WO2013042278A1 - Coating composition and coated article - Google Patents

Coating composition and coated article Download PDF

Info

Publication number
WO2013042278A1
WO2013042278A1 PCT/JP2011/076875 JP2011076875W WO2013042278A1 WO 2013042278 A1 WO2013042278 A1 WO 2013042278A1 JP 2011076875 W JP2011076875 W JP 2011076875W WO 2013042278 A1 WO2013042278 A1 WO 2013042278A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
group
coating
film
mass
Prior art date
Application number
PCT/JP2011/076875
Other languages
French (fr)
Japanese (ja)
Inventor
福崎 僚三
和彦 金内
田丸 博
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013042278A1 publication Critical patent/WO2013042278A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/10Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only

Definitions

  • the present invention relates to a coating composition used for forming an antireflection layer and the like, and a coated product provided with a film formed from a cured product of this coating composition.
  • the coating composition described in Patent Document 1 includes the following (A) hydrolyzable organosilane, the following (B) hydrolyzable organosilane and silica-based metal oxide particles in a mixed state.
  • A and a hydrolyzable organosilane of the following (B), a hydrolyzable organosilane of the following (C) and a hydrolyzable organosilane of the following (C): And a polymerized second hydrolyzate having a fluorine-substituted alkyl group at one end.
  • B A hydrolyzable organosilane having a water repellent group in the straight chain portion and having two or more silica atoms bonded to an alkoxy group in the molecule.
  • C Hydrolyzable organosilane having a fluorine-substituted alkyl group.
  • an antireflection layer having high antireflection properties and excellent chemical resistance and antifouling properties can be formed.
  • the present invention has been made in view of the above reasons, and can form a coating film having high weather resistance and alkali resistance and sufficiently high transparency, and is particularly suitable for forming an antireflection layer. It is an object to provide a coating composition.
  • Another object of the present invention is to provide a coated product provided with a film formed from a cured product of this coating composition.
  • the coating composition according to the present invention contains a curable resin and silica-based metal oxide particles,
  • the curable resin consists of at least one of a hydrolytic condensable compound and a partial hydrolyzate thereof,
  • the molecule of the hydrolytic condensable compound has an organic chain and a hydrolyzable silyl group bonded to each of both ends of the organic chain,
  • the organic chain is composed of one or more groups selected from an alkylene group that may have a substituent, a fluoroalkylene group that may have a substituent, and an ether group, and the organic chain is the alkylene At least one of a group and the fluoroalkylene group.
  • the hydrolytic condensable compound includes a compound represented by the following structural formula (1).
  • R 1 represents an organic group, and when a plurality of R 1 are present in one molecule, these may be the same as or different from each other.
  • X represents a hydrolyzable group, and a plurality of X in one molecule may be the same as or different from each other.
  • p represents an integer of 1 to 10.
  • q represents an integer of 0 to 2.
  • r represents an integer of 0-2.
  • the coated product according to the present invention includes a film formed from the coating composition.
  • the film When a film is formed from the coating composition according to the present invention, the film exhibits sufficiently high weather resistance and alkali resistance while having sufficiently high transparency.
  • the coating composition according to this embodiment contains a curable resin and silica-based metal oxide particles.
  • the curable resin is a resin component that is cured when a film is formed from the coating composition, and a cured product of the curable resin constitutes a matrix of the film.
  • the curable resin is composed of at least one of a hydrolytic condensable compound and a partial hydrolytic condensate thereof.
  • the molecule of the hydrolytic condensable compound has an organic chain and a hydrolyzable silyl group bonded to each of both ends of the organic chain.
  • the organic chain is composed of one or more groups selected from an alkylene group which may have a substituent, a fluoroalkylene group which may have a substituent, and an ether group. Furthermore, the organic chain has at least one of an alkylene group which may have a substituent and a fluoroalkylene group which may have a substituent.
  • an ether group is a divalent group consisting of only oxygen, and the ether group is bonded to a carbon atom in an alkylene group or a fluoroalkylene group.
  • the coating composition contains such a curable resin
  • high transparency of the film formed from the coating composition is maintained, the mechanical strength of the film is improved, and the film has high weather resistance.
  • Alkali resistance and salt water resistance are imparted. This is presumably because the organic chain as described above is present in the curable resin, so that the ratio of siloxane bonds in the coating is reduced. That is, it is presumed that the durability of the coating is improved because the ratio of siloxane bonds that are easily broken by an attack from the outside decreases.
  • hydrolyzable silyl group is represented, for example, by the following formula (2).
  • R 1 m (m is an integer of 0 to 2)
  • X in Formula (2) represents a hydrolyzable group, and when a plurality of Xs are present, the plurality of Xs may be the same as or different from each other.
  • R 1 represents a monovalent hydrocarbon group, and when a plurality of R 1 are present, the plurality of R may be the same or different from each other.
  • R 1 is not particularly limited as long as it is a monovalent hydrocarbon group, but is preferably a monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • R 1 include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group and octyl group.
  • R 1 may be linear, such as n-propyl group, n-butyl group, etc., isopropyl group, isobutyl group, t-butyl group, etc. You may have a branch like this.
  • X represents an alkoxyl group, an acetoxy group, an oxime group (—O—N ⁇ C—R (R ′)), an enoxy group (—O—C (R) ⁇ C (R ′) R ′′), an amino group, An aminoxy group (—O—N (R) R ′), an amide group (—N (R) —C ( ⁇ O) —R ′) (in these groups, R, R ′, R ′′ are independently A hydrogen atom or a monovalent hydrocarbon group), halogen and the like.
  • hydrolyzable silyl group is represented, for example, by the following formula (2a).
  • R 1 in the formula (2a) represents a monovalent hydrocarbon group as in the case of the formula (2), and when a plurality of R 1 are present, the plurality of R may be the same or different from each other. Good.
  • R 2 in the formula (2a) represents a monovalent hydrocarbon group as in the case of the formula (2). When a plurality of R 2 are present, the plurality of R may be the same or different from each other. Good.
  • R 2 is not particularly limited as long as it is a monovalent hydrocarbon group, but is preferably a monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • R 2 include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group and octyl group.
  • R 2 may be linear, such as n-propyl group, n-butyl group, etc., isopropyl group, isobutyl group, t-butyl group, etc. You may have a branch like this.
  • a hydrolyzable silyl group is bonded to each of both ends of the organic group as described above, but the hydrolyzable silyl group is further added to the organic group at other positions. May be bonded to. That is, the molecule of the hydrolytic condensable compound may have two or more hydrolyzable silyl groups.
  • a hydrolyzable silyl group may be bonded to the alkylene group as a substituent
  • the organic group has a fluoroalkylene group
  • the fluoroalkylene group is hydrolyzed as a substituent.
  • Silyl group may be bonded.
  • the upper limit of the number of hydrolyzable silyl groups in the molecule of the hydrolytic condensable compound is not particularly limited.
  • the length of the organic chain in the molecule of the hydrolytic condensable compound is not particularly limited, but it is preferable that the number of atoms sequentially bonded in series in this organic chain is in the range of 1 to 10.
  • the amount of the organic component in the cured product of the hydrolytic condensable compound is moderately suppressed, so that the UV resistance of the film formed from the coating composition is sufficiently high.
  • good compatibility between the hydrolytic condensable compound and other components such as a solvent in the coating composition is ensured, so that the transparency of the film formed from the coating composition becomes sufficiently good and the film The appearance unevenness is less likely to occur.
  • the hydrolysis-condensable compound includes a compound represented by the following structural formula (1).
  • the alkali resistance, salt water resistance, and UV resistance of the film formed from the coating composition are very good, and the transparency of the film is sufficiently high.
  • R 1 represents an organic group, and when a plurality of R 1 are present in one molecule, these may be the same as or different from each other.
  • X represents a hydrolyzable group, and a plurality of X in one molecule may be the same as or different from each other. Details of R 1 and X in the formula (1) are the same as those in the formula (2).
  • P in the formula (1) represents an integer of 1 to 10, particularly preferably an integer of 1 to 5.
  • this p is 10 or less, the amount of the organic component in the cured product of the hydrolytic condensable compound is moderately suppressed, and thus the UV resistance of the film formed from the coating composition is sufficiently increased.
  • good compatibility between the hydrolytic condensable compound and other components such as a solvent in the coating composition is ensured, so that the transparency of the film formed from the coating composition becomes sufficiently good and the film The appearance unevenness is less likely to occur.
  • Q in the formula (1) represents an integer of 0 to 2
  • r represents an integer of 0 to 2.
  • q and r are preferably 0 or 1, and more preferably 0.
  • the ratio of the compound represented by the structural formula (1) with respect to the entire hydrolytic condensable compound is not particularly limited, but is preferably in the range of 20 to 100% by mass, and particularly in the range of 50 to 100% by mass. preferable.
  • the compound that the hydrolytic condensable compound can contain in addition to the compound represented by the structural formula (1) is not particularly limited, but specific examples thereof include compounds represented by the following formulas (11) to (14). .
  • the coating composition does not contain a material constituting the matrix of the film other than the curable resin. That is, the coating composition preferably contains only the curable resin as a material constituting the matrix of the film.
  • the coating composition is a material other than the above curable resin as a material constituting the film matrix.
  • a hydrolyzable organosilane represented by SiX 4 (X is a hydrolyzable group), a hydrolyzed condensate thereof (polysiloxane), an epoxy silane, or the like may be further contained.
  • the coating composition contains a material that constitutes the matrix of the film in addition to the curable resin, the ratio may be less than 5% by mass with respect to the entire material that constitutes the matrix of the film. preferable.
  • the silica-based metal oxide particles can lower the refractive index of the film formed from the coating composition, and can also increase the strength of the film.
  • the silica-based metal oxide particles are dispersed in a matrix composed of a cured product of the curable resin.
  • silica-based metal oxide particles examples include non-hollow particles and hollow particles.
  • Non-hollow particles are particles that do not have cavities inside.
  • the hollow particles are particles having an outer shell formed of a silica-based metal oxide and having a hollow inside the outer shell.
  • the non-hollow particles are not particularly limited, but include silica particles having no cavities inside.
  • the coating composition contains the silica particles, the mechanical strength of the film formed from the coating composition is improved, and the surface smoothness and crack resistance of the film can be improved.
  • the form of the silica particles is not particularly limited, and may be, for example, a powder form or a sol form.
  • the silica particles are in a sol form, that is, when colloidal silica is used, it is not particularly limited. For example, water-dispersible colloidal silica, alcohol or other hydrophilic organic solvent-dispersible colloidal silica, etc. Is used.
  • such colloidal silica contains 20 to 50% by mass of silica as a solid content, and the content of silica particles in the coating composition can be determined from this value.
  • the content of the silica particles in the coating composition is not particularly limited, but is preferably in the range of 0.1 to 30% by mass with respect to the total solid content in the coating composition.
  • the content of the silica particles is 0.1% by mass or more, the mechanical strength of the coating is sufficiently improved, and the surface smoothness and crack resistance of the coating are sufficiently improved.
  • the content is 30% by mass or less, an increase in the refractive index of the film is moderately suppressed.
  • examples of the hollow particles include hollow silica particles.
  • the hollow silica particles are particles having an outer shell (shell) made of a silica-based inorganic oxide and having a cavity formed therein.
  • the outer shell made of silica-based inorganic oxide is formed of, for example, silica alone, or a composite oxide made of silica and an inorganic oxide other than silica, or a layer made of silica and a layer made of composite oxide. It has a two-layer structure.
  • the outer shell may be porous in which pores are formed, or the cavity may be sealed by closing the pores in the outer shell as shown below.
  • the outer shell may include a plurality of layers including a first layer and a second layer covering the first layer.
  • the pores formed in the first layer are closed by the second layer, thereby densifying the outer shell and sealing the cavity inside the outer shell.
  • the thickness of the first layer is preferably in the range of 1 to 50 nm, particularly preferably in the range of 5 to 20 nm.
  • the thickness of the first layer is 1 nm or more, the strength of the outer shell is sufficiently high and the shape of the hollow particles is maintained.
  • the second layer is formed, the partial hydrolyzate of the organosilicon compound is difficult to enter the pores of the core particles, and the core particle constituent components are easily removed.
  • the thickness of the first layer is 50 nm or less, the ratio of the cavities in the hollow silica particles is kept moderate, and thus the refractive index of the coating is sufficiently reduced by the hollow silica particles.
  • the total thickness of the outer shell is preferably in the range of 1/50 to 1/5 of the average particle diameter of the hollow silica particles.
  • the thickness of the second layer is preferably in the range of 20 to 49 nm, particularly for densifying the outer shell.
  • the cavity there are a solvent used when the hollow silica particles are prepared, a gas that has entered during drying, and the like.
  • a precursor material for forming the cavity may remain in the cavity.
  • the precursor material may remain slightly attached to the outer shell or may occupy most of the interior of the cavity.
  • the precursor substance is a porous substance remaining after removing some of the constituent components from the core particles for forming the first layer.
  • the core particles porous composite oxide particles made of, for example, silica and an inorganic oxide other than silica are used.
  • Examples of the inorganic oxide include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , Ce 2 O 3 , P 2 O 5 , Sb 2 O 3 , MoO 3 , ZnO 2 and WO 3.
  • the 1 type (s) or 2 or more types selected are mentioned.
  • Examples of the two or more inorganic oxides include TiO 2 —Al 2 O 3 and TiO 2 —ZrO 2 .
  • the solvent or gas is also present in the pores of the porous material. When the removal amount of the constituent components at this time increases, the volume of the cavity increases and hollow silica particles having a low refractive index are obtained.
  • the coating formed from the coating composition containing the hollow silica particles reflects with a low refractive index. Excellent prevention performance.
  • the average particle diameter of the hollow silica particles is preferably in the range of 5 nm to 2 ⁇ m.
  • the average particle size is 5 nm or more, the refractive index of the coating is sufficiently reduced by the hollow silica particles.
  • the average particle size is 2 ⁇ m or less, the transparency of the coating is sufficiently high, and the contribution by diffuse reflection (Anti-Glare) is suppressed.
  • the average particle diameter of the hollow silica particles is preferably in the range of 5 to 100 nm.
  • the average particle diameter is a value measured by a dynamic light scattering method.
  • the ratio of the hollow particles in the coating composition is not particularly limited, but is preferably in the range of 25 to 75% by mass, and more preferably in the range of 30 to 70% by mass with respect to the total solid content in the coating composition. preferable.
  • the proportion of the hollow particles is 75% by mass or less, the mechanical strength of the coating film formed from the coating composition is sufficiently high, and when this proportion is 70% by mass or less, this effect becomes more remarkable.
  • the proportion is 25% by mass or more, the refractive index of the coating is sufficiently reduced by the hollow particles, and when this proportion is 30% by mass or more, this effect becomes more remarkable.
  • the coating composition preferably contains only the above-mentioned silica-based metal oxide particles as a filler, but may contain a filler other than the above-mentioned silica-based metal oxide particles.
  • the content of fillers other than silica-based metal oxide particles is preferably as small as possible, and the proportion Is preferably less than 5% by weight based on the total amount of filler in the coating composition.
  • the coating composition contains water as a solvent or a mixed solvent containing water and a hydrophilic solvent as a solvent.
  • the amount of water in the coating composition is preferably at least the amount required for the hydrolysis reaction of the curable resin.
  • the hydrophilic solvent is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, diacetone alcohol, and ethylene.
  • Glycol ethers such as glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, ethyl acetate, butyl acetate, ethyl acetoacetate, etc.
  • the proportion of the solvent in the coating composition is appropriately adjusted according to the viscosity, film formability, etc. required for the coating composition, but is in the range of 10.0 to 99.9% by mass with respect to the entire coating composition. It is preferable that
  • the coating composition preferably contains a catalyst that accelerates the hydrolysis reaction of the curable resin.
  • Catalysts include acids such as hydrochloric acid, acetic acid and maleic acid, amine compounds such as sodium hydroxide (NaOH), ammonia, triethylamine, dibutylamine, hexylamine, octylamine and dibutylamine, and salts of amine compounds, benzyltriethyl chloride Bases such as quaternary ammonium salts such as ammonium and tetramethylammonium hydroxide, fluoride salts such as potassium fluoride and sodium fluoride, solid acidic catalyst or solid basic catalyst (for example, ion exchange resin catalyst), Metal salts of organic carboxylic acids such as iron-2-ethylhexoate, titanium naphthate, zinc stearate, dibutyltin diacetate, tetrabutoxytitanium, tetra-i-propoxytit
  • the ratio of the catalyst in the coating composition is appropriately set, but is preferably in the range of 0.1 to 10% by mass with respect to the curable resin.
  • the coating composition may further contain various components within a range not departing from the gist of the present invention.
  • Such a coating composition is applied onto an appropriate substrate, and the curable resin in the coating composition on the substrate undergoes a hydrolysis reaction and is dried to cure the coating composition on the substrate.
  • a coating composed of an object is provided. Thereby, as shown in FIG. 1, the coated article 3 provided with the base material 2 and the film 1 is obtained.
  • the substrate is not particularly limited, and examples thereof include an inorganic substrate typified by glass, a metal substrate, and an organic substrate typified by polycarbonate and polyethylene terephthalate.
  • the shape of the substrate is not particularly limited, and examples thereof include a plate shape and a film shape. Furthermore, one or more layers may be formed on the surface of the substrate.
  • the coating composition is applied to the surface of the substrate by an appropriate method.
  • the application method in this case is not particularly limited.
  • dipping dipping, dip coating
  • roll coating flow coating
  • curtain coating curtain coating
  • knife coating spin coating
  • table coating sheet coating
  • sheet coating Various usual coating methods such as single wafer coating, die coating, and bar coating can be used.
  • the coating composition applied on the surface of the substrate is dried and then subjected to a heat treatment.
  • This heat treatment further improves the mechanical strength of the coating.
  • the temperature during the heat treatment is not particularly limited, but is preferably in the range of 60 to 300 ° C., and the heating time in this case is preferably in the range of 10 seconds to 20 minutes.
  • the thickness of the film formed on the surface of the substrate is appropriately set according to the intended use and purpose, but is preferably in the range of 50 to 150 nm.
  • the film formed on the substrate in this way has high transparency and further has excellent alkali resistance, salt water resistance, and UV resistance. For this reason, even if the coated article provided with such a base material and a film is exposed to the outdoors, the film is unlikely to deteriorate. For this reason, high transparency and strength of the coating are maintained over a long period of time.
  • a coating film having a low refractive index is formed from the coating composition, and thus this coating film is suitable as an antireflection layer. That is, when the refractive index of the substrate is higher than the refractive index of the coating, the coating is formed directly on the substrate, whereby the antireflection performance is exhibited by the coating. When the refractive index of the substrate is lower than the refractive index of the coating, an intermediate layer having a higher refractive index than the coating is formed on the substrate, and then the coating is formed on the intermediate layer. Thus, the antireflection performance is exhibited by the coating.
  • the intermediate layer may be formed from a known high refractive index material.
  • the refractive index of the intermediate layer is preferably 1.60 or more, and in this case, the difference in refractive index from the coating formed from the coating composition is sufficiently large. Performance is demonstrated.
  • the intermediate layer may be composed of a plurality of layers having different refractive indexes.
  • a transparent substrate when a film formed from the coating composition is used as an antireflection layer a substrate constituting the outermost surface of the display device, an automobile side mirror, a front glass, a side glass, a rear glass, Other examples include vehicle glass, building glass, and a base material constituting the outermost surface of the solar cell.
  • the film formed from the coating composition has alkali resistance, salt water resistance, and UV resistance
  • the coating composition is used to form a base material that constitutes the outermost surface of a display device installed outdoors, the outermost surface of a solar cell. It is particularly suitable for forming a film on a base material that is installed outdoors such as a base material to be formed.
  • a coating film has high alkali resistance, it is suitable also when a base material is the tempered glass containing an alkali ion.
  • Example 1 5.26 parts by mass of bistriethoxysilylethane (GELEST, Inc., product number SIB1817.0) and 72.23 parts by mass of propylene glycol monomethyl ether were blended, and 7.51 parts by mass of 0.1N nitric acid aqueous solution was added. The mixture was blended and mixed well using a disper to obtain a mixture.
  • bistriethoxysilylethane GELEST, Inc., product number SIB1817.0
  • propylene glycol monomethyl ether 7.51 parts by mass of 0.1N nitric acid aqueous solution was added.
  • the mixture was blended and mixed well using a disper to obtain a mixture.
  • hollow silica particle dispersion manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm
  • hollow silica particles / mixture condensed compound equivalent
  • this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
  • Example 2 4.6 parts by mass of bistriethoxysilylethane (GELEST, Inc., product number SIB1817.0) and 70.39 parts by mass of propylene glycol monomethyl ether were added, and 7.51 parts by mass of 0.1N nitric acid aqueous solution was further added. The mixture was blended and mixed well using a disper to obtain a mixture.
  • bistriethoxysilylethane GELEST, Inc., product number SIB1817.0
  • propylene glycol monomethyl ether 7.51 parts by mass of 0.1N nitric acid aqueous solution was further added.
  • the mixture was blended and mixed well using a disper to obtain a mixture.
  • hollow silica particle dispersion manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm
  • hollow silica particles / mixture condensation compound conversion
  • this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
  • Example 3 5.92 parts by mass of bistriethoxysilylethane (GELEST, Inc., product number SIB1817.0) and 72.82 parts by mass of propylene glycol monomethyl ether were blended, and 7.51 parts by mass of 0.1N nitric acid aqueous solution was further added. The mixture was blended and mixed well using a disper to obtain a mixture.
  • bistriethoxysilylethane GELEST, Inc., product number SIB1817.0
  • propylene glycol monomethyl ether 7.51 parts by mass of 0.1N nitric acid aqueous solution was further added.
  • the mixture was blended and mixed well using a disper to obtain a mixture.
  • hollow silica particle dispersion manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm
  • hollow silica particles / mixture condensation compound equivalent
  • this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
  • Example 4 2.63 parts by mass of bistriethoxysilylethane (GELEST, Inc., product number SIB1817.0) and 69.86 parts by mass of propylene glycol monomethyl ether were added, and 7.51 parts by mass of a 0.1N nitric acid aqueous solution was further added. The mixture was blended and mixed well using a disper to obtain a mixture.
  • bistriethoxysilylethane GELEST, Inc., product number SIB1817.0
  • hollow silica particle dispersion manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm
  • hollow silica particles / mixture condensation compound equivalent
  • this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
  • Example 5 10.52 parts by mass of bistriethoxysilylethane (GELEST, Inc., product number SIB1817.0) and 76.97 parts by mass of propylene glycol monomethyl ether were blended, and 7.51 parts by mass of 0.1N nitric acid aqueous solution was further added. The mixture was blended and mixed well using a disper to obtain a mixture.
  • bistriethoxysilylethane GELEST, Inc., product number SIB1817.0
  • propylene glycol monomethyl ether 7.51 parts by mass of 0.1N nitric acid aqueous solution was further added.
  • the mixture was blended and mixed well using a disper to obtain a mixture.
  • this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
  • hollow silica particle dispersion manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm
  • hollow silica particles / mixture condensed compound equivalent
  • this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
  • hollow silica particle dispersion manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm
  • hollow silica particles / mixture condensed compound equivalent
  • this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
  • hollow silica particle dispersion manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm
  • hollow silica particles / mixture condensed compound equivalent
  • this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
  • hollow silica particle dispersion manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm
  • hollow silica particles / mixture condensed compound equivalent
  • this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
  • the refractive index of the film in the coated product was derived using a simple ellipsometer (manufactured by FILMTRICS, model number F20).
  • UV resistance test Using a super UV test apparatus (manufactured by Iwasaki Electric Co., Ltd., model number SUV-W151) under the conditions of an atmospheric temperature of 80 ° C. and a humidity of 70 RH%, ultraviolet rays are applied to the coating on the coated product with an intensity of 100 mW / cm 2 and an irradiation time of 24 hours. Irradiation was performed under the following conditions.
  • the transmittance of the coated product was measured by the same method as in the case of “Transmittance measurement”, and the amount of decrease in transmittance compared with the case of “Transmittance measurement” was calculated.
  • the transmittance of the coated product was measured by the same method as in the case of “Transmittance measurement”, and the amount of decrease in transmittance compared with the case of “Transmittance measurement” was calculated.
  • the light transmittance was good in Examples 1 to 6. Further, the amount of decrease in transmittance after UV irradiation was small, and the UV resistance was high. Moreover, the amount of decrease in the transmittance after the high temperature and high humidity test is small, and therefore, it can be evaluated that even when the alkali component is eluted from the tempered glass, the coating is hardly deteriorated. Thus, the coating films in Examples 1 to 6 exhibited high durability.
  • Example 4 the refractive index of the coating was greatly reduced and the light transmittance was particularly good. Further, except for Example 4 where the proportion of hollow silica is relatively high, in each Example, the abrasion resistance of the coating is also high. For this reason, the use of the hydrolytic condensable compound specified in this embodiment enables the coating of the coating. It can be evaluated that the strength is improved.
  • Comparative Examples 1 and 2 in which a considerable amount of polymethoxysiloxane was contained in the coating composition, the transparency after the high temperature and high humidity test was greatly reduced. Further, in Comparative Example 3 in which a considerable amount of ⁇ -glycidoxypropyltrimethoxysilane was contained in the coating composition, the transparency after the UV resistance test and after the high temperature and high humidity test was greatly reduced. Furthermore, the low abrasion resistance in Comparative Example 3 can be evaluated by the fact that the coating film was softened by using a considerable amount of ⁇ -glycidoxypropyltrimethoxysilane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention provides a coating composition which has high weather resistance and alkali resistance, is capable of forming a coating with sufficiently high transparency and is especially suitable for forming an antireflection layer. This coating composition contains a curable resin and silica-based metal oxide particles. The curable resin comprises at least either one of a hydrolytically condensable compound or a partial hydrolysate thereof. A molecule of the hydrolytically condensable compound has an organic chain and a hydrolyzable silyl group bonded to each end of the organic chain. The organic chain comprises one or more groups selected from an optionally substituted alkylene group, an optionally substituted fluoroalkylene group and an ether group, and the organic chain has at least either one of the alkylene group or the fluoroalkylene group.

Description

コーティング組成物及び塗装品Coating composition and painted product
 本発明は、反射防止層等を形成するために使用されるコーティング組成物、及びこのコーティング組成物の硬化物から形成される被膜を備える塗装品に関する。 The present invention relates to a coating composition used for forming an antireflection layer and the like, and a coated product provided with a film formed from a cured product of this coating composition.
 近年注目度の高いデジタルサイネージなどの広告系ディスプレイ装置や太陽電池などにおける最外面に設置される透明な基材において、その表面における光の反射率を低減するための方策が求められている。この透明な基材における光の反射率が低減すると、例えば広告系ディスプレイ装置においては画像の視認性が向上するという利点があり、太陽電池においてはこの太陽電池に取り込まれる光の量が増大して発電効率が向上するという利点がある。このように透明な基材の表面における光の反射率を低減するために、従来、基材の表面上に反射防止層を設けることが行われている。 In recent years, there has been a demand for measures for reducing the light reflectivity of a transparent base material installed on the outermost surface of advertising display devices such as digital signage and solar cells, which are attracting attention. When the reflectance of light on the transparent base material is reduced, for example, in an advertising display device, there is an advantage that image visibility is improved, and in a solar cell, the amount of light taken into the solar cell is increased. There is an advantage that power generation efficiency is improved. Thus, in order to reduce the reflectance of light on the surface of the transparent base material, conventionally, an antireflection layer has been provided on the surface of the base material.
 従来における反射防止層を形成するためのコーティング組成物の一例として、加水分解性オルガノシラン又はその部分加水分解縮合物を含有するものが挙げられる。例えば特許文献1に記載されているコーティング組成物は、下記(A)の加水分解性オルガノシランと下記(B)の加水分解性オルガノシランとシリカ系金属酸化物粒子とを混合した状態で、下記(A)及び下記(B)の加水分解性オルガノシランを加水分解した第一の加水分解物と、下記(A)の加水分解性オルガノシランと下記(C)の加水分解性オルガノシランとを共重合した、一方の末端にフッ素置換アルキル基を有する第二の加水分解物と、を含有する。
(A)一般式がSiX4(Xは加水分解基)で表わされる加水分解性オルガノシラン。
(B)撥水基を直鎖部に備えると共にアルコキシ基が結合したシリカ原子を分子内に2個以上有する加水分解性オルガノシラン。
(C)フッ素置換アルキル基を有する加水分解性オルガノシラン。
As an example of a conventional coating composition for forming an antireflection layer, one containing a hydrolyzable organosilane or a partially hydrolyzed condensate thereof can be mentioned. For example, the coating composition described in Patent Document 1 includes the following (A) hydrolyzable organosilane, the following (B) hydrolyzable organosilane and silica-based metal oxide particles in a mixed state. (A) and a hydrolyzable organosilane of the following (B), a hydrolyzable organosilane of the following (C) and a hydrolyzable organosilane of the following (C): And a polymerized second hydrolyzate having a fluorine-substituted alkyl group at one end.
(A) A hydrolyzable organosilane having a general formula represented by SiX 4 (X is a hydrolyzable group).
(B) A hydrolyzable organosilane having a water repellent group in the straight chain portion and having two or more silica atoms bonded to an alkoxy group in the molecule.
(C) Hydrolyzable organosilane having a fluorine-substituted alkyl group.
 これにより、高い反射防止性を有すると共に、耐薬品性、防汚性に優れた反射防止層が形成され得る。 Thereby, an antireflection layer having high antireflection properties and excellent chemical resistance and antifouling properties can be formed.
 しかし、屋外に設置される透明な基材に反射防止層が設けられる場合には、反射防止層が紫外線や塩分などに曝されることで劣化しやすくなるという問題がある。また、屋外に設置される基材には高い強度が要求されることから、この基材はしばしばアルカリイオンを含有する強化ガラスから形成される。このような強化ガラスから形成される基材上に反射防止層が設けられる場合には、反射防止層がアルカリ成分に侵されることで劣化しやすくなるという問題がある。 However, when an antireflection layer is provided on a transparent substrate installed outdoors, there is a problem that the antireflection layer is easily deteriorated by being exposed to ultraviolet rays or salt. Moreover, since the high intensity | strength is requested | required of the base material installed outdoors, this base material is often formed from the tempered glass containing an alkali ion. When an antireflection layer is provided on a substrate formed of such tempered glass, there is a problem that the antireflection layer is easily deteriorated by being attacked by an alkali component.
 そこで、反射防止層の良好な透明性を維持しつつ、その耐候性及び耐アルカリ性を向上することが求められている。 Therefore, it is required to improve the weather resistance and alkali resistance while maintaining good transparency of the antireflection layer.
特開2007-99828号公報JP 2007-99828 A
 本発明は上記事由に鑑みて為されたものであり、耐候性及び耐アルカリ性が高く、且つ充分に高い透明性を有する被膜を形成することができ、特に反射防止層を形成するために好適なコーティング組成物を提供することを目的とする。 The present invention has been made in view of the above reasons, and can form a coating film having high weather resistance and alkali resistance and sufficiently high transparency, and is particularly suitable for forming an antireflection layer. It is an object to provide a coating composition.
 また、本発明は、このコーティング組成物の硬化物から形成される被膜を備える塗装品を提供することも目的とする。 Another object of the present invention is to provide a coated product provided with a film formed from a cured product of this coating composition.
 本発明に係るコーティング組成物は、硬化性樹脂と、シリカ系金属酸化物粒子とを含有し、
前記硬化性樹脂が、加水分解縮合性化合物とその部分加水分解物とのうち少なくとも一方から成り、
前記加水分解縮合性化合物の分子が、有機鎖と、この有機鎖の両末端の各々に結合している加水分解性シリル基とを有し、
前記有機鎖が、置換基を有してもよいアルキレン基、置換基を有してもよいフルオロアルキレン基、及びエーテル基から選択される一種以上の基から成り、且つ前記有機鎖が、前記アルキレン基と前記フルオロアルキレン基とのうち少なくとも一方を有する。
The coating composition according to the present invention contains a curable resin and silica-based metal oxide particles,
The curable resin consists of at least one of a hydrolytic condensable compound and a partial hydrolyzate thereof,
The molecule of the hydrolytic condensable compound has an organic chain and a hydrolyzable silyl group bonded to each of both ends of the organic chain,
The organic chain is composed of one or more groups selected from an alkylene group that may have a substituent, a fluoroalkylene group that may have a substituent, and an ether group, and the organic chain is the alkylene At least one of a group and the fluoroalkylene group.
 前記加水分解縮合性化合物が、下記構造式(1)で示される化合物を含むことが好ましい。 It is preferable that the hydrolytic condensable compound includes a compound represented by the following structural formula (1).
  R1 q3-qSi-(CH2p-SiX3-r1 r …(1)
1は有機基を示し、一分子中に複数のR1が存在する場合にはこれらが互いに同一であっても異なっていてもよい。Xは加水分解性基を示し、一分子中の複数のXは互いに同一であっても異なっていてもよい。pは1~10の整数を示す。qは0~2の整数を示す。rは0~2の整数を示す。
R 1 q X 3-q Si— (CH 2 ) p —SiX 3-r R 1 r (1)
R 1 represents an organic group, and when a plurality of R 1 are present in one molecule, these may be the same as or different from each other. X represents a hydrolyzable group, and a plurality of X in one molecule may be the same as or different from each other. p represents an integer of 1 to 10. q represents an integer of 0 to 2. r represents an integer of 0-2.
 本発明に係る塗装品は、前記コーティング組成物から形成される被膜を備える。 The coated product according to the present invention includes a film formed from the coating composition.
 本発明に係るコーティング組成物から被膜が形成されると、この被膜は充分に高い透明性を有しつつ、高い耐候性及び耐アルカリ性を発揮するようになる。 When a film is formed from the coating composition according to the present invention, the film exhibits sufficiently high weather resistance and alkali resistance while having sufficiently high transparency.
本発明の実施の形態の一例を示す、塗装品の概略の断面図である。It is a schematic sectional view of a coated article showing an example of an embodiment of the present invention.
 本実施形態に係るコーティング組成物は、硬化性樹脂と、シリカ系金属酸化物粒子とを含有する。 The coating composition according to this embodiment contains a curable resin and silica-based metal oxide particles.
 硬化性樹脂は、コーティング組成物から被膜が形成される際に硬化する樹脂成分であり、この硬化性樹脂の硬化物が被膜のマトリクスを構成する。 The curable resin is a resin component that is cured when a film is formed from the coating composition, and a cured product of the curable resin constitutes a matrix of the film.
 硬化性樹脂は、加水分解縮合性化合物と、その部分加水分解縮合物とのうち、少なくとも一方から成る。この加水分解縮合性化合物の分子は、有機鎖と、この有機鎖の両末端の各々に結合している加水分解性シリル基とを有する。有機鎖は、置換基を有してもよいアルキレン基、置換基を有してもよいフルオロアルキレン基、及びエーテル基から選択される一種以上の基から成る。更に、有機鎖は、置換基を有してもよいアルキレン基と置換基を有してもよいフルオロアルキレン基とのうち少なくとも一方を有する。すなわち、有機鎖が、アルキレン基のみから成る場合、フルオロアルキレン基のみから成る場合、アルキレン基とフルオロアルキレン基とから成る場合、二以上のアルキレン基とエーテル基から成る場合、二以上のフルオロアルキレン基とエーテル基とから成る場合、並びにアルキレン基とフルオロアルキレン基とエーテル基とから成る場合がある。尚、本明細書において、エーテル基とは、酸素のみからなる二価の基であり、エーテル基はアルキレン基又はフルオロアルキレン基における炭素原子と結合する。 The curable resin is composed of at least one of a hydrolytic condensable compound and a partial hydrolytic condensate thereof. The molecule of the hydrolytic condensable compound has an organic chain and a hydrolyzable silyl group bonded to each of both ends of the organic chain. The organic chain is composed of one or more groups selected from an alkylene group which may have a substituent, a fluoroalkylene group which may have a substituent, and an ether group. Furthermore, the organic chain has at least one of an alkylene group which may have a substituent and a fluoroalkylene group which may have a substituent. That is, when the organic chain consists only of an alkylene group, when it consists only of a fluoroalkylene group, when it consists of an alkylene group and a fluoroalkylene group, when it consists of two or more alkylene groups and an ether group, two or more fluoroalkylene groups And an ether group, as well as an alkylene group, a fluoroalkylene group and an ether group. In this specification, an ether group is a divalent group consisting of only oxygen, and the ether group is bonded to a carbon atom in an alkylene group or a fluoroalkylene group.
 コーティング組成物がこのような硬化性樹脂を含有することで、コーティング組成物から形成される被膜の高い透明性が維持されると共に、被膜の機械的強度が向上し、更にこの被膜に高い耐候性、耐アルカリ性、及び耐塩水性が付与される。これは、硬化性樹脂中に上記のような有機鎖が存在するため、被膜中におけるシロキサン結合の割合が少なくなるためであると、考えられる。すなわち、外からの攻撃により結合が切れやすいシロキサン結合の割合が少なくなるために、被膜の耐久性が向上すると推察される。 When the coating composition contains such a curable resin, high transparency of the film formed from the coating composition is maintained, the mechanical strength of the film is improved, and the film has high weather resistance. Alkali resistance and salt water resistance are imparted. This is presumably because the organic chain as described above is present in the curable resin, so that the ratio of siloxane bonds in the coating is reduced. That is, it is presumed that the durability of the coating is improved because the ratio of siloxane bonds that are easily broken by an attack from the outside decreases.
 加水分解縮合性化合物において、加水分解性シリル基は、例えば次の式(2)で表される。 In the hydrolytic condensable compound, the hydrolyzable silyl group is represented, for example, by the following formula (2).
 -SiX3-m1 m (mは0~2の整数) …(2)
 式(2)中のXは加水分解性基を示し、Xが複数存在する場合には複数のXが互いに同一であっても異なっていてもよい。R1は一価の炭化水素基を示し、R1が複数存在する場合には複数のRが互いに同一であっても異なっていてもよい。
-SiX 3-m R 1 m (m is an integer of 0 to 2) (2)
X in Formula (2) represents a hydrolyzable group, and when a plurality of Xs are present, the plurality of Xs may be the same as or different from each other. R 1 represents a monovalent hydrocarbon group, and when a plurality of R 1 are present, the plurality of R may be the same or different from each other.
 R1は1価の炭化水素基であれば特に限定されるものではないが、炭素数1~8の1価の炭化水素基が好適である。R1の好ましい具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基等のアルキル基等が挙げられる。R1の炭素数が3以上である場合は、R1はn-プロピル基、n-ブチル基等のように直鎖状であってもよいし、イソプロピル基、イソブチル基、t-ブチル基等のように分岐を有してもよい。 R 1 is not particularly limited as long as it is a monovalent hydrocarbon group, but is preferably a monovalent hydrocarbon group having 1 to 8 carbon atoms. Preferable specific examples of R 1 include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group and octyl group. When R 1 has 3 or more carbon atoms, R 1 may be linear, such as n-propyl group, n-butyl group, etc., isopropyl group, isobutyl group, t-butyl group, etc. You may have a branch like this.
 Xとしては、アルコキシル基、アセトキシ基、オキシム基(-O-N=C-R(R'))、エノキシ基(-O-C(R)=C(R')R”)、アミノ基、アミノキシ基(-O-N(R)R')、アミド基(-N(R)-C(=O)-R')(これらの基においてR、R'、R”は、例えばそれぞれ独立に水素原子又は一価の炭化水素基等である)、ハロゲン等が挙げられる。 X represents an alkoxyl group, an acetoxy group, an oxime group (—O—N═C—R (R ′)), an enoxy group (—O—C (R) ═C (R ′) R ″), an amino group, An aminoxy group (—O—N (R) R ′), an amide group (—N (R) —C (═O) —R ′) (in these groups, R, R ′, R ″ are independently A hydrogen atom or a monovalent hydrocarbon group), halogen and the like.
 Xがアルコキシ基である場合、加水分解性シリル基は、例えば次の式(2a)で表される。 When X is an alkoxy group, the hydrolyzable silyl group is represented, for example, by the following formula (2a).
 -Si(OR23-m1 m (mは0~2の整数) …(2a)
 式(2a)中のR1は式(2)の場合と同様に一価の炭化水素基を示し、R1が複数存在する場合には複数のRが互いに同一であっても異なっていてもよい。式(2a)中のR2は式(2)の場合と同様に一価の炭化水素基を示し、R2が複数存在する場合には複数のRが互いに同一であっても異なっていてもよい。
-Si (OR 2 ) 3-m R 1 m (m is an integer from 0 to 2) (2a)
R 1 in the formula (2a) represents a monovalent hydrocarbon group as in the case of the formula (2), and when a plurality of R 1 are present, the plurality of R may be the same or different from each other. Good. R 2 in the formula (2a) represents a monovalent hydrocarbon group as in the case of the formula (2). When a plurality of R 2 are present, the plurality of R may be the same or different from each other. Good.
 R2は1価の炭化水素基であれば特に限定されるものではないが、炭素数1~8の1価の炭化水素基が好適である。R2の好ましい具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基等のアルキル基等が挙げられる。R2の炭素数が3以上である場合は、R2はn-プロピル基、n-ブチル基等のように直鎖状であってもよいし、イソプロピル基、イソブチル基、t-ブチル基等のように分岐を有してもよい。 R 2 is not particularly limited as long as it is a monovalent hydrocarbon group, but is preferably a monovalent hydrocarbon group having 1 to 8 carbon atoms. Preferable specific examples of R 2 include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group and octyl group. When R 2 has 3 or more carbon atoms, R 2 may be linear, such as n-propyl group, n-butyl group, etc., isopropyl group, isobutyl group, t-butyl group, etc. You may have a branch like this.
 加水分解縮合性化合物の分子において、上記の通り有機基の両末端の各々に加水分解性シリル基が結合して存在しているが、それ以外の箇所においても加水分解性シリル基が更に有機基に結合していてもよい。すなわち、加水分解縮合性化合物の分子は、2以上の加水分解性シリル基を有してもよい。例えば有機基がアルキレン基を有する場合にこのアルキレン基に置換基として加水分解性シリル基が結合してもよく、また有機基がフルオロアルキレン基を有する場合にこのフルオロアルキレン基に置換基として加水分解性シリル基が結合してもよい。加水分解縮合性化合物の分子中における加水分解性シリル基の個数の上限は特に制限されない。 In the molecule of the hydrolytic condensable compound, a hydrolyzable silyl group is bonded to each of both ends of the organic group as described above, but the hydrolyzable silyl group is further added to the organic group at other positions. May be bonded to. That is, the molecule of the hydrolytic condensable compound may have two or more hydrolyzable silyl groups. For example, when the organic group has an alkylene group, a hydrolyzable silyl group may be bonded to the alkylene group as a substituent, and when the organic group has a fluoroalkylene group, the fluoroalkylene group is hydrolyzed as a substituent. Silyl group may be bonded. The upper limit of the number of hydrolyzable silyl groups in the molecule of the hydrolytic condensable compound is not particularly limited.
 加水分解縮合性化合物の分子における有機鎖の長さは、特に制限されないが、この有機鎖において直列に並んで順次結合する原子の数が1~10個の範囲であることが好ましい。この場合、加水分解縮合性化合物の硬化物に占める有機成分の量が適度に抑制され、このためコーティング組成物から形成される被膜のUV耐性が充分に高くなる。また、コーティング組成物中における加水分解縮合性化合物と溶媒などの他の成分との良好な相溶性が確保され、このためコーティング組成物から形成される被膜の透明性が充分に良好になると共に被膜に外観ムラが発生しにくくなる。 The length of the organic chain in the molecule of the hydrolytic condensable compound is not particularly limited, but it is preferable that the number of atoms sequentially bonded in series in this organic chain is in the range of 1 to 10. In this case, the amount of the organic component in the cured product of the hydrolytic condensable compound is moderately suppressed, so that the UV resistance of the film formed from the coating composition is sufficiently high. In addition, good compatibility between the hydrolytic condensable compound and other components such as a solvent in the coating composition is ensured, so that the transparency of the film formed from the coating composition becomes sufficiently good and the film The appearance unevenness is less likely to occur.
 加水分解縮合性化合物は、特に下記構造式(1)で示される化合物を含むことが好ましい。この場合、コーティング組成物から形成される被膜の耐アルカリ性、耐塩水性、及び耐UV性が非常に良好になると共に、この被膜の透明性が充分に高くなる。 It is preferable that the hydrolysis-condensable compound includes a compound represented by the following structural formula (1). In this case, the alkali resistance, salt water resistance, and UV resistance of the film formed from the coating composition are very good, and the transparency of the film is sufficiently high.
  R1 q3-qSi-(CH2p-SiX3-r1 r …(1)
 R1は有機基を示し、一分子中に複数のR1が存在する場合にはこれらが互いに同一であっても異なっていてもよい。Xは加水分解性基を示し、一分子中の複数のXは互いに同一であっても異なっていてもよい。式(1)中のR1及びXの詳細は、式(2)の場合と同じである。
R 1 q X 3-q Si— (CH 2 ) p —SiX 3-r R 1 r (1)
R 1 represents an organic group, and when a plurality of R 1 are present in one molecule, these may be the same as or different from each other. X represents a hydrolyzable group, and a plurality of X in one molecule may be the same as or different from each other. Details of R 1 and X in the formula (1) are the same as those in the formula (2).
 式(1)中のpは1~10の整数を示し、特に1~5の整数であることが好ましい。このpが10以下であることで、加水分解縮合性化合物の硬化物に占める有機成分の量が適度に抑制され、このためコーティング組成物から形成される被膜のUV耐性が充分に高くなる。また、コーティング組成物中における加水分解縮合性化合物と溶媒などの他の成分との良好な相溶性が確保され、このためコーティング組成物から形成される被膜の透明性が充分に良好になると共に被膜に外観ムラが発生しにくくなる。 P in the formula (1) represents an integer of 1 to 10, particularly preferably an integer of 1 to 5. When this p is 10 or less, the amount of the organic component in the cured product of the hydrolytic condensable compound is moderately suppressed, and thus the UV resistance of the film formed from the coating composition is sufficiently increased. In addition, good compatibility between the hydrolytic condensable compound and other components such as a solvent in the coating composition is ensured, so that the transparency of the film formed from the coating composition becomes sufficiently good and the film The appearance unevenness is less likely to occur.
 式(1)中のqは0~2の整数を示し、rは0~2の整数を示す。q及びrは0又は1であることが好ましく、更に0であることが好ましい。 Q in the formula (1) represents an integer of 0 to 2, and r represents an integer of 0 to 2. q and r are preferably 0 or 1, and more preferably 0.
 加水分解縮合性化合物全体に対する構造式(1)で示される化合物の割合に特に制限はないが、20~100質量%の範囲であることが好ましく、特に50~100質量%の範囲であることが好ましい。 The ratio of the compound represented by the structural formula (1) with respect to the entire hydrolytic condensable compound is not particularly limited, but is preferably in the range of 20 to 100% by mass, and particularly in the range of 50 to 100% by mass. preferable.
 構造式(1)に示される化合物以外に加水分解縮合性化合物が含有し得る化合物としては、特に限定されないが、その具体例として次の式(11)~(14)で示される化合物が挙げられる。 The compound that the hydrolytic condensable compound can contain in addition to the compound represented by the structural formula (1) is not particularly limited, but specific examples thereof include compounds represented by the following formulas (11) to (14). .
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 コーティング組成物は、上記の硬化性樹脂以外には、被膜のマトリクスを構成する材料を含有しないことが好ましい。すなわちコーティング組成物は、被膜のマトリクスを構成する材料として、上記の硬化性樹脂のみを含有することが好ましい。 It is preferable that the coating composition does not contain a material constituting the matrix of the film other than the curable resin. That is, the coating composition preferably contains only the curable resin as a material constituting the matrix of the film.
 尚、コーティング組成物から形成される被膜の高い耐候性、耐アルカリ性、耐塩水性等が確保される限りは、コーティング組成物が、被膜のマトリクスを構成する材料として、上記の硬化性樹脂以外の材料、例えばSiX4(Xは加水分解基)などで表わされる加水分解性オルガノシラン、その加水分解縮合物(ポリシロキサン)、エポキシシランなどを、更に含有してもよい。但し、これらの材料がコーティング組成物中に混入すると、被膜の耐久性が低下してしまったり、被膜の機械的強度が低下してしまったりする。このため、コーティング組成物が上記の硬化性樹脂以外に被膜のマトリクスを構成する材料を含有する場合でも、その割合は、被膜のマトリクスを構成する材料全体に対して5質量%未満であることが好ましい。 In addition, as long as the high weather resistance, alkali resistance, salt water resistance, etc. of the film formed from the coating composition are ensured, the coating composition is a material other than the above curable resin as a material constituting the film matrix. For example, a hydrolyzable organosilane represented by SiX 4 (X is a hydrolyzable group), a hydrolyzed condensate thereof (polysiloxane), an epoxy silane, or the like may be further contained. However, when these materials are mixed in the coating composition, the durability of the film is lowered or the mechanical strength of the film is lowered. For this reason, even when the coating composition contains a material that constitutes the matrix of the film in addition to the curable resin, the ratio may be less than 5% by mass with respect to the entire material that constitutes the matrix of the film. preferable.
 一方、シリカ系金属酸化物粒子は、コーティング組成物から形成される被膜の低屈折率化をもたらし、またこの被膜の強度の向上ももたらし得る。コーティング組成物から形成される被膜中においては、シリカ系金属酸化物粒子は、硬化性樹脂の硬化物から構成されるマトリクス中に分散して存在するようになる。 On the other hand, the silica-based metal oxide particles can lower the refractive index of the film formed from the coating composition, and can also increase the strength of the film. In the film formed from the coating composition, the silica-based metal oxide particles are dispersed in a matrix composed of a cured product of the curable resin.
 シリカ系金属酸化物粒子としては、非中空粒子と、中空粒子とが挙げられる。非中空粒子は、内部に空洞がない粒子である。中空粒子は、シリカ系金属酸化物で形成される外殻を備え、この外殻の内側が空洞となっている粒子である。 Examples of silica-based metal oxide particles include non-hollow particles and hollow particles. Non-hollow particles are particles that do not have cavities inside. The hollow particles are particles having an outer shell formed of a silica-based metal oxide and having a hollow inside the outer shell.
 非中空粒子としては、特に限定されるものではないが、内部に空洞がないシリカ粒子が挙げられる。このシリカ粒子をコーティング組成物が含有すると、コーティング組成物から形成される被膜の機械的強度が向上すると共に、被膜の表面平滑性と耐クラック性が改善され得る。このシリカ粒子の形態としては、特に限定されるものではなく、例えば、粉体状の形態でもゾル状の形態でもよい。シリカ粒子がゾル状の形態である場合、すなわちコロイダルシリカが使用される場合、特に限定されるものではないが、例えば、水分散性コロイダルシリカ、アルコール等の親水性の有機溶媒分散性コロイダルシリカなどが使用される。一般にこのようなコロイダルシリカは、固形分としてのシリカを20~50質量%含有しており、この値からコーティング組成物中のシリカ粒子の含有量が決定され得る。コーティング組成物中のシリカ粒子の含有量は特に限定されないが、コーティング組成物中の固形分全量に対して、0.1~30質量%の範囲であることが好ましい。このようにシリカ粒子の含有量が0.1質量%以上であると被膜の機械的強度が充分に向上すると共に、被膜の表面平滑性と耐クラック性が充分に改善され、またこの含有量が30質量%以下であると被膜の屈折率の上昇が適度に抑制される。 The non-hollow particles are not particularly limited, but include silica particles having no cavities inside. When the coating composition contains the silica particles, the mechanical strength of the film formed from the coating composition is improved, and the surface smoothness and crack resistance of the film can be improved. The form of the silica particles is not particularly limited, and may be, for example, a powder form or a sol form. When the silica particles are in a sol form, that is, when colloidal silica is used, it is not particularly limited. For example, water-dispersible colloidal silica, alcohol or other hydrophilic organic solvent-dispersible colloidal silica, etc. Is used. Generally, such colloidal silica contains 20 to 50% by mass of silica as a solid content, and the content of silica particles in the coating composition can be determined from this value. The content of the silica particles in the coating composition is not particularly limited, but is preferably in the range of 0.1 to 30% by mass with respect to the total solid content in the coating composition. As described above, when the content of the silica particles is 0.1% by mass or more, the mechanical strength of the coating is sufficiently improved, and the surface smoothness and crack resistance of the coating are sufficiently improved. When the content is 30% by mass or less, an increase in the refractive index of the film is moderately suppressed.
 また、中空粒子としては、中空シリカ粒子が挙げられる。中空シリカ粒子は、シリカ系無機酸化物からなる外殻(シェル)を備え、その内部に空洞が形成されている粒子である。シリカ系無機酸化物からなる外殻は、例えばシリカのみから形成され、或いはシリカとシリカ以外の無機酸化物とからなる複合酸化物から形成され、或いはシリカからなる層と複合酸化物からなる層との二層構造を有する。外殻は細孔が形成されている多孔質なものであってもよいし、外殻における細孔が次に示すように閉塞されることで空洞が密閉されていてもよい。 In addition, examples of the hollow particles include hollow silica particles. The hollow silica particles are particles having an outer shell (shell) made of a silica-based inorganic oxide and having a cavity formed therein. The outer shell made of silica-based inorganic oxide is formed of, for example, silica alone, or a composite oxide made of silica and an inorganic oxide other than silica, or a layer made of silica and a layer made of composite oxide. It has a two-layer structure. The outer shell may be porous in which pores are formed, or the cavity may be sealed by closing the pores in the outer shell as shown below.
 外殻は、第一層と、この第一層を覆う第二層とを含む、複数の層を備えてもよい。この場合、第二層によって第一層に形成されている細孔が閉塞され、これにより外殻が緻密化すると共に、外殻の内側の空洞が密閉される。 The outer shell may include a plurality of layers including a first layer and a second layer covering the first layer. In this case, the pores formed in the first layer are closed by the second layer, thereby densifying the outer shell and sealing the cavity inside the outer shell.
 第一層の厚みは1~50nmの範囲であることが好ましく、特に5~20nmの範囲であることが好ましい。第一層の厚みが1nm以上であると外殻の強度が充分に高くなって中空粒子の形状が保持される。また第二層が形成される際に、有機珪素化合物の部分加水分解物等が核粒子の細孔に入りにくくなり、核粒子構成成分が除去されやすくなる。また第一層の厚みが50nm以下であると、中空シリカ粒子中の空洞の割合が適度に保たれ、このため中空シリカ粒子によって被膜の屈折率が充分に低減される。 The thickness of the first layer is preferably in the range of 1 to 50 nm, particularly preferably in the range of 5 to 20 nm. When the thickness of the first layer is 1 nm or more, the strength of the outer shell is sufficiently high and the shape of the hollow particles is maintained. Further, when the second layer is formed, the partial hydrolyzate of the organosilicon compound is difficult to enter the pores of the core particles, and the core particle constituent components are easily removed. Further, when the thickness of the first layer is 50 nm or less, the ratio of the cavities in the hollow silica particles is kept moderate, and thus the refractive index of the coating is sufficiently reduced by the hollow silica particles.
 また、外殻の総厚みは、中空シリカ粒子の平均粒子径の1/50~1/5の範囲にあることが好ましい。また第二層の厚みは、特に外殻を緻密化する上では、20~49nmの範囲が好適である。 The total thickness of the outer shell is preferably in the range of 1/50 to 1/5 of the average particle diameter of the hollow silica particles. In addition, the thickness of the second layer is preferably in the range of 20 to 49 nm, particularly for densifying the outer shell.
 空洞内には、中空シリカ粒子が調製される際に使用された溶媒、乾燥時に浸入した気体などが存在する。また、空洞内には、空洞を形成するための前駆体物質が残存していてもよい。前駆体物質は、外殻に付着してわずかに残存していることもあるし、空洞内の大部分を占めることもある。ここで、前駆体物質とは、第一層を形成するための核粒子からその構成成分の一部を除去した後に残存する多孔質物質である。核粒子として、例えばシリカとシリカ以外の無機酸化物とからなる多孔質の複合酸化物粒子が用いられる。無機酸化物としては、Al23、B23、TiO2、ZrO2、SnO2、Ce23、P25、Sb23、MoO3、ZnO2、WO3等から選択される1種又は2種以上が挙げられる。2種以上の無機酸化物として、TiO2-Al23、TiO2-ZrO2等が例示される。なお、この多孔質物質の細孔内にも上記溶媒あるいは気体が存在している。このときの構成成分の除去量が多くなると空洞の容積が増大し、屈折率の低い中空シリカ粒子が得られ、この中空シリカ粒子を含有するコーティング組成物から形成される被膜は低屈折率で反射防止性能に優れる。 In the cavity, there are a solvent used when the hollow silica particles are prepared, a gas that has entered during drying, and the like. In addition, a precursor material for forming the cavity may remain in the cavity. The precursor material may remain slightly attached to the outer shell or may occupy most of the interior of the cavity. Here, the precursor substance is a porous substance remaining after removing some of the constituent components from the core particles for forming the first layer. As the core particles, porous composite oxide particles made of, for example, silica and an inorganic oxide other than silica are used. Examples of the inorganic oxide include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , Ce 2 O 3 , P 2 O 5 , Sb 2 O 3 , MoO 3 , ZnO 2 and WO 3. The 1 type (s) or 2 or more types selected are mentioned. Examples of the two or more inorganic oxides include TiO 2 —Al 2 O 3 and TiO 2 —ZrO 2 . The solvent or gas is also present in the pores of the porous material. When the removal amount of the constituent components at this time increases, the volume of the cavity increases and hollow silica particles having a low refractive index are obtained. The coating formed from the coating composition containing the hollow silica particles reflects with a low refractive index. Excellent prevention performance.
 中空シリカ粒子の平均粒子径は5nm~2μmの範囲であることが好ましい。このように平均粒径が5nm以上であると中空シリカ粒子によって被膜の屈折率が充分に低減される。またこの平均粒径が2μm以下であると被膜の透明性が充分に高くなり、拡散反射(Anti-Glare)による寄与が抑制される。被膜に特に高い透明性が要求される場合には、中空シリカ粒子の平均粒子径は5~100nmの範囲であることが好ましい。なお、平均粒子径は動的光散乱法によって測定される値である。 The average particle diameter of the hollow silica particles is preferably in the range of 5 nm to 2 μm. Thus, when the average particle size is 5 nm or more, the refractive index of the coating is sufficiently reduced by the hollow silica particles. Further, when the average particle size is 2 μm or less, the transparency of the coating is sufficiently high, and the contribution by diffuse reflection (Anti-Glare) is suppressed. When the coating film requires particularly high transparency, the average particle diameter of the hollow silica particles is preferably in the range of 5 to 100 nm. The average particle diameter is a value measured by a dynamic light scattering method.
 コーティング組成物における中空粒子の割合は、特に制限されないが、コーティング組成物中の固形分全量に対して25~75質量%の範囲であることが好ましく、30~70質量%の範囲であれば更に好ましい。中空粒子の割合が75質量%以下であると、コーティング組成物から形成される被膜の機械的強度が充分に高くなり、この割合が70質量%以下であるとこの作用が更に顕著になる。またこの割合が25質量%以上であると中空粒子によって被膜の屈折率が充分に低減され、この割合が30質量%以上であるとこの作用が更に顕著になる。 The ratio of the hollow particles in the coating composition is not particularly limited, but is preferably in the range of 25 to 75% by mass, and more preferably in the range of 30 to 70% by mass with respect to the total solid content in the coating composition. preferable. When the proportion of the hollow particles is 75% by mass or less, the mechanical strength of the coating film formed from the coating composition is sufficiently high, and when this proportion is 70% by mass or less, this effect becomes more remarkable. Further, when the proportion is 25% by mass or more, the refractive index of the coating is sufficiently reduced by the hollow particles, and when this proportion is 30% by mass or more, this effect becomes more remarkable.
 コーティング組成物は、フィラーとして上記のシリカ系金属酸化物粒子のみを含有することが好ましいが、上記のシリカ系金属酸化物粒子以外のフィラーを含有してもよい。但し、コーティング組成物から形成される被膜の高い耐候性、耐アルカリ性、耐塩水性等が確保されるためには、シリカ系金属酸化物粒子以外のフィラーの含有量はできるだけ少ない方が好ましく、その割合はコーティング組成物中のフィラー全量に対して5質量%未満であることが好ましい。 The coating composition preferably contains only the above-mentioned silica-based metal oxide particles as a filler, but may contain a filler other than the above-mentioned silica-based metal oxide particles. However, in order to ensure high weather resistance, alkali resistance, salt water resistance, etc. of the film formed from the coating composition, the content of fillers other than silica-based metal oxide particles is preferably as small as possible, and the proportion Is preferably less than 5% by weight based on the total amount of filler in the coating composition.
 コーティング組成物は、溶媒として水を含有し、或いは溶媒として水と親水性溶媒とを含む混合溶媒を含有することが好ましい。コーティング組成物中の水の量は、少なくとも硬化性樹脂の加水分解反応に必要とされる量であることが好ましい。親水性溶媒としては、特に制限されないが、例えば、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、ジアセトンアルコール等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン等のケトン類、酢酸エチル、酢酸ブチル、アセト酢酸エチル等のエステル類、キシレン、トルエン等が挙げられる。 It is preferable that the coating composition contains water as a solvent or a mixed solvent containing water and a hydrophilic solvent as a solvent. The amount of water in the coating composition is preferably at least the amount required for the hydrolysis reaction of the curable resin. The hydrophilic solvent is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, diacetone alcohol, and ethylene. Glycol ethers such as glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, ethyl acetate, butyl acetate, ethyl acetoacetate, etc. Esters, xylene, toluene and the like.
 コーティング組成物中の溶媒の割合は、コーティング組成物に要求される粘度、成膜性等に応じて適宜調整されるが、コーティング組成物全体に対して10.0~99.9質量%の範囲であることが好ましい。 The proportion of the solvent in the coating composition is appropriately adjusted according to the viscosity, film formability, etc. required for the coating composition, but is in the range of 10.0 to 99.9% by mass with respect to the entire coating composition. It is preferable that
 コーティング組成物は、硬化性樹脂の加水分解反応を促進する触媒を含有することが好ましい。触媒としては、塩酸、酢酸、マレイン酸等の酸類、水酸化ナトリウム(NaOH)、アンモニア、トリエチルアミン、ジブチルアミン、ヘキシルアミン、オクチルアミン、ジブチルアミン等のアミン化合物、及びアミン化合物の塩類、塩化ベンジルトリエチルアンモニウム、テトラメチルアンモニウムヒドロキシドなどの第四級アンモニウム塩等の塩基類、フッ化カリウム、フッ化ナトリウムのようなフッ化塩、固体酸性触媒或いは固体塩基性触媒(例えばイオン交換樹脂触媒など)、鉄-2-エチルヘキソエート、チタンナフテート、亜鉛ステアレート、ジブチル錫ジアセテートなどの有機カルボン酸の金属塩、テトラブトキシチタン、テトラ-i-プロポキシチタン、ジブトキシ-(ビス-2,4-ペンタンジオネート)チタン、ジ-i-プロポキシ(ビス-2,4-ペンタンジオネート)チタンなどの有機チタンエステル、テトラブトキシジルコニウム、テトラ-i-プロポキシジルコニウム、ジブトキシ-(ビス-2,4-ペンタンジオネート)ジルコニウム、ジ-i-プロポキシ(ビス-2,4-ペンタンジオネート)ジルコニウムなどの有機ジルコニウムエステル、アルミニウムトリイソプロポキシド等のアルコキシアルミニウム化合物、アルミニウムアセチルアセトナート錯体等のアルミニウムキレート化合物等の有機金属化合物、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシランなどのアミノアルキル置換アルコキシシランが例示される。これらの触媒は一種単独で使用され、或いは二種以上が併用される。 The coating composition preferably contains a catalyst that accelerates the hydrolysis reaction of the curable resin. Catalysts include acids such as hydrochloric acid, acetic acid and maleic acid, amine compounds such as sodium hydroxide (NaOH), ammonia, triethylamine, dibutylamine, hexylamine, octylamine and dibutylamine, and salts of amine compounds, benzyltriethyl chloride Bases such as quaternary ammonium salts such as ammonium and tetramethylammonium hydroxide, fluoride salts such as potassium fluoride and sodium fluoride, solid acidic catalyst or solid basic catalyst (for example, ion exchange resin catalyst), Metal salts of organic carboxylic acids such as iron-2-ethylhexoate, titanium naphthate, zinc stearate, dibutyltin diacetate, tetrabutoxytitanium, tetra-i-propoxytitanium, dibutoxy- (bis-2,4- Pentanedionate) titanium, di-i Organic titanium esters such as propoxy (bis-2,4-pentanedionate) titanium, tetrabutoxyzirconium, tetra-i-propoxyzirconium, dibutoxy- (bis-2,4-pentanedionate) zirconium, di-i-propoxy (Bis-2,4-pentanedionate) organic zirconium compounds such as zirconium, alkoxyaluminum compounds such as aluminum triisopropoxide, organometallic compounds such as aluminum chelate compounds such as aluminum acetylacetonate complex, γ-aminopropyltri Amino such as methoxysilane, γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltriethoxysilane Alkyl substituted alkoxysilane is exemplified. These catalysts are used alone or in combination of two or more.
 コーティング組成物中の触媒の割合は適宜設定されるが、硬化性樹脂に対して0.1~10質量%の範囲であることが好ましい。 The ratio of the catalyst in the coating composition is appropriately set, but is preferably in the range of 0.1 to 10% by mass with respect to the curable resin.
 コーティング組成物は、上記成分のほか、本発明の趣旨を逸脱しない範囲において、更に種々の成分を含有してもよい。 In addition to the above components, the coating composition may further contain various components within a range not departing from the gist of the present invention.
 このようなコーティング組成物が適宜の基材上に塗布され、この基材上のコーティング組成物中の硬化性樹脂が加水分解反応すると共に乾燥されることで、基材上にコーティング組成物の硬化物から構成される被膜が設けられる。これにより、図1に示すように、基材2と被膜1とを備える塗装品3が得られる。 Such a coating composition is applied onto an appropriate substrate, and the curable resin in the coating composition on the substrate undergoes a hydrolysis reaction and is dried to cure the coating composition on the substrate. A coating composed of an object is provided. Thereby, as shown in FIG. 1, the coated article 3 provided with the base material 2 and the film 1 is obtained.
 基材としては、特に限定されないが、例えば、ガラスに代表される無機系基材、金属基材、ポリカーボネートやポリエチレンテレフタレートに代表される有機系基材などが挙げられる。基材の形状も特に制限されないが、例えば板状やフィルム状等が挙げられる。更に、基材の表面上に1層以上の層が形成されていても構わない。 The substrate is not particularly limited, and examples thereof include an inorganic substrate typified by glass, a metal substrate, and an organic substrate typified by polycarbonate and polyethylene terephthalate. The shape of the substrate is not particularly limited, and examples thereof include a plate shape and a film shape. Furthermore, one or more layers may be formed on the surface of the substrate.
 コーティング組成物は、基材の表面に適宜の方法により塗布される。この場合の塗布方法としては、特に限定されないが、例えば、刷毛塗り、スプレーコート、浸漬(ディッピング、ディップコート)、ロールコート、フローコート、カーテンコート、ナイフコート、スピンコート、テーブルコート、シートコート、枚葉コート、ダイコート、バーコート等の通常の各種塗装方法が挙げられる。 The coating composition is applied to the surface of the substrate by an appropriate method. The application method in this case is not particularly limited. For example, brush coating, spray coating, dipping (dipping, dip coating), roll coating, flow coating, curtain coating, knife coating, spin coating, table coating, sheet coating, Various usual coating methods such as single wafer coating, die coating, and bar coating can be used.
 基材の表面上に塗布されたコーティング組成物は、乾燥された後、続いて熱処理が施されることが好ましい。この熱処理によって、被膜の機械的強度が更に向上する。熱処理の際の温度は、特に限定されないが、60~300℃の範囲であることが好ましく、この場合の加熱時間は10秒~20分の範囲であることが好ましい。 It is preferable that the coating composition applied on the surface of the substrate is dried and then subjected to a heat treatment. This heat treatment further improves the mechanical strength of the coating. The temperature during the heat treatment is not particularly limited, but is preferably in the range of 60 to 300 ° C., and the heating time in this case is preferably in the range of 10 seconds to 20 minutes.
 基材の表面上に形成する被膜の厚みは、使用用途や目的に応じて適宜設定されるが、50~150nmの範囲であることが好ましい。 The thickness of the film formed on the surface of the substrate is appropriately set according to the intended use and purpose, but is preferably in the range of 50 to 150 nm.
 このようにして基材上に形成される被膜は高い透明性を有し、更に優れた耐アルカリ性、耐塩水性、及び耐UV性を有するようになる。このため、このような基材と被膜とを備える塗装品が屋外に曝露されても、被膜が劣化しにくくなる。このため長期間に亘り、被膜の高い透明性及び強度が維持される。 The film formed on the substrate in this way has high transparency and further has excellent alkali resistance, salt water resistance, and UV resistance. For this reason, even if the coated article provided with such a base material and a film is exposed to the outdoors, the film is unlikely to deteriorate. For this reason, high transparency and strength of the coating are maintained over a long period of time.
 また、コーティング組成物からは低屈折率の被膜が形成され、このためこの被膜は反射防止層として好適である。すなわち、基材の屈折率が被膜の屈折率よりも高い場合には、基材上に直接被膜が形成されることで、被膜によって反射防止性能が発揮される。また、基材の屈折率が被膜の屈折率に比べて低い場合には、基材上に被膜よりも屈折率が高い中間層が形成され、続いてこの中間層の上に被膜が形成されることで、被膜によって反射防止性能が発揮される。中間層は、公知の高屈折率材料から形成され得る。またこの中間層の屈折率は1.60以上であることが好ましく、この場合、コーティング組成物から形成される被膜との間の屈折率差が充分に大きくなり、このため被膜により優れた反射防止性能が発揮される。また被膜の着色を緩和するために、中間層が屈折率の異なる複数の層で構成されてもよい。 Also, a coating film having a low refractive index is formed from the coating composition, and thus this coating film is suitable as an antireflection layer. That is, when the refractive index of the substrate is higher than the refractive index of the coating, the coating is formed directly on the substrate, whereby the antireflection performance is exhibited by the coating. When the refractive index of the substrate is lower than the refractive index of the coating, an intermediate layer having a higher refractive index than the coating is formed on the substrate, and then the coating is formed on the intermediate layer. Thus, the antireflection performance is exhibited by the coating. The intermediate layer may be formed from a known high refractive index material. The refractive index of the intermediate layer is preferably 1.60 or more, and in this case, the difference in refractive index from the coating formed from the coating composition is sufficiently large. Performance is demonstrated. Moreover, in order to relieve the coloring of the film, the intermediate layer may be composed of a plurality of layers having different refractive indexes.
 コーティング組成物から形成される被膜が反射防止層として用いられる場合の、透明な基材の例としては、ディスプレイ装置の最外面を構成する基材、自動車のサイドミラー、フロントガラス、サイドガラス、リアガラス、その他車両用ガラス、建材ガラス、太陽電池の最外面を構成する基材などが、挙げられる。コーティング組成物から形成される被膜は耐アルカリ性、耐塩水性、及び耐UV性を有するため、コーティング組成物は、屋外に設置されるディスプレイ装置の最外面を構成する基材、太陽電池の最外面を構成する基材などのような屋外に設置される基材に対して被膜を形成するために、特に好適である。また、被膜は耐アルカリ性が高いため、基材がアルカリイオンを含有する強化ガラスである場合にも好適である。 As an example of a transparent substrate when a film formed from the coating composition is used as an antireflection layer, a substrate constituting the outermost surface of the display device, an automobile side mirror, a front glass, a side glass, a rear glass, Other examples include vehicle glass, building glass, and a base material constituting the outermost surface of the solar cell. Since the film formed from the coating composition has alkali resistance, salt water resistance, and UV resistance, the coating composition is used to form a base material that constitutes the outermost surface of a display device installed outdoors, the outermost surface of a solar cell. It is particularly suitable for forming a film on a base material that is installed outdoors such as a base material to be formed. Moreover, since a coating film has high alkali resistance, it is suitable also when a base material is the tempered glass containing an alkali ion.
 なお、本発明は上記実施形態に限定されず、発明の趣旨を逸脱しない範囲において種々の変更がなされることが可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention.
 以下、本発明を実施例により説明する。尚、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples. The present invention is not limited to these examples.
 [実施例1]
 ビストリエトキシシリルエタン(GELEST,Inc社製、品番SIB1817.0)5.26質量部と、プロピレングリコールモノメチルエーテル72.23質量部とを配合し、さらに0.1Nの硝酸水溶液7.51質量部を配合し、これらをディスパーを用いてよく混合することで、混合物を得た。
[Example 1]
5.26 parts by mass of bistriethoxysilylethane (GELEST, Inc., product number SIB1817.0) and 72.23 parts by mass of propylene glycol monomethyl ether were blended, and 7.51 parts by mass of 0.1N nitric acid aqueous solution was added. The mixture was blended and mixed well using a disper to obtain a mixture.
 この混合物に、中空シリカ粒子分散体(日揮触媒化成工業社製、イソプロピルアルコール溶媒、固形分20%、平均粒径40nm)15.0質量部を加えることで、中空シリカ粒子/混合物(縮合化合物換算)の比率が固形分基準で60/40の質量比になるようにした。これらを室温でよく混合し、さらに25℃の恒温雰囲気下で1時間撹拌混合することで、コーティング組成物を調製した。 By adding 15.0 parts by mass of a hollow silica particle dispersion (manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm) to this mixture, hollow silica particles / mixture (condensed compound equivalent) ) Ratio of 60/40 based on solid content. These were mixed well at room temperature, and further stirred and mixed in a constant temperature atmosphere at 25 ° C. for 1 hour to prepare a coating composition.
 このコーティング組成物を調製した時点から、このコーティング組成物を1時間放置した。続いて、予め汚れ分を除去しておいた強化ガラスの表面上にコーティング組成物をスピンコーターによって塗布し、このコーティング組成物を200℃で10分間加熱することで、厚み150nmの被膜を形成した。これにより、強化ガラスと、この強化ガラスを覆う被膜とからなる塗装品を得た。 From the time when this coating composition was prepared, this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
 [実施例2]
 ビストリエトキシシリルエタン(GELEST,Inc社製、品番SIB1817.0)4.6質量部と、プロピレングリコールモノメチルエーテル70.39質量部とを配合し、更に0.1Nの硝酸水溶液7.51質量部を配合し、これらをディスパーを用いてよく混合することで、混合物を得た。
[Example 2]
4.6 parts by mass of bistriethoxysilylethane (GELEST, Inc., product number SIB1817.0) and 70.39 parts by mass of propylene glycol monomethyl ether were added, and 7.51 parts by mass of 0.1N nitric acid aqueous solution was further added. The mixture was blended and mixed well using a disper to obtain a mixture.
 この混合物に、中空シリカ粒子分散体(日揮触媒化成工業社製、イソプロピルアルコール溶媒、固形分20%、平均粒径40nm)17.5質量部を加えることで、中空シリカ粒子/混合物(縮合化合物換算)の比率が固形分基準で70/30の質量比になるようにした。これらを室温でよく混合し、さらに25℃の恒温雰囲気下で1時間撹拌混合することで、コーティング組成物を調製した。 By adding 17.5 parts by mass of a hollow silica particle dispersion (manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm) to this mixture, hollow silica particles / mixture (condensation compound conversion) ) Ratio of 70/30 based on solid content. These were mixed well at room temperature, and further stirred and mixed in a constant temperature atmosphere at 25 ° C. for 1 hour to prepare a coating composition.
 このコーティング組成物を調製した時点から、このコーティング組成物を1時間放置した。続いて、予め汚れ分を除去しておいた強化ガラスの表面上にコーティング組成物をスピンコーターによって塗布し、このコーティング組成物を200℃で10分間加熱することで、厚み150nmの被膜を形成した。これにより、強化ガラスと、この強化ガラスを覆う被膜とからなる塗装品を得た。 From the time when this coating composition was prepared, this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
 [実施例3]
 ビストリエトキシシリルエタン(GELEST,Inc社製、品番SIB1817.0)5.92質量部と、プロピレングリコールモノメチルエーテル72.82質量部とを配合し、更に0.1Nの硝酸水溶液7.51質量部を配合し、これらをディスパーを用いてよく混合することで、混合物を得た。
[Example 3]
5.92 parts by mass of bistriethoxysilylethane (GELEST, Inc., product number SIB1817.0) and 72.82 parts by mass of propylene glycol monomethyl ether were blended, and 7.51 parts by mass of 0.1N nitric acid aqueous solution was further added. The mixture was blended and mixed well using a disper to obtain a mixture.
 この混合物に、中空シリカ粒子分散体(日揮触媒化成工業社製、イソプロピルアルコール溶媒、固形分20%、平均粒径40nm)13.75質量部を加えることで、中空シリカ粒子/混合物(縮合化合物換算)の比率が固形分基準で55/45の質量比になるようにした。これらを室温でよく混合し、さらに25℃の恒温雰囲気下で1時間撹拌混合することで、コーティング組成物を調製した。 By adding 13.75 parts by mass of a hollow silica particle dispersion (manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm) to this mixture, hollow silica particles / mixture (condensation compound equivalent) ) Ratio of 55/45 on a solid basis. These were mixed well at room temperature, and further stirred and mixed in a constant temperature atmosphere at 25 ° C. for 1 hour to prepare a coating composition.
 このコーティング組成物を調製した時点から、このコーティング組成物を1時間放置した。続いて、予め汚れ分を除去しておいた強化ガラスの表面上にコーティング組成物をスピンコーターによって塗布し、このコーティング組成物を200℃で10分間加熱することで、厚み150nmの被膜を形成した。これにより、強化ガラスと、この強化ガラスを覆う被膜とからなる塗装品を得た。 From the time when this coating composition was prepared, this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
 [実施例4]
 ビストリエトキシシリルエタン(GELEST,Inc社製、品番SIB1817.0)2.63質量部と、プロピレングリコールモノメチルエーテル69.86質量部とを配合し、更に0.1Nの硝酸水溶液7.51質量部を配合し、これらをディスパーを用いてよく混合することで、混合物を得た。
[Example 4]
2.63 parts by mass of bistriethoxysilylethane (GELEST, Inc., product number SIB1817.0) and 69.86 parts by mass of propylene glycol monomethyl ether were added, and 7.51 parts by mass of a 0.1N nitric acid aqueous solution was further added. The mixture was blended and mixed well using a disper to obtain a mixture.
 この混合物に、中空シリカ粒子分散体(日揮触媒化成工業社製、イソプロピルアルコール溶媒、固形分20%、平均粒径40nm)20質量部を加えることで、中空シリカ粒子/混合物(縮合化合物換算)の比率が固形分基準で80/20の質量比になるようにした。これらを室温でよく混合し、さらに25℃の恒温雰囲気下で1時間撹拌混合することで、コーティング組成物を調製した。 By adding 20 parts by mass of a hollow silica particle dispersion (manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm) to this mixture, hollow silica particles / mixture (condensation compound equivalent) The ratio was adjusted to a mass ratio of 80/20 based on the solid content. These were mixed well at room temperature, and further stirred and mixed in a constant temperature atmosphere at 25 ° C. for 1 hour to prepare a coating composition.
 このコーティング組成物を調製した時点から、このコーティング組成物を1時間放置した。続いて、予め汚れ分を除去しておいた強化ガラスの表面上にコーティング組成物をスピンコーターによって塗布し、このコーティング組成物を200℃で10分間加熱することで、厚み150nmの被膜を形成した。これにより、強化ガラスと、この強化ガラスを覆う被膜とからなる塗装品を得た。 From the time when this coating composition was prepared, this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
 [実施例5]
 ビストリエトキシシリルエタン(GELEST,Inc社製、品番SIB1817.0)10.52質量部と、プロピレングリコールモノメチルエーテル76.97質量部とを配合し、更に0.1Nの硝酸水溶液7.51質量部を配合し、これらをディスパーを用いてよく混合することで、混合物を得た。
[Example 5]
10.52 parts by mass of bistriethoxysilylethane (GELEST, Inc., product number SIB1817.0) and 76.97 parts by mass of propylene glycol monomethyl ether were blended, and 7.51 parts by mass of 0.1N nitric acid aqueous solution was further added. The mixture was blended and mixed well using a disper to obtain a mixture.
 この混合物に、中空シリカ粒子分散体(日揮触媒化成工業社製、イソプロピルアルコール溶媒、固形分20%、平均粒径40nm)5.0質量部を加えることで、中空シリカ粒子/混合物(縮合化合物換算)の比率が固形分基準で40/60の質量比になるようにした。これらを室温でよく混合し、さらに25℃の恒温雰囲気下で1時間撹拌混合することで、コーティング組成物を調製した。 By adding 5.0 parts by mass of a hollow silica particle dispersion (manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm) to this mixture, hollow silica particles / mixture (condensation compound conversion) ) Ratio was 40/60 mass ratio based on solid content. These were mixed well at room temperature, and further stirred and mixed in a constant temperature atmosphere at 25 ° C. for 1 hour to prepare a coating composition.
 このコーティング組成物を調製した時点から、このコーティング組成物を1時間放置した。続いて、予め汚れ分を除去しておいた強化ガラスの表面上にコーティング組成物をスピンコーターによって塗布し、このコーティング組成物を200℃で10分間加熱することで、厚み150nmの被膜を形成した。これにより、強化ガラスと、この強化ガラスを覆う被膜とからなる塗装品を得た。 From the time when this coating composition was prepared, this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
 [実施例6]
 ビストリエトキシシリルヘキサン(GELEST,Inc社製、品番SIB1832.0)4.44質量部と、プロピレングリコールモノメチルエーテル76.05質量部とを配合し、更に0.1Nの硝酸水溶液7.51質量部を配合し、これらをディスパーを用いてよく混合することで、混合物を得た。
[Example 6]
Bistriethoxysilylhexane (GELEST, Inc., product number SIB1832.0) 4.44 parts by mass and propylene glycol monomethyl ether 76.05 parts by mass were blended, and further 0.11 nitric acid aqueous solution 7.51 parts by mass. The mixture was blended and mixed well using a disper to obtain a mixture.
 この混合物に、中空シリカ粒子分散体(日揮触媒化成工業社製、イソプロピルアルコール溶媒、固形分20%、平均粒径40nm)15.0質量部を加えることで、中空シリカ粒子/混合物(縮合化合物換算)の比率が固形分基準で60/40の質量比になるようにした。これらを室温でよく混合し、さらに25℃の恒温雰囲気下で1時間撹拌混合することで、コーティング組成物を調製した。 By adding 15.0 parts by mass of a hollow silica particle dispersion (manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm) to this mixture, hollow silica particles / mixture (condensed compound equivalent) ) Ratio of 60/40 based on solid content. These were mixed well at room temperature, and further stirred and mixed in a constant temperature atmosphere at 25 ° C. for 1 hour to prepare a coating composition.
 このコーティング組成物を調製した時点から、このコーティング組成物を1時間放置した。続いて、予め汚れ分を除去しておいた強化ガラスの表面上にコーティング組成物をスピンコーターによって塗布し、このコーティング組成物を200℃で10分間加熱することで、厚み150nmの被膜を形成した。これにより、強化ガラスと、この強化ガラスを覆う被膜とからなる塗装品を得た。 From the time when this coating composition was prepared, this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
 [比較例1]
 ポリメトキシシロキサン(三菱化学株式会社製、品名メチルシリケート51)5.26質量部と、プロピレングリコールモノメチルエーテル73.57質量部とを配合し、更に0.1Nの硝酸水溶液7.51質量部を配合し、これらをディスパーを用いてよく混合することで、混合物を得た。
[Comparative Example 1]
5.26 parts by mass of polymethoxysiloxane (Mitsubishi Chemical Co., Ltd., product name methyl silicate 51) and 73.57 parts by mass of propylene glycol monomethyl ether, and 7.51 parts by mass of 0.1N nitric acid aqueous solution These were mixed well using a disper to obtain a mixture.
 この混合物に、中空シリカ粒子分散体(日揮触媒化成工業社製、イソプロピルアルコール溶媒、固形分20%、平均粒径40nm)15.0質量部を加えることで、中空シリカ粒子/混合物(縮合化合物換算)の比率が固形分基準で60/40の質量比になるようにした。これらを室温でよく混合し、さらに25℃の恒温雰囲気下で1時間撹拌混合することで、コーティング組成物を調製した。 By adding 15.0 parts by mass of a hollow silica particle dispersion (manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm) to this mixture, hollow silica particles / mixture (condensed compound equivalent) ) Ratio of 60/40 based on solid content. These were mixed well at room temperature, and further stirred and mixed in a constant temperature atmosphere at 25 ° C. for 1 hour to prepare a coating composition.
 このコーティング組成物を調製した時点から、このコーティング組成物を1時間放置した。続いて、予め汚れ分を除去しておいた強化ガラスの表面上にコーティング組成物をスピンコーターによって塗布し、このコーティング組成物を200℃で10分間加熱することで、厚み150nmの被膜を形成した。これにより、強化ガラスと、この強化ガラスを覆う被膜とからなる塗装品を得た。 From the time when this coating composition was prepared, this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
 [比較例2]
 ビストリエトキシシリルエタン4.6質量部と、ポリメトキシシロキサン(三菱化学株式会社製、品名メチルシリケート51)0.49質量部と、プロピレングリコールモノメチルエーテル72.4質量部とを配合し、更に0.1Nの硝酸水溶液7.51質量部を配合し、これらをディスパーを用いてよく混合することで、混合物を得た。
[Comparative Example 2]
4.6 parts by mass of bistriethoxysilylethane, 0.49 parts by mass of polymethoxysiloxane (Mitsubishi Chemical Corporation, product name methyl silicate 51) and 72.4 parts by mass of propylene glycol monomethyl ether are blended, A mixture was obtained by blending 7.51 parts by mass of 1N nitric acid aqueous solution and mixing them well using a disper.
 この混合物に、中空シリカ粒子分散体(日揮触媒化成工業社製、イソプロピルアルコール溶媒、固形分20%、平均粒径40nm)15.0質量部を加えることで、中空シリカ粒子/混合物(縮合化合物換算)の比率が固形分基準で60/40の質量比になるようにした。これらを室温でよく混合し、さらに25℃の恒温雰囲気下で1時間撹拌混合することで、コーティング組成物を調製した。 By adding 15.0 parts by mass of a hollow silica particle dispersion (manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm) to this mixture, hollow silica particles / mixture (condensed compound equivalent) ) Ratio of 60/40 based on solid content. These were mixed well at room temperature, and further stirred and mixed in a constant temperature atmosphere at 25 ° C. for 1 hour to prepare a coating composition.
 このコーティング組成物を調製した時点から、このコーティング組成物を1時間放置した。続いて、予め汚れ分を除去しておいた強化ガラスの表面上にコーティング組成物をスピンコーターによって塗布し、このコーティング組成物を200℃で10分間加熱することで、厚み150nmの被膜を形成した。これにより、強化ガラスと、この強化ガラスを覆う被膜とからなる塗装品を得た。 From the time when this coating composition was prepared, this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
 [比較例3]
 ビストリエトキシシリルエタン4.6質量部と、γ-グリシドキシプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同株式会社製、品番TSL8350)0.34質量部と、プロピレングリコールモノメチルエーテル72.55質量部とを配合し、更に0.1Nの硝酸水溶液7.51質量部を配合し、これらをディスパーを用いてよく混合することで、混合物を得た。
[Comparative Example 3]
4.6 parts by mass of bistriethoxysilylethane, 0.34 parts by mass of γ-glycidoxypropyltrimethoxysilane (product number TSL8350, manufactured by Momentive Performance Materials Japan GK), propylene glycol monomethyl ether 72. The mixture was obtained by blending 55 parts by mass, further blending 7.51 parts by mass of a 0.1N nitric acid aqueous solution, and mixing them well using a disper.
 この混合物に、中空シリカ粒子分散体(日揮触媒化成工業社製、イソプロピルアルコール溶媒、固形分20%、平均粒径40nm)15.0質量部を加えることで、中空シリカ粒子/混合物(縮合化合物換算)の比率が固形分基準で60/40の質量比になるようにした。これらを室温でよく混合し、さらに25℃の恒温雰囲気下で1時間撹拌混合することで、コーティング組成物を調製した。 By adding 15.0 parts by mass of a hollow silica particle dispersion (manufactured by JGC Catalysts & Chemicals, isopropyl alcohol solvent, solid content 20%, average particle size 40 nm) to this mixture, hollow silica particles / mixture (condensed compound equivalent) ) Ratio of 60/40 based on solid content. These were mixed well at room temperature, and further stirred and mixed in a constant temperature atmosphere at 25 ° C. for 1 hour to prepare a coating composition.
 このコーティング組成物を調製した時点から、このコーティング組成物を1時間放置した。続いて、予め汚れ分を除去しておいた強化ガラスの表面上にコーティング組成物をスピンコーターによって塗布し、このコーティング組成物を200℃で10分間加熱することで、厚み150nmの被膜を形成した。これにより、強化ガラスと、この強化ガラスを覆う被膜とからなる塗装品を得た。 From the time when this coating composition was prepared, this coating composition was allowed to stand for 1 hour. Subsequently, the coating composition was applied on the surface of the tempered glass from which the dirt was previously removed by a spin coater, and this coating composition was heated at 200 ° C. for 10 minutes to form a film having a thickness of 150 nm. . Thereby, the coated product which consists of a tempered glass and the film which covers this tempered glass was obtained.
 [評価試験]
 各実施例及び比較例で得られた塗装品について、次に示す評価試験をおこなった。その結果を後掲の表1に示す。
[Evaluation test]
The following evaluation tests were performed on the coated products obtained in the examples and comparative examples. The results are shown in Table 1 below.
 (屈折率測定)
 塗装品における被膜の屈折率を、簡易エリプソメーター(FILMTRICS社製、型番F20)を用いて導出した。
(Refractive index measurement)
The refractive index of the film in the coated product was derived using a simple ellipsometer (manufactured by FILMTRICS, model number F20).
 (耐摩耗性測定)
 摩耗試験機(新東科学株式会社製、型番HEIDON-14DR、スチールウール#0000、500g荷重、10往復)で被膜の表面を擦った。この試験前後での被膜の外観の変化を目視で確認し、試験範囲における被膜の残存量が50%以上である場合を「○」、この残存量が50%未満である場合を「×」と評価した。
(Abrasion resistance measurement)
The surface of the coating was rubbed with an abrasion tester (manufactured by Shinto Kagaku Co., Ltd., model number HEIDON-14DR, steel wool # 0000, 500 g load, 10 reciprocations). The change in the appearance of the film before and after this test was visually confirmed, and “○” indicates that the remaining amount of the film in the test range is 50% or more, and “×” indicates that the remaining amount is less than 50%. evaluated.
 (透過率測定)
 分光光度計(株式会社日立製作所製、型番U-4100)を使用して、被膜へ向けて光を照射した場合の、波長300-1500nmの範囲での分光透過率を測定し、その結果に基づいて波長400-1100nmの範囲での透過率の平均値を導出した。尚、強化ガラス単独の場合での透過率は91.3%であった。
(Transmittance measurement)
Using a spectrophotometer (manufactured by Hitachi, Ltd., model number U-4100), the spectral transmittance in the wavelength range of 300 to 1500 nm when light is irradiated toward the coating is measured, and based on the result Thus, an average value of transmittance in a wavelength range of 400 to 1100 nm was derived. The transmittance in the case of tempered glass alone was 91.3%.
 (耐UV試験)
 スーパーUV試験装置(岩崎電気株式会社製、型番SUV-W151)を用い、雰囲気温度80℃、湿度70RH%の条件下で、塗装品における被膜へ向けて紫外線を強度100mW/cm、照射時間24hrの条件で照射した。
(UV resistance test)
Using a super UV test apparatus (manufactured by Iwasaki Electric Co., Ltd., model number SUV-W151) under the conditions of an atmospheric temperature of 80 ° C. and a humidity of 70 RH%, ultraviolet rays are applied to the coating on the coated product with an intensity of 100 mW / cm 2 and an irradiation time of 24 hours. Irradiation was performed under the following conditions.
 続いて、この塗装品の透過率を、上記「透過率測定」の場合と同じ方法で測定し、上記「透過率測定」の場合と比べた透過率の低下量を算出した。 Subsequently, the transmittance of the coated product was measured by the same method as in the case of “Transmittance measurement”, and the amount of decrease in transmittance compared with the case of “Transmittance measurement” was calculated.
 (高温高湿試験)
 小型環境試験装置(Espec社製、型番SH-241)を用い、塗装品を温度85℃、湿度80%の雰囲気中に500時間曝露した。
(High temperature and high humidity test)
Using a small environmental test apparatus (manufactured by Espec, model number SH-241), the coated product was exposed to an atmosphere of 85 ° C. and 80% humidity for 500 hours.
 続いて、この塗装品の透過率を、上記「透過率測定」の場合と同じ方法で測定し、上記「透過率測定」の場合と比べた透過率の低下量を算出した。 Subsequently, the transmittance of the coated product was measured by the same method as in the case of “Transmittance measurement”, and the amount of decrease in transmittance compared with the case of “Transmittance measurement” was calculated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この結果によると、実施例1~6では光の透過率が良好であった。また、UV照射後の透過率の低下量が少なく、耐UV性が高かった。また、高温高湿試験後の透過率の低下量も少なく、このため強化ガラスからアルカリ成分が溶出しても被膜の劣化が生じにくいものと評価できる。このように実施例1~6における被膜は高い耐久性を発揮した。 According to this result, the light transmittance was good in Examples 1 to 6. Further, the amount of decrease in transmittance after UV irradiation was small, and the UV resistance was high. Moreover, the amount of decrease in the transmittance after the high temperature and high humidity test is small, and therefore, it can be evaluated that even when the alkali component is eluted from the tempered glass, the coating is hardly deteriorated. Thus, the coating films in Examples 1 to 6 exhibited high durability.
 更に、実施例1~4では被膜の屈折率が大きく低減されると共に光の透過率が特に良好であった。また、中空シリカの割合が比較的多い実施例4を除き、各実施例では被膜の耐摩耗性も高く、このため本実施形態で特定される加水分解縮合性化合物が使用されることで被膜の強度が向上すると評価できる。 Furthermore, in Examples 1 to 4, the refractive index of the coating was greatly reduced and the light transmittance was particularly good. Further, except for Example 4 where the proportion of hollow silica is relatively high, in each Example, the abrasion resistance of the coating is also high. For this reason, the use of the hydrolytic condensable compound specified in this embodiment enables the coating of the coating. It can be evaluated that the strength is improved.
 一方、コーティング組成物中にポリメトキシシロキサンを相当量含有させた比較例1,2では、高温高湿試験後の透明性が大きく低下してしまった。また、コーティング組成物中にγ-グリシドキシプロピルトリメトキシシランを相当量含有させた比較例3では、耐UV試験後及び高温高湿試験後の透明性が大きく低下してしまった。更に、比較例3で耐摩耗性が低いのは、相当量のγ-グリシドキシプロピルトリメトキシシランが使用されることで被膜が柔らかくなったためと評価できる。 On the other hand, in Comparative Examples 1 and 2 in which a considerable amount of polymethoxysiloxane was contained in the coating composition, the transparency after the high temperature and high humidity test was greatly reduced. Further, in Comparative Example 3 in which a considerable amount of γ-glycidoxypropyltrimethoxysilane was contained in the coating composition, the transparency after the UV resistance test and after the high temperature and high humidity test was greatly reduced. Furthermore, the low abrasion resistance in Comparative Example 3 can be evaluated by the fact that the coating film was softened by using a considerable amount of γ-glycidoxypropyltrimethoxysilane.
 1  被膜
 2  基材
 3  塗装品
1 Coating 2 Base material 3 Painted product

Claims (3)

  1. 硬化性樹脂と、シリカ系金属酸化物粒子とを含有し、
    前記硬化性樹脂が、加水分解縮合性化合物とその部分加水分解物とのうち少なくとも一方から成り、
    前記加水分解縮合性化合物の分子が、有機鎖と、この有機鎖の両末端の各々に結合している加水分解性シリル基とを有し、
    前記有機鎖が、置換基を有してもよいアルキレン基、置換基を有してもよいフルオロアルキレン基、及びエーテル基から選択される一種以上の基から成り、且つ前記有機鎖が、前記アルキレン基と前記フルオロアルキレン基とのうち少なくとも一方を有するコーティング組成物。
    Containing a curable resin and silica-based metal oxide particles,
    The curable resin consists of at least one of a hydrolytic condensable compound and a partial hydrolyzate thereof,
    The molecule of the hydrolytic condensable compound has an organic chain and a hydrolyzable silyl group bonded to each of both ends of the organic chain,
    The organic chain is composed of one or more groups selected from an alkylene group that may have a substituent, a fluoroalkylene group that may have a substituent, and an ether group, and the organic chain is the alkylene A coating composition having at least one of a group and the fluoroalkylene group.
  2. 前記加水分解縮合性化合物が、下記構造式(1)で示される化合物を含む請求項1に記載のコーティング組成物。
      R1 q3-qSi-(CH2p-SiX3-r1 r …(1)
    1は有機基を示し、一分子中に複数のR1が存在する場合にはこれらが互いに同一であっても異なっていてもよい。
    Xは加水分解性基を示し、一分子中の複数のXは互いに同一であっても異なっていてもよい。
    pは1~10の整数を示す。
    qは0~2の整数を示す。
    rは0~2の整数を示す。
    The coating composition according to claim 1, wherein the hydrolytic condensable compound includes a compound represented by the following structural formula (1).
    R 1 q X 3-q Si— (CH 2 ) p —SiX 3-r R 1 r (1)
    R 1 represents an organic group, and when a plurality of R 1 are present in one molecule, these may be the same as or different from each other.
    X represents a hydrolyzable group, and a plurality of X in one molecule may be the same as or different from each other.
    p represents an integer of 1 to 10.
    q represents an integer of 0 to 2.
    r represents an integer of 0-2.
  3. 請求項1又は2に記載のコーティング組成物から形成される被膜を備える塗装品。 A coated article comprising a film formed from the coating composition according to claim 1.
PCT/JP2011/076875 2011-09-21 2011-11-22 Coating composition and coated article WO2013042278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011205542 2011-09-21
JP2011-205542 2011-09-21

Publications (1)

Publication Number Publication Date
WO2013042278A1 true WO2013042278A1 (en) 2013-03-28

Family

ID=47914074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076875 WO2013042278A1 (en) 2011-09-21 2011-11-22 Coating composition and coated article

Country Status (2)

Country Link
TW (1) TW201313845A (en)
WO (1) WO2013042278A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140120450A (en) * 2013-04-03 2014-10-14 주식회사 동진쎄미켐 A coating composition comprising bis-type silane compound
WO2019027991A1 (en) * 2017-07-31 2019-02-07 Momentive Performance Materials Inc. Curable surface-protective coating composition, processes for its preparation and application to a metallic substrate and resulting coated metallic substrate
US11939490B2 (en) 2017-07-31 2024-03-26 Momentive Performance Materials Inc. Curable surface-protective coating composition, processes for its preparation and application to a metallic substrate and resulting coated metallic substrate

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161475A (en) * 1980-05-19 1981-12-11 Shin Etsu Chem Co Ltd Coating composition
JPS60103303A (en) * 1983-11-11 1985-06-07 Seiko Epson Corp Plastic lens having high-refractive index
JPS60213902A (en) * 1984-04-10 1985-10-26 Seiko Epson Corp Synthetic resin lens
JPS60262833A (en) * 1984-06-11 1985-12-26 Tokuyama Soda Co Ltd Coated synthetic resin material
JPS6118901A (en) * 1984-07-06 1986-01-27 Asahi Glass Co Ltd Low reflection working agent
JPS63258963A (en) * 1987-04-16 1988-10-26 Seiko Epson Corp Coating composition
JP2003336009A (en) * 2002-05-21 2003-11-28 Asahi Kasei Corp Coating composition for producing insulation thin film
JP2004182929A (en) * 2002-12-05 2004-07-02 Catalysts & Chem Ind Co Ltd Coating liquid for forming transparent film, substrate with transparent film and display device
JP2008020756A (en) * 2006-07-14 2008-01-31 Hoya Corp Plastic lens
JP2008285503A (en) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp Stainproof coating liquid
JP2010106076A (en) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd Coating material composition and coated article

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161475A (en) * 1980-05-19 1981-12-11 Shin Etsu Chem Co Ltd Coating composition
JPS60103303A (en) * 1983-11-11 1985-06-07 Seiko Epson Corp Plastic lens having high-refractive index
JPS60213902A (en) * 1984-04-10 1985-10-26 Seiko Epson Corp Synthetic resin lens
JPS60262833A (en) * 1984-06-11 1985-12-26 Tokuyama Soda Co Ltd Coated synthetic resin material
JPS6118901A (en) * 1984-07-06 1986-01-27 Asahi Glass Co Ltd Low reflection working agent
JPS63258963A (en) * 1987-04-16 1988-10-26 Seiko Epson Corp Coating composition
JP2003336009A (en) * 2002-05-21 2003-11-28 Asahi Kasei Corp Coating composition for producing insulation thin film
JP2004182929A (en) * 2002-12-05 2004-07-02 Catalysts & Chem Ind Co Ltd Coating liquid for forming transparent film, substrate with transparent film and display device
JP2008020756A (en) * 2006-07-14 2008-01-31 Hoya Corp Plastic lens
JP2008285503A (en) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp Stainproof coating liquid
JP2010106076A (en) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd Coating material composition and coated article

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140120450A (en) * 2013-04-03 2014-10-14 주식회사 동진쎄미켐 A coating composition comprising bis-type silane compound
JP2016517905A (en) * 2013-04-03 2016-06-20 ドンジン セミケム カンパニー リミテッド Coating composition comprising a bis-type silane compound
US10011739B2 (en) 2013-04-03 2018-07-03 Dongjin Semichem Co., Ltd. Coating composition comprising bis-type silane compound
KR102116834B1 (en) 2013-04-03 2020-05-29 주식회사 동진쎄미켐 A coating composition comprising bis-type silane compound
WO2019027991A1 (en) * 2017-07-31 2019-02-07 Momentive Performance Materials Inc. Curable surface-protective coating composition, processes for its preparation and application to a metallic substrate and resulting coated metallic substrate
JP2020529493A (en) * 2017-07-31 2020-10-08 モメンティブ パフォーマンス マテリアルズ インコーポレイテッドMomentive Performance Materials Inc. Curable surface protective coating composition, methods for its preparation, and its application to and obtained coated metal substrates
JP7324186B2 (en) 2017-07-31 2023-08-09 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Curable surface protective coating composition, method for its preparation, and its application to metal substrates and resulting coated metal substrates
US11939490B2 (en) 2017-07-31 2024-03-26 Momentive Performance Materials Inc. Curable surface-protective coating composition, processes for its preparation and application to a metallic substrate and resulting coated metallic substrate

Also Published As

Publication number Publication date
TW201313845A (en) 2013-04-01

Similar Documents

Publication Publication Date Title
JP4107050B2 (en) Coating material composition and article having a coating formed thereby
JP3846545B2 (en) Coating agent composition, coating method and coated article
CN1294219C (en) High strength organic / inorganic nano composite transparent film layer materials and method for preparing same
JP6004054B2 (en) Ultraviolet absorbing glass article for automobile and sliding window of automobile
EP1935929B1 (en) Sol gel process for producing protective films for polymeric substrates
JP2020044841A (en) Transparent article with antifogging film
JP4048912B2 (en) Surface antifouling composite resin film, surface antifouling article, decorative board
JP6454954B2 (en) Composition, antireflection layer using the same, method for forming the same, glass having the same, and solar cell module
JPH04226572A (en) Hardwearing coating material composition and production thereof
WO2006093156A1 (en) Coating composition and coated article
JP6360836B2 (en) Anti-reflective coating composition containing siloxane compound, and anti-reflection film having surface energy controlled using the same
JP6329959B2 (en) Superhydrophilic antireflection coating composition containing a siloxane compound, superhydrophilic antireflection film using the same, and method for producing the same
JP4309744B2 (en) Fluorine-based composite resin film and solar cell
JP5448301B2 (en) Coating composition and resin laminate
WO2013042278A1 (en) Coating composition and coated article
US6790273B2 (en) Compositions comprising inorganic UV absorbers
JP2012246440A (en) Inorganic coating composition
JP2010168508A (en) Low refractive index composition, antireflection material, and display
JP2005213517A (en) Coating agent composition and coated article
JP5337360B2 (en) Coating composition, cured film and resin laminate
JP5357503B2 (en) Coating material composition and painted product
KR20140134867A (en) Anti-pollution coating solution composition with low reflective property and method for preparing it
JP4403773B2 (en) Hydrophilized resin molded product
JP5924275B2 (en) Curable resin composition and coated article
JP6060698B2 (en) Curable resin composition and coated article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP