WO2013041013A1 - 轮环样气缸环转活塞发动机 - Google Patents

轮环样气缸环转活塞发动机 Download PDF

Info

Publication number
WO2013041013A1
WO2013041013A1 PCT/CN2012/081537 CN2012081537W WO2013041013A1 WO 2013041013 A1 WO2013041013 A1 WO 2013041013A1 CN 2012081537 W CN2012081537 W CN 2012081537W WO 2013041013 A1 WO2013041013 A1 WO 2013041013A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
piston
combustion chamber
ring
engine
Prior art date
Application number
PCT/CN2012/081537
Other languages
English (en)
French (fr)
Inventor
张官霖
Original Assignee
Zhang Guanlin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Guanlin filed Critical Zhang Guanlin
Publication of WO2013041013A1 publication Critical patent/WO2013041013A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C3/00Rotary-piston machines or engines with non-parallel axes of movement of co-operating members
    • F01C3/02Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees

Definitions

  • the present invention relates to an internal combustion engine, and more particularly to a rotary internal combustion engine
  • the reciprocating engine is the most widely used, but it also has some disadvantages such as: 1.
  • the structure is complicated, the volume is large, and the weight is large.
  • the reciprocating inertial force and inertia moment caused by the reciprocating motion of the piston in the crank-link mechanism cannot be completely balanced.
  • the magnitude of this inertial force is proportional to the square of the rotational speed, which reduces the smoothness of the engine running and limits the development of the high-speed engine. 3.
  • the four-stroke reciprocating piston engine works in three strokes, three strokes rely entirely on the flywheel to rotate inertially, resulting in very uneven engine power and torque output, although modern engines use multi-cylinder and V-shaped arrangements. This disadvantage is reduced, but it cannot be completely eliminated.
  • the rotor engine eliminates useless linear motion, so the same power rotor engine is smaller in size, lighter in weight, and less vibrating and noisy.
  • the rotor engine also has four disadvantages: poor startability, low speed power, low speed economy, and short seal life. This is related to the structure of the triangular rotor engine.
  • the invention relates to a "wheel ring cylinder ring rotary piston engine", which is an internal combustion engine in which a piston rotates around a shaft center in a ring-like circular cylinder. Due to the ingenious design of the internal switch device, the engine only The intake/compression, combustion work/exhaust two strokes are required to complete a power cycle, and the combustion work stroke is long, thereby improving the thermal efficiency.
  • the engine eliminates the inherent shortcomings of the piston reciprocating internal combustion engine, and overcomes the problem that the triangular rotor engine has poor startability, low speed power, low speed economy, and short seal life.
  • the engine piston rotates around the shaft in the cylinder. It only needs two strokes per power cycle. The power stroke is longer, the driving torque is large, the efficiency is greatly improved, and the novelty and advancement are unparalleled.
  • a cylinder has a circular ring shape (like a car tire), and one or several switching devices in the cylinder will be gas
  • the cylinder is opened or closed into sections, and the piston is driven by the engine in the cylinder around 360° around the shaft.
  • the structure mainly includes a circular ring-like cylinder such as a car tire (2 in Fig. 1); a switching device that divides the cylinder into sections by opening or closing is provided in the cylinder ((Fig. 2, 3, Fig.
  • a piston that rotates around the shaft 360 ° in the cylinder (9 in Figure 7 ); a closed ring that interlocks with the piston to close the gap of the cylinder (11 in Figure 7); connects the piston to the shaft a transmission-driven transmission (12 in Figure 7), a sealing spring that seals between the closed ring and the cylinder wall (Fig. 9); a combustion chamber (14 in Fig. 10); a piston front end and a switching device in the combustion chamber The gas between them is introduced into the air duct or air guide groove of the rear combustion chamber (15 in Fig. 10).
  • cylinder in the form of a circular ring (2 in Figure 1)
  • switching device 3 in Figure 2) or several switching devices (6, 7, 8 in Figure 3) in the cylinder
  • notch at the lower end of the cylinder
  • the gap is closed by the closed ring during operation.
  • the function of the in-cylinder switching device is to open or close the cylinder somewhere by the opening or closing of the switch to divide the cylinder into sections.
  • Switching device a spherical shape (Fig. 5) or a door bolt type (Fig.
  • a hole for the passage of the piston is opened thereon, and a hole is formed at a lower end of the hole, the notch being coincident with the notch of the cylinder;
  • the diameter, shape, and curvature of the hole are the same as that of the cylinder.
  • the switch device When the switch device is opened, it becomes a part of the cylinder. When it is closed, the cylinder is closed.
  • the side of the switchgear has a semi-circular (U-shaped) seal with a horizontal (one-shaped) seal on the bottom.
  • Piston: (9 in Fig. 7) is a curved cylindrical shape with the same diameter and curvature as the cylinder so that the piston fits snugly against the cylinder.
  • the air duct is the duct in the cylinder block at the rear end of the combustion chamber;
  • the air guide groove is the groove on the cylinder wall at the rear end of the combustion chamber;
  • the air pipe can also be used as an air guiding groove, which mainly serves to introduce the gas at the front end of the piston into the combustion chamber after the piston passes through the combustion chamber.
  • the air inlet (5 in Fig. 2, 5 in Fig. 3) exhaust port (4 in Fig. 2, 4 in Fig. 3).
  • the engine works in the following three ways:
  • the engine has a wheel-like cylinder (2 in Figure 10) with three switching devices (6, 7, 8 in Figure 10).
  • the engine cylinder is opened or closed by three switching devices in the cylinder to form a compression/intake section (piston)
  • the front end compresses the rear end into the oil and gas) - the combustion section (the spark plug is ignited and burned after the front end of the piston is compressed by the air guide tube), and the exhaust gas is driven by the explosive gas. , the front end will discharge the original exhaust gas).
  • the engine is compressed/into the oil and gas stroke (the front end of the piston compresses the rear end into the oil and gas) - combustion (the piston is compressed by the air pipe to the rear end of the piston and the spark plug is ignited and burned) - work / exhaust stroke (piston The rear end pushes the action due to the explosive gas, and the front end discharges the original exhaust gas. And complete a loop.
  • the piston rotates in the cylinder for a week, and the shaft is rotated by the transmission for a week. details as follows:
  • Compression/intake stroke (Fig. 12): At this time, the second switching device and the third switching device (7, 8 in Fig. 12) are in a closed state, and the first switching device (6 in Fig. 12) is turned on, and the piston is from The third switching device (8 in Fig. 10) starts to move forward in the cylinder. The front end of the piston compresses the air-fuel mixture previously sucked in the cylinder into the combustion chamber, and the rear end mixes the new air-fuel due to the negative pressure. Air is drawn into the cylinder from the air inlet (5 in Figure 12). The piston continues to move forward. When the piston completely passes through the first switching device (6 in Fig. 12), the first switching device (6 in Fig.
  • Combustion (Fig. 13): The piston reaches the second switching device (7 in Fig. 13). The compressed oil and gas mixture has been completely pressed into or introduced into the rear combustion chamber. At this time, the second switching device (7 in Fig. 13) Immediately open, the combustion chamber spark plug is ignited, the compressed oil and gas mixture deflagrates, the second switching device is opened, and since the first switching device is closed at this time, the high pressure gas can only push the piston forward and start the next stroke. .
  • the three-switch device (8 in Figure 14) is immediately turned off, while the second switch device (7 in Figure 14) is turned off, and the first switch device (6 in Figure 14) is turned on at the same time. This cycle is completed and the engine is ready for the next cycle. .
  • the engine requires only a compression/intake stroke and a work/exhaust stroke to complete a cycle, and combustion is included in both cycles.
  • the cylinder of the model has a 360-degree annular shape, and the piston rotates around the shaft in the cylinder.
  • the three switching devices in the cylinder divide the cylinder into three parts, and the power cycle is completed by opening and closing the three switching devices.
  • a cycle can be completed with only two strokes.
  • the engine arranges two wheel-like cylinders on the same central shaft.
  • Each of the two cylinders has one switching device, one piston, and two cylinders share one combustion chamber or two combustion chambers.
  • the combustion chamber is located between the two cylinders.
  • FIG. 15 is a front sectional view of the A-cylinder and the B-cylinder of the double-ring-like cylinder-type toroidal piston internal combustion engine. It can be seen from the figure that there is a piston in the A-cylinder and the B-cylinder, a switching device, and the intake port of the cylinder. The air outlets are located on both sides of the switchgear.
  • Fig. 16 is a side cross-sectional view of a two-wheel-like cylinder-type cyclo-rotating piston internal combustion engine.
  • a cylinder is a ring-shaped cylinder (Fig. 15), which has a switch device inside. There is a piston in the cylinder. The air inlet of the cylinder is located behind the switch device, and the air outlet is located before the switch device. The port is connected to the A-cylinder, and the A-cylinder outlet is the inlet of the combustion chamber.
  • the A-cylinder switch device is installed near the intake port of the combustion chamber, close to the position of the intake port; the role of the A-cylinder is that the rear end of the piston draws in the air-fuel mixture, and the front end of the piston will be previously inhaled. Mix the air pressure into the combustion chamber.
  • the B cylinder also has a ring-shaped cylinder (Fig. 15). There is a switch device inside. There is a piston in the cylinder. The air inlet of the cylinder is located behind the switch device. The air outlet is located in front of the switch device, and the air outlet of the combustion chamber communicates with the B cylinder. The B-cylinder inlet is the outlet of the combustion chamber.
  • the B-cylinder switch is installed in front of the combustion chamber outlet, near the outlet.
  • the function of the B-cylinder is to accept the high-pressure and high-temperature gas discharged from the combustion chamber to push the piston to work, and the front end of the piston discharges the exhaust gas generated after the previous work.
  • the inlet and outlet of the combustion chamber of the machine have switching devices to control opening and closing.
  • both the A-cylinder switch unit and the B-cylinder switch unit are turned off.
  • the B-cylinder piston waits for work before the combustion chamber outlet (B-cylinder intake) (Fig. 17).
  • the compression of the empty gas into the combustion chamber of the A cylinder has been completed, and the piston is in front of the combustion chamber inlet (A cylinder outlet) before switching (Fig. 18).
  • the combustion chamber inlet and outlet switch device is in the closed state, the combustion chamber is ignited and burned, the combustion chamber outlet port switching device is immediately opened, and the high temperature and high pressure gas is injected into the B cylinder from the air outlet (B cylinder inlet), and the B cylinder switch device is When closed, the pressure can only push the B-piston to move forward clockwise, and discharge the exhaust gas from the previous cylinder. At the same time, when the B-piston moves, the A-piston is also moved forward. At this time, the A-cylinder switch device is opened, and the A-cylinder is opened. After the piston passes through the switch device, the switch device is immediately closed.
  • the front end of the piston presses the oil-air mixture gas sucked from the previous A-cylinder into the combustion chamber from the A-cylinder outlet (combustion chamber inlet), and the rear end of the A-piston is simultaneously sucked from the intake port.
  • the oil-gas mixture gas when the A-piston presses all the oil-gas mixture in the A-cylinder into the combustion chamber, the combustion chamber inlet switch device is closed, and the A-cylinder switch device is not opened before the A-cylinder piston reaches the A-cylinder switch device. (Ready to open); At this time, the B-cylinder piston device immediately closes before the B-cylinder switch device reaches the B-cylinder intake port (combustion chamber outlet). That completed a cycle machine, ready Start the next cycle. If the combustion chamber is ignited and burned at this time, the high-temperature and high-pressure gas is injected into the B-cylinder from the air outlet (B-cylinder intake port) to start the next cycle.
  • the combustion chamber inlet switch can be delayed. After the combustion of the combustion chamber is completed, the intake port switch of the combustion chamber opens the intake air after the exhaust port switch of the combustion chamber is closed.
  • a double combustion chamber solution can also be adopted, that is, two combustion chambers are arranged between the A cylinder and the B cylinder. When the first combustion chamber burns work, the second combustion chamber outlet switch is closed. The air inlet switch opens to receive the gas injected into the A cylinder.
  • This type is a single wheel cylinder with only one switching device (3 in Figure 19).
  • the combustion chamber inlet (5 in Figure 19) is located after the switch, and the cylinder air outlet (4 in Figure 19) is located in front of the switch unit.
  • the piston starts to move clockwise forward from the inlet of the combustion chamber (Fig. 19).
  • the combustion chamber inlet is injected with a mixture of fuel and oxygen and ignited and burned. Since the cylinder switching device is closed at this time, The high pressure gas can only push the piston forward to work.
  • the front end of the piston discharges the previous exhaust gas from the air outlet.
  • the switch device Fig. 20, 3
  • the switch device is immediately turned on. After the piston passes the switch device, the switch device is turned on again. Close immediately, thus completing a loop.
  • the combustion chamber inlet is again injected with a mixture of fuel and oxygen and ignited and burned again to begin the next cycle.
  • the engine can also inject high-pressure steam gas from the air inlet and push the piston forward to work.
  • the engine becomes a ring-type steam engine.
  • FIG. 2 Front cross-sectional view of a single switch device in a wheel-like cylinder 1
  • Cylinder wall 2 Waheel-like cylinder 3
  • Single-switch device 4 Air outlet 5—Air inlet
  • Figure 3 Front view of a multi-switch device in a ring-like cylinder 1 Cylinder wall 2 - Ring-like cylinder 4 - Air outlet 5 Air inlet 6 - First switching device 7 - Second switching device 8 - Third switching device
  • Figure 4 Cross-sectional view of the cylinder section showing the cylinder side notch 1 cylinder wall 2 - cylinder
  • Figure 5 Sectional view of the ball switch in the cylinder
  • Figure 7 Front cross-sectional view of the piston, closure ring, transmission and shaft assembly 9 Piston 10 Piston ring 11 - Closed ring 12 - Transmission 13 - Axis
  • Figure 8 Cross-sectional view of the piston, closed ring, transmission and shaft assembly 9-piston 11 closed ring
  • Figure 9 Front view of the elastomeric sealing spring
  • Figure 10 Single-cylinder multi-switch device type ring-like cylinder ring-turn piston internal combustion engine front sectional view 1 cylinder wall 2 one-ring ring-shaped cylinder 4 air outlet 5 air inlet 6 - first switching device 7 - second switching device 8 - Third switching device 9 - piston 11 closed ring 12 - transmission 13 - shaft 14 combustion chamber 15 air duct
  • Figure 11 Side cross-sectional view of a single-cylinder multi-switch type wheel-like cylinder ring-turn piston internal combustion engine 1 cylinder wall 2 - wheel-like cylinder 9 - piston 11 closed ring 12 - transmission 13 - shaft 16 - elastic sealing spring 17—Case
  • Figure 12 Single-cylinder multi-switch device wheel-like cylinder ring-turn piston internal combustion engine compression / positive cross-section at the beginning of the intake stroke
  • Figure 13 Single-cylinder multi-switch type wheel-like cylinder ring-turn piston internal combustion engine combustion start piston cross section through the third switch
  • Figure 14 Single-cylinder multi-switch device type ring-like cylinder ring-turn piston internal combustion engine work/exhaust stroke without cross-sectional view 1 Cylinder wall 2 - ring-like cylinder 4 outlet port 5 intake port 6 - 1st switch device 7 - 2nd switching device 8 - 3rd switching device 9 - Piston 11 Closed ring 12 - Transmission 13 - Axis 14 Combustion chamber 15 Air pipe Figure 15: Front cross-sectional view of the A-cylinder B-cylinder of a two-cylinder wheel-like cylinder ring-turn piston internal combustion engine
  • Figure 16 Side cross-sectional view of a two-cylinder wheel-like cylinder ring-turn piston internal combustion engine
  • Figure 17 Two-cylinder wheel-like cylinder ring-turn piston internal combustion engine Front view of the B-cylinder before the start of the engine work
  • Figure 18 Double-cylinder wheel-like cylinder ring-to-piston internal combustion engine A-cylinder front section of the engine before the start of the engine work
  • Figure 19 Front cross-sectional view of a single-cylinder single-switch type wheel-like cylinder ring-turn piston engine
  • Figure 20 Front section view of the single cylinder single-switch type wheel-like cylinder ring-turn piston engine at the end of work
  • Fuel direct injection single-cylinder multi-switch device wheel-like cylinder ring-turn piston internal combustion engine (Fig. 10) There are only three switching devices in the wheel cylinder, and the piston starts clockwise from the front of the switch device (8 in Fig. 10). Movement, at this time, the first switching device (6 in Fig. 10) is turned on, the second switching device (7 in Fig. 10) and the third switching device (8 in Fig. 10) are turned off (Fig. 12); the piston moves forward, the front end The previously inhaled air gas is compressed into the combustion chamber, and the rear end draws in new air gas; when the piston passes through the first switching device (6 in Fig. 10), at this time, the first switching device (6 in Fig.
  • the switch device is immediately turned off (Fig. 14).
  • the first switch device (6 in Fig. 10) is immediately turned on, and the second switch device (7 in Fig. 10) is turned off, and the engine is completed once. Loop and get ready to start the next loop.
  • the A-cylinder switch device In the clockwise direction (ie, the forward direction of the piston), the A-cylinder switch device is installed near the intake port of the combustion chamber, close to the intake port; the B-cylinder switch device is installed in front of the combustion chamber outlet, near the air outlet s position.
  • the A-cylinder switchgear and the B-cylinder switchgear are both closed, and the A-cylinder is burning.
  • the indoor compressed air gas body has been completed, the piston is in front of the combustion chamber inlet, the B cylinder piston is in the combustion chamber outlet, the combustion chamber inlet switch device is in the closed state, the combustion chamber is ignited and burned, and the combustion chamber outlet port switching device Immediately open, high-temperature and high-pressure gas is injected into the B-cylinder.
  • the B-cylinder switch device Since the B-cylinder switch device is closed, the high-pressure gas can only push the B-piston to move forward clockwise, and the front end of the B-cylinder piston discharges the exhaust gas from the previous B-cylinder; When the B piston moves, the A cylinder piston is also moved forward by the transmission device. The A cylinder switching device is immediately opened. After the A cylinder piston passes the A cylinder switching device, the switching device is immediately closed. At this time, the front end of the A cylinder piston will be the A cylinder.
  • the inhaled oil and gas mixture gas is injected into the combustion chamber from the combustion chamber inlet (A cylinder outlet), and the rear end of the A piston simultaneously draws in new oil and gas mixture from the A cylinder inlet; After all the mixed gas is pressed into the combustion chamber, the combustion chamber inlet and outlet switch device is closed. At this time, the A-cylinder piston reaches the A-cylinder switch device, and the B-cylinder piston passes through the B-cylinder switch device. Before the combustion chamber outlet (B-cylinder intake), the B-cylinder piston passes through the B-cylinder switch device, and the switch device is immediately turned off, and the engine completes one cycle.
  • two single-switching device-ring-like cylinder-ring-rotating piston engines are combined into a two-cylinder-ring-ring-like cylinder-circulating piston engine, one cylinder exclusively injects air and presses gas into the combustion chamber, and one cylinder exclusively performs work and discharges Exhaust gas.
  • Fuel direct injection double cylinder type ring-like cylinder ring-turn piston internal combustion engine (Fig. 15, Fig. 16) This type of engine arranges two wheel-like cylinder ring-rotating piston engines on the same central axis, each of the two cylinders Each cylinder has a switching device, a piston, and the two cylinders share a combustion chamber or two combustion chambers (the two combustion chambers alternate).
  • the combustion chamber is located between the two cylinders.
  • the combustion chamber inlet (A-cylinder outlet) communicates with the A-cylinder; the combustion chamber outlet (B-cylinder inlet) communicates with the B-cylinder.
  • the inlet and outlet ports have switching devices to control opening and closing.
  • the A-cylinder switch device In the clockwise direction (ie, the forward direction of the piston), the A-cylinder switch device is installed near the intake port of the combustion chamber, close to the intake port; the B-cylinder switch device is installed in front of the combustion chamber outlet, near the air outlet s position.
  • both the A-cylinder switch device and the B-cylinder switch device are in a closed state.
  • the A-cylinder compresses the empty gas body into the combustion chamber, the piston is in the combustion chamber inlet, and the B-cylinder piston is at the combustion chamber outlet.
  • the combustion chamber inlet and outlet switch device was closed, the combustion chamber was injected with fuel and ignited and burned, the combustion chamber outlet switch device was immediately opened, and the high temperature and high pressure gas was injected into the B cylinder.
  • the high pressure gas was It can only push the B piston to move forward clockwise.
  • the front end of the B cylinder piston will exhaust the exhaust gas from the previous B cylinder.
  • the A cylinder piston will also move forward through the transmission device.
  • the A cylinder switching device Immediately open, the A-cylinder piston is closed immediately after passing through the A-cylinder switch device, at this time, the A-cylinder The front end of the piston presses the air sucked in the previous A cylinder from the combustion chamber inlet (A cylinder outlet) into the combustion chamber, and the rear end of the A piston simultaneously draws in new air gas from the A cylinder inlet; when the A piston will A cylinder After the internal air gas is completely pressed into the combustion chamber, the combustion chamber inlet switch device is closed.
  • the A-cylinder piston reaches the A-cylinder switch device, and the B-cylinder piston passes through the B-cylinder switch device to reach the combustion chamber outlet port (B-cylinder feed)
  • the switch device is immediately turned off, and the engine completes one cycle.
  • the combustion chamber is injected with fuel again and ignited and burned.
  • the gas outlet switch device is immediately turned on, and the high temperature and high pressure are injected into the B cylinder, pushing the piston forward and starting a new cycle.
  • Injector-type single-cylinder single-switching device ring-like cylinder ring-turning piston engine; (Fig. 19, Fig. 20) Only one switching device (3 in Fig. 19) is provided in the wheel cylinder, and the combustion chamber inlet is located behind the switching device.
  • the air outlet of the cylinder is located in front of the switch device; the piston moves clockwise forward from the air inlet of the combustion chamber, at which time the air inlet of the combustion chamber is injected with a mixed gas of fuel and oxygen and is ignited and burned, since the cylinder switch device is closed, The high pressure gas can only push the piston forward to work.
  • the front end of the piston discharges the previous exhaust gas from the air outlet.
  • the switch device When the piston reaches the switch device, the switch device is immediately turned on.
  • the switch device is immediately turned off, thus completing.
  • One cycle At this time, the combustion chamber inlet is again injected with a mixed gas of fuel and oxygen, and the ignition is started again in the next cycle.
  • the front end of the piston discharges the previous exhaust gas from the air outlet; when the piston reaches the switching device, the switching device is immediately turned on, and the switching device is immediately turned off after the piston passes the switching device, thereby completing a cycle.
  • the inlet port is again injected with high temperature and high pressure steam gas and the next cycle begins.
  • Fuel-steam combined wheel-like cylinder ring-turn piston engine combined with single-cylinder multi-switch device ring-like cylinder ring-rotating piston internal combustion engine or two-cylinder wheel-like cylinder ring-turn piston internal combustion engine
  • Single-switching device the ring-like cylinder ring-turning piston engine uses the heat generated by the former to perform the steam generation of the latter.
  • the device heats up to generate steam and pushes the latter to work. In this way, the expansion energy of the gas can be used for work on one engine, and the heat energy of the gas can be used for work, which inevitably increases the work efficiency of the gas turbine.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • a multi-cylinder wheel-like cylinder ring-turning piston engine a plurality of wheel-like cylinder-to-piston internal combustion engines are arranged on the same central axis to form a plurality of cylinder-circle-rotating piston engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

一种轮环样气缸环转活塞内燃发动机,包括圆轮环样气缸(2)、气缸内开关装置(6,7,8)、活塞(9)、封闭环(11)、传动装置(12)、密封簧(16)、燃烧室(14)、导气管(15)、进气口(5)、排气口(4),其中,圆轮样气缸内有一个或多个开关装置将气缸分为各段,经进气、压缩、燃烧作功、排气过程推动活塞在气缸内围绕轴心(13)360°环转。该发动机作功行程较长、驱动扭矩大。

Description

轮环样气缸环转活塞发动机
技术领域
本发明涉及内燃发动机,特别是涉及旋转式内燃发动机
背景技术
当前在内燃发动机领域技术成熟的是活塞往复运动式发动机和三角转子发动机。往 复式发动机和转子发动机都依靠空燃混合气燃烧产生的膨胀压力以获得转动力。两种发 动机的机构差异在于使用膨胀压力的方式。往复式发动机中, 产生在活塞顶部表面的膨 胀压力向下推动活塞, 工作时活塞在气缸里做往复直线运动, 为了把活塞的直线运动转 化为旋转运动, 必须使用曲柄连杆机构。 转子发动机则不同, 膨胀压力作用在转子的侧 面。 从而将三角形转子的三个面之一推向偏心轴的中心, 它直接将可燃气的燃烧膨胀 力转化为驱动扭矩。 目前往复运动式发动机应用最广, 但也成在一些缺点如: 1、 结构 复杂, 体积大、 重量大。 2.曲柄连杆机构中活塞的往复运动引起的往复惯性力和惯性 力矩不能得到完全平衡,这个惯性力大小与转速平方成正比,使发动机运转平顺性下降, 限制发展高转速发动机。 3.由于四冲程往复式活塞发动机的工作方式为四个冲程中有 三个冲程完全依靠飞轮惯性旋转, 导致发动机的功率、 扭矩输出非常的不均匀, 尽管现 代发动机采用了多缸和 V型排列来减小这个缺点, 但是不可能完全消除。 与往复式发动 机相比, 转子发动机取消了无用的直线运动, 因而同样功率的转子发动机尺寸较小, 重 量较轻, 而且振动和噪声较低。 但转子发动机也有四个缺点点: 启动性差, 低速动力性 差, 低速经济性差,密封片寿命短.这都与三角转子发动机的结构有关。 本发明 "轮环气 缸环转活塞发动机", 是一种活塞在轮环样正圆形的气缸中围绕轴心作行星样环转的内 燃发动机, 由于气缸内开关装置的巧妙设计, 本发动机只需要进气 /压縮、 燃烧作功 /排 气两个行程就完成一次动力循环, 并且燃烧作功行程长, 从而提高了热效率。 本发动机 排除了活塞往复运动式内燃发动机的固有缺点, 又克服了三角转子发动机的启动性差, 低速动力性差, 低速经济性差,密封片寿命短的问题。 本发动机活塞在气缸内绕轴心环 转, 每次动力循环只需要两个行程, 其作功行程较长, 驱动扭矩大, 极大地提高了效率, 具有无可比拟的新颖性和先进性。
发明内容
一种气缸呈圆形轮环样 (如汽车轮胎一样), 气缸内有一个或若干个开关装置将气 缸开通或封闭成各段 , 活塞在气缸内经各段围绕轴心作 360 °环转的发动机。 其结构主 要包括如汽车轮胎一样的圆形轮环样气缸 (图 1中 2 ); 在气缸内设有通过开通或关闭 而将气缸分成各段的开关装置 ((图 2中 3 图 3中 6 、 7 、 8 ) ); 在气缸内围绕轴心 360 °环转的活塞(图 7中 9 ); 与活塞联动起封闭气缸缺口作用的封闭环 (图 7中 11 ); 将活塞与轴心相连起传动作用的传动装置 (图 7中 12), 在封闭环与气缸壁之间起密封 作用的密封簧(图 9); 燃烧室(图 10中 14) ; 在燃烧室内将活塞前端与开关装置之间的 气体导入后方燃烧室的导气管或导气槽(图 10中 15)。具体为:气缸:呈圆形轮环样(图 1中 2 ) 气缸内设有一个开关装置(图 2中 3)或若干个开关装置 (图 3中 6 、 7、 8 ) ; 从侧截面看, 气缸下端有一缺口 (图 4), 工作时该缺口被封闭环封闭。气缸内开关装置 的作用是通过开关的开通或关闭使气缸某处开通或封闭从而将气缸分为各段 。 开关装 置: 为球状 (图 5 ) 或为门栓样 (图 6 ); 其上均开有一供活塞通过的孔, 孔的下端有一 缺口, 该缺口与气缸的缺口一致; 从侧截面看, 该孔的直径、 形状、 弧度与气缸一至, 开关装置开启时成为气缸的一部分, 关闭时则将该处气缸封闭。 开关装置的侧面有半圆 形(U形)密封条, 底部有横形(一形)密封条。活塞: (图 7中 9)为有弧度的圆柱状, 其直径及弧度与气缸一致,以使活塞与气缸紧密贴合。活塞上有数个活塞环(图 7中 10), 前端为油环,后端为气环; 活塞与封闭环 (图 7中 11 ) 相接固定为一体, 并经封闭环上 传动装置(图 7中 12 )与轴心 (图 7中 13 )相接。封闭环: (图 7中 11 )为直径与气缸 内径一至的圆环,截面看封闭环的厚薄基本与气缸缺口一致,封闭环与活塞相连为一体, 与活塞共同运动,其作用是封闭气缸缺口。弹性密封簧:(图 9)位于封闭环与气缸壁之间 的弹性密封件,呈圆环样, 封闭环两侧各有一组弹性密封件。传动装置: (图 7中 12 )连 接活塞、封闭环与轴心的装置,如果封闭环直接接到轴心,则可取消传动装置。轴心(图 7中 13 ) 即中心轴。燃烧室(图 10中 14) ; 导气管(图 10中 15 )或导气槽: 导气管为 燃烧室后端气缸体内的管道; 导气槽为燃烧室后端气缸壁上的 槽; 可用导气管也可用 导气槽,主要起到在活塞通过燃烧室后将活塞前端的气体导入燃烧室的作用。进气口(图 2中 5 、 图 3中 5 )排气口 (图 2中 4 、 图 3中 4)。
根据零件组合结构的不同, 该发动机的工作原理有下列三种方式:
一、 单气缸多开关装置式轮环样气缸环转活塞内燃发动机 (图 10) :
该式发动机有一个轮环样气缸(图 10中 2), 内设有三个开关装置(图 10中 6 、 7、 8 )。 发动机气缸经气缸内三个开关装置的开启或关闭而形成压縮 /进油气行程段 (活塞 前端压縮后端进油气)——燃烧段(经导气管将活塞前端压縮油气导往后端后火花塞点 火燃烧)一一作功 /排气行程段 (活塞后端因爆炸气体推动作功, 前端则将原先的废气 排出)。 发动机经压縮 /进油气行程(活塞前端压縮后端进油气)——燃烧(经导气管将 活塞前端压縮油气导往后端后火花塞点火燃烧)——作功 /排气行程 (活塞后端因爆炸 气体推动作功, 前端则将原先的废气排出)。 而完成一次循环。 活塞在气缸内旋转了一 周, 而轴心也在传动装置的带动下转动了一周。 具体如下:
1、 压縮 /进气冲程(图 12) : 此时第二开关装置及第三开关装置(图 12中 7 、 8)呈 关闭状态, 第一开关装置(图 12中 6)开启, 活塞从第三开关装置(图 10中 8)处前开始 在缸内向前运动, 活塞前端将缸内之前吸入的空燃混合气向前燃烧室内压縮, 后端因负 压作用将新的空燃混合气从进气口(图 12中 5)吸入缸内。活塞继续向前运动, 当活塞完 全通过第一开关装置(图 12中 6)后, 第一开关装置(图 12中 6)立即关闭, 此时活塞继 续向第二开关装置(图 12中 7)处运动,同时将活塞前端的空燃混合气经缸壁内的导气管 或导气槽向后导入燃烧室。 本冲程完成。
2、 燃烧(图 13) : 活塞抵达第二开关装置(图 13中 7), 经压縮的油气混合气已完全 压入或导入后端燃烧室, 此时第二开关装置(图 13中 7)立即打开, 燃烧室火花塞点火, 经压縮的油气混合气爆燃, 第二开关装置打开, 由于此时第一开关装置是关闭的, 高压 气体只能将活塞向前压出, 开始下一冲程。
3、 作功 /排气冲程(图 14) : 空燃混合气爆燃后推动活塞通过第二开关装置(图 14 中 7)开始作功 /排气冲程, 此时第一开关装置(图 14中 6)及第三开关装置 (图 14中 8) 仍处于关闭状态, 活塞向前运动, 后端受到压力作功, 前端将之前存在于缸内的废气经 排气口(图 14中 4)压出; 当活塞抵达第三开关装置(图 14中 8), 废气已基本排尽, 此 时第三开关装置(图 14中 8)打开,活塞通过第三开关装置(图 14中 8)后第三开关装置(图 14中 8)立即关闭, 同时第二开关装置(图 14中 7)随即关闭, 第一开关装置(图 14中 6) 同时打开, 本次循环完成, 发动机准备开展下一循环。 本发动机只需要压縮 /进气冲程 和作功 /排气冲程就可完成一次循环, 而燃烧已包涵在这两个循环之内。
本式样发动机气缸呈 360度的圆环样, 活塞在缸内围绕轴心旋转, 气缸内的三个开 关装置将气缸分为三部分, 通过三个开关装置的开、 关而完成作功循环, 一次循环只有 两个冲程即可完成。 二、 双气缸式轮环样气缸环转活塞内燃发动机:
该式发动机将两个轮环样气缸排列在同一根中心轴上,两个气缸中每个气缸内各有 一个开关装置, 一个活塞, 两缸共用一个燃烧室或两个燃烧室。 燃烧室位于两缸之间。 (图 15 )为双轮环样气缸式环转活塞内燃发动机 A缸、 B缸的正面剖视图, 从图中可知 A 缸、 B缸内均有一个活塞, 一个开关装置, 气缸的进气口与出气口均位于开关装置两侧。 (图 16 )为双轮环样气缸式环转活塞内燃发动机侧面剖视图, 从图中可明确 A缸、 B缸 及燃烧室的位置关系, (图 16中 20) 为 A气缸, (图 16中 21 ) 为 B气缸, 两缸之间的 (图 16中 22 ) 为燃烧室。 本机原理为: A缸为一轮环样气缸(图 15 ), 内设有一个开关 装置, 气缸内有活塞, 气缸进气口位于开关装置之后, 出气口位于开关装置之前, 燃烧 室进气口与 A缸相通, A缸出气口就是燃烧室的进气口。 按顺时针方向来说, A缸开关 装置安装在燃烧室进气口之后, 靠近进气口的位置; A缸的作用是活塞的后端吸入空燃 混合气, 活塞前端将之前吸入的空燃混合气压入燃烧室。 B 缸同样有一轮环样气缸(图 15 ), 内设有一个开关装置, 气缸内有活塞, 气缸进气口位于开关装置之后, 出气口位 于开关装置之前, 燃烧室出气口与 B缸相通, B缸进气口就是燃烧室的出气口。 B缸开 关装置安装在燃烧室出气口的前面, 靠近出气口的位置。 B缸的作用是接受燃烧室排出 的高压高温气体推动活塞做功, 同时活塞前端将之前作功后产生的废气排出。 该机燃烧 室进出气口均有开关装置控制开闭。
开始工作时, A缸开关装置与 B缸开关装置均处于关闭状态。 此时 B缸活塞处于燃 烧室出气口(B缸进气口)之前等待作功(图 17 )。 A缸向燃烧室内压縮空燃气体已完成, 活塞处于燃烧室进气口 (A缸出气口) 之后开关之前(图 18 )。 燃烧室进气口开关装置 处于关闭状态, 燃烧室点火燃烧, 燃烧室出气口开关装置立即开启, 高温高压气体从出 气口 (B缸进气口) 喷入 B缸, 此时 B缸开关装置是关闭的, 压力只能推动 B活塞顺时 针向前运动作功, 并将之前缸内废气排出; 同时, 在 B活塞运动时也带动 A活塞向前运 动, 此时 A缸开关装置打开, A缸活塞通过开关装置后开关装置立即关闭, 活塞前端将 之前 A缸内吸入的油气混合气体从 A缸出气口 (燃烧室进气口) 压入燃烧室, A活塞后 端同时从进气口吸入新的油气混合气体; 当 A活塞将 A缸内的油气混合气体全部压入燃 烧室后, 燃烧室进气口开关装置关闭, 此时 A缸活塞到达 A缸开关装置前, A缸开关装 置尚未打开 (已准备打开); 而此时 B缸活塞刚通过刚打开的 B缸开关装置到达 B缸进 气口 (燃烧室出气口) 之前, B缸开关装置立即关闭, 发动机即完成了一次循环, 准备 开始下一循环。 若此时燃烧室点火燃烧, 高温高压气体从出气口 (B缸进气口) 喷入 B 缸从而又开始进行下一循环。
该式样发动机 A缸的进气 /压縮与 B缸的作功 /排出废气行程将同时进行, 为解决燃 烧室燃烧作功时如何同时进气的问题, 可将燃烧室进气口开关延迟打开, 待燃烧室燃烧 完毕, 燃烧室排气口开关关闭后燃烧室进气口开关才打开进气。 为解决这一问题也可以 采取双燃烧室的方案,即在 A缸和 B缸之间设两个燃烧室,当第一个燃烧室燃烧作功时, 第二个燃烧室出气口开关关闭, 进气口开关打开接受 A缸压入的燃气。 当第一个燃烧室 燃烧作功推动 B缸活塞转动一圈时, A缸活塞也转动了一圈, 将燃气压入第二燃烧室结 束。 此时第一个燃烧室已燃烧作功完毕, 第一燃烧室通向 B缸的排口开关立即关闭, 从 A缸接受进气的进气口开关打开接受新的气体。 与此同时第二燃烧室进气口开关立即关 闭, 并点火燃烧, 出气口开关立即打开, 膨胀的高热气体冲入 B缸推动活塞作功。如此, 第一燃烧室燃烧作功时第二燃烧室接受气体压入;第二燃烧室燃烧作功时第一燃烧室又 接受气体压入。 两个燃烧室的燃烧作功和接受气体压入交替进行。 三、 单气缸单开关装置式轮环样气缸环转活塞发动机 (图 19)
该式为单一的轮环气缸内只设一个开关装置(图 19中 3), 燃烧室进气口(图 19中 5)位于开关装后,气缸出气口(图 19中 4)位于开关装置前;活塞从燃烧室进气口后开始 准备顺时针向前运动(图 19), 此时燃烧室进气口喷入燃油与氧气的混合气体并点火燃 烧, 由于此时气缸开关装置是关闭的, 高压气体只能推动活塞向前运动作功, 活塞前端 将之前的废气从出气口排出; 当活塞到达开关装置(图 20、 3)处时, 开关装置立即开启, 活塞通过开关装置后开关装置又立即关闭, 从而完成了一次循环。 此时燃烧室进气口再 次喷入燃油与氧气的混合气体并点火燃烧又开始下一循环。该式发动机也可从进气口喷 入高压蒸汽气体并推动活塞向前运动作功, 该发动机就成为环转式蒸汽发动机。
附图说明- 图 1 : 轮环样气缸正剖视图 1 气缸壁 2—轮环样气缸
图 2:轮环样气缸内设单开关装置正剖视图 1 气缸壁 2—轮环样气缸 3—单开关装 置 4 出气口 5—进气口
图 3: 轮环样气缸内设多开关装置正剖视图 1 气缸壁 2—轮环样气缸 4一出气 口 5 进气口 6—第 1开关装置 7—第 2开关装置 8—第 3开关装置 图 4: 气缸截面剖视图显示出气缸一侧缺口 1 气缸壁 2—气缸
图 5: 气缸内球形开关剖视图
图 6: 气缸内门栓形开关剖视图
图 7: 活塞、封闭环、传动装置及轴心组件正剖视图 9一活塞 10 活塞环 11一封闭 环 12—传动装置 13—轴心
图 8: 活塞、 封闭环、 传动装置及轴心组件截面剖视图 9一活塞 11 封闭环
12 传动装置 13—轴心
图 9: 弹性密封簧正剖视图
图 10:单气缸多开关装置式轮环样气缸环转活塞内燃发动机正剖视图 1 气缸壁 2 一轮环样气缸 4 出气口 5 进气口 6—第 1开关装置 7—第 2开 关装置 8—第 3开关装置 9一活塞 11 封闭环 12—传动装置 13— 轴心 14 燃烧室 15 导气管
图 11 : 单气缸多开关装置式轮环样气缸环转活塞内燃发动机侧截面剖视图 1一气缸 壁 2—轮环样气缸 9一活塞 11 封闭环 12—传动装置 13—轴心 16—弹性密封簧 17—机壳
图 12: 单气缸多开关装置式轮环样气缸环转活塞内燃发动机压縮 /进气冲程开始时正剖 视图
1 气缸壁 2—轮环样气缸 4 出气口 5 进气口 6—第 1 开关装置 7—第 2开关装置 8—第 3开关装置 9一活塞 11 封闭环 12—传动装置
13 轴心 14 燃烧室 15 导气管
图 13:单气缸多开关装置式轮环样气缸环转活塞内燃发动机燃烧开始活塞通过第 3开关 装置时正剖视图
1 气缸壁 2—轮环样气缸 4 出气口 5 进气口 6—第 1 开关装置 7—第 2开关装置 8—第 3开关装置 9一活塞 11 封闭环 12—传动装置 13—轴心 14 燃烧室 5 导气管
图 14: 单气缸多开关装置式轮环样气缸环转活塞内燃发动机作功 /排气冲程未正剖视图 1 气缸壁 2—轮环样气缸 4 出气口 5 进气口 6—第 1 开关装置 7—第 2开关装置 8—第 3开关装置 9一活塞 11 封闭环 12—传动装置 13—轴心 14 燃烧室 15 导气管 图 15: 双气缸式轮环样气缸环转活塞内燃发动机 A缸 B缸正剖视图
1 气缸壁 2—轮环样气缸 3—开关装置 4 出气口 5 进气口 9一活 塞 11 封闭环 12—传动装置 13—轴心
图 16: 双气缸式轮环样气缸环转活塞内燃发动机侧截面剖视图
12—传动装置 13—轴心 18— A缸气缸壁 19 B缸气缸壁 20— A气 缸 21— B气缸 22 燃烧室 23 燃烧室进气口 (A缸出气口) 2 燃烧室 出气口 (B缸进气口) 25—机壳
图 17: 双气缸式轮环样气缸环转活塞内燃发动机 B缸在发动机做功开始前正剖视图
1 气缸壁 2—轮环样气缸 3—开关装置 4 出气口 5 进气口 9一活 塞 11 封闭环 12—传动装置 13—轴心
图 18: 双气缸式轮环样气缸环转活塞内燃发动机 A缸在发动机做功开始前正剖视图
1 气缸壁 2—轮环样气缸 3—开关装置 4 出气口 5 进气口 9一活 塞 11 封闭环 12—传动装置 13—轴心
图 19: 单气缸单开关装置式轮环样气缸环转活塞发动机做功前正剖视图
1 气缸壁 2—轮环样气缸 3—开关装置 4 出气口 5 进气口 9 活塞 11 封闭环 12—传动装置 13—轴心
图 20: 单气缸单开关装置式轮环样气缸环转活塞发动机做功结束时正剖视图
1 气缸壁 2—轮环样气缸 3—开关装置 4 出气口 5 进气口 9 活塞 11 封闭环 12—传动装置 13—轴心
具体实施方式:
具体实施例一:
自然吸气式单气缸多开关装置轮环样气缸环转活塞内燃发动机; (图 10 ) 轮环气缸内 设三个开关装置, 活塞从(图 10中 8 )开关装置前开始顺时针向前运动, 此时第一开关 装置 (图 10中 6 ) 开启, 第二开关装置开关装置 (图 10中 7 ) 与第三开关装置 (图 10 中 8 ) 关闭 (如图 12 ); 活塞向前运动, 前端将之前吸入的油气混合气体向燃烧室压縮, 后端将新的油气混合气体吸入; 当活塞通过第一开关装置(图 10中 6 )后, 此时, 第一 开关装置(图 10中 6 )立即关闭; 活塞继续向前运动并将油气混合气体压入燃烧室, 活 塞通过燃烧室后又经导气管或导气槽将活塞前端的油气混合气体导入燃烧室; 当活塞到 达第二开关装置(图 10中 7)处(图 ), 此时, 燃烧室点火燃烧, 推动活塞向前, 第二 开关装置开关装置 (图 10中 7) 立即开启, 活塞穿过开关装置 (图 10中 7) 向前运动 作功 (如图 13), 同时将活塞前端的废气排出气缸外; 活塞到达第三开关装置开关装置 (图 10中 8) 处时, 开关装置 (图 10中 8 ) 立即开启, 活塞穿过第三开关装置 (图 10 中)后该开关装置立即关闭 (如图 14), 此时第一开关装置 (图 10中 6)立即开启, 第 二开关装置 (图 10中 7) 关闭, 发动机即完成一次循环, 准备并开始下一循环。
具体实施例二:
燃油直喷式单气缸多开关装置轮环样气缸环转活塞内燃发动机; (图 10 ) 轮环气缸内 只设三个开关装置, 活塞从(图 10中 8)开关装置前开始顺时针向前运动, 此时第一开 关装置 (图 10中 6) 开启, 第二开关装置 (图 10中 7) 与第三开关装置 (图 10中 8) 关闭 (如图 12); 活塞向前运动, 前端将之前吸入的空气气体向燃烧室压縮, 后端将新 的空气气体吸入; 当活塞通过第一开关装置(图 10中 6)后, 此时, 第一开关装置(图 10中 6)立即关闭; 活塞继续向前运动并将空气气体压入燃烧室, 活塞通过燃烧室后又 经导气管或导气槽将活塞前端的空气气体导入燃烧室; 当活塞到达第二开关装置(图 10 中 7) 处, 此时, 燃烧室喷出燃油, 燃油经高温高压作用或点火立即燃烧, 第二开关装 置 (图 10中 7) 立即开启, 活塞穿过开关装置 (图 10中 7) 向前运动作功 (如图 13), 同时将活塞前端的废气排出气缸外; 活塞到达第三开关装置(图 10中 8)处时, 第三开 关装置 (图 10中 8) 立即开启, 活塞穿过开关装置 (图 10中 8) 后该开关装置立即关 闭 (如图 14), 此时第一开关装置 (图 10中 6) 立即开启, 第二开关装置 (图 10中 7) 关闭, 发动机即完成一次循环, 并准备开始下一循环。
具体实施例三:
自然吸气双气缸式轮环样气缸环转活塞内燃发动机; (图 15、 图 16) 该式发动机将两 个轮环样气缸排列在同一根中心轴上, 两个气缸中每个气缸内各有一个开关装置, 一个 活塞, 两缸共用一个燃烧室或设两个燃烧室。 燃烧室位于两缸之间。 燃烧室进气口 (A 缸出气口) 与 A缸相通; 燃烧室出气口 (B缸进气口) 与 B缸相通。 进出气口均有开关 装置控制开闭。 按顺时针方向来说(即活塞的前进方向), A缸开关装置安装在燃烧室进 气口之后, 靠近进气口的位置; B缸开关装置安装在燃烧室出气口的前面, 靠近出气口 的位置。 开始工作时, A缸开关装置与 B缸开关装置均处于关闭状态, 此时 A缸向燃烧 室内压縮空燃气体已完成, 活塞处于燃烧室进气口之前, B缸活塞处于燃烧室出气口之 前, 燃烧室进气口开关装置处于关闭状态, 燃烧室点火燃烧, 燃烧室出气口开关装置立 即开启, 高温高压气体喷入 B缸, 由于 B缸开关装置是关闭的, 高压气体只能推动 B活 塞顺时针向前运动作功, B缸活塞前端则将之前 B缸内废气排出; 同时, 在 B活塞运动 时通过传动装置也同时带动 A缸活塞向前运动, A缸开关装置立即打开, A缸活塞通过 A 缸开关装置后该开关装置立即关闭,此时 A缸活塞前端将之前 A缸内吸入的油气混合气 体从燃烧室进气口 (A缸出气口) 压入燃烧室, A活塞后端同时从 A缸进气口吸入新的 油气混合气体; 当 A活塞将 A缸内的油气混合气体全部压入燃烧室后, 燃烧室进气口开 关装置关闭, 此时 A缸活塞到达 A缸开关装置前, B缸活塞则通过 B缸开关装置到达燃 烧室出气口 (B缸进气口)前, B缸活塞通过 B缸开关装置后, 该开关装置又立即关闭, 发动机即完成了一次循环。 此时燃烧室再次点火燃烧, 出气口开关装置立即开启, 高温 高压喷入 B缸, 推动活塞向前, 开始新一轮循环。 本实施例将两个单开关装置轮环样气 缸环转活塞发动机组合成双气缸轮环样气缸环转活塞发动机,一个气缸专门进气并将气 体压入燃烧室, 一个气缸专门作功并排出废气。
具体实施例四:
燃油直喷双气缸式轮环样气缸环转活塞内燃发动机; (图 15、 图 16 ) 该式发动机将两 个轮环样气缸环转活塞发动机排列在同一根中心轴上,两个气缸中每个气缸内各有一个 开关装置, 一个活塞, 两缸共用一个燃烧室或两个燃烧室 (两个燃烧室交替)。 燃烧室 位于两缸之间。 燃烧室进气口 (A缸出气口) 与 A缸相通; 燃烧室出气口 (B缸进气口) 与 B缸相通。进出气口均有开关装置控制开闭。按顺时针方向来说(即活塞的前进方向), A缸开关装置安装在燃烧室进气口之后, 靠近进气口的位置; B缸开关装置安装在燃烧 室出气口的前面, 靠近出气口的位置。 开始工作时, A缸开关装置与 B缸开关装置均处 于关闭状态, 此时 A缸向燃烧室内压縮空燃气体已完成, 活塞处于燃烧室进气口之前, B缸活塞处于燃烧室出气口之前, 燃烧室进气口开关装置处于关闭状态, 燃烧室喷入燃 油并点火燃烧, 燃烧室出气口开关装置立即开启, 高温高压气体喷入 B缸, 由于 B缸开 关装置是关闭的, 高压气体只能推动 B活塞顺时针向前运动作功, B缸活塞前端则将之 前 B缸内废气排出;同时,在 B活塞运动时通过传动装置也同时带动 A缸活塞向前运动, A缸开关装置立即打开, A缸活塞通过 A缸开关装置后该开关装置立即关闭, 此时 A缸 活塞前端将之前 A缸内吸入的空气从燃烧室进气口 (A缸出气口) 压入燃烧室, A活塞 后端同时从 A缸进气口吸入新的空气气体; 当 A活塞将 A缸内的空气气体全部压入燃烧 室后, 燃烧室进气口开关装置关闭, 此时 A缸活塞到达 A缸开关装置前, B缸活塞则通 过 B缸开关装置到达燃烧室出气口 (B缸进气口) 前, B缸活塞通过开关装置后, 该开 关装置又立即关闭, 发动机即完成了一次循环。 此时燃烧室再次喷入燃油并点火燃烧, 出气口开关装置立即开启, 高温高压喷入 B缸, 推动活塞向前, 开始新一轮循环。 本实 施例将两个单开关装置轮环样气缸环转活塞发动机组合成双气缸轮环样气缸环转活塞 发动机, 一个气缸专门进气并将气体压入燃烧室, 一个气缸专门作功并排出废气。 具体实施例五:
喷油式单气缸单开关装置轮环样气缸环转活塞发动机; (图 19 、 图 20) 轮环气缸内只 设一个开关装置(图 19中 3 ), 燃烧室进气口位于开关装置后, 气缸出气口位于开关装 置前; 活塞从燃烧室进气口后开始顺时针向前运动, 此时燃烧室进气口喷入燃油与氧气 的混合气体并点火燃烧, 由于气缸开关装置是关闭的, 高压气体只能推动活塞向前运动 作功, 活塞前端将之前的废气从出气口排出; 当活塞到达开关装置处时, 开关装置立即 开启, 活塞通过开关装置后开关装置又立即关闭, 从而完成了一次循环。 此时燃烧室进 气口再次喷入燃油与氧气的混合气体并点火燃烧又开始下一循环。
具体实施例六:
蒸汽式单气缸单开关装置轮环样气缸环转活塞发动机; (图 19 、 图 20 )轮环气缸内只 设一个开关装置(图 19中 3 )及一个活塞(图 19中 9 ), 气缸进气口位于开关装置后, 气缸出气口位于开关装置前; 活塞从进气口后开始, 此时进气口喷入高温高压的蒸汽气 体, 由于气缸开关装置是关闭的, 高压气体只能推动活塞向前运动作功, 活塞前端将之 前的废气从出气口排出; 当活塞到达开关装置处时, 开关装置立即开启, 活塞通过开关 装置后开关装置又立即关闭, 从而完成了一次循环。 此时进气口再次喷入高温高压的蒸 汽气体又开始了下一循环。
具体实施例七:
燃油与蒸汽联合式轮环样气缸环转活塞发动机;在单气缸多开关装置轮环样气缸环转活 塞内燃发动机或且双气缸式轮环样气缸环转活塞内燃发动机中组合安装蒸汽式单气缸 单开关装置轮环样气缸环转活塞发动机,利用前者做功时产生的热能给后者的蒸汽发生 装置加热产生蒸汽而推动后者做功。 这样在一部发动机上即能使用燃气的膨胀能作功, 又能利用燃气的热能作功, 必然提高燃机的作功效率。
具体实施例八:
多缸式轮环样气缸环转活塞发动机;将多个轮环样气缸环转活塞内燃发动机在同一根中 心轴上排列在一起, 可成多个气缸环转活塞发动机。

Claims

权利要求书
1. 一种气缸为园形轮环样, 活塞在气缸缸内围绕轴心环转的发动机。 主要结构包括: 轮环样气缸、 缸内开关装置、 活塞、 气缸封闭环, 燃烧室、 进气口、 排气口等。 其 特征在于: 气缸为园形轮环样, 缸内设有开关装置, 通过开关装置的开通或关闭, 而使相应部分气缸开通或关闭。 活塞在气缸内围绕轴心环转并带动轴心旋转。 封闭 环起到封闭气缸缺口的作用。
2. 根据权利要求 1所述, 其特征是气缸为园形轮环样, 一端开有一缺口, 该缺口在气 缸的一端环绕一周。
3. 根据权利要求 1所述, 其特征是气缸内设有开关装置, 开关装置可为一个或多个。
4. 根据权利要求 1所述, 其特征是气缸开关装置为球形, 并开有一个合适活塞通过的 孔, 孔的一端开有与气缸一一致的缺口。
5. 根据权利要求 1所述, 其特征是气缸开关装置也可为长条门栓样, 并开有一个合适 活塞通过的孔, 孔的一端开有与气缸一一致的缺口。
6. 根据权利要求 1所述, 其特征是活塞与气缸封闭环相连接, 活塞运动时气缸封闭环 一起运动。
7. 根据权利要求 1所述, 其特征是可用一个园形轮环样气缸完成进气、 压縮、 燃烧作 功、 排气过程。
8. 根据权利要求 1所述, 其特征是也可用两个园形轮环样气缸并連在同一根轴上, 燃 烧室设于两缸之间。 其中一个气缸通过活塞运动负责进气并向燃烧室内压縮空气或 油气混合气体。 另一个气缸接受燃烧室喷射出的气体压力推动活塞作功和排出废气 同时带动进气、 压縮气缸活塞。 两个合作一同完成进气、 压縮、 燃烧作功、 排气过 程。
9. 根据权利要求 1所述, 其特征是可以在同一根轴心上连接多个单、 双气缸发动机形 成多缸发动机。
PCT/CN2012/081537 2011-09-19 2012-09-18 轮环样气缸环转活塞发动机 WO2013041013A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110282371.XA CN102996236B (zh) 2011-09-19 2011-09-19 轮环样气缸环转活塞发动机
CN201110282371.X 2011-09-19

Publications (1)

Publication Number Publication Date
WO2013041013A1 true WO2013041013A1 (zh) 2013-03-28

Family

ID=47913880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081537 WO2013041013A1 (zh) 2011-09-19 2012-09-18 轮环样气缸环转活塞发动机

Country Status (2)

Country Link
CN (1) CN102996236B (zh)
WO (1) WO2013041013A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106979136A (zh) * 2016-01-18 2017-07-25 张官霖 活塞环转式气体压缩机
CN106481449B (zh) * 2016-04-26 2020-10-09 姜跃辉 环缸式圆形转子发动机
SE544342C2 (sv) * 2020-01-07 2022-04-12 Billy Jacquet Roterande kolvsystem för förbränningsmotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683852A (en) * 1983-06-14 1987-08-04 Kypreos Pantazis Georg Internal combustion engine having rotating pistons
JPH10231732A (ja) * 1997-02-18 1998-09-02 Hajime Irisawa 仕切り弁燃焼室方式ロータリーエンジン
CN1217422A (zh) * 1997-11-11 1999-05-26 廖向东 双缸换气二冲程内燃机
CN102003277A (zh) * 2009-09-01 2011-04-06 卢能才 一种内燃机
CN102486119A (zh) * 2010-12-05 2012-06-06 陈显茂 连续旋转式内燃发动机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1361348A (zh) * 2000-12-26 2002-07-31 邹东时 环型缸可多活塞追逐式发动机
CN101787926B (zh) * 2009-01-22 2013-11-06 丁杰 活塞圆周运动式内燃机中的凸轮机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683852A (en) * 1983-06-14 1987-08-04 Kypreos Pantazis Georg Internal combustion engine having rotating pistons
JPH10231732A (ja) * 1997-02-18 1998-09-02 Hajime Irisawa 仕切り弁燃焼室方式ロータリーエンジン
CN1217422A (zh) * 1997-11-11 1999-05-26 廖向东 双缸换气二冲程内燃机
CN102003277A (zh) * 2009-09-01 2011-04-06 卢能才 一种内燃机
CN102486119A (zh) * 2010-12-05 2012-06-06 陈显茂 连续旋转式内燃发动机

Also Published As

Publication number Publication date
CN102996236B (zh) 2015-08-05
CN102996236A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
US7556014B2 (en) Reciprocating machines
CN202065058U (zh) 活塞式内燃机
WO2014107996A1 (zh) 涡轮转子节能发动机
CN110778394A (zh) 一种节能四冲程内燃机
US5372107A (en) Rotary engine
KR20000017886A (ko) 오링형 로우터리 엔진
WO2013041013A1 (zh) 轮环样气缸环转活塞发动机
WO2024037320A1 (zh) 独立配气缸内直燃圆周冲程内燃机和圆周冲程汽轮机
WO2009103210A1 (zh) 棘轮式转子发动机
CN102305130B (zh) 活塞式内燃机
JP2013542363A (ja) 電源又はポンプとして使用可能なエンジン
RU202524U1 (ru) Роторно-лопастной двигатель внутреннего сгорания
JP2004530828A (ja) ロータリー内燃機関
CN211144636U (zh) 一种节能四冲程内燃机
CN107587936B (zh) 偏心转子发动机及其燃烧做功方法
US3198179A (en) Multiple piston internal combustion engine with pump compression
WO2016175636A1 (ko) 이중터빈 내연기관
RU2477376C2 (ru) Двигатель внутреннего сгорания: 5-тактный роторный двигатель с вращающимися запорными элементами, раздельными секциями сжатия и расширения рабочего тела и обособленными камерами сгорания неизменного объема
WO2007140718A1 (fr) Moteur à piston rotatif économe en énergie pour la protection de l'environnement
CN104234825A (zh) 同轴双缸组合凸轮转子发动机
CN108869019A (zh) 利用汉弗莱热力循环的旋转内燃机
CN111120083B (zh) 一种双转子活塞发动机
RU2743607C1 (ru) Роторно-лопастной двигатель внутреннего сгорания
CN107701300A (zh) 偏心转子发动机及发动机系统
RU182290U1 (ru) Роторный двигатель внутреннего сгорания

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833350

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833350

Country of ref document: EP

Kind code of ref document: A1