WO2013042222A1 - Solar cell manufacturing method, and solar cell - Google Patents

Solar cell manufacturing method, and solar cell Download PDF

Info

Publication number
WO2013042222A1
WO2013042222A1 PCT/JP2011/071457 JP2011071457W WO2013042222A1 WO 2013042222 A1 WO2013042222 A1 WO 2013042222A1 JP 2011071457 W JP2011071457 W JP 2011071457W WO 2013042222 A1 WO2013042222 A1 WO 2013042222A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion unit
solar cell
electrodes
main surface
Prior art date
Application number
PCT/JP2011/071457
Other languages
French (fr)
Japanese (ja)
Inventor
幸弘 吉嶺
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2011/071457 priority Critical patent/WO2013042222A1/en
Publication of WO2013042222A1 publication Critical patent/WO2013042222A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar cell manufacturing method and a solar cell.
  • Patent Document 1 proposes a back junction solar cell having first and second electrodes on the back surface.
  • a back junction solar cell it is not always necessary to provide an electrode on the light receiving surface. Therefore, improved photoelectric conversion efficiency can be realized.
  • the first and second electrodes are formed on the first main surface of the photoelectric conversion unit.
  • An excision step is performed in which a part of the photoelectric conversion unit is excised by cutting the photoelectric conversion unit along a cut line passing over at least one of the first and second electrodes.
  • the solar cell according to the present invention includes a photoelectric conversion part and first and second electrodes arranged on one main surface of the photoelectric conversion part. At least one of the first and second electrodes reaches the end of the photoelectric conversion unit.
  • a method capable of producing a solar cell having improved photoelectric conversion efficiency can be provided.
  • FIG. 1 is a schematic rear view for explaining the manufacturing process of the solar cell in the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the first embodiment.
  • FIG. 4 is a schematic rear view of the solar cell in the first embodiment.
  • FIG. 5 is a schematic cross-sectional view taken along line VV in FIG.
  • FIG. 6 is a schematic rear view for explaining the manufacturing process of the solar cell in the second embodiment.
  • FIG. 7 is a schematic cross-sectional view taken along line VII-VII in FIG.
  • FIG. 1 is a schematic back view for explaining a manufacturing process of the solar cell 1 in the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • the photoelectric conversion unit 10 is prepared.
  • the photoelectric conversion unit 10 generates carriers such as electrons and holes when receiving light.
  • the photoelectric conversion unit 10 includes first and second main surfaces 10a and 10b.
  • the photoelectric conversion unit 10 receives light mainly on the second main surface 10b.
  • the 2nd main surface 10b may be called a light-receiving surface
  • the 1st main surface 10a may be called a back surface.
  • the photoelectric conversion unit 10 may generate carriers when receiving light on the second main surface 10b, or when receiving light on the first main surface 10a in addition to the second main surface 10b. May also generate carriers.
  • the photoelectric conversion unit 10 includes a substrate made of a semiconductor material.
  • the photoelectric conversion unit 10 has a p-type region in one region of the first main surface 10a and an n-type region in the other region.
  • the p-type region can be constituted by a p-type semiconductor layer formed on one main surface of the substrate, or a p-type diffusion region formed by diffusing p-type impurities in the substrate.
  • the n-type region can be constituted by an n-type semiconductor layer formed on one main surface of the substrate or an n-type diffusion region formed by diffusing an n-type impurity in the substrate.
  • a substantially intrinsic i-type semiconductor layer having a thickness that does not substantially contribute to power generation of about several to 250 ⁇ m may be disposed.
  • a substantially intrinsic i-type semiconductor layer having a thickness that does not substantially contribute to power generation, for example, about several to 250 ⁇ m may be disposed between the substrate and the n-type semiconductor layer.
  • the substrate made of a semiconductor material can be made of, for example, crystalline silicon having n-type or p-type.
  • the p-type semiconductor layer can be composed of, for example, p-type amorphous silicon.
  • the n-type semiconductor layer can be made of, for example, n-type amorphous silicon.
  • the i-type semiconductor layer can be composed of i-type amorphous silicon.
  • the photoelectric conversion unit 10 can be manufactured by a known method, for example.
  • the p-type semiconductor layer and the n-type semiconductor layer can be formed by a thin film forming method such as a CVD (Chemical Vapor Deposition) method. .
  • the first electrode 21 is formed on the p-type region in the first main surface 10 a of the photoelectric conversion unit 10.
  • a second electrode 22 is formed on the n-type region.
  • Each of the first and second electrodes 21 and 22 has a comb-like shape.
  • the first electrode 21 has a plurality of first finger portions 21a and a first connection portion 21b.
  • Each of the plurality of first finger portions 21a extends along the x direction (one direction).
  • the plurality of first finger portions 21a are arranged at intervals from each other along the y direction (the other direction) intersecting the x direction.
  • the plurality of first finger portions 21a are electrically connected to the first connection portion 21b.
  • the 1st connection part 21b is distribute
  • the first connection portion 21b is disposed at the x1 side end portion of the first main surface 10a in the x direction.
  • the width of the first connection portion 21b is thicker than the width of the first finger portion 21a.
  • the second electrode 22 has a plurality of second finger portions 22a and a second connection portion 22b.
  • Each of the plurality of second finger portions 22a extends along the x direction.
  • the plurality of second finger portions 22a are arranged at intervals from each other along the y direction.
  • the plurality of first finger portions 21a and the plurality of second finger portions 22a are alternately arranged at intervals in the y direction.
  • the plurality of second finger portions 22a are electrically connected to the second connection portion 22b.
  • the 2nd connection part 22b is distribute
  • the second connection portion 22b is disposed on the x2 side end portion in the x direction of the first main surface 10a.
  • the width of the second connection portion 22b is larger than the width of the second finger portion 22a.
  • the first electrode 21 is formed at a predetermined interval from the end of the first main surface 10 a of the photoelectric conversion unit 10. This is because if the first electrode 21 is formed to the end of the first main surface of the photoelectric conversion unit 10, the first electrode 21 wraps around to the side surface of the photoelectric conversion unit 10, causing undesired leaks and reducing the characteristics. This is because there is a fear. In order to suppress the occurrence of such characteristic deterioration, the first electrode 21 is usually formed by removing a predetermined distance from the end of the first main surface 10a. This also applies to the second electrode 22. Note that such an electrode arrangement may reduce the collection of carriers generated in the end region where the first electrode 21 and the second electrode 22 are not provided.
  • the first electrode 21 and the second electrode 22 include a low-resistance conductive material such as a metal.
  • the first electrode 21 and the second electrode 22 may have a single layer structure or a stacked structure of a plurality of layers. In addition to a metal, a conductive oxide layer may be included.
  • the first electrode 21 and the second electrode 22 can be formed using various methods such as a vapor deposition method, a sputtering method, a printing method, and a plating method.
  • an inspection process for inspecting the electrical characteristics of the photoelectric conversion unit 10 on which the first and second electrodes 21 and 22 are formed is performed. Specifically, the electrical characteristics of the photoelectric conversion unit 10 in which the first and second electrodes 21 and 22 are formed by bringing an inspection probe into contact with the first connection portion 21b and the second connection portion 22b. Measure. As a result, when the measured electrical characteristics do not satisfy the predetermined condition, the electrical characteristics are discarded, and when the measured electrical characteristics are satisfied, the next excision step is performed.
  • the electrical characteristics measured in the inspection process may be, for example, photoelectric conversion efficiency.
  • the photoelectric conversion unit 10 is cut along cut lines L1 and L2 that pass over at least one of the first and second electrodes 21 and 22. Thereby, the edge part in one direction (x direction) of the photoelectric conversion part 10 is excised.
  • the cut line L1 passes over the first electrode 21.
  • the cut line L1 may pass over the first connection portion 21b or may pass over the plurality of first finger portions 21a.
  • the cut line L1 may pass over the second electrode 22 or may not pass through.
  • the cut line L ⁇ b> 1 passes over the plurality of first finger portions 21 a and does not pass over the second electrode 22.
  • the cut line L2 passes over the second electrode 22.
  • the cut line L2 may pass over the second connection portion 22b or may pass over the plurality of finger portions 22a. Further, the cut line L2 may or may not pass over the first electrode 21.
  • the cut line L ⁇ b> 2 passes over the plurality of second finger portions 22 a and does not pass over the first electrode 21.
  • the excision method of the photoelectric conversion part 10 is not specifically limited, It is preferable to excise the photoelectric conversion part 10 with the following method. That is, first, as shown in FIG. 3, the laser is scanned on the second main surface 10b of the photoelectric conversion unit 10 along the cut lines L1 and L2. Thereby, the groove 10c is formed in the portion of the photoelectric conversion unit 10 on the second main surface 10b side. Next, the photoelectric conversion unit 10 is cut by bending the photoelectric conversion unit 10 along the groove 10c.
  • the solar cell 1 shown in FIG. 4 can be manufactured.
  • the solar cell 1 includes a photoelectric conversion unit 10A configured by the photoelectric conversion unit 10 with both ends cut off.
  • the photoelectric conversion unit 10A includes first and second main surfaces 10a and 10b and first and second end surfaces 10d and 10e which are cut surfaces. As shown in FIG. 5, the first and second end faces 10 d, 10 e have a laser processed surface 11 and a split surface 12.
  • the laser processed surface 11 is a surface processed by the laser beam irradiated in the cutting process.
  • the laser processing surface 11 is disposed on the second main surface 10b side of the end surfaces 10d and 10e. The laser processed surface 11 does not reach the first main surface 10a.
  • the split surface 12 is a surface generated when the photoelectric conversion unit 10 is bent and cracked.
  • the split surface 12 is disposed on the first main surface 10a side of the end surfaces 10d and 10e.
  • the photoelectric conversion unit 10 may be cut off by forming the groove 10c from the second main surface 10b to the first main surface 10a by scanning the laser. In this case, the split surface 12 is not arranged.
  • the first and second electrodes 21A and 22A are arranged on the first main surface 10a.
  • 21 A of 1st electrodes are comprised by what the 1st connection part 21b side of the 1st electrode 21 was excised.
  • the first electrode 21A includes a plurality of first finger portions 21a. Each of the plurality of first finger portions 21a extends along the x direction. The plurality of first finger portions 21a are arranged at intervals from each other along the y direction. The plurality of first finger parts 21a reach the x1 side end in the x direction of the photoelectric conversion part 10A.
  • the second electrode 22 ⁇ / b> A is configured by removing the second connection portion 22 b of the second electrode 22.
  • the second electrode 22A includes a plurality of second finger portions 22a. Each of the plurality of second finger portions 22a extends along the x direction. The plurality of second finger portions 22a are arranged at intervals from each other along the y direction. The plurality of second finger portions 22a and the plurality of first finger portions 21a are alternately arranged at intervals in the y direction. The plurality of second finger portions 22a reach the x2 side end in the x direction of the photoelectric conversion portion 10A.
  • the electrode so as to reach the end of the photoelectric conversion unit.
  • the first and second electrodes 21 and 22 it is not always necessary to provide the first and second electrodes 21 and 22 so as to reach the end of the first main surface 10a of the photoelectric conversion unit 10. At least one of the first and second electrodes 21 and 22 is cut by cutting the photoelectric conversion unit 10 along cut lines L1 and L2 passing over at least one of the first and second electrodes 21 and 22.
  • the solar cell 1 in which one reaches the end in the x direction of the photoelectric conversion unit 10A can be manufactured. Accordingly, at least one of the first and second electrodes 21 and 22 reaches the end of the photoelectric conversion unit 10A in the x direction, and the solar cell 1 having improved photoelectric conversion efficiency can be easily manufactured. .
  • the excision step it is preferable to form the groove 10c formed by the laser beam in the portion on the second main surface 10b side of the photoelectric conversion unit 10 so as not to reach the first main surface 10a.
  • the thermal influence given to the 1st and 2nd electrodes 21 and 22 by irradiation of a laser beam can be made small.
  • semiconductor junctions such as a pn junction part located in the 1st main surface 10a side part of the photoelectric conversion part 10, are hard to be damaged by irradiation of a laser beam.
  • the groove 10c so as not to reach the portion where the pn junction (including the pin junction) of the photoelectric conversion unit 10 is provided.
  • each of the first and second electrodes is composed of a plurality of finger portions and no connection portion is provided, in order to measure the electrical characteristics, each of the plurality of finger portions is accurate.
  • the measurement probe must be in contact with Therefore, it is difficult to inspect electrical characteristics.
  • each of the first and second electrodes is provided with a bus bar portion in which a plurality of finger portions are electrically connected
  • the electrical characteristics can be easily measured by bringing an inspection probe into contact with the bus bar portion. can do.
  • the bus bar portion is provided, the distance that must be moved before the carriers generated in the portion located below the bus bar portion of the photoelectric conversion portion are collected by the electrode becomes long. Therefore, the photoelectric conversion efficiency may be lowered.
  • the first electrode 21 having the first connection portion 21b and the second connection portion 22b having the first connection portion 21b are provided on the first main surface 10a of the photoelectric conversion portion 10 before excision.
  • Two electrodes 22 are arranged. For this reason, if it is before performing a cutting process, an electrical property can be easily measured by making the probe for a test contact the 1st connection part 21b and the 2nd connection part 22b. Further, in the cutting process, the side of the photoelectric conversion unit 10 where at least one of the first connection part 21b and the second connection part 22b is provided is cut off.
  • the first and second electrodes 21 ⁇ / b> A and 22 ⁇ / b> A are configured by a plurality of finger portions 21 a and 22 a, and do not have the connection portions 21 b and 22 b having a large area. Therefore, in the solar cell 1, disappearance due to carrier recombination can be suppressed. Therefore, improved photoelectric conversion efficiency can be realized.
  • FIG.6 and FIG.7 shows, on the 1st main surface 10a of the photoelectric conversion part 10, the 1st conductive layer 31 containing conductive materials other than a metal is formed, At least one of the first and second electrodes 21 and 22 is formed by forming a second conductive layer 32 made of metal on the first conductive layer 32. Specifically, both the first and second electrodes 21 and 22 are constituted by a laminate of the first and second conductive layers 31 and 32.
  • the first conductive layer 31 is provided in the entire region where the first and second electrodes 21 and 22 are provided.
  • the first conductive layer 31 can be composed of, for example, a conductive oxide such as indium oxide or zinc oxide.
  • the 1st conductive layer 31 may be comprised by the laminated body of the some conductive layer containing conductive materials other than a metal.
  • the first conductive layer 31 can be formed by a thin film forming method such as a CVD method or a sputtering method, for example.
  • the second conductive layer 32 can be made of a metal such as Ag, Cu, or Sn, or an alloy containing at least one of these metals.
  • the second conductive layer 32 may be configured by a stacked body of a plurality of metal layers.
  • the second conductive layer 32 can be formed by, for example, a plating method or a method of applying a conductive paste.
  • the second conductive layer 32 is disposed on a part of the first conductive layer 31.
  • the first and second electrodes 21 and 22 do not have the second conductive layer 32 but have a portion constituted by the first conductive layer 31.
  • the second conductive layer 32 includes, among the first and second electrodes 21 and 22, the first and second connection portions 21b and 22b, the first and second finger portions 21a, It is provided in the portion excluding the base end portion on the first or second connecting portion 21b, 22b side of 22a.
  • the second conductive layer 32 is not provided at the base end portions of the first and second finger portions 21a and 22a.
  • the portion of the first and second electrodes 21 and 22 positioned below at least one of the cut lines L1 and L2 is composed of the first conductive layer 31 and does not have the second conductive layer 32.
  • the portions located under the cut lines L1, L2 of both the first and second electrodes 21, 22 are constituted by the first conductive layer 31, and the second conductive layer 32 is I don't have it.
  • the portion of the first and second electrodes 21 and 22 located on the ends in the x direction of the photoelectric conversion unit 10 is the first conductive layer 31. And does not have the second conductive layer 32.
  • the second conductive layer 32 made of metal is not disposed under the cut lines L1 and L2, the metal layer 32 is not cut in the cutting process. Therefore, it is possible to suppress the occurrence of a short circuit due to the deformation of the metal layer 32 or the generation of particles from the metal layer 32.
  • the part located under the cut line of the 1st and 2nd electrode may have a metal layer.
  • a part of the portion where the first connection part of the photoelectric conversion part is arranged may be excised, and a part of the first connection part may be left.
  • variety of the remaining 1st connection part is below the width
  • a part of the portion where the second connection part of the photoelectric conversion part is arranged may be excised, and a part of the second connection part may be left.
  • variety of the remaining 2nd connection part is below the width
  • the photoelectric conversion part before excision may be an elongated shape whose longitudinal direction extends along one direction, and the shape of the photoelectric conversion part after excision may be a substantially square shape.
  • the excision of the photoelectric conversion part may be performed without using laser light. Specifically, for example, dicing or scribing may be used.
  • a plurality of first and second connection portions may be provided.
  • the first and second connection portions may be dot-shaped.
  • the cutting step may be performed so that each of the first and second electrodes reaches both ends in one direction of the photoelectric conversion unit after the cutting. That is, the cut line may be set so as to pass over both the first and second electrodes.
  • the excision step only the region where either one of the first and second electrodes is provided in the photoelectric conversion unit may be excised. In this case, the region where the electrode on the side of collecting the majority carriers of the photoelectric conversion unit is provided may be excised. In this way, loss due to minority carrier recombination can be suppressed, and improved photoelectric conversion characteristics can be obtained.

Abstract

Provided is a method for manufacturing a solar cell having improved photoelectric conversion efficiency. First and second electrodes (21, 22) are formed on a first main surface (10a) of a photoelectric conversion section (10). A cutting step of cutting a part of the photoelectric conversion section (10) is performed by cutting the photoelectric conversion section (10) along cut lines (L1, L2) that pass over at least one electrode of the first and second electrodes (21, 22).

Description

太陽電池の製造方法及び太陽電池Solar cell manufacturing method and solar cell
 本発明は、太陽電池の製造方法及び太陽電池に関する。 The present invention relates to a solar cell manufacturing method and a solar cell.
 従来、例えば特許文献1などにおいて、裏面に第1及び第2の電極を有する裏面接合型の太陽電池が提案されている。裏面接合型の太陽電池では、受光面に電極を設ける必要が必ずしもない。従って、改善された光電変換効率を実現し得る。 Conventionally, for example, Patent Document 1 proposes a back junction solar cell having first and second electrodes on the back surface. In a back junction solar cell, it is not always necessary to provide an electrode on the light receiving surface. Therefore, improved photoelectric conversion efficiency can be realized.
特開2005-101240号公報JP-A-2005-101240
 近年、太陽電池の光電変換効率をさらに改善したいという要望がある。 In recent years, there is a desire to further improve the photoelectric conversion efficiency of solar cells.
 本発明に係る太陽電池の製造方法では、光電変換部の第1の主面の上に第1及び第2の電極を形成する。第1及び第2の電極のうちの少なくとも一方の電極上を通過するカットラインに沿って光電変換部を切断することにより光電変換部の一部を切除する切除工程を行う。 In the method for manufacturing a solar cell according to the present invention, the first and second electrodes are formed on the first main surface of the photoelectric conversion unit. An excision step is performed in which a part of the photoelectric conversion unit is excised by cutting the photoelectric conversion unit along a cut line passing over at least one of the first and second electrodes.
 本発明に係る太陽電池は、光電変換部と、光電変換部の一主面の上に配された第1及び第2の電極とを備えている。第1及び第2の電極の少なくとも一方は、光電変換部の端にまで至っている。 The solar cell according to the present invention includes a photoelectric conversion part and first and second electrodes arranged on one main surface of the photoelectric conversion part. At least one of the first and second electrodes reaches the end of the photoelectric conversion unit.
 本発明によれば、改善された光電変換効率を有する太陽電池を製造し得る方法を提供することができる。 According to the present invention, a method capable of producing a solar cell having improved photoelectric conversion efficiency can be provided.
図1は、第1の実施形態における太陽電池の製造工程を説明するための略図的裏面図である。FIG. 1 is a schematic rear view for explaining the manufacturing process of the solar cell in the first embodiment. 図2は、図1の線II-II部分の略図的断面図である。FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. 図3は、第1の実施形態における太陽電池の製造工程を説明するための略図的断面図である。FIG. 3 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the first embodiment. 図4は、第1の実施形態における太陽電池の略図的裏面図である。FIG. 4 is a schematic rear view of the solar cell in the first embodiment. 図5は、図4の線V-V部分の略図的断面図である。FIG. 5 is a schematic cross-sectional view taken along line VV in FIG. 図6は、第2の実施形態における太陽電池の製造工程を説明するための略図的裏面図である。FIG. 6 is a schematic rear view for explaining the manufacturing process of the solar cell in the second embodiment. 図7は、図6の線VII-VII部分の略図的断面図である。FIG. 7 is a schematic cross-sectional view taken along line VII-VII in FIG.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
(第1の実施の形態)
 <太陽電池1の製造方法>
 (光電変換部10の用意)
 図1は、第1の実施形態における太陽電池1の製造工程を説明するための略図的裏面図である。また、図2は、図1の線II-II部分の略図的断面図である。太陽電池1を製造するに際しては、まず、光電変換部10を用意する。光電変換部10は、受光した際に、電子や正孔などのキャリアを生成させる。光電変換部10は、第1及び第2の主面10a、10bを有する。光電変換部10は、主として第2の主面10bにおいて受光する。このため、第2の主面10bを受光面といい、第1の主面10aを裏面という場合がある。光電変換部10は、第2の主面10bにおいて受光した際にキャリアを生成させるものであってもよいし、第2の主面10bに加えて、第1の主面10aにおいて受光した際にもキャリアを生成させるものであってもよい。
(First embodiment)
<Method for Manufacturing Solar Cell 1>
(Preparation of photoelectric conversion unit 10)
FIG. 1 is a schematic back view for explaining a manufacturing process of the solar cell 1 in the first embodiment. FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. In manufacturing the solar cell 1, first, the photoelectric conversion unit 10 is prepared. The photoelectric conversion unit 10 generates carriers such as electrons and holes when receiving light. The photoelectric conversion unit 10 includes first and second main surfaces 10a and 10b. The photoelectric conversion unit 10 receives light mainly on the second main surface 10b. For this reason, the 2nd main surface 10b may be called a light-receiving surface, and the 1st main surface 10a may be called a back surface. The photoelectric conversion unit 10 may generate carriers when receiving light on the second main surface 10b, or when receiving light on the first main surface 10a in addition to the second main surface 10b. May also generate carriers.
 光電変換部10は、半導体材料からなる基板を含む。光電変換部10は、第1の主面10aの一の領域にp型領域を有し、他の領域にn型領域を有する。p型領域は、基板の一主面上に形成されたp型の半導体層、または基板にp型不純物を拡散させることにより形成されたp型の拡散領域によって構成することができる。n型領域は、基板の一主面上に形成されたn型の半導体層、または基板にn型不純物を拡散させることにより形成されたn型の拡散領域によって構成することができる。 The photoelectric conversion unit 10 includes a substrate made of a semiconductor material. The photoelectric conversion unit 10 has a p-type region in one region of the first main surface 10a and an n-type region in the other region. The p-type region can be constituted by a p-type semiconductor layer formed on one main surface of the substrate, or a p-type diffusion region formed by diffusing p-type impurities in the substrate. The n-type region can be constituted by an n-type semiconductor layer formed on one main surface of the substrate or an n-type diffusion region formed by diffusing an n-type impurity in the substrate.
 基板とp型の半導体層の間に、例えば数Å~250Å程度の発電に実質的に寄与しない程度の厚みを有する実質的に真性なi型半導体層が配されていてもよい。また、基板とn型の半導体層の間に、例えば数Å~250Å程度の発電に実質的に寄与しない程度の厚みを有する実質的に真性なi型半導体層が配されていてもよい。 Between the substrate and the p-type semiconductor layer, for example, a substantially intrinsic i-type semiconductor layer having a thickness that does not substantially contribute to power generation of about several to 250 μm may be disposed. Further, a substantially intrinsic i-type semiconductor layer having a thickness that does not substantially contribute to power generation, for example, about several to 250 μm may be disposed between the substrate and the n-type semiconductor layer.
 なお、半導体材料からなる基板は、例えば、n型またはp型を有する結晶性シリコンにより構成することができる。p型半導体層は、例えば、p型のアモルファスシリコンにより構成することができる。n型半導体層は、例えば、n型のアモルファスシリコンにより構成することができる。i型半導体層は、i型のアモルファスシリコンにより構成することができる。 Note that the substrate made of a semiconductor material can be made of, for example, crystalline silicon having n-type or p-type. The p-type semiconductor layer can be composed of, for example, p-type amorphous silicon. The n-type semiconductor layer can be made of, for example, n-type amorphous silicon. The i-type semiconductor layer can be composed of i-type amorphous silicon.
 光電変換部10は、例えば、公知の方法により作製することができる。例えば、光電変換部10がp型半導体層及びn型半導体層を有する場合は、p型半導体層及びn型半導体層は、CVD(Chemical Vapor Deposition)法などの薄膜形成法により形成することができる。 The photoelectric conversion unit 10 can be manufactured by a known method, for example. For example, when the photoelectric conversion unit 10 includes a p-type semiconductor layer and an n-type semiconductor layer, the p-type semiconductor layer and the n-type semiconductor layer can be formed by a thin film forming method such as a CVD (Chemical Vapor Deposition) method. .
 (第1及び第2の電極21,22の形成)
 次に、光電変換部10の第1の主面10aにおけるp型領域の上に、第1の電極21を形成する。また、n型領域の上に、第2の電極22を形成する。
(Formation of the first and second electrodes 21 and 22)
Next, the first electrode 21 is formed on the p-type region in the first main surface 10 a of the photoelectric conversion unit 10. A second electrode 22 is formed on the n-type region.
 第1及び第2の電極21,22のそれぞれは、くし歯状の形状を有する。具体的には、第1の電極21は、複数の第1のフィンガー部21aと、第1の接続部21bとを有する。複数の第1のフィンガー部21aのそれぞれは、x方向(一の方向)に沿って延びている。複数の第1のフィンガー部21aは、x方向に対して交差するy方向(他の方向)に沿って相互に間隔をおいて配されている。複数の第1のフィンガー部21aは、第1の接続部21bに電気的に接続されている。第1の接続部21bは、複数の第1のフィンガー部21aのx方向のx1側に配されている。第1の接続部21bは、第1の主面10aのx方向のx1側端部に配されている。第1の接続部21bの幅は、第1のフィンガー部21aの幅よりも太い。 Each of the first and second electrodes 21 and 22 has a comb-like shape. Specifically, the first electrode 21 has a plurality of first finger portions 21a and a first connection portion 21b. Each of the plurality of first finger portions 21a extends along the x direction (one direction). The plurality of first finger portions 21a are arranged at intervals from each other along the y direction (the other direction) intersecting the x direction. The plurality of first finger portions 21a are electrically connected to the first connection portion 21b. The 1st connection part 21b is distribute | arranged to the x1 side of the x direction of the some 1st finger part 21a. The first connection portion 21b is disposed at the x1 side end portion of the first main surface 10a in the x direction. The width of the first connection portion 21b is thicker than the width of the first finger portion 21a.
 第2の電極22は、複数の第2のフィンガー部22aと、第2の接続部22bとを有する。複数の第2のフィンガー部22aのそれぞれは、x方向に沿って延びている。複数の第2のフィンガー部22aは、y方向に沿って相互に間隔をおいて配されている。複数の第1のフィンガー部21aと複数の第2のフィンガー部22aとは、y方向に沿って、交互に、相互に間隔をおいて配されている。複数の第2のフィンガー部22aは、第2の接続部22bに電気的に接続されている。第2の接続部22bは、複数の第2のフィンガー部22aのx方向のx2側に配されている。第2の接続部22bは、第1の主面10aのx方向のx2側端部に配されている。第2の接続部22bの幅は、第2のフィンガー部22aの幅よりも太い。 The second electrode 22 has a plurality of second finger portions 22a and a second connection portion 22b. Each of the plurality of second finger portions 22a extends along the x direction. The plurality of second finger portions 22a are arranged at intervals from each other along the y direction. The plurality of first finger portions 21a and the plurality of second finger portions 22a are alternately arranged at intervals in the y direction. The plurality of second finger portions 22a are electrically connected to the second connection portion 22b. The 2nd connection part 22b is distribute | arranged to the x2 side of the x direction of the some 2nd finger part 22a. The second connection portion 22b is disposed on the x2 side end portion in the x direction of the first main surface 10a. The width of the second connection portion 22b is larger than the width of the second finger portion 22a.
 図2に示されるように、第1の電極21は、光電変換部10の第1の主面10aの端から所定の間隔を除いて形成される。これは、光電変換部10の第1の主面の端まで形成しようとすると、第1の電極21が光電変換部10の側面まで回り込んでしまい、不所望なリークが生じて特性が低下するおそれがあるためである。このような特性低下が生じることを抑制するために、通常は第1の主面10aの端から所定の間隔を除いて第1の電極21が形成される。この点は、第2の電極22も同様である。尚、このような電極配置は、第1の電極21や第2の電極22が設けられていない端部領域で生成されたキャリアの収集を低下させてしまう可能性がある。 As shown in FIG. 2, the first electrode 21 is formed at a predetermined interval from the end of the first main surface 10 a of the photoelectric conversion unit 10. This is because if the first electrode 21 is formed to the end of the first main surface of the photoelectric conversion unit 10, the first electrode 21 wraps around to the side surface of the photoelectric conversion unit 10, causing undesired leaks and reducing the characteristics. This is because there is a fear. In order to suppress the occurrence of such characteristic deterioration, the first electrode 21 is usually formed by removing a predetermined distance from the end of the first main surface 10a. This also applies to the second electrode 22. Note that such an electrode arrangement may reduce the collection of carriers generated in the end region where the first electrode 21 and the second electrode 22 are not provided.
 第1の電極21及び第2の電極22は、低抵抗の導電材、例えば金属を含んで構成される。第1の電極21及び第2の電極22は、単層構造であっても良いし、複数の層の積層構造であっても良い。また、金属以外に導電性酸化物の層を含んでいても良い。第1の電極21及び第2の電極22は、蒸着法、スパッタ法、印刷法、メッキ法等種々の方法を用いて形成することができる。 The first electrode 21 and the second electrode 22 include a low-resistance conductive material such as a metal. The first electrode 21 and the second electrode 22 may have a single layer structure or a stacked structure of a plurality of layers. In addition to a metal, a conductive oxide layer may be included. The first electrode 21 and the second electrode 22 can be formed using various methods such as a vapor deposition method, a sputtering method, a printing method, and a plating method.
 (検査工程)
 次に、第1及び第2の電極21,22が形成された光電変換部10の電気的特性を検査する検査工程を行う。具体的には、第1の接続部21bと第2の接続部22bとに検査用プローブを接触させることにより第1及び第2の電極21,22が形成された光電変換部10の電気的特性を測定する。その結果、測定された電気的特性が予め定められた条件を満たしていなかった場合は廃棄し、満たしていた場合は、次の切除工程を行う。
(Inspection process)
Next, an inspection process for inspecting the electrical characteristics of the photoelectric conversion unit 10 on which the first and second electrodes 21 and 22 are formed is performed. Specifically, the electrical characteristics of the photoelectric conversion unit 10 in which the first and second electrodes 21 and 22 are formed by bringing an inspection probe into contact with the first connection portion 21b and the second connection portion 22b. Measure. As a result, when the measured electrical characteristics do not satisfy the predetermined condition, the electrical characteristics are discarded, and when the measured electrical characteristics are satisfied, the next excision step is performed.
 なお、検査工程において測定する電気的特性は、例えば、光電変換効率等であってもよい。 Note that the electrical characteristics measured in the inspection process may be, for example, photoelectric conversion efficiency.
 (切除工程)
 次に、第1及び第2の電極21,22のうちの少なくとも一方の上を通過するカットラインL1,L2に沿って光電変換部10を切断する。これにより、光電変換部10の一の方向(x方向)における端部を切除する。
(Resection process)
Next, the photoelectric conversion unit 10 is cut along cut lines L1 and L2 that pass over at least one of the first and second electrodes 21 and 22. Thereby, the edge part in one direction (x direction) of the photoelectric conversion part 10 is excised.
 詳細には、カットラインL1は、第1の電極21の上を通過する。カットラインL1は、第1の接続部21b上を通過しても良いし、複数の第1のフィンガー部21a上を通過しても良い。また、カットラインL1は、第2の電極22の上を通過しても良いし、通過しなくても良い。図1に示される例では、カットラインL1は複数の第1のフィンガー部21aの上を通過し、第2の電極22の上は通過しない。このカットラインL1に沿って光電変換部10を切断することにより、光電変換部10のx方向におけるx1側端部を切除する。よって、光電変換部10の第1の接続部21bが配された部分の少なくとも一部が切除される。本実施形態では、光電変換部10の第1の接続部21bが配された部分の全体が切除される。 Specifically, the cut line L1 passes over the first electrode 21. The cut line L1 may pass over the first connection portion 21b or may pass over the plurality of first finger portions 21a. The cut line L1 may pass over the second electrode 22 or may not pass through. In the example shown in FIG. 1, the cut line L <b> 1 passes over the plurality of first finger portions 21 a and does not pass over the second electrode 22. By cutting the photoelectric conversion unit 10 along the cut line L1, the x1 side end in the x direction of the photoelectric conversion unit 10 is cut off. Therefore, at least a part of the portion where the first connection portion 21b of the photoelectric conversion unit 10 is disposed is cut off. In the present embodiment, the entire portion where the first connection portion 21b of the photoelectric conversion unit 10 is disposed is cut out.
 カットラインL2は、第2の電極22の上を通過する。カットラインL2は、第2の接続部22b上を通過しても良いし、複数のフィンガー部22a上を通過しても良い。また、カットラインL2は、第1の電極21の上を通過しても良いし、通過しなくても良い。図1に示される例では、カットラインL2は複数の第2のフィンガー部22aの上を通過し、第1の電極21の上は通過しない。このカットラインL2に沿って光電変換部10を切断することにより、光電変換部10のx方向におけるx2側端部を切除する。よって、光電変換部10の第2の接続部22bが配された部分の少なくとも一部が切除される。具体的には、光電変換部10の第2の接続部22bが配された部分の全体が切除される。 The cut line L2 passes over the second electrode 22. The cut line L2 may pass over the second connection portion 22b or may pass over the plurality of finger portions 22a. Further, the cut line L2 may or may not pass over the first electrode 21. In the example shown in FIG. 1, the cut line L <b> 2 passes over the plurality of second finger portions 22 a and does not pass over the first electrode 21. By cutting the photoelectric conversion unit 10 along the cut line L2, the end portion on the x2 side in the x direction of the photoelectric conversion unit 10 is excised. Therefore, at least a part of the portion where the second connection portion 22b of the photoelectric conversion unit 10 is disposed is cut off. Specifically, the entire portion where the second connection portion 22b of the photoelectric conversion unit 10 is disposed is cut out.
 なお、光電変換部10の切除方法は、特に限定されないが、以下の方法により光電変換部10を切除することが好ましい。即ち、まず、図3に示されるように、光電変換部10の第2の主面10b上を、カットラインL1,L2に沿ってレーザーを走査させる。これにより、光電変換部10の第2の主面10b側の部分に溝10cを形成する。次に、溝10cに沿って光電変換部10を折り曲げることにより、光電変換部10を切断する。 In addition, although the excision method of the photoelectric conversion part 10 is not specifically limited, It is preferable to excise the photoelectric conversion part 10 with the following method. That is, first, as shown in FIG. 3, the laser is scanned on the second main surface 10b of the photoelectric conversion unit 10 along the cut lines L1 and L2. Thereby, the groove 10c is formed in the portion of the photoelectric conversion unit 10 on the second main surface 10b side. Next, the photoelectric conversion unit 10 is cut by bending the photoelectric conversion unit 10 along the groove 10c.
 以上の工程により、図4に示される太陽電池1を製造することができる。 Through the above steps, the solar cell 1 shown in FIG. 4 can be manufactured.
 (太陽電池1の構成)
 太陽電池1は、両端部が切除された光電変換部10により構成されている光電変換部10Aを備えている。光電変換部10Aは、第1及び第2の主面10a、10bと、切断面である第1及び第2の端面10d、10eとを有する。図5に示されるように、第1及び第2の端面10d、10eは、レーザー加工面11と割面12とを有する。レーザー加工面11は、切除工程において照射したレーザー光により加工された面である。レーザー加工面11は、端面10d、10eの第2の主面10b側の部分に配されている。レーザー加工面11は、第1の主面10aには至っていない。
(Configuration of solar cell 1)
The solar cell 1 includes a photoelectric conversion unit 10A configured by the photoelectric conversion unit 10 with both ends cut off. The photoelectric conversion unit 10A includes first and second main surfaces 10a and 10b and first and second end surfaces 10d and 10e which are cut surfaces. As shown in FIG. 5, the first and second end faces 10 d, 10 e have a laser processed surface 11 and a split surface 12. The laser processed surface 11 is a surface processed by the laser beam irradiated in the cutting process. The laser processing surface 11 is disposed on the second main surface 10b side of the end surfaces 10d and 10e. The laser processed surface 11 does not reach the first main surface 10a.
 割面12は、光電変換部10が折り曲げられて割られた際に生成された面である。割面12は、端面10d、10eの第1の主面10a側の部分に配されている。 The split surface 12 is a surface generated when the photoelectric conversion unit 10 is bent and cracked. The split surface 12 is disposed on the first main surface 10a side of the end surfaces 10d and 10e.
 尚、レーザーを走査させることによって、溝10cを第2の主面10bから第1の主面10aに至るように形成することで、光電変換部10を切除しても良い。この場合には、割面12は配されない。 In addition, the photoelectric conversion unit 10 may be cut off by forming the groove 10c from the second main surface 10b to the first main surface 10a by scanning the laser. In this case, the split surface 12 is not arranged.
 第1の主面10aの上には、第1及び第2の電極21A,22Aが配されている。第1の電極21Aは、第1の電極21の第1の接続部21b側が切除されたものにより構成されている。第1の電極21Aは、複数の第1のフィンガー部21aを含む。複数の第1のフィンガー部21aのそれぞれは、x方向に沿って延びている。複数の第1のフィンガー部21aは、y方向に沿って相互に間隔をおいて配されている。複数の第1のフィンガー部21aは、光電変換部10Aのx方向のx1側端に至っている。 The first and second electrodes 21A and 22A are arranged on the first main surface 10a. 21 A of 1st electrodes are comprised by what the 1st connection part 21b side of the 1st electrode 21 was excised. The first electrode 21A includes a plurality of first finger portions 21a. Each of the plurality of first finger portions 21a extends along the x direction. The plurality of first finger portions 21a are arranged at intervals from each other along the y direction. The plurality of first finger parts 21a reach the x1 side end in the x direction of the photoelectric conversion part 10A.
 第2の電極22Aは、第2の電極22の第2の接続部22bが切除されたものにより構成されている。第2の電極22Aは、複数の第2のフィンガー部22aを含む。複数の第2のフィンガー部22aのそれぞれは、x方向に沿って延びている。複数の第2のフィンガー部22aは、y方向に沿って相互に間隔をおいて配されている。複数の第2のフィンガー部22aと複数の第1のフィンガー部21aとは、y方向において交互に、相互に間隔をおいて配されている。複数の第2のフィンガー部22aは、光電変換部10Aのx方向のx2側端に至っている。 The second electrode 22 </ b> A is configured by removing the second connection portion 22 b of the second electrode 22. The second electrode 22A includes a plurality of second finger portions 22a. Each of the plurality of second finger portions 22a extends along the x direction. The plurality of second finger portions 22a are arranged at intervals from each other along the y direction. The plurality of second finger portions 22a and the plurality of first finger portions 21a are alternately arranged at intervals in the y direction. The plurality of second finger portions 22a reach the x2 side end in the x direction of the photoelectric conversion portion 10A.
 ところで、有効面積を拡大し、改善された光電変換効率を実現する観点からは、電極を光電変換部の端に至るように配することが好ましい。しかしながら、太陽電池の特性を低下させずに電極を光電変換部の端に至るように形成するのは困難である。 Incidentally, from the viewpoint of increasing the effective area and realizing improved photoelectric conversion efficiency, it is preferable to arrange the electrode so as to reach the end of the photoelectric conversion unit. However, it is difficult to form the electrode so as to reach the end of the photoelectric conversion unit without deteriorating the characteristics of the solar cell.
 それに対して本実施形態では、第1及び第2の電極21,22を、光電変換部10の第1の主面10aの端に至るように設ける必要は必ずしもない。第1及び第2の電極21,22のうちの少なくとも一方の上を通過するカットラインL1,L2に沿って光電変換部10を切断することによって、第1及び第2の電極21,22の少なくとも一方が光電変換部10Aのx方向の端に至っている太陽電池1を製造できる。従って、第1及び第2の電極21,22の少なくとも一方が光電変換部10Aのx方向における端部にまで至っており、改善された光電変換効率を有する太陽電池1を容易に製造することができる。 In contrast, in the present embodiment, it is not always necessary to provide the first and second electrodes 21 and 22 so as to reach the end of the first main surface 10a of the photoelectric conversion unit 10. At least one of the first and second electrodes 21 and 22 is cut by cutting the photoelectric conversion unit 10 along cut lines L1 and L2 passing over at least one of the first and second electrodes 21 and 22. The solar cell 1 in which one reaches the end in the x direction of the photoelectric conversion unit 10A can be manufactured. Accordingly, at least one of the first and second electrodes 21 and 22 reaches the end of the photoelectric conversion unit 10A in the x direction, and the solar cell 1 having improved photoelectric conversion efficiency can be easily manufactured. .
 また、切除工程において、レーザー光により形成する溝10cを、光電変換部10の第2の主面10b側の部分に、第1の主面10aに至らないように形成することが好ましい。このようにすることで、レーザー光の照射により、第1及び第2の電極21,22に与える熱影響が小さくできる。この結果、第1及び第2の電極21,22の溶融に伴うリーク電流の発生等の悪影響を抑制することができる。また、レーザー光の照射により、光電変換部10の第1の主面10a側部分に位置しているpn接合部等の半導体接合が損傷しにくいからである。従って、より改善された光電変換効率を実現することができる。さらに改善された光電変換効率を実現する観点からは、溝10cを、光電変換部10のpn接合(pin接合を含む)が設けられた部分に至らないように形成することが好ましい。 Further, in the excision step, it is preferable to form the groove 10c formed by the laser beam in the portion on the second main surface 10b side of the photoelectric conversion unit 10 so as not to reach the first main surface 10a. By doing in this way, the thermal influence given to the 1st and 2nd electrodes 21 and 22 by irradiation of a laser beam can be made small. As a result, it is possible to suppress adverse effects such as the generation of leakage current accompanying the melting of the first and second electrodes 21 and 22. Moreover, it is because semiconductor junctions, such as a pn junction part located in the 1st main surface 10a side part of the photoelectric conversion part 10, are hard to be damaged by irradiation of a laser beam. Therefore, more improved photoelectric conversion efficiency can be realized. From the viewpoint of realizing further improved photoelectric conversion efficiency, it is preferable to form the groove 10c so as not to reach the portion where the pn junction (including the pin junction) of the photoelectric conversion unit 10 is provided.
 ところで、太陽電池の製造に際しては、製造工程において、電気的特性を測定しておくことが好ましい。電気的特性が規格外である太陽電池が太陽電池モジュールの製造に使用されたり、出荷されたりすることを抑止するためである。 Incidentally, when manufacturing a solar cell, it is preferable to measure electrical characteristics in the manufacturing process. This is to prevent a solar cell having a non-standard electrical characteristic from being used or manufactured for manufacturing a solar cell module.
 しかしながら、第1及び第2の電極のそれぞれが複数のフィンガー部により構成されており、接続部が設けられていない場合は、電気的特性を測定するためには、複数のフィンガー部のそれぞれに正確に測定用プローブを接触させなければならない。従って、電気的特性の検査が困難である。 However, when each of the first and second electrodes is composed of a plurality of finger portions and no connection portion is provided, in order to measure the electrical characteristics, each of the plurality of finger portions is accurate. The measurement probe must be in contact with Therefore, it is difficult to inspect electrical characteristics.
 一方、第1及び第2の電極のそれぞれに、複数のフィンガー部が電気的に接続されたバスバー部を設けた場合は、バスバー部に検査用プローブを接触させることにより電気的特性を容易に測定することができる。しかしながら、バスバー部を設けた場合は、光電変換部のバスバー部の下に位置する部分において発生したキャリアが電極により収集されるまでに移動しなければならない距離が長くなる。従って、光電変換効率が低くなる場合がある。 On the other hand, when each of the first and second electrodes is provided with a bus bar portion in which a plurality of finger portions are electrically connected, the electrical characteristics can be easily measured by bringing an inspection probe into contact with the bus bar portion. can do. However, when the bus bar portion is provided, the distance that must be moved before the carriers generated in the portion located below the bus bar portion of the photoelectric conversion portion are collected by the electrode becomes long. Therefore, the photoelectric conversion efficiency may be lowered.
 それに対して本実施形態では、切除前の光電変換部10の第1の主面10aの上には、第1の接続部21bを有する第1の電極21及び第2の接続部22bを有する第2の電極22が配されている。このため、切除工程を行う前であれば、第1の接続部21b及び第2の接続部22bに検査用プローブを接触させることにより容易に電気的特性を測定することができる。さらに、切除工程において光電変換部10の第1の接続部21b及び第2の接続部22bの少なくとも一方が設けられた側を切除する。このため、太陽電池1においては、第1及び第2の電極21A,22Aは、複数のフィンガー部21a、22aにより構成されており、面積の大きい接続部21b、22bを有さない。よって、太陽電池1では、キャリアの再結合による消失を抑制することができる。従って、改善された光電変換効率を実現することができる。 On the other hand, in this embodiment, the first electrode 21 having the first connection portion 21b and the second connection portion 22b having the first connection portion 21b are provided on the first main surface 10a of the photoelectric conversion portion 10 before excision. Two electrodes 22 are arranged. For this reason, if it is before performing a cutting process, an electrical property can be easily measured by making the probe for a test contact the 1st connection part 21b and the 2nd connection part 22b. Further, in the cutting process, the side of the photoelectric conversion unit 10 where at least one of the first connection part 21b and the second connection part 22b is provided is cut off. For this reason, in the solar cell 1, the first and second electrodes 21 </ b> A and 22 </ b> A are configured by a plurality of finger portions 21 a and 22 a, and do not have the connection portions 21 b and 22 b having a large area. Therefore, in the solar cell 1, disappearance due to carrier recombination can be suppressed. Therefore, improved photoelectric conversion efficiency can be realized.
 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, another example of the preferred embodiment of the present invention will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.
 (第2の実施形態)
 第2の実施形態では、図6及び図7に示されるように、光電変換部10の第1の主面10aの上に、金属以外の導電材料を含む第1の導電層31を形成し、第1の導電層32の上に金属からなる第2の導電層32を形成することにより第1及び第2の電極21,22の少なくとも一方を形成する。具体的には、第1及び第2の導電層31,32の積層体により、第1及び第2の電極21,22の両方を構成する。
(Second Embodiment)
In 2nd Embodiment, as FIG.6 and FIG.7 shows, on the 1st main surface 10a of the photoelectric conversion part 10, the 1st conductive layer 31 containing conductive materials other than a metal is formed, At least one of the first and second electrodes 21 and 22 is formed by forming a second conductive layer 32 made of metal on the first conductive layer 32. Specifically, both the first and second electrodes 21 and 22 are constituted by a laminate of the first and second conductive layers 31 and 32.
 第1の導電層31は、第1及び第2の電極21,22が設けられた領域の全体に設けられている。第1の導電層31は、例えば、酸化インジウム、酸化亜鉛等の導電性酸化物により構成することができる。第1の導電層31は、金属以外の導電材料を含む複数の導電層の積層体により構成されていてもよい。なお、第1の導電層31は、例えば、CVD法やスパッタリング法等の薄膜形成法により形成することができる。 The first conductive layer 31 is provided in the entire region where the first and second electrodes 21 and 22 are provided. The first conductive layer 31 can be composed of, for example, a conductive oxide such as indium oxide or zinc oxide. The 1st conductive layer 31 may be comprised by the laminated body of the some conductive layer containing conductive materials other than a metal. The first conductive layer 31 can be formed by a thin film forming method such as a CVD method or a sputtering method, for example.
 第2の導電層32は、Ag、Cu、Snなどの金属や、それらの金属の少なくとも一種を含む合金により構成することができる。第2の導電層32は、複数の金属層の積層体により構成されていてもよい。なお、第2の導電層32は、例えば、めっき法や、導電性ペーストを塗布する方法により形成することができる。 The second conductive layer 32 can be made of a metal such as Ag, Cu, or Sn, or an alloy containing at least one of these metals. The second conductive layer 32 may be configured by a stacked body of a plurality of metal layers. The second conductive layer 32 can be formed by, for example, a plating method or a method of applying a conductive paste.
 詳細には、第2の導電層32は、第1の導電層31の一部の上に配されている。即ち、第1及び第2の電極21,22は、第2の導電層32を有さず、第1の導電層31により構成されている部分を有する。より具体的には、第2の導電層32は、第1及び第2の電極21,22のうち、第1及び第2の接続部21b、22bと、第1及び第2のフィンガー部21a、22aの第1または第2の接続部21b、22b側の基端部を除いた部分とに設けられている。第1及び第2のフィンガー部21a、22aの基端部には、第2の導電層32は設けられていない。 Specifically, the second conductive layer 32 is disposed on a part of the first conductive layer 31. In other words, the first and second electrodes 21 and 22 do not have the second conductive layer 32 but have a portion constituted by the first conductive layer 31. More specifically, the second conductive layer 32 includes, among the first and second electrodes 21 and 22, the first and second connection portions 21b and 22b, the first and second finger portions 21a, It is provided in the portion excluding the base end portion on the first or second connecting portion 21b, 22b side of 22a. The second conductive layer 32 is not provided at the base end portions of the first and second finger portions 21a and 22a.
 第1及び第2の電極21,22の少なくとも一方のカットラインL1,L2の下に位置する部分は、第1の導電層31により構成されており、第2の導電層32を有さない。具体的には、第1及び第2の電極21,22の両方のカットラインL1,L2の下に位置する部分は、第1の導電層31により構成されており、第2の導電層32を有さない。このため、第2の実施形態において製造される太陽電池では、第1及び第2の電極21,22の光電変換部10のx方向における端の上に位置する部分は、第1の導電層31により構成され、第2の導電層32を有さない。 The portion of the first and second electrodes 21 and 22 positioned below at least one of the cut lines L1 and L2 is composed of the first conductive layer 31 and does not have the second conductive layer 32. Specifically, the portions located under the cut lines L1, L2 of both the first and second electrodes 21, 22 are constituted by the first conductive layer 31, and the second conductive layer 32 is I don't have it. For this reason, in the solar cell manufactured in the second embodiment, the portion of the first and second electrodes 21 and 22 located on the ends in the x direction of the photoelectric conversion unit 10 is the first conductive layer 31. And does not have the second conductive layer 32.
 以上のように、本実施形態では、カットラインL1,L2の下に金属からなる第2の導電層32を配さないため、切除工程において、金属層32は、切断されない。従って、金属層32が変形したり、金属層32からパーティクルが生じたりすることに起因して短絡が生じることを抑制することができる。 As described above, in the present embodiment, since the second conductive layer 32 made of metal is not disposed under the cut lines L1 and L2, the metal layer 32 is not cut in the cutting process. Therefore, it is possible to suppress the occurrence of a short circuit due to the deformation of the metal layer 32 or the generation of particles from the metal layer 32.
 尚、本発明はここでは記載していない様々な実施形態を含む。例えば、第1及び第2の電極のカットラインの下に位置する部分は、金属層を有していてもよい。 The present invention includes various embodiments that are not described here. For example, the part located under the cut line of the 1st and 2nd electrode may have a metal layer.
 切除工程において光電変換部の第1の接続部が配された部分の一部を切除し、第1の接続部の一部を残存させてもよい。その場合、残存した第1の接続部の幅は、第1のフィンガー部の幅以下であることが好ましい。そうすることにより、改善された光電変換効率を得ることができる。 In the excision step, a part of the portion where the first connection part of the photoelectric conversion part is arranged may be excised, and a part of the first connection part may be left. In that case, it is preferable that the width | variety of the remaining 1st connection part is below the width | variety of a 1st finger part. By doing so, improved photoelectric conversion efficiency can be obtained.
 同様に、切除工程において光電変換部の第2の接続部が配された部分の一部を切除し、第2の接続部の一部を残存させてもよい。その場合、残存した第2の接続部の幅は、第2のフィンガー部の幅以下であることが好ましい。そうすることにより、改善された光電変換効率を得ることができる。 Similarly, in the excision step, a part of the portion where the second connection part of the photoelectric conversion part is arranged may be excised, and a part of the second connection part may be left. In that case, it is preferable that the width | variety of the remaining 2nd connection part is below the width | variety of a 2nd finger part. By doing so, improved photoelectric conversion efficiency can be obtained.
 切除前の光電変換部を長手方向が一の方向に沿って延びる細長形状とし、切除後の光電変換部の形状を略正方形状としてもよい。 The photoelectric conversion part before excision may be an elongated shape whose longitudinal direction extends along one direction, and the shape of the photoelectric conversion part after excision may be a substantially square shape.
 光電変換部の切除をレーザー光を用いずに行ってもよい。具体的には、例えば、ダイシング,スクライビングなどを用いても良い。 The excision of the photoelectric conversion part may be performed without using laser light. Specifically, for example, dicing or scribing may be used.
 第1及び第2の接続部のそれぞれを複数設けてもよい。また、第1及び第2の接続部をドット状としてもよい。 A plurality of first and second connection portions may be provided. The first and second connection portions may be dot-shaped.
 第1及び第2の電極のそれぞれが、切除後の光電変換部の一の方向における両端に至るように切除工程を行ってもよい。即ち、第1及び第2の電極の両方の上を通過するようにカットラインを設定してもよい。 The cutting step may be performed so that each of the first and second electrodes reaches both ends in one direction of the photoelectric conversion unit after the cutting. That is, the cut line may be set so as to pass over both the first and second electrodes.
 切除工程において、光電変換部のうち、第1及び第2の電極のうちどちらか一方の電極が設けられた領域だけを切除してもよい。この場合、光電変換部の多数キャリアを収集する側の電極が設けられた領域を切除するようにすれば良い。このようにすることで、少数キャリアの再結合による損失を抑制することができ、改善された光電変換特性を得ることができる。 In the excision step, only the region where either one of the first and second electrodes is provided in the photoelectric conversion unit may be excised. In this case, the region where the electrode on the side of collecting the majority carriers of the photoelectric conversion unit is provided may be excised. In this way, loss due to minority carrier recombination can be suppressed, and improved photoelectric conversion characteristics can be obtained.
 以上のように、本発明はここでは記載していない様々な実施形態を含む。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
1…太陽電池
10…切除前の光電変換部
10A…切除後の光電変換部
10a…第1の主面
10b…第2の主面
10c…溝
10d、10e…端面
11…レーザー加工面
12…割面
21…切除前の第1の電極
22…切除前の第2の電極
21A…切除後の第1の電極
22A…切除後の第2の電極
21a…第1のフィンガー部
21b…第1の接続部
22a…第2のフィンガー部
22b…第2の接続部
31…第1の導電層
32…第2の導電層
L1,L2…カットライン
DESCRIPTION OF SYMBOLS 1 ... Solar cell 10 ... Photoelectric conversion part 10A before excision ... Photoelectric conversion part 10a after excision ... 1st main surface 10b ... 2nd main surface 10c ... Groove 10d, 10e ... End surface 11 ... Laser processing surface 12 ... Split Surface 21 ... First electrode 22 before excision ... Second electrode 21A before excision ... First electrode 22A after excision ... Second electrode 21a after excision ... First finger portion 21b ... First connection Part 22a ... second finger part 22b ... second connection part 31 ... first conductive layer 32 ... second conductive layers L1, L2 ... cut line

Claims (12)

  1.  光電変換部の第1の主面の上に第1及び第2の電極を形成する工程と、
     前記第1及び第2の電極のうちの少なくとも一方の電極上を通過するカットラインに沿って前記光電変換部を切断することにより前記光電変換部の一部を切除する切除工程と、
    を備える、太陽電池の製造方法。
    Forming first and second electrodes on the first main surface of the photoelectric conversion unit;
    An excision step of excising a part of the photoelectric conversion unit by cutting the photoelectric conversion unit along a cut line passing over at least one of the first and second electrodes;
    A method for manufacturing a solar cell.
  2.  請求項1に記載の太陽電池の製造方法であって、
     前記切除工程では、前記光電変換部の端部を切除する。
    It is a manufacturing method of the solar cell of Claim 1, Comprising:
    In the excision step, an end of the photoelectric conversion unit is excised.
  3.  請求項1または2に記載の太陽電池の製造方法であって、
     前記切除工程において、前記光電変換部の第2の主面上を前記カットラインに沿ってレーザーを走査させることにより、前記光電変換部の前記第2の主面側の部分に前記第1の主面に至らない溝を形成し、前記溝に沿って前記光電変換部を折り曲げることにより前記光電変換部を切断する。
    It is a manufacturing method of the solar cell of Claim 1 or 2, Comprising:
    In the excision step, a laser is scanned on the second main surface of the photoelectric conversion unit along the cut line, so that the first main surface side portion of the photoelectric conversion unit is located on the second main surface side. A groove that does not reach the surface is formed, and the photoelectric conversion part is cut by bending the photoelectric conversion part along the groove.
  4.  請求項1~3のいずれか1項に記載の太陽電池の製造方法であって、
     前記第1の電極は、
     一の方向に沿って延びる複数の第1のフィンガー部と、
     前記複数の第1のフィンガー部が電気的に接続されており、前記切断前の光電変換部の前記一の方向における一方側端部に位置する第1の接続部と、
    を有し、
     前記第2の電極は、
     前記一の方向に沿って延びる複数の第2のフィンガー部と、
     前記複数の第2のフィンガー部が電気的に接続されており、前記切断前の光電変換部の前記一の方向における他方側端部に位置する第2の接続部と、
    を有し、
     前記切除工程において、前記一の方向における端部側において、前記第1及び第2の電極のうち少なくとも一方の電極の一部を切除する。
    A method for manufacturing a solar cell according to any one of claims 1 to 3,
    The first electrode is
    A plurality of first finger portions extending along one direction;
    The plurality of first finger parts are electrically connected, and a first connection part located at one end in the one direction of the photoelectric conversion part before cutting,
    Have
    The second electrode is
    A plurality of second finger portions extending along the one direction;
    The plurality of second finger portions are electrically connected, and a second connection portion located at the other end in the one direction of the photoelectric conversion portion before cutting,
    Have
    In the excision step, a part of at least one of the first and second electrodes is excised on the end side in the one direction.
  5.  請求項4に記載の太陽電池の製造方法であって、
     前記切除工程において、前記一の方向における端部側において、前記第1及び第2の接続部のうちの少なくとも一方の接続部の一部を切除する。
    It is a manufacturing method of the solar cell of Claim 4, Comprising:
    In the cutting step, a part of at least one of the first and second connecting portions is cut off on the end side in the one direction.
  6.  請求項4または5に記載の太陽電池の製造方法であって、
     前記切除工程に先立って、前記第1の接続部と前記第2の接続部とに検査用プローブを接触させることにより前記第1及び第2の電極が形成された光電変換部の電気的特性を測定する工程をさらに備える。
    It is a manufacturing method of the solar cell of Claim 4 or 5,
    Prior to the excision step, the electrical characteristics of the photoelectric conversion part in which the first and second electrodes are formed by bringing an inspection probe into contact with the first connection part and the second connection part. The method further includes a step of measuring.
  7.  請求項6に記載の太陽電池の製造方法であって、
     前記測定された前記電気的特性の結果に基づいて後工程を進めるか否かを判断する判断工程を備え、
     前記判断工程の結果に基づいて、前記切除工程を行う。
    It is a manufacturing method of the solar cell according to claim 6,
    A determination step of determining whether or not to proceed with a post-process based on the result of the measured electrical characteristics;
    The excision process is performed based on the result of the determination process.
  8.  請求項1~7のいずれか一項に記載の太陽電池の製造方法であって、
     前記光電変換部の前記第1の主面の上に金属以外の導電材料を含む第1の導電層を形成し、前記第1の導電層の上に金属からなる第2の導電層を形成することにより前記第1及び第2の電極の少なくとも一方を形成し、
     前記第1及び第2の電極の前記カットラインの下に位置する部分は、前記第1の導電層により構成されており、前記第2の導電層を有さない。
    A method for producing a solar cell according to any one of claims 1 to 7,
    A first conductive layer containing a conductive material other than metal is formed on the first main surface of the photoelectric conversion unit, and a second conductive layer made of metal is formed on the first conductive layer. Thereby forming at least one of the first and second electrodes,
    The portions of the first and second electrodes located below the cut line are constituted by the first conductive layer and do not have the second conductive layer.
  9.  光電変換部と、
     前記光電変換部の一主面の上に配された第1及び第2の電極と、
    を備え、
     前記第1及び第2の電極の少なくとも一方は、前記光電変換部の端にまで至っている、太陽電池。
    A photoelectric conversion unit;
    First and second electrodes disposed on one main surface of the photoelectric conversion unit;
    With
    At least one of the first and second electrodes is a solar cell that reaches the end of the photoelectric conversion unit.
  10.  請求項9に記載の太陽電池であって、
     前記第1及び第2の電極の少なくとも一方が前記光電変換部の前記一の方向における一方側の端にまで至っており、前記第1及び第2の電極の少なくとも他方が前記光電変換部の前記一の方向における他方側の端にまで至っている。
    The solar cell according to claim 9,
    At least one of the first and second electrodes reaches one end of the photoelectric conversion unit in the one direction, and at least the other of the first and second electrodes is the one of the photoelectric conversion unit. To the other end in the direction of.
  11.  請求項9または10に記載の太陽電池であって、
     前記第1又は第2の電極が端まで至っている前記光電変換部の端面は、他主面側の部分に設けられた前記一主面には至っていないレーザー加工面を有する。
    The solar cell according to claim 9 or 10, wherein
    The end face of the photoelectric conversion unit where the first or second electrode reaches the end has a laser processed surface that does not reach the one main surface provided in the portion on the other main surface side.
  12.  請求項9~11のいずれか一項に記載の太陽電池であって、
     前記第1及び第2の電極の少なくとも一方は、前記光電変換部の一主面の上に配されており、金属以外の導電材料を含む第1の導電層と、前記第1の導電層の上に配されており、金属からなる第2の導電層とを有し、
     前記第1及び第2の電極の前記光電変換部の前記一の方向における端の上に位置する部分は、前記第1の導電層により構成されており、前記第2の導電層を有さない。
    A solar cell according to any one of claims 9 to 11,
    At least one of the first and second electrodes is disposed on one main surface of the photoelectric conversion unit, and includes a first conductive layer containing a conductive material other than a metal, and the first conductive layer. And a second conductive layer made of metal,
    The portion of the first and second electrodes located on the end in the one direction of the photoelectric conversion unit is configured by the first conductive layer and does not have the second conductive layer. .
PCT/JP2011/071457 2011-09-21 2011-09-21 Solar cell manufacturing method, and solar cell WO2013042222A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071457 WO2013042222A1 (en) 2011-09-21 2011-09-21 Solar cell manufacturing method, and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071457 WO2013042222A1 (en) 2011-09-21 2011-09-21 Solar cell manufacturing method, and solar cell

Publications (1)

Publication Number Publication Date
WO2013042222A1 true WO2013042222A1 (en) 2013-03-28

Family

ID=47914034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071457 WO2013042222A1 (en) 2011-09-21 2011-09-21 Solar cell manufacturing method, and solar cell

Country Status (1)

Country Link
WO (1) WO2013042222A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172258A1 (en) * 2018-03-08 2019-09-12 株式会社カネカ Solar cell module, glass building material, and method for producing solar cell module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427169A (en) * 1990-05-22 1992-01-30 Mitsubishi Materials Corp Solar cell
JPH04107881A (en) * 1990-08-28 1992-04-09 Kyocera Corp Solar cell element
JPH08116078A (en) * 1994-10-17 1996-05-07 Fuji Electric Co Ltd Manufacture of thin film solar cell
WO2009025147A1 (en) * 2007-08-23 2009-02-26 Sharp Kabushiki Kaisha Rear surface bonding type solar cell, rear surface bonding type solar cell having wiring board, solar cell string and soar cell module
JP2011035092A (en) * 2009-07-31 2011-02-17 Sanyo Electric Co Ltd Back-junction type solar cell and solar cell module using the same
JP2011138929A (en) * 2009-12-28 2011-07-14 Sharp Corp Wiring sheet, solar cell with wiring sheet, solar cell module, and method for manufacturing the wiring sheet and the solar cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427169A (en) * 1990-05-22 1992-01-30 Mitsubishi Materials Corp Solar cell
JPH04107881A (en) * 1990-08-28 1992-04-09 Kyocera Corp Solar cell element
JPH08116078A (en) * 1994-10-17 1996-05-07 Fuji Electric Co Ltd Manufacture of thin film solar cell
WO2009025147A1 (en) * 2007-08-23 2009-02-26 Sharp Kabushiki Kaisha Rear surface bonding type solar cell, rear surface bonding type solar cell having wiring board, solar cell string and soar cell module
JP2011035092A (en) * 2009-07-31 2011-02-17 Sanyo Electric Co Ltd Back-junction type solar cell and solar cell module using the same
JP2011138929A (en) * 2009-12-28 2011-07-14 Sharp Corp Wiring sheet, solar cell with wiring sheet, solar cell module, and method for manufacturing the wiring sheet and the solar cell module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172258A1 (en) * 2018-03-08 2019-09-12 株式会社カネカ Solar cell module, glass building material, and method for producing solar cell module
JPWO2019172258A1 (en) * 2018-03-08 2020-12-10 株式会社カネカ Manufacturing method of solar cell module, glass building material, and solar cell module
JP7085613B2 (en) 2018-03-08 2022-06-16 株式会社カネカ Manufacturing method of solar cell module, glass building material, and solar cell module

Similar Documents

Publication Publication Date Title
US9252301B2 (en) Solar cell and method for manufacturing solar cell
US9349897B2 (en) Solar cell module and manufacturing method therefor
US9419154B2 (en) Interdigitated electrode formation
JP5879515B2 (en) Manufacturing method of solar cell
WO2011093329A1 (en) Solar cell and method for producing same
JP2013219065A (en) Solar cell and method for manufacturing the same
JPWO2016158977A1 (en) Solar cell and solar cell module
JP5642591B2 (en) Solar cell module
JP2014017447A (en) Integrated thin film solar cell and manufacturing method of the same
JP2010251667A (en) Solar cell
JP5611159B2 (en) Solar cell module and manufacturing method thereof
WO2011074280A1 (en) Photovoltaic device and method for preparation thereof
TW201021233A (en) Method for manufacturing solar battery
JP2009188355A (en) Solar cell
JP5297840B2 (en) LAMINATE, THIN-FILM PHOTOELECTRIC CONVERSION DEVICE, INTEGRATED THIN-FILM SOLAR CELL AND METHOD FOR PRODUCING THEM
JPWO2016132902A1 (en) Photoelectric conversion element and photoelectric conversion device
JP5174114B2 (en) Solar cell
JP7127042B2 (en) PHOTOELECTRIC CONVERSION MODULE AND METHOD OF MANUFACTURING PHOTOELECTRIC CONVERSION MODULE
WO2013042222A1 (en) Solar cell manufacturing method, and solar cell
JP4322199B2 (en) Solar cell, method for manufacturing solar cell unit, and solar cell module
JP5820987B2 (en) Solar cell
US11588061B2 (en) Photoelectric conversion module and method for manufacturing photoelectric conversion module
WO2012043508A1 (en) Solar cell and manufacturing method therefor
JP2013229427A (en) Method for manufacturing thin-film solar cell
JPWO2012132834A1 (en) Solar cell and method for manufacturing solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP