WO2013041501A1 - Vanadium-antimon-mischoxid-katalysator, seine herstellung und verfahren zur partialoxidation von alkoholen zu aldehyden - Google Patents

Vanadium-antimon-mischoxid-katalysator, seine herstellung und verfahren zur partialoxidation von alkoholen zu aldehyden Download PDF

Info

Publication number
WO2013041501A1
WO2013041501A1 PCT/EP2012/068290 EP2012068290W WO2013041501A1 WO 2013041501 A1 WO2013041501 A1 WO 2013041501A1 EP 2012068290 W EP2012068290 W EP 2012068290W WO 2013041501 A1 WO2013041501 A1 WO 2013041501A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
vanadium
mixed oxide
catalyst according
shaped body
Prior art date
Application number
PCT/EP2012/068290
Other languages
English (en)
French (fr)
Inventor
Alexander Zipp
Alfons Drochner
Hans-Juergen Eberle
Melanie SCHUMANN
Herbert Vogel
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Publication of WO2013041501A1 publication Critical patent/WO2013041501A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/67Pore distribution monomodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • Vanadium antimony-Misohoxid catalyst its preparation and process for the partial oxidation of alcohols to aldehydes
  • the invention relates to a vanadium-antimony mixed oxide catalyst, its preparation and a process for the partial oxidation of alcohols to aldehydes using this catalyst.
  • WO03053556 describes a process for the oxidation of methanol on pure metal vanadates in an unsupported form. Further, it is well known that more active catalysts can be obtained by the distribution of the catalytically active components on a high surface area, porous support material. This is how Zhang et. al. (Catalis J., 2008, 260, 295-304) discloses a catalyst based on a vanadium-antimony mixed oxide on silica as support material for the partial oxidation of methanol to formaldehyde. Also this system is limited in selectivity and yield.
  • the object of the invention is to provide a vanadium-antimony mixed oxide catalyst with respect to the partial oxidation of alcohols higher yields of aldehydes than known vanadium-antimony mixed oxide catalysts.
  • the object is achieved by a catalyst consisting of a catalytic active vanadium-antimony mixed oxide and a shaped body of silica, which serves as a carrier for the catalytically active vanadium-antimony mixed oxide, characterized in that the shaped body consists of highly pure fumed silica, the was prepared without the addition of binders.
  • WO-08/071610 and WO-08/071611 describe processes for producing high-purity support bodies from SiO 2 by grinding and dispersion without binders or other additives,
  • WO 08/071612 describes a process for the production of moldings, in which the metal oxide is predispersed in water and then finely dispersed, this dispersion is subjected to a change in the pH and then shaped and dried.
  • the carrier moldings of the catalyst according to the invention can be present, for example, as pellets, rings, spheres, wheels, armchairs, honeycombs or any other conventional catalysts.
  • Particularly suitable for the catalyst according to the invention are cylindrical extrudates such as pellets or rings.
  • the shaped body consists of highly pure fumed silica with a large specific surface area and a narrow distribution of pore radii in the region of the meso- and macropores. Preference is given to a specific surface area of 30 to 500 m 2 g -1 . The specific surface area was determined by nitrogen physisorption according to BET.
  • the shaped body has a specific surface area of greater than 200 m 2 g -1 , up to 500 m 2 g -1 , a defined pore structure with a very narrow monomodal pore radius distribution in the range between 5 and 30 nm, preferably between 10 and 20 nm and has less than 1% micropores and is characterized by a high proportion
  • Micropores on the total pore volume of over 75%, preferably over 90%, with the remainder to 100 vol.% Formed by macropores.
  • Micropores are pores having a diameter of less than 2 nm
  • mesopores are pores having a diameter of from 2 to 50 nm
  • macropores are pores having a diameter of greater than 50 nm.
  • the pore volume is determined by means of mercury porosimetry.
  • the high-purity fumed silica has a total content of impurities of less than 100 ppm.
  • the shaped body of fumed silica has a total content of impurities of less than 50 ppm.
  • Impurities are preferably to be understood as meaning the alkali metals, as well as the elements Ca, Ti, Al, Fe, Ni, Cr, S.
  • the catalyst of the invention preferably has a content of vanadium oxide (as V 2 O 5 ) of 0.1 to 20 wt .-%, preferably 5 to 15 wt .-% and a content of antimony oxide (as Sb 2 O 5 ) of 0, From 1 to 40% by weight, preferably from 10 to 25% by weight.
  • the application of the components described can be carried out by customary methods of preparing heterogeneous catalysts, for example, the methods known as impregnation, precipitation, ligand exchange offer.
  • the preparation of the catalyst by impregnation of the support materials with solutions of compounds of the active metals and other components of the catalyst are water and organic solvents such as, for example, methanol, ethanol, propanol, acetone, dimethyl ether, tetrahydrofuran, acetonitrile and dimethylformamide.
  • solvents for the impregnation are water and organic solvents such as, for example, methanol, ethanol, propanol, acetone, dimethyl ether, tetrahydrofuran, acetonitrile and dimethylformamide.
  • Particularly preferred for the process is the use of water or ethanol for the application of the components.
  • the amount of solution is usually greater than or equal to the pore volume of the Suformkör- to be impregnated.
  • precursors of the active metal and the promoters are added ready during the production process of the support materials and subjected to shaping therewith.
  • This approach is particularly advantageous because the application of larger amounts of active component in conventional impregnation must be done sequentially in several steps.
  • the required amounts of the precursor of the active metal can be added in a single production step, which significantly simplifies the preparation of the catalyst.
  • the invention further relates to a process for heterogeneously catalyzed partial oxidation of aliphatic alcohols their corresponding aldehydes, in which a catalyst according to the invention is used.
  • aliphatic alcohols having 1 to 10 carbon atoms are converted to their corresponding aldehydes, with particular preference methanol being converted to formaldehyde.
  • the conversion of the alcohols to the corresponding aldehydes using the catalyst according to the invention is preferably carried out at a reaction temperature of 100 to 700 ° C, preferably 250 to 600 ° C, more preferably 300 to 450 ° C and at a reaction pressure of 0 to 2 MPa , preferably 0 to 1 MPa, more preferably 0 to 0.2 MPa.
  • the reaction can be carried out in all common reactor types for carrying out heterogeneously catalyzed gas phase reactions, e.g. In fixed bed reactors or fluidized bed reactors, the process is preferably carried out in fixed bed reactors.
  • the process is operated with simple passage of the reaction gases through the reactor or as a recycle gas process, preferably the process is operated as a recycle gas process.
  • the catalytic reaction of the reactants is carried out diluted in an inert gas.
  • the inert gas used is preferably nitrogen, helium or argon, particularly preferably nitrogen.
  • the content of the reaction gases at the reactor inlet of alcohol is preferably between 1 to 20 mol%, more preferably 2 to 15 mol%, particularly preferably 5 to 12 mol%.
  • the content of the reaction gases at the reactor inlet of oxygen is preferably between 1 to 20 mol%, particularly preferably 2 to 15 mol%, particularly preferably 5 to 12 mol%.
  • the process preferably takes place with a volume flow of reaction gases corresponding to a volume-related space time of 100 to 10,000 NL gas per liter of catalyst and h, preferably 500 to 5,000 NL gas per liter of catalyst and h, more preferably 1,000 to 2,500 NL gas per liter of catalyst and h.
  • a kneading machine Hermann Linden Maschinenfabrik GmbH & Co. KG
  • the carrier material produced in this way has a BET specific surface area of 158 m 2 g -1 and a pore volume of 1.79 mL g -1 .
  • the support material was treated twice with an amount corresponding to the pore volume of a solvent. solution of 4.0% by weight of ammonium vanadate and 1.3% by weight of oxalic acid in water at room temperature and dried for 1 h at 50 ° C. and 3500 Pa and a further 12 h at 40 ° C. The resulting solid was impregnated with a volume corresponding to the pore volume of a solution of 33.3 wt .-% antimony chloride (SbCl 3 ) in ethanol and dried for 1 h at 45 ° C and 3500 Pa and a further 12 h at 40 ° C.
  • SBCl 3 antimony chloride
  • the solid was then impregnated with a volume corresponding to the pore volume of a solution of 10.0% by weight of ammonia in water at room temperature and again dried for 1 h at 45 ° C and 3500 Pa and for a further 12 h at 40 ° C.
  • the precursor thus obtained was then heated under a stream of air (100 NmL min -1 ) at 2 K min -1 to 600 ° C. (2 K min -1 ) and calcined at this temperature for a further 4 h.
  • the catalyst prepared in this way had a content of V 2 O 5 of 5.9% by weight and a content of Sb 2 O 5 of 19.8% by weight.
  • the described catalyst was adjusted by milling and fractional sieving to a particle size distribution of 200 to 450 ⁇ m and 100 mg thereof with 50 NmL / min of a gas mixture consisting of 4.3 mol% methanol and 4.3 mol% oxygen in argon in a quartz glass reactor with 4 mm inner diameter at a temperature of 425 ° C for the reaction.
  • the analysis of the products was carried out by mass analysis. The results achieved with the catalyst were:
  • the support materials of fumed silica were prepared as described in WO028071612, Example 21.
  • the support material has a BET specific surface area of 203 m a g -1 and a pore volume of 0.76 mL g -1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung betrifft einen Vanadium-Antimon-Mischoxid- Katalysator, seine Herstellung und ein Verfahren zur Partialoxidation von Alkoholen zu Aldehyden unter Einsatz dieses Katalysators, Der Katalysator besteht aus einer katalytisch aktiven Vanadium-Antimon-Mischoxidkomponente und einem Formkörper aus Kieselsäure, welcher als Träger für die katalytisch aktive Vanadium-Antimon-Mischoxidkomponente dient. Der Formkörper wird aus hochreiner pyrogener Kieselsäure ohne Zusatz von Bindemitteln hergestellt,

Description

Vanadium-Antimon-Misohoxid-Katalysator, seine Herstellung und Verfahren zur Partialoxidation von Alkoholen zu Aldehyden
Die Erfindung betrifft einen Vanadium-Antimon-Mischoxid- Katalysator, seine Herstellung und ein Verfahren zur Partialoxidation von Alkoholen zu Aldehyden unter Einsatz dieses Katalysators .
Zur Oxidation von Alkoholen zu Aldehyden sind Katalysatoren auf Basis von Silber und Molybdänoxiden bekannt. So beschreiben
US4584412 und US4584412 Verfahren zur Oxidation von Methanol an Silberkatalysatoren. Diese müssen mit Sauerstoffunterschuss betrieben werden, daher wird ein signifikanter Teil des Methanols nicht umgesetzt.
US5217936 und US4829042 beschreiben eine Alternative hierzu, nämlich Katalysatoren mit Molybdän-Oxid oder Eisen-Molybdän- Mischoxid als aktiver Komponente und damit betriebene Verfahren. Mit diesen Verfahren werden üblicherweise höhere Umsätze an Methanol erzielt. Allerdings bildet hier die katalytisch ak- tive Komponente Molybdänoxid oder Molybdänmischoxid unter den üblichen Reaktionsbedingungen flüchtige Verbindungen, die aus dem katalytischen Festbett ausgetragen werden. Der Katalysator verliert daher über die Laufzeit an aktiver Masse und somit auch an Aktivität. Ein weiterer Nachteil dieser Katalysatoren ergibt sich aus der Abscheidung des Molybdänoxide an kälteren Stellen des Reaktors, verbunden mit einem kontinuierlich ansteigender Druckverlust des Katalysatorbetts und somit steigenden Betriebskosten für die Kreisgasführung. Diese limitierte Temperaturbeständigkeit des Katalysators sorgt letztendlich auch dafür, dass der Prozess wenig robust gegenüber Störungen ist. Diesen systemimmanenten Nachteil versucht man seit geraumer Zeit durch den Einsatz alternativer Katalysatorsysteme ohne Molybdän zu umgehen.
So wird in WO03053556 ein Verfahren zur Oxidation von Methanol an reinen MetalIvanadaten in ungetragener Form beschrieben. Ferner ist allgemein bekannt, dass sich durch die Verteilung der katalytlsch aktiven Komponenten auf einem porösen Trägermaterial mit hoher Oberfläche aktivere Katalysatoren erhalten werden können. So beschreiben Zhang et. al. (J. Catal. 2008, 260, 295-304) einen Katalysator auf Basis eines Vanadium- Antimon-Mischoxids auf Siliciumdioxid als Trägermaterial zur Partialoxidation von Methanol zu Formaldehyd. Auch dieses System ist in Selektivität und Ausbeute limitiert.
Aufgabe der Erfindung ist die Bereitstellung eines Vanadium- Antimon-Mischoxid-Katalysators der hinsichtlich der Partialoxidation von Alkoholen höhere Ausbeuten an Aldehyden ermöglicht als bekannte Vanadium-Antimon-Mischoxid-Katalysatoren.
Die Aufgabe wird gelöst durch einen Katalysator bestehend aus einer katalytlsch aktiven Vanadium-Antimon-Mischoxidkomponente und einem Formkörper aus Kieselsäure, welcher als Träger für die katalytlsch aktiven Vanadium-Antimon-Mischoxidkomponente dient, dadurch gekennzeichnet, dass der Formkörper aus hochreiner pyrogener Kieselsäure besteht, der ohne Zusatz von Bindemitteln hergestellt wurde.
Im Rahmen der Arbeiten, die zur vorliegenden Erfindung führten, zeigte sich überraschenderweise, dass bei Katalysatoren auf Basis von Vanadium-Antimon-Mischoxiden auf SiO2-Trägern die Art des verwendeten SiO2 einen signifikanten Einfluss auf die Partialoxidation von Alkoholen hat, und zwar in der Weise, dass mit einem Träger bestehend aus hochreiner pyrogener Kieselsäure mit großer spezifischer Oberfläche und einer engen Porenradien- verteilung im Bereich der Meso- und Makroporen auch bei hohen Umsätzen noch sehr hohe Selektivitäten (Umsatz x Selektivtät = Ausbeute) , zu deren korrespondierenden Aldehyden zu erzielen sind. Herstellungsverfahren für Formkörper aus hochreiner pyrogener Kieselsäure, die im erfindungsgemäßen Katalysator als Trägermaterial eingesetzt werden, sind aus WO-08/071610, WO-08/08071611 und WO- 08/071612 bekannt. Die Herstellverfahren aus diesen Ver- öffentlichungen sind insofern auch Teil der vorliegenden Anmeldung (incorporated by reference) .
WO-08/071610 und WO-08/071611 beschreiben Verfahren zur Herstellung von hochreinen Trägerkörpern aus SiO2 durch Vermahlung und Dispergierung ohne Bindemittel oder anderen Zusätzen,
WO- 08/071612 beschreibt ein Verfahren zur Herstellung von Formkörpern, bei dem das Metalloxid in Wasser vordispergiert und anschließend feindispergiert wird, diese Dispersion einer Anderung des pH-Werts unterzogen wird und darauf eine Formgebung und ein Trocknen erfolgt.
Die Trägerformkorper des erfindungsgemäßen Katalysators können beispielsweise als Pellets, Ringe, Kugeln, Räder, Sessel, Waben oder jeder anderen für Katalysatoren gängigen Ausführungsform vorliegen. Besonders geeignet für den erfindungsgemäßen Katalysator sind zylindrische Extrudate wie Pellets oder Ringe.
Durch eine anschließende thermische Behandlung der Grünkörper können Eigenschaften der Katalysatorträger wie beispielsweise Porenstruktur und mechanische Stabilität gezielt eingestellt werden.
In einer bevorzugten Ausführungsform besteht der Formkörper aus hochreiner pyrogener Kieselsäure mit großer spezifische Ober- fläche und einer engen Porenradienverteilung im Bereich der Me- so- und Makroporen. Bevorzugt ist dabei eine spezifische Oberfläche von 30 bis 500 m2 g-1. Die spezifische Oberfläche wurde dabei bestimmt mittels Stickstoff-Physieorption nach BET. In einer besonders bevorzugten Ausführungsform besitzt der Formkörper eine spezifische Oberfläche von größer 200 m2 g-1, bis 500 m2 g-1, eine definierte Porenstruktur mit einer sehr engen monomodalen Porenradienverteilung im Bereich zwischen 5 und 30 nm, bevorzugt zwischen 10 und 20 nm und weist weniger als 1% Mikroporen auf und zeichnet sich durch einen hohen Anteil an
Mesoporen am gesamten Porenvolumen von über 75%, bevorzugt über 90% aus, wobei der Rest auf 100 Vol.% durch Makroporen gebildet wird. Unter Mikroporen sind Poren mit einem Durchmesser unter 2 nm zu verstehen, unter Mesoporen sind Poren mit einem Durchmesser von 2 bis 50 nm zu verstehen und unter Makroporen sind Poren mit einem Durchmesser von größer 50 nm zu verstehen. Die Bestimmung des Porenvolumens erfolgt mittels Quecksilber-Porosimetrie.
Vorzugsweise weist die hochreine pyrogene Kieselsäure einen Gesamtgehalt an Verunreinigungen kleiner 100 ppm auf.
Vorzugsweise weist der Formkörper aus pyrogener Kieselsäure ei- nen Gesamtgehalt an Verunreinigungen kleiner 50 ppm auf.
Unter Verunreinigung sind vorzugsweise die Alkalimetalle, sowie die Elemente Ca, Ti, AI, Fe, Ni, Cr, S zu verstehen. Der erfindungsgemäße Katalysator weist vorzugsweise einen Gehalt an Vanadiumoxid (als V2O5) von 0,1 bis 20 Gew.-%, bevorzugt 5 bis 15 Gew.-% und einen Gehalt an Antimonoxid (als Sb2O5) von 0,1 bis 40 Gew.-%, bevorzugt 10 bis 25 Gew. -% auf. Die Aufbringung der beschriebenen Komponenten kann nach gängigen Methoden der Präparation heterogener Katalysatoren erfolgen, beispielsweise bieten sich die als Imprägnierung, Auffällung, Ligandentausch bekannten Verfahren an. In einer besonders bevorzugten Ausführungsform erfolgt die Herstellung des Katalysators durch Imprägnierung der Trägermaterialien mit Lösungen von Verbindungen der Aktivmetalle und weiteren Komponenten des Katalysators . Mögliche Lösungsmittel für die Imprägnierung sind Wasser sowie organische Lösungsmittel wie beispielsweise Methanol, Ethanol, Propanol, Aceton, Dlethylether, Tetrahydrofuran, Acetonitril und Dimethylformamid. Besonders bevorzugt für das Verfahren ist die Verwendung von Wasser oder Ethanol für die Aufbringung der Komponenten. Die Menge der Lösung ist üblicherweise größer oder gleich dem Porenvolumen der zu imprägnierenden Trägerformkör- per.
In einer weiteren Ausführungsform des Katalysators werden Vor- stufen des Aktivmetalls und der Promotoren bereite beim Her- stellungsprozess der Trägermaterialien zugegeben und mit diesem der Formgebung unterzogen. Dieses Vorgehen ist insbesondere deshalb vorteilhaft, da die Aufbringung größerer Mengen an aktiver Komponente bei konventioneller Imprägnierung sequentiell in mehreren Schritten erfolgen muss. Bei dem hier dargestellten Katalysator können die erforderlichen Mengen der Vorstufe des Aktivmetalls in einem einzigen Herstellungsschritt zugegeben werden, was die Herstellung des Katalysators deutlich vereinfacht .
Die Erfindung betrifft ferner ein Verfahren zur heterogenkatalysierten Partialoxidation von aliphatischen Alkoholen zu deren entsprechenden Aldehyden, bei dem ein erfindungsgemäßer Katalysator eingesetzt wird.
Vorzugsweise werden mittels des erfindungsgemäßen Verfahrens aliphatische Alkohole mit 1 - 10 C-Atomen zu deren entsprechenden Aldehyden umgesetzt, besondere bevorzugt wird Methanol zu Formaldehyd umgesetzt.
Die Umsetzung der Alkohole zu den entsprechenden Aldehyden un- ter Einsatz des erfindungsgemäßen Katalysators erfolgt vorzugsweise bei einer Reaktionstemperatur von 100 bis 700°C, bevorzugt 250 bis 600°C, besonders bevorzugt 300 bis 450 °C und bei einem Reaktionsüberdruck von 0 bis 2 MPa, bevorzugt 0 bis 1 MPa, besonders bevorzugt 0 bis 0,2 MPa.
Die Umsetzung kann in allen gängigen Reaktortypen zur Durchführung heterogen-katalysierter Gasphasenreaktionen erfolgen, z.B. in Festbettreaktoren oder Wirbelschichtreaktoren, bevorzugt erfolgt die Durchführung des Verfahrens in Festbettreaktoren.
Das Verfahren wird mit einfachem Durchtritt der Reaktionsgase durch den Reaktor oder als Kreisgasverfahren betrieben, bevorzugt wird das Verfahren als Kreisgasverfahren betrieben. Vorzugsweise erfolgt die katalytische Umsetzung der Reaktanden verdünnt in einem Inertgas. Als Inertgas wird vorzugsweise Stickstoff, Helium oder Argon, besonders bevorzugt Stickstoff, eingesetzt . Der Gehalt der Reaktionsgase am Reaktoreintritt an Alkohol beträgt vorzugsweise zwischen 1 bis 20 Mol-%, besonders bevorzugt 2 bis 15 Mol-%, insbesondere bevorzugt 5 bis 12 Mol-%. Der Gehalt der Reaktionsgase am Reaktoreintritt an Sauerstoff beträgt vorzugsweise zwischen 1 bis 20 Mol-%, besonders bevorzugt 2 bis 15 Mol-%, inbesondere bevorzugt 5 bis 12 Mol-%. Das Verfahren erfolgt vorzugsweise mit einem Volumenstrom an Reaktionsgasen entsprechend einer volumenbezogenen Raumzeit von 100 bis 10.000 NL Gas pro L Katalysator und h, bevorzugt 500 bis 5.000 NL Gas pro L Katalysator und h, besonders bevorzugt 1.000 bis 2.500 NL Gas pro L Katalysator und h.
Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung:
Beispiel 1 (Vergleichsbeispiel)
Herstellung Trägermaterial aus gefällter Kieselsäure
Eine Mischung bestehend aus 50,0 g gefällter Kieselsäure, erhältlich unter der Bezeichnung Perkasil* SM 614 bei der Fa. Grace Davison und 1,0 g Methylhydroxyethylcellulose erhältlich unter der Bezeichnung Walocel bei der Fa. Dow Chemical und 1,0 g mikrokristalline Cellulose erhältlich unter der Bezeichnung Microcel bei der Fa. Blanver Farmoquimica Ltda.A und 126,2 g destilliertem Wasser wurde in einer Knetmaschine (Hermann Linden Maschinenfabrik GmbH & Co. KG) 30 min gemischt und anschließend durch eine Kolbenstrangpresse in Formkörper extru- diert. Diese Formkörper wurden 4 Tage bei Raumtemperatur, worunter im Sinne der vorliegenden Erfindung 23°C zu verstehen sind, und 1 Tag bei 45 °C getrocknet und anschließend bei 600 °C gesintert (mit 1 K/min auf 100 °C, für 2 Stunden halten, mit 5 K/min auf 600 °C, für 6 h halten) . Das so hergestellte Trä- germaterial weist eine spezifische Oberfläche nach BET von 158 m2 g-1 und ein Porenvolumen von 1,79 mL g-1 auf.
Herstellung Katalysator
Zur Herstellung des Katalysators wurde das Trägermaterial zwei- fach mit einer dem Porenvolumen entsprechenden Menge einer Lö- sung von 4,0 Gew. -% Ammoniummvanadat und 1,3 Gew.-% Oxalsäure in Wasser bei Raumtemperatur imprägniert und jeweils für 1 h bei 50 °C und 3500 Pa und weitere 12 h bei 40 °C getrocknet. Der so erhaltene Feststoff wurde mit einer dem Porenvolumen entsprechenden Menge einer Lösung von 33,3 Gew.-% Antimonchlorid (SbCl3) in Ethanol imprägniert und für 1 h bei 45 °C und 3500 Pa und weitere 12 h bei 40 °C getrocknet. Der Feststoff wurde dann mit einer dem Porenvolumen entsprechenden Menge einer Lösung von 10,0 Gew.-% Ammoniak in Wasser bei Raumtempera- tur imprägniert und abermals für 1 h bei 45 °C und 3500 Pa und weitere 12 h bei 40 °C getrocknet. Der so erhaltene Precursor wurde anschließend unter fließender Luft (100 NmL min-1) mit 2 K min-1 auf 600 °C (2 K min-1) aufgeheizt und bei dieser Temperatur für weitere 4 h kalziniert.
Der so hergestellte Katalysator wies einen Gehalt an V2O5 von 5,.9 Gew.-% und einen Gehalt an Sb2O5 von 19,8 Gew. -% auf.
Katalytischer Test
Zur Untersuchung wurde der beschriebene Katalysator durch Mah- lung und fraktionierte Siebung auf eine Korngrößenverteilung von 200 bis 450 um eingestellt und 100 mg davon mit 50 NmL/min eines Gasgemischs bestehend aus 4,3 Mol-% Methanol und 4.3 Mol- % Sauerstoff in Argon in einem Quarzglas-Reaktor mit 4 mm Innendurchmesser bei einer Temperatur von 425 °C zur Reaktion ge- bracht. Die Analyse der Produkte erfolgte mittels Massenapek- trometrie. Die dabei mit dem Katalysator erzielten Ergebnisse waren:
Figure imgf000009_0001
Beispiel 2 (erfindungsgemäßer Katalysator) Herstellung Trägermaterial
Die Trägermaterialien aus pyrogener Kieselsäure wurden herge- stellt wie in W02008071612, Beispiel 21 beschrieben. Das Trägermaterial weist eine spezifische Oberfläche nach BET von 203 ma g-1 und ein Porenvolumen 0,76 mL g-1 auf.
Die Präparation des auf diesem Trägermaterial basierenden Kata- lysators und dessen katalytischer Test zur Oxidation von Methanol erfolgten identisch zu Beispiel 1. Die dabei mit dem Katalysator erzielten Ergebnisse waren:
Figure imgf000010_0001
Das Beispiel zeigt deutlich, dass unter Verwendung von hochreiner pyrogener Kieselsäure als Trägermaterial die erzielbare Ausbeute an Formaldehyd höher ist, als in dem Vergleichsbeispiel auf gefällter Kieselsäure.

Claims

Patentansprüche
1. Katalysator bestehend aus einer katalytisch aktiven Vanadium-Antimon-Mischoxidkomponente und einem Formkörper aus Kieselsäure, welcher als Träger für die katalytisch aktiven Vanadium-Antimon-Mischoxidkomponente dient, dadurch gekennzeichnet, dass der Formkörper aus hochreiner pyroge- ner Kieselsäure besteht und ohne Zusatz von Bindemitteln hergestellt wurde.
2. Katalysator gemäß Anspruch 1, dadurch gekennzeichnet, dass der Formkörper aus hochreiner pyrogener Kieselsäure mit einer spezifischen Oberfläche von 30 bis 500 m2/g und einer definierten Porenstruktur mit einer monomodalen Poren- radienverteilung im Bereich zwischen 5 und 30 nm, bevorzugt zwischen 10 und 20 nm besteht und weniger als 1% Mik- roporen aufweist und sich durch einen Anteil an Mesoporen am gesamten Porenvolumen von über 75%, bevorzugt über 90% auszeichnet, wobei der Rest auf 100 Vol.% durch Makroporen gebildet wird.
3. Katalysator gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Formkörper aus hochreiner pyrogener Kieselsäure einen Gesamtgehalt an Verunreinigungen kleiner 100 ppm aufweist.
4. Katalysator gemäß Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass er einen Gehalt an Vanadiumoxid (als V2O5) von 0,1 bis 20 Gew.-%, bevorzugt 5 bis 15 Gew.-% und einen Gehalt an Antimonoxid (als Sb2O5) von 0,1 bis 40 Gew.-%, bevorzugt 10 bis 25 Gew.-% aufweist.
5. Verfahren zur Herstellung eines Katalysators gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die katalytisch aktiven Komponenten auf die hochreine pyrogene Kieselsäure in an sich bekannter Art und Weise, beispielsweise mittele Imprägnierung, Auffällung, Ligandentausch aufgebracht wird.
6. Verfahren zur heterogen-katalysierten Partialoxidation von aliphatischen Alkoholen zu deren entsprechenden Aldehyden dadurch gekennzeichnet, dass ein Katalysator gemäß Anspruch 1 eingesetzt wird.
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass aliphatische Alkohole mit 1 - 10 C-Atomen zu deren entsprechenden Aldehyden bevorzugt Methanol zu Formaldehyd umgesetzt wird.
8. Verfahren gemäß Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Umsetzung bei einer Reaktionstemperatur von 100 bis 700°C, bevorzugt 250 bis 600°C, besonders bevorzugt 300 bis 450 °C und bei einem Reaktionsüberdruck von 0 bis 2 MPa, bevorzugt 0 bis 1 MPa, besonders bevorzugt 0 bis 0,2 MPa erfolgt.
PCT/EP2012/068290 2011-09-20 2012-09-18 Vanadium-antimon-mischoxid-katalysator, seine herstellung und verfahren zur partialoxidation von alkoholen zu aldehyden WO2013041501A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011083079.0 2011-09-20
DE102011083079A DE102011083079A1 (de) 2011-09-20 2011-09-20 Vanadium-Antimon-Mischoxid Katalysator seine Herstellung und Verfahren zur Partialoxidation von Alkoholen zu Aldehyden

Publications (1)

Publication Number Publication Date
WO2013041501A1 true WO2013041501A1 (de) 2013-03-28

Family

ID=46852014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/068290 WO2013041501A1 (de) 2011-09-20 2012-09-18 Vanadium-antimon-mischoxid-katalysator, seine herstellung und verfahren zur partialoxidation von alkoholen zu aldehyden

Country Status (2)

Country Link
DE (1) DE102011083079A1 (de)
WO (1) WO2013041501A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014204628A1 (de) 2014-03-13 2015-09-17 Technische Universität Darmstadt Vanadium-Antimon-Mischoxid Katalysator seine Herstellung und Verfahren zur Partialoxidation von Alkoholen zu Aldehyden

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1269119B (de) * 1965-05-15 1968-05-30 Huels Chemische Werke Ag Verfahren zur Herstellung von Essigsaeure
US3439029A (en) * 1965-05-19 1969-04-15 Huels Chemische Werke Ag Process for the production of acetic acid by catalytic gas-phase oxidation of n-butenes
US4584412A (en) 1984-01-28 1986-04-22 Basf Aktiengesellschaft Preparation of formaldehyde
US4829042A (en) 1985-04-24 1989-05-09 Ausimont S.P.A. Catalyst suitable for the oxidation of methyl alcohol to formaldehyde and method for preparing the catalyst
US5217936A (en) 1989-10-16 1993-06-08 Haldor Topsoe A/S Catalyst for preparing aldehyde
WO2003053556A2 (en) 2001-12-20 2003-07-03 Lehigh University Methanol oxidation over bulk metal vanadate catalysts
WO2008071611A1 (de) 2006-12-13 2008-06-19 Wacker Chemie Ag Verfahren zur herstellung von stabilen, hochreinen formkörpern aus pyrogenen metalloxiden ohne zusatz von bindemitteln
WO2008071612A1 (de) 2006-12-13 2008-06-19 Wacker Chemie Ag Verfahren zur herstellung von stabilen binder-freien hochreinen formkörpern aus metalloxiden und deren anwendung
WO2008071610A2 (de) 2006-12-13 2008-06-19 Wacker Chemie Ag Verfahren zur herstellung von katalysatoren und deren verwendung für die gasphasenoxidation von olefinen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1269119B (de) * 1965-05-15 1968-05-30 Huels Chemische Werke Ag Verfahren zur Herstellung von Essigsaeure
US3439029A (en) * 1965-05-19 1969-04-15 Huels Chemische Werke Ag Process for the production of acetic acid by catalytic gas-phase oxidation of n-butenes
US4584412A (en) 1984-01-28 1986-04-22 Basf Aktiengesellschaft Preparation of formaldehyde
US4829042A (en) 1985-04-24 1989-05-09 Ausimont S.P.A. Catalyst suitable for the oxidation of methyl alcohol to formaldehyde and method for preparing the catalyst
US5217936A (en) 1989-10-16 1993-06-08 Haldor Topsoe A/S Catalyst for preparing aldehyde
WO2003053556A2 (en) 2001-12-20 2003-07-03 Lehigh University Methanol oxidation over bulk metal vanadate catalysts
WO2008071611A1 (de) 2006-12-13 2008-06-19 Wacker Chemie Ag Verfahren zur herstellung von stabilen, hochreinen formkörpern aus pyrogenen metalloxiden ohne zusatz von bindemitteln
WO2008071612A1 (de) 2006-12-13 2008-06-19 Wacker Chemie Ag Verfahren zur herstellung von stabilen binder-freien hochreinen formkörpern aus metalloxiden und deren anwendung
WO2008071610A2 (de) 2006-12-13 2008-06-19 Wacker Chemie Ag Verfahren zur herstellung von katalysatoren und deren verwendung für die gasphasenoxidation von olefinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, J. CATAL., vol. 260, 2008, pages 295 - 304

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014204628A1 (de) 2014-03-13 2015-09-17 Technische Universität Darmstadt Vanadium-Antimon-Mischoxid Katalysator seine Herstellung und Verfahren zur Partialoxidation von Alkoholen zu Aldehyden

Also Published As

Publication number Publication date
DE102011083079A1 (de) 2013-03-21

Similar Documents

Publication Publication Date Title
EP0761307B1 (de) Monomodale und polymodale Katalysatorträger und Katalysatoren mit engen Porengrössenverteilungen und deren Herstellverfahren
EP0764467B1 (de) Monomodale und polymodale Katalysatorträger und Katalysatoren mit engen Porengrössenverteilungen und deren Herstellverfahren
EP0535565B1 (de) Verfahren zum Herstellen von 1,3-Propandiol durch Hydrieren von Hydroxypropionaldehyd
DE3930534C2 (de)
EP1261424B1 (de) Hohlzylinderförmiger katalysator und verfahren zur herstellung von maleinsäureanhydrid
EP0669163B1 (de) Geformter Kupfer-Katalysator für die selektive Hydrierung von Furfural zu Furfurylalkohol
EP2285768B1 (de) Verfahren zur hydrierung von organischen verbindungen
EP0417722A1 (de) Katalysator für die katalytische Gasphasenoxidation von Olefinen zu ungesättigten Aldehyden
EP1694438B1 (de) Katalysatorextrudate auf basis kupferoxid und ihre verwendung zur hydrierung von carbonylverbindungen
EP2620214A2 (de) Verfahren zur Herstellung eines Katalysators, so erhältlicher Katalysator und Verfahren zur Herstellung von Isoolefinen
DE10054347A1 (de) Verfahren zur katalytischen Hydrierung organischer Verbindungen und Trägerkatalysatoren hierfür
EP2459312A2 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation an nanostrukturierten rutheniumträgerkatalysatoren
EP0505863A1 (de) Katalysator zur Härtung von Fettsäuren und Verfahren zu seiner Herstellung
EP0606072B1 (de) Selektive katalytische Hydrierung von aromatischen Aldehyden
EP3187261A1 (de) Verfahren zur herstellung eines ein alkalimetall und eines übergangsmetall in oxidierter form enthaltenden katalysators
EP3012021B1 (de) Verfahren zur herstellung einer katalysatorzusammensetzung, die mindestens ein edelmetall und mindestens ein si-zr-mischoxid umfasst
EP2213370A2 (de) Verfahren zur Herstellung eines Katalysators fuer die Oxidation von Methanol zu Formaldehyd
WO2013045318A1 (de) Verfahren zur herstellung von zuckeralkoholen durch katalytische hydrierung von zuckern an einem ru/sio2-katalysator
DE102008054760A1 (de) Heterogener Katalysator für die Fischer-Tropsch-Synthese und ein Verfahren zu dessen Herstellung
EP0761630B1 (de) Verfahren zur Herstellung von Alkylphenolen
WO2013041501A1 (de) Vanadium-antimon-mischoxid-katalysator, seine herstellung und verfahren zur partialoxidation von alkoholen zu aldehyden
DE102009014541A1 (de) Katalysatoranordnung zur Oxidation von Methanol zu Formaldehyd
DE102014204628A1 (de) Vanadium-Antimon-Mischoxid Katalysator seine Herstellung und Verfahren zur Partialoxidation von Alkoholen zu Aldehyden
WO2016150894A1 (de) Katalysator-formkörper für die herstellung von vinylacetat
EP2355925A1 (de) Verfahren zur aktivierung eines katalysators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12759460

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12759460

Country of ref document: EP

Kind code of ref document: A1