WO2013042594A1 - Optical measurement device - Google Patents

Optical measurement device Download PDF

Info

Publication number
WO2013042594A1
WO2013042594A1 PCT/JP2012/073320 JP2012073320W WO2013042594A1 WO 2013042594 A1 WO2013042594 A1 WO 2013042594A1 JP 2012073320 W JP2012073320 W JP 2012073320W WO 2013042594 A1 WO2013042594 A1 WO 2013042594A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
optical
head
head unit
controller
Prior art date
Application number
PCT/JP2012/073320
Other languages
French (fr)
Japanese (ja)
Inventor
慎介 山川
賢一 的場
松井 優貴
浩二 嶋田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201280057337.5A priority Critical patent/CN103988046B/en
Publication of WO2013042594A1 publication Critical patent/WO2013042594A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object

Definitions

  • the present invention relates to an optical measurement apparatus that performs measurement on a measurement object using light, and more particularly to an optical measurement apparatus that includes an optical system that receives light from the measurement object in a head portion.
  • a confocal measurement device that measures the displacement of a measurement object using a confocal optical system has been developed as an optical measurement device that measures the displacement of the measurement object in a non-contact manner.
  • the confocal measurement device is specifically disclosed in US Pat. No. 4,585,349 (Patent Document 1).
  • the confocal measurement device disclosed in Patent Document 1 includes a chromatic aberration lens that causes chromatic aberration along the optical axis in light emitted from a light source (for example, a white light source) that emits light having a plurality of wavelengths.
  • the confocal measurement device disclosed in Patent Document 1 changes the wavelength of the light from the focused chromatic aberration lens according to the displacement of the measurement object, so that the wavelength of the light passing through the pinhole changes.
  • the displacement of the measurement object is measured by measuring the wavelength of the light passing through the pinhole.
  • the confocal measurement device disclosed in US Pat. No. 5,785,651 uses a diffractive lens instead of a chromatic aberration lens to chromatic aberration along the optical axis to light emitted from a light source. Is caused.
  • the confocal measurement device disclosed in Patent Document 2 uses optical fibers in the optical path from the light source to the collimating lens and in the optical path from the collimating lens to the spectroscope.
  • the head unit and the controller unit are adjusted in a one-to-one correspondence. Therefore, even when a plurality of optical measuring devices are provided, only the head unit is replaced. Thus, the layout of the apparatus cannot be changed, and it is necessary to move the head unit and the controller unit as a unit. For this reason, the optical measuring device as in Patent Document 2 has a problem that it takes time and effort when changing the layout of the device, compared to changing the layout of the device by exchanging only the head portion.
  • information for example, correction coefficients adjusted between the head unit and the controller unit is stored in a storage unit provided in the head unit, and when the head unit and the controller unit are connected, the information is read from the storage unit.
  • An optical measuring device has been developed. In this optical measuring device, since the adjusted information is stored in the head unit, it is not necessary to have a one-to-one correspondence between the head unit and the controller unit, and only the head unit is returned to the manufacturer when the head unit is damaged. It is possible to change the layout of the apparatus by exchanging only the head part.
  • the head part since it is necessary to provide a circuit part including a storage part in the head part, the head part becomes large. Furthermore, since information stored in the storage unit of the head unit needs to be read from the controller unit, electrical wiring other than the optical fiber is required between the head unit and the controller unit.
  • the present invention has been made in view of such circumstances, and optical measurement capable of providing compatibility so that the head portion can be replaced with respect to the controller portion without increasing the size of the head portion.
  • An object is to provide an apparatus.
  • the optical measuring device includes a head unit, a controller unit, an optical fiber, and a storage unit.
  • the head unit includes an optical system that receives light from the measurement object.
  • the controller unit includes an optical unit that converts light received by the head unit into an electrical signal, performs an operation on the electrical signal converted by the optical unit, and outputs a measurement result.
  • the optical fiber is an optical path that connects the head unit and the controller unit, and connects the optical system of the head unit and the optical unit of the controller unit.
  • the storage unit is associated with each individual head unit to be manufactured, and stores information necessary for calculation performed by the controller unit as individual information of the head unit.
  • the controller unit reads individual information from a storage unit that is physically independent of the controller unit, and performs an operation using the read individual information.
  • the storage unit has a storage medium that electrically stores the individual information, and the individual information can be read from the storage medium by connecting to the input terminal of the controller unit.
  • the storage unit has a storage medium for magnetically or optically storing the individual information, and the individual information can be read from the storage medium using a reading unit built in or connected to the controller unit. It becomes.
  • the storage unit is linked to the head unit or an optical fiber connected to the head unit.
  • the storage unit is built in the connector part of the optical fiber connected to the controller unit, and can be connected to the input terminal of the controller unit by an operation of connecting the connector unit to the controller unit.
  • the controller unit stores information necessary for calculation that can be used when individual information cannot be read from the storage unit.
  • the storage unit storing the individual information of the head unit is provided in association with each individual of the manufactured head unit, and the controller unit stores the storage unit. Since the individual information of the head unit is read from the unit and the calculation is performed using the individual information, highly accurate measurement can be performed even if the head unit is replaced.
  • FIG. 1 is a schematic diagram showing a configuration of an optical measuring device according to Embodiment 1 of the present invention.
  • the optical measurement apparatus shown in FIG. 1 is a confocal measurement apparatus 100 that measures the displacement of the measurement object 200 (change in the distance to the measurement object 200) using a confocal optical system.
  • Examples of the measurement object 200 measured by the confocal measurement device 100 include a cell gap of a liquid crystal display panel.
  • the confocal measurement apparatus 100 includes a head unit 10 having a confocal optical system, a controller unit 20 optically connected via an optical fiber 11, a monitor unit 30 that displays a signal output from the controller unit 20, and will be described later.
  • a storage unit 40 that stores individual information of the head unit 10 is provided.
  • the head unit 10 includes a diffractive lens 1 and an objective lens 2 disposed on the measurement object 200 side from the diffractive lens 1.
  • the focal length of the diffractive lens 1 is larger than the difference between the distance from the diffractive lens to the objective lens and the focal length of the objective lens.
  • the diffractive lens 1 is an optical element that causes chromatic aberration along the optical axis direction in light emitted from a light source (for example, a white light source) that emits light having a plurality of wavelengths described later.
  • the diffractive lens 1 is an amplitude type in which a fine undulation shape such as a kinoform shape or a binary shape (step shape, step shape) is periodically formed on the surface of the lens, or the light transmittance is periodically changed.
  • the zone plate is formed.
  • the configuration of the diffractive lens 1 is not limited to the configuration described above.
  • the objective lens 2 is an optical element that condenses the light generated by the diffractive lens 1 on the measurement object 200.
  • the confocal measurement apparatus 100 will be described below in the case where a white light source is used as a light source that emits light of a plurality of wavelengths.
  • the light emitted from the white light source is guided to the head unit 10 through the optical fiber 11.
  • the condensing lens 3 is provided between the optical fiber 11 and the diffractive lens 1 so that the numerical aperture of the optical fiber 11 and the numerical aperture of the diffractive lens 1 are adjusted.
  • the optical fiber 11 is an optical path from the head unit 10 to the controller unit 20 and also functions as a pinhole. That is, of the light collected by the objective lens 2, the light focused on the measurement object 200 is focused on the opening of the optical fiber 11. Therefore, the optical fiber 11 functions as a pinhole that blocks light having a wavelength that is not focused on the measurement target 200 and allows light focused on the measurement target 200 to pass. By using the optical fiber 11 in the optical path from the head unit 10 to the controller unit 20, a pinhole is not necessary.
  • the head unit 10 can be moved flexibly with respect to the controller unit 20.
  • the controller unit 20 includes a white LED (Light Emitting Diode) 21 that is a white light source, a branch optical fiber 22, a spectroscope 23, an image sensor 24, and a control circuit unit 25.
  • a white LED 21 Light Emitting Diode
  • the white LED 21 is used as the white light source, other light sources may be used as long as the light source can emit white light.
  • the branch optical fiber 22 has one optical fiber 22a on the side connected to the optical fiber 11 and two optical fibers 22b and 22c on the opposite side.
  • the optical fiber 22b is connected to the white LED 21 and the optical fiber 22c is connected to the spectroscope 23. Therefore, the branch optical fiber 22 can guide the light emitted from the white LED 21 to the optical fiber 11 and guide the light returning from the head unit 10 via the optical fiber 11 to the spectroscope 23.
  • the spectroscope 23 includes a concave mirror 23a that reflects light returning from the head unit 10, a diffraction grating 23b that receives light reflected by the concave mirror 23a, and a condenser lens 23c that collects light emitted from the diffraction grating 23b. ing.
  • the spectroscope 23 may be of any configuration such as a Zernitana type or a Littrow type as long as the light returning from the head unit 10 can be divided for each wavelength.
  • the image sensor 24 is a line CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device) that measures the intensity of light emitted from the spectroscope 23.
  • the spectroscope 23 and the imaging device 24 constitute a measurement unit that measures the intensity of light returning from the head unit 10 for each wavelength.
  • the measurement unit may be configured by a single image sensor 24 such as a CCD as long as the intensity of light returning from the head unit 10 can be measured for each wavelength.
  • the image sensor 24 may be a two-dimensional CMOS or a two-dimensional CCD.
  • the control circuit unit 25 includes a spectral control circuit unit 25a that controls operations of the white LED 21 and the image sensor 24, and a signal processing circuit unit 25b that processes a signal output from the image sensor 24. Furthermore, the control circuit unit 25 is electrically connected to the monitor unit 30 and an input interface 25c for inputting signals for adjusting the operations of the white LED 21 and the image sensor 24 and individual information of the head unit 10 described later. And an output interface 25d for outputting the result of processing the signal of the image sensor 24.
  • the controller unit 20 includes a spectroscope 23, an image sensor 24, and a spectral control circuit unit 25a of the control circuit unit 25, and constitutes an optical unit that converts light received by the head unit 10 into an electrical signal.
  • the signal processing circuit unit 25b of the control circuit unit 25 performs an operation on the electric signal converted by the optical unit and outputs a measurement result.
  • the monitor unit 30 displays the signal output from the image sensor 24.
  • the monitor unit 30 draws a spectrum waveform of light returning from the head unit 10 and displays that the distance of the measurement target 200 is, for example, 123.45 ⁇ m.
  • the storage unit 40 is associated with each individual head unit 10 to be manufactured, and stores information on the head unit 10 necessary for calculations performed by the controller unit 20 as individual information.
  • the individual information of the head unit 10 is a wavelength-distance correction coefficient described later.
  • FIG. 2 is a schematic diagram showing the configuration of the confocal optical system of the head unit 10 employed in the confocal measurement apparatus 100 according to Embodiment 1 of the present invention.
  • the configuration of the confocal optical system shown in FIG. 2 is a configuration in which the objective lens 2 is arranged closer to the measurement object 200 than the diffraction lens 1. That is, in the confocal measurement device 100, light emitted from the end of the optical fiber 11 is caused to cause chromatic aberration along the optical axis direction by the diffraction lens 1, and the light having the chromatic aberration is applied to the measurement object 200 by the objective lens 2. Condensate.
  • the distance from the end of the optical fiber 11 to the diffraction lens 1 is a
  • the distance from the diffraction lens 1 to the objective lens 2 is b
  • the objective lens 2 is objective.
  • c ( ⁇ ) be the distance to the point of focus by the lens 2.
  • the focal length at the light wavelength ⁇ 0 is f d0
  • the effective diameter is ⁇ a .
  • the distance a is equal to the focal length fd0 .
  • the objective lens 2 has a focal length of f o and an effective diameter of ⁇ b ( ⁇ ).
  • the distance a from the end of the optical fiber 11 to the diffractive lens 1 and the diffractive lens 1 to the diffractive lens 1 are determined using a general lens formula.
  • the relationship between the distance a g ( ⁇ ) (not shown) to the point where the light emitted from the optical fiber 11 is in focus and the focal length f d ( ⁇ ) of the diffractive lens 1, and from the diffractive lens 1 to the objective lens 2 Of the objective lens 2, the distance c ( ⁇ ) from the objective lens 2 to the focal point by the objective lens 2, and the focal length f o of the objective lens 2 can be expressed as (Equation 1).
  • the chromatic aberration of the objective lens 2 is assumed to be negligible.
  • the effective diameter ⁇ b ( ⁇ ) of the objective lens 2 can be expressed as (Equation 2) using the relationship of (Equation 1).
  • the distance c ( ⁇ ) from the objective lens 2 to the point focused by the objective lens 2 can be expressed as (Equation 3) using the relationship of (Equation 1) and (Equation 2).
  • the relationship between the distance c ( ⁇ ) from the objective lens 2 to the focal point by the objective lens 2 and the wavelength can be expressed as (Equation 3).
  • the confocal measurement apparatus 100 stores the wavelength-distance correction coefficient obtained by this adjustment in the storage unit 40 as individual information of the head unit 10 and associates it with the optical fiber 11 connected to the head unit 10. Even if the head unit 10 associated with the unit 40 is replaced, highly accurate measurement can be performed by using the individual information of the head unit 10.
  • FIG. 3 is a schematic diagram for explaining adjustment for obtaining a wavelength-distance correction coefficient in the confocal measurement apparatus 100 according to Embodiment 1 of the present invention.
  • the confocal measurement apparatus 100 moves the measurement object 200 placed on an automatic stage (not shown) within a measurable range, and determines the peak wavelength from the measurement waveform for each distance. Read.
  • ⁇ and ⁇ are wavelength-distance correction coefficients
  • the storage unit 40 stores the wavelength-distance correction coefficients.
  • the storage unit 40 includes a flash memory that is a non-volatile memory, a control circuit that stores and reads information in and from the flash memory, and an interface that inputs and outputs information. Then, the storage unit 40 connects the interface to the input interface 25c of the controller unit 20 (for example, by fitting the connectors together), so that the information on the wavelength-distance correction coefficient obtained by the adjustment is electrically stored in the flash memory. It can be stored and read.
  • the confocal measurement device 100 associates the storage unit 40 storing the wavelength-distance correction coefficient information with the head unit 10 so that the head unit 10 is associated with the attached head unit 10 when the head unit 10 is installed.
  • the wavelength-distance correction coefficient can be read from the storage unit 40 by the controller unit 20.
  • the confocal measurement device 100 performs a predetermined calculation in the signal processing circuit unit 25b using the read wavelength-distance correction coefficient, and thus takes into account individual differences in the optical system of the attached head unit 10; The displacement of the measurement object 200 can be measured with high accuracy.
  • the storage unit 40 is not limited to a nonvolatile memory as long as it can electrically store a wavelength-distance correction coefficient.
  • the controller unit 20 is not limited to the case where the wavelength-distance correction coefficient is read out by directly connecting to the storage unit 40 via a connector.
  • the controller unit 20 is connected to the storage unit 40 in a non-contact manner via radio waves. Then, the wavelength-distance correction coefficient may be read out.
  • the storage unit 40 is associated with the optical fiber 11 connected to the head unit 10 with a string, thereby associating the storage unit 40 with the head unit 10.
  • the confocal measurement device 100 according to the present invention is not limited to this.
  • the head unit 10 and the storage unit 40 are related by directly tying the storage unit 40 to the head unit 10 with a string. Also good.
  • FIG. 4 is a schematic diagram for explaining another configuration relating the head unit 10 and the storage unit 40 in the confocal measurement apparatus 100 according to Embodiment 1 of the present invention.
  • the optical fiber 11 connected to the head unit 10 incorporates a storage unit 40 in the connector unit 12 connected to the controller unit 20, and the connector unit 12 is parallel to the terminal 13 of the optical fiber 11.
  • a terminal 40a of the storage unit 40 is provided.
  • the input interface 25 c of the controller unit 20 is provided with an input terminal 25 c 1 that fits with the terminal 13 of the optical fiber 11 and an input terminal 25 c 2 that fits with the terminal 40 a of the storage unit 40.
  • the head part 10 is optically connected to the controller part 20, and the storage part 40 is electrically connected to the controller part 20. Can be connected. Therefore, the confocal measurement apparatus 100 shown in FIG. 4 can attach the head unit 10 without being aware of the operation of reading the wavelength-distance correction coefficient stored in the storage unit 40 by the user into the controller unit 20. it can.
  • the relationship between the head unit 10 and the storage unit 40 is not necessarily physically linked to the head unit 10 and the storage unit 40, and the same number as the serial number attached to the head unit 10 is stored. You may affix on the part 40. FIG.
  • the confocal measurement apparatus 100 As described above, the confocal measurement apparatus 100 according to Embodiment 1 of the present invention relates the storage unit 40 storing the wavelength-distance correction coefficient to each individual head unit 10 to be manufactured. Since the controller unit 20 reads the wavelength-distance correction coefficient from the storage unit 40 and performs calculation using the wavelength-distance correction coefficient, high-precision measurement can be performed even if the head unit 10 is replaced. it can.
  • the confocal measurement device 100 according to the first embodiment of the present invention is compatible with the controller unit 20 so that the head unit 10 can be replaced, so that the head unit 10 is damaged. Sometimes only the head 10 can be returned to the manufacturer.
  • the layout of the device can be changed by replacing only the head unit 10.
  • the confocal measurement apparatus 100 according to the first embodiment of the present invention does not include a storage unit that stores the wavelength-distance correction coefficient in the head unit 10, and thus the head unit 10 can be downsized.
  • the individual information of the head unit 10 to be stored in the storage unit 40 is not limited to the wavelength-distance correction coefficient, but device-related information such as the serial number, model, and model of the device, measurement center distance, and measurement possible Software-related information such as range information, measurement-related information such as the presence / absence of a workpiece-specific correspondence mode, presence / absence of a sensitivity adjustment mode, automatic light quantity control coefficient, and version information may be included.
  • the confocal measurement device 100 that measures the displacement of the measurement target 200 using the confocal optical system has been described.
  • the present invention is not limited to this. It is not something.
  • the optical measuring device according to the present invention is configured to connect the optical system of the head unit and the optical unit of the controller unit with an optical fiber, the film thickness meter for measuring the film thickness of the measuring object, the color of the measuring object, It may be a color sensor that measures the wavelength, a photometer that measures the amount of light of the measurement object, or the like.
  • FIG. 5 is a schematic diagram showing a configuration of an optical measurement apparatus according to Embodiment 2 of the present invention.
  • the optical measurement device shown in FIG. 5 is also a confocal measurement device 110, and is a diagram other than the configuration of the storage unit 41 that optically stores the individual information of the head unit 10 and the reader (reading unit) 27 of the storage unit 41. Since the configuration is the same as that of the confocal measurement apparatus 100 shown in FIG. 1, the same components are denoted by the same reference numerals, and detailed description thereof will not be repeated.
  • the storage unit 41 is a two-dimensional barcode that stores individual information of the head unit 10 such as a wavelength-distance correction coefficient.
  • the reader 27 built in the controller unit 20 is a barcode reader or camera that reads the two-dimensional barcode of the storage unit 41.
  • the tag describing the two-dimensional barcode in the storage unit 41 is tied to the optical fiber 11 connected to the head unit 10 with a string. Therefore, when the head unit 10 is attached to the controller unit 20, the confocal measurement device 110 stores the two-dimensional barcode described on the tag in the controller unit 20 by the reader 27 and stores it in the storage unit 41.
  • the wavelength-distance correction coefficient can be read out.
  • the storage unit 41 is not limited to a two-dimensional barcode, and may be a one-dimensional barcode, a numeric string, or the like as long as the reader 27 that optically reads information can read the information. Further, the storage unit 41 may be an optical disc (CD-ROM, DVD-ROM, etc.) that optically stores individual information of the head unit 10. When the storage unit 41 is an optical disk, the reader 27 is a drive device that reads individual information of the head unit 10 from the optical disk.
  • the relationship between the head unit 10 and the storage unit 40 is not limited to the case where the tag describing the two-dimensional barcode of the storage unit 41 is tied to the optical fiber 11 connected to the head unit 10 with a string.
  • a sticker describing the two-dimensional barcode of the storage unit 41 may be attached to the head unit 10.
  • the storage unit 41 may be a magnetic card, a magnetic disk, or the like in which individual information of the head unit 10 is magnetically stored.
  • the reader 27 is a reader or a drive device that reads individual information of the head unit 10 from the magnetic card or the magnetic disk.
  • the storage unit 41 may be a storage medium in which the individual information of the head unit 10 is stored by combining at least two methods among electrical, optical, and magnetic methods.
  • the storage unit 41 may be a magneto-optical disk that combines an optical method and a magnetic method, a magnetoresistive memory that combines an electric method and a magnetic method, or the like.
  • FIG. 6 is a schematic diagram showing another configuration of the optical measuring device according to the second embodiment of the present invention.
  • the optical measurement device shown in FIG. 6 is also a confocal measurement device 120, and is the same as the configuration of the confocal measurement device 110 shown in FIG. 5 except for the configuration of the reader 28 of the storage unit 41. A detailed description will not be repeated with reference numerals.
  • the reader 28 is provided outside the controller unit 20 and is connected via electrical wiring.
  • the storage unit 41 is a two-dimensional barcode that stores individual information of the head unit 10 such as a wavelength-distance correction coefficient
  • the reader 28 is connected to the controller unit 20 by wiring, and the storage unit 41
  • This is a bar code reader that reads the two-dimensional bar code.
  • the confocal measurement device 120 is a two-dimensional bar written on the tag by the reader 28 without bringing the tag (storage unit 41) connected to the optical fiber 11 connected to the head unit 10 with a string close to the controller unit 20.
  • the wavelength can be read and the wavelength-distance correction coefficient stored in the storage unit 41 can be read.
  • the confocal measurement device 120 connects the reader 28 suitable for the method to the controller unit 20 even if the storage unit 41 associated with the head unit 10 stores the individual information in a different method.
  • the wavelength-distance correction coefficient stored in the storage unit 41 can be read out.
  • the individual information of the head unit 10 is optically or magnetically stored in the storage unit 41, and the head is read by the corresponding reader 27.
  • the confocal measurement device 120 can increase the degree of freedom of the position where the storage unit 41 is provided and the storage method by providing the reader 28 outside the controller unit 20.
  • the confocal measuring device 120 is provided outside the controller unit 20 and stored in the reader 28 with respect to the storage unit 40 that electrically stores the individual information of the head unit 10 as shown in FIG. The individual information of the head unit 10 stored in the unit 40 can be read.
  • the optical measurement apparatus includes a controller unit that includes a physically independent spectroscope unit and a signal processing unit.
  • FIG. 7 is a schematic diagram showing the configuration of the optical measurement apparatus according to the third embodiment of the present invention.
  • the optical measuring device shown in FIG. 7 is also a confocal measuring device 130, except that the controller unit 20 including a physically independent spectroscope unit 71 and a signal processing unit 72 is provided, and the optical measuring device shown in FIG. Since the configuration is the same as that of the focus measuring apparatus 100, the same components are denoted by the same reference numerals and detailed description thereof will not be repeated.
  • the controller unit 20 includes a spectroscope unit 71, a signal processing unit 72, and a wiring 73 that electrically connects the spectroscope unit 71 and the signal processing unit 72.
  • the spectroscope unit 71 includes a white LED 21 that is a white light source, a branch optical fiber 22, a spectroscope 23, an image sensor 24, and a spectroscopic control circuit unit 25 a of a control circuit unit 25.
  • the signal processing unit 72 includes a signal processing circuit unit 25b of the control circuit unit 25, an input interface 25c, and an output interface 25d.
  • the confocal measurement device 130 is connected to the monitor unit 30 via the output interface 25d of the signal processing unit 72.
  • the wiring 73 is an electrical path for supplying the signal output from the image sensor 24 of the spectroscope unit 71 to the signal processing unit 72 and supplying necessary power from the signal processing unit 72 to the spectroscope unit 71. .
  • the confocal measurement device 130 can be configured to connect a plurality of spectrometer units 71 to one signal processing unit 72 by dividing the controller unit 20 into a spectrometer unit 71 and a signal processing unit 72. The whole can be reduced in size.
  • the confocal measurement device 130 reads the wavelength-distance correction coefficient stored in the storage unit 40 with the signal processing unit 72 of the controller unit 20, and the read wavelength-distance correction coefficient.
  • the signal processing circuit unit 25b By using the signal processing circuit unit 25b to perform a predetermined calculation, the displacement of the measurement target 200 can be measured with high accuracy in consideration of individual differences in the optical system of the attached head unit 10. it can.
  • the confocal measuring device 130 is provided with the signal processing circuit part 25b corresponding to the spectrometer part 71 to connect, and the memory
  • the wavelength-distance correction coefficient stored in is read out.
  • the confocal measurement device 130 may have a function of reading the wavelength-distance correction coefficient stored in the storage unit 40 on the spectroscope unit 71 side instead of the signal processing unit 72 side.
  • the confocal measurement device 130 may include a representative value holding unit 75 in the signal processing unit 72 as shown in FIG.
  • the representative value holding unit 75 stores information (representative value (default value) of the head unit 10) necessary for calculation that can be used when the individual information of the head unit 10 cannot be read from the storage unit 40. It is.
  • the representative value of the head unit 10 is a value obtained by averaging the individual differences of the optical system of the head unit 10, and the displacement of the measurement object 200 cannot be measured with high accuracy.
  • This is information (for example, wavelength-distance correction coefficient) of the head unit 10 for performing measurement.
  • the confocal measurement device 130 is provided with the representative value holding unit 75 so that the storage unit 40 associated with the head unit 10 is lost or the device for reading information from the storage unit 40 is broken. Even when the individual information of the head unit 10 cannot be read from the storage unit 40, the displacement of the measurement object 200 can be easily measured although it is not highly accurate.
  • the confocal measurement device 130 is provided with the representative value holding unit 75, so that the accuracy is not necessary and simple confirmation is performed, or the head unit 10 is stored in the storage unit 40 in the case of emergency treatment. It is possible to omit the work of reading the individual information. Specifically, in the case of performing a simple check without accuracy, or in the case of use as a first aid, sales promotion activities, simple testing, introduction, simple operation confirmation during installation, maintenance, head unit 10 There is a simple operation check at the time of replacement.
  • the representative value holding unit 75 is not limited to the case where the representative value holding unit 75 is provided in the confocal measurement device 130 shown in FIG. 7, but the confocal measurement device 100 shown in FIG. 1, the confocal measurement device 110 shown in FIG. You may provide in the confocal measurement apparatus 120 shown in FIG.
  • the confocal measurement device 130 increases the degree of freedom of the device configuration by dividing the controller unit 20 into the spectroscope unit 71 and the signal processing unit 72, and the entire apparatus. Can be miniaturized. Further, the confocal measurement device 130 according to the third embodiment of the present invention is provided with the representative value holding unit 75, so that the individual information of the head unit 10 cannot be read from the storage unit 40 easily. The displacement of the measurement object 200 can be measured.

Abstract

With an optical measurement device according to the present invention, a measurement is carried out on an object to be measured (200) using light, said optical measurement device comprising a head unit (10), a controller unit (20), an optical fiber (11), and a storage unit (40). In the optical measurement device according to the present invention, the head unit (10) and the controller unit (20) are connected with the optical fiber (11). The storage unit (40) stores information which is related to specific manufactured head units (10) and which is necessary to an operation which is carried out with the controller unit as specific information of the respective head units (10). The controller unit (20) reads out the specific information from the storage unit (40) which is physically independent from the controller unit (20), and carries out the operation using the read-out specific information.

Description

光学計測装置Optical measuring device
 本発明は、計測対象物に対して光を用いて計測を行なう光学計測装置に関し、特に、ヘッド部に計測対象物からの光を受光する光学系を含む光学計測装置に関する。 The present invention relates to an optical measurement apparatus that performs measurement on a measurement object using light, and more particularly to an optical measurement apparatus that includes an optical system that receives light from the measurement object in a head portion.
 近年、計測対象物に対して光を用いて計測を行なう光学計測装置が開発されている。たとえば、非接触で計測対象物の変位を計測する光学計測装置として、共焦点光学系を利用して計測対象物の変位を計測する共焦点計測装置が開発されている。共焦点計測装置は、具体的に米国特許第4585349号明細書(特許文献1)に開示されている。特許文献1に開示されている共焦点計測装置は、複数の波長の光を出射する光源(たとえば白色光源)から出射する光に、光軸に沿って色収差を生じさせる色収差レンズを備えている。特許文献1に開示されている共焦点計測装置は、計測対象物の変位に応じて、合焦する色収差レンズからの光の波長が異なることで、ピンホールを通過する光の波長が変化し、ピンホールを通過した光の波長を測定して計測対象物の変位を計測する。 In recent years, an optical measurement device that measures light on a measurement object using light has been developed. For example, a confocal measurement device that measures the displacement of a measurement object using a confocal optical system has been developed as an optical measurement device that measures the displacement of the measurement object in a non-contact manner. The confocal measurement device is specifically disclosed in US Pat. No. 4,585,349 (Patent Document 1). The confocal measurement device disclosed in Patent Document 1 includes a chromatic aberration lens that causes chromatic aberration along the optical axis in light emitted from a light source (for example, a white light source) that emits light having a plurality of wavelengths. The confocal measurement device disclosed in Patent Document 1 changes the wavelength of the light from the focused chromatic aberration lens according to the displacement of the measurement object, so that the wavelength of the light passing through the pinhole changes. The displacement of the measurement object is measured by measuring the wavelength of the light passing through the pinhole.
 また、米国特許第5785651号明細書(特許文献2)に開示してある共焦点計測装置は、色収差レンズに代えて、回折レンズを用いて、光源から出射する光に、光軸に沿って色収差を生じさせている。なお、特許文献2に開示してある共焦点計測装置は、光源からコリメートレンズまでの光路、およびコリメートレンズから分光器までの光路に光ファイバを用いている。 In addition, the confocal measurement device disclosed in US Pat. No. 5,785,651 (Patent Document 2) uses a diffractive lens instead of a chromatic aberration lens to chromatic aberration along the optical axis to light emitted from a light source. Is caused. Note that the confocal measurement device disclosed in Patent Document 2 uses optical fibers in the optical path from the light source to the collimating lens and in the optical path from the collimating lens to the spectroscope.
米国特許第4585349号明細書US Pat. No. 4,585,349 米国特許第5785651号明細書US Pat. No. 5,785,651
 特許文献2のようにコリメートレンズなどの光学系を含むヘッド部と、分光器などの光学ユニットを含むコントローラ部とを光ファイバで接続する光学計測装置では、ヘッド部の光学系の個体差が大きく、精度の高い計測を行なうためにはヘッド部とコントローラ部とを1対1対応で調整する必要があった。そのため、ヘッド部が破損したとき、特許文献2のような光学計測装置では、ヘッド部だけではなく、コントローラ部もあわせて製造メーカに返送し、修理したヘッド部とコントローラ部とを1対1対応で調整する必要があった。 In an optical measurement device in which a head unit including an optical system such as a collimator lens and a controller unit including an optical unit such as a spectroscope are connected with an optical fiber as in Patent Document 2, individual differences in the optical system of the head unit are large. In order to perform highly accurate measurement, it is necessary to adjust the head unit and the controller unit in a one-to-one correspondence. Therefore, when the head part is damaged, the optical measuring device as in Patent Document 2 returns not only the head part but also the controller part to the manufacturer, and the repaired head part and controller part have a one-to-one correspondence. It was necessary to adjust with.
 さらに、特許文献2のような光学計測装置では、ヘッド部とコントローラ部とが1対1対応で調整してあるので、複数の光学計測装置を有している場合でも、ヘッド部のみを交換して装置のレイアウトを変更することができず、ヘッド部とコントローラ部とを一体として移動する必要があった。そのため、特許文献2のような光学計測装置では、装置のレイアウトを変更するとき、ヘッド部のみを交換して装置のレイアウトを変更する場合に比べて手間がかかる問題があった。 Furthermore, in the optical measuring device as in Patent Document 2, the head unit and the controller unit are adjusted in a one-to-one correspondence. Therefore, even when a plurality of optical measuring devices are provided, only the head unit is replaced. Thus, the layout of the apparatus cannot be changed, and it is necessary to move the head unit and the controller unit as a unit. For this reason, the optical measuring device as in Patent Document 2 has a problem that it takes time and effort when changing the layout of the device, compared to changing the layout of the device by exchanging only the head portion.
 また、ヘッド部とコントローラ部とを調整した情報(たとえば補正係数など)をヘッド部に設けた記憶部に記憶しておき、ヘッド部とコントローラ部とを接続するときに、記憶部から情報を読出す光学計測装置が開発されている。この光学計測装置では、ヘッド部に調整した情報が記憶してあるので、ヘッド部とコントローラ部とを1対1対応させる必要がなく、ヘッド部が破損したときヘッド部のみ製造メーカに返送することができるとともに、ヘッド部のみを交換して装置のレイアウトを変更することが可能である。 Also, information (for example, correction coefficients) adjusted between the head unit and the controller unit is stored in a storage unit provided in the head unit, and when the head unit and the controller unit are connected, the information is read from the storage unit. An optical measuring device has been developed. In this optical measuring device, since the adjusted information is stored in the head unit, it is not necessary to have a one-to-one correspondence between the head unit and the controller unit, and only the head unit is returned to the manufacturer when the head unit is damaged. It is possible to change the layout of the apparatus by exchanging only the head part.
 しかし、この光学計測装置では、ヘッド部に記憶部を含む回路部を設ける必要があるため、ヘッド部が大型化する。さらに、ヘッド部の記憶部に記憶した情報をコントローラ部から読出す必要があるため、ヘッド部とコントローラ部との間に光ファイバ以外に電気的な配線が必要となる。 However, in this optical measuring device, since it is necessary to provide a circuit part including a storage part in the head part, the head part becomes large. Furthermore, since information stored in the storage unit of the head unit needs to be read from the controller unit, electrical wiring other than the optical fiber is required between the head unit and the controller unit.
 本発明は斯かる事情に鑑みてなされたものであり、ヘッド部を大型化させることなく、コントローラ部に対してヘッド部を交換することが可能なように互換性を持たせることができる光学計測装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and optical measurement capable of providing compatibility so that the head portion can be replaced with respect to the controller portion without increasing the size of the head portion. An object is to provide an apparatus.
 本発明に従った光学計測装置は、ヘッド部と、コントローラ部と、光ファイバと、記憶部とを備えている。ヘッド部は、計測対象物からの光を受光する光学系を含む。コントローラ部は、ヘッド部で受光した光を電気信号に変換する光学ユニットを含み、光学ユニットで変換した電気信号に対して演算を行ない、計測結果を出力する。光ファイバは、ヘッド部とコントローラ部とを接続し、ヘッド部の光学系とコントローラ部の光学ユニットとを繋ぐ光路となる。記憶部は、製造されるヘッド部のそれぞれの個体に対して関係付けられ、コントローラ部で行なう演算に必要な情報をヘッド部の個体情報として記憶する。コントローラ部は、コントローラ部に対して物理的に独立して存在する記憶部から個体情報を読出し、読出した個体情報を用いて演算を行なう。 The optical measuring device according to the present invention includes a head unit, a controller unit, an optical fiber, and a storage unit. The head unit includes an optical system that receives light from the measurement object. The controller unit includes an optical unit that converts light received by the head unit into an electrical signal, performs an operation on the electrical signal converted by the optical unit, and outputs a measurement result. The optical fiber is an optical path that connects the head unit and the controller unit, and connects the optical system of the head unit and the optical unit of the controller unit. The storage unit is associated with each individual head unit to be manufactured, and stores information necessary for calculation performed by the controller unit as individual information of the head unit. The controller unit reads individual information from a storage unit that is physically independent of the controller unit, and performs an operation using the read individual information.
 また、好ましくは、記憶部が、個体情報を電気的に記憶する記憶媒体を有し、コントローラ部の入力端子と接続することで、記憶媒体から個体情報を読出すことが可能となる。 Also preferably, the storage unit has a storage medium that electrically stores the individual information, and the individual information can be read from the storage medium by connecting to the input terminal of the controller unit.
 また、好ましくは、記憶部が、個体情報を磁気的または光学的に記憶する記憶媒体を有し、コントローラ部に内蔵または接続した読取部を用いて、記憶媒体から個体情報を読出すことが可能となる。 Preferably, the storage unit has a storage medium for magnetically or optically storing the individual information, and the individual information can be read from the storage medium using a reading unit built in or connected to the controller unit. It becomes.
 また、好ましくは、記憶部が、ヘッド部またはヘッド部に接続した光ファイバに結び付けてある。 Also preferably, the storage unit is linked to the head unit or an optical fiber connected to the head unit.
 また、好ましくは、記憶部が、コントローラ部に接続する光ファイバのコネクタ部に内蔵され、コネクタ部をコントローラ部に接続する操作により、コントローラ部の入力端子に接続することができる。 Also preferably, the storage unit is built in the connector part of the optical fiber connected to the controller unit, and can be connected to the input terminal of the controller unit by an operation of connecting the connector unit to the controller unit.
 また、好ましくは、コントローラ部が、記憶部から個体情報を読出すことができない場合に利用することができる演算に必要な情報を記憶してある。 Preferably, the controller unit stores information necessary for calculation that can be used when individual information cannot be read from the storage unit.
 上記構成によれば、本発明に係る光学計測装置は、ヘッド部の個体情報を記憶した記憶部を、製造されるヘッド部のそれぞれの個体に対して関係付けて設けてあり、コントローラ部が記憶部からヘッド部の個体情報を読出し、当該個体情報を用いて演算を行なうので、ヘッド部を交換しても精度の高い計測を行なうことができる。 According to the above configuration, in the optical measurement device according to the present invention, the storage unit storing the individual information of the head unit is provided in association with each individual of the manufactured head unit, and the controller unit stores the storage unit. Since the individual information of the head unit is read from the unit and the calculation is performed using the individual information, highly accurate measurement can be performed even if the head unit is replaced.
本発明の実施の形態1に係る光学計測装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the optical measuring device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る共焦点計測装置において採用されているヘッド部の共焦点光学系の構成を示す模式図である。It is a schematic diagram which shows the structure of the confocal optical system of the head part employ | adopted in the confocal measurement apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る共焦点計測装置において波長-距離補正係数を得るための調整を説明するための模式図である。It is a schematic diagram for demonstrating the adjustment for obtaining a wavelength-distance correction coefficient in the confocal measurement apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る共焦点計測装置において、ヘッド部と記憶部とを関係付ける別の構成を説明するための模式図である。In the confocal measurement apparatus which concerns on Embodiment 1 of this invention, it is a schematic diagram for demonstrating another structure which connects a head part and a memory | storage part. 本発明の実施の形態2に係る光学計測装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the optical measuring device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る光学計測装置の別の構成を示す模式図である。It is a schematic diagram which shows another structure of the optical measuring device which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る光学計測装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the optical measuring device which concerns on Embodiment 3 of this invention.
  以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る光学計測装置の構成を示す模式図である。図1に示す光学計測装置は、共焦点光学系を利用して計測対象物200の変位(計測対象物200までの距離の変化)を計測する共焦点計測装置100である。共焦点計測装置100で計測する計測対象物200には、たとえば液晶表示パネルのセルギャップなどがある。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram showing a configuration of an optical measuring device according to Embodiment 1 of the present invention. The optical measurement apparatus shown in FIG. 1 is a confocal measurement apparatus 100 that measures the displacement of the measurement object 200 (change in the distance to the measurement object 200) using a confocal optical system. Examples of the measurement object 200 measured by the confocal measurement device 100 include a cell gap of a liquid crystal display panel.
 共焦点計測装置100は、共焦点の光学系を有するヘッド部10、光ファイバ11を介して光学的に接続されたコントローラ部20、コントローラ部20から出力される信号を表示するモニタ部30、後述するヘッド部10の個体情報を記憶した記憶部40を備えている。 The confocal measurement apparatus 100 includes a head unit 10 having a confocal optical system, a controller unit 20 optically connected via an optical fiber 11, a monitor unit 30 that displays a signal output from the controller unit 20, and will be described later. A storage unit 40 that stores individual information of the head unit 10 is provided.
 ヘッド部10は、回折レンズ1、回折レンズ1より計測対象物200側に配置された対物レンズ2を備えている。回折レンズ1の焦点距離は、回折レンズから対物レンズまでの距離と、対物レンズの焦点距離との差より大きくしてある。 The head unit 10 includes a diffractive lens 1 and an objective lens 2 disposed on the measurement object 200 side from the diffractive lens 1. The focal length of the diffractive lens 1 is larger than the difference between the distance from the diffractive lens to the objective lens and the focal length of the objective lens.
 ここで、回折レンズ1は、後述する複数の波長の光を出射する光源(たとえば、白色光源)から出射する光に、光軸方向に沿って色収差を生じさせる光学素子である。回折レンズ1は、レンズの表面に、たとえばキノフォーム形状あるいはバイナリ形状(ステップ形状、階段形状)などの微細な起伏形状を周期的に形成するか、光の透過率を周期的に変更する振幅型のゾーンプレートを形成してある。なお、回折レンズ1の構成は、上記の記載の構成に限定されるものではない。 Here, the diffractive lens 1 is an optical element that causes chromatic aberration along the optical axis direction in light emitted from a light source (for example, a white light source) that emits light having a plurality of wavelengths described later. The diffractive lens 1 is an amplitude type in which a fine undulation shape such as a kinoform shape or a binary shape (step shape, step shape) is periodically formed on the surface of the lens, or the light transmittance is periodically changed. The zone plate is formed. The configuration of the diffractive lens 1 is not limited to the configuration described above.
 対物レンズ2は、回折レンズ1で色収差を生じさせた光を計測対象物200に集光する光学素子である。なお、共焦点計測装置100は、複数の波長の光を出射する光源に、白色光源を用いる場合について以下に説明する。 The objective lens 2 is an optical element that condenses the light generated by the diffractive lens 1 on the measurement object 200. The confocal measurement apparatus 100 will be described below in the case where a white light source is used as a light source that emits light of a plurality of wavelengths.
 白色光源から出射する光は、光ファイバ11を介してヘッド部10に導かれている。光ファイバ11から出射する光を、回折レンズ1で有効に利用するには、光ファイバ11の開口数(NA:numerical aperture)と回折レンズ1の開口数とを一致させる必要がある。そのため、光ファイバ11と回折レンズ1との間に集光レンズ3を設けて、光ファイバ11の開口数と回折レンズ1の開口数とが一致するように調整している。 The light emitted from the white light source is guided to the head unit 10 through the optical fiber 11. In order to effectively use the light emitted from the optical fiber 11 in the diffraction lens 1, it is necessary to make the numerical aperture (NA) of the optical fiber 11 and the numerical aperture of the diffraction lens 1 coincide. Therefore, the condensing lens 3 is provided between the optical fiber 11 and the diffractive lens 1 so that the numerical aperture of the optical fiber 11 and the numerical aperture of the diffractive lens 1 are adjusted.
 光ファイバ11は、ヘッド部10からコントローラ部20までの光路であるとともに、ピンホールとしても機能している。つまり、対物レンズ2で集光した光のうち、計測対象物200で合焦する光は、光ファイバ11の開口部で合焦することになる。そのため、光ファイバ11は、計測対象物200で合焦しない波長の光を遮光し、計測対象物200で合焦する光を通過させるピンホールとして機能することになる。ヘッド部10からコントローラ部20までの光路に光ファイバ11を用いることで、ピンホールが不要となる。 The optical fiber 11 is an optical path from the head unit 10 to the controller unit 20 and also functions as a pinhole. That is, of the light collected by the objective lens 2, the light focused on the measurement object 200 is focused on the opening of the optical fiber 11. Therefore, the optical fiber 11 functions as a pinhole that blocks light having a wavelength that is not focused on the measurement target 200 and allows light focused on the measurement target 200 to pass. By using the optical fiber 11 in the optical path from the head unit 10 to the controller unit 20, a pinhole is not necessary.
 共焦点計測装置100は、ヘッド部10からコントローラ部20までの光路に光ファイバ11を用いるので、ヘッド部10をコントローラ部20に対してフレキシブルに移動することが可能になる。 Since the confocal measurement device 100 uses the optical fiber 11 in the optical path from the head unit 10 to the controller unit 20, the head unit 10 can be moved flexibly with respect to the controller unit 20.
 コントローラ部20は、白色光源である白色LED(Light Emitting Diode)21、分岐光ファイバ22、分光器23、撮像素子24、制御回路部25を備えている。白色光源として白色LED21を用いているが、白色光を出射することができる光源であれば他の光源であってもよい。 The controller unit 20 includes a white LED (Light Emitting Diode) 21 that is a white light source, a branch optical fiber 22, a spectroscope 23, an image sensor 24, and a control circuit unit 25. Although the white LED 21 is used as the white light source, other light sources may be used as long as the light source can emit white light.
 分岐光ファイバ22は、光ファイバ11と接続する側に一本の光ファイバ22a、反対側に二本の光ファイバ22b、22cを有している。なお、光ファイバ22bは白色LED21に、光ファイバ22cは分光器23にそれぞれ接続してある。そのため、分岐光ファイバ22は、白色LED21から出射する光を光ファイバ11に導くとともに、光ファイバ11を介してヘッド部10から戻る光を分光器23に導くことができる。 The branch optical fiber 22 has one optical fiber 22a on the side connected to the optical fiber 11 and two optical fibers 22b and 22c on the opposite side. The optical fiber 22b is connected to the white LED 21 and the optical fiber 22c is connected to the spectroscope 23. Therefore, the branch optical fiber 22 can guide the light emitted from the white LED 21 to the optical fiber 11 and guide the light returning from the head unit 10 via the optical fiber 11 to the spectroscope 23.
 分光器23は、ヘッド部10から戻る光を反射する凹面ミラー23a、凹面ミラー23aで反射した光が入射する回折格子23b、回折格子23bから出射する光を集光する集光レンズ23cを有している。分光器23は、ヘッド部10から戻る光を波長ごとに分けることができれば、ツェルニターナ型、リトロー型などのいずれの構成であってもよい。 The spectroscope 23 includes a concave mirror 23a that reflects light returning from the head unit 10, a diffraction grating 23b that receives light reflected by the concave mirror 23a, and a condenser lens 23c that collects light emitted from the diffraction grating 23b. ing. The spectroscope 23 may be of any configuration such as a Zernitana type or a Littrow type as long as the light returning from the head unit 10 can be divided for each wavelength.
 撮像素子24は、分光器23から出射する光の強度を測定するラインCMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)である。ここで、共焦点計測装置100では、分光器23および撮像素子24で、ヘッド部10から戻る光の強度を波長ごとに測定する測定部を構成している。なお、測定部は、ヘッド部10から戻る光の強度を波長ごとに測定することができれば、CCDなどの撮像素子24の単体で構成してもよい。また、撮像素子24は、二次元のCMOSや二次元のCCDであってもよい。 The image sensor 24 is a line CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device) that measures the intensity of light emitted from the spectroscope 23. Here, in the confocal measurement device 100, the spectroscope 23 and the imaging device 24 constitute a measurement unit that measures the intensity of light returning from the head unit 10 for each wavelength. Note that the measurement unit may be configured by a single image sensor 24 such as a CCD as long as the intensity of light returning from the head unit 10 can be measured for each wavelength. Further, the image sensor 24 may be a two-dimensional CMOS or a two-dimensional CCD.
 制御回路部25は、白色LED21や撮像素子24などの動作を制御する分光制御回路部25aと、撮像素子24から出力された信号を処理する信号処理回路部25bとを有している。さらに、制御回路部25は、白色LED21や撮像素子24などの動作を調整するための信号や、後述するヘッド部10の個体情報を入力するための入力インターフェース25cと、モニタ部30と電気的に接続し、撮像素子24の信号を処理した結果を出力するための出力インターフェース25dとを有している。 The control circuit unit 25 includes a spectral control circuit unit 25a that controls operations of the white LED 21 and the image sensor 24, and a signal processing circuit unit 25b that processes a signal output from the image sensor 24. Furthermore, the control circuit unit 25 is electrically connected to the monitor unit 30 and an input interface 25c for inputting signals for adjusting the operations of the white LED 21 and the image sensor 24 and individual information of the head unit 10 described later. And an output interface 25d for outputting the result of processing the signal of the image sensor 24.
 なお、コントローラ部20は、分光器23、撮像素子24および制御回路部25の分光制御回路部25aで、ヘッド部10で受光した光を電気信号に変換する光学ユニットを構成している。制御回路部25の信号処理回路部25bは、光学ユニットで変換した電気信号に対して演算を行ない、計測結果を出力する。 The controller unit 20 includes a spectroscope 23, an image sensor 24, and a spectral control circuit unit 25a of the control circuit unit 25, and constitutes an optical unit that converts light received by the head unit 10 into an electrical signal. The signal processing circuit unit 25b of the control circuit unit 25 performs an operation on the electric signal converted by the optical unit and outputs a measurement result.
 モニタ部30は、撮像素子24が出力した信号を表示する。モニタ部30は、ヘッド部10から戻る光のスペクトル波形を描画し、計測対象物200の距離が、たとえば123.45μmであることを表示する。 The monitor unit 30 displays the signal output from the image sensor 24. The monitor unit 30 draws a spectrum waveform of light returning from the head unit 10 and displays that the distance of the measurement target 200 is, for example, 123.45 μm.
 記憶部40は、製造されるヘッド部10のそれぞれの個体に対して関係付けられ、コントローラ部20で行なう演算に必要なヘッド部10の情報を個体情報として記憶する。ここで、計測対象物200の変位を計測する共焦点計測装置100の場合、ヘッド部10の個体情報は、後述する波長-距離補正係数である。 The storage unit 40 is associated with each individual head unit 10 to be manufactured, and stores information on the head unit 10 necessary for calculations performed by the controller unit 20 as individual information. Here, in the case of the confocal measurement apparatus 100 that measures the displacement of the measurement object 200, the individual information of the head unit 10 is a wavelength-distance correction coefficient described later.
 次に、ヘッド部10の個体情報である波長-距離補正係数について説明する。図2は、本発明の実施の形態1に係る共焦点計測装置100において採用されているヘッド部10の共焦点光学系の構成を示す模式図である。図2に示す共焦点光学系の構成は、回折レンズ1より計測対象物200側に対物レンズ2を配置する構成である。つまり、共焦点計測装置100では、光ファイバ11の端部から出射する光を回折レンズ1で光軸方向に沿って色収差を生じさせ、色収差が生じた光を対物レンズ2で計測対象物200に集光する。 Next, the wavelength-distance correction coefficient that is individual information of the head unit 10 will be described. FIG. 2 is a schematic diagram showing the configuration of the confocal optical system of the head unit 10 employed in the confocal measurement apparatus 100 according to Embodiment 1 of the present invention. The configuration of the confocal optical system shown in FIG. 2 is a configuration in which the objective lens 2 is arranged closer to the measurement object 200 than the diffraction lens 1. That is, in the confocal measurement device 100, light emitted from the end of the optical fiber 11 is caused to cause chromatic aberration along the optical axis direction by the diffraction lens 1, and the light having the chromatic aberration is applied to the measurement object 200 by the objective lens 2. Condensate.
 まず、図2に示す共焦点計測装置100の光学系において、光ファイバ11の端部から回折レンズ1までの距離をa、回折レンズ1から対物レンズ2までの距離をb、対物レンズ2から対物レンズ2により合焦する点までの距離をc(λ)とする。さらに、回折レンズ1は、光の波長λのときの焦点距離をfd0とし、有効径をφとする。なお、距離aは、焦点距離fd0とは等しいものとする。対物レンズ2は、焦点距離をfとし、有効径をφ(λ)とする。 First, in the optical system of the confocal measurement device 100 shown in FIG. 2, the distance from the end of the optical fiber 11 to the diffraction lens 1 is a, the distance from the diffraction lens 1 to the objective lens 2 is b, and the objective lens 2 is objective. Let c (λ) be the distance to the point of focus by the lens 2. Further, in the diffractive lens 1, the focal length at the light wavelength λ 0 is f d0 and the effective diameter is φ a . Note that the distance a is equal to the focal length fd0 . The objective lens 2 has a focal length of f o and an effective diameter of φ b (λ).
 そして、図2に示す共焦点計測装置100の光学系において、一般的なレンズの公式を用いて、光ファイバ11の端部から回折レンズ1までの距離aと、回折レンズ1から回折レンズ1により光ファイバ11からの出射光が合焦する点まで距離a(λ)(図示せず)と、回折レンズ1の焦点距離f(λ)との関係、および回折レンズ1から対物レンズ2までの距離bと、対物レンズ2から対物レンズ2により合焦する点までの距離c(λ)と、対物レンズ2の焦点距離fとの関係を(式1)のように表すことができる。なお、対物レンズ2の色収差は無視できるものとしている。 Then, in the optical system of the confocal measurement apparatus 100 shown in FIG. 2, the distance a from the end of the optical fiber 11 to the diffractive lens 1 and the diffractive lens 1 to the diffractive lens 1 are determined using a general lens formula. The relationship between the distance a g (λ) (not shown) to the point where the light emitted from the optical fiber 11 is in focus and the focal length f d (λ) of the diffractive lens 1, and from the diffractive lens 1 to the objective lens 2 Of the objective lens 2, the distance c (λ) from the objective lens 2 to the focal point by the objective lens 2, and the focal length f o of the objective lens 2 can be expressed as (Equation 1). The chromatic aberration of the objective lens 2 is assumed to be negligible.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 さらに、対物レンズ2の有効径φ(λ)は、(式1)の関係を用いて、(式2)のように表わすことができる。 Furthermore, the effective diameter φ b (λ) of the objective lens 2 can be expressed as (Equation 2) using the relationship of (Equation 1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、対物レンズ2から対物レンズ2により合焦する点までの距離c(λ)は、(式1),(式2)の関係を用いて、(式3)のように表わすことができる。 Further, the distance c (λ) from the objective lens 2 to the point focused by the objective lens 2 can be expressed as (Equation 3) using the relationship of (Equation 1) and (Equation 2).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 理論的に、対物レンズ2から対物レンズ2により合焦する点までの距離c(λ)と波長との関係は(式3)のように表わすことができるが、ヘッド部10の光学系の個体差が大きく、精度の高い計測を行なうためにはヘッド部10とコントローラ部20とを1対1対応させて調整する必要があった。この調整によって得られる波長-距離補正係数を、ヘッド部10の個体情報として記憶部40に記憶し、ヘッド部10に接続した光ファイバ11に結び付けておくことで、共焦点計測装置100は、記憶部40を結び付けたヘッド部10を取替えても、ヘッド部10の個体情報を用いることで精度の高い計測を行なうことができる。 Theoretically, the relationship between the distance c (λ) from the objective lens 2 to the focal point by the objective lens 2 and the wavelength can be expressed as (Equation 3). In order to perform measurement with a large difference and high accuracy, it is necessary to adjust the head unit 10 and the controller unit 20 in a one-to-one correspondence. The confocal measurement apparatus 100 stores the wavelength-distance correction coefficient obtained by this adjustment in the storage unit 40 as individual information of the head unit 10 and associates it with the optical fiber 11 connected to the head unit 10. Even if the head unit 10 associated with the unit 40 is replaced, highly accurate measurement can be performed by using the individual information of the head unit 10.
 ここで、波長-距離補正係数を得るための調整について図を用いて具体的に説明する。図3は、本発明の実施の形態1に係る共焦点計測装置100において波長-距離補正係数を得るための調整を説明するための模式図である。 Here, the adjustment for obtaining the wavelength-distance correction coefficient will be specifically described with reference to the drawings. FIG. 3 is a schematic diagram for explaining adjustment for obtaining a wavelength-distance correction coefficient in the confocal measurement apparatus 100 according to Embodiment 1 of the present invention.
 まず、共焦点計測装置100は、図3(a)に示すように自動ステージ(図示せず)上に設置した計測対象物200を計測可能範囲内で移動させ、各距離に対する計測波形からピーク波長を読取る。計測波形から読取ったピーク波長に対する各距離の関係は、図3(b)のグラフのように表わすことができ、距離c(λ)と波長λとの関係式をc(λ)=αλ+βλn-1 +・・・と算出することができる。ここで、αおよびβが波長-距離補正係数であり、当該波長-距離補正係数を記憶部40に記憶させる。 First, as shown in FIG. 3A, the confocal measurement apparatus 100 moves the measurement object 200 placed on an automatic stage (not shown) within a measurable range, and determines the peak wavelength from the measurement waveform for each distance. Read. The relationship of each distance with respect to the peak wavelength read from the measurement waveform can be expressed as a graph of FIG. 3B, and the relational expression between the distance c (λ) and the wavelength λ is c (λ) = αλ n + βλ. n-1 +... can be calculated. Here, α and β are wavelength-distance correction coefficients, and the storage unit 40 stores the wavelength-distance correction coefficients.
 記憶部40は、図示しないが、不揮発性メモリであるフラッシュメモリと、当該フラッシュメモリへの情報の記憶、読出しを行なう制御回路と、情報の入出力を行なうインターフェースとを有している。そして、記憶部40は、インターフェースをコントローラ部20の入力インターフェース25cに接続する(たとえばコネクタ同士を嵌合する)ことで、調整によって得られた波長-距離補正係数の情報をフラッシュメモリに電気的に記憶させることや、読出すことができる。 Although not shown, the storage unit 40 includes a flash memory that is a non-volatile memory, a control circuit that stores and reads information in and from the flash memory, and an interface that inputs and outputs information. Then, the storage unit 40 connects the interface to the input interface 25c of the controller unit 20 (for example, by fitting the connectors together), so that the information on the wavelength-distance correction coefficient obtained by the adjustment is electrically stored in the flash memory. It can be stored and read.
 共焦点計測装置100は、波長-距離補正係数の情報を記憶した記憶部40をヘッド部10に関係付けておくことで、ヘッド部10を取付けた際に、取付けたヘッド部10に関係付けた記憶部40から波長-距離補正係数をコントローラ部20で読出すことができる。共焦点計測装置100は、読出した波長-距離補正係数を利用して信号処理回路部25bで予め定められた演算を行なうことで、取付けたヘッド部10の光学系の個体差を考慮して、計測対象物200の変位の計測を高い精度で行なうことができる。 The confocal measurement device 100 associates the storage unit 40 storing the wavelength-distance correction coefficient information with the head unit 10 so that the head unit 10 is associated with the attached head unit 10 when the head unit 10 is installed. The wavelength-distance correction coefficient can be read from the storage unit 40 by the controller unit 20. The confocal measurement device 100 performs a predetermined calculation in the signal processing circuit unit 25b using the read wavelength-distance correction coefficient, and thus takes into account individual differences in the optical system of the attached head unit 10; The displacement of the measurement object 200 can be measured with high accuracy.
 なお、記憶部40は、電気的に波長-距離補正係数を記憶することができる構成であれば不揮発性メモリに限定されない。また、コントローラ部20は、コネクタを介して記憶部40と直接接続して波長-距離補正係数を読出す場合に限定されるものではなく、たとえば電波を介して記憶部40と非接触で接続して波長-距離補正係数を読出してもよい。 Note that the storage unit 40 is not limited to a nonvolatile memory as long as it can electrically store a wavelength-distance correction coefficient. The controller unit 20 is not limited to the case where the wavelength-distance correction coefficient is read out by directly connecting to the storage unit 40 via a connector. For example, the controller unit 20 is connected to the storage unit 40 in a non-contact manner via radio waves. Then, the wavelength-distance correction coefficient may be read out.
 さらに、図1に示す共焦点計測装置100では、ヘッド部10に接続した光ファイバ11に記憶部40を紐で結び付けることで、ヘッド部10と記憶部40とを関係付けているが、本発明に係る共焦点計測装置100はこれに限定されない。たとえば、ヘッド部10に接続した光ファイバ11に記憶部40を紐で結び付けるのではなく、ヘッド部10に記憶部40を紐で直接結び付けることで、ヘッド部10と記憶部40とを関係付けてもよい。 Furthermore, in the confocal measurement apparatus 100 shown in FIG. 1, the storage unit 40 is associated with the optical fiber 11 connected to the head unit 10 with a string, thereby associating the storage unit 40 with the head unit 10. The confocal measurement device 100 according to the present invention is not limited to this. For example, instead of tying the storage unit 40 to the optical fiber 11 connected to the head unit 10 with a string, the head unit 10 and the storage unit 40 are related by directly tying the storage unit 40 to the head unit 10 with a string. Also good.
 また、図4は、本発明の実施の形態1に係る共焦点計測装置100において、ヘッド部10と記憶部40とを関係付ける別の構成を説明するための模式図である。図4に示すように、ヘッド部10に接続した光ファイバ11は、コントローラ部20に接続するコネクタ部12に記憶部40を内蔵し、当該コネクタ部12に光ファイバ11の端子13と平行して記憶部40の端子40aを設けてある。コントローラ部20の入力インターフェース25cには、光ファイバ11の端子13と嵌合する入力端子25c1、および記憶部40の端子40aと嵌合する入力端子25c2が設けてある。そのため、光ファイバ11のコネクタ部12を、コントローラ部20の入力インターフェース25cに差込むことで、ヘッド部10をコントローラ部20に光学的に接続するとともに、記憶部40をコントローラ部20に電気的に接続することができる。よって、図4に示す共焦点計測装置100は、使用者が記憶部40に記憶した波長-距離補正係数をコントローラ部20に読出す操作を意識することなく、ヘッド部10の取付けを行なうことができる。 FIG. 4 is a schematic diagram for explaining another configuration relating the head unit 10 and the storage unit 40 in the confocal measurement apparatus 100 according to Embodiment 1 of the present invention. As shown in FIG. 4, the optical fiber 11 connected to the head unit 10 incorporates a storage unit 40 in the connector unit 12 connected to the controller unit 20, and the connector unit 12 is parallel to the terminal 13 of the optical fiber 11. A terminal 40a of the storage unit 40 is provided. The input interface 25 c of the controller unit 20 is provided with an input terminal 25 c 1 that fits with the terminal 13 of the optical fiber 11 and an input terminal 25 c 2 that fits with the terminal 40 a of the storage unit 40. Therefore, by inserting the connector part 12 of the optical fiber 11 into the input interface 25c of the controller part 20, the head part 10 is optically connected to the controller part 20, and the storage part 40 is electrically connected to the controller part 20. Can be connected. Therefore, the confocal measurement apparatus 100 shown in FIG. 4 can attach the head unit 10 without being aware of the operation of reading the wavelength-distance correction coefficient stored in the storage unit 40 by the user into the controller unit 20. it can.
 さらに、ヘッド部10と記憶部40との関係付けは、必ずしも物理的にヘッド部10と記憶部40とが結び付いている必要はなく、ヘッド部10に貼り付けてあるシリアル番号と同じ番号が記憶部40に貼り付けてあってもよい。 Further, the relationship between the head unit 10 and the storage unit 40 is not necessarily physically linked to the head unit 10 and the storage unit 40, and the same number as the serial number attached to the head unit 10 is stored. You may affix on the part 40. FIG.
 以上のように、本発明の実施の形態1に係る共焦点計測装置100は、波長-距離補正係数を記憶した記憶部40を、製造されるヘッド部10のそれぞれの個体に対して関係付けて設けてあり、コントローラ部20が記憶部40から波長-距離補正係数を読出し、当該波長-距離補正係数を用いて演算を行なうので、ヘッド部10を交換しても精度の高い計測を行なうことができる。また、本発明の実施の形態1に係る共焦点計測装置100は、コントローラ部20に対してヘッド部10を交換することが可能なように互換性を持たせることで、ヘッド部10が破損したときにヘッド部10だけ製造メーカに返送することができる。さらに、複数の共焦点計測装置100を有している場合、ヘッド部10のみを交換して装置のレイアウトを変更することができる。なお、本発明の実施の形態1に係る共焦点計測装置100は、ヘッド部10に波長-距離補正係数を記憶する記憶部を設ける構成でないため、ヘッド部10を小型化することができる。 As described above, the confocal measurement apparatus 100 according to Embodiment 1 of the present invention relates the storage unit 40 storing the wavelength-distance correction coefficient to each individual head unit 10 to be manufactured. Since the controller unit 20 reads the wavelength-distance correction coefficient from the storage unit 40 and performs calculation using the wavelength-distance correction coefficient, high-precision measurement can be performed even if the head unit 10 is replaced. it can. In addition, the confocal measurement device 100 according to the first embodiment of the present invention is compatible with the controller unit 20 so that the head unit 10 can be replaced, so that the head unit 10 is damaged. Sometimes only the head 10 can be returned to the manufacturer. Furthermore, in the case of having a plurality of confocal measurement devices 100, the layout of the device can be changed by replacing only the head unit 10. Note that the confocal measurement apparatus 100 according to the first embodiment of the present invention does not include a storage unit that stores the wavelength-distance correction coefficient in the head unit 10, and thus the head unit 10 can be downsized.
 ここで、記憶部40に記憶させるヘッド部10の個体情報は、波長-距離補正係数に限定されるものではなく、装置のシリアル番号、型式、機種などの装置関連情報、計測中心距離、計測可能範囲、ワーク別対応モードの有無、感度調整モードの有無、自動光量制御係数などの計測関連情報、バージョン情報などのソフトウェア関連情報などを含んでもよい。 Here, the individual information of the head unit 10 to be stored in the storage unit 40 is not limited to the wavelength-distance correction coefficient, but device-related information such as the serial number, model, and model of the device, measurement center distance, and measurement possible Software-related information such as range information, measurement-related information such as the presence / absence of a workpiece-specific correspondence mode, presence / absence of a sensitivity adjustment mode, automatic light quantity control coefficient, and version information may be included.
 また、本発明の実施の形態1に係る光学計測装置では、共焦点光学系を利用して計測対象物200の変位を計測する共焦点計測装置100について説明したが、本発明はこれに限定されるものではない。本発明に係る光学計測装置は、ヘッド部の光学系とコントローラ部の光学ユニットとを光ファイバで繋ぐ構成であれば、計測対象物の膜厚を計測する膜厚計、計測対象物の色や波長を計測するカラーセンサ、計測対象物の光量を計測する光度計などであってもよい。 In the optical measurement device according to the first embodiment of the present invention, the confocal measurement device 100 that measures the displacement of the measurement target 200 using the confocal optical system has been described. However, the present invention is not limited to this. It is not something. As long as the optical measuring device according to the present invention is configured to connect the optical system of the head unit and the optical unit of the controller unit with an optical fiber, the film thickness meter for measuring the film thickness of the measuring object, the color of the measuring object, It may be a color sensor that measures the wavelength, a photometer that measures the amount of light of the measurement object, or the like.
  (実施の形態2)
 本発明の実施の形態2に係る光学計測装置では、ヘッド部の個体情報を電気的ではなく、光学的または磁気的に記憶させた記憶部の構成について説明する。図5は、本発明の実施の形態2に係る光学計測装置の構成を示す模式図である。図5に示す光学計測装置も共焦点計測装置110であり、ヘッド部10の個体情報を光学的に記憶させた記憶部41、および記憶部41の読取機(読取部)27の構成以外、図1に示した共焦点計測装置100の構成と同じであるため、同じ構成要素に同じ符号を付して詳細な説明を繰返さない。
(Embodiment 2)
In the optical measuring device according to the second embodiment of the present invention, a configuration of a storage unit in which individual information of the head unit is stored not optically but optically or magnetically will be described. FIG. 5 is a schematic diagram showing a configuration of an optical measurement apparatus according to Embodiment 2 of the present invention. The optical measurement device shown in FIG. 5 is also a confocal measurement device 110, and is a diagram other than the configuration of the storage unit 41 that optically stores the individual information of the head unit 10 and the reader (reading unit) 27 of the storage unit 41. Since the configuration is the same as that of the confocal measurement apparatus 100 shown in FIG. 1, the same components are denoted by the same reference numerals, and detailed description thereof will not be repeated.
 記憶部41は、波長-距離補正係数などのヘッド部10の個体情報を記憶した二次元バーコードである。コントローラ部20に内蔵した読取機27は、記憶部41の二次元バーコードを読取るバーコードリーダまたはカメラである。図5に示すように、共焦点計測装置110は、記憶部41の二次元バーコードを記載したタグを、ヘッド部10に接続した光ファイバ11に紐で結び付けてある。そのため、共焦点計測装置110は、ヘッド部10をコントローラ部20に取付けた際に、コントローラ部20でタグに記載された二次元バーコードを読取機27で読取ることにより、記憶部41に記憶した波長-距離補正係数を読出すことができる。 The storage unit 41 is a two-dimensional barcode that stores individual information of the head unit 10 such as a wavelength-distance correction coefficient. The reader 27 built in the controller unit 20 is a barcode reader or camera that reads the two-dimensional barcode of the storage unit 41. As shown in FIG. 5, in the confocal measurement device 110, the tag describing the two-dimensional barcode in the storage unit 41 is tied to the optical fiber 11 connected to the head unit 10 with a string. Therefore, when the head unit 10 is attached to the controller unit 20, the confocal measurement device 110 stores the two-dimensional barcode described on the tag in the controller unit 20 by the reader 27 and stores it in the storage unit 41. The wavelength-distance correction coefficient can be read out.
 なお、記憶部41は、二次元バーコードに限定されるものではなく、光学的に情報を読取る読取機27が読取ることができれば一次元バーコード、数字列などであってもよい。さらに、記憶部41は、光学的にヘッド部10の個体情報を記憶した光ディスク(CD-ROM、DVD-ROMなど)でもよい。なお、記憶部41が光ディスクの場合、読取機27は、光ディスクからヘッド部10の個体情報を読出すドライブ装置となる。 Note that the storage unit 41 is not limited to a two-dimensional barcode, and may be a one-dimensional barcode, a numeric string, or the like as long as the reader 27 that optically reads information can read the information. Further, the storage unit 41 may be an optical disc (CD-ROM, DVD-ROM, etc.) that optically stores individual information of the head unit 10. When the storage unit 41 is an optical disk, the reader 27 is a drive device that reads individual information of the head unit 10 from the optical disk.
 また、ヘッド部10と記憶部40との関係付けは、記憶部41の二次元バーコードを記載したタグを、ヘッド部10に接続した光ファイバ11に紐で結び付ける場合に限定されるものではなく、記憶部41の二次元バーコードを記載したシールをヘッド部10に貼り付けてもよい。 Further, the relationship between the head unit 10 and the storage unit 40 is not limited to the case where the tag describing the two-dimensional barcode of the storage unit 41 is tied to the optical fiber 11 connected to the head unit 10 with a string. Alternatively, a sticker describing the two-dimensional barcode of the storage unit 41 may be attached to the head unit 10.
 さらに、記憶部41は、ヘッド部10の個体情報を磁気的に記憶させた磁気カード、磁気ディスクなどであってもよい。なお、記憶部41が磁気カードまたは磁気ディスクの場合、読取機27は、磁気カードまたは磁気ディスクからヘッド部10の個体情報を読出すリーダまたはドライブ装置となる。記憶部41は、ヘッド部10の個体情報を、電気的、光学的および磁気的な方式のうち少なくとも2つの方式を組合わせて記憶させた記憶媒体であってもよい。たとえば、記憶部41は、光学的な方式と磁気的な方式とを組合わせた光磁気ディスクや電気的な方式と磁気的な方式とを組合わせた磁気抵抗メモリなどであってもよい。 Furthermore, the storage unit 41 may be a magnetic card, a magnetic disk, or the like in which individual information of the head unit 10 is magnetically stored. When the storage unit 41 is a magnetic card or a magnetic disk, the reader 27 is a reader or a drive device that reads individual information of the head unit 10 from the magnetic card or the magnetic disk. The storage unit 41 may be a storage medium in which the individual information of the head unit 10 is stored by combining at least two methods among electrical, optical, and magnetic methods. For example, the storage unit 41 may be a magneto-optical disk that combines an optical method and a magnetic method, a magnetoresistive memory that combines an electric method and a magnetic method, or the like.
 図6は、本発明の実施の形態2に係る光学計測装置の別の構成を示す模式図である。図6に示す光学計測装置も共焦点計測装置120であり、記憶部41の読取機28の構成以外、図5に示した共焦点計測装置110の構成と同じであるため、同じ構成要素に同じ符号を付して詳細な説明を繰返さない。 FIG. 6 is a schematic diagram showing another configuration of the optical measuring device according to the second embodiment of the present invention. The optical measurement device shown in FIG. 6 is also a confocal measurement device 120, and is the same as the configuration of the confocal measurement device 110 shown in FIG. 5 except for the configuration of the reader 28 of the storage unit 41. A detailed description will not be repeated with reference numerals.
 読取機28は、コントローラ部20の外部に設けられ、電気的な配線を介して接続してある。具体的に、記憶部41が、波長-距離補正係数などのヘッド部10の個体情報を記憶した二次元バーコードである場合、読取機28は、コントローラ部20に配線で接続され、記憶部41の二次元バーコードを読取るバーコードリーダである。共焦点計測装置120は、ヘッド部10に接続した光ファイバ11に紐で結び付けてあるタグ(記憶部41)を、コントローラ部20に近づけることなく、読取機28でタグに記載された二次元バーコードを読取り、記憶部41に記憶した波長-距離補正係数を読出すことができる。 The reader 28 is provided outside the controller unit 20 and is connected via electrical wiring. Specifically, when the storage unit 41 is a two-dimensional barcode that stores individual information of the head unit 10 such as a wavelength-distance correction coefficient, the reader 28 is connected to the controller unit 20 by wiring, and the storage unit 41 This is a bar code reader that reads the two-dimensional bar code. The confocal measurement device 120 is a two-dimensional bar written on the tag by the reader 28 without bringing the tag (storage unit 41) connected to the optical fiber 11 connected to the head unit 10 with a string close to the controller unit 20. The wavelength can be read and the wavelength-distance correction coefficient stored in the storage unit 41 can be read.
 また、共焦点計測装置120は、ヘッド部10に関係付けられた記憶部41が異なる方式で個体情報を記憶してあっても、方式にあった読取機28をコントローラ部20に接続することで、記憶部41に記憶した波長-距離補正係数を読出すことができる。 Further, the confocal measurement device 120 connects the reader 28 suitable for the method to the controller unit 20 even if the storage unit 41 associated with the head unit 10 stores the individual information in a different method. The wavelength-distance correction coefficient stored in the storage unit 41 can be read out.
 以上のように、本発明の実施の形態2に係る共焦点計測装置110,120では、ヘッド部10の個体情報を記憶部41に光学的または磁気的に記憶させ、対応する読取機27でヘッド部10の個体情報を読出すことで、ヘッド部10を交換しても精度の高い計測を行なうことができる。また、共焦点計測装置120は、コントローラ部20の外部に読取機28を設けることで、記憶部41の設ける位置や記憶させる方式の自由度を増すことができる。 As described above, in the confocal measurement devices 110 and 120 according to the second embodiment of the present invention, the individual information of the head unit 10 is optically or magnetically stored in the storage unit 41, and the head is read by the corresponding reader 27. By reading the individual information of the unit 10, highly accurate measurement can be performed even if the head unit 10 is replaced. In addition, the confocal measurement device 120 can increase the degree of freedom of the position where the storage unit 41 is provided and the storage method by providing the reader 28 outside the controller unit 20.
 なお、共焦点計測装置120は、図1に示すようなヘッド部10の個体情報を電気的に記憶させた記憶部40に対しても、コントローラ部20の外部に設けられ読取機28で、記憶部40に記憶したヘッド部10の個体情報を読出すことができる。 In addition, the confocal measuring device 120 is provided outside the controller unit 20 and stored in the reader 28 with respect to the storage unit 40 that electrically stores the individual information of the head unit 10 as shown in FIG. The individual information of the head unit 10 stored in the unit 40 can be read.
  (実施の形態3)
 本発明の実施の形態3に係る光学計測装置では、物理的に独立した分光器部と信号処理部とで構成されるコントローラ部を備えている。図7は、本発明の実施の形態3に係る光学計測装置の構成を示す模式図である。図7に示す光学計測装置も共焦点計測装置130であり、物理的に独立した分光器部71と信号処理部72とで構成されるコントローラ部20を備えている以外、図1に示した共焦点計測装置100の構成と同じであるため、同じ構成要素に同じ符号を付して詳細な説明を繰返さない。
(Embodiment 3)
The optical measurement apparatus according to Embodiment 3 of the present invention includes a controller unit that includes a physically independent spectroscope unit and a signal processing unit. FIG. 7 is a schematic diagram showing the configuration of the optical measurement apparatus according to the third embodiment of the present invention. The optical measuring device shown in FIG. 7 is also a confocal measuring device 130, except that the controller unit 20 including a physically independent spectroscope unit 71 and a signal processing unit 72 is provided, and the optical measuring device shown in FIG. Since the configuration is the same as that of the focus measuring apparatus 100, the same components are denoted by the same reference numerals and detailed description thereof will not be repeated.
 コントローラ部20は、分光器部71、信号処理部72、分光器部71と信号処理部72とを電気的に接続する配線73を備えている。分光器部71は、白色光源である白色LED21、分岐光ファイバ22、分光器23、撮像素子24、制御回路部25の分光制御回路部25aを備えている。信号処理部72は、制御回路部25の信号処理回路部25b、入力インターフェース25c、出力インターフェース25dを備えている。なお、図示していないが、共焦点計測装置130は、信号処理部72の出力インターフェース25dを介してモニタ部30に接続されている。 The controller unit 20 includes a spectroscope unit 71, a signal processing unit 72, and a wiring 73 that electrically connects the spectroscope unit 71 and the signal processing unit 72. The spectroscope unit 71 includes a white LED 21 that is a white light source, a branch optical fiber 22, a spectroscope 23, an image sensor 24, and a spectroscopic control circuit unit 25 a of a control circuit unit 25. The signal processing unit 72 includes a signal processing circuit unit 25b of the control circuit unit 25, an input interface 25c, and an output interface 25d. Although not shown, the confocal measurement device 130 is connected to the monitor unit 30 via the output interface 25d of the signal processing unit 72.
 配線73は、分光器部71の撮像素子24が出力した信号を信号処理部72に供給するとともに、信号処理部72から分光器部71へ必要な電力を供給するための電気的な経路である。 The wiring 73 is an electrical path for supplying the signal output from the image sensor 24 of the spectroscope unit 71 to the signal processing unit 72 and supplying necessary power from the signal processing unit 72 to the spectroscope unit 71. .
 共焦点計測装置130は、コントローラ部20を分光器部71、信号処理部72に分けることで、1つの信号処理部72に対して複数の分光器部71を接続すること構成が可能となり、装置全体を小型化することができる。 The confocal measurement device 130 can be configured to connect a plurality of spectrometer units 71 to one signal processing unit 72 by dividing the controller unit 20 into a spectrometer unit 71 and a signal processing unit 72. The whole can be reduced in size.
 また、共焦点計測装置130は、実施の形態1で説明したように、記憶部40に記憶した波長-距離補正係数をコントローラ部20の信号処理部72で読出し、読出した波長-距離補正係数を利用して信号処理回路部25bで予め定められた演算を行なうことで、取付けたヘッド部10の光学系の個体差を考慮して、計測対象物200の変位の計測を高い精度で行なうことができる。なお、共焦点計測装置130は、複数の分光器部71を接続する場合、接続する分光器部71に対応して信号処理回路部25bが設けられ、それぞれの信号処理回路部25bに記憶部40に記憶した波長-距離補正係数を読出す。もちろん、共焦点計測装置130は、記憶部40に記憶した波長-距離補正係数を読出す機能を、信号処理部72側でなく、分光器部71側に設けてもよい。 Further, as described in the first embodiment, the confocal measurement device 130 reads the wavelength-distance correction coefficient stored in the storage unit 40 with the signal processing unit 72 of the controller unit 20, and the read wavelength-distance correction coefficient. By using the signal processing circuit unit 25b to perform a predetermined calculation, the displacement of the measurement target 200 can be measured with high accuracy in consideration of individual differences in the optical system of the attached head unit 10. it can. In addition, when connecting the several spectrometer part 71, the confocal measuring device 130 is provided with the signal processing circuit part 25b corresponding to the spectrometer part 71 to connect, and the memory | storage part 40 is provided in each signal processing circuit part 25b. The wavelength-distance correction coefficient stored in is read out. Of course, the confocal measurement device 130 may have a function of reading the wavelength-distance correction coefficient stored in the storage unit 40 on the spectroscope unit 71 side instead of the signal processing unit 72 side.
 さらに、共焦点計測装置130は、図7に示すように信号処理部72に代表値保持部75を設けてもよい。代表値保持部75は、記憶部40からヘッド部10の個体情報を読出すことができない場合に利用することができる演算に必要な情報(ヘッド部10の代表値(デフォルト値))を記憶してある。 Further, the confocal measurement device 130 may include a representative value holding unit 75 in the signal processing unit 72 as shown in FIG. The representative value holding unit 75 stores information (representative value (default value) of the head unit 10) necessary for calculation that can be used when the individual information of the head unit 10 cannot be read from the storage unit 40. It is.
 ここで、ヘッド部10の代表値は、ヘッド部10の光学系の個体差を平均化して得られた値であり、計測対象物200の変位の計測を高い精度で行なうことができないが、暫定的に計測を行なうためのヘッド部10の情報(たとえば、波長-距離補正係数)である。 Here, the representative value of the head unit 10 is a value obtained by averaging the individual differences of the optical system of the head unit 10, and the displacement of the measurement object 200 cannot be measured with high accuracy. This is information (for example, wavelength-distance correction coefficient) of the head unit 10 for performing measurement.
 共焦点計測装置130は、代表値保持部75を設けておくことで、ヘッド部10に関係付けられた記憶部40を紛失した場合や、記憶部40から情報を読出す装置が壊れた場合など、記憶部40からヘッド部10の個体情報を読出すことができない場合であっても、高い精度ではないが簡易的に計測対象物200の変位を計測することができる。 The confocal measurement device 130 is provided with the representative value holding unit 75 so that the storage unit 40 associated with the head unit 10 is lost or the device for reading information from the storage unit 40 is broken. Even when the individual information of the head unit 10 cannot be read from the storage unit 40, the displacement of the measurement object 200 can be easily measured although it is not highly accurate.
 また、共焦点計測装置130は、代表値保持部75を設けておくことで、精度が不要で簡易的な確認を行なう場合や、応急処置的な使用の場合に、記憶部40からヘッド部10の個体情報を読出す作業を省略することができる。具体的に、精度が不要で簡易的な確認を行なう場合や、応急処置的な使用の場合には、販売促進活動や簡易のテスティング、導入、設置時の簡易動作確認、メンテナンス、ヘッド部10交換時の簡易動作確認などがある。 In addition, the confocal measurement device 130 is provided with the representative value holding unit 75, so that the accuracy is not necessary and simple confirmation is performed, or the head unit 10 is stored in the storage unit 40 in the case of emergency treatment. It is possible to omit the work of reading the individual information. Specifically, in the case of performing a simple check without accuracy, or in the case of use as a first aid, sales promotion activities, simple testing, introduction, simple operation confirmation during installation, maintenance, head unit 10 There is a simple operation check at the time of replacement.
 なお、代表値保持部75は、図7に示す共焦点計測装置130に設ける場合に限定されるものではなく、図1に示す共焦点計測装置100、図5に示す共焦点計測装置110および図6に示す共焦点計測装置120に設けてもよい。 The representative value holding unit 75 is not limited to the case where the representative value holding unit 75 is provided in the confocal measurement device 130 shown in FIG. 7, but the confocal measurement device 100 shown in FIG. 1, the confocal measurement device 110 shown in FIG. You may provide in the confocal measurement apparatus 120 shown in FIG.
 以上のように、本発明の実施の形態3に係る共焦点計測装置130は、コントローラ部20を分光器部71と、信号処理部72とに分けることで装置構成の自由度が増し、装置全体を小型化することができる。また、本発明の実施の形態3に係る共焦点計測装置130は、代表値保持部75を設けることで、記憶部40からヘッド部10の個体情報を読出すことができない場合でも、簡易的に計測対象物200の変位を計測することができる。 As described above, the confocal measurement device 130 according to Embodiment 3 of the present invention increases the degree of freedom of the device configuration by dividing the controller unit 20 into the spectroscope unit 71 and the signal processing unit 72, and the entire apparatus. Can be miniaturized. Further, the confocal measurement device 130 according to the third embodiment of the present invention is provided with the representative value holding unit 75, so that the individual information of the head unit 10 cannot be read from the storage unit 40 easily. The displacement of the measurement object 200 can be measured.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 回折レンズ、2 対物レンズ、3 集光レンズ、10 ヘッド部、11,22a,22b,22c 光ファイバ、12 コネクタ部、13,40a 端子、20 コントローラ部、22 分岐光ファイバ、23 分光器、23a 凹面ミラー、23b 回折格子、24 撮像素子、25 制御回路部、25a 分光制御回路部、25b 信号処理回路部、25c1,25c2 入力端子、25c 入力インターフェース、25d 出力インターフェース、27,28 読取機、30 モニタ部、40,41 記憶部、71 分光器部、72 信号処理部、73 配線、75 代表値保持部、100,110,120,130 共焦点計測装置、200 計測対象物。 1 diffractive lens, 2 objective lens, 3 condenser lens, 10 head part, 11, 22a, 22b, 22c optical fiber, 12 connector part, 13, 40a terminal, 20 controller part, 22 branch optical fiber, 23 spectroscope, 23a Concave mirror, 23b diffraction grating, 24 image sensor, 25 control circuit unit, 25a spectral control circuit unit, 25b signal processing circuit unit, 25c1, 25c2 input terminal, 25c input interface, 25d output interface, 27, 28 reader, 30 monitor Unit, 40, 41 storage unit, 71 spectroscope unit, 72 signal processing unit, 73 wiring, 75 representative value holding unit, 100, 110, 120, 130 confocal measurement device, 200 measurement object.

Claims (6)

  1.  計測対象物に対して光を用いて計測を行なう光学計測装置であって、
     前記計測対象物からの光を受光する光学系を含むヘッド部(10)と、
     前記ヘッド部(10)で受光した光を電気信号に変換する光学ユニットを含み、前記光学ユニットで変換した前記電気信号に対して演算を行ない、計測結果を出力するコントローラ部(20)と、
     前記ヘッド部(10)と前記コントローラ部(20)とを接続し、前記ヘッド部(10)の前記光学系と前記コントローラ部(20)の前記光学ユニットとを繋ぐ光路となる光ファイバ(11)と、
     製造される前記ヘッド部(10)のそれぞれの個体に対して関係付けられ、前記コントローラ部(20)で行なう前記演算に必要な情報を前記ヘッド部(10)の個体情報として記憶する記憶部(40,41)と
     を備え、前記コントローラ部(20)は、前記コントローラ部(20)に対して物理的に独立して存在する前記記憶部(40,41)から前記個体情報を読出し、読出した前記個体情報を用いて前記演算を行なう、光学計測装置。
    An optical measurement device that performs measurement on a measurement object using light,
    A head portion (10) including an optical system for receiving light from the measurement object;
    A controller unit (20) that includes an optical unit that converts light received by the head unit (10) into an electrical signal, performs an operation on the electrical signal converted by the optical unit, and outputs a measurement result;
    An optical fiber (11) serving as an optical path connecting the head unit (10) and the controller unit (20) and connecting the optical system of the head unit (10) and the optical unit of the controller unit (20). When,
    A storage unit that stores information necessary for the calculation performed by the controller unit (20) as individual information of the head unit (10), which is associated with each individual unit of the head unit (10) to be manufactured. 40, 41), and the controller unit (20) reads and reads the individual information from the storage unit (40, 41) that is physically independent of the controller unit (20). An optical measurement device that performs the calculation using the individual information.
  2.  前記記憶部(40,41)は、前記個体情報を電気的に記憶する記憶媒体を有し、前記コントローラ部(20)の入力端子(25c2)と接続することで、前記記憶媒体から前記個体情報を読出すことが可能となる、請求項1に記載の光学計測装置。 The storage unit (40, 41) has a storage medium for electrically storing the individual information, and is connected to the input terminal (25c2) of the controller unit (20), so that the individual information is stored from the storage medium. The optical measuring device according to claim 1, wherein the optical measuring device can be read out.
  3.  前記記憶部(40,41)は、前記個体情報を磁気的または光学的に記憶する記憶媒体を有し、前記コントローラ部(20)に内蔵または接続した読取部を用いて、前記記憶媒体から前記個体情報を読出すことが可能となる、請求項1に記載の光学計測装置。 The storage unit (40, 41) has a storage medium for magnetically or optically storing the individual information, and the reading unit built in or connected to the controller unit (20) is used to store the individual information from the storage medium. The optical measurement device according to claim 1, wherein individual information can be read.
  4.  前記記憶部(40,41)は、前記ヘッド部(10)または前記ヘッド部(10)に接続した前記光ファイバ(11)に結び付けてある、請求項2または請求項3に記載の光学計測装置。 The optical measurement device according to claim 2 or 3, wherein the storage unit (40, 41) is linked to the head unit (10) or the optical fiber (11) connected to the head unit (10). .
  5.  前記記憶部(40,41)は、前記コントローラ部(20)に接続する前記光ファイバ(11)のコネクタ部に内蔵され、前記コネクタ部を前記コントローラ部(20)に接続する操作により、前記コントローラ部(20)の前記入力端子(25c2)に接続することができる、請求項2に記載の光学計測装置。 The storage unit (40, 41) is built in a connector unit of the optical fiber (11) connected to the controller unit (20), and the controller unit is operated by connecting the connector unit to the controller unit (20). The optical measurement device according to claim 2, wherein the optical measurement device can be connected to the input terminal (25 c 2) of the unit (20).
  6.  前記コントローラ部(20)は、前記記憶部(40,41)から前記個体情報を読出すことができない場合に利用することができる前記演算に必要な情報を記憶してある、請求項1~請求項3のいずれか一項に記載の光学計測装置。 The controller unit (20) stores information necessary for the calculation that can be used when the individual information cannot be read from the storage unit (40, 41). Item 4. The optical measurement device according to any one of Items 3 to 3.
PCT/JP2012/073320 2011-09-22 2012-09-12 Optical measurement device WO2013042594A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280057337.5A CN103988046B (en) 2011-09-22 2012-09-12 Optical instrumentation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-207412 2011-09-22
JP2011207412A JP5870576B2 (en) 2011-09-22 2011-09-22 Optical measuring device

Publications (1)

Publication Number Publication Date
WO2013042594A1 true WO2013042594A1 (en) 2013-03-28

Family

ID=47914365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073320 WO2013042594A1 (en) 2011-09-22 2012-09-12 Optical measurement device

Country Status (4)

Country Link
JP (1) JP5870576B2 (en)
CN (1) CN103988046B (en)
TW (1) TWI463106B (en)
WO (1) WO2013042594A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737018B2 (en) * 2016-07-08 2020-08-05 オムロン株式会社 Optical measuring device
US10120196B2 (en) 2016-09-30 2018-11-06 National Taiwan University Of Science And Technology Optical device
JP6762221B2 (en) * 2016-12-19 2020-09-30 大塚電子株式会社 Optical characteristic measuring device and optical characteristic measuring method
JP6834623B2 (en) * 2017-03-13 2021-02-24 オムロン株式会社 Optical measuring device and adapter for optical measuring device
JP6819376B2 (en) * 2017-03-14 2021-01-27 オムロン株式会社 Displacement measuring device
JP7408265B2 (en) * 2017-06-13 2024-01-05 株式会社キーエンス confocal displacement meter
JP6939360B2 (en) * 2017-10-02 2021-09-22 オムロン株式会社 Confocal measuring device
DE102018130901A1 (en) * 2018-12-04 2020-06-04 Precitec Optronik Gmbh Optical measuring device
JP7296239B2 (en) * 2019-04-10 2023-06-22 オムロン株式会社 Optical measurement device, optical measurement method, and optical measurement program
JP2021047213A (en) * 2020-12-25 2021-03-25 オムロン株式会社 Displacement measurement device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073405A (en) * 1983-09-12 1985-04-25 バテル メモリアル インステイチユート Method and device for measuring position of surface element
JPH0318741A (en) * 1989-06-16 1991-01-28 Tokimec Inc Friction measuring instrument
JPH1030943A (en) * 1996-07-15 1998-02-03 Ckd Corp Sensor device, display device, and data writing device
JP2000207564A (en) * 1998-12-31 2000-07-28 Eastman Kodak Co Method for detecting subject of image
JP2001021730A (en) * 1999-07-07 2001-01-26 Showa Electric Wire & Cable Co Ltd Optical cable laying related information control method
JP2006145467A (en) * 2004-11-24 2006-06-08 Mitsutoyo Corp Repulsion type portable hardness meter
JP2008105233A (en) * 2006-10-24 2008-05-08 Konica Minolta Business Technologies Inc Image forming apparatus, method for forming image, image forming program, and toner unit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133764A (en) * 1995-11-08 1997-05-20 Nikon Corp Range finder
DE10211070A1 (en) * 2002-03-13 2003-09-25 Gurny Broesch Andrea Device for measuring a measurement object
TWI258000B (en) * 2004-08-05 2006-07-11 Univ Nat Taipei Technology Portable optical 3-D surface profilometer and method for same
US7440097B2 (en) * 2006-06-27 2008-10-21 General Electric Company Laser plasma spectroscopy apparatus and method for in situ depth profiling
US7876456B2 (en) * 2009-05-11 2011-01-25 Mitutoyo Corporation Intensity compensation for interchangeable chromatic point sensor components
JP2010266407A (en) * 2009-05-18 2010-11-25 Disco Abrasive Syst Ltd Height detector
CN201622061U (en) * 2009-12-31 2010-11-03 比亚迪股份有限公司 System for measuring surface size of product
CN101833018B (en) * 2010-05-21 2013-05-22 清华大学 Scanning probe surface measurement system and measurement method based on optical fiber sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073405A (en) * 1983-09-12 1985-04-25 バテル メモリアル インステイチユート Method and device for measuring position of surface element
JPH0318741A (en) * 1989-06-16 1991-01-28 Tokimec Inc Friction measuring instrument
JPH1030943A (en) * 1996-07-15 1998-02-03 Ckd Corp Sensor device, display device, and data writing device
JP2000207564A (en) * 1998-12-31 2000-07-28 Eastman Kodak Co Method for detecting subject of image
JP2001021730A (en) * 1999-07-07 2001-01-26 Showa Electric Wire & Cable Co Ltd Optical cable laying related information control method
JP2006145467A (en) * 2004-11-24 2006-06-08 Mitsutoyo Corp Repulsion type portable hardness meter
JP2008105233A (en) * 2006-10-24 2008-05-08 Konica Minolta Business Technologies Inc Image forming apparatus, method for forming image, image forming program, and toner unit

Also Published As

Publication number Publication date
JP2013068523A (en) 2013-04-18
CN103988046B (en) 2017-03-08
CN103988046A (en) 2014-08-13
TWI463106B (en) 2014-12-01
TW201326734A (en) 2013-07-01
JP5870576B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5870576B2 (en) Optical measuring device
TWI452256B (en) Confocal measuring device
JP6972273B2 (en) Confocal displacement meter
JP6779234B2 (en) Confocal displacement meter
JP5966982B2 (en) Confocal measuring device
JP2004069314A (en) Focal distance measuring instrument
US20060114459A1 (en) Optical fiber type spectroscope and spectroscope system equipped therewith
JP6615604B2 (en) Confocal displacement meter
JP6331499B2 (en) Optical axis adjustment method for confocal measurement apparatus, confocal measurement system, program, and recording medium recording program
JP5834979B2 (en) Confocal measuring device
JP6654893B2 (en) Confocal displacement meter
JP2014202642A (en) Surface interval measurement device and surface interval measurement method for optical element
JP2018151282A (en) Displacement measurement device
JP2017116509A (en) Confocal displacement meter
Pügner et al. Realization of a hybrid-integrated MEMS scanning grating spectrometer
JP2016166870A (en) Chromatic confocal sensor and measurement method
JP6834623B2 (en) Optical measuring device and adapter for optical measuring device
JP6875489B2 (en) Confocal displacement meter
US20030090814A1 (en) Compact telephoto lens for grating scale position measuring system
JP2012073133A (en) Observation device and observation method
JP2006112903A (en) Ultraviolet light source unit, interferometer using it, and adjusting method of interferometer
JP2015129674A (en) spectral transmittance measurement device
Lim et al. Arbitrary spectrum generation engine using digital micromirror device
NZ598840A (en) A device with that emits radiation at two wavelengths and has a selector that can set a ratio of intensities for the wavelengths of radiation for editing an optical disc

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833503

Country of ref document: EP

Kind code of ref document: A1