WO2013040767A1 - 闸板式混凝土泵及其泵送控制系统 - Google Patents

闸板式混凝土泵及其泵送控制系统 Download PDF

Info

Publication number
WO2013040767A1
WO2013040767A1 PCT/CN2011/079957 CN2011079957W WO2013040767A1 WO 2013040767 A1 WO2013040767 A1 WO 2013040767A1 CN 2011079957 W CN2011079957 W CN 2011079957W WO 2013040767 A1 WO2013040767 A1 WO 2013040767A1
Authority
WO
WIPO (PCT)
Prior art keywords
control system
valve
pumping
main
cylinder
Prior art date
Application number
PCT/CN2011/079957
Other languages
English (en)
French (fr)
Inventor
於劲林
裴杰
Original Assignee
长沙中联重工科技发展股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 长沙中联重工科技发展股份有限公司
Priority to PCT/CN2011/079957 priority Critical patent/WO2013040767A1/zh
Publication of WO2013040767A1 publication Critical patent/WO2013040767A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration

Definitions

  • the present invention relates to the field of hydraulic machines, and in particular to a floor plate type concrete pump and a pumping control system therefor.
  • a ram pump is mainly used for pumping construction such as tunnels and nuclear power. The condition of the pump pumped by the ram pump is easier to isolate than the commercial concrete. In addition, there are large differences in the concrete throughout the country, which results in poor pumpability of the plate pump. In the existing inter-board pump, when the pumping pressure is too low, the accumulator filling pressure is too low, and the running speed of the inter-plate cannot meet the pumping requirement of the material which is different in difference and easy to be separated.
  • the present invention is directed to a partition plate type concrete pump and a pumping control system thereof, which directly monitors the position of the intermediate plate, can ensure that the gate valve is closed in place and closes before the pumping is started, thereby preventing the concrete from being segregated.
  • a gate type concrete pump pumping control system including a ram control system and a master cylinder control system, and the ram control system includes a ram and a ram drive
  • the connected ram control cylinder also includes a position switch which is disposed in the extending direction of the ram control cylinder to directly detect the closed position of the ram and output a signal to the main cylinder control system. Further, the position switch is disposed at the end position of the time plate control cylinder or the end position of the shutter when the intermediate plate is in the fully closed state. Further, the position switch is adjustable along the telescopic direction of the ram control cylinder.
  • the position switch is a proximity switch or a travel switch.
  • the inter-plate concrete pump pumping control system further comprises a main pump, an accumulator and a sequence valve
  • the main cylinder control system comprises a main pumping hydraulic reversing valve, and a main pump arranged upstream of the main pumping hydraulic reversing valve
  • An electromagnetic reversing valve is provided, wherein the accumulator is disposed on an oil passage between the main pump and the gate control system, and the main pumping electromagnetic reversing valve, and the sequence valve is disposed in the accumulator and the main pumping electromagnetic reversing valve The oil on the road.
  • the accumulator is a bladder-type accumulator.
  • the shutter control system further includes: a first hydraulic directional control valve connected to the main cylinder control system, a diaphragm hydraulic directional control valve disposed downstream of the accumulator and driven by the first hydraulic directional control valve, and connected The ram electromagnetic reversing valve upstream of the first hydraulic directional control valve, wherein the ram hydraulic directional control valve is connected to the ram control cylinder.
  • a slip-type concrete pump comprising the above-described inter-plate concrete pump pumping control system.
  • the inter-plate concrete pump pumping control system includes a position switch for directly detecting the closed position of the inter-plate, which can send a control signal to the main cylinder control system when the inter-board is completely closed in position, so that the main cylinder
  • the control system starts the pumping work to prevent the signal from being sent when the gate is not closed, and avoids the problem of blockage caused by the tightness of the blockage.
  • the pumping control system further includes an accumulator capable of storing hydraulic energy delivered to the ram control cylinder to control the speed of the ram during low pressure pumping, preventing the ram from falling too slowly, and improving the condition of the interplate pump Adaptability.
  • FIG. 1 is a schematic structural view of a prior art sluice-type concrete pump pumping control system
  • 2 is a schematic structural view showing a sluice-type concrete pump pumping control system according to a first embodiment of the present invention
  • FIG. 3 is a view showing a sluice-type concrete pump pumping control system according to a second embodiment of the present invention.
  • a plate-type concrete pump pumping control system includes a hydraulic oil supply system, a shutter control system 10, and a main cylinder control system 20, and the hydraulic oil supply system respectively connects the oil passages. It is coupled to the ram control system 10 and the master cylinder control system 20 and provides the pressure oil required for the two systems to operate.
  • the hydraulic oil supply system includes a fuel tank 30.
  • the oil tank 30 is connected to the main pump 50 through a connecting oil passage, and a filter 40 is disposed between the main pump 50 and the oil tank 30 to filter oil entering the main pump 50 to prevent impurities from entering the hydraulic cycle. In the system.
  • the oil outlet of the main pump 50 is divided into two main oil passages, the first main oil passage is connected to the shutter control system 10, and the second main oil passage is connected to the main cylinder control system 20.
  • An accumulator 70 is also disposed on the first main oil passage, and the output ends of the accumulator 70 are respectively connected to the ram control system 10 and the sequence valve 60.
  • the accumulator 70 is a bladder-type accumulator.
  • the ram control system includes two rams, a ram control cylinder connected to the ram drive, a ram electromagnetic reversing valve 16, a first hydraulic reversing valve 15, and a ram hydraulic reversing valve 14.
  • the shutter control cylinder includes a first shutter control cylinder 11 and a second shutter control cylinder 12, and position switches 13 are respectively disposed in the extending directions of the first shutter control cylinder 11 and the second shutter control cylinder 12.
  • the position switch 13 is a travel switch or a proximity switch, and is fixedly disposed on the shutter bracket, the fixed end of the oil cylinder or other fixed portion.
  • the limit portion of the position switch 13 is located at the end of the ram control cylinder or the end of the ram when the ram is completely closed, so that a control signal is issued after the ram control cylinder is moved into position and the ram is completely closed.
  • the positioning position of the limiting portion of the position switch 13 may not be limited, and the positioning structure matched with the limiting portion may be taken out from the telescopic portion or the shutter of the ram control cylinder to timely control after the ram is completely closed. signal.
  • the position switch 13 directly detects the position of the intermediate plate, thereby avoiding the problem that the shutter is started when the shutter is not pumped in place due to the unsatisfactory closing of the inter-plate, and the difference is large and easy to be separated. The condition of the pipe is blocked when pumping.
  • the position switch 13 is along the direction of expansion and contraction of the ram control cylinder
  • the position is adjustable.
  • the mounting position of the position switch 13 includes a mounting plate disposed in parallel with the telescopic direction of the ram control cylinder, and the mounting plate is provided with a sliding slot, and the position switch 13 can slide in the sliding slot and is fixed by sliding by bolts. Somewhere in the slot.
  • the first valve port of the ram electromagnetic reversing valve 16 is connected to the first main oil passage
  • the second valve port is connected to the oil tank 30, and the third valve port and the fourth valve port are respectively connected with the first hydraulic directional control valve 15
  • the valve port is connected to the second valve port.
  • the third valve port and the fourth valve port of the first hydraulic directional control valve 15 are respectively connected with the oil control ports of the two hydraulic directional control valves 14 , and the oil control port and the main oil cylinder control system of the first hydraulic directional control valve 15 20 connected.
  • the first valve port of the ram hydraulic switching valve 14 is connected to the first main oil circuit
  • the second valve port is connected to the main cylinder control system
  • the third valve port and the fourth valve port are connected to the first ram control cylinder 11 and
  • the second shutter controls the cylinder 12.
  • the main oil pump control system 20 includes a main pumping cylinder, a main cylinder hydraulic signaling device, and a main pumping electromagnetic reversing valve.
  • the main pumping cylinder includes a first main pumping cylinder 21 and a second main pumping cylinder 22, and the two main pumping cylinders respectively perform an action of sucking and feeding.
  • the main cylinder hydraulic signaling devices are respectively disposed at the end positions of the two main pumping cylinders, and the signal terminals are respectively connected to the two oil control ports of the first hydraulically operated reversing valve 15.
  • the first valve port of the main pumping electromagnetic reversing valve 23 is connected to the sequence valve 60, the second valve port is connected to the oil tank 30, and the third valve port and the fourth valve port are respectively connected to the two main pumping hydraulic reversing valves 24 Terminal control port.
  • the first valve port of the main pumping hydraulic directional control valve 24 is connected to the second main oil circuit, the second valve port is connected to the oil tank 30, and the third valve port and the fourth valve port are respectively connected to the two main pumping oil cylinders.
  • FIG. 3 according to the second embodiment of the present invention, it is basically the same as the pumping control system of the first embodiment, except that the commutation at the main pumping cylinder in the first embodiment is reversed.
  • the signal is controlled by a hydraulic transmitting device disposed at the end of the main pumping cylinder, and the commutation signal at the main pumping cylinder in this embodiment is through a position switch 13 disposed in the telescopic direction of the main pumping cylinder. controlling.
  • the ram hydraulic switching valve 14 in the first embodiment is reversed by the first hydraulic directional control valve 15, and the ram hydraulic directional control valve 14 in the present embodiment is operated by the ram electromagnetic reversing valve 16. Control, the setting of the first hydraulic directional control valve 15 is removed in the middle.
  • the control process of the pumping control system according to the first embodiment of the present invention is as follows: The start switch of the shutter pump is activated, the electromagnets 1DT, 2DT, 4DT are energized, and the shutter is in a normal pumping state. The pressurized oil is output from the main pump 50 and then advanced along the first main oil passage and the second main oil passage, respectively.
  • the pressurized oil partially enters the accumulator 70 to accumulate hydraulic energy, and a portion flows downstream to the inter-board control system 10 and the sequence valve 60, respectively.
  • the sequence valve 60 is closed.
  • the pressure oil in the first main oil passage cannot be sent from the sequence valve 60 to the main pump hydraulic diverter valve 24, so the main pump hydraulic diverter valve 24 has no control oil and does not reverse direction, and the first main pump feed cylinder 21 Maintaining the current state, the accumulator 70 continues to accumulate energy.
  • the outlet pressure of the main pump 50 continues to rise. Until the adjustment pressure of the sequence valve 60 is reached, the sequence valve 60 is now open.
  • the pressure oil flowing to the sequence valve 60 flows from the sequence valve 60 to the main pumping electromagnetic directional control valve 23, and the main pumping electromagnetic directional control valve 23 is left open.
  • the pressure oil flowing through the main pumping electromagnetic directional control valve 23 urges the spool of the main pumping hydraulic directional control valve 24 to move to the right, and the left station of the main pumping hydraulic directional control valve 24 is opened.
  • the pressure oil of the second main oil passage flows from the main pumping hydraulic switching valve 24 to the first main pumping cylinder 21, and the cylinder at the outlet side of the first main pumping cylinder 21 communicates with the concrete outlet, and the cylinder rod extends, starting Perform pumping action.
  • the cylinder on the outlet side of the second main pumping cylinder 22 communicates with the hopper, the piston rod retracts, and the pump material is drawn into the cylinder.
  • the main cylinder hydraulic transmitting device sends a signal to the first hydraulically operated reversing valve 15 to control the first hydraulically operated reversing valve 15 to be reversed so as to be in the left station communication position.
  • the pressure oil flowing to the ram control system 10 first enters the ram electromagnetic reversing valve 16. Since the 4DT is energized, the left station of the ram electromagnetic reversing valve 16 is connected.
  • the spool of the hydraulic directional control valve 14 of the ram is moved to the right, and the left working position of the hydraulic directional control valve 14 of the ram is communicated.
  • Part of the pressure oil of the first main oil passage and the pressure oil accumulated in the accumulator flow through the ram hydraulic diverter valve 14 to the rodless chamber of the second ram control cylinder 12 and the rod of the first ram control cylinder 11 Cavity.
  • the piston rod of the first shutter control cylinder 11 is retracted, and the shutter of the first shutter control cylinder 11 is retracted.
  • the piston rod of the second shutter control cylinder 12 is extended, and the shutter of the second shutter control cylinder 12 is closed.
  • the position switch 13 issues a control signal to control the 2DT to lose power, and 3DT is energized, and the main pumping electromagnetic reversing valve 23 is reversed.
  • the hydraulic energy of the accumulator 70 and the main pump 50 is released, the pressure drops below the regulating pressure of the sequence valve 60, so that the sequence valve 60 is closed, and the main pumping hydraulic reversing valve 24 is not reversed, the first main pumping The cylinder 21 remains extended. At this point the main pump 50 pressure rises and continues to charge the accumulator reservoir until the dispense pressure rises until the sequence valve 60 opens.
  • the sequence valve 60 Since the sequence valve 60 is opened, the pressure oil is delivered from the right station of the main pumping electromagnetic reversing valve to the oil control ports of the main pumping hydraulic reversing valve 24, and the main pumping hydraulic reversing valve 24 is reversing, the main pumping The cylinder is reversed until the main pumping cylinder moves to the end of the stroke, and the main cylinder hydraulic transmitter sends a control signal to cycle.
  • the pumping pressure is low, because the accumulator's liquid filling pressure is low, the flow rate provided by the accumulator is small when the ram is lowered, and the ram lowering speed is slower; therefore, a sequence valve is added, and the pumping is performed.
  • the pressure of the valve regulates the filling pressure of the accumulator.
  • the higher the filling pressure the larger the filling volume of the accumulator, the more flow the ram provides when the ram falls, and the faster the ram falls.
  • the control process of the pumping control system according to the second embodiment of the present invention is similar to the control process of the pumping control system of the first embodiment, and will not be described in detail herein.
  • the inter-panel concrete pump according to the present invention includes the above-described inter-plate concrete pump pumping control system.
  • the inter-plate concrete pump pumping control system includes a position switch that directly detects the closed position of the inter-plate, and can send a control signal to the main cylinder control system when the inter-board is completely closed in position, so that the main The cylinder control system starts pumping work to prevent the signal from being sent when the gate is not closed, so as to avoid the problem of blockage caused by the tightness of the gap between the plates.
  • the pumping control system further includes an accumulator capable of storing the hydraulic energy delivered to the ram control cylinder to control the speed of the ram during low pressure pumping, preventing the ram from falling too slowly, and improving the condition of the interplate pump. Adaptability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种闸板式混凝土泵及其泵送控制系统。该闸板式混凝土泵泵送控制系统包括闸板控制系统(10)和主油缸控制系统(20),闸板控制系统(10)包括闸板和与闸板驱动连接的闸板控制油缸,还包括位置开关(13),位置开关(13)设置在闸板控制油缸的伸出方向上,检测闸板闭合时的位置,并输出信号至主油缸控制系统(20)。该闸板式混凝土泵泵送控制系统,能够保证闸板阀下闸到位并关闭严实后才开始泵送,防止混凝土因离析使浆倒流进料斗中,从而防止出现堵管现象。

Description

闸板式混凝土泵及其泵送控制系统 技术领域 本发明涉及液压机械领域, 具体而言, 涉及一种间板式混凝土泵及其泵送控制系 统。 背景技术 闸板泵主要应用于隧道、 核电等泵送施工。 闸板泵泵送的料况与商用混凝土相比 易离析, 此外, 全国各地的混凝土也存在有较大差异, 这导致间板泵料况的可泵送性 较差。 现有的间板泵, 在泵送压力过低时, 蓄能器充液压力过低, 间板运行速度不能 满足差异性较大且易离析的料况的泵送需求。 由于无法判断闸板是否关闭严紧, 因此 闸板一旦速度慢或因卡滞而关闭不严,就会造成闸板还未动作到位时泵送就开始动作, 这会使差异性较大且易离析的料况在泵送时出现严重的堵管现象。 如图 1所示,在授权公告号为" CN201568249U" ,授权公告日为 2010年 9月 1 日, 专利名称为"一种小型混凝土输送泵"的中国发明专利中, 公开了一种小型混凝土输送 泵, 在闸板油缸 17'的末端有个固定油口 4Γ, 与油口 40'行程压力差, 从而推动阀杆 33'动作。 当油缸活塞 20'下移通过油口 41 '后, 油口 41 '的压力大于油口 40'的压力, 从而推动阀杆 33'下移, 使传感器 15'发讯控制主泵送油缸动作; 当油缸活塞 20'上移 离开油口 41 '后, 油口 41 '的压力等于油口 40'的压力, 从而阀杆 33'在弹簧 30'的作用 下向上移动, 使传感器 15'结束发讯。 闸板油缸活塞 20'下移通过油口 41 '时, 就会发 讯控制主泵送油缸动作。由于是对油缸内活塞行程进行监控, 当闸板油缸活塞 20'经过 监控位置后, 在油缸内仍然需要继续前行一段时间, 这就会导致闸板尚未封闭严实, 主泵送油缸就开始动作, 造成混凝土从吸料口返回料斗, 使泵送作业不能正常进行, 严重时会出现堵管现象。 发明内容 本发明旨在提供一种间板式混凝土泵及其泵送控制系统, 直接对间板位置进行监 控, 能够保证闸板阀下闸到位并关闭严实后才开始泵送, 防止混凝土因离析使浆倒流 进料斗中, 从而防止出现堵管现象。 为了实现上述目的, 根据本发明的一个方面, 提供了一种闸板式混凝土泵泵送控 制系统, 包括闸板控制系统和主油缸控制系统, 闸板控制系统包括闸板和与闸板驱动 连接的闸板控制油缸,还包括位置开关,位置开关设置在闸板控制油缸的伸出方向上, 直接检测闸板的闭合位置, 并输出信号至主油缸控制系统。 进一步地, 位置开关设置在间板处于完全关闭状态时间板控制油缸的末端位置或 者闸板的末端位置。 进一步地, 位置开关沿闸板控制油缸的伸缩方向位置可调。 进一步地, 位置开关为接近开关或者行程开关。 进一步地, 间板式混凝土泵泵送控制系统还包括主泵、 蓄能器和顺序阀, 主油缸 控制系统包括主泵送液动换向阀, 以及设置在主泵送液动换向阀上游的主泵送电磁换 向阀,其中蓄能器设置在主泵与闸板控制系统之间的油路上, 以及主泵送电磁换向阀, 顺序阀设置在蓄能器与主泵送电磁换向阀之间的油路上。 进一步地, 蓄能器为气囊式蓄能器。 进一步地, 闸板控制系统还包括: 与主油缸控制系统连接的第一液动换向阀、 设 置在蓄能器下游并受第一液动换向阀驱动的间板液动换向阀、 以及连接在第一液动换 向阀上游的闸板电磁换向阀, 其中闸板液动换向阀连接至闸板控制油缸。 根据本发明的另一方面, 提供了一种间板式混凝土泵, 包括上述的间板式混凝土 泵泵送控制系统。 根据本发明的实施例, 间板式混凝土泵泵送控制系统包括有直接对间板闭合位置 进行检测的位置开关,能够在间板完全闭合到位时才发出控制信号至主油缸控制系统, 使主油缸控制系统开始泵送工作, 防止闸板未下闸到位就发出信号的现象, 避免由于 间板卡滞关闭不严导致的堵管问题。 泵送控制系统还进一步包括有蓄能器, 能够储存 输送至闸板控制油缸的液压能, 以控制低压泵送时闸板的速度, 防止闸板下降速度过 慢, 提高间板泵对料况的适应性。 附图说明 构成本发明的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1示出了现有技术中的闸板式混凝土泵泵送控制系统的结构示意图; 图 2示出了根据本发明的第一实施例的闸板式混凝土泵泵送控制系统的结构示意 图; 以及 图 3示出了根据本发明的第二实施例的闸板式混凝土泵泵送控制系统的结构示意 图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 如图 2所示, 根据本发明的第一实施例, 间板式混凝土泵泵送控制系统包括液压 油供应系统、 闸板控制系统 10和主油缸控制系统 20, 液压油供应系统分别通过连接 油路与闸板控制系统 10和主油缸控制系统 20连接, 并提供两个系统工作所需的压力 油。 液压油供应系统包括油箱 30, 油箱 30通过连接油路连接有主泵 50, 主泵 50和油 箱 30之间设置有过滤器 40, 对进入主泵 50的油液进行过滤, 防止杂质进入液压循环 系统中。 主泵 50的出油口分成两个主油路, 第一主油路连接至闸板控制系统 10, 第 二主油路连接至主油缸控制系统 20。 第一主油路上还设置有蓄能器 70, 蓄能器 70的 输出端分别连通至闸板控制系统 10和顺序阀 60。优选地,蓄能器 70为气囊式蓄能器。 闸板控制系统包括两个闸板、 与闸板驱动连接的闸板控制油缸、 闸板电磁换向阀 16、 第一液动换向阀 15 以及闸板液动换向阀 14。 闸板控制油缸包括第一闸板控制油 缸 11和第二闸板控制油缸 12, 在第一闸板控制油缸 11和第二闸板控制油缸 12的伸 出方向上分别设置有位置开关 13。 位置开关 13为行程开关或者接近开关, 固定设置 在闸板支架上、油缸的不动端或者其它的固定部分。位置开关 13的限位部分位于闸板 完全闭合时的闸板控制油缸末端或者闸板末端, 以便在闸板控制油缸运动到位, 闸板 完全闭合后发出控制信号。当然也可以不限定位置开关 13的限位部分的设置位置, 而 从闸板控制油缸的伸缩部分或者闸板上引出与该限位部分配合的定位结构, 以在闸板 完全闭合后及时发出控制信号。 在这里,位置开关 13直接对间板位置进行检测,避免了间板卡滞关闭不严等所造 成的闸板未下闸到位泵送就开始动作的问题, 有效减少差异性较大且易离析的料况在 泵送时出现堵管的可能。 为了使位置开关 13 具有更好的适应性, 以便使其满足不同闸板泵的位置控制需 要, 以及便于对闸板的闭合感应位置进行调整,位置开关 13沿闸板控制油缸的伸缩方 向上的位置可调。具体地,位置开关 13的安装位置处包括有与闸板控制油缸的伸缩方 向平行设置的安装板, 安装板上开设有滑动槽, 位置开关 13可在滑动槽内滑动, 并通 过螺栓固定在滑动槽的某个位置。在对位置开关 13进行安装时, 首先可以确定一个预 估位置, 然后在该预估位置进行检测, 测验间板到达该预估位置时是否完全闭合。 如 果完全闭合, 则可以对位置开关 13的位置加以固定, 如果不能完全闭合, 则对位置开 关 13的位置进行调整, 继续进行调试, 使用方便可靠。 闸板电磁换向阀 16的第一阀口连接至第一主油路, 第二阀口连接至油箱 30, 第 三阀口和第四阀口分别与第一液动换向阀 15的第一阀口和第二阀口相连。第一液动换 向阀 15的第三阀口和第四阀口分别与闸板液动换向阀 14的两端控油口相连, 第一液 动换向阀 15的两端控油口与主油缸控制系统 20相连。闸板液动换向阀 14的第一阀口 连接至第一主油路, 第二阀口连接至主油缸控制系统, 第三阀口和第四阀口连接至第 一闸板控制油缸 11和第二闸板控制油缸 12。 主油泵控制系统 20 包括主泵送油缸、 主油缸液压发讯装置、 主泵送电磁换向阀
23以及主泵送液动换向阀 24。 主泵送油缸包括第一主泵送油缸 21和第二主泵送油缸 22, 两个主泵送油缸分别进行吸料和送料的动作。 主油缸液压发讯装置分别设置在两 个主泵送油缸的端部位置, 信号端分别连接至第一液动换向阀 15的两个控油口。 主泵送电磁换向阀 23的第一阀口连接至顺序阀 60, 第二阀口连接至油箱 30, 第 三阀口和第四阀口分别连接至主泵送液动换向阀 24的两端控油口。主泵送液动换向阀 24的第一阀口连接至第二主油路,第二阀口连接至油箱 30,第三阀口和第四阀口分别 连接至两个主泵送油缸。 如图 3所示, 根据本发明的第二实施例, 其与第一实施例的泵送控制系统的结构 基本相同, 不同之处在于, 第一实施例中的主泵送油缸处的换向信号是通过设置在主 泵送油缸末端的液压发讯装置来控制, 而本实施例中的主泵送油缸处的换向信号是通 过设置在主泵送油缸的伸缩方向上的位置开关 13来控制的。此外,第一实施例中的闸 板液动换向阀 14通过第一液动换向阀 15进行换向, 而本实施例中的闸板液动换向阀 14是通过闸板电磁换向阀 16进行控制, 中间去除了第一液动换向阀 15的设置。 根据本发明的第一实施例的泵送控制系统的控制过程如下: 启动闸板泵的启动开关, 电磁铁 1DT、 2DT、 4DT得电, 闸板处于正常泵送状态。 压力油从主泵 50中输出,然后分别沿第一主油路和第二主油路前进。进入第一主油路 的压力油, 一部分进入蓄能器 70中蓄积液压能,一部分向下游分别流向间板控制系统 10和顺序阀 60。 当主泵 50的出口压力低于顺序阀 60的调节压力时, 则顺序阀 60关闭。第一主油 路中的压力油无法从顺序阀 60输送至主泵送液动换向阀 24, 因此主泵送液动换向阀 24无控制油, 不会换向, 第一主泵送油缸 21保持当前状态, 蓄能器 70继续蓄能。 主 泵 50的出口压力继续上升。 直到达到顺序阀 60的调节压力, 此时顺序阀 60打开。 流向顺序阀 60的压力油从顺序阀 60流向主泵送电磁换向阀 23, 主泵送电磁换向 阀 23左工位打开。流过主泵送电磁换向阀 23的压力油压迫主泵送液动换向阀 24的阀 芯向右侧移动, 主泵送液动换向阀 24的左工位打开。第二主油路的压力油从主泵送液 动换向阀 24流向第一主泵送油缸 21, 第一主泵送油缸 21出口侧的砼缸与混凝土出口 连通, 油缸活塞杆伸出, 开始执行泵送动作。第二主泵送油缸 22出口侧的砼缸与料斗 连通, 活塞杆回缩, 并将泵料吸入砼缸中。 当第一主泵送油缸 21运动到行程末端时, 主油缸液压发讯装置向第一液动换向阀 15发讯, 控制第一液动换向阀 15换向, 使其 位于左工位连通位置。 流向闸板控制系统 10的压力油首先进入闸板电磁换向阀 16内。 由于 4DT得电, 闸板电磁换向阀 16的左工位连通。 压力油从闸板电磁换向阀 16流经第一液动换向阀 15后, 驱动闸板液动换向阀 14的阀芯向右运动, 闸板液动换向阀 14的左工位连通。 第一主油路的部分压力油以及蓄能器中蓄积的压力油经闸板液动换向阀 14 后流 向第二闸板控制油缸 12的无杆腔和第一闸板控制油缸 11的有杆腔。 第一闸板控制油 缸 11的活塞杆回缩, 第一闸板控制油缸 11的闸板收起。第二闸板控制油缸 12的活塞 杆伸出, 第二闸板控制油缸 12的闸板闭合。 当第二闸板控制油缸 12的闸板完全闭合 时, 位置开关 13发出控制信号, 从而控制 2DT失电, 3DT得电, 则主泵送电磁换向 阀 23换向。 但由于蓄能器 70以及主泵 50的液压能释放, 压力下降至顺序阀 60的调 节压力之下, 因此顺序阀 60关闭, 主泵送液动换向阀 24不换向, 第一主泵送油缸 21 保持伸出。此时主泵 50压力上升, 继续为蓄能器储液充能, 直到分配压力上升至顺序 阀 60打开。 由于顺序阀 60打开, 压力油从主泵送电磁换向阀的右工位输送至主泵送 液动换向阀 24的两端控油口, 主泵送液动换向阀 24换向, 主泵送油缸换向, 直到主 泵送油缸运动至行程末端, 主油缸液压发讯装置发出控制信号, 如此循环。 在泵送压力较低时, 因蓄能器的充液压力较低, 则闸板下降时蓄能器提供的流量 较小, 则闸板下降速度较慢; 故增加一个顺序阀, 在泵送压力较低时, 通过调节顺序 阀的压力来调节蓄能器的充液压力, 即充液压力越高, 蓄能器的充液体积就越大, 闸 板下降时提供的流量就越多, 闸板下降的速度就越快。 根据本发明的第二实施例的泵送控制系统的控制过程与第一实施例的泵送控制系 统的控制过程类似, 此处不再详述。 根据本发明的间板式混凝土泵, 包括上述的间板式混凝土泵泵送控制系统。 从上述描述中可以得知, 间板式混凝土泵泵送控制系统包括有直接对间板闭合位 置进行检测的位置开关, 能够在间板完全闭合到位时才发出控制信号至主油缸控制系 统, 使主油缸控制系统开始泵送工作, 防止闸板未下闸到位就发出信号的现象, 避免 由于间板卡滞关闭不严导致的堵管问题。 泵送控制系统还包括有蓄能器, 能够储存输 送至闸板控制油缸的液压能, 以控制低压泵送时闸板的速度, 防止闸板下降速度过慢, 提高间板泵对料况的适应性。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种闸板式混凝土泵泵送控制系统, 包括闸板控制系统 (10) 和主油缸控制系 统(20), 所述间板控制系统(10)包括间板和与所述间板驱动连接的间板控制 油缸, 其特征在于, 还包括位置开关(13 ), 所述位置开关(13 )设置在所述闸 板控制油缸的伸出方向上, 检测所述闸板的闭合位置, 并输出信号至所述主油 缸控制系统 (20)。
2. 根据权利要求 1所述的间板式混凝土泵泵送控制系统, 其特征在于, 所述位置 开关 (13 ) 设置在所述间板处于关闭状态时所述间板控制油缸的末端位置或者 所述闸板的末端位置。
3. 根据权利要求 2所述的间板式混凝土泵泵送控制系统, 其特征在于, 所述位置 开关 (13 ) 沿所述闸板控制油缸的伸缩方向位置可调。
4. 根据权利要求 3所述的间板式混凝土泵泵送控制系统, 其特征在于, 所述位置 开关 (13 ) 为接近开关或者行程开关。
5. 根据权利要求 2所述的间板式混凝土泵泵送控制系统, 其特征在于, 还包括主 泵 (50)、 蓄能器 (70) 和顺序阀 (60), 所述主油缸控制系统 (20) 包括主泵 送液动换向阀(24), 以及设置在所述主泵送液动换向阀(24)上游的主泵送电 磁换向阀 (23 ), 其中所述蓄能器(70)设置在所述主泵(50)与所述间板控制 系统(10)之间的油路上, 以及所述主泵送电磁换向阀(23 ), 所述顺序阀(60) 设置在所述蓄能器 (70) 与所述主泵送电磁换向阀 (23 ) 之间的油路上。
6. 根据权利要求 5所述的间板式混凝土泵泵送控制系统, 其特征在于, 所述蓄能 器 (70) 为气囊式蓄能器。
7. 根据权利要求 5所述的间板式混凝土泵泵送控制系统, 其特征在于, 所述闸板 控制系统 (10) 还包括: 与所述主油缸控制系统 (20) 连接的第一液动换向阀
( 15 )、 设置在所述蓄能器(70)下游并受所述第一液动换向阀(15 )驱动的闸 板液动换向阀( 14 )、 以及连接在所述第一液动换向阀( 15 )上游的闸板电磁换 向阀 (16), 其中所述闸板液动换向阀 (14) 连接至所述闸板控制油缸。
8. 一种闸板式混凝土泵, 其特征在于, 包括权利要求 1至 7中任一项所述的闸板 式混凝土泵泵送控制系统。
PCT/CN2011/079957 2011-09-21 2011-09-21 闸板式混凝土泵及其泵送控制系统 WO2013040767A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079957 WO2013040767A1 (zh) 2011-09-21 2011-09-21 闸板式混凝土泵及其泵送控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079957 WO2013040767A1 (zh) 2011-09-21 2011-09-21 闸板式混凝土泵及其泵送控制系统

Publications (1)

Publication Number Publication Date
WO2013040767A1 true WO2013040767A1 (zh) 2013-03-28

Family

ID=47913763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079957 WO2013040767A1 (zh) 2011-09-21 2011-09-21 闸板式混凝土泵及其泵送控制系统

Country Status (1)

Country Link
WO (1) WO2013040767A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10670023B2 (en) 2016-07-22 2020-06-02 Schwing America, Inc. Methods, devices, and systems for controlling a valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098230A (ja) * 2003-09-25 2005-04-14 Ishikawajima Constr Mach Co ダブルピストンポンプのストローク補正装置
DE102008007069A1 (de) * 2008-01-31 2009-08-06 Putzmeister Concrete Pumps Gmbh Zylinder-/Kolbeneinheit mit in der Zylinderwandung angeordneter Muffe
CN201568249U (zh) * 2009-08-06 2010-09-01 王力辉 一种小型混凝土输送泵
CN201934403U (zh) * 2011-01-27 2011-08-17 徐州海伦哲专用车辆股份有限公司 智能化步进驱动机构
CN102410188A (zh) * 2011-09-21 2012-04-11 长沙中联重工科技发展股份有限公司 闸板式混凝土泵及其泵送控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098230A (ja) * 2003-09-25 2005-04-14 Ishikawajima Constr Mach Co ダブルピストンポンプのストローク補正装置
DE102008007069A1 (de) * 2008-01-31 2009-08-06 Putzmeister Concrete Pumps Gmbh Zylinder-/Kolbeneinheit mit in der Zylinderwandung angeordneter Muffe
CN201568249U (zh) * 2009-08-06 2010-09-01 王力辉 一种小型混凝土输送泵
CN201934403U (zh) * 2011-01-27 2011-08-17 徐州海伦哲专用车辆股份有限公司 智能化步进驱动机构
CN102410188A (zh) * 2011-09-21 2012-04-11 长沙中联重工科技发展股份有限公司 闸板式混凝土泵及其泵送控制系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10670023B2 (en) 2016-07-22 2020-06-02 Schwing America, Inc. Methods, devices, and systems for controlling a valve

Similar Documents

Publication Publication Date Title
WO2015081774A1 (zh) 油缸控制系统、控制方法及泵送机械
CN104089078B (zh) 用于直线行程阀门的比例调节装置
CN108412847A (zh) 一种带负载补偿高位置精度的电静液执行器及控制方法
CN102777446B (zh) 一种油水转换变量乳化液泵站
CN106246623B (zh) 一种活化给料机液压闸门用恒压液压控制系统
CN103486092B (zh) 一种塞棒液压控制系统
WO2013040767A1 (zh) 闸板式混凝土泵及其泵送控制系统
CN103343741B (zh) 双缸泵送装置液压油置换控制方法、双缸泵送装置及设备
US9694323B2 (en) Energy recovery apparatus
CN102410188B (zh) 闸板式混凝土泵及其泵送控制系统
CN202194873U (zh) 伺服保压调速液压回路
JP5665195B2 (ja) エネルギー回収装置
CN202732552U (zh) 一种油水转换变量乳化液泵站
CN103206420B (zh) 摊铺机及其熨平板液压回路、液压控制系统及控制方法
CN105987032B (zh) 一种泵送设备的液压控制系统、泵送设备及其控制方法
CN107725803B (zh) 止回阀总成和泵送充填管道系统
CN202228326U (zh) 闸板式混凝土泵及其泵送控制系统
CN113374749B (zh) 油缸破碎机装置的液压控制系统及控制方法
CN104053900B (zh) 用于控制液压马达的启动和停止的液压致动单元
CN202228480U (zh) 混凝土泵送设备及其泵送控制系统
CN211258919U (zh) 一种双缸活塞式泥浆泵
KR100926134B1 (ko) 부구장치를 이용한 수문용 자동 전기제어장치
CN201606230U (zh) 一种用于盾构机同步注浆泵的液压系统
CN211258915U (zh) 一种双缸单进料泥浆泵
CN221779280U (zh) 大型磨床自动门

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872821

Country of ref document: EP

Kind code of ref document: A1