパレータ、電池ケース等についても同様である。負極としては、活物質として公知の負極用活物質を使用でき、炭素材料、アルカリ金属材料およびアルカリ土類金属材料からなる群から選ばれる少なくとも1種を用いることが好ましい。電解液としては、非水系の電解液が好ましい。すなわち、本発明の製造方法で得られる二次電池用正極材料を用いた二次電池としては、非水電解質リチウムイオン二次電池が好ましい。 As the structure of the secondary battery, a structure in a known secondary battery can be adopted except that the positive electrode material for a secondary battery obtained by the production method of the present invention is used as an electrode. The same applies to separators, battery cases, and the like. As the negative electrode, a known negative electrode active material can be used as the active material, and at least one selected from the group consisting of carbon materials, alkali metal materials, and alkaline earth metal materials is preferably used. As the electrolytic solution, a non-aqueous electrolytic solution is preferable. That is, as the secondary battery using the positive electrode material for a secondary battery obtained by the production method of the present invention, a nonaqueous electrolyte lithium ion secondary battery is preferable.
 本発明を、実施例を挙げて具体的に説明するが、本発明は以下の実施例に限定されない。 The present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
<実施例1>
(原料調合工程(i))
 溶融物の組成が、LiO、FeO、およびP換算量(単位:モル%)でそれぞれ、25.0モル%、50.0モル%、および25.0モル%となるように、炭酸リチウム(LiCO)、四酸化三鉄(Fe)、およびリン酸水素アンモニウム(NHPO)を秤量し、乾式で混合・粉砕して原料調合物を得た。
<Example 1>
(Raw material preparation step (i))
The composition of the melt is 25.0 mol%, 50.0 mol%, and 25.0 mol% in terms of Li 2 O, FeO, and P 2 O 5 (unit: mol%), respectively. , Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) are weighed, mixed and pulverized dry to obtain a raw material formulation It was.
(溶融工程(ii))
 得られた原料調合物を、溶融装置を用いて以下に示すようにして加熱し溶融した。すなわち、まず原料調合物を、グラファイト製で外径50mm、内径40mm、高さ100mmの円筒状のルツボに充填した。次いで、このルツボを、容積50Lのステンレス製の蓋つき外装容器(ジャケット)内に設置された、内径70mmの銅製誘導コイル(ケィディケィ社製)の内側に装填した。そして、外装容器内に10L/分の流量でNガスを流通させながら、誘導加熱コイルに5kHzの交流電流を流し、ルツボを誘導加熱した。ルツボ内の温度を20℃/分の速度で昇温させ、1250℃に達したらこの温度に10分間保持した。こうして、ルツボ内の原料調合物を加熱して溶融し、溶融物を得た。
(Melting step (ii))
The obtained raw material formulation was heated and melted as shown below using a melting apparatus. That is, first, the raw material mixture was filled into a cylindrical crucible made of graphite and having an outer diameter of 50 mm, an inner diameter of 40 mm, and a height of 100 mm. Next, this crucible was loaded inside a copper induction coil (made by Keddy Corporation) having an inner diameter of 70 mm, which was installed in a stainless steel lidded outer container (jacket) having a volume of 50 L. Then, while flowing N 2 gas at a flow rate of 10 L / min in the outer container, an alternating current of 5 kHz was passed through the induction heating coil to inductively heat the crucible. The temperature in the crucible was raised at a rate of 20 ° C./minute, and when it reached 1250 ° C., this temperature was maintained for 10 minutes. Thus, the raw material formulation in the crucible was heated and melted to obtain a melt.
(冷却工程(iii))
 ルツボを外装容器から取り出し、溶融工程(ii)で得られた溶融物を水冷したステンレス製の板の上に流し出した。そして、流出された溶融物の上に、さらに別のステンレス製の板を当ててプレスし、固化物を得た。冷却速度は、固化物の温度がプレス後50℃程度に低下していたので、1×10℃/秒以上と考えられる。
(Cooling step (iii))
The crucible was removed from the outer container, and the melt obtained in the melting step (ii) was poured out onto a stainless steel plate cooled with water. Then, another stainless steel plate was put on the melt that had flowed out and pressed to obtain a solidified product. The cooling rate is considered to be 1 × 10 3 ° C./second or more because the temperature of the solidified product has decreased to about 50 ° C. after pressing.
(粉砕工程(iv))
 得られた固化物を、乳棒と乳鉢を用いて粗粉砕した。さらに、粗粉砕後の固化物を、粉砕メディアとしてジルコニア製ボールを用いた遊星ミル(伊藤製作所製、装置名:LP-4)を用いてアセトン中で粉砕して、粉砕物を得た。得られた粉砕物の平均粒子径は、体積基準のメディアン径で0.22μmであった。
(Crushing step (iv))
The obtained solidified product was coarsely pulverized using a pestle and a mortar. Further, the solidified product after coarse pulverization was pulverized in acetone using a planetary mill (manufactured by Ito Seisakusho, device name: LP-4) using zirconia balls as pulverization media to obtain a pulverized product. The average particle diameter of the obtained pulverized product was 0.22 μm in terms of volume-based median diameter.
(加熱工程(v))
 粉砕工程(iv)で得られた粉砕物を、電気炉(モトヤマ社製、型式名;SKM-3035)を用いて、Hガスを3体積%含むArガス雰囲気下において700℃で8時間加熱し、次いで室温まで冷却し、リン酸鉄リチウム粒子を析出させた。
(Heating step (v))
The pulverized product obtained in the pulverization step (iv) is heated at 700 ° C. for 8 hours in an Ar gas atmosphere containing 3% by volume of H 2 gas using an electric furnace (manufactured by Motoyama, model name: SKM-3035). Then, the mixture was cooled to room temperature to precipitate lithium iron phosphate particles.
 得られたリン酸鉄リチウム粒子の鉱物相を、X線回折装置(リガク社製、装置名:RINT TTRIII)を用いて測定した。回折パターンから、得られたリン酸鉄リチウム粒子は、斜方晶のオリビン型LiFePOであることが確認された。また、比表面積を比表面積測定装置(島津製作所社製、装置名:ASAP2020)を用いて測定したところ、25m/gであった。さらに、得られたリン酸鉄リチウム粒子の平均粒子径をレーザ回折/散乱式粒度分析計(堀場製作所社製、装置名:LA-950)を用いて測定したところ、体積換算のメディアン径は0.23μmであった。
 なお、溶融物を取り出して冷却した後のルツボを切断し、侵食量をフラックスラインで測定したところ、0.2mm以下であった。
The mineral phase of the obtained lithium iron phosphate particles was measured using an X-ray diffraction apparatus (manufactured by Rigaku Corporation, apparatus name: RINT TTRIII). From the diffraction pattern, it was confirmed that the obtained lithium iron phosphate particles were orthorhombic olivine type LiFePO 4 . Moreover, it was 25 m < 2 > / g when the specific surface area was measured using the specific surface area measuring apparatus (The Shimadzu Corp. make, apparatus name: ASAP2020). Furthermore, when the average particle diameter of the obtained lithium iron phosphate particles was measured using a laser diffraction / scattering particle size analyzer (Horiba, Ltd., apparatus name: LA-950), the volume-converted median diameter was 0. .23 μm.
In addition, when the crucible after taking out and cooling a melt was cut | disconnected and the amount of erosion was measured with the flux line, it was 0.2 mm or less.
<実施例2>
 溶融物の組成が、LiO、FeO、およびSiO換算量(単位:モル%)でそれぞれ、33.3モル%、33.3モル%、および33.3モル%となるように、炭酸リチウム(LiCO)、四酸化三鉄(Fe)、および二酸化ケイ素(SiO)を秤量し、乾式で混合して原料調合物を得た。
<Example 2>
Carbonic acid so that the composition of the melt is 33.3 mol%, 33.3 mol%, and 33.3 mol% in terms of Li 2 O, FeO, and SiO 2 (unit: mol%), respectively. Lithium (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), and silicon dioxide (SiO 2 ) were weighed and mixed dry to obtain a raw material formulation.
 次いで、得られた原料調合物を、実施例1と同じ溶融装置を用い、ルツボ内の温度を1450℃で30分間保持する以外は実施例1と同様に溶融して、溶融物を得た。次いで、実施例1と同様にして、冷却工程(iii)、粉砕工程(iv)を順に行い、粉砕物を得た。 Next, the obtained raw material mixture was melted in the same manner as in Example 1 except that the temperature in the crucible was held at 1450 ° C. for 30 minutes using the same melting apparatus as in Example 1, to obtain a melt. Next, in the same manner as in Example 1, the cooling step (iii) and the pulverization step (iv) were sequentially performed to obtain a pulverized product.
 次いで、粉砕工程(iv)で得られた粉砕物を、実施例1と同様に加熱し、ケイ酸鉄リチウム粒子を析出させた。得られたケイ酸鉄リチウム粒子の鉱物相を測定したところ、斜方晶のオリビン型LiFeSiOであることが確認された。また、比表面積を測定したところ、23m/gであった。さらに、ケイ酸鉄リチウム粒子の平均粒子径を測定したところ、体積換算のメディアン径は0.45μmであった。
 溶融物を取り出して冷却した後のルツボを切断し、侵食量をフラックスラインで測定したところ、0.2mm以下であった。
Next, the pulverized product obtained in the pulverization step (iv) was heated in the same manner as in Example 1 to precipitate lithium iron silicate particles. When the mineral phase of the obtained lithium iron silicate particles was measured, it was confirmed to be orthorhombic olivine type Li 2 FeSiO 4 . Moreover, it was 23 m < 2 > / g when the specific surface area was measured. Furthermore, when the average particle diameter of the lithium iron silicate particles was measured, the median diameter in terms of volume was 0.45 μm.
After the melt was taken out and cooled, the crucible was cut, and the amount of erosion was measured with a flux line.
<実施例3>
 溶融物の組成が、LiO、Fe、およびSiO換算量(単位:モル%)でそれぞれ、16.7モル%、16.7モル%、および66.7モル%となるように、炭酸リチウム(LiCO)、三酸化二鉄(Fe)、および二酸化ケイ素(SiO)を秤量し、乾式で混合・粉砕して原料調合物を得た。
<Example 3>
The composition of the melt, Li 2 O, Fe 2 O 3, and SiO 2 in terms of the amount (unit: mol%), respectively, 16.7 mol%, 16.7 mol%, and become as 66.7 mol% Lithium carbonate (Li 2 CO 3 ), diiron trioxide (Fe 2 O 3 ), and silicon dioxide (SiO 2 ) were weighed, mixed and pulverized in a dry process to obtain a raw material formulation.
 得られた原料調合物を、溶融装置を用いて以下に示すようにして加熱し溶融した。すなわち、まず外径50mm、内径40mm、高さ100mmのグラファイト製のルツボの内側に嵌合・配置された内径35mm、高さ60mmの炭化ケイ素製のルツボに原料調合物を充填した。次いで、この二重構造のルツボを、容積50Lのステンレス製の蓋つき外装容器内に設置された内径70mmの銅製誘導加熱コイル(ケィディケィ社製)の内側に装填した。そして、実施例2と同様に誘導加熱し、炭化ケイ素製ルツボ内を1450℃で30分間保持することにより原料調合物を溶融し、溶融物を得た。 The obtained raw material mixture was heated and melted as shown below using a melting apparatus. That is, first, the raw material formulation was filled in a crucible made of silicon carbide having an inner diameter of 35 mm and a height of 60 mm fitted and arranged inside a graphite crucible having an outer diameter of 50 mm, an inner diameter of 40 mm, and a height of 100 mm. Next, this double-structured crucible was loaded inside a copper induction heating coil (made by Kydeky Corp.) having an inner diameter of 70 mm installed in a stainless steel lid with a volume of 50 L. Then, induction heating was performed in the same manner as in Example 2, and the raw material formulation was melted by holding the inside of the silicon carbide crucible at 1450 ° C. for 30 minutes to obtain a melt.
 次いで、実施例1と同様にして、冷却工程(iii)、粉砕工程(iv)を順に行い、粉砕物を得た。 Then, in the same manner as in Example 1, the cooling step (iii) and the pulverization step (iv) were sequentially performed to obtain a pulverized product.
 次いで、粉砕工程(iv)で得られた粉砕物を、実施例1と同様に加熱し、ケイ酸鉄リチウム粒子を析出させた。得られたケイ酸鉄リチウム粒子の鉱物相を測定したところ、単斜晶の輝石型LiFeSiであることが確認された。また、比表面積を測定したところ、23m/gであった。さらに、ケイ酸鉄リチウム粒子の平均粒子径を測定したところ、体積換算のメディアン径は0.38μmであった。
 溶融物を取り出して冷却した後の炭化ケイ素製ルツボを切断し、侵食量をフラックスラインで測定したところ、0.2mm以下であった。
Next, the pulverized product obtained in the pulverization step (iv) was heated in the same manner as in Example 1 to precipitate lithium iron silicate particles. When the mineral phase of the obtained lithium iron silicate particles was measured, it was confirmed to be monoclinic pyroxene-type LiFeSi 2 O 6 . Moreover, it was 23 m < 2 > / g when the specific surface area was measured. Furthermore, when the average particle diameter of the lithium iron silicate particles was measured, the median diameter in terms of volume was 0.38 μm.
The silicon carbide crucible after the melt was taken out and cooled was cut, and the amount of erosion measured with a flux line was 0.2 mm or less.
<実施例4>
 溶融物の組成が、LiO、Fe、およびP換算量(単位:モル%)でそれぞれ、37.5モル%、25.0モル%、および37.5モル%となるように、炭酸リチウム(LiCO)、三酸化二鉄(Fe)、およびリン酸水素アンモニウム(NHPO)を秤量し、乾式で混合・粉砕して原料調合物を得た。
<Example 4>
The composition of the melt, Li 2 O, Fe 2 O 3, and P 2 O 5 equivalent amount (unit: mol%), respectively, 37.5 mol%, and 25.0 mol%, and 37.5 mol% Lithium carbonate (Li 2 CO 3 ), diiron trioxide (Fe 2 O 3 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) are weighed, mixed and pulverized in a dry manner I got a thing.
 得られた原料調合物を、実施例3と同様に、グラファイト製のルツボの内側に設置された炭化ケイ素製のルツボに充填し、ルツボ内を1200℃で10分間保持する以外は実施例3と同様に加熱して、溶融物を得た。 The obtained raw material composition was filled in a silicon carbide crucible installed inside a graphite crucible in the same manner as in Example 3, and the inside of the crucible was held at 1200 ° C. for 10 minutes, as in Example 3. The same heating was performed to obtain a melt.
 次いで、実施例1と同様にして、冷却工程(iii)、粉砕工程(iv)を順に行い、粉砕物を得た。 Then, in the same manner as in Example 1, the cooling step (iii) and the pulverization step (iv) were sequentially performed to obtain a pulverized product.
 次いで、得られた粉砕物を、実施例1と同じ電気炉を用いて大気中650℃で8時間加熱し、次いで室温まで冷却し、リン酸鉄リチウム粒子を析出させた。 Next, the obtained pulverized product was heated in the atmosphere at 650 ° C. for 8 hours using the same electric furnace as in Example 1, and then cooled to room temperature to precipitate lithium iron phosphate particles.
 得られたリン酸鉄リチウム粒子の鉱物相を測定したところ、単斜晶のナシコン型LiFe(POであることが確認された。また、比表面積を測定したところ、31m/gであった。さらに、リン酸鉄リチウム粒子の平均粒子径を測定したところ、体積換算のメディアン径は0.35μmであった。
 溶融物を取り出して冷却した後の炭化ケイ素製ルツボを切断し、侵食量をフラックスラインで測定したところ、0.2mm以下であった。
When the mineral phase of the obtained lithium iron phosphate particles was measured, it was confirmed to be monoclinic NASICON type Li 3 Fe 2 (PO 4 ) 3 . Moreover, it was 31 m < 2 > / g when the specific surface area was measured. Furthermore, when the average particle diameter of the lithium iron phosphate particles was measured, the median diameter in terms of volume was 0.35 μm.
The silicon carbide crucible after the melt was taken out and cooled was cut, and the amount of erosion measured with a flux line was 0.2 mm or less.
<実施例5>
 実施例1と同じ組成の原料調合物を、図2に示す溶融装置を用いて以下に示すようにして加熱し溶融した。なお、この溶融装置では、溶融容器である外径50mm、内径40mm、高さ100mmのグラファイト製溶融部の底部に、外径15mm、内径5mm、長さ10mmのグラファイト製のノズル部(溶融物排出管)が接続された構造とした。また、溶融部の外側に、第1の誘導加熱コイルである内径70mmの銅製誘導コイル(ケィディケィ社製)を、ノズル部の外側に、第2の誘導加熱コイルである内径25mmの銅製誘導コイル(ケィディケィ社製)をそれぞれ設置した。さらに、これら溶融部、ノズル部、第1および第2の誘導加熱コイルを、容積50Lで底部に直径20mmの貫通孔を有するステンレス製の蓋つき外装容器(ジャケット)内に収納し、ノズル部の下端部が外装容器の貫通孔から外部に延出するように設置した。
<Example 5>
A raw material formulation having the same composition as that of Example 1 was heated and melted as shown below using the melting apparatus shown in FIG. In this melting apparatus, a graphite nozzle portion (melt discharge) having an outer diameter of 15 mm, an inner diameter of 5 mm, and a length of 10 mm is formed at the bottom of a melting portion made of graphite having an outer diameter of 50 mm, an inner diameter of 40 mm, and a height of 100 mm. Tube). Further, a copper induction coil having an inner diameter of 70 mm (manufactured by Keddy Corp.), which is the first induction heating coil, is provided outside the melting portion, and a copper induction coil having an inner diameter of 25 mm, which is the second induction heating coil, is provided outside the nozzle portion. Each of them was made by KDDY Corporation. Further, the melting part, the nozzle part, and the first and second induction heating coils are housed in a stainless steel lidded outer container (jacket) having a volume of 50 L and a through-hole having a diameter of 20 mm at the bottom part. It installed so that a lower end part might extend outside from the through-hole of an exterior container.
 このような構造を有する溶融装置の溶融部に、前記原料調合物を充填した。ここで、ノズル部には、溶融部に充填された原料調合物と同じ組成のものを溶融し固化して作製されたプラグを予め詰めておいた。そして、溶融部内に10L/分の流量でNガスを流通させながら、溶融部の外側に設置された第1の誘導加熱コイルに5kHzの交流電流を流し、溶融部を誘導加熱した。溶融部内の温度を20℃/分の速度で昇温させ、1250℃に達したらこの温度に10分間保持し、溶融部内の原料調合物を溶融した。なお、この加熱中、ノズル部の下端開口部から2L/分の流量でNガスを導入し、ノズル部内を冷却した。 The raw material mixture was filled in the melting part of the melting apparatus having such a structure. Here, the nozzle part was previously filled with a plug prepared by melting and solidifying the same composition as the raw material formulation filled in the melting part. Then, while flowing N 2 gas at a flow rate of 10 L / min in the melting part, an alternating current of 5 kHz was passed through the first induction heating coil installed outside the melting part to inductively heat the melting part. The temperature in the melting part was increased at a rate of 20 ° C./min. When the temperature reached 1250 ° C., this temperature was maintained for 10 minutes to melt the raw material formulation in the melting part. During this heating, N 2 gas was introduced at a flow rate of 2 L / min from the lower end opening of the nozzle portion to cool the inside of the nozzle portion.
 次いで、ノズル部内へのNガスの導入を停止し、第1の誘導加熱コイルへの通電を継続しながら、ノズル部の外側に設置された第2の誘導加熱コイルに8kHzの交流電流を流した。こうしてノズル部を誘導加熱して、前記した原料調合物の溶融固化物からなるプラグを溶融させ、ノズル部の閉塞を開放した。そして、ノズル部を通って流下した溶融物を、ノズル部の下方に設置されたステンレス製双ローラ(外径10cm、回転数200rpm)に滴下し、急速冷却して、固化物を得た。冷却速度は約1×10℃/秒であった。 Next, the introduction of N 2 gas into the nozzle part is stopped, and an AC current of 8 kHz is supplied to the second induction heating coil installed outside the nozzle part while continuing to energize the first induction heating coil. did. In this way, the nozzle part was induction-heated to melt the plug made of the above-mentioned melted and solidified material mixture, and the nozzle part was closed. And the molten material which flowed down through the nozzle part was dripped at the stainless steel double roller (the outer diameter of 10 cm, the rotation speed of 200 rpm) installed under the nozzle part, and it cooled rapidly, and the solidified material was obtained. The cooling rate was about 1 × 10 4 ° C./second.
 次に、実施例1と同様にして、粉砕工程(iv)、加熱工程(v)を順に行い、リン酸鉄リチウム粒子を析出させた。 Next, in the same manner as in Example 1, the pulverization step (iv) and the heating step (v) were sequentially performed to precipitate lithium iron phosphate particles.
 得られたリン酸鉄リチウム粒子の鉱物相を測定したところ、斜方晶のオリビン型LiFePOであることが確認された。また、比表面積を測定したところ、32m/gであった。さらに、リン酸鉄リチウム粒子の平均粒子径を測定したところ、体積換算のメディアン径は0.30μmであった。 When the mineral phase of the obtained lithium iron phosphate particles was measured, it was confirmed to be orthorhombic olivine-type LiFePO 4 . Moreover, it was 32 m < 2 > / g when the specific surface area was measured. Furthermore, when the average particle diameter of the lithium iron phosphate particles was measured, the median diameter in terms of volume was 0.30 μm.
<比較例1>
 実施例1と同様の組成を有する原料調合物を、ロジウムを20質量%含む白金合金製(内容量100mL)のルツボに充填し、次に、ルツボをケイ化モリブデン製の発熱体を備えた電気炉(モトヤマ社製、装置名:NH-3035)の中に入れた。該電気炉内を2L/分でNガスを流通しつつ、300℃/時間の速度で昇温し、1250℃で0.5時間保持、加熱して、溶融物を得た。溶融物を、毎分400回転する直径約15cmのステンレス製双ローラを通すことにより、1×10℃/秒で室温になるまで冷却し、フレーク状の固化物を得た。
<Comparative Example 1>
A raw material composition having the same composition as that of Example 1 was filled in a platinum alloy crucible containing 20% by mass of rhodium (with an internal volume of 100 mL), and then the crucible was equipped with a heating element made of molybdenum silicide. It was put in a furnace (manufactured by Motoyama, apparatus name: NH-3035). While flowing N 2 gas at a rate of 2 L / min in the electric furnace, the temperature was increased at a rate of 300 ° C./hour, held at 1250 ° C. for 0.5 hours, and heated to obtain a melt. The melt was cooled to room temperature at 1 × 10 5 ° C./second by passing through a stainless steel twin roller having a diameter of about 15 cm rotating at 400 revolutions per minute to obtain a flaky solidified product.
 次いで、得られた固化物中のPt含量およびRh含量を以下のようにして定量した。すなわち、固化物をHF-HClOで分解した後、HClで再溶解し、溶解液中のPt含量およびRh含量をICP発光分光分析法によって測定した。その結果、固化物中のPt含量は9.6μg/gであり、Rh含量は23μg/gであった。
 なお、実施例1で得られた固化物について、上記と同様にして、Pt含量およびRh含量を測定したところ、いずれも0.1μg/g以下であった。
Next, the Pt content and Rh content in the obtained solidified product were quantified as follows. That is, the solidified product was decomposed with HF-HClO 4 and then redissolved with HCl, and the Pt content and Rh content in the solution were measured by ICP emission spectroscopy. As a result, the Pt content in the solidified product was 9.6 μg / g, and the Rh content was 23 μg / g.
For the solidified product obtained in Example 1, the Pt content and Rh content were measured in the same manner as described above, and both were 0.1 μg / g or less.
<比較例2>
 実施例1と同様の組成を有する原料調合物を、蓋付の、外径46mm、高さ53mmのアルミナ製の焼結ルツボ(ニッカトー社製、商品名:SSA-S)に充填した。次に、ルツボをケイ化モリブデン製の発熱体を備えた電気炉(モトヤマ社製、装置名:NH-3035)の中に入れた。該電気炉内を2L/分でNガスを流通しつつ、300℃/時間の速度で昇温し、1450℃で0.5時間保持、加熱して、溶融物を得た。溶融物を、急速冷却することなく、5℃/分で室温になるまで冷却した。加熱、冷却処理終了後のルツボを目視で観察したところ、ルツボ表面に亀裂が生じていた。また、ルツボの一部を切断し、侵食量を測定したところ、900μmであった。
<Comparative example 2>
A raw material formulation having the same composition as in Example 1 was filled in an alumina sintered crucible (made by Nikkato, trade name: SSA-S) with an outer diameter of 46 mm and a height of 53 mm. Next, the crucible was placed in an electric furnace (manufactured by Motoyama, apparatus name: NH-3035) equipped with a heating element made of molybdenum silicide. While flowing N 2 gas at a rate of 2 L / min in the electric furnace, the temperature was raised at a rate of 300 ° C./hour, held at 1450 ° C. for 0.5 hours, and heated to obtain a melt. The melt was cooled to room temperature at 5 ° C./min without rapid cooling. When the crucible after the heating and cooling treatment was visually observed, a crack was generated on the surface of the crucible. Moreover, it was 900 micrometers when a part of crucible was cut | disconnected and the amount of erosion was measured.
 本発明によれば、純度に優れた二次電池用正極材料を、低コストでかつ効率的に製造することができる。
 なお、2011年9月22日に出願された日本特許出願2011-207026号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
ADVANTAGE OF THE INVENTION According to this invention, the positive electrode material for secondary batteries excellent in purity can be manufactured efficiently at low cost.
It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-207026 filed on September 22, 2011 is cited here as the disclosure of the specification of the present invention. Incorporated.
1…溶融装置、2…溶融容器、2a…溶融部、2b…溶融物導出管、3…誘導加熱コイル、3a…第1の誘導加熱コイル、3b…第2の誘導加熱コイル、4…ジャケット、5…原料調合物、6…原料供給管、7…ガス導入管、8…ガス排出管、9…冷却固化装置、10…固化物。11…原料調合物の溶融固化物からなるプラグ。 DESCRIPTION OF SYMBOLS 1 ... Melting apparatus, 2 ... Melting container, 2a ... Melting part, 2b ... Melt outlet pipe, 3 ... Induction heating coil, 3a ... 1st induction heating coil, 3b ... 2nd induction heating coil, 4 ... Jacket, DESCRIPTION OF SYMBOLS 5 ... Raw material preparation, 6 ... Raw material supply pipe, 7 ... Gas introduction pipe, 8 ... Gas discharge pipe, 9 ... Cooling solidification apparatus, 10 ... Solidified material. 11: A plug made of a melt-solidified material mixture.

Claims (14)

  1.  オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であって、
     原料を調合して原料調合物を準備する原料調合工程と、
     前記原料調合物を、少なくとも内周部が導電性耐火材料により形成された容器内で、該容器の少なくとも内周部を誘導加熱することにより溶融し、溶融物を得る溶融工程と、
    を含むことを特徴とする二次電池用正極材料の製造方法。
    A method for producing a positive electrode material for a secondary battery comprising a compound having an olivine type, pyroxene type, or NASICON type crystal structure,
    Raw material preparation step of preparing raw material preparation by preparing raw materials,
    A melting step of melting the raw material formulation by inductively heating at least the inner periphery of the container in a container having at least an inner periphery formed of a conductive refractory material;
    The manufacturing method of the positive electrode material for secondary batteries characterized by including.
  2.  前記容器の底部に該容器より細径の溶融物導出部が接続され、該溶融物導出部を前記容器とは独立して加熱することにより、前記容器内の溶融物を前記溶融物導出部から導出させる、請求項1に記載の二次電池用正極材料の製造方法。 A melt outlet part having a smaller diameter than the container is connected to the bottom of the container, and the melt outlet part is heated independently of the container, whereby the melt in the container is removed from the melt outlet part. The manufacturing method of the positive electrode material for secondary batteries of Claim 1 made to derive.
  3.  前記溶融物導出部は導電性耐火材料により形成されており、該溶融物導出部の加熱を誘導加熱により行う、請求項2に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to claim 2, wherein the melt lead-out part is formed of a conductive refractory material, and the melt lead-out part is heated by induction heating.
  4.  前記導電性耐火材料は、炭素または導電性非酸化物セラミックスである、請求項1~3のいずれか1項に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to any one of claims 1 to 3, wherein the conductive refractory material is carbon or conductive non-oxide ceramics.
  5.  前記導電性非酸化物セラミックスは、炭化ケイ素、ホウ化ジルコニウム、およびホウ化チタンからなる群より選ばれる少なくとも1種を主体とするセラミックスである、請求項4に記載の二次電池用正極材料の製造方法。 5. The positive electrode material for a secondary battery according to claim 4, wherein the conductive non-oxide ceramic is a ceramic mainly composed of at least one selected from the group consisting of silicon carbide, zirconium boride, and titanium boride. Production method.
  6.  前記溶融工程を不活性雰囲気下または還元性雰囲気下で行う、請求項1~5のいずれか1項に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to any one of claims 1 to 5, wherein the melting step is performed in an inert atmosphere or a reducing atmosphere.
  7.  前記溶融工程において、前記原料調合物を1100℃~1800℃に加熱して溶融する、請求項1~6のいずれか1項に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to any one of claims 1 to 6, wherein in the melting step, the raw material preparation is heated to 1100 ° C to 1800 ° C to melt.
  8.  前記溶融工程で得られた前記溶融物を冷却して固化物を得る冷却工程を有する、請求項1~7のいずれか1項に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to any one of claims 1 to 7, further comprising a cooling step of cooling the melt obtained in the melting step to obtain a solidified product.
  9.  前記冷却工程において、前記溶融物を1×10℃/秒以上の冷却速度で冷却する、請求項8に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to claim 8, wherein in the cooling step, the melt is cooled at a cooling rate of 1 × 10 3 ° C./second or more.
  10.  前記冷却工程で得られた固化物を粉砕して粉砕物を得る粉砕工程を有する、請求項8または9に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to claim 8 or 9, further comprising a pulverization step of pulverizing the solidified product obtained in the cooling step to obtain a pulverized product.
  11.  前記粉砕工程において、前記固化物に、有機化合物および炭素系導電物質からなる群より選ばれる少なくとも1種を添加して粉砕する、請求項10に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to claim 10, wherein in the pulverizing step, at least one selected from the group consisting of an organic compound and a carbon-based conductive material is added to the solidified product and pulverized.
  12.  前記粉砕工程で得られた粉砕物を加熱する加熱工程を有する、請求項10または11に記載の二次電池用正極材料の製造方法。 The manufacturing method of the positive electrode material for secondary batteries of Claim 10 or 11 which has a heating process which heats the ground material obtained at the said grinding | pulverization process.
  13.  前記二次電池用正極材料が下記式(1)で表されるリン酸化合物を含む、請求項1~12のいずれか1項に記載の二次電池用正極材料の製造方法。
    AM1-a 1-b 4+c   (1)
    (式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子を示し、ZはSi、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。aは0≦a≦0.2であり、bは0≦b≦0.2であり、cは、aおよびbの数値、ならびにMの価数、Xの価数およびZの価数に依存し、電気的中性を満たす数である。)
    The method for producing a positive electrode material for a secondary battery according to any one of claims 1 to 12, wherein the positive electrode material for a secondary battery contains a phosphoric acid compound represented by the following formula (1).
    AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
    (In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 1 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W, and Z 1 represents at least one atom selected from the group consisting of Si, B, Al and V A is 0 ≦ a ≦ 0.2, b is 0 ≦ b ≦ 0.2, c is the numerical value of a and b, and the valence of M, the valence of X 1 and Z 1 It depends on the valence of and satisfies the electrical neutrality.)
  14.  前記二次電池用正極材料が下記式(2)で表されるケイ酸化合物を含む、請求項1~12のいずれか1項に記載の二次電池用正極材料の製造方法。
    1-d Si1-e 4+f   (2)
    (式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、XはZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子を示し、ZはP、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。dは0≦d≦0.2であり、eは0≦e≦0.2であり、fは、dおよびeの数値、ならびにMの価数、Xの価数およびZの価数に依存し、電気的中性を満たす数である。)
    The method for producing a positive electrode material for a secondary battery according to any one of claims 1 to 12, wherein the positive electrode material for a secondary battery contains a silicate compound represented by the following formula (2).
    A 2 M 1-d X 2 d Si 1-e Z 2 e O 4 + f (2)
    (In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 2 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W, and Z 2 represents at least one atom selected from the group consisting of P, B, Al and V D is 0 ≦ d ≦ 0.2, e is 0 ≦ e ≦ 0.2, f is the numerical value of d and e, and the valence of M, the valence of X 2 and Z 2 It depends on the valence of and satisfies the electrical neutrality.)
PCT/JP2012/074273 2011-09-22 2012-09-21 Production method for positive electrode material for secondary battery WO2013042778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011207026 2011-09-22
JP2011-207026 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042778A1 true WO2013042778A1 (en) 2013-03-28

Family

ID=47914537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074273 WO2013042778A1 (en) 2011-09-22 2012-09-21 Production method for positive electrode material for secondary battery

Country Status (2)

Country Link
JP (1) JPWO2013042778A1 (en)
WO (1) WO2013042778A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050086A1 (en) * 2012-09-28 2014-04-03 トヨタ自動車株式会社 Negative electrode for batteries, battery, vehicle and battery-equipped device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343108A (en) * 2000-05-31 2001-12-14 Asahi Glass Co Ltd Melting furnace and its operation method
JP2004019977A (en) * 2002-06-13 2004-01-22 Asahi Glass Ceramics Co Ltd Melting furnace
JP2008218375A (en) * 2007-03-01 2008-09-18 Kentaro Shibata Induction heating equipment for non-conductive substance
JP2008293661A (en) * 2007-05-22 2008-12-04 Nec Tokin Corp Positive electrode for lithium secondary battery, and lithium secondary battery using it
JP2011001242A (en) * 2009-06-22 2011-01-06 Asahi Glass Co Ltd Method for producing lithium iron phosphate particle and lithium iron phosphate particle
JP2011076793A (en) * 2009-09-29 2011-04-14 Furukawa Battery Co Ltd:The Method of synthesizing olivine-type m lithium silicate, and lithium ion secondary cell
WO2011065337A1 (en) * 2009-11-24 2011-06-03 旭硝子株式会社 Process for production of phosphoric acid compound, and process for production of secondary battery
WO2011111628A1 (en) * 2010-03-09 2011-09-15 旭硝子株式会社 Phosphate compound, positive electrode for secondary battery and method for producing secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343108A (en) * 2000-05-31 2001-12-14 Asahi Glass Co Ltd Melting furnace and its operation method
JP2004019977A (en) * 2002-06-13 2004-01-22 Asahi Glass Ceramics Co Ltd Melting furnace
JP2008218375A (en) * 2007-03-01 2008-09-18 Kentaro Shibata Induction heating equipment for non-conductive substance
JP2008293661A (en) * 2007-05-22 2008-12-04 Nec Tokin Corp Positive electrode for lithium secondary battery, and lithium secondary battery using it
JP2011001242A (en) * 2009-06-22 2011-01-06 Asahi Glass Co Ltd Method for producing lithium iron phosphate particle and lithium iron phosphate particle
JP2011076793A (en) * 2009-09-29 2011-04-14 Furukawa Battery Co Ltd:The Method of synthesizing olivine-type m lithium silicate, and lithium ion secondary cell
WO2011065337A1 (en) * 2009-11-24 2011-06-03 旭硝子株式会社 Process for production of phosphoric acid compound, and process for production of secondary battery
WO2011111628A1 (en) * 2010-03-09 2011-09-15 旭硝子株式会社 Phosphate compound, positive electrode for secondary battery and method for producing secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050086A1 (en) * 2012-09-28 2014-04-03 トヨタ自動車株式会社 Negative electrode for batteries, battery, vehicle and battery-equipped device
JPWO2014050086A1 (en) * 2012-09-28 2016-08-22 トヨタ自動車株式会社 Negative electrode for secondary battery, secondary battery, vehicle and battery-equipped equipment

Also Published As

Publication number Publication date
JPWO2013042778A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
KR101501958B1 (en) Process for preparing electroactive insertion compounds and electrode materials obtained therefrom
CN103402921B (en) The production method of LMO product
JP2014056722A (en) Phosphate compound, positive electrode material for secondary battery, and method for producing secondary battery
JP6525869B2 (en) Method of making crystalline electrode material and material obtained therefrom
JP2011001242A (en) Method for producing lithium iron phosphate particle and lithium iron phosphate particle
US9620778B2 (en) Method for producing a fused product
WO2011162348A1 (en) Silicic acid compound, positive electrode for secondary cell, and method for producing secondary cell
WO2011138964A1 (en) (silicic acid)-(phosphoric acid) compound, positive electrode for secondary battery, and process for production of secondary battery
WO2010150889A1 (en) Process for production of positive electrode material for secondary batteries, and positive electrode material for secondary batteries
WO2012133584A1 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
WO2012133581A1 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
WO2012067249A1 (en) Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
US20120217451A1 (en) Process for producing phosphate compound and method for producing secondary battery
WO2012086722A1 (en) Silicic acid-vanadic acid compound, positive electrode for secondary battery, and manufacturing method for secondary battery
WO2012057341A1 (en) Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
WO2013042777A1 (en) Production method for positive electrode material for secondary battery
JP2013067543A (en) Silicate compound, positive electrode for secondary battery, and method for producing secondary battery
JP2013069526A (en) Method of manufacturing positive electrode material for secondary battery
WO2013042780A1 (en) Production method for positive electrode material for secondary battery
WO2013042778A1 (en) Production method for positive electrode material for secondary battery
JP2013047162A (en) Methods for production of silicic acid compound, positive electrode for secondary battery and secondary battery
JPWO2012057340A1 (en) Silicic acid-phosphoric acid compound, positive electrode for secondary battery, secondary battery, and production method thereof
WO2012067250A1 (en) Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
JP2013047161A (en) Silicate compound, positive electrode for secondary battery, and method for producing secondary battery
JP2014055085A (en) Phosphate compound, cathode material for second battery, and method for producing second battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834239

Country of ref document: EP

Kind code of ref document: A1