JP2011076793A - Method of synthesizing olivine-type m lithium silicate, and lithium ion secondary cell - Google Patents

Method of synthesizing olivine-type m lithium silicate, and lithium ion secondary cell Download PDF

Info

Publication number
JP2011076793A
JP2011076793A JP2009225233A JP2009225233A JP2011076793A JP 2011076793 A JP2011076793 A JP 2011076793A JP 2009225233 A JP2009225233 A JP 2009225233A JP 2009225233 A JP2009225233 A JP 2009225233A JP 2011076793 A JP2011076793 A JP 2011076793A
Authority
JP
Japan
Prior art keywords
lithium
olivine
source
silicate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009225233A
Other languages
Japanese (ja)
Other versions
JP5364523B2 (en
Inventor
Hidetoshi Abe
英俊 阿部
Tomomune Suzuki
智統 鈴木
Ikue Saito
郁恵 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2009225233A priority Critical patent/JP5364523B2/en
Publication of JP2011076793A publication Critical patent/JP2011076793A/en
Application granted granted Critical
Publication of JP5364523B2 publication Critical patent/JP5364523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To simply synthesize olivine-type M lithium silicate of microscopic particles useful as a cathode active material for a secondary battery, and to improve the performance of a lithium ion secondary cell. <P>SOLUTION: A method of synthesizing olivine-type M lithium silicate (M is a metallic element) used as a cathode material of a lithium ion secondary cell includes a kneading and drying step of wet kneading colloidal silica as a silicate source, a lithium source, and a metal element M source, kneading the resultant kneaded material, and at the same time, drying it; and a thermal processing step of thermally processing a mixed and dried material obtained after the drying under a predetermined atmosphere that should reduce the metallic element M. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、オリビン型ケイ酸Mリチウム(Mは金属元素)の合成方法およびリチウムイオン二次電池に係り、特に従来よりも高容量な電極を提供する技術に関する。   The present invention relates to a method for synthesizing olivine-type lithium M silicate (M is a metal element) and a lithium ion secondary battery, and more particularly to a technique for providing an electrode having a higher capacity than conventional ones.

リチウムイオン二次電池の次世代正極活物質として、オリビン型結晶構造を持つポリアニオン系のLiMPO(リン酸塩系)やLiMSiO(ケイ酸塩系)が提案されている(M:金属元素。例えば、Fe,Mn,Co等)。
これらの系の正極活物質は、従来のLiCoOのような酸化物系の正極活物質と比較すると熱安定性が高く、短絡等による電池温度の異常上昇時でも酸素ガスの発生が抑えられる。
ところで、リン酸塩系の正極活物質では、LiFePOが実用段階に入ろうとしているが、ケイ酸塩系の正極活物質では、二電子反応による更に大きな容量が期待されているものの、未だ十分な容量が得られていない。これは合成方法や材料設計の技術が未確立であること、リン酸系の正極活物質と比較して、材料の導電性やリチウムイオン拡散が低いことが考えられる。このためにカーボンで表面を被覆することが提案されているが、未だ性能が十分に引き出せてはいなかった。
As a next-generation positive electrode active material for a lithium ion secondary battery, polyanionic LiMPO 4 (phosphate system) and Li 2 MSiO 4 (silicate system) having an olivine type crystal structure have been proposed (M: metal) Elements, such as Fe, Mn, Co, etc.).
These positive electrode active materials have higher thermal stability than conventional oxide-based positive electrode active materials such as LiCoO 2 , and generation of oxygen gas can be suppressed even when the battery temperature rises abnormally due to a short circuit or the like.
By the way, although LiFePO 4 is about to enter the practical stage in the phosphate-based positive electrode active material, the silicate-based positive electrode active material is expected to have a larger capacity due to a two-electron reaction, but is still sufficient. The capacity is not obtained. This is probably because the synthesis method and the material design technology are not established, and the conductivity and lithium ion diffusion of the material are low compared to the phosphoric acid positive electrode active material. For this reason, it has been proposed to coat the surface with carbon, but the performance has not yet been brought out sufficiently.

従来のケイ酸塩系の正極活物質は、固相反応により合成されており、反応に長時間を要する課題があった。また、高温で長時間の処理は結晶成長を伴うので、ナノレベルの小さな粒子を得ることは困難であった。例えば、特許文献1に示されるような、典型的な合成においては、各構成元素の供給源となる酸化物をボールミルで長時間混合し、これを650℃で12時間仮焼成した後、1100℃で24時間の本焼成を2回実施している。
また、特許文献2には、ケイ素源をシリコーンやケイ酸リチウム等を用いて合成する方法も提案されているが、混合や熱処理の時間が数十時間を要していた。
Conventional silicate-based positive electrode active materials are synthesized by a solid-phase reaction, and there is a problem that a long time is required for the reaction. Further, since treatment at high temperature for a long time is accompanied by crystal growth, it is difficult to obtain nano-level small particles. For example, in a typical synthesis as shown in Patent Document 1, an oxide serving as a supply source of each constituent element is mixed for a long time with a ball mill and pre-fired at 650 ° C. for 12 hours, and then 1100 ° C. The main baking for 24 hours is performed twice.
Further, Patent Document 2 proposes a method of synthesizing a silicon source using silicone, lithium silicate, or the like, but it takes several tens of hours for mixing and heat treatment.

特開2007−335325号公報JP 2007-335325 A 特開2001−266882号公報JP 2001-266882 A

ところで、これらの方法で、混合や熱処理工程に長時間を要するのは、特にケイ素源の原料や前駆体が大きな粒子から成るからであり、この工程条件や時間が短いと不純物が混在する原因となり、製造管理が難しいという問題点があった。
そこで、本発明の目的は、二次電池正極活物質として有用な微細粒子のオリビン型ケイ酸Mリチウムを簡便に合成し、リチウムイオン二次電池の性能向上を図ることにある。
By the way, the reason why a long time is required for the mixing and heat treatment process in these methods is that the raw material and precursor of the silicon source are composed of large particles, and if this process condition and time are short, impurities may be mixed. There was a problem that manufacturing management was difficult.
Accordingly, an object of the present invention is to simply synthesize olivine-type M lithium silicate, which is useful as a positive electrode active material for a secondary battery, and to improve the performance of the lithium ion secondary battery.

上記目的を達成するために、本発明の第1態様は、リチウムイオン二次電池の正極材料として用いられるオリビン型ケイ酸Mリチウム(Mは、金属元素)の合成方法において、ケイ酸源としてのコロイダルシリカと、リチウム源および金属元素M源と、を湿式混練し、得られた混練物を混練しつつ乾燥する混練乾燥工程と、前記乾燥後に得られた混合乾涸物に対し前記金属元素Mを還元すべく所定雰囲気下で熱処理する熱処理工程と、を、備えたことを特徴としている。   In order to achieve the above object, a first aspect of the present invention is a method for synthesizing olivine-type lithium M silicate (M is a metal element) used as a positive electrode material of a lithium ion secondary battery. Colloidal silica, a lithium source and a metal element M source are wet-kneaded, a kneading and drying step of kneading and drying the obtained kneaded product, and the metal element M is added to the mixed desiccant obtained after the drying. And a heat treatment step in which heat treatment is performed in a predetermined atmosphere for reduction.

上記構成によれば、ケイ酸源としてコロイダルシリカを用い、混練乾燥工程において、リチウム源および金属元素M源と、を湿式混練し、得られた混練物を混練しつつ乾燥するため、金属元素Mの少なくとも一部は酸化され、熱処理工程において、金属元素Mが還元される。
これらの結果、酸化される工程および還元される工程でそれぞれ相変化が生じ、生成されるオリビン型ケイ酸Mリチウムは、凝集などが阻害されて、粒子成長が抑制されることとなり、コロイダルシリカの粒径に起因して生成された微細な粒子状態を維持することができ、ひいては、リチウムイオン二次電池として構成した場合に、オリビン型ケイ酸Mリチウムの単位質量当たりの電流容量を大きくすることができ、高性能なリチウムイオン二次電池を製造することが可能となる。
According to the above configuration, the colloidal silica is used as the silicic acid source, and in the kneading and drying step, the lithium source and the metal element M source are wet-kneaded, and the obtained kneaded material is dried while kneading. At least a part of the metal element M is oxidized, and the metal element M is reduced in the heat treatment step.
As a result, a phase change occurs in each of the oxidation process and the reduction process, and the produced olivine-type lithium M silicate is inhibited from aggregation and particle growth is suppressed. The fine particle state generated due to the particle size can be maintained, and as a result, when configured as a lithium ion secondary battery, the current capacity per unit mass of olivine-type M lithium silicate is increased. It is possible to manufacture a high-performance lithium ion secondary battery.

本発明の第2態様は、第1態様において、前記金属元素Mは、二価の元素として、前記オリビン型ケイ酸Mリチウムを構成し、前記混練乾燥工程において、前記金属元素Mの一部または全部を、一旦酸化させることを特徴としている。
従って、確実に酸化、還元工程を経ることとなるため、生成されるオリビン型ケイ酸Mリチウムの粒子成長を抑制することが可能となる。
According to a second aspect of the present invention, in the first aspect, the metal element M constitutes the olivine-type M lithium silicate as a divalent element, and in the kneading and drying step, a part of the metal element M or All is characterized by being oxidized once.
Therefore, since the oxidation and reduction steps are surely performed, it is possible to suppress the particle growth of the generated olivine type lithium M silicate.

本発明の第3態様は、第1態様または第2態様において、前記混練乾燥工程において、前記ケイ酸源、前記金属元素M源となる化合物及びカーボン源としての有機物溶液を加え、これらを混合して前記金属元素Mを酸化させつつ溶媒を除去し、前記熱処理工程において、不活性雰囲気中又は還元雰囲気中で前記熱処理を行なう、ことを特徴としている。
上記構成によれば、熱処理工程の前にカーボン源としての有機物でオリビン型ケイ酸Mリチウムの原料粉が物質拡散を抑制して、粒子成長を抑制してより一層の微粒子化が図れる。
According to a third aspect of the present invention, in the first or second aspect, in the kneading and drying step, the silicic acid source, the compound serving as the metal element M source, and the organic solution as the carbon source are added and mixed. The solvent is removed while oxidizing the metal element M, and the heat treatment is performed in an inert atmosphere or a reducing atmosphere in the heat treatment step.
According to the above configuration, the olivine-type lithium M silicate raw material powder suppresses the material diffusion with the organic substance as the carbon source before the heat treatment step, thereby suppressing the particle growth and further making the particles finer.

本発明の第4態様は、正極材料として、オリビン型ケイ酸Mリチウム(Mは、金属元素)が用いられるリチウムイオン二次電池において、ケイ酸源としてのコロイダルシリカと、リチウム源および金属元素M源と、を湿式混練し、得られた混練物を混練しつつ乾燥し、前記乾燥後に得られた混合乾涸物に対し前記金属元素Mを還元すべく所定雰囲気下で熱処理することにより得られたオリビン型ケイ酸Mリチウムを含む正極活物質層を正極集電体上に形成したことを特徴とする。   According to a fourth aspect of the present invention, in a lithium ion secondary battery in which olivine-type lithium M silicate (M is a metal element) is used as a positive electrode material, colloidal silica as a silicate source, a lithium source, and a metal element M Obtained by wet kneading and drying the kneaded product obtained by kneading, and heat-treating the mixed desiccant obtained after the drying in a predetermined atmosphere to reduce the metal element M. A positive electrode active material layer containing olivine-type lithium M silicate is formed on a positive electrode current collector.

上記構成によれば、オリビン型ケイ酸Mリチウムは、凝集などが阻害されて、粒子成長が抑制されることとなり、コロイダルシリカの粒径に起因して生成された微細な粒子状態を維持することができ、オリビン型ケイ酸Mリチウムの単位質量当たりの電流容量が大きい高性能なリチウムイオン二次電池となる。   According to the above configuration, the olivine-type M lithium silicate inhibits aggregation and the like, suppresses particle growth, and maintains the fine particle state generated due to the particle size of colloidal silica. Thus, a high-performance lithium ion secondary battery having a large current capacity per unit mass of olivine-type lithium M silicate is obtained.

本発明によれば、二次電池正極活物質として有用な微細粒子のオリビン型ケイ酸Mリチウムを簡便に合成し、リチウムイオン二次電池の性能向上が図れる。   ADVANTAGE OF THE INVENTION According to this invention, the fine particle olivine type | mold M lithium silicate useful as a secondary battery positive electrode active material can be synthesize | combined simply, and the performance improvement of a lithium ion secondary battery can be aimed at.

第1実施例に関連して測定したX線回折パターンである。It is an X-ray diffraction pattern measured in relation to the first example. 第1実施例に係る粉体Aの走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of powder A concerning the 1st example. 第1比較例に係る粉体Dの走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of powder D concerning the 1st comparative example. 第2比較例に係る粉体Eの走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of powder E concerning the 2nd comparative example. 第1実施例及び第2実施例に関連した10サイクル目の放電容量の結果を説明する図である。It is a figure explaining the result of the discharge capacity of the 10th cycle relevant to 1st Example and 2nd Example. 第2実施例に関連して測定したX線回折パターンである。It is an X-ray diffraction pattern measured in relation to the second example. 第2実施例に係る粉体Bの走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of powder B concerning the 2nd example. 第3実施例に係る粉体Cの走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of powder C concerning the 3rd example. 第1比較例に係る粉体Dの走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of powder D concerning the 1st comparative example. 第2比較例に係る粉体Eの走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of powder E concerning the 2nd comparative example.

以下、図面を参照して本発明の実施形態について説明する。
[1]第1実施形態
本発明者は、検討を重ねた結果、オリビン型ケイ酸Mリチウム系化合物を合成するに当り、特にケイ素源の形状に着目した。一般的に原料や前駆体ではケイ素源として二酸化ケイ素(SiO)である場合が多い。二酸化ケイ素は、融点が1650℃であり、粒子が大きい場合は、固相反応を起こさせるために融点に近い温度が必要である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[1] First Embodiment As a result of repeated studies, the inventor has focused particularly on the shape of the silicon source when synthesizing the olivine-type M lithium silicate compound. Generally, raw materials and precursors are often silicon dioxide (SiO 2 ) as a silicon source. Silicon dioxide has a melting point of 1650 ° C., and when the particles are large, a temperature close to the melting point is required to cause a solid-phase reaction.

しかし高温で合成すると、反応で生成したケイ酸Mリチウム粒子が成長または焼結するために大きな粒子となる。また温度を抑制して長時間の反応時間をかける方法もあるが、工業的魅力がないばかりか粒子成長が避けられない。ケイ酸Mリチウムは固相内のリチウムイオン拡散や導電性に乏しい為に、実用活物質として用いる為には、拡散および導電距離を短くするために小さな粒子であることが必要である。原料および前駆体中で最大の化学的安定性を持つ二酸化ケイ素の粒子が非常に小さく、数ナノメートルである場合、粒子の分散性と焼結温度が低下することに着目し、上記目的が達成されることを見出した。   However, when synthesized at a high temperature, the lithium M silicate particles produced by the reaction grow or sinter and become large particles. There is also a method of controlling the temperature and taking a long reaction time, but it is not industrially attractive and particle growth is unavoidable. Since lithium M silicate is poor in lithium ion diffusion and conductivity in the solid phase, in order to be used as a practical active material, it is necessary to be small particles in order to shorten the diffusion and conduction distance. Focused on the fact that silicon dioxide particles with the greatest chemical stability in the raw materials and precursors are very small and a few nanometers, the dispersibility of the particles and the sintering temperature are reduced, achieving the above objective I found out that

コロイダルシリカは水に直径が数から数十ナノメートルの微小な二酸化ケイ素が分散したものであり、これをケイ素源としてオリビン型ケイ酸Mリチウムを合成することにより、低温で短時間で高純度な微小粒子が得られる。この粒子を正極活物質として用いると、従来よりも高容量な電極が得られる。
本発明の対象とするオリビン型ケイ酸Mリチウムを表す一般式LiMSiOにおいて、Mは、Mn(マンガン)、Fe(鉄)、Co(コバルト)またはNi(ニッケル)を表す。
Colloidal silica is a dispersion of fine silicon dioxide with a diameter of several to several tens of nanometers in water. By synthesizing olivine-type M lithium silicate using this as a silicon source, high purity can be achieved at low temperature in a short time. Fine particles are obtained. When these particles are used as a positive electrode active material, an electrode having a higher capacity than the conventional one can be obtained.
In the general formula Li 2 MSiO 4 representing the olivine-type M lithium silicate targeted by the present invention, M represents Mn (manganese), Fe (iron), Co (cobalt), or Ni (nickel).

本発明に従い一般式LiMSiOを合成するに当たっては、当該一般式におけるリチウム、M(金属元素、特に遷移金属元素のMn、Fe、Co、Ni等)源としては、これらのシュウ酸塩または炭酸塩の顆粒で供給することが好ましい。また目的物のMが二価の金属元素であるので仕込みは二価で行なった方が良いが、空気中での安定性により混合過程で酸化を受ける可能性があるものは焼成雰囲気を還元性にする等の工夫が必要である。
Si(ケイ素)源は二酸化ケイ素の微粒が水分散されたコロイダルシリカを用いる。これらの組成は各化合物を化学量論比で仕込み、また熱処理時に揮発が生じる場合には原料の仕込み量を調整して所望の組成のオリビン型ケイ酸Mリチウムが得られるようにする。
In synthesizing the general formula Li 2 MSiO 4 according to the present invention, as the source of lithium and M (metal elements, especially transition metal elements such as Mn, Fe, Co, Ni, etc.) in the general formula, these oxalate salts or It is preferred to supply in carbonate granules. In addition, since the target M is a divalent metal element, it is better to charge it in a divalent state. However, if it is subject to oxidation in the mixing process due to its stability in air, the firing atmosphere can be reduced. It is necessary to devise such as.
As the Si (silicon) source, colloidal silica in which fine particles of silicon dioxide are dispersed in water is used. In these compositions, each compound is charged in a stoichiometric ratio, and when volatilization occurs during heat treatment, the amount of raw material charged is adjusted so that olivine-type M lithium silicate having a desired composition can be obtained.

前述のリチウムとM源の化合物顆粒をコロイダルシリカ(分散液)中に投入し、遊星ボールミル等で良く攪拌した後、別の容器に移して攪拌しながら蒸発乾涸させる。この状態で乾燥残渣を採集し、熱処理を行なう。MがFe等の時は空気中の酸素と反応して二価から三価へFeが酸化されるので、熱処理時は3%水素を添加した窒素等の還元雰囲気を用いる必要がある。熱処理条件は二酸化ケイ素がナノ粒子であるために本来の融点(1650℃)よりも、かなり低温の600〜800℃で、4〜8時間で反応を完了させることができる。   The above lithium and M source compound granules are put into colloidal silica (dispersion) and stirred well with a planetary ball mill or the like, then transferred to another container and evaporated to dryness while stirring. In this state, the dry residue is collected and heat-treated. When M is Fe or the like, it reacts with oxygen in the air and Fe is oxidized from divalent to trivalent. Therefore, it is necessary to use a reducing atmosphere such as nitrogen to which 3% hydrogen is added during the heat treatment. Since the silicon dioxide is a nanoparticle, the heat treatment can be completed in 4 to 8 hours at 600 to 800 ° C., which is considerably lower than the original melting point (1650 ° C.).

得られたオリビン型ケイ酸Mリチウムは、X線回折装置等で単相であることを確認し、走査電子顕微鏡で粒子の大きさを確認した結果、合成条件が低温で短時間であるため、約数十から数百ナノメートルの直径を持つ粒子であることが確認された。
ところで、本実施形態の合成方法で得られたオリビン型ケイ酸Mリチウムは導電性に乏しいため、導電材としての5〜10%程度のカーボンブラックと混合して正極活物質合剤としてから、正極作製へ供することが望ましい。混合法としてはボールミル等のメディア分散法が適当である。
The obtained olivine-type lithium M silicate was confirmed to be a single phase with an X-ray diffractometer or the like, and as a result of confirming the size of the particles with a scanning electron microscope, the synthesis conditions were low temperature and short time, It was confirmed to be a particle having a diameter of about several tens to several hundreds of nanometers.
By the way, since the olivine-type M lithium silicate obtained by the synthesis method of this embodiment has poor conductivity, it is mixed with about 5 to 10% of carbon black as a conductive material to form a positive electrode active material mixture. It is desirable to use for production. As a mixing method, a media dispersion method such as a ball mill is suitable.

正極の作製は公知の電極作製方法で行なうことができる。例えば、上述した正極活物質合剤を必要に応じて公知のバインダー(結着材:例えば、PVdF;ポリビニリデンフルオライド、SBR;スチレン−ブタジエンゴム、アクリル系;ポリメチルメタクリレート等)またはこれらの溶液(有機系はNMP等、水系は水)と、水系ではCMC(カルボキシメチルセルロース)等の増粘剤水溶液を混合してスラリーを作製し、これをアルミニウム箔等の金属集電箔(集電体)に塗工、乾燥、圧延し作製することができる。
また、負極は公知のものを使用することができる。負極活物質としては黒鉛系、チタン酸リチウム(LTO)およびその他を使用し、正極と略同様な方法で作製することができる。
The positive electrode can be produced by a known electrode production method. For example, the positive electrode active material mixture described above may be a known binder (binder: for example, PVdF; polyvinylidene fluoride, SBR; styrene-butadiene rubber, acrylic; polymethyl methacrylate, etc.) or a solution thereof as necessary. (NMP is used for organic systems, water is used for water systems) and aqueous solutions for thickeners such as CMC (carboxymethylcellulose) are mixed to prepare a slurry, which is then used as a metal current collector foil (current collector) such as an aluminum foil. It can be prepared by coating, drying and rolling.
Moreover, a well-known thing can be used for a negative electrode. As the negative electrode active material, graphite, lithium titanate (LTO) and others can be used, and they can be produced by the same method as that for the positive electrode.

電解液は、公知の非水電解質二次電池に使用されるものを使用できる。例えば、以下のものである。電解液は通常、電解質及び溶媒を含む。
電解液を構成する溶媒としては、非水系であれば特に制限されず、例えばカーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、エーテル類、アミン類、エステル類、アミド類、リン酸エステル化合物等を使用することができる。これらの代表的なものを列挙すると、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、エチレンカーボネート、ビニレンカーボネート、メチルホルメート、ジメチルスルホキシド、プロピレンカーボネート、アセトニトリル、γ−ブチロラクトン、ジメチルホルムアミド、ジメチルカーボネート、ジエチルカーボネート、スルホラン、エチルメチルカーボネート、1,4−ジオキサン、4−メチル−2−ペンタノン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル、1,2−ジクロロエタン、リン酸トリメチル、リン酸トリエチル等が使用できる。これらは1種または2種以上で用いることができる。
What is used for a well-known nonaqueous electrolyte secondary battery can be used for electrolyte solution. For example: The electrolytic solution usually includes an electrolyte and a solvent.
The solvent constituting the electrolytic solution is not particularly limited as long as it is non-aqueous. For example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines , Esters, amides, phosphate ester compounds and the like can be used. Listed as representative of these are 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, ethylene carbonate, vinylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, γ-butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane, ethyl methyl carbonate, 1,4-dioxane, 4-methyl-2-pentanone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl Use ether, sulfolane, methyl sulfolane, propionitrile, benzonitrile, butyronitrile, valeronitrile, 1,2-dichloroethane, trimethyl phosphate, triethyl phosphate, etc. It can be. These can be used alone or in combination of two or more.

電解液を構成する電解質としては、例えば、LiClO、LiPF、LiBF、LiCFSO、LiAsF、LiB(C、LiCl、LiBr、CHSOLi、CFSOLi、LiN(SOCF、LiN(SO、LiC(SOCF、LiN(SOCF等を使用することができる。
本発明電池では、セパレータ、電池ケース他、構造材料等の要素についても従来公知のポリオレフィン系樹脂を主体とする各種材料が使用できる。本発明の電池は、上記の電池要素を用いて公知の方法に従って組み立てれば良く、形状、サイズを適宜採用することができる。
Examples of the electrolyte constituting the electrolytic solution include LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, and CF 3 SO. 3 Li, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 ) 2, or the like can be used.
In the battery of the present invention, various materials mainly composed of a conventionally known polyolefin-based resin can be used for elements such as a separator, a battery case, and other structural materials. What is necessary is just to assemble the battery of this invention according to a well-known method using said battery element, and can employ | adopt a shape and a size suitably.

[2]第2実施形態
次に本発明の第2実施形態について説明する。
本発明者らは、第1実施形態と同様に、検討を重ねた結果、原料および前駆体中で最大の化学的安定性を持つ二酸化ケイ素の粒子が非常に小さく数ナノメートルであること、金属元素M源が目的生成物の二価以上に酸化されており還元反応を経ること、原料粒子を有機物溶液で混練して溶媒を除去してカーボン源が各原料粒子表面に付着している状態であることにより、不活性または還元雰囲気中で熱処理により目的生成物を合成する時に、粒子の分散性向上と反応時の物質拡散を抑制でき、反応生成物の粒子成長を抑制してカーボンコートが施された高純度微粒子が得られ、上記目的が達成されることを見出した。
[2] Second Embodiment Next, a second embodiment of the present invention will be described.
As in the first embodiment, the inventors of the present invention have repeatedly studied, and as a result, the silicon dioxide particles having the maximum chemical stability in the raw materials and precursors are very small and several nanometers, metal The element M source is oxidized to a divalent or higher value of the target product, undergoes a reduction reaction, the raw material particles are kneaded with an organic solution, the solvent is removed, and the carbon source is attached to the surface of each raw material particle. Therefore, when synthesizing the target product by heat treatment in an inert or reducing atmosphere, it is possible to improve the dispersibility of the particles and suppress the material diffusion during the reaction, and to suppress the particle growth of the reaction product and to apply the carbon coat. It was found that the high-purity fine particles thus obtained were obtained, and that the above object was achieved.

本第2実施形態の対象とするオリビン型ケイ酸Mリチウムを表す一般式LiMSiOにおいて、Mは、遷移金属であるMn(マンガン)、Fe(鉄)、Co(コバルト)またはNi(ニッケル)を表す。
本第2実施形態に従い、一般式LiMSiOを有するオリビン型ケイ酸Mリチウムを合成するに当たっては、この一般式におけるリチウムを供給するリチウム源、M(Mn、Fe、Co、Ni)を供給するM源としては、Mn、Fe、CoまたはNiのシュウ酸塩または炭酸塩の顆粒として供給することが好ましい。
In the general formula Li 2 MSiO 4 representing the olivine-type M lithium silicate targeted by the second embodiment, M is a transition metal such as Mn (manganese), Fe (iron), Co (cobalt), or Ni (nickel). ).
In synthesizing the olivine-type M lithium silicate having the general formula Li 2 MSiO 4 according to the second embodiment, a lithium source for supplying lithium in the general formula, M (Mn, Fe, Co, Ni) is supplied. The M source is preferably supplied as granules of oxalate or carbonate of Mn, Fe, Co or Ni.

また、目的物であるオリビン型ケイ酸MリチウムのMが二価の金属元素であるので仕込みは二価で行なった方が良いが、価数の変化なし、すなわち、酸化反応あるいは還元反応なしで固相反応を行なうよりも、一旦、二価のMの一部から全部が三価以上に酸化された状態の方が相変化を伴うので、より小粒径の目的物が得られ易いことが判明した。   Moreover, since M of the olivine-type lithium silicate M, which is the target product, is a divalent metal element, it is better to prepare it with a divalent charge, but without changing the valence, that is, without an oxidation reaction or a reduction reaction. Rather than performing a solid-phase reaction, a state in which all of a part of divalent M is once oxidized to trivalent or more is accompanied by a phase change. found.

さらに原料粉を熱処理前にカーボン源の有機物で覆うことにより、熱処理時に有機物が縮合等の化学反応を起こし、この化学種および生成したカーボンが物質拡散を抑制するため、一旦酸化させてから前記法との相乗効果により、さらに粒子成長を抑制してオリビン型ケイ酸Mリチウムの微粒子が得られ易い状態になる。
カーボン源の有機物としては、各種の有機溶媒に可溶な樹脂、各種有機化合物やピッチ等が使用でき、水に可溶なカルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール等の水溶性高分子や各種糖類、アルコール類、グリコール類が使用できる。これらの化合物は溶媒を気化させた後に熱処理により、Mの二価への還元と粒子表面へのカーボン析出源として利用される。
Further, by covering the raw material powder with an organic substance of a carbon source before the heat treatment, the organic substance undergoes a chemical reaction such as condensation during the heat treatment. As a result of this synergistic effect, the particle growth is further suppressed and fine particles of olivine-type lithium M silicate are easily obtained.
As organic substances of the carbon source, resins soluble in various organic solvents, various organic compounds, pitches, and the like can be used. Water-soluble polymers such as carboxymethyl cellulose, methyl cellulose, and polyvinyl alcohol, various saccharides, and alcohols that are soluble in water. And glycols can be used. These compounds are used as a source of carbon precipitation on the particle surface by reducing M to divalent by heat treatment after vaporizing the solvent.

熱処理条件としては、最終的にMの殆どを二価にしなければならないので、熱処理雰囲気は、有機物量がMを二価までに還元する十分な量である場合は不活性雰囲気、十分でない場合は還元性雰囲気にする必要がある。不活性雰囲気としては、窒素やアルゴン等が使用でき、還元雰囲気としては、水素等の還元性気体を混合した窒素やアルゴン等が使用できる。
各Si源、M源、Li源原料の仕込み量は、これらの各原料化合物を化学量論比で仕込み、また熱処理時に揮発が生じる場合には原料の仕込み量を調整して、所望の組成のオリビン型ケイ酸Mリチウムが得られるようにする。
As heat treatment conditions, most of M must be finally divalent, so the heat treatment atmosphere is an inert atmosphere when the amount of organic matter is sufficient to reduce M to divalent, and when it is not sufficient A reducing atmosphere is required. Nitrogen, argon, or the like can be used as the inert atmosphere, and nitrogen, argon, or the like mixed with a reducing gas such as hydrogen can be used as the reducing atmosphere.
For each Si source, M source, and Li source raw material, the respective raw material compounds are charged in a stoichiometric ratio, and when volatilization occurs during heat treatment, the raw material charging amount is adjusted to obtain a desired composition. An olivine type lithium M silicate is obtained.

前述のLiおよびM源の化合物顆粒とカーボン源の有機物溶液をコロイダルシリカ(分散液)中に投入し、空気中で遊星ボールミル等を用いて良く攪拌した後、別の容器に移して攪拌しながら蒸発乾涸させる。この時に酸化を受けるMは二価以上に酸化される。次に乾燥残渣を採集し熱処理を行なう。
熱処理工程は、カーボン源の有機物が縮合反応を起こし、カーボンへ変化する過程が必要なので、一旦、200〜300℃の温度で2〜8時間の保持を行なうことが望ましい。
The above-mentioned Li and M source compound granules and the carbon source organic solution are put into colloidal silica (dispersion) and stirred well in the air using a planetary ball mill or the like, then transferred to another container while stirring. Evaporate to dryness. At this time, M undergoing oxidation is oxidized to a divalent or higher value. Next, the dry residue is collected and subjected to heat treatment.
Since the heat treatment process requires a process in which the organic substance of the carbon source undergoes a condensation reaction and changes to carbon, it is desirable to temporarily hold at a temperature of 200 to 300 ° C. for 2 to 8 hours.

不活性または還元雰囲気を構成するガスは有機物の揮発分を運ぶために、流量によってカーボンコート量が変化する恐れがあるため、カーボンコート量が変化しないように流量を制御して流す必要がある。
温度保持後の本焼成温度は二酸化ケイ素がナノ粒子であるため、本来の融点(1650℃)よりも、かなり低温の600〜800℃で、4から8時間で反応を完了させることができる。
得られたオリビン型ケイ酸Mリチウムは、X線回折装置等で単相であることを確認した後、走査電子顕微鏡で粒子の大きさを確認した。これにより、オリビン型ケイ酸Mリチウムは、約数十から数百ナノメートルの直径を持つ粒子であることが確認された。これは、合成条件が低温で短時間のためであると考えられた。
Since the gas constituting the inert or reducing atmosphere carries the volatile matter of the organic matter, the amount of carbon coating may change depending on the flow rate. Therefore, it is necessary to control the flow rate so that the carbon coating amount does not change.
Since the main baking temperature after holding the temperature is silicon dioxide nanoparticles, the reaction can be completed in 4 to 8 hours at 600 to 800 ° C. which is considerably lower than the original melting point (1650 ° C.).
The obtained olivine-type M lithium silicate was confirmed to be a single phase with an X-ray diffractometer or the like, and then the particle size was confirmed with a scanning electron microscope. Thereby, it was confirmed that the olivine-type lithium M silicate is a particle having a diameter of about several tens to several hundreds of nanometers. This was thought to be because the synthesis conditions were low temperature for a short time.

第2実施形態の合成方法で得られたオリビン型ケイ酸Mリチウムは、カーボンコートが施されており粒子表面の導電性は良好であるが、より強いオリビン型ケイ酸Mリチウム粒子間およびオリビン型ケイ酸Mリチウム粒子と集電体間の導電性を確保する為に、2〜10%程度のカーボンブラック等の導電剤を混合して正極作製へ供することが望ましい。ここで、正極の作製、負極、電解液(を構成する溶媒及び電解質)、セパレータ、電池ケース他、構造材料等の要素は、第1実施形態と同様のものを用いることができる。   The olivine-type M lithium silicate obtained by the synthesis method of the second embodiment is carbon coated and has good conductivity on the particle surface, but stronger olivine-type M lithium silicate interparticle and olivine-type. In order to ensure electrical conductivity between the lithium silicate M particles and the current collector, it is desirable to mix a conductive agent such as carbon black of about 2 to 10% and to provide the positive electrode. Here, the same elements as those in the first embodiment can be used for the production of the positive electrode, the negative electrode, the electrolytic solution (solvent and electrolyte), the separator, the battery case, and other structural materials.

以上の説明のように、各実施形態によれば、二次電池正極活物質として有用な微細粒子のオリビン型ケイ酸Mリチウムを簡便に合成し、リチウムイオン二次電池の性能向上が図れる。
以上の実施形態の説明においては、オリビン型ケイ酸Mリチウムを合成するに際し、金属元素Mの一部または全部を、一旦酸化させ、還元して相変化を行わせることにより微粒子化を図っていたが、原料としての金属元素Mの一部または全部を三価の元素とし、還元工程を経ることで相変化を行わせ、還元工程における相変化で微粒子化を図るように構成することも可能である。
As described above, according to each embodiment, it is possible to simply synthesize olivine-type lithium M silicate, which is useful as a secondary battery positive electrode active material, and to improve the performance of the lithium ion secondary battery.
In the description of the above embodiment, when synthesizing the olivine-type M lithium silicate, a part or all of the metal element M was once oxidized and reduced to cause phase change to reduce the size. However, part or all of the metal element M as a raw material may be a trivalent element, and the phase change may be performed through the reduction process, and the particles may be formed by the phase change in the reduction process. is there.

以下に、本発明の特徴をさらに具体的に示すために実施例を記すが、本発明は以下の実施例によって制限されるものではない。
[1]第1実施形態の実施例
まず、第1実施形態の実施例(第1実施例)について説明する。
[1.1]第1実施例
粒径が数ナノメートルの二酸化ケイ素は、四塩化ケイ素の熱分解によるアエロジル合成のような気相合成法以外に、安価な水ガラスを原料とする方法や、アルコキシドの加水分解といった液相合成法により合成され、コロイダルシリカとして市販されている。
EXAMPLES Examples will be described below to more specifically illustrate the features of the present invention, but the present invention is not limited to the following examples.
[1] Example of First Embodiment First, an example (first example) of the first embodiment will be described.
[1.1] First Example Silicon dioxide having a particle size of several nanometers, in addition to a gas phase synthesis method such as aerosil synthesis by thermal decomposition of silicon tetrachloride, It is synthesized by a liquid phase synthesis method such as hydrolysis of alkoxide and is commercially available as colloidal silica.

本第1実施例としては触媒化成工業株式会社製の商品名「カタロイドS−20L」(二酸化ケイ素として20%の水分散液)が入手可能であり、これを用いてオリビン型ケイ酸Mリチウムの合成を試みた。以下にMがFeであるオリビン型ケイ酸鉄リチウムの合成例を記載した。
Si源としての「カタロイドS−20L」の正確な二酸化ケイ素量を測定するために熱重量分析を用いて、二酸化ケイ素として21.32%であることを確認した。
As the first embodiment, a product name “Cataloid S-20L” (20% aqueous dispersion as silicon dioxide) available from Catalyst Kasei Kogyo Co., Ltd. is available. A synthesis was attempted. Below, the synthesis example of the olivine type lithium iron silicate whose M is Fe was described.
In order to measure the exact amount of silicon dioxide of “Cataloid S-20L” as the Si source, thermogravimetric analysis was used to confirm that it was 21.32% as silicon dioxide.

Li源としては試薬の炭酸リチウム、Fe源はシュウ酸鉄(II)2水和物を用いた。
これらの各元素の試料をモル比でLi:Fe:Siが、2:1:1になるように秤量し、遊星ボールミルを用いて、3分間(自転2000rpm、公転800rpm)混合してスラリー状の混練物を得た。混練物を不活性雰囲気下、100℃で混練しながら水分を蒸発させ、混合乾涸物を得た。
Lithium carbonate as a reagent was used as the Li source, and iron (II) oxalate dihydrate was used as the Fe source.
Samples of these elements were weighed so that the molar ratio of Li: Fe: Si was 2: 1: 1, and mixed for 3 minutes (rotation 2000 rpm, revolution 800 rpm) using a planetary ball mill. A kneaded product was obtained. While kneading the kneaded product at 100 ° C. in an inert atmosphere, the water was evaporated to obtain a mixed dried product.

続いて、混合乾涸物を黒鉛坩堝に入れて真空置換炉へ投入し、炉中を真空にしてから窒素で置換した。窒素を流量100ml/minで炉内へ導入しながら、温度を700℃まで上昇し、4時間の熱処理を実施した。処理終了後は水素混合窒素を導入しながら放冷し、80℃以下に温度が低下した後に取り出した。熱処理後の粉体塊は灰色からオリーブ色を呈しており、緩く凝集した状態であった。塊は目開き50μmの篩を通した後、各種測定に供した。この粉体を本発明に係る粉体Aとした。   Subsequently, the mixed dried product was put into a graphite crucible and put into a vacuum substitution furnace, and the inside of the furnace was evacuated and replaced with nitrogen. While introducing nitrogen into the furnace at a flow rate of 100 ml / min, the temperature was raised to 700 ° C. and heat treatment was performed for 4 hours. After completion of the treatment, the mixture was allowed to cool while introducing hydrogen mixed nitrogen, and was taken out after the temperature dropped to 80 ° C. or lower. The powder mass after the heat treatment had a gray to olive color and was in a loosely aggregated state. The lump was subjected to various measurements after passing through a sieve having an opening of 50 μm. This powder was designated as powder A according to the present invention.

[1.2]第1比較例
第1比較例として、原料を一度融解してから徐冷する方法で、オリビン型ケイ酸Mリチウムの合成を行った。Si源を試薬の二酸化ケイ素(粒径35μm)、Li源としては試薬の炭酸リチウム、およびFe源はシュウ酸鉄(II)2水和物を用いた。
それぞれの試料を白金坩堝に入れ、電気炉を用いてアルゴン雰囲気中で200℃/hrで1500℃まで加熱し、当該温度に5分間保持して溶融状態を保持した後、電気炉電源を停止し、そのまま電気炉内で放冷(徐冷)した。
そして、80℃以下に温度が低下した後に取り出した。熱処理後の粉体塊は灰色からオリーブ色を呈しており、硬く焼き固まった状態であった。粉砕機を用いて細粒にした後、目開き50μmの篩を通し、粉体Dとして各種測定に供した。
[1.2] First Comparative Example As a first comparative example, olivine-type lithium M silicate was synthesized by a method in which a raw material was once melted and then gradually cooled. The Si source was silicon dioxide (particle size: 35 μm), the Li source was lithium carbonate, and the Fe source was iron (II) oxalate dihydrate.
Each sample was put in a platinum crucible, heated to 1500 ° C. at 200 ° C./hr in an argon atmosphere using an electric furnace, held at that temperature for 5 minutes to maintain a molten state, and then the electric furnace power supply was stopped. Then, it was left to cool in the electric furnace as it was (slow cooling).
And it took out after temperature fell to 80 degrees C or less. The powder lump after the heat treatment had a gray to olive color and was hard and baked. After making it fine using a pulverizer, it was passed through a sieve having an opening of 50 μm and subjected to various measurements as powder D.

[1.3]第2比較例
また固相法によってもオリビン型ケイ酸Mリチウムの合成を行った。出発原料にLiとSi源としてメタケイ酸リチウム、Fe源にシュウ酸鉄(II)二水和物を化学量論比に秤量し、メノウ乳鉢を用いて混合後、アルミナルツボに入れ、電気炉を用いて650℃で12時間仮焼成後粉砕し、1000℃にて24時間の本焼成を2回行なった。本焼成終了後、そのまま電気炉内で放冷(徐冷)し、80℃以下に温度が低下した後に取り出した。熱処理後の粉体塊は灰色からオリーブ色を呈しており、硬く焼き固まった状態であった。粉砕機を用いて細粒にした後、目開き50μmの篩を通した後、粉体Eとして各種測定に供した。
[1.3] Second Comparative Example Also, olivine-type lithium M silicate was synthesized by a solid phase method. Lithium metasilicate as the starting material and lithium source as the Si source, and iron (II) oxalate dihydrate as the Fe source are weighed in a stoichiometric ratio, mixed using an agate mortar, placed in an alumina crucible, and an electric furnace The mixture was pre-fired at 650 ° C. for 12 hours and then pulverized, followed by firing at 1000 ° C. for 24 hours twice. After completion of the main firing, the product was allowed to cool in the electric furnace (slow cooling) as it was, and was taken out after the temperature dropped to 80 ° C. or lower. The powder lump after the heat treatment had a gray to olive color and was hard and baked. After making it fine using a pulverizer, it was passed through a sieve having an opening of 50 μm, and subjected to various measurements as powder E.

[2]物性測定
得られた粉体A,D,Eについて、X線回折パターンの測定と走査電子顕微鏡(SEM)による形状観察を行なった。
図1は、第1実施形態の実施例に関し測定したX線回折パターンである。
図1に示すように、全ての粉体A,D,Eはオリビン型ケイ酸鉄リチウムの略単相で構成されているが、粉体Aと比較して粉体Dと粉体EはX線回折ピークが高く鋭くなり、粉体Aよりも大きく結晶成長していることが確認された。
[2] Physical property measurement The obtained powders A, D, and E were subjected to measurement of an X-ray diffraction pattern and shape observation with a scanning electron microscope (SEM).
FIG. 1 is an X-ray diffraction pattern measured for the example of the first embodiment.
As shown in FIG. 1, all powders A, D, and E are composed of a substantially single phase of olivine type lithium iron silicate. Compared with powder A, powder D and powder E are X The line diffraction peak was high and sharp, and it was confirmed that the crystal growth was larger than that of the powder A.

図2は、第1実施例に係る粉体Aの走査型電子顕微鏡(SEM)写真である。
また、図3は、第1比較例に係る粉体Dの走査型電子顕微鏡(SEM)写真である。
また、図4は、第2比較例に係る粉体Eの走査型電子顕微鏡(SEM)写真である。
ここで、図2〜図4において、倍率は、5000倍となっている。
粉体Aは、図2に示すように、粒径50〜200ナノメートルの微細な粒子で構成されているのに対し、粉体Bおよび粉体Cは、図3及び図4に示すように、破砕状の5〜50μmの粗大粒子で構成されていることが判明した。これは、本発明に係る第1実施例の製法では、合成条件が低温短時間であるのに対し、第1比較例および第2比較例では、溶融状態を経たことや、高温で長時間であったために結晶が成長したことによると推定される。
FIG. 2 is a scanning electron microscope (SEM) photograph of powder A according to the first example.
FIG. 3 is a scanning electron microscope (SEM) photograph of the powder D according to the first comparative example.
FIG. 4 is a scanning electron microscope (SEM) photograph of powder E according to the second comparative example.
Here, in FIGS. 2 to 4, the magnification is 5000 times.
As shown in FIG. 2, the powder A is composed of fine particles having a particle diameter of 50 to 200 nanometers, whereas the powder B and the powder C are as shown in FIGS. It was found to be composed of crushed 5-50 μm coarse particles. This is because, in the manufacturing method of the first example according to the present invention, the synthesis conditions are low temperature and short time, whereas in the first comparative example and the second comparative example, the molten state has passed or the high temperature is long. This is presumed to be due to the growth of crystals.

[3]電極特性の評価
[3.1]リチウム二次電池の作製
第1実施例、第1比較例及び第2比較例で得られた粉体A,D,Eのそれぞれに、導電剤としてアセチレンブラックを10%になるように混合し、内部を窒素で置換したボールミルを用いてさらに5時間混合した。
さらに混合粉体とバインダー(結着剤)であるポリフッ化ビニリデン(PVdF)を、重量比95:5の割合で混合し、N−メチル−2−ピロリドン(NMP)を加えて十分混練し、正極スラリーを得た。
[3] Evaluation of electrode characteristics [3.1] Fabrication of lithium secondary battery Each of powders A, D, and E obtained in the first example, the first comparative example, and the second comparative example was used as a conductive agent. The mixture was further mixed for 5 hours using a ball mill in which acetylene black was mixed to 10% and the inside was replaced with nitrogen.
Further, the mixed powder and polyvinylidene fluoride (PVdF) which is a binder (binder) are mixed at a weight ratio of 95: 5, and N-methyl-2-pyrrolidone (NMP) is added and kneaded sufficiently. A slurry was obtained.

得られた正極スラリーを厚さ15μmのアルミニウム箔集電体に50g/mの塗工量で塗布し、120℃で30分間乾燥した。
その後、ロールプレスで2.0g/ccの密度になるように圧延加工し、2cmの円盤状に打抜いて正極とした。これらの正極と、負極に金属リチウム、電解液にエチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒にLiPFを1Mの濃度で溶解したものを用い、リチウム二次電池を作製した。なお、作製雰囲気は、露点が−50℃以下とした。各極は集電体の付いた電槽缶に圧着して用いた。上記正極、負極、電解質及びセパレータを用いて直径25mm、厚さ1.6mmのコイン型リチウム二次電池とした。各正極活物質を用いた電池を各々、本発明に係る電池BA、比較例を電池BDと電池BEとした。
The obtained positive electrode slurry was applied to an aluminum foil current collector with a thickness of 15 μm at a coating amount of 50 g / m 2 and dried at 120 ° C. for 30 minutes.
Then, it was rolled to a density of 2.0 g / cc with a roll press, punched into a 2 cm 2 disk shape, and used as a positive electrode. Using these positive electrodes, metallic lithium for the negative electrode, and a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 in the electrolyte solution, LiPF 6 was dissolved at a concentration of 1M, and a lithium secondary battery was used. Produced. The production atmosphere was a dew point of −50 ° C. or lower. Each electrode was used by being crimped to a battery case with a current collector. A coin-type lithium secondary battery having a diameter of 25 mm and a thickness of 1.6 mm was formed using the positive electrode, the negative electrode, the electrolyte, and the separator. A battery using each positive electrode active material was designated as a battery BA according to the present invention, and a battery BD and a battery BE as comparative examples.

[3.2]リチウム二次電池の電池試験
各電池を、各々多数個作製し、電流0.01CAで初回充放電から10サイクル繰返した。充電条件は、電流0.01CA、電圧4.5Vの定電流定電圧充電として定電圧充電時の電流が0.005CAに垂下するまでとした。放電条件は、電流0.01CA、終止電圧1.5Vの定電流放電とした。温度は全て25℃とした。
[3.2] Battery Test of Lithium Secondary Battery A large number of each battery was produced and repeated for 10 cycles from the initial charge / discharge at a current of 0.01 CA. The charging conditions were set as constant current constant voltage charging with a current of 0.01 CA and a voltage of 4.5 V until the current during constant voltage charging dropped to 0.005 CA. The discharge conditions were a constant current discharge with a current of 0.01 CA and a final voltage of 1.5V. All temperatures were 25 ° C.

図5は、実施形態に関連した10サイクル目の放電容量の結果を説明する図である。
図5において、容量はオリビン型ケイ酸鉄リチウム1g当りに換算した。
図5において、第1実施例に係る粉体Aを用いた電池BAが最も大きな容量を示した。電池BAと比較して、電池BDおよび電池BEの容量が小さいのは、X線回折測定とSEM観察結果に基づけば、これらの正極活物質であるオリビン型ケイ酸鉄リチウム粒子が粗大化しているために、粒子内部のリチウムイオン拡散が円滑に進行しないためであると推定される。よって、良好な正極特性を得るためにはナノレベル程度の小さな粒径を持つ活物質の合成法が必要であり、本発明によりこの一つが提供される。
以上の説明のように、本第1実施例によれば、二次電池正極活物質として有用な微細粒子のオリビン型ケイ酸Mリチウムを簡便に合成し、リチウムイオン二次電池の性能向上が図れる。
FIG. 5 is a diagram for explaining the result of the discharge capacity at the 10th cycle related to the embodiment.
In FIG. 5, the capacity was converted per 1 g of olivine type lithium iron silicate.
In FIG. 5, the battery BA using the powder A according to the first example showed the largest capacity. Compared to the battery BA, the capacity of the battery BD and the battery BE is small because the olivine-type lithium iron silicate particles as these positive electrode active materials are coarsened based on the X-ray diffraction measurement and SEM observation results. For this reason, it is presumed that the diffusion of lithium ions inside the particles does not proceed smoothly. Therefore, in order to obtain good positive electrode characteristics, a method of synthesizing an active material having a particle size as small as a nano level is necessary, and this is provided by the present invention.
As described above, according to the first embodiment, it is possible to easily synthesize olivine-type M lithium silicate, which is useful as a secondary battery positive electrode active material, and to improve the performance of the lithium ion secondary battery. .

[4]第2実施形態の実施例
次に、第2実施形態の実施例(第2実施例、第3実施例)について説明する。
[4.1]第2実施例
本発明者らは、純度が高く粒子径の小さなカーボンコートされたオリビン型ケイ酸Mリチウムを得ることを目的に検討を重ねた結果、ケイ素源として粒径数ナノメートルの二酸化ケイ素を用い、M源としてオリビン型ケイ酸Mリチウム構成時に二価となる金属元素Mであり、合成前の混練時に金属元素Mの一部又は全部が三価以上となる化合物を用い、さらにカーボン源として有機物溶液を用いて、これらを混合して溶媒を除去した後、不活性または還元雰囲気中で熱処理し、金属元素Mを再び二価とすれば良いことを見い出した。
[4] Examples of the Second Embodiment Next, examples (second example and third example) of the second embodiment will be described.
[4.1] Second Example As a result of repeated studies aimed at obtaining carbon-coated olivine type M lithium silicate having a high purity and a small particle size, the number of particles as a silicon source was determined. A compound in which nanometer silicon dioxide is used and a metal element M that becomes divalent when the olivine-type M lithium silicate is used as an M source, and a part or all of the metal element M becomes trivalent or higher when kneaded before synthesis. It was found that the organic element solution was used as a carbon source, and these were mixed to remove the solvent and then heat-treated in an inert or reducing atmosphere so that the metal element M was made divalent again.

本第2実施例としては、触媒化成工業株式会社製の商品名「カタロイドS−20L」(二酸化ケイ素として20%の水分散液)を用いて、オリビン型ケイ酸Mリチウムの合成を試みた。以下に、金属元素MがFeであるオリビン型ケイ酸鉄リチウムの合成例を記載する。
Si源としてのカタロイドS−20Lの正確な二酸化ケイ素量は、21.32%であることを確認した。
As this 2nd Example, the synthesis | combination of the olivine type M lithium silicate was tried using the brand name "Cataloid S-20L" (20% aqueous dispersion as a silicon dioxide) by a catalyst chemical industry company. Below, the synthesis example of the olivine type lithium iron silicate whose metal element M is Fe is described.
It was confirmed that the exact silicon dioxide content of Cataloid S-20L as the Si source was 21.32%.

Li源としては試薬の炭酸リチウム、Fe源はシュウ酸鉄(II)2水和物を用いた。これらの各元素の試料をモル比でLi:Fe:Siが2:1:1になるように秤量し、さらに計り取った固形分に対して10%の質量に相当するポリビニルアルコールの5%水溶液を調製して予備混合後、遊星ボールミルを用いて、3分間(自転2000rpm、公転800rpm)混合してスラリー状の混練物を得た。スラリーは混練後、緑色を呈する高粘度流体であったが、数分でゲル化する性質があった。スラリーは空気中に静置するだけで表面が褐色に変化し、これはFeが二価から三価に酸化されるためである。混練物を空気中、100℃で混練しながら水分を蒸発させ、混合乾涸物を得た。混合乾涸物は、混練により酸化しており全体が褐色に変化した。   Lithium carbonate as a reagent was used as the Li source, and iron (II) oxalate dihydrate was used as the Fe source. A sample of each of these elements was weighed so that the molar ratio of Li: Fe: Si was 2: 1: 1, and a 5% aqueous solution of polyvinyl alcohol corresponding to a mass of 10% with respect to the measured solid content. Was prepared and premixed, and then mixed for 3 minutes using a planetary ball mill (spinning 2000 rpm, revolution 800 rpm) to obtain a slurry-like kneaded product. The slurry was a high-viscosity fluid exhibiting a green color after kneading, but had the property of gelling in a few minutes. The surface of the slurry turns brown only by leaving it in the air because Fe is oxidized from divalent to trivalent. While kneading the kneaded product in air at 100 ° C., water was evaporated to obtain a mixed dried product. The mixed dried product was oxidized by kneading, and the whole turned brown.

混合乾涸物を黒鉛坩堝に入れて真空置換炉へ投入し、炉中を真空にしてから3%水素を混合した窒素で置換した。水素混合窒素を流量100ml/minで炉内へ導入しながら、温度を250℃で4時間保持し、その後、700℃で4時間の熱処理を実施した。処理終了後は窒素を導入したまま放冷し、80℃以下に温度が低下した後に取り出した。熱処理後の粉体塊は黒色で緩く凝集した状態であった。塊は目開き50μmの篩を通した後、各種測定に供した。この粉体を第2実施例に係る粉体Bとした。熱重量分析によりコートされたカーボン量を定量した結果、2.0%であった。   The mixed dried product was put into a graphite crucible and put into a vacuum substitution furnace. After the inside of the furnace was evacuated, the mixture was replaced with nitrogen mixed with 3% hydrogen. While introducing hydrogen mixed nitrogen into the furnace at a flow rate of 100 ml / min, the temperature was maintained at 250 ° C. for 4 hours, and then heat treatment was performed at 700 ° C. for 4 hours. After completion of the treatment, the mixture was allowed to cool with nitrogen introduced, and was taken out after the temperature dropped to 80 ° C. or lower. The powder mass after the heat treatment was black and loosely aggregated. The lump was subjected to various measurements after passing through a sieve having an opening of 50 μm. This powder was designated as Powder B according to the second example. The amount of coated carbon was determined by thermogravimetric analysis and found to be 2.0%.

[4.2]第3実施例
本第2実施例としては、Si源としてカタロイドS−20L、Li源として試薬の炭酸リチウム、Fe源はシュウ酸鉄(II)2水和物と酸化鉄(III)をモル比で1:1に混合して用いた。これらの各元素の試料をモル比でLi:Fe:Siが2:1:1になるように秤量し、さらに計り取った固形分に対して10%の質量に相当するポリビニルアルコールの5%水溶液を調製して予備混合後、遊星ボールミルを用いて、3分間(自転2000rpm、公転800rpm)混合してスラリー状の混練物を得た。
スラリーは混練直後、緑褐色を呈する高粘度流体であったが、数分でゲル化する性質があった。スラリーは空気中に静置するだけで表面が褐色に変化し、これは二価のFeが酸化されて三価のFeの割合が上昇するためである。混練物を空気中、100℃で混練しながら水分を蒸発させ、混練中の酸化により褐色を呈する混合乾涸物を得た。
[4.2] Third Example As the second example, cataloid S-20L as a Si source, lithium carbonate as a reagent as a Li source, and Fe source as iron (II) oxalate dihydrate and iron oxide ( III) was used by mixing at a molar ratio of 1: 1. A sample of each of these elements was weighed so that the molar ratio of Li: Fe: Si was 2: 1: 1, and a 5% aqueous solution of polyvinyl alcohol corresponding to a mass of 10% with respect to the measured solid content. Was prepared and premixed, and then mixed for 3 minutes using a planetary ball mill (spinning 2000 rpm, revolution 800 rpm) to obtain a slurry-like kneaded product.
The slurry was a highly viscous fluid having a greenish brown color immediately after kneading, but had a property of gelling in a few minutes. When the slurry is left in the air, the surface turns brown, because the divalent Fe is oxidized and the proportion of trivalent Fe increases. Water was evaporated while kneading the kneaded product in air at 100 ° C., and a mixed desiccant product having a brown color was obtained by oxidation during kneading.

混合乾涸物を黒鉛坩堝に入れて真空置換炉へ投入し、炉中を真空にしてから3%水素を混合した窒素で置換した。水素混合窒素を流量100ml/minで炉内へ導入しながら、温度を250℃で4時間保持し、その後、700℃で4時間の熱処理を実施した。処理終了後は窒素を導入したまま放冷し、80℃以下に温度が低下した後に取り出した。熱処理後の粉体塊は黒色で緩く凝集した状態であった。塊は目開き50μmの篩を通した後、各種測定に供した。この粉体を第3実施例に係る粉体Cとした。熱重量分析によりコートされたカーボン量を定量した結果、2.0%であった。   The mixed dried product was put into a graphite crucible and put into a vacuum substitution furnace. After the inside of the furnace was evacuated, the mixture was replaced with nitrogen mixed with 3% hydrogen. While introducing hydrogen mixed nitrogen into the furnace at a flow rate of 100 ml / min, the temperature was maintained at 250 ° C. for 4 hours, and then heat treatment was performed at 700 ° C. for 4 hours. After completion of the treatment, the mixture was allowed to cool with nitrogen introduced, and was taken out after the temperature dropped to 80 ° C. or lower. The powder mass after the heat treatment was black and loosely aggregated. The lump was subjected to various measurements after passing through a sieve having an opening of 50 μm. This powder was designated as Powder C according to the third example. The amount of coated carbon was determined by thermogravimetric analysis and found to be 2.0%.

[5]物性測定
得られた粉体B、Cについて、X線回折パターンの測定と走査電子顕微鏡(SEM)による形状観察を行なった。比較のため、第1実施形態の第1比較例である粉体D及び第2比較例である粉体Eについても行った。なお、SEMの倍率は、10000倍であった。
図6は、第2実施形態に関連して測定したX線回折パターンである。
図6に示すように、全ての粉体B〜Eはオリビン型ケイ酸鉄リチウムの略単相で構成されているが、粉体B、Cと比較して粉体Dと粉体EはX線回折ピークが高く鋭くなり、粉体B、Cよりも大きく結晶成長していることが確認された。
粉体Bと粉体Cについては2[%]のカーボンコートがされているが、コートされたカーボンがアモルファスと推定されるため、回折ピークは現れなかった。
[5] Measurement of physical properties For the obtained powders B and C, measurement of an X-ray diffraction pattern and shape observation by a scanning electron microscope (SEM) were performed. For comparison, powder D, which is the first comparative example of the first embodiment, and powder E, which is the second comparative example, were also performed. The SEM magnification was 10,000 times.
FIG. 6 is an X-ray diffraction pattern measured in relation to the second embodiment.
As shown in FIG. 6, all the powders B to E are composed of a substantially single phase of olivine type lithium iron silicate, but the powders D and E are X compared with the powders B and C. The line diffraction peak was high and sharp, and it was confirmed that crystals were grown larger than powders B and C.
Powder B and powder C were coated with 2% carbon coating, but no diffraction peak appeared because the coated carbon was estimated to be amorphous.

図7は、第2実施例に係る粉体Bの走査型電子顕微鏡(SEM)写真である。
図8は、第3実施例に係る粉体Cの走査型電子顕微鏡(SEM)写真である。
また、図9は、第1比較例に係る粉体Dの走査型電子顕微鏡(SEM)写真である。
また、図10は、第2比較例に係る粉体Eの走査型電子顕微鏡(SEM)写真である。
FIG. 7 is a scanning electron microscope (SEM) photograph of powder B according to the second example.
FIG. 8 is a scanning electron microscope (SEM) photograph of powder C according to the third example.
FIG. 9 is a scanning electron microscope (SEM) photograph of powder D according to the first comparative example.
FIG. 10 is a scanning electron microscope (SEM) photograph of powder E according to the second comparative example.

図7〜図10に示すように、粉体Bは粒径50から200nm(ナノメートル)の微細な粒子、粉体Eは一部で1μm程度の比較的大きな粒子が存在するが略微細な粒子で構成されているのに対し、粉体Dおよび粉体Eは破砕状の数十μmの粗大粒子で構成されていることが判明した。これは本発明法では結晶成長が抑制されていたのに対し、比較例では溶融状態を経たことや高温で長時間であった為に、結晶が大きく成長したことによると推定される。   As shown in FIGS. 7 to 10, the powder B has fine particles with a particle size of 50 to 200 nm (nanometers), and the powder E has some relatively large particles with a size of about 1 μm. It was found that the powder D and the powder E were composed of crushed coarse particles of several tens of μm. It is presumed that this is because the crystal growth was suppressed in the method of the present invention, whereas in the comparative example, the crystal grew greatly because it was in a molten state or was at a high temperature for a long time.

[6]電極特性の評価
[6.1]リチウム二次電池の作製
第2実施例及び第3実施例で得られた粉体B、Cに、導電剤として全カーボン量が10%になるようにアセチレンブラックとバインダー(結着剤)であるポリフッ化ビニリデン(PVdF)を、重量比95:5の割合で混合し、N−メチル−2−ピロリドン(NMP)を加えて十分混練し、正極スラリーを得た。正極スラリーを厚さ15μmのアルミニウム箔集電体に50g/mの塗工量で塗布し、120℃で30分間乾燥した。その後、ロールプレスで2.0g/ccの密度になるように圧延加工し、2cmの円盤状に打抜いて正極とした。
[6] Evaluation of electrode characteristics [6.1] Fabrication of lithium secondary battery Powders B and C obtained in the second and third examples had a total carbon content of 10% as a conductive agent. Acetylene black and polyvinylidene fluoride (PVdF), which is a binder (binder), are mixed at a weight ratio of 95: 5, and N-methyl-2-pyrrolidone (NMP) is added and kneaded sufficiently. Got. The positive electrode slurry was applied to an aluminum foil current collector with a thickness of 15 μm at a coating amount of 50 g / m 2 and dried at 120 ° C. for 30 minutes. Then, it was rolled to a density of 2.0 g / cc with a roll press, punched into a 2 cm 2 disk shape, and used as a positive electrode.

これらの正極と、負極に金属リチウム、電解液にエチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒にLiPFを1Mの濃度で溶解したものを用い、リチウム二次電池を作製した。なお、作製雰囲気は露点が−50℃以下とした。各極は集電体の付いた電槽缶に圧着して用いた。上記正極、負極、電解質及びセパレータを用いて直径25mm、厚さ1.6mmのコイン型リチウム二次電池とした。各正極活物質を用いた電池を各々、本発明の第2実施例および第3実施例に係る電池BBと電池BCとした。 Using these positive electrodes, metallic lithium for the negative electrode, and a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 in the electrolyte solution, LiPF 6 was dissolved at a concentration of 1M, and a lithium secondary battery was used. Produced. The production atmosphere was a dew point of −50 ° C. or lower. Each electrode was used by being crimped to a battery case with a current collector. A coin-type lithium secondary battery having a diameter of 25 mm and a thickness of 1.6 mm was formed using the positive electrode, the negative electrode, the electrolyte, and the separator. Batteries using the respective positive electrode active materials were designated as the battery BB and the battery BC according to the second and third examples of the present invention, respectively.

[6.2]リチウム二次電池の電池試験
各電池を各々多数個作製し、電流0.01CAで初回充放電から10サイクル繰返した。充電条件は、電流0.01CA、電圧4.5Vの定電流定電圧充電として定電圧充電時の電流が0.005CAに垂下するまでとした。放電条件は、電流0.01CA、終止電圧1.5Vの定電流放電とした。温度は全て25℃とした。初回充放電の結果を図5に示した。容量はオリビン型ケイ酸鉄リチウム1g当りに換算した。
[6.2] Battery Test of Lithium Secondary Battery A large number of each battery was produced and repeated for 10 cycles from the initial charge / discharge at a current of 0.01 CA. The charging conditions were set as constant current constant voltage charging with a current of 0.01 CA and a voltage of 4.5 V until the current during constant voltage charging dropped to 0.005 CA. The discharge conditions were a constant current discharge with a current of 0.01 CA and a final voltage of 1.5V. All temperatures were 25 ° C. The results of the first charge / discharge are shown in FIG. The capacity was converted per 1 g of olivine type lithium iron silicate.

ここで、再び図5を参照して、第2実施例および第3実施例に関連した10サイクル目の放電容量の結果について説明する。
図5に示すように、第2実施例及び第3実施例に係る電池BBと電池BCが第1実施例に係る電池BAよりもさらに大きな容量を示した。これは、電池BBと電池BCに使用した粉体Bおよび粉体Cは微細な粒子からなり、さらに表面にカーボンがコーティングされていることから、円滑な電気化学反応ができる状態であったと推定される。電池BEの電圧が電池BDより低いのは原料が異なったことにより、粒子内のリチウムイオン拡散性に差が生じた為であると考えられる。
Here, referring to FIG. 5 again, the result of the discharge capacity at the 10th cycle related to the second embodiment and the third embodiment will be described.
As shown in FIG. 5, the batteries BB and BC according to the second and third examples showed a larger capacity than the battery BA according to the first example. This is presumed that the powder B and the powder C used for the battery BB and the battery BC were made of fine particles and coated with carbon on the surface, so that a smooth electrochemical reaction was possible. The The voltage of the battery BE is lower than that of the battery BD because the difference in the lithium ion diffusivity in the particles due to the different raw materials is considered.

よって、良好な正極特性を得るためにはナノレベル程度の小さな粒径を持ち、表面にカーボンがコーティングされた活物質の合成法が必要であり、本発明によりこの一つが提供される。
以上の説明のように、第2実施形態に係る第2実施例及び第3実施例によれば、カーボン源により、二次電池正極活物質として有用なより微細な粒子を有するオリビン型ケイ酸Mリチウムを簡便に合成することができ、リチウムイオン二次電池の性能向上が図れる。
Therefore, in order to obtain good positive electrode characteristics, a method for synthesizing an active material having a particle size as small as a nano level and having a surface coated with carbon is required, and this is provided by the present invention.
As described above, according to the second and third examples according to the second embodiment, the olivine-type silicic acid M having finer particles useful as the secondary battery positive electrode active material by the carbon source. Lithium can be easily synthesized, and the performance of the lithium ion secondary battery can be improved.

BA、BB、BC 電池   BA, BB, BC batteries

Claims (4)

リチウムイオン二次電池の正極材料として用いられるオリビン型ケイ酸Mリチウム(Mは、金属元素)の合成方法において、
ケイ酸源としてのコロイダルシリカと、リチウム源および金属元素M源と、を湿式混練し、得られた混練物を混練しつつ乾燥する混練乾燥工程と、
前記乾燥後に得られた混合乾涸物に対し前記金属元素Mを還元すべく所定雰囲気下で熱処理する熱処理工程と、
を、備えたことを特徴とするオリビン型ケイ酸Mリチウムの合成方法。
In a synthesis method of olivine-type M lithium silicate (M is a metal element) used as a positive electrode material of a lithium ion secondary battery,
A kneading and drying step in which colloidal silica as a silicic acid source, a lithium source and a metal element M source are wet-kneaded, and the obtained kneaded product is dried while kneading;
A heat treatment step of heat-treating the mixed desiccant obtained after the drying in a predetermined atmosphere to reduce the metal element M;
A method for synthesizing olivine-type M lithium silicate, comprising:
請求項1記載のオリビン型ケイ酸Mリチウムの合成方法において、
前記金属元素M源は、二価の化合物として、前記オリビン型ケイ酸Mリチウムを構成し、
前記混練乾燥工程において、前記金属元素Mの一部または全部を、一旦酸化させることを特徴とするオリビン型ケイ酸Mリチウムの合成方法。
In the synthesis | combining method of the olivine type | mold M lithium silicate of Claim 1,
The metal element M source constitutes the olivine-type lithium M silicate as a divalent compound,
In the kneading and drying step, a part or all of the metal element M is once oxidized to oxidize the olivine-type lithium M silicate.
請求項1または請求項2記載のオリビン型ケイ酸Mリチウムの合成方法において、
前記混練乾燥工程において、前記ケイ酸源、前記金属元素M源となる化合物及びカーボン源としての有機物溶液を加え、これらを混合して前記金属元素Mを酸化させつつ溶媒を除去し、
前記熱処理工程において、不活性雰囲気中又は還元雰囲気中で前記熱処理を行なう、
ことを特徴とするオリビン型ケイ酸Mリチウムの合成方法。
In the synthesis | combining method of the olivine type M lithium silicate of Claim 1 or Claim 2,
In the kneading and drying step, the organic acid solution as the silicic acid source, the compound serving as the metal element M source and the carbon source is added, and these are mixed to remove the solvent while oxidizing the metal element M,
In the heat treatment step, the heat treatment is performed in an inert atmosphere or a reducing atmosphere.
A method of synthesizing olivine-type M lithium silicate, which is characterized by the above.
正極材料として、オリビン型ケイ酸Mリチウム(Mは、金属元素)が用いられるリチウムイオン二次電池において、
ケイ酸源としてのコロイダルシリカと、リチウム源および金属元素M源と、を湿式混練し、得られた混練物を混練しつつ乾燥し、前記乾燥後に得られた混合乾涸物に対し前記金属元素Mを還元すべく所定雰囲気下で熱処理することにより得られたオリビン型ケイ酸Mリチウムを含む正極活物質層を正極集電体上に形成したことを特徴とするリチウムイオン二次電池。
In a lithium ion secondary battery in which olivine-type M lithium silicate (M is a metal element) is used as a positive electrode material,
Colloidal silica as a silicic acid source, a lithium source and a metal element M source are wet-kneaded, and the obtained kneaded product is dried while kneaded, and the metal element M is added to the mixed dried product obtained after the drying. A lithium ion secondary battery, wherein a positive electrode active material layer containing olivine-type lithium M silicate obtained by heat treatment in a predetermined atmosphere to reduce the amount of lithium is formed on a positive electrode current collector.
JP2009225233A 2009-09-29 2009-09-29 Method for synthesizing olivine-type lithium M silicate and lithium ion secondary battery Active JP5364523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009225233A JP5364523B2 (en) 2009-09-29 2009-09-29 Method for synthesizing olivine-type lithium M silicate and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225233A JP5364523B2 (en) 2009-09-29 2009-09-29 Method for synthesizing olivine-type lithium M silicate and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2011076793A true JP2011076793A (en) 2011-04-14
JP5364523B2 JP5364523B2 (en) 2013-12-11

Family

ID=44020594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225233A Active JP5364523B2 (en) 2009-09-29 2009-09-29 Method for synthesizing olivine-type lithium M silicate and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5364523B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108464A1 (en) * 2010-03-01 2011-09-09 古河電気工業株式会社 Cathode active material substance, cathode, secondary battery and manufacturing methods for same
WO2011108465A1 (en) * 2010-03-01 2011-09-09 古河電気工業株式会社 Particulate composite, active material aggregate, cathode active material substance, cathode, secondary battery and manufacturing methods for same
JP2012025997A (en) * 2010-07-22 2012-02-09 Sachihiro Tsubakihara Method for manufacturing alloy powder, and electric device and lithium ion secondary battery using material obtained by the manufacturing method
JP2013014499A (en) * 2011-06-09 2013-01-24 Kurimoto Ltd Method for synthesizing polyanion-based compound
WO2013042778A1 (en) * 2011-09-22 2013-03-28 旭硝子株式会社 Production method for positive electrode material for secondary battery
WO2013042777A1 (en) * 2011-09-22 2013-03-28 旭硝子株式会社 Production method for positive electrode material for secondary battery
WO2013042780A1 (en) * 2011-09-22 2013-03-28 旭硝子株式会社 Production method for positive electrode material for secondary battery
WO2019107033A1 (en) * 2017-11-29 2019-06-06 パナソニックIpマネジメント株式会社 Lithium ion battery
WO2019130787A1 (en) * 2017-12-28 2019-07-04 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243342A (en) * 2004-02-25 2005-09-08 Toyota Central Res & Dev Lab Inc Electrolyte particle, cathode, anode and lithium secondary battery
JP2008218303A (en) * 2007-03-07 2008-09-18 Kyushu Univ Manufacturing method of positive electrode active material for secondary battery
WO2010089931A1 (en) * 2009-02-04 2010-08-12 独立行政法人産業技術総合研究所 Method for producing lithium silicate compound
JP2011517361A (en) * 2007-07-12 2011-06-02 エイ 123 システムズ,インク. Multifunctional alloy olivine for lithium-ion battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243342A (en) * 2004-02-25 2005-09-08 Toyota Central Res & Dev Lab Inc Electrolyte particle, cathode, anode and lithium secondary battery
JP2008218303A (en) * 2007-03-07 2008-09-18 Kyushu Univ Manufacturing method of positive electrode active material for secondary battery
JP2011517361A (en) * 2007-07-12 2011-06-02 エイ 123 システムズ,インク. Multifunctional alloy olivine for lithium-ion battery
WO2010089931A1 (en) * 2009-02-04 2010-08-12 独立行政法人産業技術総合研究所 Method for producing lithium silicate compound

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108464A1 (en) * 2010-03-01 2011-09-09 古河電気工業株式会社 Cathode active material substance, cathode, secondary battery and manufacturing methods for same
WO2011108465A1 (en) * 2010-03-01 2011-09-09 古河電気工業株式会社 Particulate composite, active material aggregate, cathode active material substance, cathode, secondary battery and manufacturing methods for same
JP2011178601A (en) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The Fine particle mixture, active material aggregate, positive electrode active material, positive electrode, secondary battery and method for producing these
JP2011181331A (en) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The Cathode active material substance, cathode, secondary battery and manufacturing methods for same positive electrode active material, positive electrode, secondary battery and manufacturing methods for them
US9136535B2 (en) 2010-03-01 2015-09-15 Furukawa Electric Co., Ltd. Cathode active material, cathode, secondary battery and manufacturing methods for the same
US8696949B2 (en) 2010-03-01 2014-04-15 Furukawa Electric Co., Ltd. Particulate mixture, active material aggregate, cathode active material, cathode, secondary battery and methods for producing the same
JP2012025997A (en) * 2010-07-22 2012-02-09 Sachihiro Tsubakihara Method for manufacturing alloy powder, and electric device and lithium ion secondary battery using material obtained by the manufacturing method
JP2013014499A (en) * 2011-06-09 2013-01-24 Kurimoto Ltd Method for synthesizing polyanion-based compound
WO2013042780A1 (en) * 2011-09-22 2013-03-28 旭硝子株式会社 Production method for positive electrode material for secondary battery
WO2013042777A1 (en) * 2011-09-22 2013-03-28 旭硝子株式会社 Production method for positive electrode material for secondary battery
WO2013042778A1 (en) * 2011-09-22 2013-03-28 旭硝子株式会社 Production method for positive electrode material for secondary battery
WO2019107033A1 (en) * 2017-11-29 2019-06-06 パナソニックIpマネジメント株式会社 Lithium ion battery
JPWO2019107033A1 (en) * 2017-11-29 2020-11-19 パナソニックIpマネジメント株式会社 Lithium ion battery
JP7209265B2 (en) 2017-11-29 2023-01-20 パナソニックIpマネジメント株式会社 lithium ion battery
WO2019130787A1 (en) * 2017-12-28 2019-07-04 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery
JPWO2019130787A1 (en) * 2017-12-28 2021-01-21 パナソニックIpマネジメント株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries
JP7209266B2 (en) 2017-12-28 2023-01-20 パナソニックIpマネジメント株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries

Also Published As

Publication number Publication date
JP5364523B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5364523B2 (en) Method for synthesizing olivine-type lithium M silicate and lithium ion secondary battery
JP5218918B2 (en) Crystalline nanometer LiFePO4
JP5376894B2 (en) Multi-component phosphoric acid lithium compound particles having an olivine structure, a method for producing the same, and a lithium secondary battery using the same as a positive electrode material
JP6260535B2 (en) Method for producing carbon composite lithium manganese iron phosphate particle powder, and method for producing a non-aqueous electrolyte secondary battery using the particle powder
WO2016208413A1 (en) Composite hydroxide containing transition metal and method for producing same, positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, and non-aqueous electrolyte secondary battery
KR101944153B1 (en) Negative electrode material for a rechargeable battery, and method for producing it
WO2009122686A1 (en) Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
Kim et al. Synthesis of LiFePO4 nanoparticles and their electrochemical properties
JP2024026097A (en) Transition metal-containing composite hydroxide and its manufacturing method, positive electrode active material for nonaqueous electrolyte secondary batteries and its manufacturing method, and nonaqueous electrolyte secondary battery
JP5245084B2 (en) Olivine-type compound ultrafine particles and method for producing the same
JP5888762B2 (en) COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD, POSITIVE ACTIVE MATERIAL, POSITIVE ELECTRODE AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
Li et al. Ultrathin and uniform carbon-layer-coated hierarchically porous LiFePO4 microspheres and their electrochemical performance
JP6324498B2 (en) Carbon coated electrochemically active powder
WO2014129096A1 (en) Lithium-ion secondary battery and manufacturing method therefor
JP6070222B2 (en) Non-aqueous secondary battery having positive electrode for non-aqueous secondary battery and positive electrode active material for non-aqueous secondary battery using the positive-electrode active material
CN109768227A (en) Electrode material for lithium ion cell and lithium ion battery
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
Yang et al. A facile synthesis of Li2Fe1/3Mn1/3Ni1/3SiO4/C composites as cathode materials for lithium-ion batteries
JP5909131B2 (en) Active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery using the same
WO2012086722A1 (en) Silicic acid-vanadic acid compound, positive electrode for secondary battery, and manufacturing method for secondary battery
Chen et al. Highly efficient synthesis of nano LiMn0. 90Fe0. 10PO4/C composite via mechanochemical activation assisted calcination
JP6345227B2 (en) Method for producing lithium vanadium phosphate
Zeng et al. LiMn 0.8 Fe 0.2 PO 4@ C cathode prepared via a novel hydrated MnHPO 4 intermediate for high performance lithium-ion batteries
JP2012054077A (en) Active material for secondary battery and method for producing active material for secondary battery, and secondary battery using the active material for secondary battery
WO2012057340A1 (en) Silicate-phosphate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5364523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150