WO2012067249A1 - Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor - Google Patents

Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor Download PDF

Info

Publication number
WO2012067249A1
WO2012067249A1 PCT/JP2011/076731 JP2011076731W WO2012067249A1 WO 2012067249 A1 WO2012067249 A1 WO 2012067249A1 JP 2011076731 W JP2011076731 W JP 2011076731W WO 2012067249 A1 WO2012067249 A1 WO 2012067249A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
composition represented
silicate
group
Prior art date
Application number
PCT/JP2011/076731
Other languages
French (fr)
Japanese (ja)
Inventor
義久 別府
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012544334A priority Critical patent/JPWO2012067249A1/en
Publication of WO2012067249A1 publication Critical patent/WO2012067249A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a silicate compound, a positive electrode for a secondary battery, a secondary battery, and a method for producing them.
  • Patent Document 1 includes k Li in the unit formula, and [SiO 4 ], [SO 4 ], [PO 4 ], [GeO 4 ], [VO 4 ], [AlO 4 ], [BO]. 4 ] and the like, and compounds having an orthosilicate structure, which have a wide general formula, have been proposed as electrode materials.
  • Li 2 FeSiO 4 described in Non-Patent Document 1 is manufactured by a solid-phase reaction, the manufacturing process is complicated and the manufacturing cost increases.
  • Li 1.7 Mn 0.7 Fe 0.3 Si 0.7 P 0.3 O 4 that is actually disclosed as an electrode material in Patent Document 1 as a compound containing Si.
  • Li 2 MnSiO 4 and LiFePO 4 are mixed and pulverized, sealed in a tube, and heated to produce the solid phase reaction.
  • the solid-phase reaction has a complicated manufacturing process, is expensive to manufacture, is difficult to mass-produce, and composition control is not easy.
  • the object of the present invention is to control the composition and particle size of silicic acid compounds capable of increasing the capacity per unit mass, more specifically silicic acid-aluminic acid compounds and silicic acid-boric acid-aluminic acid compounds. It is in providing a manufacturing method that is easy to do.
  • the compound is useful as an active material used for a positive electrode for a secondary battery and a positive electrode for a secondary battery.
  • the present invention also provides a positive electrode for a secondary battery having excellent characteristics and reliability and a method for producing the secondary battery.
  • a raw material formulation prepared by adjusting a raw material containing the elements A, M, Si, and D so that the molar ratio of the elements A, M, Si, and D is the molar ratio represented by the formula (B) Heating to obtain a melt, A cooling step of cooling the melt to obtain a solidified product, A pulverization step of pulverizing the solidified product to obtain a pulverized product, and a heating step of heating the pulverized product to obtain a silicate compound.
  • a method for producing a silicic acid compound [2] A melting step for obtaining a melt having a composition represented by the following formula (A): A cooling step of cooling the melt to obtain a solidified product, A pulverization step of pulverizing the solidified product to obtain a pulverized product, and a heating step of heating the pulverized product to obtain a silicate compound having a composition represented by the following formula (B): Are carried out in this order. [1] The method for producing a silicate compound.
  • a e M b Si x D 1-x O f1 (A) (Wherein A is at least one element selected from the group consisting of Li, Na and K, M is at least one element selected from the group consisting of Fe, Mn, Co and Ni, and D is Al or Al and B, e is 0.8 ⁇ e ⁇ 2.4, b is 0.7 ⁇ b ⁇ 1.3, x is 0.3 ⁇ x ⁇ 1, f1 is a number that depends on the valence N of e, b, x, and M, and is a number that becomes f2 after the heating step.) A e M b Si x D 1 -x O f2 (B) (In the formula, A, M, D, e, b and x have the same meanings as described above, but are independent values, and f2 is a number depending on the valence N of e, b, x and M.
  • the melt having the composition represented by the formula (A) is a melt having the composition represented by the following formula (1), and the silicic acid having the composition represented by the formula (B)
  • a 1 + x + a M b Si x Al 1-x O 3 + x + d11 (1)
  • a 1 + x + a M b Si x Al 1-x O 3 + x + d12 (2) (In the formula, A, M, x and b have the same meaning as described above, a is ⁇ 0.1 ⁇ a ⁇ 0.4, and d11 is a number depending on the valence N of a, b and M. There is a number that becomes d12 after the heating step, and d12 is a number that depends on the valence N of a, b, and M.
  • the melting step includes The compound containing element A is A carbonate, A bicarbonate, A hydroxide, A silicate, A aluminate, A nitrate, A chloride, A sulfate, At least one selected from the group consisting of A acetate and A oxalate (however, one or more of the one or more may each form a hydrate salt).
  • the compound containing element M is M oxide, M hydroxide, M oxyhydroxide, M silicate, M aluminate, metal M, M chloride, M nitrate, M And at least one selected from the group consisting of an organic salt of M
  • a compound containing Si is included as at least one selected from the group consisting of silicon oxide, A silicate, M silicate, aluminosilicate, and silicon alkoxide
  • a compound containing Al is included as at least one selected from the group consisting of aluminum oxide, aluminum oxyhydroxide, aluminosilicate, aluminum chloride, aluminum nitrate, and aluminum sulfate.
  • the melt having the composition represented by the formula (A) is a melt having the composition represented by the following formula (3)
  • the silicic acid having the composition represented by the formula (B) The method for producing a silicic acid compound according to [2], wherein the compound is a silicic acid-boric acid-aluminic acid compound having a composition represented by the following formula (4).
  • a is ⁇ 0.1 ⁇ a ⁇ 0.4
  • c is 0 ⁇ c ⁇ 1
  • d21 is a, b and It is a number that depends on the valence N of M, and is a number that becomes d22 after the heating step
  • d22 is a number that depends on the valence N of a, b, and M.
  • the melting step includes Compound containing element A is A carbonate, A bicarbonate, A hydroxide, A silicate, A borate, A aluminate, A nitrate, A chloride , At least one selected from the group consisting of A sulfate, A acetate, and A oxalate (however, one or more of the one or more may each form a hydrate salt) Included.)
  • Compound containing element M is M oxide, M hydroxide, M oxyhydroxide, M silicate, M borate, M aluminate, metal M, M chloride And at least one selected from the group consisting of M nitrate, M sulfate and M organic salt,
  • a compound containing Si is included as at least one selected from the group consisting of silicon oxide, A silicate, M silicate, aluminosilicate, borosilicate, and silicon alkoxide,
  • the melt having the composition represented by the formula (1) is a melt having the composition represented by the following formula (5A), and the silicic acid having the composition represented by the formula (2)
  • the melt having the composition represented by the formula (3) is a melt having the composition represented by the following formula (6A), and the silicic acid having the composition represented by the formula (4)
  • the melt having the composition represented by the formula (3) is a melt having the composition represented by the following formula (6A), and the silicic acid having the composition represented by the formula (4)
  • the solidified product includes at least one carbon source selected from the group consisting of an organic compound and carbon powder, and a ratio of a carbon conversion amount (mass) in the carbon source is The method for producing a silicic acid compound according to [1] to [11], wherein the mass is 0.1 to 20% by mass with respect to the total mass of the mass of the solidified product and the carbon conversion amount (mass) in the carbon source.
  • a silicate compound is obtained by the production method of [1] to [13], and then a positive electrode for a secondary battery is produced using the silicate compound as a positive electrode material for a secondary battery.
  • a method for producing a positive electrode for a secondary battery comprising obtaining a positive electrode for a secondary battery by the production method of [14], and then producing a secondary battery using the positive electrode for a secondary battery.
  • E is 0.8 ⁇ e ⁇ 2.4, b is 0.7 ⁇ b ⁇ 1.3, x is 0.3 ⁇ x ⁇ 1, c is 0 ⁇ c ⁇ 1, and f2 is It is a number depending on the valence N of e, b, x and M.) x may be 0.3 ⁇ x ⁇ 1.
  • the production method of the present invention is useful as an electrode material because it is easy to control the composition, particle size and uniformity of the silicate compound, and can efficiently produce silicate compounds having various compositions.
  • a positive electrode material for a secondary battery excellent in characteristics and reliability and a secondary battery can be produced.
  • the present invention provides a silicate compound.
  • FIG. 4 is a diagram showing X-ray diffraction patterns of silicic acid-boric acid-aluminic acid compounds produced in Examples 1, 2, 3, and 4.
  • FIG. 4 is a diagram showing an X-ray diffraction pattern of silicic acid-boric acid-aluminic acid compounds produced in Examples 5, 6, and 7.
  • FIG. 4 is a diagram showing an X-ray diffraction pattern of silicic acid-boric acid-aluminic acid compounds produced in Examples 14, 15, 16, and 19.
  • FIG. 3 is a diagram showing an X-ray diffraction pattern of silicic acid-boric acid-aluminic acid compounds produced in Examples 31, 32, 33, and 34.
  • melting step (I) a method for producing a silicate compound having a composition represented by the following formula (B): A e M b Si x D 1 -x O f2 (B) (In the formula, A is at least one element selected from the group consisting of Li, Na and K.
  • M is at least one element selected from the group consisting of Fe, Mn, Co and Ni, and D is Al, or Al and B.
  • e is 0.8 ⁇ e ⁇ 2.4
  • b is 0.7 ⁇ b ⁇ 1.3
  • x is 0.3 ⁇ x ⁇ 1
  • f2 is a number depending on the valence N of e, b, x and M.
  • a raw material formulation prepared by adjusting a raw material containing the elements A, M, Si, and D so that the molar ratio of the elements A, M, Si, and D is the molar ratio represented by the formula (B) Heating to obtain a melt, Cooling step (II): a step of cooling the melt to obtain a solidified product, Crushing step (III): crushing the solidified product to obtain a pulverized product, and heating step (IV): heating the pulverized product to obtain a silicate compound having the composition represented by the formula (B).
  • D is Al (aluminum) or Al and B (boron).
  • a compound of formula (B) obtained when D is Al is a silicic acid-aluminic acid compound
  • a compound of formula (B) obtained when D is Al and B is silicic acid- Boric acid-aluminic acid compound.
  • the melting step (I) in the method for producing a silicate compound of the present invention is a step of obtaining a melt having a composition represented by the following formula (A).
  • a e M b Si x D 1-x O f1 (A) (The symbols in the formula have the same meaning as described above.)
  • a raw material formulation prepared by adjusting a raw material containing an element source (element A, element M, Si, and D) to have a composition represented by the formula (A) is prepared. It is preferable to do this.
  • elements A, M, Si, and Al are used as element sources.
  • elements are used as element sources.
  • a raw material containing A, elements M, Si, B, and Al is used.
  • a in the formula (A) is at least one element selected from the group consisting of Li, Na and K. Since the element A is suitable as a positive electrode material for a secondary battery, it is preferable to make Li essential, and it is particularly preferable to use only Li.
  • the silicate compound containing Li increases the capacity per unit volume (mass) of the secondary battery.
  • the element M in the formula (A) is at least one element selected from the group consisting of Fe, Mn, Co, and Ni.
  • the element M is preferably composed of only one kind or two kinds.
  • the silicic acid compound produced by the production method of the present invention is used for a positive electrode material for a secondary battery, it is preferable from the viewpoint of cost that the element M consists of only Fe, only Mn, or Fe and Mn.
  • the valence N of the element M is a numerical value that can change in each step of the production method of the present invention, and is in the range of +2 to +4.
  • the valence N is +2, +8/3 or +3 when the element M is Fe, +2, +3 or +4 when Mn, +2, +8/3 or +3 when Co and +2 or when Ni +4 is preferred.
  • the valence N is more preferably +2 in order to simplify the melting step (I).
  • e is in the range of 0.8 ⁇ e ⁇ 2.4, and b is in the range of 0.7 ⁇ b ⁇ 1.3.
  • a silicate compound having a target composition can be produced.
  • a raw material formulation can be melt
  • e is 1.2 ⁇ e ⁇ 2.
  • x may be 0.3 ⁇ x ⁇ 1.
  • x is preferably 0.5 ⁇ x ⁇ 1, and more preferably 0.7 ⁇ x ⁇ 1.
  • the value of f1 in the formula (A) is a number that depends on the valence N of e, b, and x. Since the valence of the element in the formula can be changed in the subsequent pulverization step (III) and / or the heating step (IV), f1 is adjusted to a value that becomes f2 after the heating step (IV). For example, when the value of f1 increases or decreases due to oxidation / reduction or volatilization of the components in the heating step (IV), it is preferable to set the value in consideration of the increase / decrease. In the production method of the present invention, the value of f1 is preferably 0.9 to 1.2 times the value of f2 of the product described later.
  • the melt having a composition when D is Al is a silicic acid-aluminic acid compound having a composition represented by the following formula (i), and represented by the following formula (1).
  • a compound having a composition is preferable, and a compound having a composition represented by the following formula (5A) is particularly preferable.
  • a e M b Si x Al 1 -x O f1 (i) A 1 + x + a M b Si x Al 1-x O 3 + x + d11 (1) Li 1 + x + a (Fe y Mn 1-y ) b Si x Al 1-x O 3 + x + d11 (5A)
  • E, b, x and f1 in the formula (i) have the same meaning as in the formula (A).
  • the symbols in formula (1) have the same meaning as described above.
  • the symbols in formula (5A) have the same meaning as described above.
  • a and b in the melt are set to ⁇ 0.1 ⁇ a ⁇ 0.4 and 0.7 ⁇ b ⁇ 1.
  • a raw material formulation can be melt
  • a silicic acid-aluminic acid compound that causes a multi-electron type reaction reaction that pulls out more than 1 mol per unit mole
  • the theoretical electric capacity of the secondary battery can be increased.
  • the value of f1 in formula (i) is a number that depends on the valence N of e, b, x, and M, and the value of d11 in formula (1) and formula (5A) is a, b, and The number depends on the valence N of M. Since the valence of the element in the formula can change in the subsequent pulverization step (III) and / or heating step (IV), f1 is adjusted to a value that becomes f2 after the heating step (IV), or the heating step (IV) Adjust d11 to a value that will later become d12.
  • f1 or d11 when the value of f1 or d11 increases or decreases due to oxidation / reduction or volatilization of the component in the heating step (IV), it is preferable to set the value taking into account the increase / decrease.
  • the value of y in the formula (5A) is preferably 0 ⁇ y ⁇ 1, and particularly preferably 0 ⁇ y ⁇ 1.
  • the molar ratio of Fe to Mn is preferably 20 to 80:80 to 20, and particularly preferably 25 to 75:75 to 25.
  • a e M b Si x (B c Al 1-c) 1-x O f1 (iii) A 1 + x + a M b Si x (B c Al 1-c ) 1-x O 3 + x + d21 (3) Li 1 + x + a (Fe y Mn 1-y) b Si x (B c Al 1-c) 1-x O 3 + x + d21 (6A)
  • E, b, x and f1 in formula (iii) have the same meaning as in formula (A).
  • the symbols in formula (3) have the same meaning as described above.
  • the symbols in formula (6A) have the same meaning as described above.
  • the preferable ranges of a and b in Formula (3) and Formula (6A) are the same as the preferable ranges of a and b in Formula (1).
  • c is preferably 0 ⁇ c ⁇ 1.
  • the value of f1 in formula (iii) is a number that depends on the valence N of e, b, x, and M, and the value of d21 in formula (3) and formula (6A) is a, b, and The number depends on the valence N of M. Since the valence of the element in the formula can change in the subsequent pulverization step (III) and / or heating step (IV), f1 is adjusted to a value that becomes f2 after the heating step (IV), or the heating step (IV) Adjust d21 to a value that will later become d22.
  • the value of f1 or d21 increases or decreases due to oxidation / reduction or volatilization of the component in the heating step (IV), it is preferable to set the value taking into account the increase / decrease.
  • the values of f1 and d21 are 0.9 to 1.2 times the values of f2 and d22 of the product to be described later, respectively.
  • the value of y in the formula (6A) is preferably 0 ⁇ y ⁇ 1, and particularly preferably 0 ⁇ y ⁇ 1.
  • the molar ratio of Fe to Mn is preferably 20 to 80:80 to 20, and particularly preferably 25 to 75:75 to 25.
  • melting in the melting step (I) can be facilitated by setting the composition of the raw material formulation to a specific range.
  • the compound containing element A in the raw material formulation includes A carbonate (A 2 CO 3 ), A hydrogen carbonate (AHCO 3 ), A hydroxide (AOH), and A silicate (A 2 O ⁇ 2SiO 2 , A 2 O ⁇ SiO 2 , 2A 2 O ⁇ SiO 2, etc., A borate (A 2 O ⁇ B 2 O 3 , A 2 O ⁇ 2B 2 O 3 , A 2 O ⁇ 4B) 2 O 3 etc.), A aluminate (AAlO 2 etc.), A nitrate (ANO 3 ), A chloride (ACl), A sulfate (A 2 SO 4 ), A acetate (CH 3 COOA) and at least one selected from the group consisting of organic acid salts such as oxalate ((COOA) 2 ).
  • the element A is preferably Li. Furthermore, these compounds may be hydrates. Of these, carbonates and bicarbonates of A are more preferred because they are inexpensive
  • the compound containing the element M is at least selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , Co 3 O 4 , and NiO because of availability and cost.
  • One type is more preferable.
  • the element M is Fe and Mn
  • at least one selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 and MnO 2 is particularly preferable.
  • Fe 3 O 4 , Fe 2 O 3 and MnO 2 may be used alone or in combination of two or more.
  • silicon oxide SiO 2
  • a silicate, M silicate, borosilicate for example, B 2 O 3 .nSiO 2 (0.5 ⁇ n ⁇ 20 ), and, a 2 O
  • borosilicate for example, B 2 O 3 .nSiO 2 (0.5 ⁇ n ⁇ 20 ), and, a 2 O
  • MO silicon oxide
  • an aluminosilicate e.g. Al 2 O 3 .nSiO 2 (0.5 ⁇ n ⁇ 20)
  • a 2 O may contain MO.
  • silicon oxide is more preferable because it is inexpensive.
  • the compound containing Si may be crystalline or amorphous.
  • Compounds containing B in the raw material formulation include boron oxide (B 2 O 3 ), boric acid (H 3 BO 3 ), A borate, M borate, borosilicate, aluminum borate, and the like At least one selected from the group consisting of is preferable, and at least one selected from the group consisting of boron oxide and boric acid is particularly preferable because it is inexpensive.
  • Al oxide Al 2 O 3
  • aluminum oxyhydroxide including AlO (OH), aluminum oxyhydroxide salt
  • a aluminate, M aluminate At least one selected from the group consisting of aluminosilicate, aluminum borate, aluminum chloride, aluminum nitrate and aluminum sulfate is preferred. Among these, at least one selected from the group consisting of aluminum oxide, aluminum oxyhydroxide, and aluminosilicate is particularly preferable because it is inexpensive.
  • the raw material preparation used in the production of the silicic acid-aluminic acid compound includes a combination of A carbonate or bicarbonate; M oxide or M oxyhydroxide; silicon oxide; aluminum oxide or aluminum oxyhydroxide; Is preferred.
  • a combination of Li 2 CO 3 or LiHCO 3 one or more compounds selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 and MnO 2 ; SiO 2 ; Al 2 O 3 ; Particularly preferred.
  • the raw material preparation used in the method for producing a silicic acid-boric acid-aluminic acid compound includes A carbonate or bicarbonate; M oxide or M oxyhydroxide; silicon oxide; boron oxide or boric acid; A combination of aluminum oxide or aluminum oxyhydroxide is preferred.
  • a raw material formulation Li 2 CO 3 or LiHCO 3 ; one or more compounds selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 and MnO 2 ; SiO 2 ; B 2 O 3 ; Al 2 O 3 ; is particularly preferred.
  • the composition of the raw material formulation should in principle correspond to the composition of the melt.
  • a component for example, Li, B, etc.
  • the composition of the obtained melt is the composition of the raw material preparation. May be different. In such a case, it is preferable to appropriately change the composition of the raw material formulation in consideration of the amount lost due to volatilization or the like.
  • the purity of each raw material included in the raw material preparation is not particularly limited. Considering reactivity, characteristics of the positive electrode material for secondary batteries, and the like, the purity excluding hydrated water is preferably 99% by mass or more.
  • the melting step (I) is preferably carried out by heating and melting the raw material formulation.
  • each raw material or raw material preparation Prior to melting, each raw material or raw material preparation is preferably pulverized and / or mixed dry or wet using a mixer, ball mill, jet mill, planetary mill or the like.
  • the particle size of each raw material in the raw material preparation is not limited as long as it does not adversely affect the mixing operation, the filling operation of the raw material preparation into the melting container, the meltability of the raw material preparation, and the like.
  • the raw material preparation is preferably put in a container or the like, heated using a heating furnace, and melted.
  • the container is preferably made of alumina, carbon, silicon carbide, zirconium boride, titanium boride, boron nitride, carbon, platinum, or a platinum alloy containing rhodium.
  • a container made of a refractory-based brick and a reducing material (eg, graphite) can also be employed.
  • a lid In order to prevent volatilization and evaporation in the heating furnace, it is preferable to attach a lid to the container and melt it.
  • the heating furnace is preferably a resistance heating furnace, a high frequency induction furnace, or a plasma arc furnace.
  • the resistance heating furnace is preferably an electric furnace provided with a heating element made of an alloy such as a nichrome alloy, silicon carbide, or molybdenum silicide.
  • the melting step (I) is preferably carried out in air, in an inert gas or in a reducing gas. Melting conditions can be changed as appropriate depending on conditions such as the type of container or heating furnace and the heating method such as a heat source.
  • the pressure may be any of normal pressure, pressurization, and reduced pressure (0.9 ⁇ 10 5 Pa or less).
  • the melting conditions are preferably reducing conditions. Oxidizing conditions may be used. When melted under oxidizing conditions, it is preferable to perform reduction (for example, change from M 3+ to M 2+ ) in the heating step (IV).
  • the inert gas is a gas containing 99% by volume or more of at least one inert gas selected from the group consisting of nitrogen gas (N 2 ) and rare gases such as helium gas (He) and argon gas (Ar).
  • the reducing gas refers to a gas that is substantially free of oxygen by adding a reducing gas to the above inert gas.
  • the reducing gas include hydrogen gas (H 2 ), carbon monoxide gas (CO), and ammonia gas (NH 3 ).
  • the amount of the reducing gas in the inert gas is preferably 0.1% by volume or more, and particularly preferably 1 to 10% by volume of the reducing gas contained in the total gas volume.
  • the content of oxygen in the inert gas is preferably 1% by volume or less, particularly preferably 0.1% by volume or less, based on the total gas volume.
  • the heating temperature in the melting step (I) is preferably 1,300 to 1,600 ° C., particularly preferably 1,400 to 1,550 ° C.
  • melting means that each raw material is melted and is in a transparent state visually.
  • the heating time is preferably 0.2 to 2 hours, particularly preferably 0.5 to 2 hours. By setting the time, the homogeneity of the melt is sufficient and the raw material is not easily volatilized.
  • stirring may be performed to increase the uniformity of the melt.
  • the melt may be clarified at a temperature lower than the heating temperature until the next cooling step (II) is performed. Furthermore, the melt obtained in the melting step (I) may be subjected to another step before the cooling step (II) as long as it does not adversely affect the next cooling step (II).
  • the cooling step (II) is a step of cooling the melt obtained in the melting step (I) to near room temperature to obtain a solidified product.
  • the solidified product is preferably an amorphous material. However, a part of the solidified product may be a crystallized product.
  • the next pulverization step (III) can be easily performed, and the composition and particle size of the compound can be easily controlled.
  • the heating step (IV) there is an advantage that the product can be prevented from being agglomerated and the particle size of the product can be easily controlled.
  • the crystallized product becomes a crystal nucleus in the heating step (IV), which is a subsequent step, and it is easy to crystallize.
  • the amount of crystallized product in the solidified product is preferably 0 to 30% by mass with respect to the total mass of the solidified product.
  • the cooling step (II) is preferably carried out by a method of cooling in air, in an inert gas, or in a reducing gas because the equipment is simple.
  • the cooling rate of the melt is preferably not less than -1 ⁇ 10 3 °C / sec, -1 ⁇ 10 4 °C / sec or more is particularly preferable.
  • a temperature change per unit time (ie, cooling rate) in the case of cooling is indicated by a negative value
  • a temperature change per unit time in case of heating ie, the heating rate
  • the cooling rate is higher than this value, an amorphous material is easily obtained.
  • the upper limit of the cooling rate is preferably about ⁇ 1 ⁇ 10 10 ° C./second from the viewpoint of manufacturing equipment and mass productivity, and is particularly preferably ⁇ 1 ⁇ 10 8 ° C./second from the viewpoint of practicality.
  • the cooling rate of the melt is particularly preferably from -10 3 ° C / second to -10 10 ° C / second from 1000 ° C to 50 ° C.
  • a melt is dropped between twin rollers rotating at high speed to obtain a flake-like solidified product, and a melt is dropped onto a rotating single roller to form a flake.
  • the method of sweeping a plate-shaped solidified material, or the method of pressing a molten material on the cooled carbon plate or metal plate and obtaining a block-shaped solidified material is preferable.
  • a cooling method using twin rollers is more preferable because the cooling rate is high and a large amount of processing can be performed.
  • the double roller it is preferable to use one made of metal, carbon, or ceramic.
  • a cooling method there is also a method in which the melt is directly poured into water, but this method has the disadvantage that it is difficult to control, it is difficult to obtain an amorphous material, the solidified product becomes a lump, and a lot of labor is required for grinding is there.
  • a cooling method there is also a method in which a melt is directly charged into liquid nitrogen, and the cooling rate can be made faster than in the case of water, but there are problems similar to the method using water and the cost is high.
  • the solidified product obtained in the cooling step (II) is preferably flaky or fibrous.
  • the flaky solidified product preferably has an average thickness of 200 ⁇ m or less, particularly preferably 100 ⁇ m or less.
  • the average diameter of the plane perpendicular to the average thickness as the flaky solidified product is not particularly limited.
  • the fibrous solidified product preferably has an average diameter of 50 ⁇ m or less, particularly preferably 30 ⁇ m or less.
  • the average thickness and average diameter can be measured with a caliper or a micrometer. The average diameter can also be measured by microscopic observation.
  • the solidified product obtained in the cooling step (II) may be subjected to other steps before the pulverization step (III) as long as the pulverization step (III) is not adversely affected.
  • the pulverization step (III) is a step of pulverizing the solidified product obtained in the cooling step (II) to obtain a pulverized product. Since the solidified product usually contains a large amount of amorphous material or consists of an amorphous material, there is an advantage that it is easy to grind. In addition, there is an advantage that pulverization can be performed without imposing a burden on an apparatus used for pulverization and the particle size can be easily controlled. On the other hand, in the conventional solid phase reaction, pulverization is performed after the heating step (IV), but the present inventor has noticed that there is a problem that residual stress is generated by pulverization and battery characteristics are deteriorated. Therefore, the manufacturing method of the present invention employs a method of pulverizing before the heating step (IV) and reducing or removing the generated residual stress in the subsequent heating step (IV).
  • the pulverization is preferably performed using a jaw crusher, a hammer mill, a ball mill, a jet mill, a planetary mill or the like.
  • the method of pulverization may be either dry or wet.
  • the solidified product be struck by hand or a hammer to make it finer, because the burden of the pulverization step (III) is reduced.
  • the heating step (IV) after removing the dispersion medium by sedimentation, filtration, drying under reduced pressure, heat drying and the like.
  • the heating step (IV) may be performed with the pulverized product containing the dispersion medium as it is.
  • the silicic acid compound in the present invention is an insulating material, when used as a positive electrode material for a secondary battery, it is preferable to include a conductive material in the solidified product. Moreover, when using as a positive electrode material for secondary batteries, it is preferable that it is a fine particle form.
  • the average particle diameter of the pulverized product is preferably 10 nm to 10 ⁇ m, and particularly preferably 10 nm to 5 ⁇ m, in terms of volume-based median diameter.
  • the particle size can be measured by a sedimentation method or a laser diffraction / scattering particle size measuring device.
  • the particle size of the pulverized product When the particle size of the pulverized product is small, the reduction reaction is promoted, and the heating temperature and time in the heating step (IV) can be reduced, which is preferable.
  • the average particle size of the pulverized product By setting the average particle size of the pulverized product within the above range, the workability of the pulverization step (III) and the heating step (IV) is improved, and the average particle size of the product of the heating step (IV) can be easily controlled. There is.
  • the conductive material is preferably at least one carbon source selected from the group consisting of organic compounds and carbon powder.
  • the amount of at least one carbon source selected from the group consisting of an organic compound and carbon powder is such that the carbon equivalent amount (mass) in the carbon source is the mass of the solidified product and the carbon equivalent amount (mass in the carbon source). ) In an amount of 0.1 to 20% by mass, particularly preferably 2 to 10% by mass. By setting the amount of carbon in the above range, the conductivity as the positive electrode material for secondary batteries can be sufficiently increased.
  • the organic compound and / or carbon powder contained in the solidified product prevents oxidation in the pulverization step (III) and heating step (IV), and further promotes reduction.
  • the organic compound is pyrolyzed in the heating step (IV) to become a carbide, and the carbon powder remains after the heating step (IV) and functions as a conductive material. Therefore, the conductivity of the positive electrode material for secondary batteries can be increased.
  • the organic compound is preferably at least one selected from the group consisting of saccharides, amino acids, peptides, aldehydes, ketones, glycols, polyvinyl alcohol, celluloses, and fatty acids, and saccharides, glycols, or polyvinyl alcohol.
  • the saccharide include monosaccharides such as glucose, fructose, and galactose, oligosaccharides such as sucrose, maltose, cellobiose, and trehalose, invert sugar, polysaccharides such as dextrin, amylose, amylopectin, and cellulose, and ascorbic acid. It is done.
  • amino acids examples include amino acids such as alanine and glycine.
  • Peptides include low molecular weight peptides having a molecular weight of 1,000 or less.
  • carbon powder carbon black, graphite, acetylene black and the like are preferable.
  • the carbon powder may be fibrous carbon or plate-like carbon.
  • the pulverization step (III) when the solidified product is pulverized by including an organic compound or carbon powder, there is an advantage that the step of mixing the conductive material can be omitted after the heating step (IV). Moreover, the organic compound and carbon powder can suppress the grain growth of the solidified product.
  • wet pulverization is preferably employed in order to uniformly disperse the pulverized product on the surface.
  • a dispersion medium for pulverization water or an organic solvent such as ethanol, isopropyl alcohol, acetone, hexane, or toluene can be used. Of these, water is preferable because it is inexpensive.
  • a dry method is preferable for the pulverization step (III) when the solidified product contains carbon powder. Furthermore, the pulverized product obtained in the pulverization step (III) may be subjected to another step before the heating step (IV) as long as it does not adversely affect the next heating step (IV).
  • the heating step (IV) is a step of heating the pulverized product obtained in the pulverizing step (III).
  • a silicic acid compound having a composition represented by the following formula (B) is obtained.
  • a e M b Si x D 1 -x O f2 (B) (The symbols in the formula have the same meaning as described above, but indicate values independent of the values in the formula (A).)
  • f2 is preferably 3 ⁇ f2 ⁇ 5, particularly preferably 3 ⁇ f2 ⁇ 4.
  • Preferred ranges of e, b, and x in the formula (B) are the same as those in the formula (A).
  • Element A is Li
  • Element M is Fe only, or Fe and Mn
  • e is 0.8 ⁇ e ⁇ 2.4
  • b is 0.7 ⁇ b ⁇ 1.3
  • x is 0.3 ⁇ x ⁇ 1
  • a compound in which f2 is 3 ⁇ f2 ⁇ 5 is particularly preferable.
  • x may be 0.3 ⁇ x ⁇ 1.
  • the preferable range of a, b, and x in Formula (2) is the same as the preferable range in Formula (1).
  • f2 is preferably 3 ⁇ f2 ⁇ 5, particularly preferably 3 ⁇ f2 ⁇ 4.
  • d12 is preferably ⁇ 0.2 ⁇ d12 ⁇ 1.2, particularly preferably 0 ⁇ d12 ⁇ 0.5.
  • the valence of N is preferably +2.
  • Element A is Li
  • Element M is Fe only, or Fe and Mn
  • e is 0.8 ⁇ e ⁇ 2.4
  • b is 0.7 ⁇ b ⁇ 1.3
  • x is 0.3 ⁇ x ⁇ 1
  • x may be 0.3 ⁇ x ⁇ 1.
  • the preferred range of a, b, x and c in formula (4) is the same as the preferred range in formula (3).
  • f2 is preferably 3 ⁇ f2 ⁇ 5, particularly preferably 3 ⁇ f2 ⁇ 4.
  • d22 is preferably ⁇ 0.2 ⁇ d22 ⁇ 1.2, particularly preferably 0 ⁇ d22 ⁇ 0.5.
  • the valence of N is preferably +2.
  • the silicon compound having a composition when D is Al is particularly preferably a compound having a composition represented by the following formula (5).
  • the value of y in the formula (5) is preferably 0 ⁇ y ⁇ 1, and particularly preferably 0 ⁇ y ⁇ 1.
  • the molar ratio of Fe to Mn is preferably 20 to 80:80 to 20, more preferably 25 to 75:75 to 25, and particularly preferably 40 to 60:60 to 40.
  • the silicon compound having a composition when D is Al and B is particularly preferably a compound having a composition represented by the following formula (6).
  • the value of y in the formula (6) is preferably 0 ⁇ y ⁇ 1, and particularly preferably 0 ⁇ y ⁇ 1.
  • the molar ratio of Fe to Mn is preferably 20 to 80:80 to 20, more preferably 25 to 75:75 to 25, and particularly preferably 40 to 60:60 to 40.
  • the product of the heating step (IV) is preferably crystal particles, and more preferably olivine type crystal particles.
  • the pulverized material is heated, so that the relaxation of the residual stress is promoted.
  • the composition, grain size, and distribution thereof are easily controlled.
  • the heating step (IV) in the case where the organic compound and / or carbon powder is included in the solidified product in the pulverizing step (III) causes the conductive material to be bonded to the surface of the product, preferably the crystal grains of the product. It can be a process.
  • the organic compound is thermally decomposed in the heating step (IV) and becomes a carbide to function as a conductive material.
  • the heating temperature in the heating step (IV) is preferably 500 to 1,000 ° C. When the heating temperature is 500 ° C. or higher, crystals are easily generated. When the heating temperature is 1,000 ° C. or less, melting of the pulverized product can be prevented.
  • the heating temperature is more preferably 600 to 900 ° C. When the heating temperature is used, crystal particles having appropriate crystallinity, particle diameter, particle size distribution, and the like are easily obtained, and olivine-type crystal particles are preferably obtained.
  • the heating step (IV) can be a step of removing the dispersion medium when the heating step (IV) is performed while the dispersion medium is included.
  • the heating in the heating step (IV) may be performed at a constant temperature after raising the temperature at once, or may be performed by changing the temperature in multiple stages. Since the particle diameter to be generated tends to increase as the heating temperature increases, the heating temperature is preferably set according to the desired particle diameter.
  • the heating time (holding time depending on the heating temperature) is preferably 1 to 72 hours in consideration of a desired particle size. Heating is preferably carried out in a box furnace, tunnel kiln furnace, roller hearth furnace, rotary kiln furnace, microwave heating furnace or the like using electricity, oil, gas or the like as an energy source.
  • the heating step (IV) can be carried out in air, in an inert gas or in a reducing gas, and is preferably carried out in an inert gas or in a reducing gas.
  • the conditions in the inert gas and the reducing gas are the same as those in the melting step (I).
  • the heating step (IV) may be carried out by reducing the pressure in an inert gas or a reducing gas (0.9 ⁇ 10 5 Pa or less).
  • a reducing agent eg, graphite
  • pulverized material eg, change from M 3+ to M 2+
  • the cooling step (IV) after the heating step (IV), it is usually cooled to room temperature.
  • the cooling rate in the cooling is preferably ⁇ 30 ° C./hour to ⁇ 300 ° C./hour. By setting the cooling rate within this range, distortion due to heating can be removed, and when the product is a crystal, the target product can be obtained while maintaining the crystal structure. Further, the cooling may be left to cool to room temperature.
  • the cooling is preferably allowed to cool to room temperature. Cooling is preferably performed in an inert gas or a reducing gas.
  • the silicic acid compound obtained by the production method of the present invention is a novel compound useful as a positive electrode material for secondary batteries.
  • the silicic acid-aluminic acid compound having the composition represented by the formula (2) and the silicic acid-boric acid-aluminic acid compound having the composition represented by the formula (4) have an element A atom number of 1 Since it is 2 or more, it becomes a multi-electron type, and the capacity per unit mass becomes large when used for a positive electrode for a secondary battery.
  • the silicic acid-aluminic acid compound having the composition represented by the formula (2) when the element A is Li, more than one and not more than two per unit ([SiO 4 ] + [AlO 4 ]) tetrahedron Since the compound has a structure containing Li, the number of Li atoms can be 1.2 or more. Furthermore, according to the production method of the present invention, it is possible to obtain a silicic acid-aluminic acid compound in which [SiO 4 ] tetrahedron, [AlO 4 ] tetrahedron and [LiO 4 ] tetrahedron are uniformly distributed.
  • the silicic acid-boric acid-aluminic acid compound having the composition represented by the formula (4) has a unit ([SiO 4 ] + [BO 4 ] + [AlO 4 ]) tetrahedron. Since it is a compound having a structure containing more than one and not more than two Li, the number of atoms of Li can be increased to 1.2 or more.
  • [SiO 4 ] tetrahedron, [BO 4 ] tetrahedron, [AlO 4 ] tetrahedron and [LiO 4 ] tetrahedron are uniformly distributed silicic acid-boric acid-aluminic acid A compound can be obtained.
  • the silicate compound in the present invention preferably contains olivine type crystal particles.
  • the crystal particles include both primary particles and secondary particles. When secondary particles are present in the product, they may be crushed and pulverized as long as the primary particles are not destroyed.
  • the silicate compound produced by the production method of the present invention preferably contains olivine type crystal particles, and is preferably olivine type crystal particles.
  • the olivine type crystal particle is a material that exhibits a multi-electron type theoretical electric capacity.
  • carbon derived from the organic compound or carbon powder is uniformly and strongly used as a conductive material on the surface of the silicic acid compound.
  • the silicic acid compound to which the conductive material is bonded can be used as it is for a positive electrode material for a secondary battery.
  • the silicic acid-aluminic acid compound having the composition represented by the formula (2) or the silicic acid-boric acid-aluminic acid compound having the composition represented by the formula (4) is a crystal, it is a solid solution crystal or a eutectic crystal. Preferably there is.
  • x in the formula (2) or the formula (4) is 0.8 ⁇ x ⁇ 1, it tends to be a solid solution crystal. The reason is considered that a part of Si is substituted with Al or Al and B by the reaction represented by the following formula (7) to form a solid solution crystal.
  • the solid solution crystal has a stable crystal structure as compared with a crystal composed of only Si, Li ions easily move in the crystal. Therefore, a high capacity can be obtained and the electrical conductivity can be increased, and the charge / discharge cycleability can be improved when used as a positive electrode material for a secondary battery.
  • the crystal is a solid solution crystal in which a part of Si is substituted with Al or Al and B, and an olivine type crystal. Particles are preferred.
  • a silicate compound that is a solid solution crystal is used as a positive electrode material for a secondary battery, Li ions easily move in the crystal, resulting in a high capacity and an increase in electrical conductivity. Therefore, when used as a positive electrode material for a secondary battery, a theoretical capacity is easily obtained, and it is considered that the charge / discharge cycleability is improved.
  • the eutectic silicic acid compounds are A 2 MSiO 4 olivine type crystal, AM (B, Al) O 3 olivine type crystal, and A 1 + z MSi z (B, Al) 1-z O 3 + z (z is 0 ⁇ z ⁇ 1.0.)
  • an olivine type crystal having a composition represented by the formula Li 1 + z MSi z (B, Al) 1-z O 3 + z olivine type crystal is essential, and further Li 2 MSiO 4 olivine type crystal.
  • a eutectic of a silicic acid compound containing an olivine crystal selected from (may or may not contain B in the crystal) is particularly preferred.
  • (B, Al) is Al or Al and B.
  • the eutectic of the silicic acid compound is considered to be generated by the reaction represented by the following formula (8).
  • (1-x) A 2 MSiO 4 + xAM (B, Al) O 3 ⁇ (1-xw 1 ) A 2 MSiO 4 + (xw 2 ) AM (B, Al) O 3 + wA 2 ⁇ z MSi z (B, Al) 1-z O 3 + Z (8) (Wherein x and z are 0.3 ⁇ x ⁇ 0.8 and 0.2 ⁇ z ⁇ 0.8, w 1 , w 2 and w are each a number from 0 to 1, and w 1 + w 2 w. B may not be included.)
  • the silicic acid compound of the present invention is a eutectic because the electric conductivity tends to increase.
  • the eutectic has a plurality of crystal structures, and crystallites having different electric conductivities are formed. Therefore, when a potential is applied, a potential difference occurs between the crystallites, and the primary particles This is probably because the electrical conductivity of the device itself increases.
  • a structure having a grain boundary is formed between the crystallites in the primary particle, and this grain boundary is extremely thin as compared with that in the primary particle, which is considered to be because the electrical conductivity of the primary particle itself is increased.
  • the silicic acid compound of the present invention is particularly preferably an eutectic because it is easy to obtain high electric conductivity and charge / discharge cycleability is improved.
  • the silicate compound of the present invention is preferably a solid solution crystal from the viewpoint of having a high capacity and easily obtaining good cycle characteristics, and easily obtaining high electrical conductivity. From this point, eutectic is particularly preferable.
  • the average particle diameter of the silicate compound of the present invention is preferably an average particle diameter of 10 nm to 10 ⁇ m, more preferably 10 nm to 6 ⁇ m, and particularly preferably 10 nm to 2 ⁇ m in terms of volume median diameter.
  • the lower limit value may be 100 nm. By making the average particle diameter within this range, the conductivity becomes higher.
  • the average particle diameter can be determined by, for example, observation with an electron microscope or measurement with a laser diffraction particle size distribution meter.
  • the specific surface area of the silicate compound is preferably 0.2 ⁇ 200m 2 / g, preferably 0.5 ⁇ 200m 2 / g, 1 ⁇ 200m 2 / g is particularly preferred.
  • the upper limit value may be 100 m 2 / g or 10 m 2 / g.
  • the specific surface area can be measured by, for example, a specific surface area measuring apparatus using a nitrogen adsorption method.
  • the silicic acid compound of the present invention is a compound having a composition represented by formula (ii) or a compound having a composition represented by formula (iv), and the compound is preferably an olivine type crystal.
  • Examples of compounds include the compounds listed in Table 3 below.
  • the silicic acid compound obtained by the production method of the present invention is useful as a positive electrode material for a secondary battery. Therefore, the positive electrode for secondary batteries and a secondary battery can be manufactured using this silicate compound.
  • the secondary battery include a metal lithium secondary battery, a lithium ion secondary battery, and a lithium polymer secondary battery, and a lithium ion secondary battery is preferable.
  • the battery shape is not limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
  • the positive electrode for a secondary battery can be manufactured according to a known electrode manufacturing method using the silicate compound obtained by the manufacturing method of the present invention.
  • the silicic acid compound of the present invention is added to a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluororubber, Obtained by mixing with polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, etc.) and, if necessary, known conductive materials (acetylene black, carbon, graphite, natural graphite, artificial graphite, needle coke, etc.).
  • the mixed powder may be pressure-formed on a support made of stainless steel or filled in a metal container. Further, for example, the mixed powder is mixed with an organic solvent (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran. And the like, and a slurry obtained by mixing with a metal substrate such as aluminum, nickel, stainless steel, or copper can also be employed.
  • an organic solvent N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, te
  • the secondary battery can employ a configuration in a known secondary battery using the positive electrode for a secondary battery obtained by the production method of the present invention as an electrode.
  • the negative electrode a known negative electrode active material can be used as the active material, and at least one selected from the group consisting of a carbon material, an alkali metal material, and an alkaline earth metal material is preferably used.
  • the electrolytic solution a non-aqueous electrolytic solution is preferable. That is, as the secondary battery obtained by the production method of the present invention, a nonaqueous electrolyte lithium ion secondary battery is preferable.
  • the present invention will be specifically described with reference to examples, but the present invention is not limited to the following description.
  • the composition of the melt is Li 2 O, Na 2 O, FeO, MnO, CoO, NiO, SiO 2 , and Al 2 O 3 equivalent (unit: mol%), so that the ratios shown in Table 1 are obtained, respectively.
  • Lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), manganese dioxide (MnO 2 ), tricobalt tetroxide (Co 3 O 4 ), nickel oxide ( NiO), silicon dioxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ) were weighed, mixed and pulverized in a dry process to obtain a raw material formulation.
  • Each raw material formulation was filled in a platinum alloy crucible containing 20% by mass of rhodium.
  • the crucible was placed in an electric furnace (manufactured by Motoyama, apparatus name: NH-3035) having a heating element made of molybdenum silicide.
  • the temperature was raised at a rate of + 300 ° C./hour and heated at 1,400 to 1,500 ° C. for 0.5 hour.
  • Each melt was obtained after confirming that it became transparent visually.
  • the composition formula of the obtained melt is shown in the right column of Table 1.
  • Example 1 When the particle diameter of the pulverized product of Example 1 and Example 4 was measured using a laser diffraction / scattering particle size analyzer (manufactured by Horiba, Ltd., apparatus name: LA-950), the median diameter in terms of volume was 2.1 ⁇ m. (Example 1) and 2.5 ⁇ m (Example 4).
  • the pulverized material obtained in the pulverization step is placed in 3% by volume H 2 —Ar gas, and heated for 8 hours at four temperature conditions of 600 ° C., 700 ° C., 800 ° C. and 900 ° C. for each example, Silica-aluminate compound particles were precipitated by cooling at a rate of ⁇ 200 ° C./hour.
  • X-ray diffraction, particle size distribution, and composition analysis were performed about the particle
  • the mineral phase of the obtained silicate compound particles was examined using an X-ray diffractometer (manufactured by Rigaku Corporation, apparatus name: RINT TTRIII).
  • the particles obtained in Examples 1 to 13 are all orthorhombic olivine type Li 2 MSiO 4 (K. Zaghib et al., Journal of Power Sources, 160, 1381-1386, 2006 and R. Dominko et al. , Electrochemistry Communications, 8, 217-222 (2006)). From the results, it was confirmed that the silicate compound particles were crystals and a solid solution crystal in which a part of Si of the A 2 MSiO 4 crystal was substituted with Al.
  • the X-ray diffraction patterns of the crystals obtained in Examples 1, 2, 3, and 4 are respectively shown in (a), (b), (c), and (d) of FIG. 7, the X-ray diffraction patterns of the respective crystals obtained by heating at 800 ° C. are shown in FIG. 2 (a), (b), and (c), respectively.
  • the particle size distribution of the silicic acid-aluminic acid compound obtained in Example 1 was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Horiba, Ltd., apparatus name: LA-920). The median diameter in terms of volume was 2.3 ⁇ m. Furthermore, when the specific surface area was measured with a specific surface area measuring device (manufactured by Shimadzu Corporation, device name: ASAP2020), it was 1.4 m 2 / g.
  • Example 14 to 30 Carbonic acid so that the composition of the melt is Li 2 O, FeO, MnO, CoO, SiO 2 , B 2 O 3 , and Al 2 O 3 equivalent (unit: mol%), and the ratio shown in Table 2 respectively.
  • Lithium (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), manganese dioxide (MnO 2 ), tricobalt tetroxide (Co 3 O 4 ), silicon dioxide (SiO 2 ), boron oxide (B 2 O 3 ) and aluminum oxide (Al 2 O 3 ) were weighed to obtain a raw material formulation.
  • Example 2 These were mixed and pulverized, melted, cooled and solidified, pulverized, and heated in the same manner as in Example 1 to precipitate silicate compound particles.
  • the particles obtained by carrying out the heating step at 700 ° C. were subjected to X-ray diffraction, particle size distribution and composition analysis.
  • the composition formula of the obtained melt is shown in the right column of Table 2.
  • a diffraction pattern considered to be a eutectic including a crystal is shown, and an A 2 MSiO 4 olivine type crystal, an AM (B, Al) O 3 olivine type crystal, and an A 1 + z MSi z (B, Al) 1-z O 3 + z olivine type are shown. It was confirmed that a eutectic containing crystals was obtained.
  • the X-ray diffraction patterns of the crystals obtained in Examples 14, 15, 16, and 19 are shown in (a), (b), (c), and (d) of FIG.
  • the particle size distribution of the silicic acid compound obtained in Example 14 was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Horiba, Ltd., apparatus name: LA-920). The median diameter in terms of volume was 1.9 ⁇ m. there were. Furthermore, when the specific surface area was measured with a specific surface area measurement device (manufactured by Shimadzu Corporation, device name: ASAP2020), it was 1.5 m 2 / g.
  • composition analysis The chemical composition of the obtained silicic acid compound particles was measured. First, the particles were heated and decomposed at 120 ° C. with a 2.5 mol / L KOH solution, and the decomposition solution was dried under hydrochloric acid acidity. Next, after filtration as a hydrochloric acid acidic solution, a filtrate and a residue were obtained. The amounts of Si, B, Al, Fe, Mn, Co and Ni in the filtrate were quantified using an inductively coupled emission spectroscopic analyzer (manufactured by Seiko Instruments Inc., apparatus name: SPS3100).
  • the amounts of Li and Na in the filtrate were quantified using an atomic absorption photometer (manufactured by Hitachi High-Technologies Corporation, apparatus name: Z-2310). From the quantitative values of Si, B, Al, Fe, Mn, Co, Ni, Li and Na, SiO 2 , B 2 O 3 , Al 2 O 3 , FeO, MnO, CoO, NiO, Li 2 O and Na 2 O The amount of each was calculated. Further, the residue was incinerated and then decomposed with hydrofluoric acid-sulfuric acid, and the weight loss due to this treatment was changed to SiO 2 . The total amount of SiO 2 was the sum of the amount calculated from the weight loss and the amount of SiO 2 in the filtrate. Table 3 shows quantitative values of the chemical compositions of the silicate compound particles obtained in Examples 1 to 10 and Examples 14 to 21.
  • Examples 31 to 37 The coarsely pulverized product obtained by melting, cooling, and coarsely pulverizing in Examples 1 to 4 and Examples 14 to 16 and carbon black were 9: 1 in mass ratio of the pulverized product and the amount of carbon in the carbon black. Each was mixed and ground using a planetary mill in the same manner as in Example 1. The carbon-containing pulverized product in each example was heated in Ar gas at two temperatures of 700 ° C. and 800 ° C. for 8 hours and cooled at a rate of ⁇ 200 ° C./hour to obtain silicate compound particles. The X-ray diffraction pattern of the obtained silicate compound almost coincided with that of olivine type lithium iron silicate.
  • Examples 31, 32, 33, and 34 X-ray diffraction patterns of silicic acid compounds obtained by heating at 700 ° C. are shown in FIGS. 4 (a), (b), (c), and (d), respectively. Show.
  • the mixture was heated at 700 ° C. for 8 hours and cooled at a rate of ⁇ 200 ° C./hour, and the carbon content of the obtained silicate compound particles was determined by a carbon analyzer (manufactured by Horiba, Ltd., device name: EMIA-920V) were 9.8% by mass (Example 31) and 9.7% by mass (Example 34), respectively.
  • EMIA-920V carbon analyzer
  • the specific surface area was measured they were 28 m 2 / g (Example 31) and 32 m 2 / g (Example 34), respectively.
  • Examples 38 to 41 The coarsely pulverized product obtained by melting, quenching, and coarsely pulverizing in Examples 1, 2, 14, and 15, the carbon black and the sucrose aqueous solution, the C content in the pulverized product and carbon black, and the C content in sucrose. The mixture was mixed so that the mass ratio with respect to the content was 0.90: 0.05: 0.05, and pulverized and heated in the same manner as in Example 31 to obtain silicate compound particles.
  • the X-ray diffraction pattern of the obtained silicate compound was the same as that of the olivine type lithium iron silicate as in Examples 31, 32, 35 and 36.
  • the composition of the melt is 38.5%, 38.5%, 7.7% and 15.4% in terms of Li 2 O, FeO, SiO 2 and Al 2 O 3 (unit: mol%).
  • Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) were weighed, mixed and pulverized in a dry manner.
  • a raw material formulation was obtained.
  • the raw material formulation was melted in the same manner as in Example 1, but could not be melted.
  • the composition of the melt is 32.3%, 48.4%, 6.5%, 3% in terms of Li 2 O, FeO, SiO 2 , B 2 O 3 , and Al 2 O 3 (unit: mol%).
  • Aluminum (Al 2 O 3 ) was weighed, mixed and pulverized in a dry manner to obtain a raw material formulation.
  • the raw material formulation was melted in the same manner as in Example 1, but could not be melted.
  • the composition of the melt is 32.8%, 34.5%, 31.0%, and 1.7% in terms of Li 2 O, FeO, and SiO 2 , and Al 2 O 3 (unit: mol%).
  • Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) are weighed so that A raw material formulation was obtained.
  • the raw material formulation was melted at 1,450 ° C. and then cooled at a cooling rate of ⁇ 300 ° C./hour to obtain a crystallized product.
  • the mineral phase of the obtained crystallized product was identified using XRD, it was a coarse crystal mainly composed of Li 2 SiO 3 and Fe 3 O 4 . That is, after melting, cooling was performed at a slow cooling rate to obtain a crystallized product, and when the pulverization step and heating step in the present invention were not performed, the target compound could not be obtained.
  • the composition of the melt is Li 2 O, FeO, and SiO 2 , B 2 O 3 , and Al 2 O 3 equivalent (unit: mol%), 32.8%, 34.5%, 31.0%, Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), silicon dioxide (SiO 2 ), boron oxide (B 2 O 3 ) so as to be 0.85% and 0.85% And aluminum oxide (Al 2 O 3 ) was weighed, mixed and pulverized by a dry method, and a raw material formulation was obtained. In the same manner as in Example 1, the raw material formulation was melted at 1,450 ° C.
  • the mineral phase of the obtained crystallized product was identified, it was a coarse crystal mainly composed of Li 2 SiO 3 and Fe 3 O 4 . That is, after melting, cooling was performed at a slow cooling rate to obtain a crystallized product, and when the pulverization step and heating step in the present invention were not performed, the target compound could not be obtained.
  • Examples 42 to 46 Production of positive electrode for Li ion secondary battery and battery for evaluation
  • silicic acid compound particles obtained by heating at 700 ° C. for 8 hours and cooling at a rate of ⁇ 200 ° C./hour and an aqueous sucrose solution, The sucrose was mixed and ground so that the mass ratio with respect to the C content was 0.90: 0.10.
  • the active material, polyvinylidene fluoride resin (binder) and acetylene black (conductive material) are weighed so that the mass ratio is 85: 5: 10, and in N-methylpyrrolidone (solvent).
  • a slurry was prepared by mixing until uniform.
  • the slurry was applied to an aluminum foil having a thickness of 30 ⁇ m with a bar coater. After drying this at 120 degreeC in the air and removing a solvent, after consolidating the coating layer with the roll press, it cut out to the strip shape of width 10mm * length 40mm.
  • the coating layer was peeled off leaving a 10 ⁇ 10 mm tip of strip-shaped aluminum foil, which was used as an electrode.
  • the coating thickness of the obtained electrode after roll pressing was 20 ⁇ m.
  • the obtained electrode was vacuum-dried at 150 ° C., then carried into a glove box filled with purified argon gas, and opposed to a counter electrode made by pressure bonding a lithium foil to a nickel mesh with a porous polyethylene film separator, Both sides were fixed with a polyethylene plate.
  • Example 47 Using the silicate compound particles obtained in Examples 38 and 40 as an active material, the active material, polyvinylidene fluoride resin (binder), and acetylene black (conductive material) in a mass ratio of 90: 5: 5 An electrode was produced in the same manner as in Example 42 except that the weight was measured so that the charge / discharge characteristics were evaluated in the same manner as in Example 42.
  • the discharge capacities at the fifth cycle were 154 mAh / g (Example 47) and 161 mAh / g (Example 48), respectively.
  • the method for producing a silicic acid compound of the present invention is useful because the composition of the silicic acid compound can be easily controlled and produced.
  • the obtained silicic acid compound is useful for a positive electrode material for a secondary battery and further for a secondary battery.
  • a secondary battery using the silicate-phosphate compound of the present invention as a positive electrode material is useful as a secondary battery mounted in a plug-in hybrid vehicle or an electric vehicle, and as a storage battery for storing power.

Abstract

A silicate-compound manufacturing method providing improved control of composition and grain size. In said method, which is a method for manufacturing a silicate compound having a composition represented by formula (B), said silicate compound is manufactured by performing the following steps in order: a step wherein a melt is obtained by heating a feedstock mixture, obtained by controlling a feedstock containing atomic A, atomic M, silicon, and D such that the molar proportions of said atomic A, atomic M, silicon, and D equal the molar proportions indicated by formula (B); a cooling step wherein a solidified material is obtained by cooling the aforementioned melt; a pulverization step wherein a pulverized material is obtained by pulverizing said solidified material; and a heating step wherein the abovementioned silicate compound is obtained by heating said pulverized material. (B) A e M b Si x D1− x O f2 (In the formula, A represents at least one element selected from a group comprising lithium, sodium, and potassium; M represents at least one element selected from a group comprising iron, manganese, cobalt, and nickel; D represents either aluminum or aluminum and boron; e satisfies 0.8 < e < 2.4; b satisfies 0.7 ≤ b ≤ 1.3; x satisfies 0.3 ≤ x < 1; and f2 represents a number that depends on e, b, x, and the valence (N) of M.)

Description

ケイ酸化合物、二次電池用正極、二次電池、およびそれらの製造方法Silicic acid compound, positive electrode for secondary battery, secondary battery, and production method thereof
 本発明は、ケイ酸化合物、二次電池用正極、二次電池、およびそれらの製造方法に関する。 The present invention relates to a silicate compound, a positive electrode for a secondary battery, a secondary battery, and a method for producing them.
 近年、世界的なCO排出規制や省エネルギーの観点から、プラグインハイブリッド自動車や電気自動車の開発が進められている。また、スマートシティやスマートコミュニティの構想の実現ために、電力貯蔵用の蓄電池の開発が望まれている。これらの実現には、使用される二次電池が、安全性を維持しつつ、高容量化、高エネルギー化、大型化することが課題とされている。そして、次世代のリチウムイオン二次電池の正極材料等として、資源面、安全面、コスト面、安定性等の点での優位性から、オリビン型の正極材料が注目されている。 In recent years, plug-in hybrid vehicles and electric vehicles have been developed from the viewpoint of global CO 2 emission regulations and energy saving. In addition, in order to realize the concept of a smart city and a smart community, development of a storage battery for power storage is desired. In order to realize these, it is a problem that the secondary battery to be used is increased in capacity, energy, and size while maintaining safety. As the positive electrode material for the next generation lithium ion secondary battery, an olivine type positive electrode material has attracted attention because of advantages in terms of resources, safety, cost, stability, and the like.
 二次電池の正極の候補材料として、単位式中に2個のLiを含み、多電子反応による高容量化が可能なオリビン型ケイ酸化合物(LiFeSiO)が提案されている(非特許文献1参照)。 As a candidate material for a positive electrode of a secondary battery, an olivine-type silicic acid compound (Li 2 FeSiO 4 ) containing two Li in a unit formula and capable of increasing the capacity by a multi-electron reaction has been proposed (non-patent) Reference 1).
 特許文献1には、単位式中にk個のLiを含み、かつ[SiO]、[SO]、[PO]、[GeO]、[VO]、[AlO]、[BO]などを含む広い一般式の化合物であってオルトシリケート構造を有する化合物が電極材料として提案されている。 Patent Document 1 includes k Li in the unit formula, and [SiO 4 ], [SO 4 ], [PO 4 ], [GeO 4 ], [VO 4 ], [AlO 4 ], [BO]. 4 ] and the like, and compounds having an orthosilicate structure, which have a wide general formula, have been proposed as electrode materials.
特開2001-266882号公報JP 2001-266882 A
 非特許文献1に記載されたLiFeSiOは、固相反応により製造されるため、製造工程が複雑で、製造コストがかさむ。 Since Li 2 FeSiO 4 described in Non-Patent Document 1 is manufactured by a solid-phase reaction, the manufacturing process is complicated and the manufacturing cost increases.
 特許文献1に電極材料として、Siを含む化合物として実際に開示されているのはLi1.7Mn0.7Fe0.3Si0.70.3であり、該化合物は、LiMnSiOおよびLiFePOを混合・粉砕し、管に封入し、加熱して製造する固相反応で製造している。固相反応は製造工程が複雑で、製造コストがかさみ、大量生産することが困難であり、組成制御も容易でない。 It is Li 1.7 Mn 0.7 Fe 0.3 Si 0.7 P 0.3 O 4 that is actually disclosed as an electrode material in Patent Document 1 as a compound containing Si. Li 2 MnSiO 4 and LiFePO 4 are mixed and pulverized, sealed in a tube, and heated to produce the solid phase reaction. The solid-phase reaction has a complicated manufacturing process, is expensive to manufacture, is difficult to mass-produce, and composition control is not easy.
 本発明の目的は、単位質量当たりの高容量化が可能なケイ酸化合物、より具体的にはケイ酸-アルミン酸化合物およびケイ酸-ホウ酸-アルミン酸化合物の、組成および粒径の制御がしやすい製造方法の提供にある。該化合物は、二次電池用正極および二次電池の正極に用いる活物質として有用である。本発明は、特性や信頼性に優れる二次電池用正極および二次電池を製造する方法をも提供する。 The object of the present invention is to control the composition and particle size of silicic acid compounds capable of increasing the capacity per unit mass, more specifically silicic acid-aluminic acid compounds and silicic acid-boric acid-aluminic acid compounds. It is in providing a manufacturing method that is easy to do. The compound is useful as an active material used for a positive electrode for a secondary battery and a positive electrode for a secondary battery. The present invention also provides a positive electrode for a secondary battery having excellent characteristics and reliability and a method for producing the secondary battery.
 本発明は、以下の[1]~[17]の発明である。
[1]下式(B)で表される組成を有するケイ酸化合物の製造方法であって、
 ASi1-xf2     (B)
(式中、AはLi、NaおよびKからなる群より選ばれる少なくとも1種の元素である。MはFe、Mn、CoおよびNiからなる群より選ばれる少なくとも1種の元素であり、DはAl、または、AlおよびBである。eは0.8<e<2.4であり、bは0.7≦b≦1.3であり、xは0.3≦x<1であり、f2はe、b、xおよびMの価数Nに依存する数である。)
元素A、元素M、Si、およびDを含む原料を、元素A、元素M、Si、およびDのモル比が式(B)で表されるモル比となるように調整してなる原料調合物を加熱して溶融物を得る工程、
前記溶融物を冷却し固化物を得る冷却工程、
前記固化物を粉砕し粉砕物を得る粉砕工程、および
 前記粉砕物を加熱してケイ酸化合物を得る加熱工程、
をこの順に実施することを特徴とするケイ酸化合物の製造方法。
[2]下式(A)で表される組成を有する溶融物を得る溶融工程、
 前記溶融物を冷却し固化物を得る冷却工程、
 前記固化物を粉砕し粉砕物を得る粉砕工程、および
 前記粉砕物を加熱して下式(B)で表される組成を有するケイ酸化合物を得る加熱工程、
をこの順に実施する[1]のケイ酸化合物の製造方法。
 ASi1-xf1     (A)
(式中、AはLi、NaおよびKからなる群より選ばれる少なくとも1種の元素であり、MはFe、Mn、CoおよびNiからなる群より選ばれる少なくとも1種の元素であり、DはAl、または、AlおよびBであり、eは0.8<e<2.4である。bは0.7≦b≦1.3であり、xは0.3≦x<1であり、f1はe、b、xおよびMの価数Nに依存する数であり、加熱工程後にf2となる数である。)
 ASi1-xf2     (B)
(式中、A、M、D、e、bおよびxは前記と同じ意味を示すが、前記とは独立した値であり、f2はe、b、xおよびMの価数Nに依存する数である。)xは0.3<x<1であってもよい。
[3]前記式(A)で表される組成を有する溶融物が、下式(1)で表される組成を有する溶融物であり、前記式(B)で表される組成を有するケイ酸化合物が、下式(2)で表される組成を有するケイ酸-アルミン酸化合物である、[2]のケイ酸化合物の製造方法。
 A1+x+aSiAl1-x3+x+d11     (1)
 A1+x+aSiAl1-x3+x+d12     (2)
(式中、A、M、xおよびbは前記と同じ意味を示し、aは-0.1≦a≦0.4であり、d11はa、bおよびMの価数Nに依存する数であり、加熱工程後にd12となる数であり、d12はa、bおよびMの価数Nに依存する数である。ただし、式(1)と式(2)において、a、b、およびxは独立した値を示す。)
[4]前記溶融工程が、
 元素Aを含む化合物が、Aの炭酸塩、Aの炭酸水素塩、Aの水酸化物、Aのケイ酸塩、Aのアルミン酸塩、Aの硝酸塩、Aの塩化物、Aの硫酸塩、Aの酢酸塩およびAのシュウ酸塩からなる群より選ばれる少なくとも1種(ただし、該1種以上の一部または全部は、それぞれ、水和塩を形成していてもよい。)として含まれ、
 元素Mを含む化合物が、Mの酸化物、Mの水酸化物、Mのオキシ水酸化物、Mのケイ酸塩、Mのアルミン酸塩、金属M、Mの塩化物、Mの硝酸塩、Mの硫酸塩およびMの有機塩からなる群より選ばれる少なくとも1種として含まれ、
 Siを含む化合物が、酸化ケイ素、Aのケイ酸塩、Mのケイ酸塩、アルミノケイ酸塩およびケイ素のアルコキシドからなる群より選ばれる少なくとも1種として含まれ、
 Alを含む化合物が、酸化アルミニウム、オキシ水酸化アルミニウム、アルミノケイ酸塩、塩化アルミニウム、硝酸アルミニウムおよび硫酸アルミニウムからなる群より選ばれる少なくとも1種として含まれる、
原料調合物を加熱して、前記式(1)で表される組成を有する溶融物を得る工程である、[3]のケイ酸化合物の製造方法。
[5]前記式(A)で表される組成を有する溶融物が、下式(3)で表される組成を有する溶融物であり、前記式(B)で表される組成を有するケイ酸化合物が、下式(4)で表される組成を有するケイ酸-ホウ酸-アルミン酸化合物である、[2]のケイ酸化合物の製造方法。
 A1+x+aSi(BAl1-c1-x3+x+d21     (3)
 A1+x+aSi(BAl1-c1-x3+x+d22     (4)
(式中、A、M、xおよびbは前記と同じ意味を示し、aは-0.1≦a≦0.4であり、cは0<c<1であり、d21はa、bおよびMの価数Nに依存する数であり、加熱工程後にd22となる数であり、d22はa、bおよびMの価数Nに依存する数である。ただし、式(3)と式(4)において、a、b、c、およびxは独立した値を示す。)
[6]前記溶融工程が、
 元素Aを含む化合物が、Aの炭酸塩、Aの炭酸水素塩、Aの水酸化物、Aのケイ酸塩、Aのホウ酸塩、Aのアルミン酸塩、Aの硝酸塩、Aの塩化物、Aの硫酸塩、Aの酢酸塩およびAのシュウ酸塩からなる群より選ばれる少なくとも1種(ただし、該1種以上の一部または全部は、それぞれ、水和塩を形成していてもよい。)として含まれ、
 元素Mを含む化合物が、Mの酸化物、Mの水酸化物、Mのオキシ水酸化物、Mのケイ酸塩、Mのホウ酸塩、Mのアルミン酸塩、金属M、Mの塩化物、Mの硝酸塩、Mの硫酸塩およびMの有機塩からなる群より選ばれる少なくとも1種として含まれ、
 Siを含む化合物が、酸化ケイ素、Aのケイ酸塩、Mのケイ酸塩、アルミノケイ酸塩、ボロケイ酸塩およびケイ素のアルコキシドからなる群より選ばれる少なくとも1種として含まれ、
 Bを含む化合物が、酸化ホウ素、ホウ酸、Aのホウ酸塩、Mのホウ酸塩、ボロケイ酸塩およびホウ酸アルミニウムからなる群より選ばれる少なくとも1種として含まれ、
 Alを含む化合物が、酸化アルミニウム、オキシ水酸化アルミニウム、アルミノケイ酸塩、ホウ酸アルミニウム、塩化アルミニウム、硝酸アルミニウムおよび硫酸アルミニウムからなる群より選ばれる少なくとも1種として含まれる、
原料調合物を加熱して、前記式(3)で表される組成を有する溶融物を得る工程である、[5]のケイ酸化合物の製造方法。
[7]前記元素AがLiである、[1]~[6]のケイ酸化合物の製造方法。
[8]前記元素MがFeおよびMnからなる群より選ばれる少なくとも1種の元素である、[1]~[7]のケイ酸化合物の製造方法。
[9]前記式(1)で表される組成を有する溶融物が、下式(5A)で表される組成を有する溶融物であり、前記式(2)で表される組成を有するケイ酸-アルミン酸化合物が、下式(5)で表される組成を有するオリビン型結晶粒子を含む化合物である、[3]のケイ酸化合物の製造方法。
 Li1+x+a(FeMn1-ySiAl1-x3+x+d11   (5A)
 Li1+x+a(FeMn1-ySiAl1-x3+x+d12   (5)
(式中、a、b、d11、d12およびxは前記と同じ意味を示し、yは0≦y≦1である。ただし、式(5A)と式(5)において、a、b、x、およびyは独立した値を示す。)
[10]前記式(3)で表される組成を有する溶融物が、下式(6A)で表される組成を有する溶融物であり、前記式(4)で表される組成を有するケイ酸-ホウ酸-アルミン酸化合物が、下式(6)で表される組成を有するオリビン型結晶粒子を含む化合物である、[5]のケイ酸化合物の製造方法。
 Li1+x+a(FeMn1-ySi(BAl1-c1-x3+x+d21     (6A)
 Li1+x+a(FeMn1-ySi(BAl1-c1-x3+x+d22     (6)
(式中、a、b、c、d21、d22およびxは前記と同じ意味を示し、yは0≦y≦1である。ただし、式(6A)と式(6)において、a、b、c、x、およびyは独立した値を示す。)
[11]前記冷却工程において、冷却速度を-10℃/秒~-1010℃/秒とする、[1]~[10]のケイ酸化合物の製造方法。
[12]前記粉砕工程において、前記固化物に、有機化合物および炭素粉末からなる群より選択される少なくとも1種の炭素源を含ませ、かつ該炭素源中の炭素換算量(質量)の割合が、固化物の質量と、該炭素源中の炭素換算量(質量)との合計質量に対して0.1~20質量%である、[1]~[11]のケイ酸化合物の製造方法。
The present invention is the following [1] to [17].
[1] A method for producing a silicic acid compound having a composition represented by the following formula (B):
A e M b Si x D 1 -x O f2 (B)
(In the formula, A is at least one element selected from the group consisting of Li, Na and K. M is at least one element selected from the group consisting of Fe, Mn, Co and Ni, and D is Al, or Al and B. e is 0.8 <e <2.4, b is 0.7 ≦ b ≦ 1.3, x is 0.3 ≦ x <1, f2 is a number depending on the valence N of e, b, x and M.)
A raw material formulation prepared by adjusting a raw material containing the elements A, M, Si, and D so that the molar ratio of the elements A, M, Si, and D is the molar ratio represented by the formula (B) Heating to obtain a melt,
A cooling step of cooling the melt to obtain a solidified product,
A pulverization step of pulverizing the solidified product to obtain a pulverized product, and a heating step of heating the pulverized product to obtain a silicate compound.
Are carried out in this order. A method for producing a silicic acid compound.
[2] A melting step for obtaining a melt having a composition represented by the following formula (A):
A cooling step of cooling the melt to obtain a solidified product,
A pulverization step of pulverizing the solidified product to obtain a pulverized product, and a heating step of heating the pulverized product to obtain a silicate compound having a composition represented by the following formula (B):
Are carried out in this order. [1] The method for producing a silicate compound.
A e M b Si x D 1-x O f1 (A)
(Wherein A is at least one element selected from the group consisting of Li, Na and K, M is at least one element selected from the group consisting of Fe, Mn, Co and Ni, and D is Al or Al and B, e is 0.8 <e <2.4, b is 0.7 ≦ b ≦ 1.3, x is 0.3 ≦ x <1, f1 is a number that depends on the valence N of e, b, x, and M, and is a number that becomes f2 after the heating step.)
A e M b Si x D 1 -x O f2 (B)
(In the formula, A, M, D, e, b and x have the same meanings as described above, but are independent values, and f2 is a number depending on the valence N of e, b, x and M. X) may be 0.3 <x <1.
[3] The melt having the composition represented by the formula (A) is a melt having the composition represented by the following formula (1), and the silicic acid having the composition represented by the formula (B) The method for producing a silicic acid compound according to [2], wherein the compound is a silicic acid-aluminic acid compound having a composition represented by the following formula (2).
A 1 + x + a M b Si x Al 1-x O 3 + x + d11 (1)
A 1 + x + a M b Si x Al 1-x O 3 + x + d12 (2)
(In the formula, A, M, x and b have the same meaning as described above, a is −0.1 ≦ a ≦ 0.4, and d11 is a number depending on the valence N of a, b and M. There is a number that becomes d12 after the heating step, and d12 is a number that depends on the valence N of a, b, and M. However, in the formulas (1) and (2), a, b, and x are Independent values are shown.)
[4] The melting step includes
The compound containing element A is A carbonate, A bicarbonate, A hydroxide, A silicate, A aluminate, A nitrate, A chloride, A sulfate, At least one selected from the group consisting of A acetate and A oxalate (however, one or more of the one or more may each form a hydrate salt). ,
The compound containing element M is M oxide, M hydroxide, M oxyhydroxide, M silicate, M aluminate, metal M, M chloride, M nitrate, M And at least one selected from the group consisting of an organic salt of M
A compound containing Si is included as at least one selected from the group consisting of silicon oxide, A silicate, M silicate, aluminosilicate, and silicon alkoxide,
A compound containing Al is included as at least one selected from the group consisting of aluminum oxide, aluminum oxyhydroxide, aluminosilicate, aluminum chloride, aluminum nitrate, and aluminum sulfate.
The method for producing a silicic acid compound according to [3], which is a step of heating a raw material formulation to obtain a melt having a composition represented by the formula (1).
[5] The melt having the composition represented by the formula (A) is a melt having the composition represented by the following formula (3), and the silicic acid having the composition represented by the formula (B) The method for producing a silicic acid compound according to [2], wherein the compound is a silicic acid-boric acid-aluminic acid compound having a composition represented by the following formula (4).
A 1 + x + a M b Si x (B c Al 1-c ) 1-x O 3 + x + d21 (3)
A 1 + x + a M b Si x (B c Al 1-c ) 1-x O 3 + x + d22 (4)
Wherein A, M, x and b have the same meaning as described above, a is −0.1 ≦ a ≦ 0.4, c is 0 <c <1, d21 is a, b and It is a number that depends on the valence N of M, and is a number that becomes d22 after the heating step, and d22 is a number that depends on the valence N of a, b, and M. However, the equations (3) and (4 ) A, b, c, and x are independent values.)
[6] The melting step includes
Compound containing element A is A carbonate, A bicarbonate, A hydroxide, A silicate, A borate, A aluminate, A nitrate, A chloride , At least one selected from the group consisting of A sulfate, A acetate, and A oxalate (however, one or more of the one or more may each form a hydrate salt) Included.)
Compound containing element M is M oxide, M hydroxide, M oxyhydroxide, M silicate, M borate, M aluminate, metal M, M chloride And at least one selected from the group consisting of M nitrate, M sulfate and M organic salt,
A compound containing Si is included as at least one selected from the group consisting of silicon oxide, A silicate, M silicate, aluminosilicate, borosilicate, and silicon alkoxide,
A compound containing B is included as at least one selected from the group consisting of boron oxide, boric acid, A borate, M borate, borosilicate and aluminum borate,
A compound containing Al is included as at least one selected from the group consisting of aluminum oxide, aluminum oxyhydroxide, aluminosilicate, aluminum borate, aluminum chloride, aluminum nitrate, and aluminum sulfate.
The method for producing a silicic acid compound according to [5], which is a step of heating a raw material formulation to obtain a melt having a composition represented by the formula (3).
[7] The method for producing a silicate compound according to [1] to [6], wherein the element A is Li.
[8] The method for producing a silicate compound according to [1] to [7], wherein the element M is at least one element selected from the group consisting of Fe and Mn.
[9] The melt having the composition represented by the formula (1) is a melt having the composition represented by the following formula (5A), and the silicic acid having the composition represented by the formula (2) The method for producing a silicic acid compound according to [3], wherein the aluminate compound is a compound containing olivine type crystal particles having a composition represented by the following formula (5).
Li 1 + x + a (Fe y Mn 1-y ) b Si x Al 1-x O 3 + x + d11 (5A)
Li 1 + x + a (Fe y Mn 1-y ) b Si x Al 1-x O 3 + x + d12 (5)
(Wherein, a, b, d11, d12 and x have the same meaning as described above, and y is 0 ≦ y ≦ 1, provided that in formulas (5A) and (5), a, b, x, And y are independent values.)
[10] The melt having the composition represented by the formula (3) is a melt having the composition represented by the following formula (6A), and the silicic acid having the composition represented by the formula (4) The method for producing a silicic acid compound according to [5], wherein the boric acid-aluminic acid compound is a compound containing olivine type crystal particles having a composition represented by the following formula (6):
Li 1 + x + a (Fe y Mn 1-y) b Si x (B c Al 1-c) 1-x O 3 + x + d21 (6A)
Li 1 + x + a (Fe y Mn 1-y ) b Si x (B c Al 1-c ) 1-x O 3 + x + d22 (6)
(In the formula, a, b, c, d21, d22 and x have the same meaning as described above, and y is 0 ≦ y ≦ 1, provided that in formula (6A) and formula (6), a, b, c, x, and y are independent values.)
[11] The method for producing a silicic acid compound according to [1] to [10], wherein, in the cooling step, the cooling rate is −10 3 ° C./sec to −10 10 ° C./sec.
[12] In the pulverization step, the solidified product includes at least one carbon source selected from the group consisting of an organic compound and carbon powder, and a ratio of a carbon conversion amount (mass) in the carbon source is The method for producing a silicic acid compound according to [1] to [11], wherein the mass is 0.1 to 20% by mass with respect to the total mass of the mass of the solidified product and the carbon conversion amount (mass) in the carbon source.
[13]前記加熱工程を500~1,000℃に加熱することにより行う、[1]~[12]のケイ酸化合物の製造方法。
[14][1]~[13]の製造方法によってケイ酸化合物を得て、次に該ケイ酸化合物を二次電池用正極材料に用いて二次電池用正極を製造することを特徴とする二次電池用正極の製造方法。
[15][14]の製造方法で二次電池用正極を得て、次に、該二次電池用正極を用いて二次電池を製造することを特徴とする二次電池の製造方法。
[16]下式(ii)で表される組成を有することを特徴とする、ケイ酸-アルミン酸化合物。
 ASiAl1-xf2     (ii)
(式中、AはLi、NaおよびKからなる群より選ばれる少なくとも1種の元素であり、MはFe、Mn、CoおよびNiからなる群より選ばれる少なくとも1種の元素である。eは0.8<e<2.4であり、bは0.7≦b≦1.3であり、xは0.3≦x<1であり、f2はe、b、xおよびMの価数Nに依存する数である。)xは0.3<x<1であってもよい。
[17]下式(iv)で表される組成を有することを特徴とする、ケイ酸-ホウ酸-アルミン酸化合物。
 ASi(BAl1-c1-xf2     (iv)
(式中、AはLi、NaおよびKからなる群より選ばれる少なくとも1種の元素であり、MはFe、Mn、CoおよびNiからなる群より選ばれる少なくとも1種の元素である。eは0.8<e<2.4であり、bは0.7≦b≦1.3であり、xは0.3≦x<1であり、cは0<c<1であり、f2はe、b、xおよびMの価数Nに依存する数である。)xは0.3<x<1であってもよい。
[13] The method for producing a silicate compound according to [1] to [12], wherein the heating step is performed by heating to 500 to 1,000 ° C.
[14] A silicate compound is obtained by the production method of [1] to [13], and then a positive electrode for a secondary battery is produced using the silicate compound as a positive electrode material for a secondary battery. A method for producing a positive electrode for a secondary battery.
[15] A method for producing a secondary battery, comprising obtaining a positive electrode for a secondary battery by the production method of [14], and then producing a secondary battery using the positive electrode for a secondary battery.
[16] A silicic acid-aluminic acid compound having a composition represented by the following formula (ii):
A e M b Si x Al 1 -x O f2 (ii)
(Wherein A is at least one element selected from the group consisting of Li, Na and K, and M is at least one element selected from the group consisting of Fe, Mn, Co and Ni. E is 0.8 <e <2.4, b is 0.7 ≦ b ≦ 1.3, x is 0.3 ≦ x <1, and f2 is the valence of e, b, x and M N is a number that depends on N.) x may be 0.3 <x <1.
[17] A silicic acid-boric acid-aluminic acid compound having a composition represented by the following formula (iv):
A e M b Si x (B c Al 1-c) 1-x O f2 (iv)
(Wherein A is at least one element selected from the group consisting of Li, Na and K, and M is at least one element selected from the group consisting of Fe, Mn, Co and Ni. E is 0.8 <e <2.4, b is 0.7 ≦ b ≦ 1.3, x is 0.3 ≦ x <1, c is 0 <c <1, and f2 is It is a number depending on the valence N of e, b, x and M.) x may be 0.3 <x <1.
 本発明の製造方法は、ケイ酸化合物の組成、粒径およびこれらの均一性を制御しやすいため、電極材料として有用であり、種々の組成を有するケイ酸化合物を効率的に製造できる。本発明のケイ酸化合物を用いることにより、特性や信頼性に優れる二次電池用正極材料、および二次電池が製造できる。さらに、本発明は、ケイ酸化合物を提供する。 The production method of the present invention is useful as an electrode material because it is easy to control the composition, particle size and uniformity of the silicate compound, and can efficiently produce silicate compounds having various compositions. By using the silicate compound of the present invention, a positive electrode material for a secondary battery excellent in characteristics and reliability and a secondary battery can be produced. Furthermore, the present invention provides a silicate compound.
実施例1、2、3、および4で製造したケイ酸-ホウ酸-アルミン酸化合物のX線回折パターンを示す図である。FIG. 4 is a diagram showing X-ray diffraction patterns of silicic acid-boric acid-aluminic acid compounds produced in Examples 1, 2, 3, and 4. 実施例5、6、および7で製造したケイ酸-ホウ酸-アルミン酸化合物のX線回折パターンを示す図である。FIG. 4 is a diagram showing an X-ray diffraction pattern of silicic acid-boric acid-aluminic acid compounds produced in Examples 5, 6, and 7. 実施例14、15、16、および19で製造したケイ酸-ホウ酸-アルミン酸化合物のX線回折パターンを示す図である。FIG. 4 is a diagram showing an X-ray diffraction pattern of silicic acid-boric acid-aluminic acid compounds produced in Examples 14, 15, 16, and 19. 実施例31、32、33、および34で製造したケイ酸-ホウ酸-アルミン酸化合物のX線回折パターンを示す図である。FIG. 3 is a diagram showing an X-ray diffraction pattern of silicic acid-boric acid-aluminic acid compounds produced in Examples 31, 32, 33, and 34.
<ケイ酸化合物の製造方法>
 本発明のケイ酸化合物の製造方法は、以下の溶融工程(I)、冷却工程(II)、粉砕工程(III)、および加熱工程(IV)の各工程を、この順に行う。本発明の製造方法においては、(I)~(IV)の工程前、工程間、および工程後には、各工程に影響を及ぼさない限り、他の工程を行ってもよい。
溶融工程(I):下式(B)で表される組成を有するケイ酸化合物の製造方法であって、
 ASi1-xf2     (B)
(式中、AはLi、NaおよびKからなる群より選ばれる少なくとも1種の元素である。MはFe、Mn、CoおよびNiからなる群より選ばれる少なくとも1種の元素であり、DはAl、または、AlおよびBである。eは0.8<e<2.4であり、bは0.7≦b≦1.3であり、xは0.3≦x<1であり、f2はe、b、xおよびMの価数Nに依存する数である。)
元素A、元素M、Si、およびDを含む原料を、元素A、元素M、Si、およびDのモル比が式(B)で表されるモル比となるように調整してなる原料調合物を加熱して溶融物を得る工程、
 冷却工程(II):前記溶融物を冷却し固化物を得る工程、
 粉砕工程(III):前記固化物を粉砕し粉砕物を得る工程、および
 加熱工程(IV):前記粉砕物を加熱して、前記式(B)で表される組成を有するケイ酸化合物を得る工程。
 前記Dは、Al(アルミニウム)、または、AlおよびB(ホウ素)である。本明細書においては、DがAlである場合に得られる式(B)の化合物をケイ酸-アルミン酸化合物、DがAlおよびBである場合に得られる式(B)の化合物をケイ酸-ホウ酸-アルミン酸化合物という。
 以下、各工程について具体的に説明する。
<Method for producing silicic acid compound>
In the method for producing a silicate compound of the present invention, the following melting step (I), cooling step (II), pulverization step (III), and heating step (IV) are performed in this order. In the production method of the present invention, other steps may be performed before, between and after the steps (I) to (IV) as long as each step is not affected.
Melting step (I): a method for producing a silicate compound having a composition represented by the following formula (B):
A e M b Si x D 1 -x O f2 (B)
(In the formula, A is at least one element selected from the group consisting of Li, Na and K. M is at least one element selected from the group consisting of Fe, Mn, Co and Ni, and D is Al, or Al and B. e is 0.8 <e <2.4, b is 0.7 ≦ b ≦ 1.3, x is 0.3 ≦ x <1, f2 is a number depending on the valence N of e, b, x and M.)
A raw material formulation prepared by adjusting a raw material containing the elements A, M, Si, and D so that the molar ratio of the elements A, M, Si, and D is the molar ratio represented by the formula (B) Heating to obtain a melt,
Cooling step (II): a step of cooling the melt to obtain a solidified product,
Crushing step (III): crushing the solidified product to obtain a pulverized product, and heating step (IV): heating the pulverized product to obtain a silicate compound having the composition represented by the formula (B). Process.
Said D is Al (aluminum) or Al and B (boron). In the present specification, a compound of formula (B) obtained when D is Al is a silicic acid-aluminic acid compound, and a compound of formula (B) obtained when D is Al and B is silicic acid- Boric acid-aluminic acid compound.
Hereinafter, each step will be specifically described.
[溶融工程(I)]
 本発明のケイ酸化合物の製造方法における溶融工程(I)は、下式(A)で表される組成を有する溶融物を得る工程である。
 ASi1-xf1     (A)
(式中の記号は前記と同じ意味を示す。)
[Melting step (I)]
The melting step (I) in the method for producing a silicate compound of the present invention is a step of obtaining a melt having a composition represented by the following formula (A).
A e M b Si x D 1-x O f1 (A)
(The symbols in the formula have the same meaning as described above.)
 溶融工程(I)においては、元素源(元素A、元素M、Si、およびD)を含む原料を、式(A)で表される組成となるように調整してなる原料調合物をまず準備するのが好ましい。ケイ酸-アルミン酸化合物を製造する際には、元素源として、元素A、元素M、Si、およびAlを、ケイ酸-ホウ酸-アルミン酸化合物を製造する際には、元素源として、元素A、元素M、Si、B、およびAlを含む原料を用いる。 In the melting step (I), first, a raw material formulation prepared by adjusting a raw material containing an element source (element A, element M, Si, and D) to have a composition represented by the formula (A) is prepared. It is preferable to do this. When producing a silicic acid-aluminic acid compound, elements A, M, Si, and Al are used as element sources. When producing a silicic acid-boric acid-aluminic acid compound, elements are used as element sources. A raw material containing A, elements M, Si, B, and Al is used.
 式(A)のAは、Li、NaおよびKからなる群より選ばれる少なくとも1種の元素である。元素Aは二次電池用正極材料として適しているため、Liを必須とするのが好ましく、Liのみであることが特に好ましい。Liを含むケイ酸化合物は、二次電池の単位体積(質量)当たりの容量を高くする。 A in the formula (A) is at least one element selected from the group consisting of Li, Na and K. Since the element A is suitable as a positive electrode material for a secondary battery, it is preferable to make Li essential, and it is particularly preferable to use only Li. The silicate compound containing Li increases the capacity per unit volume (mass) of the secondary battery.
 式(A)の元素Mは、Fe、Mn、CoおよびNiからなる群より選ばれる少なくとも1種の元素である。元素Mは1種のみ、または、2種からなるのが好ましい。特に本発明の製造方法で製造するケイ酸化合物を二次電池用正極材料に使用する場合には、元素MはFeのみ、Mnのみ、またはFeおよびMnからなるのが、コストの点で好ましい。元素Mの価数Nは、本発明の製造方法の各工程で変化しうる数値であり、+2~+4の範囲である。該価数Nは、元素MがFeの場合は+2、+8/3または+3、Mnの場合は+2、+3または+4、Coの場合は+2、+8/3または+3、およびNiの場合は+2または+4が好ましい。また、該価数Nは、溶融工程(I)が単純化するために、+2であることがより好ましい。 The element M in the formula (A) is at least one element selected from the group consisting of Fe, Mn, Co, and Ni. The element M is preferably composed of only one kind or two kinds. In particular, when the silicic acid compound produced by the production method of the present invention is used for a positive electrode material for a secondary battery, it is preferable from the viewpoint of cost that the element M consists of only Fe, only Mn, or Fe and Mn. The valence N of the element M is a numerical value that can change in each step of the production method of the present invention, and is in the range of +2 to +4. The valence N is +2, +8/3 or +3 when the element M is Fe, +2, +3 or +4 when Mn, +2, +8/3 or +3 when Co and +2 or when Ni +4 is preferred. The valence N is more preferably +2 in order to simplify the melting step (I).
 式(A)において、eは0.8<e<2.4、bは0.7≦b≦1.3の範囲である。原料調合物におけるeおよびbを該範囲にすることによって、目的とする組成を有するケイ酸化合物を製造できる。また、原料調合物を良好に溶融でき、均一な溶融物が得られる。eは1.2≦e≦2であるのが好ましい。また、xを0.3≦x<1にすることによって、二次電池用正極材料として用いた場合に多電子型の反応(単位モル数当たり1molを超えるAを引き抜く反応)を起こす化合物を製造することができ、二次電池の理論電気容量を高めることができる。xは0.3<x<1であってもよい。xは0.5≦x<1が好ましく、0.7≦x<1がより好ましい。 In the formula (A), e is in the range of 0.8 <e <2.4, and b is in the range of 0.7 ≦ b ≦ 1.3. By setting e and b in the raw material formulation within the above range, a silicate compound having a target composition can be produced. Moreover, a raw material formulation can be melt | dissolved favorably and a uniform melt is obtained. It is preferable that e is 1.2 ≦ e ≦ 2. In addition, by setting x to 0.3 ≦ x <1, a compound that causes a multi-electron type reaction (reaction that draws more than 1 mol per unit mole) when used as a positive electrode material for a secondary battery is produced. The theoretical electric capacity of the secondary battery can be increased. x may be 0.3 <x <1. x is preferably 0.5 ≦ x <1, and more preferably 0.7 ≦ x <1.
 式(A)中のf1の値は、e、b、およびxの価数Nに依存する数である。式中の元素の価数は、後の粉砕工程(III)および/または加熱工程(IV)で変化しうることから、加熱工程(IV)後にf2となる値にf1を調節する。例えば、加熱工程(IV)で成分の酸化還元、揮発等によりf1の値が増減する場合には、該増減を考慮に入れた値とするのが好ましい。本発明の製造方法においては、f1の値を、後述する生成物のf2に対して、0.9~1.2倍の値としておくのが好ましい。 The value of f1 in the formula (A) is a number that depends on the valence N of e, b, and x. Since the valence of the element in the formula can be changed in the subsequent pulverization step (III) and / or the heating step (IV), f1 is adjusted to a value that becomes f2 after the heating step (IV). For example, when the value of f1 increases or decreases due to oxidation / reduction or volatilization of the components in the heating step (IV), it is preferable to set the value in consideration of the increase / decrease. In the production method of the present invention, the value of f1 is preferably 0.9 to 1.2 times the value of f2 of the product described later.
 式(A)において、DがAlである場合の組成を有する前記溶融物は下式(i)で表される組成を有するケイ酸-アルミン酸化合物であり、下式(1)で表される組成を有する化合物が好ましく、特に下式(5A)で表される組成を有する化合物が好ましい。
 ASiAl1-xf1     (i)
 A1+x+aSiAl1-x3+x+d11     (1)
 Li1+x+a(FeMn1-ySiAl1-x3+x+d11   (5A)
In the formula (A), the melt having a composition when D is Al is a silicic acid-aluminic acid compound having a composition represented by the following formula (i), and represented by the following formula (1). A compound having a composition is preferable, and a compound having a composition represented by the following formula (5A) is particularly preferable.
A e M b Si x Al 1 -x O f1 (i)
A 1 + x + a M b Si x Al 1-x O 3 + x + d11 (1)
Li 1 + x + a (Fe y Mn 1-y ) b Si x Al 1-x O 3 + x + d11 (5A)
 式(i)中のe、b、xおよびf1は、式(A)中のそれと同じ意味を示す。式(1)中の記号は前記と同じ意味を示す。式(5A)中の記号は前記と同じ意味を示す。
 式(1)および式(5A)で表される組成を有する化合物を製造する場合には、溶融物におけるaおよびbを-0.1≦a≦0.4および0.7≦b≦1.3にすることによって、目的とする組成を有するケイ酸-アルミン酸化合物を製造できる。また、原料調合物を良好に溶融でき、均一な溶融物が得られる。また、xを該範囲にすることによって、二次電池用正極材料として用いた場合に多電子型の反応(単位モル数当たり1molを超えるAを引き抜く反応)を起こすケイ酸-アルミン酸化合物を製造することができ、二次電池の理論電気容量を高めることができる。
E, b, x and f1 in the formula (i) have the same meaning as in the formula (A). The symbols in formula (1) have the same meaning as described above. The symbols in formula (5A) have the same meaning as described above.
In the case of producing a compound having a composition represented by formula (1) and formula (5A), a and b in the melt are set to −0.1 ≦ a ≦ 0.4 and 0.7 ≦ b ≦ 1. By making it 3, it is possible to produce a silicic acid-aluminic acid compound having the desired composition. Moreover, a raw material formulation can be melt | dissolved favorably and a uniform melt is obtained. In addition, by making x within this range, a silicic acid-aluminic acid compound that causes a multi-electron type reaction (reaction that pulls out more than 1 mol per unit mole) when used as a positive electrode material for a secondary battery is produced. The theoretical electric capacity of the secondary battery can be increased.
 式(1)および式(5A)中のaおよびbは、多電子型の反応をより容易に起こさせうることから-0.1≦a≦0.3、0.8≦b≦1.3にすることがより好ましい。また、0≦a≦0.3、1≦b≦1.3にすると、充放電によるケイ酸化合物の構造変化が生じない範囲内で、理論電気容量を高める効果が大きい利点がある。 Since a and b in the formula (1) and the formula (5A) can easily cause a multi-electron type reaction, −0.1 ≦ a ≦ 0.3, 0.8 ≦ b ≦ 1.3 More preferably. Further, when 0 ≦ a ≦ 0.3 and 1 ≦ b ≦ 1.3, there is an advantage that the effect of increasing the theoretical electric capacity is great within a range in which the structural change of the silicate compound due to charge / discharge does not occur.
 式(i)中のf1の値は、e、b、xおよびMの価数Nに依存する数であり、また式(1)および式(5A)中のd11の値は、a、bおよびMの価数Nに依存する数である。式中の元素の価数は、後の粉砕工程(III)および/または加熱工程(IV)で変化しうることから、加熱工程(IV)後にf2となる値にf1を調節し、または加熱工程(IV)後にd12となる値にd11を調節する。例えば、加熱工程(IV)で成分の酸化還元、揮発等によりf1やd11の値が増減する場合には、該増減を考慮に入れた値とするのが好ましい。本発明の製造方法においては、f1およびd11の値を、それぞれ、後述する生成物のf2およびd12に対して、0.9~1.2倍の値としておくのが好ましい。 The value of f1 in formula (i) is a number that depends on the valence N of e, b, x, and M, and the value of d11 in formula (1) and formula (5A) is a, b, and The number depends on the valence N of M. Since the valence of the element in the formula can change in the subsequent pulverization step (III) and / or heating step (IV), f1 is adjusted to a value that becomes f2 after the heating step (IV), or the heating step (IV) Adjust d11 to a value that will later become d12. For example, when the value of f1 or d11 increases or decreases due to oxidation / reduction or volatilization of the component in the heating step (IV), it is preferable to set the value taking into account the increase / decrease. In the production method of the present invention, it is preferable to set the values of f1 and d11 to 0.9 to 1.2 times the values of f2 and d12 of the product to be described later, respectively.
 式(5A)中のyの値は、0≦y≦1が好ましく、0<y<1が特に好ましい。FeとMnのモル比は20~80:80~20が好ましく、25~75:75~25が特に好ましい。 The value of y in the formula (5A) is preferably 0 ≦ y ≦ 1, and particularly preferably 0 <y <1. The molar ratio of Fe to Mn is preferably 20 to 80:80 to 20, and particularly preferably 25 to 75:75 to 25.
 式(A)において、DがAlおよびBである場合の組成を有する前記溶融物は、下式(iii)で表される組成を有するケイ酸-ホウ酸-アルミン酸化合物であり、下式(3)で表される組成を有する化合物が好ましく、特に下式(6A)で表される組成を有する化合物が好ましい。
 ASi(BAl1-c1-xf1     (iii)
 A1+x+aSi(BAl1-c1-x3+x+d21     (3)
 Li1+x+a(FeMn1-ySi(BAl1-c1-x3+x+d21     (6A)
In the formula (A), the melt having a composition when D is Al and B is a silicic acid-boric acid-aluminic acid compound having a composition represented by the following formula (iii), A compound having a composition represented by 3) is preferred, and a compound having a composition represented by the following formula (6A) is particularly preferred.
A e M b Si x (B c Al 1-c) 1-x O f1 (iii)
A 1 + x + a M b Si x (B c Al 1-c ) 1-x O 3 + x + d21 (3)
Li 1 + x + a (Fe y Mn 1-y) b Si x (B c Al 1-c) 1-x O 3 + x + d21 (6A)
 式(iii)中のe、b、xおよびf1は、式(A)中のそれと同じ意味を示す。式(3)中の記号は前記と同じ意味を示す。式(6A)中の記号は前記と同じ意味を示す。
 式(3)および式(6A)中のa、bの好ましい範囲は、式(1)におけるa、bの好ましい範囲と同様である。cは0<c<1が好ましい。
E, b, x and f1 in formula (iii) have the same meaning as in formula (A). The symbols in formula (3) have the same meaning as described above. The symbols in formula (6A) have the same meaning as described above.
The preferable ranges of a and b in Formula (3) and Formula (6A) are the same as the preferable ranges of a and b in Formula (1). c is preferably 0 <c <1.
 式(iii)中のf1の値は、e、b、xおよびMの価数Nに依存する数であり、また式(3)および式(6A)中のd21の値は、a、bおよびMの価数Nに依存する数である。式中の元素の価数は、後の粉砕工程(III)および/または加熱工程(IV)で変化しうることから、加熱工程(IV)後にf2となる値にf1を調節し、または加熱工程(IV)後にd22となる値にd21を調節する。例えば、加熱工程(IV)で成分の酸化還元、揮発等によりf1やd21の値が増減する場合には、該増減を考慮に入れた値とするのが好ましい。本発明の製造方法においては、f1およびd21の値を、それぞれ、後述する生成物のf2およびd22の値に対して、0.9~1.2倍の値としておくのが好ましい。 The value of f1 in formula (iii) is a number that depends on the valence N of e, b, x, and M, and the value of d21 in formula (3) and formula (6A) is a, b, and The number depends on the valence N of M. Since the valence of the element in the formula can change in the subsequent pulverization step (III) and / or heating step (IV), f1 is adjusted to a value that becomes f2 after the heating step (IV), or the heating step (IV) Adjust d21 to a value that will later become d22. For example, when the value of f1 or d21 increases or decreases due to oxidation / reduction or volatilization of the component in the heating step (IV), it is preferable to set the value taking into account the increase / decrease. In the production method of the present invention, it is preferable that the values of f1 and d21 are 0.9 to 1.2 times the values of f2 and d22 of the product to be described later, respectively.
 式(6A)中のyの値は、0≦y≦1が好ましく、0<y<1が特に好ましい。FeとMnのモル比は20~80:80~20が好ましく、25~75:75~25が特に好ましい。 The value of y in the formula (6A) is preferably 0 ≦ y ≦ 1, and particularly preferably 0 <y <1. The molar ratio of Fe to Mn is preferably 20 to 80:80 to 20, and particularly preferably 25 to 75:75 to 25.
 本発明においては、原料調合物の組成を特定の範囲にすることによって溶融工程(I)における溶融を容易にすることができる。 In the present invention, melting in the melting step (I) can be facilitated by setting the composition of the raw material formulation to a specific range.
(原料調合物:元素Aを含む化合物)
 原料調合物における元素Aを含む化合物としては、Aの炭酸塩(ACO)、Aの炭酸水素塩(AHCO)、Aの水酸化物(AOH)、Aのケイ酸塩(AO・2SiO、AO・SiO、2AO・SiO等)、Aのホウ酸塩(AO・B、AO・2B、AO・4B等)、Aのアルミン酸塩(AAlO等)、Aの硝酸塩(ANO)、Aの塩化物(ACl)、Aの硫酸塩(ASO)、Aの酢酸塩(CHCOOA)およびシュウ酸塩((COOA))等の有機酸塩等からなる群より選ばれる少なくとも1種が好ましい。元素AはLiが好ましい。さらに、これらの化合物は水和物であってもよい。これらのうち、Aの炭酸塩や炭酸水素塩は安価であり、また取扱いが容易であるのでより好ましい。
(Raw material formulation: Compound containing element A)
The compound containing element A in the raw material formulation includes A carbonate (A 2 CO 3 ), A hydrogen carbonate (AHCO 3 ), A hydroxide (AOH), and A silicate (A 2 O · 2SiO 2 , A 2 O · SiO 2 , 2A 2 O · SiO 2, etc., A borate (A 2 O · B 2 O 3 , A 2 O · 2B 2 O 3 , A 2 O · 4B) 2 O 3 etc.), A aluminate (AAlO 2 etc.), A nitrate (ANO 3 ), A chloride (ACl), A sulfate (A 2 SO 4 ), A acetate (CH 3 COOA) and at least one selected from the group consisting of organic acid salts such as oxalate ((COOA) 2 ). The element A is preferably Li. Furthermore, these compounds may be hydrates. Of these, carbonates and bicarbonates of A are more preferred because they are inexpensive and easy to handle.
(原料調合物:元素Mを含む化合物)
 原料調合物における元素Mを含む化合物としては、Mの酸化物(FeO、Fe、Fe、MnO、Mn、MnO、CoO、Co、Co、NiO等)、Mの水酸化物(M(OH)、M(OH))、Mのオキシ水酸化物(MO(OH))、Mのケイ酸塩(MSiO、MSiO等)、Mのホウ酸塩(MBO、M等)、Mのアルミン酸塩(MO・Al等)、金属M、Mの塩化物(MCl、MCl)、Mの硝酸塩(M(NO、M(NO)、Mの硫酸塩(MSO、M(SO)、Mの酢酸塩(M(CHCOO))およびシュウ酸塩(M(COO))等の有機酸塩等からなる群より選ばれる少なくとも1種が好ましい。元素Mを含む化合物としては、入手のしやすさやコストから、Fe、Fe、MnO、Mn、MnO、Co、およびNiOからなる群より選ばれる少なくとも1種がより好ましい。特に元素Mが、FeおよびMnである場合には、Fe、FeおよびMnOからなる群より選ばれる少なくとも1種が特に好ましい。Fe、FeおよびMnOは1種のみを用いても、2種以上を用いてもよい。
(Raw material formulation: Compound containing element M)
As the compound containing the element M in the raw material preparation, oxides of M (FeO, Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , CoO, Co 3 O 4 , Co 2 O 3 , NiO, etc.), M hydroxide (M (OH) 2 , M (OH) 3 ), M oxyhydroxide (MO (OH)), M silicate (MSiO 3 , M 2 SiO 4) Etc.), M borate (MBO 3 , M 2 B 2 O 5 etc.), M aluminate (MO · Al 2 O 3 etc.), metal M, M chloride (MCl 2 , MCl 3 ) , M nitrate (M (NO 3 ) 2 , M (NO 3 ) 3 ), M sulfate (MSO 4 , M 2 (SO 4 ) 3 ), M acetate (M (CH 3 COO) 2 ) And at least one selected from the group consisting of organic acid salts such as oxalate (M (COO) 2 ). Good. The compound containing the element M is at least selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , Co 3 O 4 , and NiO because of availability and cost. One type is more preferable. In particular, when the element M is Fe and Mn, at least one selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 and MnO 2 is particularly preferable. Fe 3 O 4 , Fe 2 O 3 and MnO 2 may be used alone or in combination of two or more.
(原料調合物:Si(ケイ素)を含む化合物)
 原料調合物におけるSiを含む化合物としては、酸化ケイ素(SiO)、Aのケイ酸塩、Mのケイ酸塩、ボロケイ酸塩(例えばB.nSiO(0.5<n<20)であり、AO、MOを含んでもよい。)、アルミノケイ酸塩(例えばAl.nSiO(0.5<n<20)であり、AO、MOを含んでもよい。)、ケイ素のアルコキシド(Si(OCH、Si(OC等)等からなる群より選ばれる少なくとも1種が好ましい。なかでも、酸化ケイ素が安価であるのでより好ましい。Siを含む化合物は、結晶質であっても、非晶質であってもよい。
(Raw material preparation: Compound containing Si (silicon))
As the compound containing Si in the raw material preparation, silicon oxide (SiO 2 ), A silicate, M silicate, borosilicate (for example, B 2 O 3 .nSiO 2 (0.5 <n <20 ), and, a 2 O, may contain MO.), an aluminosilicate (e.g. Al 2 O 3 .nSiO 2 (0.5 <n <20), a 2 O, may contain MO. And at least one selected from the group consisting of silicon alkoxides (Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 and the like). Among these, silicon oxide is more preferable because it is inexpensive. The compound containing Si may be crystalline or amorphous.
(原料調合物:B(ホウ素)を含む化合物)
 原料調合物におけるBを含む化合物としては、酸化ホウ素(B)、ホウ酸(HBO)、Aのホウ酸塩、Mのホウ酸塩、ボロケイ酸塩、およびホウ酸アルミニウム等からなる群より選ばれる少なくとも1種が好ましく、酸化ホウ素およびホウ酸からなる群より選ばれる少なくとも1種が安価であるため特に好ましい。
(Raw material formulation: Compound containing B (boron))
Compounds containing B in the raw material formulation include boron oxide (B 2 O 3 ), boric acid (H 3 BO 3 ), A borate, M borate, borosilicate, aluminum borate, and the like At least one selected from the group consisting of is preferable, and at least one selected from the group consisting of boron oxide and boric acid is particularly preferable because it is inexpensive.
(原料調合物:Al(アルミニウム)を含む化合物)
 原料調合物におけるAlを含む化合物としては、酸化アルミニウム(Al)、オキシ水酸化アルミニウム(AlO(OH)、オキシ水酸化アルミニウム塩を含む)、Aのアルミン酸塩、Mのアルミン酸塩、アルミノケイ酸塩、ホウ酸アルミニウム、塩化アルミニウム、硝酸アルミニウムおよび硫酸アルミニウム等からなる群より選ばれる少なくとも1種が好ましい。なかでも、酸化アルミニウム、オキシ水酸化アルミニウムおよびアルミノケイ酸塩からなる群より選ばれる少なくとも1種が安価であるため特に好ましい。
(Raw material formulation: Compound containing Al (aluminum))
As the compound containing Al in the raw material formulation, aluminum oxide (Al 2 O 3 ), aluminum oxyhydroxide (including AlO (OH), aluminum oxyhydroxide salt), A aluminate, M aluminate At least one selected from the group consisting of aluminosilicate, aluminum borate, aluminum chloride, aluminum nitrate and aluminum sulfate is preferred. Among these, at least one selected from the group consisting of aluminum oxide, aluminum oxyhydroxide, and aluminosilicate is particularly preferable because it is inexpensive.
(原料調合物の好適な組み合わせ)
 ケイ酸-アルミン酸化合物の製造に用いる原料調合物としては、Aの炭酸塩または炭酸水素塩;Mの酸化物またはMのオキシ水酸化物;酸化ケイ素;酸化アルミニウムまたはオキシ水酸化アルミニウム;の組み合わせが好ましい。
 さらに原料調合物としては、LiCOまたはLiHCO;Fe、FeおよびMnOからなる群より選ばれる1種以上の化合物;SiO;Al;の組み合わせが特に好ましい。
(Preferred combination of raw material formulations)
The raw material preparation used in the production of the silicic acid-aluminic acid compound includes a combination of A carbonate or bicarbonate; M oxide or M oxyhydroxide; silicon oxide; aluminum oxide or aluminum oxyhydroxide; Is preferred.
Furthermore, as the raw material formulation, a combination of Li 2 CO 3 or LiHCO 3 ; one or more compounds selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 and MnO 2 ; SiO 2 ; Al 2 O 3 ; Particularly preferred.
 ケイ酸-ホウ酸-アルミン酸化合物の製造方法に用いる原料調合物としては、Aの炭酸塩または炭酸水素塩;Mの酸化物またはMのオキシ水酸化物;酸化ケイ素;酸化ホウ素またはホウ酸;酸化アルミニウムまたはオキシ水酸化アルミニウム;の組み合わせが好ましい。
 さらに原料調合物としては、LiCOまたはLiHCO;Fe、FeおよびMnOからなる群より選ばれる1種以上の化合物;SiO;B;Al;の組み合わせが特に好ましい。
The raw material preparation used in the method for producing a silicic acid-boric acid-aluminic acid compound includes A carbonate or bicarbonate; M oxide or M oxyhydroxide; silicon oxide; boron oxide or boric acid; A combination of aluminum oxide or aluminum oxyhydroxide is preferred.
Furthermore, as a raw material formulation, Li 2 CO 3 or LiHCO 3 ; one or more compounds selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 and MnO 2 ; SiO 2 ; B 2 O 3 ; Al 2 O 3 ; is particularly preferred.
 原料調合物の組成は、原則として、溶融物の組成と対応させる。ただし、該原料調合物中に、溶融工程(I)中に揮発等により失われやすい成分(例えばLi、B等)を存在させた場合には、得られる溶融物の組成は原料調合物の組成と相違する場合がある。そのような場合には、揮発等により失われる量を考慮して、原料調合物の組成を適宜変更するのが好ましい。 The composition of the raw material formulation should in principle correspond to the composition of the melt. However, in the raw material preparation, when a component (for example, Li, B, etc.) that is easily lost due to volatilization or the like is present in the melting step (I), the composition of the obtained melt is the composition of the raw material preparation. May be different. In such a case, it is preferable to appropriately change the composition of the raw material formulation in consideration of the amount lost due to volatilization or the like.
 原料調合物に含ませる各原料の純度は特に限定されない。反応性や二次電池用正極材料の特性等を考慮すると、水和水を除く純度が99質量%以上であることが好ましい。 The purity of each raw material included in the raw material preparation is not particularly limited. Considering reactivity, characteristics of the positive electrode material for secondary batteries, and the like, the purity excluding hydrated water is preferably 99% by mass or more.
(溶融工程(I)の実施条件)
 溶融工程(I)は、前記の原料調合物を加熱して溶融させることにより実施するのが好ましい。溶融を行う前には、各原料、または、原料調合物を、ミキサー、ボールミル、ジェットミル、または遊星ミル等を用いて、乾式または湿式で粉砕および/または混合することが好ましい。原料調合物中の各原料の粒度は、混合操作、原料調合物の溶融容器への充填操作、原料調合物の溶融性等に悪影響を及ぼさない範囲であれば、限定されない。
(Conditions for melting step (I))
The melting step (I) is preferably carried out by heating and melting the raw material formulation. Prior to melting, each raw material or raw material preparation is preferably pulverized and / or mixed dry or wet using a mixer, ball mill, jet mill, planetary mill or the like. The particle size of each raw material in the raw material preparation is not limited as long as it does not adversely affect the mixing operation, the filling operation of the raw material preparation into the melting container, the meltability of the raw material preparation, and the like.
 次に、原料調合物は容器等に入れ、加熱炉を用いて加熱し、溶融することが好ましい。容器は、アルミナ製、カーボン製、炭化ケイ素製、ホウ化ジルコニウム製、ホウ化チタン製、窒化ホウ素製、炭素製、白金製、またはロジウムを含む白金合金製等が好ましい。耐火物系練瓦、還元材料(例えばグラファイト)からなる容器も採用できる。加熱炉中での揮発および蒸発防止のためには、容器に蓋を装着して溶融することが好ましい。加熱炉は、抵抗加熱炉、高周波誘導炉、またはプラズマアーク炉が好ましい。抵抗加熱炉はニクロム合金等の合金製、炭化ケイ素製、またはケイ化モリブデン製の発熱体を備えた電気炉であることが好ましい。 Next, the raw material preparation is preferably put in a container or the like, heated using a heating furnace, and melted. The container is preferably made of alumina, carbon, silicon carbide, zirconium boride, titanium boride, boron nitride, carbon, platinum, or a platinum alloy containing rhodium. A container made of a refractory-based brick and a reducing material (eg, graphite) can also be employed. In order to prevent volatilization and evaporation in the heating furnace, it is preferable to attach a lid to the container and melt it. The heating furnace is preferably a resistance heating furnace, a high frequency induction furnace, or a plasma arc furnace. The resistance heating furnace is preferably an electric furnace provided with a heating element made of an alloy such as a nichrome alloy, silicon carbide, or molybdenum silicide.
 溶融工程(I)は、空気中、不活性ガス中または還元ガス中で実施することが好ましい。溶融の条件は、容器または加熱炉の種類や熱源等の加熱方法等の条件により、適宜変更できる。圧力は、常圧、加圧、減圧(0.9×10Pa以下)のいずれであってもよい。溶融の条件は還元条件が好ましい。酸化条件であってもよい。酸化条件で溶融した場合には、加熱工程(IV)において還元(例えばM3+からM2+への変化)を行うのが好ましい。
 不活性ガスとは、窒素ガス(N)、およびヘリウムガス(He)およびアルゴンガス(Ar)等の希ガスからなる群より選ばれる少なくとも1種の不活性ガスを99体積%以上含む気体をいう。還元ガスとは、上記した不活性ガスに、還元性を有する気体を添加し、実質に酸素を含まない気体をいう。還元性を有する気体としては、水素ガス(H)、一酸化炭素ガス(CO)およびアンモニアガス(NH)等が挙げられる。不活性ガス中の還元性を有する気体の量は、全気体体積中に含まれる還元性を有する気体の量が0.1体積%以上であるのが好ましく、1~10体積%が特に好ましい。不活性ガス中の酸素の含有量は、全気体体積中に1体積%以下が好ましく、0.1体積%以下が特に好ましい。
The melting step (I) is preferably carried out in air, in an inert gas or in a reducing gas. Melting conditions can be changed as appropriate depending on conditions such as the type of container or heating furnace and the heating method such as a heat source. The pressure may be any of normal pressure, pressurization, and reduced pressure (0.9 × 10 5 Pa or less). The melting conditions are preferably reducing conditions. Oxidizing conditions may be used. When melted under oxidizing conditions, it is preferable to perform reduction (for example, change from M 3+ to M 2+ ) in the heating step (IV).
The inert gas is a gas containing 99% by volume or more of at least one inert gas selected from the group consisting of nitrogen gas (N 2 ) and rare gases such as helium gas (He) and argon gas (Ar). Say. The reducing gas refers to a gas that is substantially free of oxygen by adding a reducing gas to the above inert gas. Examples of the reducing gas include hydrogen gas (H 2 ), carbon monoxide gas (CO), and ammonia gas (NH 3 ). The amount of the reducing gas in the inert gas is preferably 0.1% by volume or more, and particularly preferably 1 to 10% by volume of the reducing gas contained in the total gas volume. The content of oxygen in the inert gas is preferably 1% by volume or less, particularly preferably 0.1% by volume or less, based on the total gas volume.
 溶融工程(I)における加熱温度は、1,300~1,600℃が好ましく、1,400~1,550℃が特に好ましい。ここで、溶融とは各原料が融解し、目視で透明な状態となることをいう。加熱温度が上記範囲の下限値以上であると溶融が容易になり、加熱温度が上記範囲の上限値以下であると原料の揮発がしにくくなる。加熱時間は0.2~2時間が好ましく、0.5~2時間が特に好ましい。該時間にすることにより溶融物の均一性が充分になり、また原料が揮発しにくい。
 溶融工程(I)においては、溶融物の均一性を上げるために撹拌してもよい。また、次の冷却工程(II)を行うまで、加熱温度より低い温度で溶融物を清澄させてもよい。さらに、溶融工程(I)で得た溶融物は、次の冷却工程(II)に悪影響を与えない限り、該冷却工程(II)前に他の工程を行ってもよい。
The heating temperature in the melting step (I) is preferably 1,300 to 1,600 ° C., particularly preferably 1,400 to 1,550 ° C. Here, melting means that each raw material is melted and is in a transparent state visually. When the heating temperature is equal to or higher than the lower limit value in the above range, melting becomes easy, and when the heating temperature is equal to or lower than the upper limit value in the above range, the raw material is hardly volatilized. The heating time is preferably 0.2 to 2 hours, particularly preferably 0.5 to 2 hours. By setting the time, the homogeneity of the melt is sufficient and the raw material is not easily volatilized.
In the melting step (I), stirring may be performed to increase the uniformity of the melt. Further, the melt may be clarified at a temperature lower than the heating temperature until the next cooling step (II) is performed. Furthermore, the melt obtained in the melting step (I) may be subjected to another step before the cooling step (II) as long as it does not adversely affect the next cooling step (II).
[冷却工程(II)]
 冷却工程(II)は、溶融工程(I)で得た溶融物を室温付近まで冷却して固化物を得る工程である。固化物は非晶質物であることが好ましい。ただし、固化物の一部は結晶化物であってもよい。固化物が非晶質物を含むことにより、次工程の粉砕工程(III)が実施しやすくなり、化合物の組成および粒度を制御しやすくなる。さらに、加熱工程(IV)において、生成物が塊状になるのを防ぐことができ、かつ、生成物の粒度が制御しやすくなる利点がある。
 固化物が結晶化物を含む場合、後工程の加熱工程(IV)で結晶化物が結晶核となり、結晶化しやすくなる。固化物中の結晶化物量は固化物の全質量に対して0~30質量%であることが好ましい。結晶化物を多く含むと粒状やフレーク状の固化物を得ることが困難となる。また、冷却機器の損耗を早め、その後の粉砕工程(III)の負担が大きくなる。
[Cooling step (II)]
The cooling step (II) is a step of cooling the melt obtained in the melting step (I) to near room temperature to obtain a solidified product. The solidified product is preferably an amorphous material. However, a part of the solidified product may be a crystallized product. When the solidified product contains an amorphous material, the next pulverization step (III) can be easily performed, and the composition and particle size of the compound can be easily controlled. Furthermore, in the heating step (IV), there is an advantage that the product can be prevented from being agglomerated and the particle size of the product can be easily controlled.
In the case where the solidified product contains a crystallized product, the crystallized product becomes a crystal nucleus in the heating step (IV), which is a subsequent step, and it is easy to crystallize. The amount of crystallized product in the solidified product is preferably 0 to 30% by mass with respect to the total mass of the solidified product. When a large amount of crystallized material is contained, it becomes difficult to obtain a granular or flaky solidified material. Moreover, the wear of the cooling device is accelerated, and the burden of the subsequent pulverization step (III) is increased.
 冷却工程(II)は、空気中、不活性ガス中、または還元ガス中で冷却する方法により実施するのが、設備が簡単であることから好ましい。溶融物の冷却速度は-1×10℃/秒以上が好ましく、-1×10℃/秒以上が特に好ましい。本明細書では、冷却する場合の単位時間当たりの温度変化(すなわち冷却速度)を負の値で示し、加熱する場合の単位時間当たりの温度変化(すなわち加熱速度)を正の値で示す。冷却速度を該値以上にすると非晶質物が得られやすい。冷却速度の上限値は製造設備や大量生産性の点からは-1×1010℃/秒程度が好ましく、実用性の点からは-1×10℃/秒が特に好ましい。溶融物の冷却速度は1000℃から50℃までの冷却速度を-10℃/秒~-1010 ℃/秒とすることが特に好ましい。 The cooling step (II) is preferably carried out by a method of cooling in air, in an inert gas, or in a reducing gas because the equipment is simple. The cooling rate of the melt is preferably not less than -1 × 10 3 ℃ / sec, -1 × 10 4 ℃ / sec or more is particularly preferable. In the present specification, a temperature change per unit time (ie, cooling rate) in the case of cooling is indicated by a negative value, and a temperature change per unit time in case of heating (ie, the heating rate) is indicated by a positive value. When the cooling rate is higher than this value, an amorphous material is easily obtained. The upper limit of the cooling rate is preferably about −1 × 10 10 ° C./second from the viewpoint of manufacturing equipment and mass productivity, and is particularly preferably −1 × 10 8 ° C./second from the viewpoint of practicality. The cooling rate of the melt is particularly preferably from -10 3 ° C / second to -10 10 ° C / second from 1000 ° C to 50 ° C.
 他の冷却工程(II)の実施方法としては、高速で回転する双ローラの間に溶融物を滴下してフレーク状の固化物を得る方法、回転する単ローラに溶融物を滴下してフレーク状もしくは板状の固化物を掃引して得る方法、または溶融物を冷却したカーボン板や金属板にプレスして塊状の固化物を得る方法が好ましい。なかでも、双ローラを用いた冷却方法が、冷却速度が速く、大量に処理できるのでより好ましい。双ローラとしては、金属製、カーボン製、またはセラミックス製のものを用いることが好ましい。 As another method of carrying out the cooling step (II), a melt is dropped between twin rollers rotating at high speed to obtain a flake-like solidified product, and a melt is dropped onto a rotating single roller to form a flake. Or the method of sweeping a plate-shaped solidified material, or the method of pressing a molten material on the cooled carbon plate or metal plate and obtaining a block-shaped solidified material is preferable. Among these, a cooling method using twin rollers is more preferable because the cooling rate is high and a large amount of processing can be performed. As the double roller, it is preferable to use one made of metal, carbon, or ceramic.
 冷却方法としては、溶融物を水に直接投入する方法もあるが、該方法は、制御が難しく、非晶質物を得るのが難しく、固化物が塊状となり、粉砕に多くの労力を要する欠点がある。冷却方法として、液体窒素に溶融物を直接投入する方法もあり、水の場合よりも冷却速度を速くできるが、水を使用する方法と同様の問題があり、また高コストである。 As a cooling method, there is also a method in which the melt is directly poured into water, but this method has the disadvantage that it is difficult to control, it is difficult to obtain an amorphous material, the solidified product becomes a lump, and a lot of labor is required for grinding is there. As a cooling method, there is also a method in which a melt is directly charged into liquid nitrogen, and the cooling rate can be made faster than in the case of water, but there are problems similar to the method using water and the cost is high.
 冷却工程(II)で得る固化物は、フレーク状または繊維状が好ましい。フレーク状の固化物としては、平均厚さが200μm以下が好ましく、100μm以下が特に好ましい。フレーク状の固化物としての、平均厚さに垂直の面の平均直径は、特に限定されない。繊維状の固化物としては、平均直径が50μm以下が好ましく、30μm以下が特に好ましい。平均厚さや平均直径の上限値以下であると、次工程の粉砕工程(III)の手間を軽減することができ、結晶化効率を高くすることができる。平均厚さおよび平均直径は、ノギスやマイクロメータにより測定することができる。また、平均直径は、顕微鏡観察により測定することもできる。
 冷却工程(II)で得た固化物は、次の粉砕工程(III)に悪影響を与えない限り、該粉砕工程(III)前に他の工程を行ってもよい。
The solidified product obtained in the cooling step (II) is preferably flaky or fibrous. The flaky solidified product preferably has an average thickness of 200 μm or less, particularly preferably 100 μm or less. The average diameter of the plane perpendicular to the average thickness as the flaky solidified product is not particularly limited. The fibrous solidified product preferably has an average diameter of 50 μm or less, particularly preferably 30 μm or less. When the average thickness or the average diameter is less than or equal to the upper limit value, it is possible to reduce the labor of the subsequent pulverization step (III) and increase the crystallization efficiency. The average thickness and average diameter can be measured with a caliper or a micrometer. The average diameter can also be measured by microscopic observation.
The solidified product obtained in the cooling step (II) may be subjected to other steps before the pulverization step (III) as long as the pulverization step (III) is not adversely affected.
[粉砕工程(III)]
 粉砕工程(III)は、冷却工程(II)で得た固化物を粉砕して粉砕物を得る工程である。固化物は通常の場合、非晶質物を多く含む、または、非晶質物からなるため、粉砕がしやすい利点がある。また、粉砕に使用する装置に負担をかけずに粉砕ができ、かつ粒径の制御がしやすい利点がある。一方、従来の固相反応は、加熱工程(IV)の後で粉砕を行うが、粉砕によって残留応力が生じ、電池特性を悪化させる問題があることに本発明者は気づいた。よって、本発明の製造方法では、加熱工程(IV)の前に粉砕し、生じた残留応力は、後工程の加熱工程(IV)で低減または除去する方法を採用する。
[Crushing step (III)]
The pulverization step (III) is a step of pulverizing the solidified product obtained in the cooling step (II) to obtain a pulverized product. Since the solidified product usually contains a large amount of amorphous material or consists of an amorphous material, there is an advantage that it is easy to grind. In addition, there is an advantage that pulverization can be performed without imposing a burden on an apparatus used for pulverization and the particle size can be easily controlled. On the other hand, in the conventional solid phase reaction, pulverization is performed after the heating step (IV), but the present inventor has noticed that there is a problem that residual stress is generated by pulverization and battery characteristics are deteriorated. Therefore, the manufacturing method of the present invention employs a method of pulverizing before the heating step (IV) and reducing or removing the generated residual stress in the subsequent heating step (IV).
 粉砕は、ジョークラッシャー、ハンマーミル、ボールミル、ジェットミル、遊星ミル等を用いて行うことが好ましい。粉砕の方式は、乾式または湿式のいずれであってもよい。粉砕工程(III)の前に固化物を手揉みやハンマー等で叩いて予備的に細かくすると、粉砕工程(III)の負担が軽減するので好ましい。粉砕を湿式で行った場合、分散媒を沈降、濾過、減圧乾燥、加熱乾燥等で除去した後に、加熱工程(IV)を実施するのが好ましい。ただし、分散媒が少ない場合、特に粉砕物の質量に占める固形分の質量の割合が30%以上の場合、分散媒を含んだ粉砕物のままで加熱工程(IV)を行ってもよい。 The pulverization is preferably performed using a jaw crusher, a hammer mill, a ball mill, a jet mill, a planetary mill or the like. The method of pulverization may be either dry or wet. Before the pulverization step (III), it is preferable that the solidified product be struck by hand or a hammer to make it finer, because the burden of the pulverization step (III) is reduced. When the pulverization is performed in a wet manner, it is preferable to carry out the heating step (IV) after removing the dispersion medium by sedimentation, filtration, drying under reduced pressure, heat drying and the like. However, when there are few dispersion media, especially when the ratio of the mass of the solid content to the mass of the pulverized product is 30% or more, the heating step (IV) may be performed with the pulverized product containing the dispersion medium as it is.
 本発明におけるケイ酸化合物は絶縁物質であることから、二次電池用正極材料として用いる場合には、固化物に導電材を含ませるのが好ましい。また、二次電池用正極材料として用いる場合には、微粒子状であるのが好ましい。粉砕物の平均粒径は、体積換算のメディアン径で10nm~10μmが好ましく、10nm~5μmが特に好ましい。粒径の測定は、沈降法やレーザ回折/散乱式粒子径測定装置で測定できる。粉砕物の粒径が小さい場合には、還元反応が促進され、加熱工程(IV)の加熱温度や時間を低減できるため好ましい。粉砕物の平均粒径を前記範囲とすることにより、粉砕工程(III)および加熱工程(IV)の作業性を向上させ、加熱工程(IV)の生成物の平均粒径を制御しやすくなる利点がある。 Since the silicic acid compound in the present invention is an insulating material, when used as a positive electrode material for a secondary battery, it is preferable to include a conductive material in the solidified product. Moreover, when using as a positive electrode material for secondary batteries, it is preferable that it is a fine particle form. The average particle diameter of the pulverized product is preferably 10 nm to 10 μm, and particularly preferably 10 nm to 5 μm, in terms of volume-based median diameter. The particle size can be measured by a sedimentation method or a laser diffraction / scattering particle size measuring device. When the particle size of the pulverized product is small, the reduction reaction is promoted, and the heating temperature and time in the heating step (IV) can be reduced, which is preferable. By setting the average particle size of the pulverized product within the above range, the workability of the pulverization step (III) and the heating step (IV) is improved, and the average particle size of the product of the heating step (IV) can be easily controlled. There is.
 導電材としては、有機化合物および炭素粉末からなる群より選ばれる少なくとも1種の炭素源が好ましい。有機化合物および炭素粉末からなる群より選ばれる少なくとも1種の炭素源の量は、該炭素源中の炭素換算量(質量)が、固化物の質量と、該炭素源中の炭素換算量(質量)との合計質量に対して、0.1~20質量%となる量が好ましく、2~10質量%となる量が特に好ましい。炭素量を上記範囲とすることにより、二次電池用正極材料としての導電性を充分に高めることができる。
 固化物に含ませた有機化合物および/または炭素粉末は、粉砕工程(III)や加熱工程(IV)における酸化を防止し、さらに還元を促進する。また、有機化合物は、加熱工程(IV)で熱分解されて炭化物となり、炭素粉末は、加熱工程(IV)後に残り、導電材として機能する。よって、二次電池用正極材料の導電性を高めることができる。
The conductive material is preferably at least one carbon source selected from the group consisting of organic compounds and carbon powder. The amount of at least one carbon source selected from the group consisting of an organic compound and carbon powder is such that the carbon equivalent amount (mass) in the carbon source is the mass of the solidified product and the carbon equivalent amount (mass in the carbon source). ) In an amount of 0.1 to 20% by mass, particularly preferably 2 to 10% by mass. By setting the amount of carbon in the above range, the conductivity as the positive electrode material for secondary batteries can be sufficiently increased.
The organic compound and / or carbon powder contained in the solidified product prevents oxidation in the pulverization step (III) and heating step (IV), and further promotes reduction. Further, the organic compound is pyrolyzed in the heating step (IV) to become a carbide, and the carbon powder remains after the heating step (IV) and functions as a conductive material. Therefore, the conductivity of the positive electrode material for secondary batteries can be increased.
 有機化合物としては、糖類、アミノ酸類、ペプチド類、アルデヒド類、ケトン類、グリコール類、ポリビニルアルコール、セルロース類、および脂肪酸からなる群より選ばれる少なくとも1種が好ましく、糖類、グリコール類、またはポリビニルアルコールが特に好ましい。糖類としては、グルコース、フラクトース、およびガラクトース等の単糖類、スクロース、マルトース、セロビオース、およびトレハロース等のオリゴ糖、転化糖、デキストリン、アミロース、アミロペクチン、およびセルロース等の多糖類、ならびにアスコルビン酸等が挙げられる。アミノ酸類としては、アラニン、グリシン等のアミノ酸が挙げられる。ペプチド類としては、分子量が1,000以下の低分子ペプチドが挙げられる。
 炭素粉末としては、カーボンブラック、グラファイト、アセチレンブラック等が好ましい。また、炭素粉末は繊維状炭素または板状炭素であってもよい。
The organic compound is preferably at least one selected from the group consisting of saccharides, amino acids, peptides, aldehydes, ketones, glycols, polyvinyl alcohol, celluloses, and fatty acids, and saccharides, glycols, or polyvinyl alcohol. Is particularly preferred. Examples of the saccharide include monosaccharides such as glucose, fructose, and galactose, oligosaccharides such as sucrose, maltose, cellobiose, and trehalose, invert sugar, polysaccharides such as dextrin, amylose, amylopectin, and cellulose, and ascorbic acid. It is done. Examples of amino acids include amino acids such as alanine and glycine. Peptides include low molecular weight peptides having a molecular weight of 1,000 or less.
As the carbon powder, carbon black, graphite, acetylene black and the like are preferable. The carbon powder may be fibrous carbon or plate-like carbon.
 粉砕工程(III)において、固化物に有機化合物や炭素粉末を含ませて粉砕した場合には、加熱工程(IV)後に、導電材を混合する工程を省略できる利点がある。また、有機化合物や炭素粉末は、固化物の粒成長を抑制しうる。固化物に有機化合物を含ませる場合の粉砕工程(III)には、粉砕物の表面に均一に分散させるために、湿式粉砕を採用するのが好ましい。粉砕する際の分散媒としては、水、または、エタノール、イソプロピルアルコール、アセトン、ヘキサン、トルエン等の有機溶媒を用いることができる。なかでも、水は安価であるために好ましい。固化物に炭素粉末を含ませる場合の粉砕工程(III)には、乾式が好ましい。
 さらに、粉砕工程(III)で得た粉砕物は、次の加熱工程(IV)に悪影響を与えない限り、該加熱工程(IV)前に他の工程を行ってもよい。
In the pulverization step (III), when the solidified product is pulverized by including an organic compound or carbon powder, there is an advantage that the step of mixing the conductive material can be omitted after the heating step (IV). Moreover, the organic compound and carbon powder can suppress the grain growth of the solidified product. In the pulverization step (III) when the organic compound is included in the solidified product, wet pulverization is preferably employed in order to uniformly disperse the pulverized product on the surface. As a dispersion medium for pulverization, water or an organic solvent such as ethanol, isopropyl alcohol, acetone, hexane, or toluene can be used. Of these, water is preferable because it is inexpensive. A dry method is preferable for the pulverization step (III) when the solidified product contains carbon powder.
Furthermore, the pulverized product obtained in the pulverization step (III) may be subjected to another step before the heating step (IV) as long as it does not adversely affect the next heating step (IV).
 [加熱工程(IV)]
 加熱工程(IV)は、粉砕工程(III)で得た粉砕物を加熱する工程である。加熱工程(IV)では、下式(B)で表される組成を有するケイ酸化合物を得る。
 ASi1-xf2     (B)
(式中の記号は前記と同じ意味を示すが、式(A)における値とは独立した値を示す。)
[Heating step (IV)]
The heating step (IV) is a step of heating the pulverized product obtained in the pulverizing step (III). In the heating step (IV), a silicic acid compound having a composition represented by the following formula (B) is obtained.
A e M b Si x D 1 -x O f2 (B)
(The symbols in the formula have the same meaning as described above, but indicate values independent of the values in the formula (A).)
 式(B)のf2の値は、一般にはf2=0.5(e+bN+x+3)で表される。f2は3≦f2≦5が好ましく、3≦f2≦4が特に好ましい。式(B)におけるe、b、xの好ましい範囲は、式(A)におけるのと同じである。 The value of f2 in the formula (B) is generally represented by f2 = 0.5 (e + bN + x + 3). f2 is preferably 3 ≦ f2 ≦ 5, particularly preferably 3 ≦ f2 ≦ 4. Preferred ranges of e, b, and x in the formula (B) are the same as those in the formula (A).
 式(A)で表される組成を有する化合物として、DがAlである式(i)で表される組成を有する溶融物を使って本発明の製造方法を実施した場合には、式(B)で表される組成を有するケイ素化合物として、下式(ii)で表される組成を有するケイ酸-アルミン酸化合物が得られる。
 ASiAl1-xf2     (ii)
(式中、A、M、e、bおよびxは前記と同じ意味を示すが、式(i)における値とは独立した値を示す。f2はe、b、xおよびMの価数Nに依存する数である。)
 式(ii)におけるe、bおよびxの好ましい範囲は、式(i)における好ましい範囲と同じである。
 元素AがLi、元素MがFeのみ、またはFeおよびMn、eが0.8<e<2.4、bが0.7≦b≦1.3、xが0.3≦x<1、f2が3≦f2≦5である化合物が特に好ましい。xは0.3<x<1であってもよい。
When the production method of the present invention is carried out using a melt having a composition represented by the formula (i) in which D is Al as the compound having the composition represented by the formula (A), the formula (B A silicic acid-aluminic acid compound having a composition represented by the following formula (ii) is obtained as a silicon compound having a composition represented by formula (ii).
A e M b Si x Al 1 -x O f2 (ii)
(In the formula, A, M, e, b and x have the same meaning as described above, but are independent of the values in formula (i). F2 represents the valence N of e, b, x and M. Depends on the number.)
The preferred range of e, b and x in formula (ii) is the same as the preferred range in formula (i).
Element A is Li, Element M is Fe only, or Fe and Mn, e is 0.8 <e <2.4, b is 0.7 ≦ b ≦ 1.3, x is 0.3 ≦ x <1, A compound in which f2 is 3 ≦ f2 ≦ 5 is particularly preferable. x may be 0.3 <x <1.
 特に式(i)で表される組成を有する溶融物の好ましい態様である式(1)で表される組成を有する溶融物を使って本発明の製造方法を実施した場合には、式(ii)で表される組成を有するケイ素化合物として、下式(2)で表される組成を有するケイ酸-アルミン酸化合物が得られる。
 A1+x+aSiAl1-x3+x+d12     (2)
(式中、A、M、a、bおよびxは前記と同じ意味を示すが、式(1)における値とは独立した値を示す。d12はa、bおよびMの価数Nに依存する数である。)
In particular, when the production method of the present invention is carried out using a melt having a composition represented by formula (1), which is a preferred embodiment of a melt having a composition represented by formula (i), formula (ii) As a silicon compound having a composition represented by (2), a silicic acid-aluminic acid compound having a composition represented by the following formula (2) is obtained.
A 1 + x + a M b Si x Al 1-x O 3 + x + d12 (2)
(In the formula, A, M, a, b and x have the same meaning as described above, but are independent of the values in formula (1). D12 depends on the valence N of a, b and M. Number.)
 式(2)におけるa、bおよびxの好ましい範囲は、式(1)における好ましい範囲と同じである。
 式(ii)のf2の値は、一般にはf2=0.5(e+bN+x+3)で表される。f2は3≦f2≦5が好ましく、3≦f2≦4が特に好ましい。
 式(2)のd12の値は、例えばa=0、b=1、およびN=+2であればd12=0であり、一般にはd12=0.5(a+bN-2)で表される。d12は-0.2≦d12≦1.2が好ましく、0≦d12≦0.5が特に好ましい。Nの価数は、+2であるのが好ましい。
The preferable range of a, b, and x in Formula (2) is the same as the preferable range in Formula (1).
The value of f2 in the formula (ii) is generally represented by f2 = 0.5 (e + bN + x + 3). f2 is preferably 3 ≦ f2 ≦ 5, particularly preferably 3 ≦ f2 ≦ 4.
The value of d12 in formula (2) is, for example, d12 = 0 if a = 0, b = 1, and N = + 2, and is generally expressed as d12 = 0.5 (a + bN−2). d12 is preferably −0.2 ≦ d12 ≦ 1.2, particularly preferably 0 ≦ d12 ≦ 0.5. The valence of N is preferably +2.
 式(A)で表される組成を有する化合物として、DがAlおよびBである式(iii)で表される組成を有する溶融物を使って本発明の製造方法を実施した場合には、式(B)で表される組成を有するケイ素化合物として、下式(iv)で表される組成を有するケイ酸-ホウ酸-アルミン酸化合物が得られる。
 ASi(BAl1-c1-xf2     (iv)
(式中、A、M、e、b、cおよびxは前記と同じ意味を示すが、式(iii)における値とは独立した値を示す。f2はe、b、xおよびMの価数Nに依存する数である。)
 式(iv)におけるe、b、xおよびcの好ましい範囲は、式(iii)における好ましい範囲と同じである。
 元素AがLi、元素MがFeのみ、またはFeおよびMn、eが0.8<e<2.4、bが0.7≦b≦1.3、xが0.3≦x<1、cが0<c<1、f2が3≦f2≦5である化合物が特に好ましい。xは0.3<x<1であってもよい。
When the production method of the present invention is carried out using a melt having a composition represented by the formula (iii) in which D is Al and B as the compound having the composition represented by the formula (A), the formula As the silicon compound having the composition represented by (B), a silicic acid-boric acid-aluminic acid compound having a composition represented by the following formula (iv) is obtained.
A e M b Si x (B c Al 1-c) 1-x O f2 (iv)
(In the formula, A, M, e, b, c and x have the same meaning as described above, but are independent of the values in formula (iii). F2 is the valence of e, b, x and M. The number depends on N.)
The preferred range of e, b, x and c in formula (iv) is the same as the preferred range in formula (iii).
Element A is Li, Element M is Fe only, or Fe and Mn, e is 0.8 <e <2.4, b is 0.7 ≦ b ≦ 1.3, x is 0.3 ≦ x <1, A compound in which c is 0 <c <1 and f2 is 3 ≦ f2 ≦ 5 is particularly preferable. x may be 0.3 <x <1.
 特に式(iii)で表される組成を有する溶融物の好ましい態様である式(3)で表される組成を有する溶融物を使って本発明の製造方法を実施した場合には、式(B)で表される組成を有するケイ素化合物として、下式(4)で表される組成を有するケイ酸-ホウ酸-アルミン酸化合物が得られる。
 A1+x+aSi(BAl1-c1-x3+x+d22     (4)
(式中、A、M、a、b、cおよびxは前記と同じ意味を示すが、式(3)における値とは独立した値を示す。d22はa、bおよびMの価数Nに依存する数である。)
In particular, when the production method of the present invention is carried out using a melt having a composition represented by formula (3), which is a preferred embodiment of a melt having a composition represented by formula (iii), the formula (B As a silicon compound having a composition represented by (4), a silicic acid-boric acid-aluminic acid compound having a composition represented by the following formula (4) is obtained.
A 1 + x + a M b Si x (B c Al 1-c ) 1-x O 3 + x + d22 (4)
(In the formula, A, M, a, b, c and x have the same meaning as described above, but are independent of the values in formula (3). D22 represents the valence N of a, b and M. Depends on the number.)
 式(4)におけるa、b、xおよびcの好ましい範囲は、式(3)における好ましい範囲と同じである。
 式(iv)のf2の値は、一般にはf2=0.5(e+bN+x+3)で表される。f2は3≦f2≦5が好ましく、3≦f2≦4が特に好ましい。
 式(4)のd22の値は、例えばa=0、b=1、およびN=+2であればd22=0であり、一般にはd22=0.5(a+bN-2)で表される。d22は-0.2≦d22≦1.2が好ましく、0≦d22≦0.5が特に好ましい。Nの価数は、+2であるのが好ましい。
 式(2)において、DがAlである場合の組成を有するケイ素化合物としては、特に下式(5)で表される組成を有する化合物が好ましい。
 Li1+x+a(FeMn1-ySiAl1-x3+x+d12     (5)
(式中、a、b、d12およびxは前記と同じ意味を示し、yは0≦y≦1である。)
 式(5)中のyの値は、0≦y≦1が好ましく、0<y<1が特に好ましい。FeとMnのモル比は20~80:80~20が好ましく、25~75:75~25がさらに好ましく、40~60:60~40が特に好ましい。
 式(4)において、DがAlおよびBである場合の組成を有するケイ素化合物としては、特に下式(6)で表される組成を有する化合物が好ましい。
 Li1+x+a(FeMn1-ySi(BAl1-c1-x3+x+d22     (6)
 (式中、a、b、c、d22およびxは前記と同じ意味を示し、yは0≦y≦1である。)
 式(6)中のyの値は、0≦y≦1が好ましく、0<y<1が特に好ましい。FeとMnのモル比は20~80:80~20が好ましく、25~75:75~25がさらに好ましく、40~60:60~40が特に好ましい。
The preferred range of a, b, x and c in formula (4) is the same as the preferred range in formula (3).
The value of f2 in the formula (iv) is generally represented by f2 = 0.5 (e + bN + x + 3). f2 is preferably 3 ≦ f2 ≦ 5, particularly preferably 3 ≦ f2 ≦ 4.
The value of d22 in the formula (4) is, for example, d22 = 0 when a = 0, b = 1, and N = + 2, and is generally expressed as d22 = 0.5 (a + bN−2). d22 is preferably −0.2 ≦ d22 ≦ 1.2, particularly preferably 0 ≦ d22 ≦ 0.5. The valence of N is preferably +2.
In the formula (2), the silicon compound having a composition when D is Al is particularly preferably a compound having a composition represented by the following formula (5).
Li 1 + x + a (Fe y Mn 1-y ) b Si x Al 1-x O 3 + x + d12 (5)
(Wherein, a, b, d12 and x have the same meaning as described above, and y is 0 ≦ y ≦ 1.)
The value of y in the formula (5) is preferably 0 ≦ y ≦ 1, and particularly preferably 0 <y <1. The molar ratio of Fe to Mn is preferably 20 to 80:80 to 20, more preferably 25 to 75:75 to 25, and particularly preferably 40 to 60:60 to 40.
In the formula (4), the silicon compound having a composition when D is Al and B is particularly preferably a compound having a composition represented by the following formula (6).
Li 1 + x + a (Fe y Mn 1-y ) b Si x (B c Al 1-c ) 1-x O 3 + x + d22 (6)
(Wherein a, b, c, d22 and x have the same meaning as described above, and y is 0 ≦ y ≦ 1.)
The value of y in the formula (6) is preferably 0 ≦ y ≦ 1, and particularly preferably 0 <y <1. The molar ratio of Fe to Mn is preferably 20 to 80:80 to 20, more preferably 25 to 75:75 to 25, and particularly preferably 40 to 60:60 to 40.
 加熱工程(IV)の生成物は結晶粒子が好ましく、さらにオリビン型の結晶粒子がより好ましい。本発明における加熱工程(IV)は、粉砕物を加熱することから、残留応力の緩和が促進される。また、加熱により結晶核の生成および粒成長を行うことから、組成、粒径およびその分布の制御が容易である。 The product of the heating step (IV) is preferably crystal particles, and more preferably olivine type crystal particles. In the heating step (IV) in the present invention, the pulverized material is heated, so that the relaxation of the residual stress is promoted. In addition, since the formation of crystal nuclei and grain growth are performed by heating, the composition, grain size, and distribution thereof are easily controlled.
 さらに、粉砕工程(III)で有機化合物および/または炭素粉末を固化物に含ませた場合の加熱工程(IV)は、生成物、好ましくは生成物の結晶粒子の表面に、導電材を結合させる工程となりうる。有機化合物は加熱工程(IV)で熱分解され、炭化物となって導電材として機能しうる。 Furthermore, the heating step (IV) in the case where the organic compound and / or carbon powder is included in the solidified product in the pulverizing step (III) causes the conductive material to be bonded to the surface of the product, preferably the crystal grains of the product. It can be a process. The organic compound is thermally decomposed in the heating step (IV) and becomes a carbide to function as a conductive material.
 加熱工程(IV)における加熱温度は500~1,000℃が好ましい。加熱温度が500℃以上であると、結晶を生成しやすい。加熱温度が1,000℃以下であると、粉砕物の融解を防ぐことができる。加熱温度は600~900℃がより好ましい。該加熱温度である場合には、適度な結晶性、粒子径、粒度分布等を有する結晶粒子が得られやすく、好ましくはオリビン型の結晶粒子が得られやすくなる。
 粉砕工程(III)を湿式で行った場合には、分散媒を含むまま加熱工程(IV)を行った場合、加熱工程(IV)は分散媒を除く工程になりうる。
The heating temperature in the heating step (IV) is preferably 500 to 1,000 ° C. When the heating temperature is 500 ° C. or higher, crystals are easily generated. When the heating temperature is 1,000 ° C. or less, melting of the pulverized product can be prevented. The heating temperature is more preferably 600 to 900 ° C. When the heating temperature is used, crystal particles having appropriate crystallinity, particle diameter, particle size distribution, and the like are easily obtained, and olivine-type crystal particles are preferably obtained.
When the pulverization step (III) is performed in a wet manner, the heating step (IV) can be a step of removing the dispersion medium when the heating step (IV) is performed while the dispersion medium is included.
 加熱工程(IV)における加熱は、一気に温度を上げた後に一定温度で保持してもよいし、また多段階に温度を変化させて行ってもよい。加熱温度が高くなると、生成する粒子径が大きくなる傾向があるため、所望の粒子径に応じて加熱温度を設定することが好ましい。また、加熱時間(加熱温度による保持時間)は所望の粒子径を考慮して1~72時間が好ましい。加熱は、電気、石油、ガス等をエネルギー源とする、ボックス炉、トンネルキルン炉、ローラーハース炉、ロータリーキルン炉、マイクロウェーブ加熱炉等で行うことが好ましい。 The heating in the heating step (IV) may be performed at a constant temperature after raising the temperature at once, or may be performed by changing the temperature in multiple stages. Since the particle diameter to be generated tends to increase as the heating temperature increases, the heating temperature is preferably set according to the desired particle diameter. The heating time (holding time depending on the heating temperature) is preferably 1 to 72 hours in consideration of a desired particle size. Heating is preferably carried out in a box furnace, tunnel kiln furnace, roller hearth furnace, rotary kiln furnace, microwave heating furnace or the like using electricity, oil, gas or the like as an energy source.
 加熱工程(IV)は、溶融工程(I)における加熱と同様に、空気中、不活性ガス中または還元ガス中で実施でき、不活性ガス中または還元ガス中で実施することが好ましい。不活性ガス中および還元ガス中の条件は、溶融工程(I)における条件と同じである。加熱工程(IV)は不活性ガス中や還元ガス中を減圧(0.9×10Pa以下)して実施してもよい。また、加熱炉内に、還元剤(例えばグラファイト)と粉砕物とを入れた容器を装填して加熱を実施した場合には、粉砕物中のMの還元(例えばM3+からM2+への変化)を促進することができる。 Similar to the heating in the melting step (I), the heating step (IV) can be carried out in air, in an inert gas or in a reducing gas, and is preferably carried out in an inert gas or in a reducing gas. The conditions in the inert gas and the reducing gas are the same as those in the melting step (I). The heating step (IV) may be carried out by reducing the pressure in an inert gas or a reducing gas (0.9 × 10 5 Pa or less). In addition, when heating is performed by charging a container containing a reducing agent (eg, graphite) and pulverized material in a heating furnace, reduction of M in the pulverized material (eg, change from M 3+ to M 2+) . ) Can be promoted.
 本発明において、加熱工程(IV)の後は、通常は常温まで冷却する。該冷却における冷却速度は-30℃/時間~-300℃/時間が好ましい。冷却速度を該範囲にすることにより、加熱による歪みを除去でき、生成物が結晶体である場合は、結晶構造を保ったまま目的物を得ることができる。また、冷却は、放置して常温まで冷却させてもよい。冷却は、放置して常温まで冷却させるのが好ましい。冷却は不活性ガス中または還元ガス中で行うのが好ましい。 In the present invention, after the heating step (IV), it is usually cooled to room temperature. The cooling rate in the cooling is preferably −30 ° C./hour to −300 ° C./hour. By setting the cooling rate within this range, distortion due to heating can be removed, and when the product is a crystal, the target product can be obtained while maintaining the crystal structure. Further, the cooling may be left to cool to room temperature. The cooling is preferably allowed to cool to room temperature. Cooling is preferably performed in an inert gas or a reducing gas.
<ケイ酸化合物>
 本発明の製造方法により得られるケイ酸化合物は、二次電池用正極材料として有用な新規化合物である。
<Silic acid compound>
The silicic acid compound obtained by the production method of the present invention is a novel compound useful as a positive electrode material for secondary batteries.
 特に、式(2)で表される組成を有するケイ酸-アルミン酸化合物、および式(4)で表される組成を有するケイ酸-ホウ酸-アルミン酸化合物は、元素Aの原子数が1.2以上であるため、多電子型になり、二次電池用正極に用いたときに単位質量当たりの容量が大きくなる。 In particular, the silicic acid-aluminic acid compound having the composition represented by the formula (2) and the silicic acid-boric acid-aluminic acid compound having the composition represented by the formula (4) have an element A atom number of 1 Since it is 2 or more, it becomes a multi-electron type, and the capacity per unit mass becomes large when used for a positive electrode for a secondary battery.
 すなわち、式(2)で表される組成を有するケイ酸-アルミン酸化合物は、元素AがLiの場合、単位([SiO]+[AlO])四面体に対し1個超2個以下のLiを含む構造を有する化合物であるため、Liの原子数を1.2以上にできる。さらに本発明の製造方法によれば、[SiO]四面体、[AlO]四面体および[LiO]四面体が均一に分布するケイ酸-アルミン酸化合物を得ることできる。 That is, in the silicic acid-aluminic acid compound having the composition represented by the formula (2), when the element A is Li, more than one and not more than two per unit ([SiO 4 ] + [AlO 4 ]) tetrahedron Since the compound has a structure containing Li, the number of Li atoms can be 1.2 or more. Furthermore, according to the production method of the present invention, it is possible to obtain a silicic acid-aluminic acid compound in which [SiO 4 ] tetrahedron, [AlO 4 ] tetrahedron and [LiO 4 ] tetrahedron are uniformly distributed.
 式(4)で表される組成を有するケイ酸-ホウ酸-アルミン酸化合物は、元素AがLiの場合、単位([SiO]+[BO]+[AlO])四面体に対し1個超2個以下のLiを含む構造を有する化合物であるため、Liの原子数を1.2以上にできる。さらに本発明の製造方法によれば[SiO]四面体と、[BO]四面体、[AlO]四面体および[LiO]四面体が均一に分布するケイ酸-ホウ酸-アルミン酸化合物を得ることできる。 When the element A is Li, the silicic acid-boric acid-aluminic acid compound having the composition represented by the formula (4) has a unit ([SiO 4 ] + [BO 4 ] + [AlO 4 ]) tetrahedron. Since it is a compound having a structure containing more than one and not more than two Li, the number of atoms of Li can be increased to 1.2 or more. Further, according to the production method of the present invention, [SiO 4 ] tetrahedron, [BO 4 ] tetrahedron, [AlO 4 ] tetrahedron and [LiO 4 ] tetrahedron are uniformly distributed silicic acid-boric acid-aluminic acid A compound can be obtained.
 本発明におけるケイ酸化合物は、オリビン型結晶粒子を含むものであることが好ましい。該結晶粒子としては、一次粒子および二次粒子の双方を含む。生成物中に二次粒子が存在する場合、一次粒子が破壊されない程度の範囲で解砕および粉砕してもよい。 The silicate compound in the present invention preferably contains olivine type crystal particles. The crystal particles include both primary particles and secondary particles. When secondary particles are present in the product, they may be crushed and pulverized as long as the primary particles are not destroyed.
 本発明の製造方法で製造されるケイ酸化合物は、オリビン型結晶粒子を含むことが好ましく、オリビン型結晶粒子であることが好ましい。オリビン型結晶粒子は、多電子型の理論電気容量を発揮する材料である。 The silicate compound produced by the production method of the present invention preferably contains olivine type crystal particles, and is preferably olivine type crystal particles. The olivine type crystal particle is a material that exhibits a multi-electron type theoretical electric capacity.
 本発明の製造方法において、固化物に、有機化合物および/または炭素粉末を含ませた場合には、ケイ酸化合物の表面に、有機化合物や炭素粉末に由来する炭素を導電材として均一にかつ強固に結合させうる。導電材が結合したケイ酸化合物は、そのまま二次電池用正極材料に用いうる。 In the production method of the present invention, when an organic compound and / or carbon powder is included in the solidified product, carbon derived from the organic compound or carbon powder is uniformly and strongly used as a conductive material on the surface of the silicic acid compound. Can be combined. The silicic acid compound to which the conductive material is bonded can be used as it is for a positive electrode material for a secondary battery.
 式(2)で表される組成を有するケイ酸-アルミン酸化合物または式(4)で表される組成を有するケイ酸-ホウ酸-アルミン酸化合物が結晶である場合、固溶体結晶または共晶であるのが好ましい。特に、式(2)または式(4)中のxが0.8≦x<1である場合には、固溶体結晶になりやすい。その理由は、下式(7)で表される反応により、Siの一部がAlまたはAlおよびBで置換されて、固溶体結晶が生成するためと考えられる。
 xAMSiO + (1-x)AM(B,Al)O
→ A1+xM[Si(B,Al)1-x]O3+x      (7)
(式中、A、Mは前記と同じ意味を示し、xは0.8≦x<1であり、[ ]は固溶体であることを表す。Bは含まれない場合もある。)
When the silicic acid-aluminic acid compound having the composition represented by the formula (2) or the silicic acid-boric acid-aluminic acid compound having the composition represented by the formula (4) is a crystal, it is a solid solution crystal or a eutectic crystal. Preferably there is. In particular, when x in the formula (2) or the formula (4) is 0.8 ≦ x <1, it tends to be a solid solution crystal. The reason is considered that a part of Si is substituted with Al or Al and B by the reaction represented by the following formula (7) to form a solid solution crystal.
xA 2 MSiO 4 + (1-x) AM (B, Al) O 3
→ A 1 + x M [Si x (B, Al) 1-x ] O 3 + x (7)
(In the formula, A and M have the same meanings as described above, x is 0.8 ≦ x <1, and [] represents a solid solution. B may not be included.)
 該固溶体結晶は、Siのみからなる結晶に比べ、安定な結晶構造をとるため、Liイオンが結晶内で移動しやすくなる。よって高い容量が得られ、かつ電気伝導度が上昇して、二次電池用正極材料に用いた場合に充放電のサイクル性が向上しうる。 Since the solid solution crystal has a stable crystal structure as compared with a crystal composed of only Si, Li ions easily move in the crystal. Therefore, a high capacity can be obtained and the electrical conductivity can be increased, and the charge / discharge cycleability can be improved when used as a positive electrode material for a secondary battery.
 本発明におけるケイ酸化合物が固溶体結晶である、または固溶体結晶を含む場合は、該結晶はSiの一部がAl、または、AlおよびBで置換された固溶体結晶であり、かつ、オリビン型結晶の粒子であるのが好ましい。
 固溶体結晶であるケイ酸化合物を二次電池用正極材料に用いた場合に、Liイオンが結晶内で移動しやすくなるために高容量になり、かつ、電気伝導度が上昇する。よって、二次電池用正極材料に使用する場合には、理論容量が得られやすく、充放電のサイクル性が向上すると考えられる。
When the silicic acid compound in the present invention is a solid solution crystal or contains a solid solution crystal, the crystal is a solid solution crystal in which a part of Si is substituted with Al or Al and B, and an olivine type crystal. Particles are preferred.
When a silicate compound that is a solid solution crystal is used as a positive electrode material for a secondary battery, Li ions easily move in the crystal, resulting in a high capacity and an increase in electrical conductivity. Therefore, when used as a positive electrode material for a secondary battery, a theoretical capacity is easily obtained, and it is considered that the charge / discharge cycleability is improved.
 式(2)または式(4)中のxが0.3≦x<0.8である場合には、共晶になりやすい。共晶であるケイ酸化合物とは、AMSiOオリビン型結晶、AM(B,Al)Oオリビン型結晶、およびA1+zMSi(B,Al)1-z3+z(zは0<z<1.0である。)オリビン型結晶からなる群が、共存している結晶体、をいう。
 本発明における該共晶としては、式Li1+zMSi(B,Al)1-z3+zオリビン型結晶で表される組成を有するオリビン型結晶を必須とし、さらに、LiMSiOオリビン型結晶、LiM(B,Al)Oオリビン型結晶、およびLi1+zMSi(B,Al)1-z3+z(zは0.2<z<0.8である。)オリビン型結晶からなる群(結晶中にBは含まれる場合と含まない場合とがある。)より選ばれるオリビン型結晶を含む、ケイ酸化合物の共晶体が特に好ましい。なお、(B,Al)はAl、または、AlおよびBである。
When x in formula (2) or formula (4) is 0.3 ≦ x <0.8, it tends to be a eutectic. The eutectic silicic acid compounds are A 2 MSiO 4 olivine type crystal, AM (B, Al) O 3 olivine type crystal, and A 1 + z MSi z (B, Al) 1-z O 3 + z (z is 0 < z <1.0.) A crystal body in which a group of olivine crystals coexists.
As the eutectic in the present invention, an olivine type crystal having a composition represented by the formula Li 1 + z MSi z (B, Al) 1-z O 3 + z olivine type crystal is essential, and further Li 2 MSiO 4 olivine type crystal. , LiM (B, Al) O 3 olivine type crystals, and Li 1 + z MSi z (B, Al) 1-z O 3 + z (z is 0.2 <z <0.8) olivine type crystals A eutectic of a silicic acid compound containing an olivine crystal selected from (may or may not contain B in the crystal) is particularly preferred. (B, Al) is Al or Al and B.
 ケイ酸化合物の共晶体は、下式(8)で表される反応により生成すると考えられる。
(1-x)AMSiO + xAM(B,Al)O → (1-x-w)AMSiO + (x-w)AM(B,Al)O + wA2-zMSi(B,Al)1-z3+Z     (8)
(式中、xおよびzは、0.3≦x<0.8および0.2<z<0.8であり、w、w、wはそれぞれ0~1の数であり、かつ、w+w=wである。Bは含まれない場合もある。)
The eutectic of the silicic acid compound is considered to be generated by the reaction represented by the following formula (8).
(1-x) A 2 MSiO 4 + xAM (B, Al) O 3 → (1-xw 1 ) A 2 MSiO 4 + (xw 2 ) AM (B, Al) O 3 + wA 2− z MSi z (B, Al) 1-z O 3 + Z (8)
(Wherein x and z are 0.3 ≦ x <0.8 and 0.2 <z <0.8, w 1 , w 2 and w are each a number from 0 to 1, and w 1 + w 2 = w. B may not be included.)
 本発明のケイ酸化合物が共晶体であると、電気伝導度が上昇する傾向があり好ましい。その理由は、共晶体は複数の結晶構造を有し、それぞれの電気導電度が異なる結晶子が形成されていることから、電位が負荷されたときに結晶子間に電位差が生じて、一次粒子自体の電気伝導度が上昇するため、と考えられる。また、一次粒子内の各結晶子間には粒界を有する構造をなし、この粒界は一次粒子内に比べ極めて薄いので、一次粒子自体の電気伝導度が上昇するためとも考えられる。
 本発明のケイ酸化合物としては、高い電気伝導度を得やすく、充放電サイクル性が向上するため、共晶体であるのが特に好ましい。
It is preferable that the silicic acid compound of the present invention is a eutectic because the electric conductivity tends to increase. The reason is that the eutectic has a plurality of crystal structures, and crystallites having different electric conductivities are formed. Therefore, when a potential is applied, a potential difference occurs between the crystallites, and the primary particles This is probably because the electrical conductivity of the device itself increases. In addition, a structure having a grain boundary is formed between the crystallites in the primary particle, and this grain boundary is extremely thin as compared with that in the primary particle, which is considered to be because the electrical conductivity of the primary particle itself is increased.
The silicic acid compound of the present invention is particularly preferably an eutectic because it is easy to obtain high electric conductivity and charge / discharge cycleability is improved.
 本発明のケイ酸化合物は、二次電池用正極に適用した場合に、高い容量を有し、良好なサイクル特性を得やすいという点からは、固溶体結晶が特に好ましく、高い電気伝導度を得やすいという点からは、共晶が特に好ましい。 When applied to a positive electrode for a secondary battery, the silicate compound of the present invention is preferably a solid solution crystal from the viewpoint of having a high capacity and easily obtaining good cycle characteristics, and easily obtaining high electrical conductivity. From this point, eutectic is particularly preferable.
 本発明のケイ酸化合物の平均粒径は、体積換算のメディアン径で10nm~10μmの平均粒径が好ましく、10nm~6μmがより好ましく、10nm~2μmが特に好ましい。下限の値は100nmであってもよい。平均粒径を該範囲とすることにより、より導電性が高くなる。平均粒径は、例えば電子顕微鏡による観察やレーザ回折式粒度分布計による測定等によって求められる。
 ケイ酸化合物の比表面積は、0.2~200m/gが好ましく、0.5~200m/gが好ましく、1~200m/gが特に好ましい。上限の値は100m/gであってもよく10m/gであってもよい。比表面積を該範囲とすることにより、導電性が高くなる。比表面積は、例えば窒素吸着法による比表面積測定装置で測定できる。
The average particle diameter of the silicate compound of the present invention is preferably an average particle diameter of 10 nm to 10 μm, more preferably 10 nm to 6 μm, and particularly preferably 10 nm to 2 μm in terms of volume median diameter. The lower limit value may be 100 nm. By making the average particle diameter within this range, the conductivity becomes higher. The average particle diameter can be determined by, for example, observation with an electron microscope or measurement with a laser diffraction particle size distribution meter.
The specific surface area of the silicate compound is preferably 0.2 ~ 200m 2 / g, preferably 0.5 ~ 200m 2 / g, 1 ~ 200m 2 / g is particularly preferred. The upper limit value may be 100 m 2 / g or 10 m 2 / g. By setting the specific surface area within this range, the conductivity is increased. The specific surface area can be measured by, for example, a specific surface area measuring apparatus using a nitrogen adsorption method.
 本発明のケイ酸化合物としては、式(ii)で表される組成を有する化合物、式(iv)で表される組成を有する化合物であり、該化合物がオリビン型結晶であるのが好ましい。化合物の例としては、以下の表3に記載の化合物が挙げられる。 The silicic acid compound of the present invention is a compound having a composition represented by formula (ii) or a compound having a composition represented by formula (iv), and the compound is preferably an olivine type crystal. Examples of compounds include the compounds listed in Table 3 below.
<二次電池用正極および二次電池の製造方法>
 本発明の製造方法によって得られたケイ酸化合物は、二次電池用正極材料として有用である。よって、該ケイ酸化合物を用いて、二次電池用正極および二次電池を製造できる。
 二次電池としては、金属リチウム二次電池、リチウムイオン二次電池、リチウムポリマー二次電池等が挙げられるが、リチウムイオン二次電池が好ましい。電池形状は制限されることはなく、例えば円筒状、角型、コイン型等の種々の形状およびサイズを適宜採用できる。
<Positive electrode for secondary battery and method for producing secondary battery>
The silicic acid compound obtained by the production method of the present invention is useful as a positive electrode material for a secondary battery. Therefore, the positive electrode for secondary batteries and a secondary battery can be manufactured using this silicate compound.
Examples of the secondary battery include a metal lithium secondary battery, a lithium ion secondary battery, and a lithium polymer secondary battery, and a lithium ion secondary battery is preferable. The battery shape is not limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
 二次電池用正極は、本発明の製造方法で得られるケイ酸化合物を用いて、公知の電極の製造方法に従って製造できる。例えば、本発明のケイ酸化合物を必要に応じて公知の結着材(ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等)、さらに必要に応じて公知の導電材(アセチレンブラック、カーボン、グラファイト、天然黒鉛、人造黒鉛、ニードルコークス等)と混合した後、得られた混合粉末をステンレス鋼製等の支持体上に圧着成形したり、金属製容器に充填すればよい。また、例えば、該混合粉末を有機溶剤(N-メチルピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N-N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等)と混合して得られたスラリーをアルミニウム、ニッケル、ステンレス、または銅等の金属基板上に塗布する等の方法も採用できる。 The positive electrode for a secondary battery can be manufactured according to a known electrode manufacturing method using the silicate compound obtained by the manufacturing method of the present invention. For example, if necessary, the silicic acid compound of the present invention is added to a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluororubber, Obtained by mixing with polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, etc.) and, if necessary, known conductive materials (acetylene black, carbon, graphite, natural graphite, artificial graphite, needle coke, etc.). The mixed powder may be pressure-formed on a support made of stainless steel or filled in a metal container. Further, for example, the mixed powder is mixed with an organic solvent (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran. And the like, and a slurry obtained by mixing with a metal substrate such as aluminum, nickel, stainless steel, or copper can also be employed.
 二次電池は、本発明の製造方法で得られる二次電池用正極を電極として用いて、公知の二次電池における構成を採用することができる。セパレータ、電池ケース等についても同様である。負極としては、活物質として公知の負極用活物質を使用することが可能であり、炭素材料、アルカリ金属材料およびアルカリ土類金属材料からなる群から選ばれる少なくとも1種を用いることが好ましい。電解液としては、非水系の電解液が好ましい。すなわち、本発明の製造方法で得られる二次電池としては、非水電解質リチウムイオン二次電池が好ましい。 The secondary battery can employ a configuration in a known secondary battery using the positive electrode for a secondary battery obtained by the production method of the present invention as an electrode. The same applies to separators, battery cases, and the like. As the negative electrode, a known negative electrode active material can be used as the active material, and at least one selected from the group consisting of a carbon material, an alkali metal material, and an alkaline earth metal material is preferably used. As the electrolytic solution, a non-aqueous electrolytic solution is preferable. That is, as the secondary battery obtained by the production method of the present invention, a nonaqueous electrolyte lithium ion secondary battery is preferable.
 本発明を、実施例を挙げて具体的に説明するが、本発明は以下の説明に限定されない。
[実施例1~13]
 溶融物の組成がLiO、NaO、FeO、MnO、CoO、NiO、SiO、およびAl換算量(単位:モル%)で、それぞれ表1に示す割合となるように、炭酸リチウム(LiCO)、炭酸ナトリウム(NaCO)、四酸化三鉄(Fe)、二酸化マンガン(MnO)、四酸化三コバルト(Co)、酸化ニッケル(NiO)、二酸化ケイ素(SiO)および酸化アルミニウム(Al)を秤量し、乾式で混合・粉砕して、原料調合物を得た。
The present invention will be specifically described with reference to examples, but the present invention is not limited to the following description.
[Examples 1 to 13]
The composition of the melt is Li 2 O, Na 2 O, FeO, MnO, CoO, NiO, SiO 2 , and Al 2 O 3 equivalent (unit: mol%), so that the ratios shown in Table 1 are obtained, respectively. Lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), manganese dioxide (MnO 2 ), tricobalt tetroxide (Co 3 O 4 ), nickel oxide ( NiO), silicon dioxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ) were weighed, mixed and pulverized in a dry process to obtain a raw material formulation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各原料調合物を、ロジウムを20質量%含む白金合金製のるつぼにそれぞれ充填した。次に、該るつぼをケイ化モリブデン製の発熱体を備える電気炉(モトヤマ社製、装置名:NH-3035)の中に入れた。該電気炉内を2L/分でNガスを流通しつつ、+300℃/時間の速度で昇温し、1,400~1,500℃で0.5時間加熱した。目視で透明になったことを確認して、それぞれの溶融物を得た。得られた溶融物の組成式を表1の右欄に示す。 Each raw material formulation was filled in a platinum alloy crucible containing 20% by mass of rhodium. Next, the crucible was placed in an electric furnace (manufactured by Motoyama, apparatus name: NH-3035) having a heating element made of molybdenum silicide. While flowing N 2 gas at a rate of 2 L / min in the electric furnace, the temperature was raised at a rate of + 300 ° C./hour and heated at 1,400 to 1,500 ° C. for 0.5 hour. Each melt was obtained after confirming that it became transparent visually. The composition formula of the obtained melt is shown in the right column of Table 1.
(冷却工程)
 溶融工程で得たるつぼ中の溶融物を、毎分400回転で回転する直径約15cmの双ローラを通すことによって、-1×10℃/秒で冷却し、フレーク状の固化物を得た。
(粉砕工程)
 冷却工程で得たフレーク状固化物を軽く手で揉んで細かくした後、乳棒と乳鉢とを用いて粗粉砕した。さらに、粉砕媒体としてジルコニア製ボールを用いた遊星ミルで、粗粉砕後の固化物を乾式で粉砕して粉砕物を得た。実施例1、実施例4の粉砕物をレーザ回折/散乱式粒度分析計(堀場製作所製、装置名:LA-950)を用いて粒子径を測定したところ、体積換算のメディアン径は2.1μm(実施例1)および2.5μm(実施例4)であった。
(Cooling process)
The melt in the crucible obtained in the melting step was cooled at −1 × 10 5 ° C./second by passing through a twin roller having a diameter of about 15 cm rotating at 400 revolutions per minute to obtain a flaky solidified product. .
(Crushing process)
The flake solidified product obtained in the cooling step was lightly kneaded and finely ground, and then coarsely pulverized using a pestle and mortar. Further, the coarsely pulverized solidified product was pulverized in a dry manner using a planetary mill using zirconia balls as a pulverizing medium to obtain a pulverized product. When the particle diameter of the pulverized product of Example 1 and Example 4 was measured using a laser diffraction / scattering particle size analyzer (manufactured by Horiba, Ltd., apparatus name: LA-950), the median diameter in terms of volume was 2.1 μm. (Example 1) and 2.5 μm (Example 4).
(加熱工程)
 粉砕工程で得た粉砕物を3体積%H-Arガス中におき、それぞれの実施例について600℃、700℃、800℃および900℃の4種類の温度条件で8時間加熱し、次に-200℃/時間の速度で冷却してケイ酸-アルミン酸化合物粒子を析出させた。各実施例のうち、加熱工程を700℃で実施して得た粒子について、X線回折、粒度分布および組成分析を行った。
(Heating process)
The pulverized material obtained in the pulverization step is placed in 3% by volume H 2 —Ar gas, and heated for 8 hours at four temperature conditions of 600 ° C., 700 ° C., 800 ° C. and 900 ° C. for each example, Silica-aluminate compound particles were precipitated by cooling at a rate of −200 ° C./hour. Among each Example, X-ray diffraction, particle size distribution, and composition analysis were performed about the particle | grains obtained by implementing a heating process at 700 degreeC.
(X線回折)
 得られたケイ酸化合物粒子の鉱物相を、X線回折装置(リガク社製、装置名:RINT TTRIII)を用いて調べた。実施例1~13で得た粒子は、いずれも斜方晶のオリビン型LiMSiO(K.Zaghib et al., Journal of Power Sources, 160, 1381-1386, 2006 および R.Dominko et al., Electrochemistry Communications, 8, 217-222 (2006)参照)に類似した回折パターンが得られた。該結果から、ケイ酸化合物粒子が結晶であり、かつ、AMSiO結晶のSiの一部がAlに置換された固溶体結晶からなることが確認できた。
 実施例1、2、3、および4で得た各結晶のX線回折パターンを、それぞれ図1の(a)、(b)、(c)、(d)に、実施例5、6、および7において、800℃で加熱して得られた各結晶のX線回折パターンを、それぞれ図2の(a)、(b)、(c)に示す。
(X-ray diffraction)
The mineral phase of the obtained silicate compound particles was examined using an X-ray diffractometer (manufactured by Rigaku Corporation, apparatus name: RINT TTRIII). The particles obtained in Examples 1 to 13 are all orthorhombic olivine type Li 2 MSiO 4 (K. Zaghib et al., Journal of Power Sources, 160, 1381-1386, 2006 and R. Dominko et al. , Electrochemistry Communications, 8, 217-222 (2006)). From the results, it was confirmed that the silicate compound particles were crystals and a solid solution crystal in which a part of Si of the A 2 MSiO 4 crystal was substituted with Al.
The X-ray diffraction patterns of the crystals obtained in Examples 1, 2, 3, and 4 are respectively shown in (a), (b), (c), and (d) of FIG. 7, the X-ray diffraction patterns of the respective crystals obtained by heating at 800 ° C. are shown in FIG. 2 (a), (b), and (c), respectively.
(粒度分布)
 実施例1で得たケイ酸-アルミン酸化合物の粒径分布をレーザ回折/散乱式粒度分布測定装置(堀場製作所製、装置名:LA-920)で測定した。体積換算のメディアン径は2.3μmであった。さらに、比表面積を比表面積測定装置(島津製作所製、装置名:ASAP2020で測定したところ、1.4m/gであった。
(Particle size distribution)
The particle size distribution of the silicic acid-aluminic acid compound obtained in Example 1 was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Horiba, Ltd., apparatus name: LA-920). The median diameter in terms of volume was 2.3 μm. Furthermore, when the specific surface area was measured with a specific surface area measuring device (manufactured by Shimadzu Corporation, device name: ASAP2020), it was 1.4 m 2 / g.
[実施例14~30]
 溶融物の組成がLiO、FeO、MnO、CoO、SiO、B、およびAl換算量(単位:モル%)で、それぞれ表2に示す割合となるように、炭酸リチウム(LiCO)、四酸化三鉄(Fe)、二酸化マンガン(MnO)、四酸化三コバルト(Co)、二酸化ケイ素(SiO)、酸化ホウ素(B)および酸化アルミニウム(Al)を秤量し、原料調合物を得た。これらを実施例1同様、混合・粉砕、溶融、冷却固化、粉砕、加熱し、ケイ酸化合物粒子を析出させた。加熱工程を700℃で実施して得た粒子について、X線回折、粒度分布および組成分析を行った。得られた溶融物の組成式を表2の右欄に示す。
[Examples 14 to 30]
Carbonic acid so that the composition of the melt is Li 2 O, FeO, MnO, CoO, SiO 2 , B 2 O 3 , and Al 2 O 3 equivalent (unit: mol%), and the ratio shown in Table 2 respectively. Lithium (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), manganese dioxide (MnO 2 ), tricobalt tetroxide (Co 3 O 4 ), silicon dioxide (SiO 2 ), boron oxide (B 2 O 3 ) and aluminum oxide (Al 2 O 3 ) were weighed to obtain a raw material formulation. These were mixed and pulverized, melted, cooled and solidified, pulverized, and heated in the same manner as in Example 1 to precipitate silicate compound particles. The particles obtained by carrying out the heating step at 700 ° C. were subjected to X-ray diffraction, particle size distribution and composition analysis. The composition formula of the obtained melt is shown in the right column of Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(X線回折)
 得られたケイ酸化合物粒子の鉱物相を、X線回折装置を用いて調べたところ、実施例14~19および実施例22~30で得た粒子は、いずれも斜方晶のオリビン型LiMSiOに類似した回折パターンを示した。該結果から、ケイ酸化合物粒子が結晶であり、かつ、AMSiO結晶のSiの一部がBおよびAlに置換された固溶体結晶からなることが確認できた。また、実施例20、21で得た粒子は、AMSiOオリビン型結晶、AM(B,Al)Oオリビン型結晶、およびA1+zMSi(B,Al)1-z3+zオリビン型結晶を含む共晶と考えられる回折パターンを示し、AMSiOオリビン型結晶、AM(B,Al)Oオリビン型結晶、およびA1+zMSi(B,Al)1-z3+zオリビン型結晶を含む共晶が得られることが確認できた。
 実施例14、15、16、および19で得た各結晶のX線回折パターンを、それぞれ図3の(a)、(b)、(c)、(d)に示す。
(X-ray diffraction)
When the mineral phase of the obtained silicic acid compound particles was examined using an X-ray diffractometer, the particles obtained in Examples 14 to 19 and Examples 22 to 30 were all orthorhombic olivine type Li 2. A diffraction pattern similar to MSiO 4 was exhibited. From the results, it was confirmed that the silicate compound particles were crystals and a solid solution crystal in which a part of Si of the A 2 MSiO 4 crystal was substituted with B and Al. The particles obtained in Examples 20 and 21 were A 2 MSiO 4 olivine type crystal, AM (B, Al) O 3 olivine type crystal, and A 1 + z MSi z (B, Al) 1-z O 3 + z olivine type. A diffraction pattern considered to be a eutectic including a crystal is shown, and an A 2 MSiO 4 olivine type crystal, an AM (B, Al) O 3 olivine type crystal, and an A 1 + z MSi z (B, Al) 1-z O 3 + z olivine type are shown. It was confirmed that a eutectic containing crystals was obtained.
The X-ray diffraction patterns of the crystals obtained in Examples 14, 15, 16, and 19 are shown in (a), (b), (c), and (d) of FIG.
(粒度分布)
 実施例14で得たケイ酸化合物の粒径分布をレーザ回折/散乱式粒度分布測定装置(堀場製作所製、装置名:LA-920)で測定したところ、体積換算のメディアン径は1.9μmであった。さらに、比表面積を比表面積測定装置(島津製作所製、装置名:ASAP2020で測定したところ、1.5m/gであった。
(Particle size distribution)
The particle size distribution of the silicic acid compound obtained in Example 14 was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Horiba, Ltd., apparatus name: LA-920). The median diameter in terms of volume was 1.9 μm. there were. Furthermore, when the specific surface area was measured with a specific surface area measurement device (manufactured by Shimadzu Corporation, device name: ASAP2020), it was 1.5 m 2 / g.
(組成分析)
 得られたケイ酸化合物粒子の化学組成を測定した。まず、粒子を2.5mol/LのKOH溶液で120℃にて加熱密閉分解し、分解液を塩酸酸性下で乾固した。次に塩酸酸性溶液として濾過した後、濾液および残渣を得た。濾液中のSi、B、Al、Fe、Mn、CoおよびNi量は、誘導結合発光分光分析装置(セイコーインスツル社製、装置名:SPS3100)を用いて定量した。濾液中のLiおよびNa量は原子吸光光度計(日立ハイテクノロジーズ社製、装置名:Z-2310)を用いて定量した。Si、B、Al、Fe、Mn、Co、Ni、LiおよびNaの定量値から、SiO、B、Al、FeO、MnO、CoO、NiO、LiOおよびNaOの量をそれぞれ算出した。さらに、残渣は灰化した後、フッ酸-硫酸で分解処理し、この処理による重量減少をSiOとした。全SiO量は、重量減少量から算出される量と濾液中のSiO量の合量とした。実施例1~10および実施例14~21で得たケイ酸化合物粒子の化学組成の定量値を、表3に示す。
(Composition analysis)
The chemical composition of the obtained silicic acid compound particles was measured. First, the particles were heated and decomposed at 120 ° C. with a 2.5 mol / L KOH solution, and the decomposition solution was dried under hydrochloric acid acidity. Next, after filtration as a hydrochloric acid acidic solution, a filtrate and a residue were obtained. The amounts of Si, B, Al, Fe, Mn, Co and Ni in the filtrate were quantified using an inductively coupled emission spectroscopic analyzer (manufactured by Seiko Instruments Inc., apparatus name: SPS3100). The amounts of Li and Na in the filtrate were quantified using an atomic absorption photometer (manufactured by Hitachi High-Technologies Corporation, apparatus name: Z-2310). From the quantitative values of Si, B, Al, Fe, Mn, Co, Ni, Li and Na, SiO 2 , B 2 O 3 , Al 2 O 3 , FeO, MnO, CoO, NiO, Li 2 O and Na 2 O The amount of each was calculated. Further, the residue was incinerated and then decomposed with hydrofluoric acid-sulfuric acid, and the weight loss due to this treatment was changed to SiO 2 . The total amount of SiO 2 was the sum of the amount calculated from the weight loss and the amount of SiO 2 in the filtrate. Table 3 shows quantitative values of the chemical compositions of the silicate compound particles obtained in Examples 1 to 10 and Examples 14 to 21.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実施例31~37]
 実施例1~4および実施例14~16で溶融、冷却、粗粉砕して得られた粗粉砕物とカーボンブラックとを、粉砕物とカーボンブラック中の炭素量との質量比で9:1となるようにそれぞれ混合し、実施例1と同様に遊星ミルを用いて粉砕した。各実施例における炭素含有粉砕物をArガス中にて700℃および800℃の2種類の温度で8時間加熱し、-200℃/時間の速度で冷却して、ケイ酸化合物粒子を得た。得られたケイ酸化合物のX線回折パターンは、オリビン型ケイ酸鉄リチウムのそれとほぼ一致した。
[Examples 31 to 37]
The coarsely pulverized product obtained by melting, cooling, and coarsely pulverizing in Examples 1 to 4 and Examples 14 to 16 and carbon black were 9: 1 in mass ratio of the pulverized product and the amount of carbon in the carbon black. Each was mixed and ground using a planetary mill in the same manner as in Example 1. The carbon-containing pulverized product in each example was heated in Ar gas at two temperatures of 700 ° C. and 800 ° C. for 8 hours and cooled at a rate of −200 ° C./hour to obtain silicate compound particles. The X-ray diffraction pattern of the obtained silicate compound almost coincided with that of olivine type lithium iron silicate.
 実施例31、32、33、および34において、700℃で加熱して得られたケイ酸化合物のX線回折パターンをそれぞれ図4の(a)、(b)、(c)、(d)に示す。実施例31および34において、700℃で8時間加熱し、-200℃/時間の速度で冷却して、得られたケイ酸化合物粒子の炭素含有量を炭素分析装置(堀場製作所製、装置名:EMIA-920V)で測定したところ、それぞれ9.8質量%(実施例31)、9.7質量%(実施例34)であった。また、比表面積を測定したところ、それぞれ28m/g(実施例31)、32m/g(実施例34)であった。 In Examples 31, 32, 33, and 34, X-ray diffraction patterns of silicic acid compounds obtained by heating at 700 ° C. are shown in FIGS. 4 (a), (b), (c), and (d), respectively. Show. In Examples 31 and 34, the mixture was heated at 700 ° C. for 8 hours and cooled at a rate of −200 ° C./hour, and the carbon content of the obtained silicate compound particles was determined by a carbon analyzer (manufactured by Horiba, Ltd., device name: EMIA-920V) were 9.8% by mass (Example 31) and 9.7% by mass (Example 34), respectively. Moreover, when the specific surface area was measured, they were 28 m 2 / g (Example 31) and 32 m 2 / g (Example 34), respectively.
[実施例38~41]
 実施例1、2、14、および15で溶融、急冷、粗粉砕して得られた粗粉砕物とカーボンブラックとシュークロース水溶液とを、粉砕物とカーボンブラック中のC含量とシュークロース中のC含量との質量比で、0.90:0.05:0.05となるように混合し、実施例31と同様に粉砕、加熱してケイ酸化合物粒子を得た。得られたケイ酸化合物のX線回折パターンは、それぞれ実施例31、32、35、および36同様オリビン型ケイ酸鉄リチウムのそれと一致した。実施例38および41において、700℃で8時間加熱して得られたケイ酸化合物粒子の炭素含有量を炭素分析装置(堀場製作所製、装置名:EMIA-920V)で測定したところ、それぞれ7.7質量%(実施例38)、7.4質量%(実施例41)であった。また、比表面積を測定したところ、それぞれ、48m/g(実施例38)、46m/g(実施例41)であった。
[Examples 38 to 41]
The coarsely pulverized product obtained by melting, quenching, and coarsely pulverizing in Examples 1, 2, 14, and 15, the carbon black and the sucrose aqueous solution, the C content in the pulverized product and carbon black, and the C content in sucrose. The mixture was mixed so that the mass ratio with respect to the content was 0.90: 0.05: 0.05, and pulverized and heated in the same manner as in Example 31 to obtain silicate compound particles. The X-ray diffraction pattern of the obtained silicate compound was the same as that of the olivine type lithium iron silicate as in Examples 31, 32, 35 and 36. In Examples 38 and 41, the carbon content of the silicate compound particles obtained by heating at 700 ° C. for 8 hours was measured with a carbon analyzer (manufactured by Horiba, apparatus name: EMIA-920V). They were 7 mass% (Example 38) and 7.4 mass% (Example 41). Moreover, when the specific surface area was measured, they were 48 m 2 / g (Example 38) and 46 m 2 / g (Example 41), respectively.
[参考例1]
 溶融物の組成がLiO、FeO、SiO、およびAl換算量(単位:モル%)で、38.5%、38.5%、7.7%および15.4%となるように、炭酸リチウム(LiCO)、四酸化三鉄(Fe)、二酸化ケイ素(SiO)および酸化アルミニウム(Al)をそれぞれ秤量し、乾式で混合・粉砕して原料調合物を得た。該原料調合物を実施例1と同様に溶融したが、溶融できなかった。該原料調合物の組成は、本発明の式(1)においてa=0.8、b=1、x=0.8に相当する。
[Reference Example 1]
The composition of the melt is 38.5%, 38.5%, 7.7% and 15.4% in terms of Li 2 O, FeO, SiO 2 and Al 2 O 3 (unit: mol%). Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) were weighed, mixed and pulverized in a dry manner. A raw material formulation was obtained. The raw material formulation was melted in the same manner as in Example 1, but could not be melted. The composition of the raw material formulation corresponds to a = 0.8, b = 1, and x = 0.8 in the formula (1) of the present invention.
[参考例2]
 溶融物の組成がLiO、FeO、SiO、B、およびAl換算量(単位:モル%)で、32.3%、48.4%、6.5%、3.2%および9.7%となるように、炭酸リチウム(LiCO)、四酸化三鉄(Fe)、二酸化ケイ素(SiO)、酸化ホウ素(B)、酸化アルミニウム(Al)をそれぞれ秤量し、乾式で混合・粉砕して原料調合物を得た。該原料調合物を実施例1と同様に溶融したが、溶融できなかった。該原料調合物の組成は、本発明の式(3)においてa=0、b=2、c=0.5、x=0.2に相当する。
[Reference Example 2]
The composition of the melt is 32.3%, 48.4%, 6.5%, 3% in terms of Li 2 O, FeO, SiO 2 , B 2 O 3 , and Al 2 O 3 (unit: mol%). Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), silicon dioxide (SiO 2 ), boron oxide (B 2 O 3 ), oxidation to be 0.2% and 9.7% Aluminum (Al 2 O 3 ) was weighed, mixed and pulverized in a dry manner to obtain a raw material formulation. The raw material formulation was melted in the same manner as in Example 1, but could not be melted. The composition of the raw material formulation corresponds to a = 0, b = 2, c = 0.5, and x = 0.2 in the formula (3) of the present invention.
[参考例3]
 溶融物の組成がLiO、FeO、及びSiO、およびAl換算量(単位:モル%)で、32.8%、34.5%、31.0%、および1.7%となるように、炭酸リチウム(LiCO)、四酸化三鉄(Fe)、二酸化ケイ素(SiO)および酸化アルミニウム(Al)を秤量し、乾式で混合・粉砕し、原料調合物を得た。該原料調合物を実施例1と同様に、1,450℃で溶融した後、-300℃/時間の冷却速度で冷却し、結晶化物を得た。得られた結晶化物の鉱物相をXRDを用いて同定したところ、LiSiOおよびFeを主成分とする粗い結晶であった。すなわち、溶融後、遅い冷却速度で冷却して結晶化物を得て、本発明における粉砕工程および加熱工程を行わない場合には、目的化合物を得ることができなかった。
[Reference Example 3]
The composition of the melt is 32.8%, 34.5%, 31.0%, and 1.7% in terms of Li 2 O, FeO, and SiO 2 , and Al 2 O 3 (unit: mol%). Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) are weighed so that A raw material formulation was obtained. In the same manner as in Example 1, the raw material formulation was melted at 1,450 ° C. and then cooled at a cooling rate of −300 ° C./hour to obtain a crystallized product. When the mineral phase of the obtained crystallized product was identified using XRD, it was a coarse crystal mainly composed of Li 2 SiO 3 and Fe 3 O 4 . That is, after melting, cooling was performed at a slow cooling rate to obtain a crystallized product, and when the pulverization step and heating step in the present invention were not performed, the target compound could not be obtained.
[参考例4]
 溶融物の組成がLiO、FeO、及びSiO、B、およびAl換算量(単位:モル%)で、32.8%、34.5%、31.0%、0.85%、および0.85%となるように、炭酸リチウム(LiCO)、四酸化三鉄(Fe)、二酸化ケイ素(SiO)、酸化ホウ素(B)および酸化アルミニウム(Al)を秤量し、乾式で混合・粉砕し、原料調合物を得た。該原料調合物を実施例1と同様に、1,450℃で溶融した後、-300℃/時間の冷却速度で冷却し、結晶化物を得た。得られた結晶化物の鉱物相を同定したところ、LiSiOおよびFeを主成分とする粗い結晶であった。すなわち、溶融後、遅い冷却速度で冷却して結晶化物を得て、本発明における粉砕工程及び加熱工程を行わない場合には、目的化合物を得ることができなかった。
[Reference Example 4]
The composition of the melt is Li 2 O, FeO, and SiO 2 , B 2 O 3 , and Al 2 O 3 equivalent (unit: mol%), 32.8%, 34.5%, 31.0%, Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), silicon dioxide (SiO 2 ), boron oxide (B 2 O 3 ) so as to be 0.85% and 0.85% And aluminum oxide (Al 2 O 3 ) was weighed, mixed and pulverized by a dry method, and a raw material formulation was obtained. In the same manner as in Example 1, the raw material formulation was melted at 1,450 ° C. and then cooled at a cooling rate of −300 ° C./hour to obtain a crystallized product. When the mineral phase of the obtained crystallized product was identified, it was a coarse crystal mainly composed of Li 2 SiO 3 and Fe 3 O 4 . That is, after melting, cooling was performed at a slow cooling rate to obtain a crystallized product, and when the pulverization step and heating step in the present invention were not performed, the target compound could not be obtained.
[実施例42~46:Liイオン二次電池用正極および評価用電池の製造]
 実施例1、2、9、14、および15において、700℃で8時間加熱し、-200℃/時間の速度で冷却して得られたケイ酸化合物粒子とシュークロース水溶液とを、該粒子とシュークロース中のC含量との質量比が、0.90:0.10となるように混合し、粉砕した。該活物質と、ポリフッ化ビニリデン樹脂(結着剤)とアセチレンブラック(導電材)とを、質量比が85:5:10の比率となるように秤量し、N-メチルピロリドン(溶媒)中で均一になるまで混合してスラリーを調製した。次いで、該スラリーをバーコーターで厚さ30μmのアルミニウム箔に塗布した。これを空気中にて120℃で乾燥させて溶媒を除去した後、ロールプレスで塗工層を圧密化した後、幅10mm×長さ40mmの短冊状に切り出した。
[Examples 42 to 46: Production of positive electrode for Li ion secondary battery and battery for evaluation]
In Examples 1, 2, 9, 14, and 15, silicic acid compound particles obtained by heating at 700 ° C. for 8 hours and cooling at a rate of −200 ° C./hour and an aqueous sucrose solution, The sucrose was mixed and ground so that the mass ratio with respect to the C content was 0.90: 0.10. The active material, polyvinylidene fluoride resin (binder) and acetylene black (conductive material) are weighed so that the mass ratio is 85: 5: 10, and in N-methylpyrrolidone (solvent). A slurry was prepared by mixing until uniform. Next, the slurry was applied to an aluminum foil having a thickness of 30 μm with a bar coater. After drying this at 120 degreeC in the air and removing a solvent, after consolidating the coating layer with the roll press, it cut out to the strip shape of width 10mm * length 40mm.
 塗工層は短冊状アルミニウム箔の先端10×10mmの部分を残して剥離し、これを電極とした。得られた電極のロールプレス後の塗工層厚は20μmであった。得られた電極は150℃で真空乾燥した後、精製アルゴンガスが満たされたグローブボックス中に搬入し、ニッケルメッシュにリチウム箔を圧着した対極と多孔質ポリエチレンフィルム製セパレータを介して対向させ、さらに両側をポリエチレン板で挟んで固定した。 The coating layer was peeled off leaving a 10 × 10 mm tip of strip-shaped aluminum foil, which was used as an electrode. The coating thickness of the obtained electrode after roll pressing was 20 μm. The obtained electrode was vacuum-dried at 150 ° C., then carried into a glove box filled with purified argon gas, and opposed to a counter electrode made by pressure bonding a lithium foil to a nickel mesh with a porous polyethylene film separator, Both sides were fixed with a polyethylene plate.
 対向電極をポリエチレン製ビーカに入れ、六フッ化リン酸リチウムをエチレンカーボネートとエチルメチルカーボネートの混合溶媒(1:1体積比)に1mol/Lの濃度で溶解した非水電解液を注入して充分に含浸させた。電解液含浸後の電極をビーカから取り出し、アルミニウムラミネートフィルム袋に入れ、リード線部を取り出して封止して半電池を構成した。この半電池の特性を以下のようにして測定した。 Put the counter electrode in a polyethylene beaker and inject a non-aqueous electrolyte solution of lithium hexafluorophosphate dissolved in a mixed solvent of ethylene carbonate and ethyl methyl carbonate (1: 1 volume ratio) at a concentration of 1 mol / L. Was impregnated. The electrode after impregnation with the electrolytic solution was taken out from the beaker, put in an aluminum laminate film bag, the lead wire part was taken out and sealed to form a half battery. The characteristics of this half-cell were measured as follows.
(Liイオン二次電池用正極の充放電特性評価)
 得られた半電池を60℃の恒温槽に入れ、定電流充放電試験機(北斗電工社製、装置名:HJ201B)に接続して充放電試験を行った。電流密度は電極活物質の質量(導電材と結着剤とを除いた質量)当たりの電流値を16mA/gとして充放電を行った。充電終止電位はLi対極基準で4.2Vとし、終止電圧に到達後即座に放電を開始した。放電終止電圧はLi対極基準で1.5Vとした。この充放電サイクルを5サイクル繰り返した。5サイクル目の放電容量は、それぞれ151mAh/g(実施例42)、153mAh/g(実施例43)、235mAh/g(実施例44)、160mAh/g(実施例45)、155mAh/g(実施例46)であった。
(Charge / discharge characteristic evaluation of positive electrode for Li ion secondary battery)
The obtained half-cell was placed in a constant temperature bath at 60 ° C. and connected to a constant current charge / discharge tester (manufactured by Hokuto Denko Co., Ltd., device name: HJ201B) to conduct a charge / discharge test. The current density was charged / discharged with the current value per mass of the electrode active material (the mass excluding the conductive material and the binder) being 16 mA / g. The end-of-charge potential was 4.2 V with respect to the Li counter electrode, and discharge was started immediately after reaching the end-of-voltage. The end-of-discharge voltage was 1.5 V with respect to the Li counter electrode. This charge / discharge cycle was repeated 5 times. The discharge capacities at the fifth cycle were 151 mAh / g (Example 42), 153 mAh / g (Example 43), 235 mAh / g (Example 44), 160 mAh / g (Example 45), and 155 mAh / g (implemented), respectively. Example 46).
[実施例47~48]
 実施例38および40で得たケイ酸化合物粒子を活物質とし、該活物質とポリフッ化ビニリデン樹脂(結着剤)とアセチレンブラック(導電材)とを、質量比が90:5:5の比率となるように秤量した以外は実施例42と同様に電極を製造し、その充放電特性を実施例42と同様にして評価した。5サイクル目の放電容量は、それぞれ154mAh/g(実施例47)、161mAh/g(実施例48)であった。
[Examples 47 to 48]
Using the silicate compound particles obtained in Examples 38 and 40 as an active material, the active material, polyvinylidene fluoride resin (binder), and acetylene black (conductive material) in a mass ratio of 90: 5: 5 An electrode was produced in the same manner as in Example 42 except that the weight was measured so that the charge / discharge characteristics were evaluated in the same manner as in Example 42. The discharge capacities at the fifth cycle were 154 mAh / g (Example 47) and 161 mAh / g (Example 48), respectively.
[参考例5、6]
 参考例3および4で得られた粉砕物を活物質とし、実施例42と同様に電極を製造し、その充放電特性を実施例42と同様にして評価した。1サイクル目の放電容量は、それぞれ5mAh/g(参考例5)、7mAh/g(参考例6)であった。
[Reference Examples 5 and 6]
Using the pulverized material obtained in Reference Examples 3 and 4 as an active material, an electrode was produced in the same manner as in Example 42, and the charge / discharge characteristics were evaluated in the same manner as in Example 42. The discharge capacities at the first cycle were 5 mAh / g (Reference Example 5) and 7 mAh / g (Reference Example 6), respectively.
 本発明のケイ酸化合物の製造方法は、ケイ酸化合物の組成制御がしやすく、製造しやすいので有用である。得られたケイ酸化合物は、二次電池用正極材料さらには二次電池に有用である。本発明のケイ酸-リン酸化合物を正極材料として用いた二次電池は、プラグインハイブリッド自動車や電気自動車に搭載する二次電池として、また、電力貯蔵用の蓄電池として有用である。
 なお、2010年11月19日に出願された日本特許出願2010-259360号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The method for producing a silicic acid compound of the present invention is useful because the composition of the silicic acid compound can be easily controlled and produced. The obtained silicic acid compound is useful for a positive electrode material for a secondary battery and further for a secondary battery. A secondary battery using the silicate-phosphate compound of the present invention as a positive electrode material is useful as a secondary battery mounted in a plug-in hybrid vehicle or an electric vehicle, and as a storage battery for storing power.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2010-259360 filed on November 19, 2010 are cited herein as disclosure of the specification of the present invention. Incorporated.

Claims (17)

  1.  下式(B)で表される組成を有するケイ酸化合物の製造方法であって、
     ASi1-xf2     (B)
    (式中、AはLi、NaおよびKからなる群より選ばれる少なくとも1種の元素である。MはFe、Mn、CoおよびNiからなる群より選ばれる少なくとも1種の元素であり、DはAl、または、AlおよびBである。eは0.8<e<2.4であり、bは0.7≦b≦1.3であり、xは0.3≦x<1であり、f2はe、b、xおよびMの価数Nに依存する数である。)
    元素A、元素M、Si、およびDを含む原料を、元素A、元素M、Si、およびDのモル比が式(B)で表されるモル比となるように調整してなる原料調合物を加熱して溶融物を得る工程、
    前記溶融物を冷却し固化物を得る冷却工程、
    前記固化物を粉砕し粉砕物を得る粉砕工程、および
     前記粉砕物を加熱してケイ酸化合物を得る加熱工程、
    をこの順に実施することを特徴とするケイ酸化合物の製造方法。
    A method for producing a silicic acid compound having a composition represented by the following formula (B):
    A e M b Si x D 1 -x O f2 (B)
    (In the formula, A is at least one element selected from the group consisting of Li, Na and K. M is at least one element selected from the group consisting of Fe, Mn, Co and Ni, and D is Al, or Al and B. e is 0.8 <e <2.4, b is 0.7 ≦ b ≦ 1.3, x is 0.3 ≦ x <1, f2 is a number depending on the valence N of e, b, x and M.)
    A raw material formulation prepared by adjusting a raw material containing the elements A, M, Si, and D so that the molar ratio of the elements A, M, Si, and D is the molar ratio represented by the formula (B) Heating to obtain a melt,
    A cooling step of cooling the melt to obtain a solidified product,
    A pulverization step of pulverizing the solidified product to obtain a pulverized product, and a heating step of heating the pulverized product to obtain a silicate compound.
    Are carried out in this order. A method for producing a silicic acid compound.
  2.  下式(A)で表される組成を有する溶融物を得る溶融工程、
     前記溶融物を冷却し固化物を得る冷却工程、
     前記固化物を粉砕し粉砕物を得る粉砕工程、および
     前記粉砕物を加熱して下式(B)で表される組成を有するケイ酸化合物を得る加熱工程、
    をこの順に実施する請求項1に記載のケイ酸化合物の製造方法。
     ASi1-xf1     (A)
    (式中、AはLi、NaおよびKからなる群より選ばれる少なくとも1種の元素である。MはFe、Mn、CoおよびNiからなる群より選ばれる少なくとも1種の元素であり、DはAl、または、AlおよびBである。eは0.8<e<2.4であり、bは0.7≦b≦1.3であり、xは0.3≦x<1であり、f1はe、b、xおよびMの価数Nに依存する数であり、加熱工程後にf2となる数である。)
     ASi1-xf2     (B)
    (式中、A、M、D、e、bおよびxは前記と同じ意味を示すが、前記とは独立した値であり、f2はe、b、xおよびMの価数Nに依存する数である。)
    A melting step for obtaining a melt having a composition represented by the following formula (A):
    A cooling step of cooling the melt to obtain a solidified product,
    A pulverization step of pulverizing the solidified product to obtain a pulverized product, and a heating step of heating the pulverized product to obtain a silicate compound having a composition represented by the following formula (B):
    The manufacturing method of the silicic acid compound of Claim 1 which implements in this order.
    A e M b Si x D 1-x O f1 (A)
    (In the formula, A is at least one element selected from the group consisting of Li, Na and K. M is at least one element selected from the group consisting of Fe, Mn, Co and Ni, and D is Al, or Al and B. e is 0.8 <e <2.4, b is 0.7 ≦ b ≦ 1.3, x is 0.3 ≦ x <1, f1 is a number that depends on the valence N of e, b, x, and M, and is a number that becomes f2 after the heating step.)
    A e M b Si x D 1 -x O f2 (B)
    (In the formula, A, M, D, e, b and x have the same meanings as described above, but are independent values, and f2 is a number depending on the valence N of e, b, x and M. .)
  3.  前記式(A)で表される組成を有する溶融物が、下式(1)で表される組成を有する溶融物であり、前記式(B)で表される組成を有するケイ酸化合物が、下式(2)で表される組成を有するケイ酸-アルミン酸化合物である、請求項2に記載のケイ酸化合物の製造方法。
     A1+x+aSiAl1-x3+x+d11     (1)
     A1+x+aSiAl1-x3+x+d12     (2)
    (式中、A、M、xおよびbは前記と同じ意味を示し、aは-0.1≦a≦0.4であり、d11はa、bおよびMの価数Nに依存する数であり、加熱工程後にd12となる数であり、d12はa、bおよびMの価数Nに依存する数である。ただし、式(1)と式(2)において、a、b、およびxは独立した値を示す。)
    The melt having the composition represented by the formula (A) is a melt having the composition represented by the following formula (1), and the silicate compound having the composition represented by the formula (B) is: The method for producing a silicic acid compound according to claim 2, wherein the silicic acid-aluminic acid compound has a composition represented by the following formula (2).
    A 1 + x + a M b Si x Al 1-x O 3 + x + d11 (1)
    A 1 + x + a M b Si x Al 1-x O 3 + x + d12 (2)
    (In the formula, A, M, x and b have the same meaning as described above, a is −0.1 ≦ a ≦ 0.4, and d11 is a number depending on the valence N of a, b and M. There is a number that becomes d12 after the heating step, and d12 is a number that depends on the valence N of a, b, and M. However, in the formulas (1) and (2), a, b, and x are Independent values are shown.)
  4.  前記溶融工程が、
     元素Aを含む化合物が、Aの炭酸塩、Aの炭酸水素塩、Aの水酸化物、Aのケイ酸塩、Aのアルミン酸塩、Aの硝酸塩、Aの塩化物、Aの硫酸塩、Aの酢酸塩およびAのシュウ酸塩からなる群より選ばれる少なくとも1種(ただし、該1種以上の一部または全部は、それぞれ、水和塩を形成していてもよい。)として含まれ、
     元素Mを含む化合物が、Mの酸化物、Mの水酸化物、Mのオキシ水酸化物、Mのケイ酸塩、Mのアルミン酸塩、金属M、Mの塩化物、Mの硝酸塩、Mの硫酸塩およびMの有機塩からなる群より選ばれる少なくとも1種として含まれ、
     Siを含む化合物が、酸化ケイ素、Aのケイ酸塩、Mのケイ酸塩、アルミノケイ酸塩およびケイ素のアルコキシドからなる群より選ばれる少なくとも1種として含まれ、
     Alを含む化合物が、酸化アルミニウム、オキシ水酸化アルミニウム、アルミノケイ酸塩、塩化アルミニウム、硝酸アルミニウムおよび硫酸アルミニウムからなる群より選ばれる少なくとも1種として含まれる、
    原料調合物を加熱して、前記式(1)で表される組成を有する溶融物を得る工程である、請求項3に記載のケイ酸化合物の製造方法。
    The melting step is
    The compound containing element A is A carbonate, A bicarbonate, A hydroxide, A silicate, A aluminate, A nitrate, A chloride, A sulfate, At least one selected from the group consisting of A acetate and A oxalate (however, one or more of the one or more may each form a hydrate salt). ,
    The compound containing element M is M oxide, M hydroxide, M oxyhydroxide, M silicate, M aluminate, metal M, M chloride, M nitrate, M And at least one selected from the group consisting of an organic salt of M
    A compound containing Si is included as at least one selected from the group consisting of silicon oxide, A silicate, M silicate, aluminosilicate, and silicon alkoxide,
    A compound containing Al is included as at least one selected from the group consisting of aluminum oxide, aluminum oxyhydroxide, aluminosilicate, aluminum chloride, aluminum nitrate, and aluminum sulfate.
    The manufacturing method of the silicic acid compound of Claim 3 which is a process of heating a raw material formulation and obtaining the melt which has a composition represented by said Formula (1).
  5.  前記式(A)で表される組成を有する溶融物が、下式(3)で表される組成を有する溶融物であり、前記式(B)で表される組成を有するケイ酸化合物が、下式(4)で表される組成を有するケイ酸-ホウ酸-アルミン酸化合物である、請求項2に記載のケイ酸化合物の製造方法。
     A1+x+aSi(BAl1-c1-x3+x+d21   (3)
     A1+x+aSi(BAl1-c1-x3+x+d22   (4)
    (式中、A、M、xおよびbは前記と同じ意味を示し、aは-0.1≦a≦0.4であり、cは0<c<1であり、d21はa、bおよびMの価数Nに依存する数であり、加熱工程後にd22となる数であり、d22はa、bおよびMの価数Nに依存する数である。ただし、式(3)と式(4)において、a、b、c、およびxは独立した値を示す。)
    The melt having the composition represented by the formula (A) is a melt having the composition represented by the following formula (3), and the silicic acid compound having the composition represented by the formula (B) is: The method for producing a silicic acid compound according to claim 2, which is a silicic acid-boric acid-aluminic acid compound having a composition represented by the following formula (4).
    A 1 + x + a M b Si x (B c Al 1-c ) 1-x O 3 + x + d21 (3)
    A 1 + x + a M b Si x (B c Al 1-c ) 1-x O 3 + x + d22 (4)
    Wherein A, M, x and b have the same meaning as described above, a is −0.1 ≦ a ≦ 0.4, c is 0 <c <1, d21 is a, b and It is a number that depends on the valence N of M, and is a number that becomes d22 after the heating step, and d22 is a number that depends on the valence N of a, b, and M. However, the equations (3) and (4 ) A, b, c, and x are independent values.)
  6.  前記溶融工程が、
     元素Aを含む化合物が、Aの炭酸塩、Aの炭酸水素塩、Aの水酸化物、Aのケイ酸塩、Aのホウ酸塩、Aのアルミン酸塩、Aの硝酸塩、Aの塩化物、Aの硫酸塩、Aの酢酸塩およびAのシュウ酸塩からなる群より選ばれる少なくとも1種(ただし、該1種以上の一部または全部は、それぞれ、水和塩を形成していてもよい。)として含まれ、
     元素Mを含む化合物が、Mの酸化物、Mの水酸化物、Mのオキシ水酸化物、Mのケイ酸塩、Mのホウ酸塩、Mのアルミン酸塩、金属M、Mの塩化物、Mの硝酸塩、Mの硫酸塩およびMの有機塩からなる群より選ばれる少なくとも1種として含まれ、
     Siを含む化合物が、酸化ケイ素、Aのケイ酸塩、Mのケイ酸塩、ボロケイ酸塩、アルミノケイ酸塩およびケイ素のアルコキシドからなる群より選ばれる少なくとも1種として含まれ、
     Bを含む化合物が、酸化ホウ素、ホウ酸、Aのホウ酸塩、Mのホウ酸塩、ボロケイ酸塩およびホウ酸アルミニウムからなる群より選ばれる少なくとも1種として含まれ、
     Alを含む化合物が、酸化アルミニウム、オキシ水酸化アルミニウム、アルミノケイ酸塩、ホウ酸アルミニウム、塩化アルミニウム、硝酸アルミニウムおよび硫酸アルミニウムからなる群より選ばれる少なくとも1種として含まれる、
    原料調合物を加熱して、前記式(3)で表される組成を有する溶融物を得る工程である、請求項5に記載のケイ酸化合物の製造方法。
    The melting step is
    Compound containing element A is A carbonate, A bicarbonate, A hydroxide, A silicate, A borate, A aluminate, A nitrate, A chloride , At least one selected from the group consisting of A sulfate, A acetate, and A oxalate (however, one or more of the one or more may each form a hydrate salt) Included.)
    Compound containing element M is M oxide, M hydroxide, M oxyhydroxide, M silicate, M borate, M aluminate, metal M, M chloride And at least one selected from the group consisting of M nitrate, M sulfate and M organic salt,
    A compound containing Si is included as at least one selected from the group consisting of silicon oxide, A silicate, M silicate, borosilicate, aluminosilicate, and silicon alkoxide,
    A compound containing B is included as at least one selected from the group consisting of boron oxide, boric acid, A borate, M borate, borosilicate and aluminum borate,
    A compound containing Al is included as at least one selected from the group consisting of aluminum oxide, aluminum oxyhydroxide, aluminosilicate, aluminum borate, aluminum chloride, aluminum nitrate, and aluminum sulfate.
    The manufacturing method of the silicic acid compound of Claim 5 which is a process of heating a raw material formulation and obtaining the melt which has a composition represented by said Formula (3).
  7.  前記元素AがLiである、請求項1~6のいずれか一項に記載のケイ酸化合物の製造方法。 The method for producing a silicate compound according to any one of claims 1 to 6, wherein the element A is Li.
  8.  前記元素MがFeおよびMnからなる群より選ばれる少なくとも1種の元素である、請求項1~7のいずれか一項に記載のケイ酸化合物の製造方法。 The method for producing a silicate compound according to any one of claims 1 to 7, wherein the element M is at least one element selected from the group consisting of Fe and Mn.
  9.  前記式(1)で表される組成を有する溶融物が、下式(5A)で表される組成を有する溶融物であり、前記式(2)で表される組成を有するケイ酸-アルミン酸化合物が、下式(5)で表される組成を有するオリビン型結晶粒子を含む化合物である、請求項3に記載のケイ酸化合物の製造方法。
     Li1+x+a(FeMn1-ySiAl1-x3+x+d11     (5A)
     Li1+x+a(FeMn1-ySiAl1-x3+x+d12     (5)
    (式中、a、b、d11、d12およびxは前記と同じ意味を示し、yは0≦y≦1である。ただし、式(5A)と式(5)において、a、b、x、およびyは独立した値を示す。)
    The melt having the composition represented by the formula (1) is a melt having the composition represented by the following formula (5A), and the silicic acid-aluminic acid having the composition represented by the formula (2) The manufacturing method of the silicic acid compound of Claim 3 whose compound is a compound containing the olivine type | mold crystal particle which has a composition represented by the following Formula (5).
    Li 1 + x + a (Fe y Mn 1-y ) b Si x Al 1-x O 3 + x + d11 (5A)
    Li 1 + x + a (Fe y Mn 1-y ) b Si x Al 1-x O 3 + x + d12 (5)
    (Wherein, a, b, d11, d12 and x have the same meaning as described above, and y is 0 ≦ y ≦ 1, provided that in formulas (5A) and (5), a, b, x, And y are independent values.)
  10.  前記式(3)で表される組成を有する溶融物が、下式(6A)で表される組成を有する溶融物であり、前記式(4)で表される組成を有するケイ酸-ホウ酸-アルミン酸化合物が、下式(6)で表される組成を有するオリビン型結晶粒子を含む化合物である、請求項5に記載のケイ酸化合物の製造方法。
     Li1+x+a(FeMn1-ySi(BAl1-c1-x3+x+d21    (6A)
     Li1+x+a(FeMn1-ySi(BAl1-c1-x3+x+d22     (6)
    (式中、a、b、c、d21、d22およびxは前記と同じ意味を示し、yは0≦y≦1である。ただし、式(6A)と式(6)において、a、b、c、x、およびyは独立した値を示す。)
    The melt having the composition represented by the formula (3) is a melt having the composition represented by the following formula (6A), and the silicic acid-boric acid having the composition represented by the formula (4) The method for producing a silicate compound according to claim 5, wherein the aluminate compound is a compound containing olivine type crystal particles having a composition represented by the following formula (6).
    Li 1 + x + a (Fe y Mn 1-y) b Si x (B c Al 1-c) 1-x O 3 + x + d21 (6A)
    Li 1 + x + a (Fe y Mn 1-y ) b Si x (B c Al 1-c ) 1-x O 3 + x + d22 (6)
    (In the formula, a, b, c, d21, d22 and x have the same meaning as described above, and y is 0 ≦ y ≦ 1, provided that in formula (6A) and formula (6), a, b, c, x, and y are independent values.)
  11.  前記冷却工程において、冷却速度を-10℃/秒~-1010℃/秒とする、請求項1~10のいずれか一項に記載のケイ酸化合物の製造方法。 The method for producing a silicate compound according to any one of claims 1 to 10, wherein in the cooling step, a cooling rate is set to -10 3 ° C / second to -10 10 ° C / second.
  12.  前記粉砕工程において、前記固化物に、有機化合物および炭素粉末からなる群より選択される少なくとも1種の炭素源を含ませ、かつ該炭素源中の炭素換算量(質量)の割合が、固化物の質量と、該炭素源中の炭素換算量(質量)との合計質量に対して0.1~20質量%である、請求項1~11のいずれか一項に記載のケイ酸化合物の製造方法。 In the pulverization step, the solidified product contains at least one carbon source selected from the group consisting of an organic compound and a carbon powder, and a ratio of a carbon conversion amount (mass) in the carbon source is a solidified product. The production of a silicate compound according to any one of claims 1 to 11, which is 0.1 to 20% by mass with respect to the total mass of the mass of the carbon and the carbon equivalent amount (mass) in the carbon source. Method.
  13.  前記加熱工程を500~1,000℃に加熱することにより行う、請求項1~12のいずれか一項に記載のケイ酸化合物の製造方法。 The method for producing a silicate compound according to any one of claims 1 to 12, wherein the heating step is performed by heating to 500 to 1,000 ° C.
  14.  請求項1~13のいずれか一項に記載の製造方法によってケイ酸化合物を得て、次に該ケイ酸化合物を二次電池用正極材料に用いて二次電池用正極を製造することを特徴とする二次電池用正極の製造方法。 A silicate compound is obtained by the production method according to any one of claims 1 to 13, and then the silicate compound is used as a cathode material for a secondary battery to produce a cathode for a secondary battery. A method for producing a positive electrode for a secondary battery.
  15.  請求項14に記載の製造方法で二次電池用正極を得て、次に、該二次電池用正極を用いて二次電池を製造することを特徴とする二次電池の製造方法。 A method for producing a secondary battery, comprising: obtaining a positive electrode for a secondary battery by the production method according to claim 14, and then producing a secondary battery using the positive electrode for the secondary battery.
  16.  下式(ii)で表される組成を有することを特徴とする、ケイ酸-アルミン酸化合物。
     ASiAl1-xf2     (ii)
    (式中、AはLi、NaおよびKからなる群より選ばれる少なくとも1種の元素であり、MはFe、Mn、CoおよびNiからなる群より選ばれる少なくとも1種の元素である。eは0.8<e<2.4であり、bは0.7≦b≦1.3であり、xは0.3≦x<1であり、f2はe、b、xおよびMの価数Nに依存する数である。)
    A silicic acid-aluminic acid compound having a composition represented by the following formula (ii):
    A e M b Si x Al 1 -x O f2 (ii)
    (Wherein A is at least one element selected from the group consisting of Li, Na and K, and M is at least one element selected from the group consisting of Fe, Mn, Co and Ni. E is 0.8 <e <2.4, b is 0.7 ≦ b ≦ 1.3, x is 0.3 ≦ x <1, and f2 is the valence of e, b, x and M The number depends on N.)
  17.  下式(iv)で表される組成を有することを特徴とする、ケイ酸-ホウ酸-アルミン酸化合物。
     ASi(BAl1-c1-xf2     (iv)
    (式中、AはLi、NaおよびKからなる群より選ばれる少なくとも1種の元素であり、MはFe、Mn、CoおよびNiからなる群より選ばれる少なくとも1種の元素である。eは0.8<e<2.4であり、bは0.7≦b≦1.3であり、xは0.3≦x<1であり、cは0<c<1であり、f2はe、b、xおよびMの価数Nに依存する数である。)
    A silicic acid-boric acid-aluminic acid compound having a composition represented by the following formula (iv):
    A e M b Si x (B c Al 1-c) 1-x O f2 (iv)
    (Wherein A is at least one element selected from the group consisting of Li, Na and K, and M is at least one element selected from the group consisting of Fe, Mn, Co and Ni. E is 0.8 <e <2.4, b is 0.7 ≦ b ≦ 1.3, x is 0.3 ≦ x <1, c is 0 <c <1, and f2 is (The number depends on the valence N of e, b, x and M.)
PCT/JP2011/076731 2010-11-19 2011-11-18 Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor WO2012067249A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012544334A JPWO2012067249A1 (en) 2010-11-19 2011-11-18 Silicic acid compound, positive electrode for secondary battery, secondary battery, and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-259360 2010-11-19
JP2010259360 2010-11-19

Publications (1)

Publication Number Publication Date
WO2012067249A1 true WO2012067249A1 (en) 2012-05-24

Family

ID=46084168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076731 WO2012067249A1 (en) 2010-11-19 2011-11-18 Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor

Country Status (2)

Country Link
JP (1) JPWO2012067249A1 (en)
WO (1) WO2012067249A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032251A (en) * 2011-08-03 2013-02-14 Taiheiyo Cement Corp Positive electrode active material for lithium ion battery and method of manufacturing the same
JP2014080318A (en) * 2012-10-16 2014-05-08 Sumitomo Metal Mining Co Ltd Lithium silicate compound, and lithium ion battery using the same
JP2014207157A (en) * 2013-04-15 2014-10-30 日本電気硝子株式会社 Positive electrode material for electricity storage device and method for producing the same
GB2568613A (en) * 2018-02-01 2019-05-22 Thermal Ceram Uk Ltd Energy storage device and ionic conducting composition for use therein
EP3716371A4 (en) * 2017-12-27 2021-01-20 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active substance for secondary battery, and secondary battery
US11264614B2 (en) 2018-02-01 2022-03-01 Thermal Ceramics Uk Limited Energy storage device and ionic conducting composition for use therein

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062911A (en) * 2004-08-26 2006-03-09 Shin Kobe Electric Mach Co Ltd Multiple oxide material and positive-electrode active material for lithium secondary battery
JP2008218303A (en) * 2007-03-07 2008-09-18 Kyushu Univ Manufacturing method of positive electrode active material for secondary battery
JP2008293661A (en) * 2007-05-22 2008-12-04 Nec Tokin Corp Positive electrode for lithium secondary battery, and lithium secondary battery using it
JP2010140901A (en) * 2008-12-09 2010-06-24 Samsung Sdi Co Ltd Anode active material for lithium secondary cell, method for manufacturing the same, and lithium secondary cell equipped with anode active material
WO2010089931A1 (en) * 2009-02-04 2010-08-12 独立行政法人産業技術総合研究所 Method for producing lithium silicate compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062911A (en) * 2004-08-26 2006-03-09 Shin Kobe Electric Mach Co Ltd Multiple oxide material and positive-electrode active material for lithium secondary battery
JP2008218303A (en) * 2007-03-07 2008-09-18 Kyushu Univ Manufacturing method of positive electrode active material for secondary battery
JP2008293661A (en) * 2007-05-22 2008-12-04 Nec Tokin Corp Positive electrode for lithium secondary battery, and lithium secondary battery using it
JP2010140901A (en) * 2008-12-09 2010-06-24 Samsung Sdi Co Ltd Anode active material for lithium secondary cell, method for manufacturing the same, and lithium secondary cell equipped with anode active material
WO2010089931A1 (en) * 2009-02-04 2010-08-12 独立行政法人産業技術総合研究所 Method for producing lithium silicate compound

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032251A (en) * 2011-08-03 2013-02-14 Taiheiyo Cement Corp Positive electrode active material for lithium ion battery and method of manufacturing the same
JP2014080318A (en) * 2012-10-16 2014-05-08 Sumitomo Metal Mining Co Ltd Lithium silicate compound, and lithium ion battery using the same
JP2014207157A (en) * 2013-04-15 2014-10-30 日本電気硝子株式会社 Positive electrode material for electricity storage device and method for producing the same
EP3716371A4 (en) * 2017-12-27 2021-01-20 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active substance for secondary battery, and secondary battery
GB2568613A (en) * 2018-02-01 2019-05-22 Thermal Ceram Uk Ltd Energy storage device and ionic conducting composition for use therein
GB2568613B (en) * 2018-02-01 2020-06-24 Thermal Ceram Uk Ltd Energy storage device and ionic conducting composition for use therein
US11264614B2 (en) 2018-02-01 2022-03-01 Thermal Ceramics Uk Limited Energy storage device and ionic conducting composition for use therein

Also Published As

Publication number Publication date
JPWO2012067249A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
WO2011162348A1 (en) Silicic acid compound, positive electrode for secondary cell, and method for producing secondary cell
WO2010114104A1 (en) Process for production of lithium iron phosphate particles and process for production of secondary battery
JP2014056722A (en) Phosphate compound, positive electrode material for secondary battery, and method for producing secondary battery
WO2011111628A1 (en) Phosphate compound, positive electrode for secondary battery and method for producing secondary battery
WO2011138964A1 (en) (silicic acid)-(phosphoric acid) compound, positive electrode for secondary battery, and process for production of secondary battery
WO2010150889A1 (en) Process for production of positive electrode material for secondary batteries, and positive electrode material for secondary batteries
WO2012133584A1 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
WO2012067249A1 (en) Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
WO2012133581A1 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
US20120217451A1 (en) Process for producing phosphate compound and method for producing secondary battery
WO2012057341A1 (en) Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
WO2012086722A1 (en) Silicic acid-vanadic acid compound, positive electrode for secondary battery, and manufacturing method for secondary battery
JP2013067543A (en) Silicate compound, positive electrode for secondary battery, and method for producing secondary battery
WO2012057340A1 (en) Silicate-phosphate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
JP2013047162A (en) Methods for production of silicic acid compound, positive electrode for secondary battery and secondary battery
WO2012067250A1 (en) Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
JP2013047161A (en) Silicate compound, positive electrode for secondary battery, and method for producing secondary battery
JP2012126589A (en) Method for producing fluorine-containing phosphoric acid compound, positive electrode for secondary battery, and secondary battery
JP2014055085A (en) Phosphate compound, cathode material for second battery, and method for producing second battery
WO2011138965A1 (en) (silicic acid)-(boric acid) compound, (silicic acid)-(boric acid)-(phosphoric acid) compound, positive electrode for secondary battery, and process for production of secondary battery
WO2013042780A1 (en) Production method for positive electrode material for secondary battery
WO2011099575A1 (en) Boric acid compound, positive electrode for secondary battery, and method for manufacturing secondary battery
JPWO2013042778A1 (en) Method for producing positive electrode material for secondary battery
JP2014056721A (en) Phosphate compound, positive electrode material for secondary battery, and method for producing secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012544334

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842387

Country of ref document: EP

Kind code of ref document: A1