WO2013039117A1 - Continuous synthesis method for metal core and oxide shell core-shell structure nanoparticles, continuous synthesis apparatus for same, and core-shell structure nanoparticles - Google Patents
Continuous synthesis method for metal core and oxide shell core-shell structure nanoparticles, continuous synthesis apparatus for same, and core-shell structure nanoparticles Download PDFInfo
- Publication number
- WO2013039117A1 WO2013039117A1 PCT/JP2012/073361 JP2012073361W WO2013039117A1 WO 2013039117 A1 WO2013039117 A1 WO 2013039117A1 JP 2012073361 W JP2012073361 W JP 2012073361W WO 2013039117 A1 WO2013039117 A1 WO 2013039117A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- shell
- nanoparticles
- reaction tube
- oxide
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- the present invention relates to a core / shell nanoparticle of a metal core / oxide shell, a continuous synthesis method and a continuous synthesis apparatus for composite nanoparticles, and a core / shell nanoparticle.
- metal particles By making the metal particles nano-sized, unique electronic, electrical, catalytic, and optical properties are manifested, so they can be used in a wide range of fields such as electronic materials, catalysts, sensors, biomaterials, molecular labels, and diagnostic markers.
- metal nanoparticles Since metal nanoparticles have a chemically very active surface, they are easily altered by chemical substances, temperature, light, pH, etc., and aggregation between particles is likely to occur. However, it can be stabilized by coating with a suitable shell.
- this coating in the case of gold or silver nanoparticles, it is possible to adjust the distance between core particles when applying high-intensity absorption and emission due to plasmon resonance coupling between particles to markers and molecular labels. Become.
- oxide shells are considered to be excellent shell materials because they are thermally and mechanically stable and transparent.
- the metal melting temperature decreases the melting temperature of the substance.
- a method of coating the nanoparticle core with an oxide shell One is a method in which the core raw material solution is atomized and coated on the core particles, and is fixed by heat treatment after drying (see Patent Document 1).
- a method using a sol-gel process in which silane alkoxide is used as a shell precursor and hydrolyzed is proposed.
- a method is disclosed in which mercaptopropyltrimethoxysilane is used for the cadmium sulfide nanoparticles, and this is introduced into the core particle surface, and then the trimethoxysilyl moiety is hydrolyzed and coated with a silica layer (Patent Document 2). reference).
- a method of coating metal nanoparticles such as silver with a shell of titanium, silica, or zirconia as a crystal layer by adjusting the hydrolysis rate of metal alkoxide is disclosed (see Patent Document 3).
- a method for producing core-shell particles in which silver nanoparticles are coated with a silica layer is reported.
- An aqueous solution containing silver perchlorate and sodium citrate is reduced with sodium borohydride to obtain silver nanoparticles.
- silver nanoparticles are added to an ethanol solution of tetraethoxysilane (TEOS), and the target core-shell structure is obtained by hydrolyzing TEOS with methylamine (see Non-Patent Document 1).
- All of the disclosed methods for producing core-shell type nanoparticles or composite nanoparticles of metal particles and oxides are batch-type synthesis, which is a two-step reaction between the synthesis of the core particles and the shell formation.
- the present invention relates to a method and an apparatus for continuously synthesizing nanoparticles in which metal nanoparticles are the core and the oxide forms a shell layer of the outer skin without any variation in particle diameter or aggregation, and with fewer steps, and It is an object to provide core-shell structured nanoparticles.
- Japanese Patent Application Laid-Open No. 2005-322582 has proposed a device that irradiates a specific portion of a microwave in a concentrated manner by using a single mode cavity that forms a standing wave.
- the cavity has a metallic cylindrical resonance space, and places the reaction tube in the central portion of the cylinder, thereby concentrating the electric field on the central axis of the reaction tube.
- metal core / oxide shell nanoparticles core-shell structured nanoparticles of metal core / oxide shell (hereinafter also referred to as metal core / oxide shell nanoparticles) are continuously produced. Based on this finding, the present inventors have made the present invention.
- the present invention provides the following means. (1) Continuously synthesizing metal nanoparticles having a diameter of 1 to 100 nanometers using a previous flow reaction tube including at least one flow reaction tube, and subsequent flow reaction including at least one flow reaction tube.
- a method for continuously synthesizing core / shell nanoparticles of metal core / oxide shell, wherein an oxide film is continuously formed around metal nanoparticles by hydrolyzing an oxide precursor in a tube comprising: A continuous synthesis method of core-shell structured nanoparticles of a metal core / oxide shell, characterized in that a flow-type reaction tube is uniformly heated by microwaves.
- a product solution outlet for taking out a product solution that has flowed through the subsequent flow reaction tube is provided.
- Continuous synthesizer is provided.
- combines the nanoparticle which forms a core-shell structure with a metal nanoparticle as a core, and an oxide is a shell, cheaply, and a metal core and oxide shell nanoparticle with uniform particle size Particles can be provided.
- the present invention provides nanoparticles of metal cores and oxide shells with a particle size useful for electronic materials, catalysts, sensors, biomaterials, molecular labels, diagnostic markers, imaging materials, optical materials, semiconductors, and industrial catalysts. It can be used as a method and apparatus for efficient and efficient synthesis with high yield.
- FIG. It is explanatory drawing which shows other one Embodiment of the continuous synthesis
- 4 is a graph showing the relationship between the TEM image of the silver core / silica shell nanoparticles synthesized in Example 1, the thickness of the silica shell layer, and the retention time.
- FIG. 2 is a graph showing a TEM image and a spectrophotometric spectrum of silver core / silica shell nanoparticles synthesized in Example 2.
- FIG. 4 is a TEM image of platinum core / silica shell nanoparticles synthesized in Example 3.
- FIG. 4 is a TEM image of platinum core / silica shell nanoparticles synthesized in Example 3.
- FIG. 4 is a TEM image of composite nanoparticles synthesized in Example 4.
- FIG. 6 is a TEM image of composite nanoparticles synthesized in Example 5.
- FIG. 6 is a TEM image of each of the platinum core / silica shell nanoparticles synthesized in Example 6 by changing the DMA concentration in the reaction solution.
- 6 is a TEM image of palladium core / silica shell nanoparticles synthesized in Example 7.
- FIG. 6 is a TEM image of nickel core / silica shell nanoparticles synthesized in Example 8.
- core-shell nanoparticles are continuously synthesized by continuously generating metal fine particles in the flow-through reaction tube in the former stage and further coating the metal fine particles with oxide in the flow-through reaction tube in the subsequent stage.
- the preceding flow reaction tube is heated by microwaves. That is, the present invention continuously synthesizes metal nanoparticles having a diameter of 1 to 100 nanometers in the former flow type reaction tube, and hydrolyzes the oxide precursor in the latter flow type reaction tube.
- the oxide film is continuously heated at least when the flow-type reaction tube in the previous stage is uniformly heated by microwaves.
- FIG. 1 shows an explanatory view of a preferred embodiment of the continuous synthesis apparatus for core-shell structured nanoparticles of the present invention. An embodiment of the present invention will be described with reference to this.
- two microwave heating devices are arranged in series, and a mixer 9 is arranged between the two microwave heating devices to connect flow-type reaction tubes 3 and 10.
- the reaction tubes 3 and 10 are preferably made of a material that easily transmits microwaves, and examples thereof include glass, quartz, and Teflon (registered trademark), but are not limited thereto.
- the reaction tubes 3 and 10 are preferably millimeter-sized flow tubes having an inner diameter of 2.9 mm or less and more preferably 0.5 to 1.5 mm when the microwave frequency to be irradiated is 2.4 to 2.5 GHz.
- the microwave heating apparatus mainly includes a microwave oscillator / irradiation port 5 and a TM 010 cavity 4.
- the cavity is configured as a metal cavity resonator having a cylindrical space inside. The internal dimensions of this space can be set as appropriate so that a standing wave called TM010 can be formed.
- Standing wave TM 010 are concentrated electric field in the cylindrical central part, along the axis and has a uniform electric field intensity distribution.
- a reaction tube 3 is installed as a flow-through reaction tube in the previous stage in FIG. 1 so as to penetrate along the central axis.
- a liquid feed pump 1 is attached to one side so that the reaction solution 2 can flow through the reaction tube 3.
- a radiation thermometer is attached as the thermometer 7 so that the temperature of the reaction tube 3 can be measured.
- An electric field monitor 6 is attached to measure the electric field strength inside.
- the microwave generated from the microwave oscillator / irradiation port 5 is applied to the cylindrical TM 010 cavity 4.
- the oscillation frequency or the inner diameter of the cylindrical cavity 4 of the microwave in this case, it is possible to adjust the cavity 4 inside so that it can form standing waves TM 010 is.
- a signal from the field monitor 6 it is possible to know whether the standing wave of TM 010 is formed. If a standing wave is not formed, the standing wave is formed by changing the microwave oscillation frequency oscillated from the microwave oscillator / irradiation port 5 or adjusting the cavity inner diameter. Feedback control may be performed.
- a method for synthesizing metal nanoparticles using a microwave heating apparatus which is a reaction by the reaction tube 3 in the previous stage, a method described in JP2011-137226A can be used.
- Examples of the metal that becomes the metal core of the core-shell structured nanoparticles that can be produced by the method of the present invention include Ag, Au, Ir, Pt, Pd, Rh, Re, Ru, and Os in transition metal and typical metal complexes.
- Transition metals such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Tc, and W, Al, In, Ga, Zn , Cd, Sb, Sn, Ge, Be, Mg and other typical metals may be used.
- the metal core of the core-shell structured nanoparticle is formed using a metal particle precursor (sometimes referred to as a metal precursor in the present invention).
- a metal precursor for example, at least one selected from the group consisting of chlorides, nitrates, acetates, and chloro complexes of metals such as the transition metals and the typical metals is preferably used.
- the metal precursor is dispersed or dissolved in a solvent having a reducing action on the metal and irradiated with electromagnetic waves.
- solvents include alcohols (methanol, ethanol, ethylene glycol, diethylene glycol, propylene glycol, tetraethylene glycol, glycerol, benzyl alcohol, dipropylene glycol, etc.), inorganic acids (boron hydroxide salt, dimethylaminoborane, phosphorous acid) Acid, hypophosphorous acid, sulfurous acid, sodium thiosulfate, Fe ion complex, hydrazine, etc.), organic acids (citric acid, malic acid, oxalic acid, formic acid, etc.), saccharides and the like.
- the solvent a solvent having a high boiling point is preferably used, and these solvents may be mixed and used.
- the amount of the solvent used is preferably set so that the concentration of the metal precursor falls within the range described below.
- a dispersant in addition, by adding a dispersant to the liquid containing the metal precursor and coexisting the dispersant with the metal precursor in the preceding flow reaction tube, the surface of the generated metal nanoparticles is protected and aggregation is prevented. It is also preferable to increase the dispersion stability.
- a dispersant include polyvinyl pyrrolidone, polyethylene glycol, polyvinyl alcohol, and a polymer dispersant.
- the polymer dispersant is a high molecular weight polymer into which a functional group having high affinity for the pigment surface is introduced, and is an amphiphilic one having a structure including a solvent-affinity moiety.
- the copolymer As a polymer dispersing agent, it is soluble in a solvent that absorbs microwaves, and it can capture and disperse the fine particles generated instantaneously by an extremely fast reduction reaction in the solvent without agglomeration. It is preferable that the copolymer is effective for long-term stability, and the average molecular weight of the polymer dispersant is preferably 1,000 to 1,000,000, and particularly preferably 10,000 to 50,000. Examples of the polymer dispersant include those exemplified in JP-A-11-80647. Preferred polymer dispersants (commercially available products) include DISPERBYK 102, 108, 116, 145 manufactured by BYK Chemie.
- the amount of the dispersing agent used is preferably 0.05 to 5000 mM, more preferably 0.5 to 500 mM, per monomer unit.
- the concentration of the metal precursor substance in the reaction solution is preferably 0.01 mM to 1M, more preferably 0.1 mM to 100 mM. If the reaction time is too short, the desired nanometer-sized microparticles cannot be obtained, and if the reaction time is too long, the particle size will not be uniform or the reaction solution will boil. 1 mL / h to 5 L / h, more preferably 5 to 200 mL / h. The reaction time is preferably 1 to 60 seconds.
- the reaction temperature is not particularly limited but is preferably 140 to 250 ° C. By doing so, nanometer-sized metal nanoparticles can be synthesized.
- the core metal nanoparticles have a diameter of 1 to 100 nanometers, that is, from 1 nanometer to 50 nanometers and from 50 nanometers to 100 nanometers, preferably 5 to 20 nanometers.
- the diameter of the metal nanoparticle in this invention means the average value measured from 100 particle
- metal nanoparticles having a narrow particle size distribution can be obtained with high efficiency.
- the particle size distribution of the metal nanoparticles is preferably 50% or less in terms of CV value. In the present invention, when the obtained metal nanoparticles have a particle size distribution in the above range, it is said that the particle size is uniform. be able to.
- the CV value is a value (%) obtained by dividing the standard deviation of the diameter of the metal nanoparticles by the diameter and multiplying by 100. The standard deviation can be calculated from the particle size of 100 particles obtained from an electron microscope image.
- the solution containing the metal nanoparticles synthesized by the microwave heating device for the flow-through reaction tube in the previous stage is mixed with the oxide precursor by the mixer 9.
- An oxide film (also referred to as an oxide shell layer) is formed by hydrolyzing the oxide precursor.
- the hydrolysis of the oxide precursor can employ a known method without any particular limitation.
- an amine solution can be mixed as a catalyst for promoting the hydrolysis.
- the silica precursors include tetramethoxysilane, tetraethoxysilane, tetra (n-propoxy) silane, tetra (i-propoxy) silane, tetra (n-butoxy) silane, tetra (t- Butoxy) silane, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, cyclohexyltrimethoxy Silane, cyclohexyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxys
- tetraethoxysilane is particularly preferable.
- the amine solution include ammonia, methylamine, dimethylamine, and trimethylamine.
- the oxide precursor and the amine solution may be dissolved in alcohols and then fed to the mixer 9.
- the metal concentration is preferably 0.00001M to 10M
- the amine solution is preferably 0.001mM to 2mM, more preferably 0.01M to 2M.
- the oxide precursor is preferably 0.0001M to 1M
- the water is preferably 1M to 20M.
- a four-way static mixer is used as the mixer 9.
- the mixer 9 is not limited to this as long as it is in a form capable of homogeneous mixing.
- Reference numeral 8 denotes a liquid feed pump for adding an oxide precursor or the like.
- the solution mixed by the mixer is flowing through the subsequent flow reaction tube 10 in FIG. 1, hydrolysis occurs and an oxide shell is formed on the surface of the metal core particles. Moreover, hydrolysis is accelerated
- the oxide shell is also formed on the surface of the metal nanoparticles by collecting the product solution 11 in the container from the outlet of the flow-type reaction tube 10 in the latter stage and allowing it to stand.
- the thickness of the oxide film can be controlled by diluting a solution in the middle of the formation of the oxide film with water or alcohols. Furthermore, the thickness of the oxide film can also be adjusted by the holding time in which the product solution taken out from the downstream flow reaction tube 10 is allowed to stand at room temperature.
- the latter-stage flow-type reaction tube 10 is also provided with a microwave heating apparatus. Wave heating may not be performed.
- the subsequent flow type reaction tube may not be equipped with microwave heating means such as the TM 010 cavity 4 and the microwave oscillator / irradiation port 5.
- the film thickness of the oxide coating is preferably 1 to 100 nanometers, more preferably 5 to 20 nanometers. That is, the core-shell structure nanoparticles preferably have a diameter (also referred to as an average particle diameter) of 5 to 250 nanometers, and more preferably 10 to 100 nanometers.
- the particle size distribution of the core-shell structure nanoparticles is preferably 50% or less in terms of the CV value. In the present invention, if the obtained core-shell structure nanoparticles have a particle size distribution in the above range, “the particle size is uniform. It can be said.
- the CV value is as described above, and the standard deviation can be calculated from the particle diameter of 100 particles obtained from an electron microscope image.
- the flow rate of the reaction solution in the subsequent flow reaction tube is preferably 50 to 2000 mL / h, and can also be 50 to 400 mL / h. Further, the reaction time in this flow-type reaction tube is preferably 0.1 to 6 seconds, and may be 0.5 to 6 seconds.
- the reaction temperature in the subsequent flow reaction tube is not particularly limited, but is preferably 50 to 100 ° C. when heated.
- the product solution that has passed through the front and rear flow-type reaction tubes is recovered from the product solution outlet 16 that opens to the downstream end of the rear-stage flow reaction tube. According to the present invention, core-shell structured nanoparticles having a narrow particle size distribution can be finally obtained with high efficiency.
- the continuous synthesis apparatus of the present invention has front and rear flow type reaction tubes, and has means for uniformly heating at least the previous flow type reaction tube with microwaves.
- the first-stage flow reaction tube is used for the synthesis of the metal core particles
- the second-stage flow reaction tube is used for the synthesis of the oxide shell. It is preferable that at least one mixer is inserted between the front and rear flow-type reaction tubes.
- FIG. 2 shows a second configuration example of the continuous synthesis apparatus of the present invention. It is also possible to connect a plurality of mixers 9 in succession. For example, the oxide precursor is homogeneously mixed with the solution containing metal nanoparticles in the first mixer, and the amine solution is mixed in the second and subsequent mixers. You may mix.
- FIG. 3 shows a third configuration example of the continuous synthesis apparatus of the present invention.
- a further reaction tube 12 is provided after the outlet of the reaction tube 10 as a subsequent flow type reaction tube, and an absorptiometer capable of online measurement at a position of an arbitrary length of the reaction tube 12 or the like
- the measuring device 15 capable of measuring the thickness of the oxide shell is connected to the mixer 14.
- the pump 13 at the position where the desired absorbance, that is, the thickness of the desired oxide film is obtained.
- the measurement device 15 measures the parameters corresponding to the particle size and particle size distribution of the nanoparticles, controls the conditions such as the intensity, distribution, and frequency of the microwave given to the flow-through reaction tube in the previous stage, and the flow rate of the reaction solution It is possible to control the production conditions such as the particle size, variation of the nanoparticles, thickness of the oxide film, density, etc.
- an alcohol compound what was mentioned as alcohols with the said solvent can be used.
- the measuring instrument 15 In addition to what can measure the thickness of an oxide film, what can measure the particle size of a nanoparticle etc. is preferable. Alternatively, a mode in which a plurality of measuring devices are provided and the core particle diameter and the thickness of the oxide film are respectively measured is possible.
- Example 1 Silver core / silica shell nanoparticles were synthesized using the apparatus shown in FIG. The analysis of the particles was performed by an absorption spectrum using an ultraviolet-visible absorption spectrometer (trade name: U-3310, manufactured by Hitachi, Ltd.) and observation with a transmission electron microscope (TEM, manufactured by FEI, trade name: TECNAI G 2 ). went. A reaction tube was installed along the central axis of a TM010 single mode cavity with an inner diameter designed based on a microwave frequency of 2.45 GHz. Teflon (registered trademark), which is a representative product of a tetrafluoroethylene resin having an inner diameter of 1 mm and an outer diameter of 3 mm, was used for all the reaction tubes in this configuration example.
- Teflon registered trademark
- a liquid solvent containing a metal precursor and a polymer dispersant was supplied from one side of the Teflon reaction tube with a syringe pump.
- the reaction raw material was irradiated with microwaves having a uniform energy distribution in a section of 100 mm and heated homogeneously.
- polyvinylpyrrolidone average molecular weight 10,000
- the concentration of silver nitrate was 10 mM
- the concentration of polyvinylpyrrolidone was 300 mM per monomer unit.
- Ethylene glycol was used as a reaction solution solvent.
- Silver nanoparticles (average diameter 15 nanometers, standard deviation 1.7) were synthesized by feeding a solution obtained by mixing them into the previous reaction tube 3 with a syringe pump and heating them with microwaves.
- the CV value was 11%, and nanoparticles having a uniform particle size were obtained.
- the heating temperature was 140 ° C., and the liquid feeding speed was 6 mL / h.
- a solution containing silver nanoparticles synthesized in the previous reaction tube 3 (production density (amount) of silver nanoparticles 0.1 wt%) was fed to a four-way static mixer.
- An ethanol solution containing TEOS, an ethanol solution containing water and dimethylamine, and a solution containing silver nanoparticles were mixed from three directions and fed to the reaction tube 10 at the subsequent stage.
- the flow rate after mixing with the mixer was 320 mL / h, the silver concentration was 0.0002M, the TEOS concentration was 0.014M, the dimethylamine concentration was 0.4M, and the water was 12M.
- the subsequent reaction tube 10 was heated by microwaves at 70 ° C., and the product solution was recovered in a container, and the state was kept at room temperature.
- FIG. 4 shows a TEM image of the synthesized core-shell structured nanoparticles with respect to the retention time, which is the elapsed time from the start of retention at room temperature. From the TEM image (a) of the particles having a retention time of 5 minutes after that shown in FIG. 4, it was found that silver nanoparticles were formed at the center and a homogeneous silica shell was formed on the surface of the silver nanoparticles. It has been confirmed that the thickness of the silica shell is constant after the holding time of 10 minutes and there is no change in appearance even after one week.
- FIG. 4 shows TEM images (b) to (f) of the core-shell structured nanoparticles when the product solution is collected in a container without performing microwave heating in the subsequent reaction tube 10 and left standing.
- the silica shell was formed after the retention time of 6 minutes and the shell thickness was constant after 20 minutes.
- the time change of the thickness of the silica shell layer with and without microwave heating in FIG. 4 was compared, it was found that the formation time of the silica shell layer was shortened by microwave heating.
- the particle size distribution of the core-shell structure nanoparticles (average diameter 51 nanometers, standard deviation 3.5) had a CV value of 7%, and nanoparticles with uniform particle sizes were obtained.
- Example 2 The product solution in the middle of the formation of the silica shell obtained in the same manner as in Example 1 was subjected to ethanol retention at 7 minutes, 8 minutes, and 10 minutes after the retention time, which was the elapsed time from the start of retention at room temperature.
- FIG. 5 shows TEM images (g) to (i) and absorption spectra observed after 10-fold dilution and further maintained at room temperature for 24 hours.
- the holding time is 7 minutes, a silica shell with a thickness of 5 nm is formed.
- the silica shell is arbitrarily controlled with a thickness of 5 nm or more. It was confirmed that the thickness of the shell could be maintained.
- Example 3 An apparatus configuration example shown in FIG. 2 (however, a downstream flow-type reaction tube 10 is arranged downstream of the second mixer 9, and includes a microwave heating means, a TM010 cavity 4, a microwave oscillator, The platinum core / silica shell nanoparticles were synthesized using the irradiation port 5 and the like.
- the fluid type reaction tubes 3 and 10 are the same as the reaction tube of Example 1.
- Sodium nitrate (50 mM) for dissolution in ethylene glycol which is a reaction solution solvent, is sent to the previous reaction tube 3 with a syringe pump, and is heated by microwaves to form platinum nanoparticles (average diameter 10 nanometer, The particle size distribution was 20% in terms of CV value).
- the heating temperature was 170 ° C., and the liquid feeding speed was 6 mL / h.
- the solution containing platinum nanoparticles synthesized in the previous reaction tube 3 was sent to the first static mixer 9, and the solution containing platinum nanoparticles and the same amount of ethanol were mixed.
- an ethanol solution containing TEOS and an ethanol solution containing water and dimethylamine were mixed in the second static mixer 9 and fed to the reaction tube 10 at the subsequent stage.
- the flow rate after mixing with the mixer was 600 mL / h
- the platinum concentration was 0.0001M
- the TEOS concentration was 0.0088M
- the dimethylamine concentration was 0.06M
- water was 12M.
- the platinum core / silica shell nanoparticles (average diameter 60 nanometers, CV value 12%) when the solution is collected in a container without performing microwave heating in the subsequent reaction tube 10 and kept at room temperature for 1 hour are different magnifications.
- the TEM images taken in Fig. 6 are shown in Figs. 6a and 6b. As shown in FIGS. 6a and 6b, it can be seen that a platinum nanoparticle is formed at the center, and a silica shell (thickness 25 nm) is formed on the surface of the platinum nanoparticle.
- Examples 4 to 6 below among the composite nanoparticles composed of platinum and silica synthesized by changing the TEOS concentration and the dimethylamine (DMA) concentration, the platinum core silica in which the platinum nanoparticles are coated with a silica shell Composite nanoparticles in which platinum nanoparticles are attached to the surface of shell nanoparticles, composite nanoparticles in which silica particles and platinum nanoparticles are aggregated and silica particles are coated around the platinum nanoparticles, and have an arbitrary average particle size An example of synthesis of platinum core / silica shell nanoparticles will be shown. The composition of the reaction raw materials used in each example is as shown in Table 1.
- Example 4 is a synthesis example of platinum-silica composite nanoparticles in which platinum nanoparticles are coated with a silica shell and platinum nanoparticles not coated with silica are attached to the surface of the silica shell. It is.
- conditions other than the composition shown in Table 1 were set basically in the same manner as in Example 3 to synthesize platinum core / silica shell nanoparticles (average diameter 60 nm, CV value 11%).
- the diameter of the platinum nanoparticles was 10 nanometers, and the particle size distribution was 20% in terms of CV value.
- FIG. 7 shows a TEM image of the composite nanoparticles of platinum and silica synthesized in Example 4.
- FIG. 7 shows a TEM image of the composite nanoparticles of platinum and silica synthesized in Example 4.
- Example 5 is a synthesis example of composite nanoparticles having a form in which the periphery of a platinum core is coated by attaching particulate silica to the surface of platinum nanoparticles.
- conditions other than the composition shown in Table 1 were set basically in the same manner as in Example 3 to synthesize composite nanoparticles (average diameter 140 nm, CV value 45%).
- the diameter of the platinum nanoparticles was 10 nanometers, and the particle size distribution was 20% in terms of CV value.
- FIG. 8 shows a TEM image of the composite nanoparticles synthesized in Example 5. According to FIG.
- Example 6 is a synthesis example of platinum core / silica shell nanoparticles having an arbitrary average particle size.
- Example 6 consists of four types of Examples 6-1 to 6-4 in which the concentration of MDA in the reaction solution was changed. Conditions other than the composition shown in Table 1 were basically set in the same manner as in Example 3, and platinum was used. Core silica shell nanoparticles were synthesized. In addition, the diameter and particle size distribution (CV value%) of platinum nanoparticles, and the average particle diameter and particle size distribution (CV value%) of platinum core / silica shell nanoparticles (referred to as core-shell structure nanoparticles in Table 1). Is shown in Table 1.
- FIG. 1 is a synthesis example of platinum core / silica shell nanoparticles having an arbitrary average particle size.
- Example 6 consists of four types of Examples 6-1 to 6-4 in which the concentration of MDA in the reaction solution was changed. Conditions other than the composition shown in Table 1 were basically set in the same manner as in Example 3, and platinum was used. Core
- Example 7 An apparatus configuration example shown in FIG. 2 (however, a flow type reaction tube 10 is arranged downstream of the second mixer 9, and heating means by microwave, TM010 cavity 4, microwave oscillator / irradiation port 5 may not be provided.) was used to synthesize palladium core / silica shell nanoparticles.
- the fluid type reaction tubes 3 and 10 are the same as the reaction tube of Example 1.
- FIG. 10 shows a TEM image of the palladium core / silica shell nanoparticles when the solution was collected in a container without performing microwave heating in the subsequent reaction tube 10 and kept at room temperature for 1 hour. As shown in FIG.
- palladium nanoparticles are present at the center, and a silica shell (thickness 20 nm) is formed on the surface of the palladium nanoparticles.
- the particle size distribution of the palladium core / silica shell under these synthesis conditions was an average diameter of 48 nanometers and a CV value of 7%.
- Example 8 An apparatus configuration example shown in FIG. 2 (however, a flow type reaction tube 10 is arranged downstream of the second mixer 9, and heating means by microwave, TM010 cavity 4, microwave oscillator / irradiation port 5 may not be provided), and nickel core / silica shell nanoparticles were synthesized.
- the fluid type reaction tubes 3 and 10 are the same as the reaction tube of Example 1.
- Nickel acetate tetrahydrate (5 mM) is used as a metal precursor, polyvinylpyrrolidone (100 mM per monomer unit, average molecular weight 40,000) as a polymer dispersant, and dioctyl for controlling the size of nickel nanoparticles
- Amine (10 mM) is dissolved in ethylene glycol, which is a reaction solvent, and is sent to the previous reaction tube 3 with a syringe pump, and heated by microwaves to form nickel nanoparticles (average diameter 15 nm, CV value 13%) ) was synthesized.
- the heating temperature was 170 ° C.
- the liquid feeding speed was 1 mL / h.
- FIG. 11 shows a TEM image of the nickel core / silica shell nanoparticles when the solution was collected in a container without performing microwave heating in the subsequent reaction tube 10 and kept at room temperature for 1 hour.
- nickel nanoparticles particles diameter: 15 nanometers
- silica shell thickness: 20 nanometers
- the particle size distribution of the nickel core / silica shell synthesized under these conditions was an average diameter of 55 nanometers and a CV value of 8%.
- the present invention has been described with reference to an embodiment in which the production is divided into the former stage and the latter stage.
- this embodiment can be applied to the first-stage flow reaction tube and the second-stage flow reaction tube.
- a case where a plurality of each or any one of them is provided is also included.
- the subsequent stage may be performed with a plurality of flow-type reaction tubes.
- the number of flow-type reaction tubes before and after the microwave heating is not particularly limited.
- at least one or a plurality or all of the flow reaction tubes at the front and rear stages may be heated by microwaves.
- a mode in which a plurality of front and rear flow-type reaction tubes are provided is not particularly limited, and a plurality of front and rear flow-type reaction tubes may be arranged in series or in parallel.
- a flow tube for circulating or mixing a raw material such as a metal precursor, a solvent, an oxide precursor, an amine solution, or a solution containing metal nanoparticles may be provided.
- a flow tube can be provided further upstream than the flow reaction tube of the previous step.
- a flow pipe can be provided between the front and rear flow type reaction tubes.
- a flow tube can be provided further downstream of the flow reaction tube at the subsequent stage.
- At least a flow type reaction tube and a mixer are detachably provided. By doing so, it is possible to diversify the types and forms of the nanoparticles to be produced, to easily control the quality, and to further reduce the production cost, thereby further enhancing the effects of the present invention. it can.
- silica has been described as an example of the oxide.
- the oxide is not limited to silica because the oxide precursor can be hydrolyzed, and there are alumina, zirconia, and the like. Particles and composite nanoparticles can be synthesized.
- the present invention has been described above including the embodiments. However, the present invention is not limited to this, and many variations are possible based on the technical idea of the present invention.
- Composite nanoparticles synthesized using a synthesis method and / or a continuous synthesis apparatus also belong to the present invention.
- This composite nanoparticle is a nanoparticle composed of different types of nanoparticles and oxide particles, for example, composite nanoparticles in which the nanoparticles are metal particles and the oxide is attached to a part of the surface. It is done. More specifically, the composite nanoparticles include composite nanoparticles in which platinum nanoparticles not coated with silica are attached to the surface of the core-shell structured nanoparticles as in Example 4, and platinum as in Example 5. Examples include composite nanoparticles in which particulate silica adheres to the surface of the nanoparticles and covers the periphery of the platinum core.
- the continuous synthesis method and / or continuous synthesis apparatus of the present invention can synthesize such composite nanoparticles.
- the core-shell structured nanoparticles of the present invention can be used in various chemical reaction processes due to the activity of the catalyst, which is one of their uses.
- Metal core / oxide shell structure nanoparticles and composite nanoparticles synthesized by the continuous synthesis method and continuous synthesis apparatus of the present invention are converted into electronic materials, catalysts, sensors, biomaterials, molecular labels (molecular labels), diagnostic markers, By using it as an image forming material, an optical material, a semiconductor, or an industrial catalyst, it is possible to further improve the quality and cost of products in this field.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Powder Metallurgy (AREA)
- Silicon Compounds (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
This invention addresses the problem of providing a method and apparatus for continuously synthesizing nanoparticles in few processes and without causing variation in particle size or aggregation, as well as providing a core-shell structure nanoparticle. This invention concerns a continuous synthesis method for core-shell structure nanoparticles, a continuous synthesis apparatus, and core-shell structure nanoparticles synthesized by this continuous synthesis method and/or this continuous synthesis apparatus, wherein: the continuous synthesis method for core-shell structure nanoparticles continuously synthesizes metal nanoparticles having a diameter of 1-100 nM through an initial stage flow-type reaction tube (3) comprising at least a single stage flow-type reaction tube, hydrolyzes an oxide precursor in a subsequent stage flow-type reaction tube (10) comprising at least a single stage flow-type reaction tube, and uniformly heats at least the flow-type reaction tube (3) through microwaves; and the continuous synthesis apparatus has initial and subsequent stage flow-type reaction tubes (3, 10), and has a means for uniformly heating at least the flow-type reaction tube (3) through microwaves, the flow-type reaction tube (3) being a reaction tube for metal core synthesis, and the other flow-type reaction tube (10) being a reaction tube for oxide shell synthesis.
Description
本発明は、金属コア・酸化物シェルのコアシェル構造ナノ粒子、複合ナノ粒子の連続合成方法および連続合成装置ならびにコアシェル構造ナノ粒子に関する。
The present invention relates to a core / shell nanoparticle of a metal core / oxide shell, a continuous synthesis method and a continuous synthesis apparatus for composite nanoparticles, and a core / shell nanoparticle.
金属粒子は、ナノサイズとすることで、特異な電子、電気、触媒、光学の特性が発現されるため、電子材料、触媒、センサー、バイオ材料、分子ラベル、診断用マーカーなど広範な領域において応用が展開されている。金属ナノ粒子は化学的にきわめて活性な表面を持つため、化学物質、温度、光、pHなどにより変質しやすく、また粒子間の凝集が起こりやすい。しかし、適切なシェルで被覆することで、安定化させることができる。また、この被覆によって、金や銀ナノ粒子の場合、粒子間のプラズモン共鳴カップリングによる高強度の吸光、発光をマーカーや分子ラベルに応用する際、コア粒子間の距離を調節することが可能となる。シェル材のなかでも酸化物シェルは熱的・機械的に安定でしかも透明なため、優れたシェル材と考えられている。
また、一般に、金属をナノ粒子化することで、物質の溶融温度が下がる。触媒用途では、金属ナノ粒子は、高温でも安定した形状が維持されることが望まれるため、金属ナノ粒子表面にシェルを被覆することで、溶融の抑制や、溶融した場合でももとの形状を保っておくことが可能になると考えられている。
ナノ粒子コアに酸化物シェルを被覆する方法として、いくつかの報告がある。ひとつは、コア粒子に、シェル原料溶液を霧化して被覆し、乾燥後に熱処理して固着する方法である(特許文献1参照)。また、シェル前駆体にシランアルコキシドを用い、これを加水分解するゾルゲルプロセスを用いる方法が提案されている。例えば、硫化カドミウムのナノ粒子にメルカプトプロピルトリメトキシシランを用い、コア粒子表面にこれを導入した後、トリメトキシシリル部分を加水分解してシリカ層で被覆する方法が開示されている(特許文献2参照)。さらに、金属アルコキシドの加水分解速度を調節することで、銀などの金属ナノ粒子にチタン、シリカ、ジルコニアのシェルを結晶層として被覆する方法が開示されている(特許文献3参照)。
また、別の文献では、銀ナノ粒子をシリカ層で被覆したコアシェル粒子の製造法が報告されている。過塩素酸銀とクエン酸ナトリウムとを含む水溶液中を、水素化ホウ素ナトリウムにより還元し、銀ナノ粒子を得る。その後銀ナノ粒子をテトラエトキシシラン(TEOS)のエタノール溶液に加え、TEOSをメチルアミンで加水分解することにより、目的とするコアシェル構造物を得ている(非特許文献1参照)。
開示されているコアシェル型ナノ粒子または金属粒子と酸化物との複合ナノ粒子の製造方法は、いずれもバッチ式による合成であり、コア粒子の合成とシェル形成で二段階の反応となっている。 By making the metal particles nano-sized, unique electronic, electrical, catalytic, and optical properties are manifested, so they can be used in a wide range of fields such as electronic materials, catalysts, sensors, biomaterials, molecular labels, and diagnostic markers. Has been expanded. Since metal nanoparticles have a chemically very active surface, they are easily altered by chemical substances, temperature, light, pH, etc., and aggregation between particles is likely to occur. However, it can be stabilized by coating with a suitable shell. In addition, with this coating, in the case of gold or silver nanoparticles, it is possible to adjust the distance between core particles when applying high-intensity absorption and emission due to plasmon resonance coupling between particles to markers and molecular labels. Become. Among shell materials, oxide shells are considered to be excellent shell materials because they are thermally and mechanically stable and transparent.
In general, the metal melting temperature decreases the melting temperature of the substance. For catalyst applications, it is desirable that metal nanoparticles maintain a stable shape even at high temperatures. Therefore, by covering the surface of the metal nanoparticles with a shell, it is possible to suppress melting or to restore the original shape even when melted. It is thought that it will be possible to keep.
There are several reports as a method of coating the nanoparticle core with an oxide shell. One is a method in which the core raw material solution is atomized and coated on the core particles, and is fixed by heat treatment after drying (see Patent Document 1). Further, a method using a sol-gel process in which silane alkoxide is used as a shell precursor and hydrolyzed is proposed. For example, a method is disclosed in which mercaptopropyltrimethoxysilane is used for the cadmium sulfide nanoparticles, and this is introduced into the core particle surface, and then the trimethoxysilyl moiety is hydrolyzed and coated with a silica layer (Patent Document 2). reference). Furthermore, a method of coating metal nanoparticles such as silver with a shell of titanium, silica, or zirconia as a crystal layer by adjusting the hydrolysis rate of metal alkoxide is disclosed (see Patent Document 3).
In another document, a method for producing core-shell particles in which silver nanoparticles are coated with a silica layer is reported. An aqueous solution containing silver perchlorate and sodium citrate is reduced with sodium borohydride to obtain silver nanoparticles. Thereafter, silver nanoparticles are added to an ethanol solution of tetraethoxysilane (TEOS), and the target core-shell structure is obtained by hydrolyzing TEOS with methylamine (see Non-Patent Document 1).
All of the disclosed methods for producing core-shell type nanoparticles or composite nanoparticles of metal particles and oxides are batch-type synthesis, which is a two-step reaction between the synthesis of the core particles and the shell formation.
また、一般に、金属をナノ粒子化することで、物質の溶融温度が下がる。触媒用途では、金属ナノ粒子は、高温でも安定した形状が維持されることが望まれるため、金属ナノ粒子表面にシェルを被覆することで、溶融の抑制や、溶融した場合でももとの形状を保っておくことが可能になると考えられている。
ナノ粒子コアに酸化物シェルを被覆する方法として、いくつかの報告がある。ひとつは、コア粒子に、シェル原料溶液を霧化して被覆し、乾燥後に熱処理して固着する方法である(特許文献1参照)。また、シェル前駆体にシランアルコキシドを用い、これを加水分解するゾルゲルプロセスを用いる方法が提案されている。例えば、硫化カドミウムのナノ粒子にメルカプトプロピルトリメトキシシランを用い、コア粒子表面にこれを導入した後、トリメトキシシリル部分を加水分解してシリカ層で被覆する方法が開示されている(特許文献2参照)。さらに、金属アルコキシドの加水分解速度を調節することで、銀などの金属ナノ粒子にチタン、シリカ、ジルコニアのシェルを結晶層として被覆する方法が開示されている(特許文献3参照)。
また、別の文献では、銀ナノ粒子をシリカ層で被覆したコアシェル粒子の製造法が報告されている。過塩素酸銀とクエン酸ナトリウムとを含む水溶液中を、水素化ホウ素ナトリウムにより還元し、銀ナノ粒子を得る。その後銀ナノ粒子をテトラエトキシシラン(TEOS)のエタノール溶液に加え、TEOSをメチルアミンで加水分解することにより、目的とするコアシェル構造物を得ている(非特許文献1参照)。
開示されているコアシェル型ナノ粒子または金属粒子と酸化物との複合ナノ粒子の製造方法は、いずれもバッチ式による合成であり、コア粒子の合成とシェル形成で二段階の反応となっている。 By making the metal particles nano-sized, unique electronic, electrical, catalytic, and optical properties are manifested, so they can be used in a wide range of fields such as electronic materials, catalysts, sensors, biomaterials, molecular labels, and diagnostic markers. Has been expanded. Since metal nanoparticles have a chemically very active surface, they are easily altered by chemical substances, temperature, light, pH, etc., and aggregation between particles is likely to occur. However, it can be stabilized by coating with a suitable shell. In addition, with this coating, in the case of gold or silver nanoparticles, it is possible to adjust the distance between core particles when applying high-intensity absorption and emission due to plasmon resonance coupling between particles to markers and molecular labels. Become. Among shell materials, oxide shells are considered to be excellent shell materials because they are thermally and mechanically stable and transparent.
In general, the metal melting temperature decreases the melting temperature of the substance. For catalyst applications, it is desirable that metal nanoparticles maintain a stable shape even at high temperatures. Therefore, by covering the surface of the metal nanoparticles with a shell, it is possible to suppress melting or to restore the original shape even when melted. It is thought that it will be possible to keep.
There are several reports as a method of coating the nanoparticle core with an oxide shell. One is a method in which the core raw material solution is atomized and coated on the core particles, and is fixed by heat treatment after drying (see Patent Document 1). Further, a method using a sol-gel process in which silane alkoxide is used as a shell precursor and hydrolyzed is proposed. For example, a method is disclosed in which mercaptopropyltrimethoxysilane is used for the cadmium sulfide nanoparticles, and this is introduced into the core particle surface, and then the trimethoxysilyl moiety is hydrolyzed and coated with a silica layer (Patent Document 2). reference). Furthermore, a method of coating metal nanoparticles such as silver with a shell of titanium, silica, or zirconia as a crystal layer by adjusting the hydrolysis rate of metal alkoxide is disclosed (see Patent Document 3).
In another document, a method for producing core-shell particles in which silver nanoparticles are coated with a silica layer is reported. An aqueous solution containing silver perchlorate and sodium citrate is reduced with sodium borohydride to obtain silver nanoparticles. Thereafter, silver nanoparticles are added to an ethanol solution of tetraethoxysilane (TEOS), and the target core-shell structure is obtained by hydrolyzing TEOS with methylamine (see Non-Patent Document 1).
All of the disclosed methods for producing core-shell type nanoparticles or composite nanoparticles of metal particles and oxides are batch-type synthesis, which is a two-step reaction between the synthesis of the core particles and the shell formation.
従来法では、このコアシェル型ナノ粒子、複合ナノ粒子を合成する方法において、バッチ的手法のもと、原料導入の順番や、ナノ粒子の生成方法、還元方法の改良によって合成が行われてきた。しかし、バッチ式では工程が多くなり、少量の合成には適応可能であるが、大量連続合成には限界があること、また、反応が活性で不安定なコア粒子分散溶液は、次のシェル形成段階までに変質や凝集が起こる可能性があることなどの問題がある。また、バッチ法では粒子径のばらつきや凝集が起こりやすい。
本発明は、金属ナノ粒子が中心のコアであり、酸化物が外皮のシェル層を形成するナノ粒子を、粒子径のばらつきや凝集を起こさず、少ない工程で連続的に合成する方法および装置ならびにコアシェル構造ナノ粒子を提供することを課題とする。 In the conventional method, in the method for synthesizing the core-shell type nanoparticles and composite nanoparticles, synthesis has been performed by improving the order of introducing raw materials, the method for producing nanoparticles, and the reduction method based on a batch method. However, the batch method requires many steps and can be applied to a small amount of synthesis, but there is a limit to large-scale continuous synthesis. There are problems such as possible alteration and aggregation by the stage. Also, the batch method tends to cause variation in particle size and aggregation.
The present invention relates to a method and an apparatus for continuously synthesizing nanoparticles in which metal nanoparticles are the core and the oxide forms a shell layer of the outer skin without any variation in particle diameter or aggregation, and with fewer steps, and It is an object to provide core-shell structured nanoparticles.
本発明は、金属ナノ粒子が中心のコアであり、酸化物が外皮のシェル層を形成するナノ粒子を、粒子径のばらつきや凝集を起こさず、少ない工程で連続的に合成する方法および装置ならびにコアシェル構造ナノ粒子を提供することを課題とする。 In the conventional method, in the method for synthesizing the core-shell type nanoparticles and composite nanoparticles, synthesis has been performed by improving the order of introducing raw materials, the method for producing nanoparticles, and the reduction method based on a batch method. However, the batch method requires many steps and can be applied to a small amount of synthesis, but there is a limit to large-scale continuous synthesis. There are problems such as possible alteration and aggregation by the stage. Also, the batch method tends to cause variation in particle size and aggregation.
The present invention relates to a method and an apparatus for continuously synthesizing nanoparticles in which metal nanoparticles are the core and the oxide forms a shell layer of the outer skin without any variation in particle diameter or aggregation, and with fewer steps, and It is an object to provide core-shell structured nanoparticles.
本発明者らは、これまでにマイクロ波エネルギーを利用した反応装置や反応方法を研究、提案してきている。特開2005-322582号公報では、定在波を形成するシングルモードキャビティを用いることにより、マイクロ波を特定部位に集中照射する装置を提案した。上記キャビティは、金属製の円筒状の共振空間を有し、円筒の中心部分に反応管を置くことで、反応管の中心軸に電界を集中させるものである。これを用いて、流通管に反応溶液を流し、液体試料を連続して高効率に直接加熱する装置と方法も提案している(特開2010-207735号公報参照)。さらに、この装置を用いて、金属前駆体を溶かした溶液を加熱することで、粒子径の揃った金属ナノ粒子を合成する方法を見出した(特開2011-137226号公報、特願2011-153214号)。これらのマイクロ波加熱法は、流通している反応溶液を迅速、均一に加熱することができる特徴を有する。
本発明者らは、このマイクロ波加熱流通反応装置を少なくとも2台直列に用い、または、少なくとも一段の流通型反応管を含む前段の流通型反応管としてこのマイクロ波加熱流通反応装置を少なくとも1台と少なくとも一段の流通型反応管を含む後段の流通型反応管として少なくとも1つの反応管とを用い、マイクロ波加熱による1)金属コア粒子の合成、2)酸化物被膜の形成を一貫して行うことで、不安定な金属ナノ粒子を次の酸化物被膜被覆段階に連続して送って金属コア・酸化物シェルのコアシェル構造ナノ粒子(以下、金属コア・酸化物シェルナノ粒子ともいう)を連続して合成できることを見出し、この知見に基づき本発明をなすに至った。 The present inventors have so far researched and proposed a reaction apparatus and a reaction method using microwave energy. Japanese Patent Application Laid-Open No. 2005-322582 has proposed a device that irradiates a specific portion of a microwave in a concentrated manner by using a single mode cavity that forms a standing wave. The cavity has a metallic cylindrical resonance space, and places the reaction tube in the central portion of the cylinder, thereby concentrating the electric field on the central axis of the reaction tube. There has also been proposed an apparatus and a method in which a reaction solution is made to flow through a flow pipe and a liquid sample is continuously directly heated with high efficiency (see JP 2010-207735 A). Furthermore, a method for synthesizing metal nanoparticles having a uniform particle diameter by heating a solution in which a metal precursor is dissolved using this apparatus has been found (Japanese Patent Application Laid-Open No. 2011-137226, Japanese Patent Application No. 2011-153214). issue). These microwave heating methods have a feature that the reaction solution in circulation can be heated quickly and uniformly.
The present inventors use at least two microwave heating flow reaction devices in series, or at least one microwave heating flow reaction device as a previous flow reaction tube including at least one flow reaction tube. And at least one reaction tube as a subsequent flow reaction tube including at least one flow reaction tube, and 1) synthesis of metal core particles by microwave heating, and 2) formation of an oxide film are performed consistently. In this way, unstable metal nanoparticles are continuously sent to the next oxide coating coating stage, and core-shell structured nanoparticles of metal core / oxide shell (hereinafter also referred to as metal core / oxide shell nanoparticles) are continuously produced. Based on this finding, the present inventors have made the present invention.
本発明者らは、このマイクロ波加熱流通反応装置を少なくとも2台直列に用い、または、少なくとも一段の流通型反応管を含む前段の流通型反応管としてこのマイクロ波加熱流通反応装置を少なくとも1台と少なくとも一段の流通型反応管を含む後段の流通型反応管として少なくとも1つの反応管とを用い、マイクロ波加熱による1)金属コア粒子の合成、2)酸化物被膜の形成を一貫して行うことで、不安定な金属ナノ粒子を次の酸化物被膜被覆段階に連続して送って金属コア・酸化物シェルのコアシェル構造ナノ粒子(以下、金属コア・酸化物シェルナノ粒子ともいう)を連続して合成できることを見出し、この知見に基づき本発明をなすに至った。 The present inventors have so far researched and proposed a reaction apparatus and a reaction method using microwave energy. Japanese Patent Application Laid-Open No. 2005-322582 has proposed a device that irradiates a specific portion of a microwave in a concentrated manner by using a single mode cavity that forms a standing wave. The cavity has a metallic cylindrical resonance space, and places the reaction tube in the central portion of the cylinder, thereby concentrating the electric field on the central axis of the reaction tube. There has also been proposed an apparatus and a method in which a reaction solution is made to flow through a flow pipe and a liquid sample is continuously directly heated with high efficiency (see JP 2010-207735 A). Furthermore, a method for synthesizing metal nanoparticles having a uniform particle diameter by heating a solution in which a metal precursor is dissolved using this apparatus has been found (Japanese Patent Application Laid-Open No. 2011-137226, Japanese Patent Application No. 2011-153214). issue). These microwave heating methods have a feature that the reaction solution in circulation can be heated quickly and uniformly.
The present inventors use at least two microwave heating flow reaction devices in series, or at least one microwave heating flow reaction device as a previous flow reaction tube including at least one flow reaction tube. And at least one reaction tube as a subsequent flow reaction tube including at least one flow reaction tube, and 1) synthesis of metal core particles by microwave heating, and 2) formation of an oxide film are performed consistently. In this way, unstable metal nanoparticles are continuously sent to the next oxide coating coating stage, and core-shell structured nanoparticles of metal core / oxide shell (hereinafter also referred to as metal core / oxide shell nanoparticles) are continuously produced. Based on this finding, the present inventors have made the present invention.
すなわち本発明は、以下の手段を提供する。
(1)少なくとも一段の流通型反応管を含む前段の流通型反応管により直径1~100ナノメートルの金属ナノ粒子を連続的に合成し、少なくとも一段の流通型反応管を含む後段の流通型反応管において酸化物前駆体を加水分解することで金属ナノ粒子の周囲に酸化物被膜を連続的に形成させる金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法であって、少なくとも前記前段の流通型反応管をマイクロ波により均一加熱することを特徴とする金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(2)前記前段の流通型反応管と前記後段の流通型反応管とをマイクロ波により均一加熱することを特徴とする(1)に記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(3)前記の前後段の流通型反応管の間にミキサーを配置し、前記前段の流通型反応管から流出した金属コア粒子を含む溶液に前記ミキサーを用いて酸化物前駆体を混合したのち、前記後段の流通型反応管に流入させることを特徴とする(1)又は(2)に記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(4)前記金属コア粒子の表面を高分子分散剤によって保護することを特徴とする(1)~(3)のいずれかに記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(5)前記後段の流通型反応管から回収された生成溶液を静置することで、酸化物被膜を形成させることを特徴とする(1)~(4)のいずれかに記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(6)前記後段の流通型反応管から回収された生成溶液を、水またはアルコール化合物を用いて希釈することで、酸化物被膜の厚さを制御する(1)~(5)のいずれかに記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(7)前記酸化物被膜の膜厚を1~100ナノメートルに制御する(1)~(6)のいずれかに記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(8)前記金属コアとして銀ナノ粒子を、シェルとして酸化物を有する(1)~(7)のいずれかに記載の銀コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(9)前記金属コアとして白金ナノ粒子を、シェルとして酸化物を有する(1)~(7)のいずれかに記載の白金コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(10)前記金属コアとしてパラジウムナノ粒子を、シェルとして酸化物を有する(1)~(7)のいずれかに記載のパラジウムコア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(11)前記金属コアとしてニッケルナノ粒子を、シェルとして酸化物を有する(1)~(7)のいずれかに記載のニッケルコア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(12)少なくとも一段の流通型反応管をそれぞれ含む前後段の流通型反応管を有し、少なくとも前記前段の流通型反応管をマイクロ波により均一加熱する手段を有し、前記前段の流通型反応管が金属コア合成用の反応管であり、前記後段の流通型反応管が酸化物シェル合成用の反応管であることを特徴とするコアシェル構造ナノ粒子の連続合成装置。
(13)前記の前後段の流通型反応管の間に少なくとも一つのミキサーが挿入されていることを特徴とする(12)に記載のコアシェル構造ナノ粒子の連続合成装置。
(14)前記ミキサーが複数接続されていることを特徴とする(13)に記載のコアシェル構造ナノ粒子の連続合成装置。
(15)ナノ粒子の粒径および/または酸化物シェルの厚さを測定できる計測手段を有することを特徴とする(12)~(14)のいずれかに記載のコアシェル構造ナノ粒子の連続合成装置。
(16)前記後段の流通型反応管を流動してきた生成溶液を取り出す生成溶液取り出し口が設けられていることを特徴とする(12)~(15)のいずれかに記載のコアシェル構造ナノ粒子の連続合成装置。
(17)少なくとも1つのミキサーおよび/または前記の前後段の流通型反応管は着脱可能に設けられていることを特徴とする(12)~(16)のいずれかに記載のコアシェル構造ナノ粒子の連続合成装置。
(18)(1)~(11)のいずれかに記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法および/または(12)~(17)のいずれかに記載のコアシェル構造ナノ粒子の連続合成装置を用いて合成されたことを特徴とするコアシェル構造ナノ粒子。 That is, the present invention provides the following means.
(1) Continuously synthesizing metal nanoparticles having a diameter of 1 to 100 nanometers using a previous flow reaction tube including at least one flow reaction tube, and subsequent flow reaction including at least one flow reaction tube. A method for continuously synthesizing core / shell nanoparticles of metal core / oxide shell, wherein an oxide film is continuously formed around metal nanoparticles by hydrolyzing an oxide precursor in a tube, comprising: A continuous synthesis method of core-shell structured nanoparticles of a metal core / oxide shell, characterized in that a flow-type reaction tube is uniformly heated by microwaves.
(2) The continuous core-shell structured nanoparticles of the metal core / oxide shell according to (1), wherein the first-stage flow-type reaction tube and the second-stage flow-type reaction tube are uniformly heated by microwaves. Synthesis method.
(3) After a mixer is arranged between the preceding and following flow-type reaction tubes, the oxide precursor is mixed with the solution containing the metal core particles flowing out from the previous flow-type reaction tube using the mixer. The continuous synthesis method of core-shell structured nanoparticles of metal core / oxide shell according to (1) or (2), wherein the flow-through reaction tube is allowed to flow into the latter-stage flow-type reaction tube.
(4) The method for continuously synthesizing core-shell structured nanoparticles of metal core / oxide shell according to any one of (1) to (3), wherein the surface of the metal core particles is protected with a polymer dispersant .
(5) The metal core according to any one of (1) to (4), wherein the oxide film is formed by allowing the product solution recovered from the subsequent flow reaction tube to stand. A continuous synthesis method of core-shell structured nanoparticles of an oxide shell.
(6) The thickness of the oxide film is controlled by diluting the product solution collected from the subsequent flow-type reaction tube with water or an alcohol compound. A method for continuously synthesizing core-shell structured nanoparticles of the metal core / oxide shell described.
(7) The method for continuously synthesizing core-shell structured nanoparticles of metal core / oxide shell according to any one of (1) to (6), wherein the thickness of the oxide film is controlled to 1 to 100 nanometers.
(8) The method for continuously synthesizing core-shell structured nanoparticles of silver core / oxide shell according to any one of (1) to (7), wherein the metal core has silver nanoparticles and the shell has an oxide.
(9) The method for continuous synthesis of core-shell structured nanoparticles of platinum core / oxide shell according to any one of (1) to (7), wherein the metal core is platinum nanoparticles and the shell is an oxide.
(10) The method for continuously synthesizing core-shell structured nanoparticles of palladium core / oxide shell according to any one of (1) to (7), wherein the metal core has palladium nanoparticles and the shell has oxide.
(11) The method for continuously synthesizing core-shell structured nanoparticles of nickel core / oxide shell according to any one of (1) to (7), wherein the metal core has nickel nanoparticles and the shell has an oxide.
(12) It has a front and rear flow type reaction tube each including at least one flow type reaction tube, and has means for uniformly heating at least the previous flow type reaction tube by microwave, and the previous flow type reaction tube An apparatus for continuous synthesis of core-shell structured nanoparticles, wherein the tube is a reaction tube for synthesizing a metal core, and the flow-through reaction tube in the latter stage is a reaction tube for synthesizing an oxide shell.
(13) The continuous synthesis apparatus for core-shell structured nanoparticles according to (12), wherein at least one mixer is inserted between the upstream and downstream flow-type reaction tubes.
(14) The continuous synthesis apparatus for core-shell structured nanoparticles according to (13), wherein a plurality of the mixers are connected.
(15) The continuous-synthesizing device for core-shell structured nanoparticles according to any one of (12) to (14), which has a measuring means capable of measuring the particle size of the nanoparticles and / or the thickness of the oxide shell .
(16) The core-shell structured nanoparticle according to any one of (12) to (15), wherein a product solution outlet for taking out a product solution that has flowed through the subsequent flow reaction tube is provided. Continuous synthesizer.
(17) The core-shell structured nanoparticle according to any one of (12) to (16), wherein at least one mixer and / or the upstream and downstream flow-type reaction tubes are detachable. Continuous synthesizer.
(18) The method for continuously synthesizing the core-shell structured nanoparticles of the metal core / oxide shell according to any one of (1) to (11) and / or the core-shell structured nanoparticle according to any one of (12) to (17) A core-shell structured nanoparticle synthesized using a continuous particle synthesizer.
(1)少なくとも一段の流通型反応管を含む前段の流通型反応管により直径1~100ナノメートルの金属ナノ粒子を連続的に合成し、少なくとも一段の流通型反応管を含む後段の流通型反応管において酸化物前駆体を加水分解することで金属ナノ粒子の周囲に酸化物被膜を連続的に形成させる金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法であって、少なくとも前記前段の流通型反応管をマイクロ波により均一加熱することを特徴とする金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(2)前記前段の流通型反応管と前記後段の流通型反応管とをマイクロ波により均一加熱することを特徴とする(1)に記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(3)前記の前後段の流通型反応管の間にミキサーを配置し、前記前段の流通型反応管から流出した金属コア粒子を含む溶液に前記ミキサーを用いて酸化物前駆体を混合したのち、前記後段の流通型反応管に流入させることを特徴とする(1)又は(2)に記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(4)前記金属コア粒子の表面を高分子分散剤によって保護することを特徴とする(1)~(3)のいずれかに記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(5)前記後段の流通型反応管から回収された生成溶液を静置することで、酸化物被膜を形成させることを特徴とする(1)~(4)のいずれかに記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(6)前記後段の流通型反応管から回収された生成溶液を、水またはアルコール化合物を用いて希釈することで、酸化物被膜の厚さを制御する(1)~(5)のいずれかに記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(7)前記酸化物被膜の膜厚を1~100ナノメートルに制御する(1)~(6)のいずれかに記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(8)前記金属コアとして銀ナノ粒子を、シェルとして酸化物を有する(1)~(7)のいずれかに記載の銀コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(9)前記金属コアとして白金ナノ粒子を、シェルとして酸化物を有する(1)~(7)のいずれかに記載の白金コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(10)前記金属コアとしてパラジウムナノ粒子を、シェルとして酸化物を有する(1)~(7)のいずれかに記載のパラジウムコア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(11)前記金属コアとしてニッケルナノ粒子を、シェルとして酸化物を有する(1)~(7)のいずれかに記載のニッケルコア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。
(12)少なくとも一段の流通型反応管をそれぞれ含む前後段の流通型反応管を有し、少なくとも前記前段の流通型反応管をマイクロ波により均一加熱する手段を有し、前記前段の流通型反応管が金属コア合成用の反応管であり、前記後段の流通型反応管が酸化物シェル合成用の反応管であることを特徴とするコアシェル構造ナノ粒子の連続合成装置。
(13)前記の前後段の流通型反応管の間に少なくとも一つのミキサーが挿入されていることを特徴とする(12)に記載のコアシェル構造ナノ粒子の連続合成装置。
(14)前記ミキサーが複数接続されていることを特徴とする(13)に記載のコアシェル構造ナノ粒子の連続合成装置。
(15)ナノ粒子の粒径および/または酸化物シェルの厚さを測定できる計測手段を有することを特徴とする(12)~(14)のいずれかに記載のコアシェル構造ナノ粒子の連続合成装置。
(16)前記後段の流通型反応管を流動してきた生成溶液を取り出す生成溶液取り出し口が設けられていることを特徴とする(12)~(15)のいずれかに記載のコアシェル構造ナノ粒子の連続合成装置。
(17)少なくとも1つのミキサーおよび/または前記の前後段の流通型反応管は着脱可能に設けられていることを特徴とする(12)~(16)のいずれかに記載のコアシェル構造ナノ粒子の連続合成装置。
(18)(1)~(11)のいずれかに記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法および/または(12)~(17)のいずれかに記載のコアシェル構造ナノ粒子の連続合成装置を用いて合成されたことを特徴とするコアシェル構造ナノ粒子。 That is, the present invention provides the following means.
(1) Continuously synthesizing metal nanoparticles having a diameter of 1 to 100 nanometers using a previous flow reaction tube including at least one flow reaction tube, and subsequent flow reaction including at least one flow reaction tube. A method for continuously synthesizing core / shell nanoparticles of metal core / oxide shell, wherein an oxide film is continuously formed around metal nanoparticles by hydrolyzing an oxide precursor in a tube, comprising: A continuous synthesis method of core-shell structured nanoparticles of a metal core / oxide shell, characterized in that a flow-type reaction tube is uniformly heated by microwaves.
(2) The continuous core-shell structured nanoparticles of the metal core / oxide shell according to (1), wherein the first-stage flow-type reaction tube and the second-stage flow-type reaction tube are uniformly heated by microwaves. Synthesis method.
(3) After a mixer is arranged between the preceding and following flow-type reaction tubes, the oxide precursor is mixed with the solution containing the metal core particles flowing out from the previous flow-type reaction tube using the mixer. The continuous synthesis method of core-shell structured nanoparticles of metal core / oxide shell according to (1) or (2), wherein the flow-through reaction tube is allowed to flow into the latter-stage flow-type reaction tube.
(4) The method for continuously synthesizing core-shell structured nanoparticles of metal core / oxide shell according to any one of (1) to (3), wherein the surface of the metal core particles is protected with a polymer dispersant .
(5) The metal core according to any one of (1) to (4), wherein the oxide film is formed by allowing the product solution recovered from the subsequent flow reaction tube to stand. A continuous synthesis method of core-shell structured nanoparticles of an oxide shell.
(6) The thickness of the oxide film is controlled by diluting the product solution collected from the subsequent flow-type reaction tube with water or an alcohol compound. A method for continuously synthesizing core-shell structured nanoparticles of the metal core / oxide shell described.
(7) The method for continuously synthesizing core-shell structured nanoparticles of metal core / oxide shell according to any one of (1) to (6), wherein the thickness of the oxide film is controlled to 1 to 100 nanometers.
(8) The method for continuously synthesizing core-shell structured nanoparticles of silver core / oxide shell according to any one of (1) to (7), wherein the metal core has silver nanoparticles and the shell has an oxide.
(9) The method for continuous synthesis of core-shell structured nanoparticles of platinum core / oxide shell according to any one of (1) to (7), wherein the metal core is platinum nanoparticles and the shell is an oxide.
(10) The method for continuously synthesizing core-shell structured nanoparticles of palladium core / oxide shell according to any one of (1) to (7), wherein the metal core has palladium nanoparticles and the shell has oxide.
(11) The method for continuously synthesizing core-shell structured nanoparticles of nickel core / oxide shell according to any one of (1) to (7), wherein the metal core has nickel nanoparticles and the shell has an oxide.
(12) It has a front and rear flow type reaction tube each including at least one flow type reaction tube, and has means for uniformly heating at least the previous flow type reaction tube by microwave, and the previous flow type reaction tube An apparatus for continuous synthesis of core-shell structured nanoparticles, wherein the tube is a reaction tube for synthesizing a metal core, and the flow-through reaction tube in the latter stage is a reaction tube for synthesizing an oxide shell.
(13) The continuous synthesis apparatus for core-shell structured nanoparticles according to (12), wherein at least one mixer is inserted between the upstream and downstream flow-type reaction tubes.
(14) The continuous synthesis apparatus for core-shell structured nanoparticles according to (13), wherein a plurality of the mixers are connected.
(15) The continuous-synthesizing device for core-shell structured nanoparticles according to any one of (12) to (14), which has a measuring means capable of measuring the particle size of the nanoparticles and / or the thickness of the oxide shell .
(16) The core-shell structured nanoparticle according to any one of (12) to (15), wherein a product solution outlet for taking out a product solution that has flowed through the subsequent flow reaction tube is provided. Continuous synthesizer.
(17) The core-shell structured nanoparticle according to any one of (12) to (16), wherein at least one mixer and / or the upstream and downstream flow-type reaction tubes are detachable. Continuous synthesizer.
(18) The method for continuously synthesizing the core-shell structured nanoparticles of the metal core / oxide shell according to any one of (1) to (11) and / or the core-shell structured nanoparticle according to any one of (12) to (17) A core-shell structured nanoparticle synthesized using a continuous particle synthesizer.
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
The above and other features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings as appropriate.
本発明によれば、金属ナノ粒子をコアとして酸化物がシェルの、コアシェル構造を形成するナノ粒子を安価に連続的に合成する方法および装置、ならびに、粒子サイズのそろった金属コア・酸化物シェルナノ粒子を提供できる。本発明は、電子材料、触媒、センサー、バイオ材料、分子ラベル、診断用マーカー、画像形成材料、光学材料、半導体、工業触媒に有用な粒子サイズのそろった金属コア・酸化物シェルのナノ粒子を歩留まりよく安価で効率よく合成する方法および装置として利用できる。
ADVANTAGE OF THE INVENTION According to this invention, the method and apparatus which synthesize | combines the nanoparticle which forms a core-shell structure with a metal nanoparticle as a core, and an oxide is a shell, cheaply, and a metal core and oxide shell nanoparticle with uniform particle size Particles can be provided. The present invention provides nanoparticles of metal cores and oxide shells with a particle size useful for electronic materials, catalysts, sensors, biomaterials, molecular labels, diagnostic markers, imaging materials, optical materials, semiconductors, and industrial catalysts. It can be used as a method and apparatus for efficient and efficient synthesis with high yield.
本発明では前段の流通型反応管で連続的に金属微粒子を生成させ、さらに後段の流通型反応管で金属微粒子に酸化物を被覆することでコアシェル型ナノ粒子を連続的に合成する。このとき前段の流通型反応管をマイクロ波で加熱する。すなわち、本発明は、前段の流通型反応管により直径1~100ナノメートルの金属ナノ粒子を連続的に合成し、後段の流通型反応管において酸化物前駆体を加水分解することで金属ナノ粒子の周囲に酸化物被膜を連続的に形成させるに際して、少なくとも前記前段の流通型反応管をマイクロ波により均一加熱する金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法である。本発明においては、前段の流通型反応管と後段の流通型反応管を直列に配置し、前段の流通型反応管において、連続的に金属微粒子を生成させ、さらに後段の流通型反応管で金属微粒子に酸化物を被覆させるのが好ましい。図1に本発明のコアシェル構造ナノ粒子の連続合成装置の好ましい一実施形態の説明図を示す。これを参照しながら本発明の一実施形態を説明する。
図1において、2つのマイクロ波加熱装置を直列に配置し、ミキサー9を2つのマイクロ波加熱装置の間に配置して流通型の反応管3、10を接続している。反応管3、10はマイクロ波を透過しやすい素材が望ましく、ガラス、石英、テフロン(登録商標)などが挙げられるが、これらに限定されるものではない。反応管3、10としては、照射するマイクロ波周波数が2.4~2.5GHzでは内径2.9mm以下のミリメートルサイズの流通管が好ましく、0.5~1.5mmがさらに好ましい。 In the present invention, core-shell nanoparticles are continuously synthesized by continuously generating metal fine particles in the flow-through reaction tube in the former stage and further coating the metal fine particles with oxide in the flow-through reaction tube in the subsequent stage. At this time, the preceding flow reaction tube is heated by microwaves. That is, the present invention continuously synthesizes metal nanoparticles having a diameter of 1 to 100 nanometers in the former flow type reaction tube, and hydrolyzes the oxide precursor in the latter flow type reaction tube. In the continuous synthesis method of the core-shell structure nanoparticles of the metal core / oxide shell, the oxide film is continuously heated at least when the flow-type reaction tube in the previous stage is uniformly heated by microwaves. In the present invention, the first-stage flow-type reaction tube and the second-stage flow-type reaction tube are arranged in series, and metal fine particles are continuously generated in the first-stage flow-type reaction tube. It is preferable to coat the fine particles with an oxide. FIG. 1 shows an explanatory view of a preferred embodiment of the continuous synthesis apparatus for core-shell structured nanoparticles of the present invention. An embodiment of the present invention will be described with reference to this.
In FIG. 1, two microwave heating devices are arranged in series, and amixer 9 is arranged between the two microwave heating devices to connect flow- type reaction tubes 3 and 10. The reaction tubes 3 and 10 are preferably made of a material that easily transmits microwaves, and examples thereof include glass, quartz, and Teflon (registered trademark), but are not limited thereto. The reaction tubes 3 and 10 are preferably millimeter-sized flow tubes having an inner diameter of 2.9 mm or less and more preferably 0.5 to 1.5 mm when the microwave frequency to be irradiated is 2.4 to 2.5 GHz.
図1において、2つのマイクロ波加熱装置を直列に配置し、ミキサー9を2つのマイクロ波加熱装置の間に配置して流通型の反応管3、10を接続している。反応管3、10はマイクロ波を透過しやすい素材が望ましく、ガラス、石英、テフロン(登録商標)などが挙げられるが、これらに限定されるものではない。反応管3、10としては、照射するマイクロ波周波数が2.4~2.5GHzでは内径2.9mm以下のミリメートルサイズの流通管が好ましく、0.5~1.5mmがさらに好ましい。 In the present invention, core-shell nanoparticles are continuously synthesized by continuously generating metal fine particles in the flow-through reaction tube in the former stage and further coating the metal fine particles with oxide in the flow-through reaction tube in the subsequent stage. At this time, the preceding flow reaction tube is heated by microwaves. That is, the present invention continuously synthesizes metal nanoparticles having a diameter of 1 to 100 nanometers in the former flow type reaction tube, and hydrolyzes the oxide precursor in the latter flow type reaction tube. In the continuous synthesis method of the core-shell structure nanoparticles of the metal core / oxide shell, the oxide film is continuously heated at least when the flow-type reaction tube in the previous stage is uniformly heated by microwaves. In the present invention, the first-stage flow-type reaction tube and the second-stage flow-type reaction tube are arranged in series, and metal fine particles are continuously generated in the first-stage flow-type reaction tube. It is preferable to coat the fine particles with an oxide. FIG. 1 shows an explanatory view of a preferred embodiment of the continuous synthesis apparatus for core-shell structured nanoparticles of the present invention. An embodiment of the present invention will be described with reference to this.
In FIG. 1, two microwave heating devices are arranged in series, and a
マイクロ波加熱装置は、主にマイクロ波発振器・照射口5、TM010キャビティ4からなる。キャビティは、内部に円筒型の空間を有する金属製の空胴共振器として構成したものである。この空間は、TM010と呼ばれる定在波が形成できるように、その内寸を適宜設定することができる。TM010の定在波は円筒中心部に電界が集中しており、軸に沿っては均一な電界強度分布を有している。この中心軸に沿って、貫通するように、図1において前段の流通型反応管として反応管3を設置する。反応溶液2が、この反応管3を流通できるように、片側に、送液ポンプ1を取り付けてある。反応管3の温度を計測できるように、温度計7として放射温度計を取り付けてある。また、内部の電界強度を計測するために、電界モニター6を取り付けてある。マイクロ波発振器・照射口5から発生したマイクロ波は、円筒型のTM010キャビティ4に照射される。このときのマイクロ波の発振周波数もしくは円筒型キャビティ4の内径を、キャビティ4内部にTM010の定在波が形成できるよう調整することができる。このとき、電界モニター6からの信号をもとに、TM010の定在波が形成されているか知ることができる。もし、定在波が形成されていない場合は、マイクロ波発振器・照射口5から発振されるマイクロ波発振周波数を変化させるか、キャビティ内径を調整するなどにより、定在波が形成されるよう、フィードバック制御を行ってもよい。
前段の反応管3による反応である、マイクロ波加熱装置を用いた金属ナノ粒子の合成方法は、特開2011-137226号公報に記載されている方法を用いることができる。 The microwave heating apparatus mainly includes a microwave oscillator /irradiation port 5 and a TM 010 cavity 4. The cavity is configured as a metal cavity resonator having a cylindrical space inside. The internal dimensions of this space can be set as appropriate so that a standing wave called TM010 can be formed. Standing wave TM 010 are concentrated electric field in the cylindrical central part, along the axis and has a uniform electric field intensity distribution. A reaction tube 3 is installed as a flow-through reaction tube in the previous stage in FIG. 1 so as to penetrate along the central axis. A liquid feed pump 1 is attached to one side so that the reaction solution 2 can flow through the reaction tube 3. A radiation thermometer is attached as the thermometer 7 so that the temperature of the reaction tube 3 can be measured. An electric field monitor 6 is attached to measure the electric field strength inside. The microwave generated from the microwave oscillator / irradiation port 5 is applied to the cylindrical TM 010 cavity 4. The oscillation frequency or the inner diameter of the cylindrical cavity 4 of the microwave in this case, it is possible to adjust the cavity 4 inside so that it can form standing waves TM 010 is. At this time, based on a signal from the field monitor 6, it is possible to know whether the standing wave of TM 010 is formed. If a standing wave is not formed, the standing wave is formed by changing the microwave oscillation frequency oscillated from the microwave oscillator / irradiation port 5 or adjusting the cavity inner diameter. Feedback control may be performed.
As a method for synthesizing metal nanoparticles using a microwave heating apparatus, which is a reaction by thereaction tube 3 in the previous stage, a method described in JP2011-137226A can be used.
前段の反応管3による反応である、マイクロ波加熱装置を用いた金属ナノ粒子の合成方法は、特開2011-137226号公報に記載されている方法を用いることができる。 The microwave heating apparatus mainly includes a microwave oscillator /
As a method for synthesizing metal nanoparticles using a microwave heating apparatus, which is a reaction by the
本発明方法で製造しうるコアシェル構造ナノ粒子の金属コアとなる金属としては、遷移金属および典型金属の錯体にあっては、Ag,Au,Ir,Pt,Pd,Rh,Re,Ru,およびOsなどの遷移金属が最も望ましいが、Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Y,Zr,Nb,Mo,Tc,Wなどの遷移金属、Al,In,Ga,Zn,Cd,Sb,Sn,Ge,Be,Mgなどの典型金属であっても差し支えない。
また、コアシェル構造ナノ粒子の金属コアは、金属粒子の前駆物質(この発明において金属前駆体と称することがある。)を用いて、形成される。金属粒子の前駆物質としては、たとえば前記遷移金属および前記典型金属などの金属の塩化物、硝酸塩、酢酸塩、およびクロロ錯体からなる群から選ばれる少なくとも1種が良好に用いられる。 Examples of the metal that becomes the metal core of the core-shell structured nanoparticles that can be produced by the method of the present invention include Ag, Au, Ir, Pt, Pd, Rh, Re, Ru, and Os in transition metal and typical metal complexes. Transition metals such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Tc, and W, Al, In, Ga, Zn , Cd, Sb, Sn, Ge, Be, Mg and other typical metals may be used.
The metal core of the core-shell structured nanoparticle is formed using a metal particle precursor (sometimes referred to as a metal precursor in the present invention). As the precursor of the metal particles, for example, at least one selected from the group consisting of chlorides, nitrates, acetates, and chloro complexes of metals such as the transition metals and the typical metals is preferably used.
また、コアシェル構造ナノ粒子の金属コアは、金属粒子の前駆物質(この発明において金属前駆体と称することがある。)を用いて、形成される。金属粒子の前駆物質としては、たとえば前記遷移金属および前記典型金属などの金属の塩化物、硝酸塩、酢酸塩、およびクロロ錯体からなる群から選ばれる少なくとも1種が良好に用いられる。 Examples of the metal that becomes the metal core of the core-shell structured nanoparticles that can be produced by the method of the present invention include Ag, Au, Ir, Pt, Pd, Rh, Re, Ru, and Os in transition metal and typical metal complexes. Transition metals such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Tc, and W, Al, In, Ga, Zn , Cd, Sb, Sn, Ge, Be, Mg and other typical metals may be used.
The metal core of the core-shell structured nanoparticle is formed using a metal particle precursor (sometimes referred to as a metal precursor in the present invention). As the precursor of the metal particles, for example, at least one selected from the group consisting of chlorides, nitrates, acetates, and chloro complexes of metals such as the transition metals and the typical metals is preferably used.
金属前駆体を、金属に対する還元作用を有する溶媒に分散もしくは溶解させて電磁波を照射する。このような溶媒としてはアルコール類(メタノール、エタノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、テトラエチレングリコール、グリセロール、ベンジルアルコール、ジプロピレングリコール等)、無機酸(水酸化ホウ素塩、ジメチルアミノボラン、亜リン酸、次亜リン酸、亜硫酸、チオ硫酸ナトリウム、Feイオン錯体、ヒドラジン等)、有機酸類(クエン酸、リンゴ酸、シュウ酸、ギ酸等)、糖類などが挙げられる。
溶媒としては、沸点の高い溶媒が好適に使用され、これら溶媒を混合して用いることも差し支えない。溶媒を使用する場合には、溶媒の使用量は金属前駆体の濃度が後述する範囲になるように設定されるのが好ましい。 The metal precursor is dispersed or dissolved in a solvent having a reducing action on the metal and irradiated with electromagnetic waves. Such solvents include alcohols (methanol, ethanol, ethylene glycol, diethylene glycol, propylene glycol, tetraethylene glycol, glycerol, benzyl alcohol, dipropylene glycol, etc.), inorganic acids (boron hydroxide salt, dimethylaminoborane, phosphorous acid) Acid, hypophosphorous acid, sulfurous acid, sodium thiosulfate, Fe ion complex, hydrazine, etc.), organic acids (citric acid, malic acid, oxalic acid, formic acid, etc.), saccharides and the like.
As the solvent, a solvent having a high boiling point is preferably used, and these solvents may be mixed and used. When a solvent is used, the amount of the solvent used is preferably set so that the concentration of the metal precursor falls within the range described below.
溶媒としては、沸点の高い溶媒が好適に使用され、これら溶媒を混合して用いることも差し支えない。溶媒を使用する場合には、溶媒の使用量は金属前駆体の濃度が後述する範囲になるように設定されるのが好ましい。 The metal precursor is dispersed or dissolved in a solvent having a reducing action on the metal and irradiated with electromagnetic waves. Such solvents include alcohols (methanol, ethanol, ethylene glycol, diethylene glycol, propylene glycol, tetraethylene glycol, glycerol, benzyl alcohol, dipropylene glycol, etc.), inorganic acids (boron hydroxide salt, dimethylaminoborane, phosphorous acid) Acid, hypophosphorous acid, sulfurous acid, sodium thiosulfate, Fe ion complex, hydrazine, etc.), organic acids (citric acid, malic acid, oxalic acid, formic acid, etc.), saccharides and the like.
As the solvent, a solvent having a high boiling point is preferably used, and these solvents may be mixed and used. When a solvent is used, the amount of the solvent used is preferably set so that the concentration of the metal precursor falls within the range described below.
また、金属前駆物質の含有液に分散剤を加え、分散剤を前記金属前駆物質と共に前段の流通型反応管内に共存させることで、生成する金属ナノ粒子の表面を保護し、凝集を防止して、分散安定性を高めることも好ましい。このような分散剤としてはポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、高分子分散剤などが挙げられる。高分子分散剤とは、顔料表面に対する親和性の高い官能基が導入された高分子量の重合体であって、溶媒親和部分を含む構造を有する両親媒性のものである。高分子分散剤としては、マイクロ波を吸収する溶媒に可溶であり、極めて速い還元反応によって瞬時に生成される微粒子を凝集させることなく捕捉し溶媒に分散させることができ、さらに生成されたコロイドの長期安定性に有効である共重合体であることが好ましく、高分子分散剤の平均分子量は、1000~100万であることが好ましく、10,000~50,000であることが特に好ましい。高分子分散剤としては、例えば、特開平11-80647号公報に例示したものを挙げることができ、好ましい高分子分散剤(市販品)としては、ビックケミー社製のDISPERBYK102,108,116,145,180,190,191,2096,2155など,BYK154,9076,9077など、共栄社化学社製フローレンG700,G900などを挙げることができる。分散剤の使用量は、モノマーユニットあたり0.05~5000mMであるのが好ましく、0.5~500mMであるのがさらに好ましい。
In addition, by adding a dispersant to the liquid containing the metal precursor and coexisting the dispersant with the metal precursor in the preceding flow reaction tube, the surface of the generated metal nanoparticles is protected and aggregation is prevented. It is also preferable to increase the dispersion stability. Examples of such a dispersant include polyvinyl pyrrolidone, polyethylene glycol, polyvinyl alcohol, and a polymer dispersant. The polymer dispersant is a high molecular weight polymer into which a functional group having high affinity for the pigment surface is introduced, and is an amphiphilic one having a structure including a solvent-affinity moiety. As a polymer dispersing agent, it is soluble in a solvent that absorbs microwaves, and it can capture and disperse the fine particles generated instantaneously by an extremely fast reduction reaction in the solvent without agglomeration. It is preferable that the copolymer is effective for long-term stability, and the average molecular weight of the polymer dispersant is preferably 1,000 to 1,000,000, and particularly preferably 10,000 to 50,000. Examples of the polymer dispersant include those exemplified in JP-A-11-80647. Preferred polymer dispersants (commercially available products) include DISPERBYK 102, 108, 116, 145 manufactured by BYK Chemie. 180, 190, 191, 2096, 2155, etc., BYK154, 9076, 9077, etc., and Kyoeisha Chemical Co., Ltd. Floren G700, G900, etc. can be mentioned. The amount of the dispersing agent used is preferably 0.05 to 5000 mM, more preferably 0.5 to 500 mM, per monomer unit.
本発明において、反応溶液中の金属前駆体物質の濃度は、好ましくは0.01mM~1M、より好ましくは0.1mM~100mMである。
反応時間が短すぎると目的のナノメーターサイズの微粒子が得られず、反応時間が長すぎると粒径がそろわなくなったり、反応溶液が沸騰したりすることから、反応溶液の流通速度は好ましくは0.1mL/h~5L/h、より好ましくは5~200mL/hである。反応時間としては1~60秒が好ましい。
反応温度は特に制限はないが、140~250℃が好ましい。
上記のようにすることにより、ナノメーターサイズの金属ナノ粒子を合成することができる。本発明においてコアとなる金属ナノ粒子は直径1~100ナノメートル、すなわち1ナノメートル以上50ナノメートル以下および50ナノメートルを超え100ナノメートル以下であり、好ましくは5~20ナノメートルである。なお、本発明における金属ナノ粒子の直径とは透過電子顕微鏡画像に撮影された100個の粒子より計測した平均値をいう。また、粒度分布の狭い金属ナノ粒子が高効率で得られる。
この金属ナノ粒子の粒度分布はCV値で50%以下であるのが好ましく、本発明において、得られた金属ナノ粒子が前記範囲の粒度分布を有していると「粒度がそろっている」ということができる。なお、CV値とは金属ナノ粒子の直径の標準偏差を直径で割り、100を乗じた値(%)である。標準偏差は電子顕微鏡像から求めた100個の粒子の粒子径より算出できる。 In the present invention, the concentration of the metal precursor substance in the reaction solution is preferably 0.01 mM to 1M, more preferably 0.1 mM to 100 mM.
If the reaction time is too short, the desired nanometer-sized microparticles cannot be obtained, and if the reaction time is too long, the particle size will not be uniform or the reaction solution will boil. 1 mL / h to 5 L / h, more preferably 5 to 200 mL / h. The reaction time is preferably 1 to 60 seconds.
The reaction temperature is not particularly limited but is preferably 140 to 250 ° C.
By doing so, nanometer-sized metal nanoparticles can be synthesized. In the present invention, the core metal nanoparticles have a diameter of 1 to 100 nanometers, that is, from 1 nanometer to 50 nanometers and from 50 nanometers to 100 nanometers, preferably 5 to 20 nanometers. In addition, the diameter of the metal nanoparticle in this invention means the average value measured from 100 particle | grains image | photographed by the transmission electron microscope image. In addition, metal nanoparticles having a narrow particle size distribution can be obtained with high efficiency.
The particle size distribution of the metal nanoparticles is preferably 50% or less in terms of CV value. In the present invention, when the obtained metal nanoparticles have a particle size distribution in the above range, it is said that the particle size is uniform. be able to. The CV value is a value (%) obtained by dividing the standard deviation of the diameter of the metal nanoparticles by the diameter and multiplying by 100. The standard deviation can be calculated from the particle size of 100 particles obtained from an electron microscope image.
反応時間が短すぎると目的のナノメーターサイズの微粒子が得られず、反応時間が長すぎると粒径がそろわなくなったり、反応溶液が沸騰したりすることから、反応溶液の流通速度は好ましくは0.1mL/h~5L/h、より好ましくは5~200mL/hである。反応時間としては1~60秒が好ましい。
反応温度は特に制限はないが、140~250℃が好ましい。
上記のようにすることにより、ナノメーターサイズの金属ナノ粒子を合成することができる。本発明においてコアとなる金属ナノ粒子は直径1~100ナノメートル、すなわち1ナノメートル以上50ナノメートル以下および50ナノメートルを超え100ナノメートル以下であり、好ましくは5~20ナノメートルである。なお、本発明における金属ナノ粒子の直径とは透過電子顕微鏡画像に撮影された100個の粒子より計測した平均値をいう。また、粒度分布の狭い金属ナノ粒子が高効率で得られる。
この金属ナノ粒子の粒度分布はCV値で50%以下であるのが好ましく、本発明において、得られた金属ナノ粒子が前記範囲の粒度分布を有していると「粒度がそろっている」ということができる。なお、CV値とは金属ナノ粒子の直径の標準偏差を直径で割り、100を乗じた値(%)である。標準偏差は電子顕微鏡像から求めた100個の粒子の粒子径より算出できる。 In the present invention, the concentration of the metal precursor substance in the reaction solution is preferably 0.01 mM to 1M, more preferably 0.1 mM to 100 mM.
If the reaction time is too short, the desired nanometer-sized microparticles cannot be obtained, and if the reaction time is too long, the particle size will not be uniform or the reaction solution will boil. 1 mL / h to 5 L / h, more preferably 5 to 200 mL / h. The reaction time is preferably 1 to 60 seconds.
The reaction temperature is not particularly limited but is preferably 140 to 250 ° C.
By doing so, nanometer-sized metal nanoparticles can be synthesized. In the present invention, the core metal nanoparticles have a diameter of 1 to 100 nanometers, that is, from 1 nanometer to 50 nanometers and from 50 nanometers to 100 nanometers, preferably 5 to 20 nanometers. In addition, the diameter of the metal nanoparticle in this invention means the average value measured from 100 particle | grains image | photographed by the transmission electron microscope image. In addition, metal nanoparticles having a narrow particle size distribution can be obtained with high efficiency.
The particle size distribution of the metal nanoparticles is preferably 50% or less in terms of CV value. In the present invention, when the obtained metal nanoparticles have a particle size distribution in the above range, it is said that the particle size is uniform. be able to. The CV value is a value (%) obtained by dividing the standard deviation of the diameter of the metal nanoparticles by the diameter and multiplying by 100. The standard deviation can be calculated from the particle size of 100 particles obtained from an electron microscope image.
前段の流通型反応管に対するマイクロ波加熱装置によって合成された金属ナノ粒子を含む溶液は、ミキサー9にて酸化物前駆体と混合される。酸化物前駆体を加水分解することで酸化物被膜(酸化物シェル層ともいう。)を形成する。酸化物前駆体の加水分解は公知の方法を特に制限されることなく採用できる。酸化物前駆体の加水分解において、水および酸化物前駆体に加えて、加水分解を促進するための触媒として、例えばアミン溶液を混合することができる。酸化物被膜がシリカの場合、シリカ前駆体としてとしてはテトラメトキシシラン、テトラエトキシシラン、テトラ(n-プロポキシ)シラン、テトラ(i-プロポキシ)シラン、テトラ(n-ブトキシ)シラン、テトラ(t-ブトキシ)シラン、トリメトキシシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどが挙げられる。この中でも特に好ましいのがテトラエトキシシラン(TEOS)である。アミン溶液としては、アンモニアやメチルアミン、ジメチルアミン、トリメチルアミンを挙げることが出来る。酸化物前駆体およびアミン溶液をアルコール類に溶解させてからミキサー9に送液してもよい。ミキサー混合後の溶液濃度として、金属濃度は、0.00001M~10Mが好適であり、アミン溶液は、そのアミン濃度で0.001mM~2mMが好適であり、0.01M~2Mがさらに好適であり、酸化物前駆体は0.0001Mから1M、水は1Mから20Mが好適である。ミキサー9として図1では4方向型のスタティックミキサーを使用しているが、均質混合が可能な形態であれば、これに限定されるものではない。符号8は酸化物前駆体等を加えるための送液ポンプである。
The solution containing the metal nanoparticles synthesized by the microwave heating device for the flow-through reaction tube in the previous stage is mixed with the oxide precursor by the mixer 9. An oxide film (also referred to as an oxide shell layer) is formed by hydrolyzing the oxide precursor. The hydrolysis of the oxide precursor can employ a known method without any particular limitation. In the hydrolysis of the oxide precursor, in addition to water and the oxide precursor, for example, an amine solution can be mixed as a catalyst for promoting the hydrolysis. When the oxide coating is silica, the silica precursors include tetramethoxysilane, tetraethoxysilane, tetra (n-propoxy) silane, tetra (i-propoxy) silane, tetra (n-butoxy) silane, tetra (t- Butoxy) silane, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, cyclohexyltrimethoxy Silane, cyclohexyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, allyltrieth Shishiran, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, and the like diphenyl diethoxy silane. Of these, tetraethoxysilane (TEOS) is particularly preferable. Examples of the amine solution include ammonia, methylamine, dimethylamine, and trimethylamine. The oxide precursor and the amine solution may be dissolved in alcohols and then fed to the mixer 9. As the solution concentration after mixing with the mixer, the metal concentration is preferably 0.00001M to 10M, and the amine solution is preferably 0.001mM to 2mM, more preferably 0.01M to 2M. The oxide precursor is preferably 0.0001M to 1M, and the water is preferably 1M to 20M. In FIG. 1, a four-way static mixer is used as the mixer 9. However, the mixer 9 is not limited to this as long as it is in a form capable of homogeneous mixing. Reference numeral 8 denotes a liquid feed pump for adding an oxide precursor or the like.
ミキサーで混合された溶液が、図1において後段の流通型反応管10を流通している間に、加水分解が生じ、金属コア粒子表面へ酸化物シェルが形成される。また、後段の流通型反応管10をマイクロ波加熱することで加水分解は促進される。後段の流通型反応管10出口より生成溶液11を容器に回収し、静置することでも金属ナノ粒子表面に酸化物シェルは形成される。また酸化物被膜の形成途中の段階にある溶液を、水あるいはアルコール類を用いて希釈することで酸化物被膜の厚さを制御できる。さらに後段の流通型反応管10から取り出した生成溶液を室温で放置する保持時間によっても酸化物被膜の厚さを調整できる。
図1には後段の流通型反応管10もマイクロ波加熱装置を備えた構成を示したが、後段の流通型反応管は、製造するコアシェル構造ナノ粒子およびその仕様、物性などに応じて、マイクロ波加熱を行わないこともある。この場合には、後段の流通型反応管はマイクロ波による加熱手段、例えばTM010キャビティ4およびマイクロ波発振器・照射口5を備えていてない場合もある。 While the solution mixed by the mixer is flowing through the subsequentflow reaction tube 10 in FIG. 1, hydrolysis occurs and an oxide shell is formed on the surface of the metal core particles. Moreover, hydrolysis is accelerated | stimulated by microwave-heating the flow-type reaction tube 10 of a back | latter stage. The oxide shell is also formed on the surface of the metal nanoparticles by collecting the product solution 11 in the container from the outlet of the flow-type reaction tube 10 in the latter stage and allowing it to stand. Further, the thickness of the oxide film can be controlled by diluting a solution in the middle of the formation of the oxide film with water or alcohols. Furthermore, the thickness of the oxide film can also be adjusted by the holding time in which the product solution taken out from the downstream flow reaction tube 10 is allowed to stand at room temperature.
FIG. 1 shows a configuration in which the latter-stage flow-type reaction tube 10 is also provided with a microwave heating apparatus. Wave heating may not be performed. In this case, the subsequent flow type reaction tube may not be equipped with microwave heating means such as the TM 010 cavity 4 and the microwave oscillator / irradiation port 5.
図1には後段の流通型反応管10もマイクロ波加熱装置を備えた構成を示したが、後段の流通型反応管は、製造するコアシェル構造ナノ粒子およびその仕様、物性などに応じて、マイクロ波加熱を行わないこともある。この場合には、後段の流通型反応管はマイクロ波による加熱手段、例えばTM010キャビティ4およびマイクロ波発振器・照射口5を備えていてない場合もある。 While the solution mixed by the mixer is flowing through the subsequent
FIG. 1 shows a configuration in which the latter-stage flow-
酸化物被膜の被膜厚は1~100ナノメートルが好ましく、5~20ナノメートルがさらに好ましい。すなわち、コアシェル構造ナノ粒子は直径(平均粒子径とも称する。)が5~250ナノメートルであるのが好ましく、10~100ナノメートルであるのがさらに好ましい。このコアシェル構造ナノ粒子の粒度分布はCV値で50%以下であるのが好ましく、本発明において、得られたコアシェル構造ナノ粒子が前記範囲の粒度分布を有していると「粒度のそろっている」ということができる。なお、CV値は前記した通りであり、標準偏差は電子顕微鏡像から求めた100個の粒子の粒子径より算出できる。
後段の流通型反応管での反応溶液の流通速度は50~2000mL/hが好ましく、50~400mL/hにすることもできる。また、この流通型反応管での反応時間としては、0.1~6秒が好ましく、0.5~6秒にすることもできる。
後段の流通型反応管での反応温度は特に制限はないが、加熱する場合は50~100℃が好ましい。
前後段の流通型反応管を通った生成溶液は、後段の流通型反応管の下流側端部に開口する生成溶液取り出し口16から回収される。
本発明によれば、最終的に粒度分布の狭い、コアシェル構造ナノ粒子を高効率で得ることができる。 The film thickness of the oxide coating is preferably 1 to 100 nanometers, more preferably 5 to 20 nanometers. That is, the core-shell structure nanoparticles preferably have a diameter (also referred to as an average particle diameter) of 5 to 250 nanometers, and more preferably 10 to 100 nanometers. The particle size distribution of the core-shell structure nanoparticles is preferably 50% or less in terms of the CV value. In the present invention, if the obtained core-shell structure nanoparticles have a particle size distribution in the above range, “the particle size is uniform. It can be said. The CV value is as described above, and the standard deviation can be calculated from the particle diameter of 100 particles obtained from an electron microscope image.
The flow rate of the reaction solution in the subsequent flow reaction tube is preferably 50 to 2000 mL / h, and can also be 50 to 400 mL / h. Further, the reaction time in this flow-type reaction tube is preferably 0.1 to 6 seconds, and may be 0.5 to 6 seconds.
The reaction temperature in the subsequent flow reaction tube is not particularly limited, but is preferably 50 to 100 ° C. when heated.
The product solution that has passed through the front and rear flow-type reaction tubes is recovered from theproduct solution outlet 16 that opens to the downstream end of the rear-stage flow reaction tube.
According to the present invention, core-shell structured nanoparticles having a narrow particle size distribution can be finally obtained with high efficiency.
後段の流通型反応管での反応溶液の流通速度は50~2000mL/hが好ましく、50~400mL/hにすることもできる。また、この流通型反応管での反応時間としては、0.1~6秒が好ましく、0.5~6秒にすることもできる。
後段の流通型反応管での反応温度は特に制限はないが、加熱する場合は50~100℃が好ましい。
前後段の流通型反応管を通った生成溶液は、後段の流通型反応管の下流側端部に開口する生成溶液取り出し口16から回収される。
本発明によれば、最終的に粒度分布の狭い、コアシェル構造ナノ粒子を高効率で得ることができる。 The film thickness of the oxide coating is preferably 1 to 100 nanometers, more preferably 5 to 20 nanometers. That is, the core-shell structure nanoparticles preferably have a diameter (also referred to as an average particle diameter) of 5 to 250 nanometers, and more preferably 10 to 100 nanometers. The particle size distribution of the core-shell structure nanoparticles is preferably 50% or less in terms of the CV value. In the present invention, if the obtained core-shell structure nanoparticles have a particle size distribution in the above range, “the particle size is uniform. It can be said. The CV value is as described above, and the standard deviation can be calculated from the particle diameter of 100 particles obtained from an electron microscope image.
The flow rate of the reaction solution in the subsequent flow reaction tube is preferably 50 to 2000 mL / h, and can also be 50 to 400 mL / h. Further, the reaction time in this flow-type reaction tube is preferably 0.1 to 6 seconds, and may be 0.5 to 6 seconds.
The reaction temperature in the subsequent flow reaction tube is not particularly limited, but is preferably 50 to 100 ° C. when heated.
The product solution that has passed through the front and rear flow-type reaction tubes is recovered from the
According to the present invention, core-shell structured nanoparticles having a narrow particle size distribution can be finally obtained with high efficiency.
上記のように本発明の連続合成装置は、前後段の流通型反応管を有し、少なくとも前段の流通型反応管をマイクロ波により均一加熱する手段を有する。前段の流通型反応管は金属コア粒子の合成に用いられ、後段の流通型反応管は酸化物シェルの合成に用いられる。前後段の流通型反応管の間には少なくとも1つのミキサーが挿入されていることが好ましい。
As described above, the continuous synthesis apparatus of the present invention has front and rear flow type reaction tubes, and has means for uniformly heating at least the previous flow type reaction tube with microwaves. The first-stage flow reaction tube is used for the synthesis of the metal core particles, and the second-stage flow reaction tube is used for the synthesis of the oxide shell. It is preferable that at least one mixer is inserted between the front and rear flow-type reaction tubes.
本発明の連続合成装置の、第2の構成例を図2に示す。複数のミキサー9を連続して接続することも可能であり、例えば、一つ目のミキサーで金属ナノ粒子を含む溶液に酸化物前駆体を均質混合し、二つ目以降のミキサーでアミン溶液を混合してもよい。図1と同符号は同じものを表す。
FIG. 2 shows a second configuration example of the continuous synthesis apparatus of the present invention. It is also possible to connect a plurality of mixers 9 in succession. For example, the oxide precursor is homogeneously mixed with the solution containing metal nanoparticles in the first mixer, and the amine solution is mixed in the second and subsequent mixers. You may mix. The same reference numerals as those in FIG.
本発明の連続合成装置の、第3の構成例を図3に示す。第3の構成例は、後段の流通型反応管として、反応管10出口以降に、さらに別の反応管12を設け、反応管12の任意長さの位置にオンライン測定が可能な吸光光度計などの酸化物シェルの厚さを測定できる計測機器15とミキサー14を接続する。酸化物被膜の厚さの変化に伴い吸光光度は変化する金属コア・酸化物シェルナノ粒子の場合、目的とする吸光光度、すなわち目的とする酸化物被膜の厚さが得られた位置でポンプ13から水あるいはアルコール化合物を送液することで、酸化物被膜の形成を抑止でき、任意の酸化物シェル厚さを有する金属コア・酸化物シェルナノ粒子を連続合成できる。計測機器15でナノ粒子の粒子径や粒子径分布に対応するパラメータを測定し、前段の流通型反応管に与えられるマイクロ波の強度、分布、周波数などの条件を制御したり、反応液の流量、種類、ミキシング条件などを制御したりし、ナノ粒子の粒径、バラツキ、酸化物被膜の厚み、密度等、製造条件を制御することができる。アルコール化合物としては上記溶媒でアルコール類として挙げたものを用いることができる。
計測機器15としては特に制限はないが、酸化物被膜の厚さを測定できるもののほか、ナノ粒子の粒径を測定できるものなどが好ましい。あるいは計測機器を複数設け、コア粒径と酸化物被膜の厚をそれぞれ測定する態様なども可能である。 FIG. 3 shows a third configuration example of the continuous synthesis apparatus of the present invention. In the third configuration example, afurther reaction tube 12 is provided after the outlet of the reaction tube 10 as a subsequent flow type reaction tube, and an absorptiometer capable of online measurement at a position of an arbitrary length of the reaction tube 12 or the like The measuring device 15 capable of measuring the thickness of the oxide shell is connected to the mixer 14. In the case of a metal core / oxide shell nanoparticle in which the absorbance changes with the change in the thickness of the oxide film, the pump 13 at the position where the desired absorbance, that is, the thickness of the desired oxide film is obtained. By feeding water or an alcohol compound, formation of an oxide film can be suppressed, and metal core / oxide shell nanoparticles having an arbitrary oxide shell thickness can be continuously synthesized. The measurement device 15 measures the parameters corresponding to the particle size and particle size distribution of the nanoparticles, controls the conditions such as the intensity, distribution, and frequency of the microwave given to the flow-through reaction tube in the previous stage, and the flow rate of the reaction solution It is possible to control the production conditions such as the particle size, variation of the nanoparticles, thickness of the oxide film, density, etc. As an alcohol compound, what was mentioned as alcohols with the said solvent can be used.
Although there is no restriction | limiting in particular as the measuringinstrument 15, In addition to what can measure the thickness of an oxide film, what can measure the particle size of a nanoparticle etc. is preferable. Alternatively, a mode in which a plurality of measuring devices are provided and the core particle diameter and the thickness of the oxide film are respectively measured is possible.
計測機器15としては特に制限はないが、酸化物被膜の厚さを測定できるもののほか、ナノ粒子の粒径を測定できるものなどが好ましい。あるいは計測機器を複数設け、コア粒径と酸化物被膜の厚をそれぞれ測定する態様なども可能である。 FIG. 3 shows a third configuration example of the continuous synthesis apparatus of the present invention. In the third configuration example, a
Although there is no restriction | limiting in particular as the measuring
次に実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
実施例1
図1に示される装置を用いて銀コア・シリカシェルナノ粒子の合成を行った。粒子の解析は、紫外可視吸収スペクトルメータ(日立製作所社製、商品名:U-3310)を用いた吸収スペクトルおよび、透過電子顕微鏡(TEM、FEI製、商品名:TECNAI G2)での観察により行った。マイクロ波周波数2.45GHzに基づいて設計された内径を有するTM010シングルモードキャビティの中心軸に沿って反応管を設置した。本構成例での反応管は全て、内径1mm、外径3mmの4フッ化エチレン樹脂の代表的商品であるテフロン(登録商標)を用いた。テフロン反応管の片側から金属前駆体および高分子分散剤を含む液溶媒をシリンジポンプにより供給した。反応原料には、100mmの区間で均一なエネルギー分布をもつマイクロ波が照射され、均質加熱された。金属前駆体として硝酸銀を用い、高分子分散剤としてポリビニルピロリドン(平均分子量10,000)を加えることで、粒子サイズの調整や銀ナノ粒子の安定化を図った。硝酸銀の濃度は10mM、ポリビニルピロリドンの濃度はモノマーユニットあたり300mMとした。反応液溶媒としてエチレングリコールを用いた。これらを混合した溶液をシリンジポンプで前段の反応管3に送液し、マイクロ波加熱することで銀ナノ粒子(平均直径15ナノメートル、標準偏差1.7)が合成された。粒度分布はCV値が11%であり、粒径のそろったナノ粒子が得られた。加熱温度は140℃、送液速度は6mL/hであった。 Example 1
Silver core / silica shell nanoparticles were synthesized using the apparatus shown in FIG. The analysis of the particles was performed by an absorption spectrum using an ultraviolet-visible absorption spectrometer (trade name: U-3310, manufactured by Hitachi, Ltd.) and observation with a transmission electron microscope (TEM, manufactured by FEI, trade name: TECNAI G 2 ). went. A reaction tube was installed along the central axis of a TM010 single mode cavity with an inner diameter designed based on a microwave frequency of 2.45 GHz. Teflon (registered trademark), which is a representative product of a tetrafluoroethylene resin having an inner diameter of 1 mm and an outer diameter of 3 mm, was used for all the reaction tubes in this configuration example. A liquid solvent containing a metal precursor and a polymer dispersant was supplied from one side of the Teflon reaction tube with a syringe pump. The reaction raw material was irradiated with microwaves having a uniform energy distribution in a section of 100 mm and heated homogeneously. By using silver nitrate as the metal precursor and adding polyvinylpyrrolidone (average molecular weight 10,000) as the polymer dispersant, the particle size was adjusted and the silver nanoparticles were stabilized. The concentration of silver nitrate was 10 mM, and the concentration of polyvinylpyrrolidone was 300 mM per monomer unit. Ethylene glycol was used as a reaction solution solvent. Silver nanoparticles (average diameter 15 nanometers, standard deviation 1.7) were synthesized by feeding a solution obtained by mixing them into the previous reaction tube 3 with a syringe pump and heating them with microwaves. As for the particle size distribution, the CV value was 11%, and nanoparticles having a uniform particle size were obtained. The heating temperature was 140 ° C., and the liquid feeding speed was 6 mL / h.
図1に示される装置を用いて銀コア・シリカシェルナノ粒子の合成を行った。粒子の解析は、紫外可視吸収スペクトルメータ(日立製作所社製、商品名:U-3310)を用いた吸収スペクトルおよび、透過電子顕微鏡(TEM、FEI製、商品名:TECNAI G2)での観察により行った。マイクロ波周波数2.45GHzに基づいて設計された内径を有するTM010シングルモードキャビティの中心軸に沿って反応管を設置した。本構成例での反応管は全て、内径1mm、外径3mmの4フッ化エチレン樹脂の代表的商品であるテフロン(登録商標)を用いた。テフロン反応管の片側から金属前駆体および高分子分散剤を含む液溶媒をシリンジポンプにより供給した。反応原料には、100mmの区間で均一なエネルギー分布をもつマイクロ波が照射され、均質加熱された。金属前駆体として硝酸銀を用い、高分子分散剤としてポリビニルピロリドン(平均分子量10,000)を加えることで、粒子サイズの調整や銀ナノ粒子の安定化を図った。硝酸銀の濃度は10mM、ポリビニルピロリドンの濃度はモノマーユニットあたり300mMとした。反応液溶媒としてエチレングリコールを用いた。これらを混合した溶液をシリンジポンプで前段の反応管3に送液し、マイクロ波加熱することで銀ナノ粒子(平均直径15ナノメートル、標準偏差1.7)が合成された。粒度分布はCV値が11%であり、粒径のそろったナノ粒子が得られた。加熱温度は140℃、送液速度は6mL/hであった。 Example 1
Silver core / silica shell nanoparticles were synthesized using the apparatus shown in FIG. The analysis of the particles was performed by an absorption spectrum using an ultraviolet-visible absorption spectrometer (trade name: U-3310, manufactured by Hitachi, Ltd.) and observation with a transmission electron microscope (TEM, manufactured by FEI, trade name: TECNAI G 2 ). went. A reaction tube was installed along the central axis of a TM010 single mode cavity with an inner diameter designed based on a microwave frequency of 2.45 GHz. Teflon (registered trademark), which is a representative product of a tetrafluoroethylene resin having an inner diameter of 1 mm and an outer diameter of 3 mm, was used for all the reaction tubes in this configuration example. A liquid solvent containing a metal precursor and a polymer dispersant was supplied from one side of the Teflon reaction tube with a syringe pump. The reaction raw material was irradiated with microwaves having a uniform energy distribution in a section of 100 mm and heated homogeneously. By using silver nitrate as the metal precursor and adding polyvinylpyrrolidone (average molecular weight 10,000) as the polymer dispersant, the particle size was adjusted and the silver nanoparticles were stabilized. The concentration of silver nitrate was 10 mM, and the concentration of polyvinylpyrrolidone was 300 mM per monomer unit. Ethylene glycol was used as a reaction solution solvent. Silver nanoparticles (
前段の反応管3で合成された銀ナノ粒子を含む溶液(銀ナノ粒子の生成密度(量)0.1wt%)を4方向型スタティックミキサーへ送液した。TEOSを含んだエタノール溶液、水とジメチルアミンを含んだエタノール溶液、および銀ナノ粒子を含む溶液を3方向から混合し、後段の反応管10へ送液した。ミキサー混合後の流量は320mL/hであり、銀濃度は0.0002M、TEOS濃度は0.014M、ジメチルアミン濃度は0.4M、水は12Mであった。後段の反応管10を70℃でマイクロ波加熱を行い、生成溶液を容器に回収後、その状態を室温にて保持した。室温での保持開始からの経過時間である保持時間に対する合成されたコアシェル構造ナノ粒子のTEM像を図4に示す。保持時間が図4に示す5分後の粒子のTEM像(a)より、中心に銀ナノ粒子を有し、銀ナノ粒子表面に均質なシリカシェルが形成されていることがわかった。保持時間が10分以降はシリカシェルの厚さは一定となり、1週間後でも外観上の変化がないことを確認している。
後段の反応管10においてマイクロ波加熱を行わずに生成溶液を容器に回収し、静置した場合におけるコアシェル構造ナノ粒子のTEM像(b)~(f)を図4に併せて示す。保持時間が6分後よりシリカシェルは形成され、20分後にはシェルの厚さは一定となることを確認した。図4のマイクロ波加熱がある場合とない場合でのシリカシェル層の厚さの時間変化を比較すると、マイクロ波加熱によりシリカシェル層の形成時間が短縮されていることがわかった。
コアシェル構造ナノ粒子(平均直径51ナノメートル、標準偏差3.5)の粒度分布はCV値が7%であり、粒度のそろったナノ粒子が得られた。 A solution containing silver nanoparticles synthesized in the previous reaction tube 3 (production density (amount) of silver nanoparticles 0.1 wt%) was fed to a four-way static mixer. An ethanol solution containing TEOS, an ethanol solution containing water and dimethylamine, and a solution containing silver nanoparticles were mixed from three directions and fed to thereaction tube 10 at the subsequent stage. The flow rate after mixing with the mixer was 320 mL / h, the silver concentration was 0.0002M, the TEOS concentration was 0.014M, the dimethylamine concentration was 0.4M, and the water was 12M. The subsequent reaction tube 10 was heated by microwaves at 70 ° C., and the product solution was recovered in a container, and the state was kept at room temperature. FIG. 4 shows a TEM image of the synthesized core-shell structured nanoparticles with respect to the retention time, which is the elapsed time from the start of retention at room temperature. From the TEM image (a) of the particles having a retention time of 5 minutes after that shown in FIG. 4, it was found that silver nanoparticles were formed at the center and a homogeneous silica shell was formed on the surface of the silver nanoparticles. It has been confirmed that the thickness of the silica shell is constant after the holding time of 10 minutes and there is no change in appearance even after one week.
FIG. 4 shows TEM images (b) to (f) of the core-shell structured nanoparticles when the product solution is collected in a container without performing microwave heating in thesubsequent reaction tube 10 and left standing. It was confirmed that the silica shell was formed after the retention time of 6 minutes and the shell thickness was constant after 20 minutes. When the time change of the thickness of the silica shell layer with and without microwave heating in FIG. 4 was compared, it was found that the formation time of the silica shell layer was shortened by microwave heating.
The particle size distribution of the core-shell structure nanoparticles (average diameter 51 nanometers, standard deviation 3.5) had a CV value of 7%, and nanoparticles with uniform particle sizes were obtained.
後段の反応管10においてマイクロ波加熱を行わずに生成溶液を容器に回収し、静置した場合におけるコアシェル構造ナノ粒子のTEM像(b)~(f)を図4に併せて示す。保持時間が6分後よりシリカシェルは形成され、20分後にはシェルの厚さは一定となることを確認した。図4のマイクロ波加熱がある場合とない場合でのシリカシェル層の厚さの時間変化を比較すると、マイクロ波加熱によりシリカシェル層の形成時間が短縮されていることがわかった。
コアシェル構造ナノ粒子(平均直径51ナノメートル、標準偏差3.5)の粒度分布はCV値が7%であり、粒度のそろったナノ粒子が得られた。 A solution containing silver nanoparticles synthesized in the previous reaction tube 3 (production density (amount) of silver nanoparticles 0.1 wt%) was fed to a four-way static mixer. An ethanol solution containing TEOS, an ethanol solution containing water and dimethylamine, and a solution containing silver nanoparticles were mixed from three directions and fed to the
FIG. 4 shows TEM images (b) to (f) of the core-shell structured nanoparticles when the product solution is collected in a container without performing microwave heating in the
The particle size distribution of the core-shell structure nanoparticles (average diameter 51 nanometers, standard deviation 3.5) had a CV value of 7%, and nanoparticles with uniform particle sizes were obtained.
実施例2
実施例1と同様にして得たシリカシェルの形成途中の生成溶液を、室温での保持開始からの経過時間である保持時間が7分後、8分後、10分後の各時間にエタノールで10倍希釈し、さらに24時間室温で保持した後に観察したTEM像(g)~(i)および吸光スペクトルを図5に示す。保持時間7分の場合、厚さ5nmのシリカシェルが形成されており、任意の保持時間後に希釈することで、5nm以上の厚さでシリカシェルを任意に制御し、また長時間の間、シリカシェルの厚さを保持することが出来ることを確認した。また、吸光スペクトルより、シリカシェル層が厚くなるに伴い、ピーク強度は高くなり、ピーク波長は高波長側へシフトしていることが確認されることから、図3に示す装置を用いた場合、吸収スペクトルの値より、任意のシリカシェル厚さを有する銀コア・シリカシェルナノ粒子を連続合成することも可能であるといえる。 Example 2
The product solution in the middle of the formation of the silica shell obtained in the same manner as in Example 1 was subjected to ethanol retention at 7 minutes, 8 minutes, and 10 minutes after the retention time, which was the elapsed time from the start of retention at room temperature. FIG. 5 shows TEM images (g) to (i) and absorption spectra observed after 10-fold dilution and further maintained at room temperature for 24 hours. When the holding time is 7 minutes, a silica shell with a thickness of 5 nm is formed. By diluting after an arbitrary holding time, the silica shell is arbitrarily controlled with a thickness of 5 nm or more. It was confirmed that the thickness of the shell could be maintained. Further, from the absorption spectrum, as the silica shell layer becomes thicker, the peak intensity increases and it is confirmed that the peak wavelength is shifted to the higher wavelength side, so when using the apparatus shown in FIG. From the value of the absorption spectrum, it can be said that silver core / silica shell nanoparticles having an arbitrary silica shell thickness can be continuously synthesized.
実施例1と同様にして得たシリカシェルの形成途中の生成溶液を、室温での保持開始からの経過時間である保持時間が7分後、8分後、10分後の各時間にエタノールで10倍希釈し、さらに24時間室温で保持した後に観察したTEM像(g)~(i)および吸光スペクトルを図5に示す。保持時間7分の場合、厚さ5nmのシリカシェルが形成されており、任意の保持時間後に希釈することで、5nm以上の厚さでシリカシェルを任意に制御し、また長時間の間、シリカシェルの厚さを保持することが出来ることを確認した。また、吸光スペクトルより、シリカシェル層が厚くなるに伴い、ピーク強度は高くなり、ピーク波長は高波長側へシフトしていることが確認されることから、図3に示す装置を用いた場合、吸収スペクトルの値より、任意のシリカシェル厚さを有する銀コア・シリカシェルナノ粒子を連続合成することも可能であるといえる。 Example 2
The product solution in the middle of the formation of the silica shell obtained in the same manner as in Example 1 was subjected to ethanol retention at 7 minutes, 8 minutes, and 10 minutes after the retention time, which was the elapsed time from the start of retention at room temperature. FIG. 5 shows TEM images (g) to (i) and absorption spectra observed after 10-fold dilution and further maintained at room temperature for 24 hours. When the holding time is 7 minutes, a silica shell with a thickness of 5 nm is formed. By diluting after an arbitrary holding time, the silica shell is arbitrarily controlled with a thickness of 5 nm or more. It was confirmed that the thickness of the shell could be maintained. Further, from the absorption spectrum, as the silica shell layer becomes thicker, the peak intensity increases and it is confirmed that the peak wavelength is shifted to the higher wavelength side, so when using the apparatus shown in FIG. From the value of the absorption spectrum, it can be said that silver core / silica shell nanoparticles having an arbitrary silica shell thickness can be continuously synthesized.
実施例3
図2に示される装置構成例(ただし、2つ目のミキサー9の下流側には後段の流動型反応管10が配置されており、マイクロ波による加熱手段、TM010キャビティ4、マイクロ波発振器・照射口5などは備えていなくてもよい。)を用いて、白金コア・シリカシェルナノ粒子の合成を行った。流動型反応管3および10は実施例1の反応管と同様である。金属前駆体としてクロロ錯体であるヘキサクロロ白金酸(10 mM)を用い、高分子分散剤としてのポリビニルピロリドン(モノマーユニットあたり50 mM、平均分子量40,000)、さらに白金ナノ粒子の大きさを制御するための硝酸ナトリウム(50 mM)を反応液溶媒であるエチレングリコールに溶解させて、シリンジポンプで前段の反応管3に送液し、マイクロ波加熱することで白金ナノ粒子(平均直径10ナノメートル、粒度分布はCV値で20%)を合成した。加熱温度は170℃、送液速度は6mL/hであった。前段の反応管3で合成された白金ナノ粒子を含む溶液を1つ目のスタティックミキサー9へ送液し、白金ナノ粒子を含む溶液と同量のエタノールとを混合した。引き続き2つ目のスタティックミキサー9にて、TEOSを含んだエタノール溶液と、水およびジメチルアミンを含んだエタノール溶液とが混合され、後段の反応管10に送液された。ミキサー混合後の流量は600mL/hであり、白金濃度は0.0001M、TEOS濃度は0.0088M、ジメチルアミン濃度は0.06M、水は12Mであった。後段の反応管10においてマイクロ波加熱を行わずに溶液を容器に回収し、室温で1時間保持した場合における白金コア・シリカシェルナノ粒子(平均直径60ナノメートル、CV値12%)を異なる倍率で撮影したTEM像を図6aおよび図6bに示す。図6aおよび図6bに示されるように、中心に白金ナノ粒子を有し、白金ナノ粒子の表面にシリカシェル(厚さ25ナノメートル)が形成されていることがわかる。 Example 3
An apparatus configuration example shown in FIG. 2 (however, a downstream flow-type reaction tube 10 is arranged downstream of the second mixer 9, and includes a microwave heating means, a TM010 cavity 4, a microwave oscillator, The platinum core / silica shell nanoparticles were synthesized using the irradiation port 5 and the like. The fluid type reaction tubes 3 and 10 are the same as the reaction tube of Example 1. Hexachloroplatinic acid (10 mM), which is a chloro complex, is used as a metal precursor, polyvinylpyrrolidone (50 mM per monomer unit, average molecular weight 40,000) as a polymer dispersant, and the size of platinum nanoparticles are controlled. Sodium nitrate (50 mM) for dissolution in ethylene glycol, which is a reaction solution solvent, is sent to the previous reaction tube 3 with a syringe pump, and is heated by microwaves to form platinum nanoparticles (average diameter 10 nanometer, The particle size distribution was 20% in terms of CV value). The heating temperature was 170 ° C., and the liquid feeding speed was 6 mL / h. The solution containing platinum nanoparticles synthesized in the previous reaction tube 3 was sent to the first static mixer 9, and the solution containing platinum nanoparticles and the same amount of ethanol were mixed. Subsequently, an ethanol solution containing TEOS and an ethanol solution containing water and dimethylamine were mixed in the second static mixer 9 and fed to the reaction tube 10 at the subsequent stage. The flow rate after mixing with the mixer was 600 mL / h, the platinum concentration was 0.0001M, the TEOS concentration was 0.0088M, the dimethylamine concentration was 0.06M, and water was 12M. The platinum core / silica shell nanoparticles (average diameter 60 nanometers, CV value 12%) when the solution is collected in a container without performing microwave heating in the subsequent reaction tube 10 and kept at room temperature for 1 hour are different magnifications. The TEM images taken in Fig. 6 are shown in Figs. 6a and 6b. As shown in FIGS. 6a and 6b, it can be seen that a platinum nanoparticle is formed at the center, and a silica shell (thickness 25 nm) is formed on the surface of the platinum nanoparticle.
図2に示される装置構成例(ただし、2つ目のミキサー9の下流側には後段の流動型反応管10が配置されており、マイクロ波による加熱手段、TM010キャビティ4、マイクロ波発振器・照射口5などは備えていなくてもよい。)を用いて、白金コア・シリカシェルナノ粒子の合成を行った。流動型反応管3および10は実施例1の反応管と同様である。金属前駆体としてクロロ錯体であるヘキサクロロ白金酸(10 mM)を用い、高分子分散剤としてのポリビニルピロリドン(モノマーユニットあたり50 mM、平均分子量40,000)、さらに白金ナノ粒子の大きさを制御するための硝酸ナトリウム(50 mM)を反応液溶媒であるエチレングリコールに溶解させて、シリンジポンプで前段の反応管3に送液し、マイクロ波加熱することで白金ナノ粒子(平均直径10ナノメートル、粒度分布はCV値で20%)を合成した。加熱温度は170℃、送液速度は6mL/hであった。前段の反応管3で合成された白金ナノ粒子を含む溶液を1つ目のスタティックミキサー9へ送液し、白金ナノ粒子を含む溶液と同量のエタノールとを混合した。引き続き2つ目のスタティックミキサー9にて、TEOSを含んだエタノール溶液と、水およびジメチルアミンを含んだエタノール溶液とが混合され、後段の反応管10に送液された。ミキサー混合後の流量は600mL/hであり、白金濃度は0.0001M、TEOS濃度は0.0088M、ジメチルアミン濃度は0.06M、水は12Mであった。後段の反応管10においてマイクロ波加熱を行わずに溶液を容器に回収し、室温で1時間保持した場合における白金コア・シリカシェルナノ粒子(平均直径60ナノメートル、CV値12%)を異なる倍率で撮影したTEM像を図6aおよび図6bに示す。図6aおよび図6bに示されるように、中心に白金ナノ粒子を有し、白金ナノ粒子の表面にシリカシェル(厚さ25ナノメートル)が形成されていることがわかる。 Example 3
An apparatus configuration example shown in FIG. 2 (however, a downstream flow-
以下の実施例4~6では、TEOS濃度およびジメチルアミン(DMA)濃度を変えることで合成される白金とシリカからなる複合ナノ粒子のうち、白金ナノ粒子がシリカシェルで被覆された白金コア・シリカシェルナノ粒子の表面に白金ナノ粒子が付着した複合ナノ粒子、シリカ粒子と白金ナノ粒子が凝集し、白金ナノ粒子の周囲をシリカ粒子が被覆した複合ナノ粒子、および、任意の平均粒子径を有する白金コア・シリカシェルナノ粒子の合成例を示す。各実施例に用いた反応原料の組成は表1のとおりである。
In Examples 4 to 6 below, among the composite nanoparticles composed of platinum and silica synthesized by changing the TEOS concentration and the dimethylamine (DMA) concentration, the platinum core silica in which the platinum nanoparticles are coated with a silica shell Composite nanoparticles in which platinum nanoparticles are attached to the surface of shell nanoparticles, composite nanoparticles in which silica particles and platinum nanoparticles are aggregated and silica particles are coated around the platinum nanoparticles, and have an arbitrary average particle size An example of synthesis of platinum core / silica shell nanoparticles will be shown. The composition of the reaction raw materials used in each example is as shown in Table 1.
実施例4
実施例4は、白金ナノ粒子がシリカシェルで被覆された上でさらに、このシリカシェルの表面にシリカで被覆されていない白金ナノ粒子が付着した形態である白金とシリカの複合ナノ粒子の合成例である。実施例4は表1に示す組成以外の条件は実施例3と基本的に同様に設定して白金コア・シリカシェルナノ粒子(平均直径60ナノメートル、CV値11%)を合成した。なお、白金ナノ粒子の直径は10ナノメートルであり、粒度分布はCV値で20%であった。図7に実施例4で合成された白金とシリカの複合ナノ粒子のTEM像を示す。図7において、半透明状に写っている60ナノメートルの白金コア・シリカシェルナノ粒子の周囲部分に、黒色に写る10ナノメートルの白金ナノ粒子が2~3個存在していることが確認できる。反応原料の組成において、TEOS濃度を低くすると、シリカ粒子の数は少なくなり、相対的に白金ナノ粒子の数が多くなる。またTEOS濃度を調整することで、白金コア・シリカシェルナノ粒子の表面に付着する白金ナノ粒子の個数密度を調整することも可能である。 Example 4
Example 4 is a synthesis example of platinum-silica composite nanoparticles in which platinum nanoparticles are coated with a silica shell and platinum nanoparticles not coated with silica are attached to the surface of the silica shell. It is. In Example 4, conditions other than the composition shown in Table 1 were set basically in the same manner as in Example 3 to synthesize platinum core / silica shell nanoparticles (average diameter 60 nm, CV value 11%). In addition, the diameter of the platinum nanoparticles was 10 nanometers, and the particle size distribution was 20% in terms of CV value. FIG. 7 shows a TEM image of the composite nanoparticles of platinum and silica synthesized in Example 4. In FIG. 7, it can be confirmed that there are two or three 10 nanometer platinum nanoparticles appearing in black around the 60 nanometer platinum core / silica shell nanoparticles appearing translucently. . When the TEOS concentration is lowered in the composition of the reaction raw material, the number of silica particles decreases, and the number of platinum nanoparticles relatively increases. It is also possible to adjust the number density of platinum nanoparticles adhering to the surface of the platinum core / silica shell nanoparticles by adjusting the TEOS concentration.
実施例4は、白金ナノ粒子がシリカシェルで被覆された上でさらに、このシリカシェルの表面にシリカで被覆されていない白金ナノ粒子が付着した形態である白金とシリカの複合ナノ粒子の合成例である。実施例4は表1に示す組成以外の条件は実施例3と基本的に同様に設定して白金コア・シリカシェルナノ粒子(平均直径60ナノメートル、CV値11%)を合成した。なお、白金ナノ粒子の直径は10ナノメートルであり、粒度分布はCV値で20%であった。図7に実施例4で合成された白金とシリカの複合ナノ粒子のTEM像を示す。図7において、半透明状に写っている60ナノメートルの白金コア・シリカシェルナノ粒子の周囲部分に、黒色に写る10ナノメートルの白金ナノ粒子が2~3個存在していることが確認できる。反応原料の組成において、TEOS濃度を低くすると、シリカ粒子の数は少なくなり、相対的に白金ナノ粒子の数が多くなる。またTEOS濃度を調整することで、白金コア・シリカシェルナノ粒子の表面に付着する白金ナノ粒子の個数密度を調整することも可能である。 Example 4
Example 4 is a synthesis example of platinum-silica composite nanoparticles in which platinum nanoparticles are coated with a silica shell and platinum nanoparticles not coated with silica are attached to the surface of the silica shell. It is. In Example 4, conditions other than the composition shown in Table 1 were set basically in the same manner as in Example 3 to synthesize platinum core / silica shell nanoparticles (average diameter 60 nm, CV value 11%). In addition, the diameter of the platinum nanoparticles was 10 nanometers, and the particle size distribution was 20% in terms of CV value. FIG. 7 shows a TEM image of the composite nanoparticles of platinum and silica synthesized in Example 4. In FIG. 7, it can be confirmed that there are two or three 10 nanometer platinum nanoparticles appearing in black around the 60 nanometer platinum core / silica shell nanoparticles appearing translucently. . When the TEOS concentration is lowered in the composition of the reaction raw material, the number of silica particles decreases, and the number of platinum nanoparticles relatively increases. It is also possible to adjust the number density of platinum nanoparticles adhering to the surface of the platinum core / silica shell nanoparticles by adjusting the TEOS concentration.
実施例5
実施例5は、白金ナノ粒子の表面に粒子状のシリカが付着することで白金コアの周囲を被覆した形態である複合ナノ粒子の合成例である。実施例5は表1に示す組成以外の条件は実施例3と基本的に同様に設定して複合ナノ粒子(平均直径140ナノメートル、CV値45%)を合成した。なお、白金ナノ粒子の直径は10ナノメートルであり、粒度分布はCV値で20%であった。図8に実施例5で合成された複合ナノ粒子のTEM像を示す。図8によれば、半透明で灰色に写る直径約140ナノメートルのシリカ粒子内に、黒色に写る直径10ナノメートルの多数のナノ粒子が分散している様子が分かる。反応原料の組成において、反応液中のTEOS濃度およびDMA濃度を低くすると、白金ナノ粒子の表面に粒子状のシリカが付着することで金属コアの周囲を被覆した複合ナノ粒子が得られることがわかった。 Example 5
Example 5 is a synthesis example of composite nanoparticles having a form in which the periphery of a platinum core is coated by attaching particulate silica to the surface of platinum nanoparticles. In Example 5, conditions other than the composition shown in Table 1 were set basically in the same manner as in Example 3 to synthesize composite nanoparticles (average diameter 140 nm, CV value 45%). In addition, the diameter of the platinum nanoparticles was 10 nanometers, and the particle size distribution was 20% in terms of CV value. FIG. 8 shows a TEM image of the composite nanoparticles synthesized in Example 5. According to FIG. 8, it can be seen that a large number of nanoparticles having a diameter of 10 nanometers appearing in black are dispersed in silica particles having a diameter of about 140 nanometers appearing in a translucent gray color. It can be seen that when the TEOS concentration and the DMA concentration in the reaction solution are lowered in the composition of the reaction raw material, composite silica particles covering the periphery of the metal core can be obtained by attaching particulate silica to the surface of the platinum nanoparticles. It was.
実施例5は、白金ナノ粒子の表面に粒子状のシリカが付着することで白金コアの周囲を被覆した形態である複合ナノ粒子の合成例である。実施例5は表1に示す組成以外の条件は実施例3と基本的に同様に設定して複合ナノ粒子(平均直径140ナノメートル、CV値45%)を合成した。なお、白金ナノ粒子の直径は10ナノメートルであり、粒度分布はCV値で20%であった。図8に実施例5で合成された複合ナノ粒子のTEM像を示す。図8によれば、半透明で灰色に写る直径約140ナノメートルのシリカ粒子内に、黒色に写る直径10ナノメートルの多数のナノ粒子が分散している様子が分かる。反応原料の組成において、反応液中のTEOS濃度およびDMA濃度を低くすると、白金ナノ粒子の表面に粒子状のシリカが付着することで金属コアの周囲を被覆した複合ナノ粒子が得られることがわかった。 Example 5
Example 5 is a synthesis example of composite nanoparticles having a form in which the periphery of a platinum core is coated by attaching particulate silica to the surface of platinum nanoparticles. In Example 5, conditions other than the composition shown in Table 1 were set basically in the same manner as in Example 3 to synthesize composite nanoparticles (average diameter 140 nm, CV value 45%). In addition, the diameter of the platinum nanoparticles was 10 nanometers, and the particle size distribution was 20% in terms of CV value. FIG. 8 shows a TEM image of the composite nanoparticles synthesized in Example 5. According to FIG. 8, it can be seen that a large number of nanoparticles having a diameter of 10 nanometers appearing in black are dispersed in silica particles having a diameter of about 140 nanometers appearing in a translucent gray color. It can be seen that when the TEOS concentration and the DMA concentration in the reaction solution are lowered in the composition of the reaction raw material, composite silica particles covering the periphery of the metal core can be obtained by attaching particulate silica to the surface of the platinum nanoparticles. It was.
実施例6
実施例6は、任意の平均粒子径を有する白金コア・シリカシェルナノ粒子の合成例である。実施例6は反応液中のMDA濃度を変えた4種の実施例6-1~6-4からなり、表1に示す組成以外の条件は実施例3と基本的に同様に設定して白金コア・シリカシェルナノ粒子を合成した。なお、白金ナノ粒子の直径および粒度分布(CV値%)、ならびに、白金コア・シリカシェルナノ粒子(表1においてコアシェル構造ナノ粒子と表記する。)の平均粒子径および粒度分布(CV値%)を表1に示す。図9に実施例6-1~6-4で合成された白金コア・シリカシェルナノ粒子のTEM像を示す。反応液中のDMA濃度を変えることで、20nmから140nmの任意の平均粒子径を有する白金コア・シリカシェル粒子を合成できることがわかった。なお、反応液中のDMA濃度を高くするにつれてシリカシェルを有しない白金ナノ粒子の合成量が増える傾向を確認できた。 Example 6
Example 6 is a synthesis example of platinum core / silica shell nanoparticles having an arbitrary average particle size. Example 6 consists of four types of Examples 6-1 to 6-4 in which the concentration of MDA in the reaction solution was changed. Conditions other than the composition shown in Table 1 were basically set in the same manner as in Example 3, and platinum was used. Core silica shell nanoparticles were synthesized. In addition, the diameter and particle size distribution (CV value%) of platinum nanoparticles, and the average particle diameter and particle size distribution (CV value%) of platinum core / silica shell nanoparticles (referred to as core-shell structure nanoparticles in Table 1). Is shown in Table 1. FIG. 9 shows TEM images of the platinum core / silica shell nanoparticles synthesized in Examples 6-1 to 6-4. It was found that platinum core / silica shell particles having an arbitrary average particle diameter of 20 nm to 140 nm can be synthesized by changing the DMA concentration in the reaction solution. In addition, the tendency which the synthetic | combination amount of the platinum nanoparticle which does not have a silica shell increases as the DMA density | concentration in a reaction liquid is made high was confirmed.
実施例6は、任意の平均粒子径を有する白金コア・シリカシェルナノ粒子の合成例である。実施例6は反応液中のMDA濃度を変えた4種の実施例6-1~6-4からなり、表1に示す組成以外の条件は実施例3と基本的に同様に設定して白金コア・シリカシェルナノ粒子を合成した。なお、白金ナノ粒子の直径および粒度分布(CV値%)、ならびに、白金コア・シリカシェルナノ粒子(表1においてコアシェル構造ナノ粒子と表記する。)の平均粒子径および粒度分布(CV値%)を表1に示す。図9に実施例6-1~6-4で合成された白金コア・シリカシェルナノ粒子のTEM像を示す。反応液中のDMA濃度を変えることで、20nmから140nmの任意の平均粒子径を有する白金コア・シリカシェル粒子を合成できることがわかった。なお、反応液中のDMA濃度を高くするにつれてシリカシェルを有しない白金ナノ粒子の合成量が増える傾向を確認できた。 Example 6
Example 6 is a synthesis example of platinum core / silica shell nanoparticles having an arbitrary average particle size. Example 6 consists of four types of Examples 6-1 to 6-4 in which the concentration of MDA in the reaction solution was changed. Conditions other than the composition shown in Table 1 were basically set in the same manner as in Example 3, and platinum was used. Core silica shell nanoparticles were synthesized. In addition, the diameter and particle size distribution (CV value%) of platinum nanoparticles, and the average particle diameter and particle size distribution (CV value%) of platinum core / silica shell nanoparticles (referred to as core-shell structure nanoparticles in Table 1). Is shown in Table 1. FIG. 9 shows TEM images of the platinum core / silica shell nanoparticles synthesized in Examples 6-1 to 6-4. It was found that platinum core / silica shell particles having an arbitrary average particle diameter of 20 nm to 140 nm can be synthesized by changing the DMA concentration in the reaction solution. In addition, the tendency which the synthetic | combination amount of the platinum nanoparticle which does not have a silica shell increases as the DMA density | concentration in a reaction liquid is made high was confirmed.
実施例7
図2に示される装置構成例(ただし、2つ目のミキサー9の下流側には流動型反応管10が配置されており、マイクロ波による加熱手段、TM010キャビティ4、マイクロ波発振器・照射口5などは備えていなくてもよい。)を用いて、パラジウムコア・シリカシェルナノ粒子の合成を行った。流動型反応管3および10は実施例1の反応管と同様である。金属前駆体として塩化パラジウム(2mM)を用い、高分子分散剤としてのポリビニルピロリドン(モノマーユニットあたり50mM、平均分子量40,000)を反応液溶媒であるエチレングリコールに溶解させて、シリンジポンプで前段の反応管3に送液し、マイクロ波加熱することでパラジウムナノ粒子(平均直径8ナノメートル、CV値13%)を合成した。加熱温度は170℃、送液速度は6mL/hであった。前段の反応管3で合成されたパラジウムナノ粒子を含む溶液を1つ目のスタティックミキサー9へ送液し、パラジウムナノ粒子を含む溶液と同量のエタノールとを混合した。引き続き2つ目のスタティックミキサー9にて、TEOSと、水およびジメチルアミンを含んだエタノール溶液とが混合され、後段の反応管10に送液された。ミキサー混合後のパラジウム濃度は0.00004M、TEOS濃度は0.0088M、ジメチルアミン濃度は0.06M、水は12Mであり、流量は300mL/hであった。後段の反応管10においてマイクロ波加熱を行わずに溶液を容器に回収し、室温で1時間保持した場合におけるパラジウムコア・シリカシェルナノ粒子のTEM像を図10に示す。図10に示されるように、中心にパラジウムナノ粒子を有し、パラジウムナノ粒子の表面にシリカシェル(厚さ20ナノメートル)が形成されていることがわかる。この合成条件におけるパラジウムコア・シリカシェルの粒子径分布は平均直径48ナノメートル、CV値7%であった。 Example 7
An apparatus configuration example shown in FIG. 2 (however, a flowtype reaction tube 10 is arranged downstream of the second mixer 9, and heating means by microwave, TM010 cavity 4, microwave oscillator / irradiation port 5 may not be provided.) Was used to synthesize palladium core / silica shell nanoparticles. The fluid type reaction tubes 3 and 10 are the same as the reaction tube of Example 1. Using palladium chloride (2 mM) as a metal precursor, polyvinyl pyrrolidone (50 mM per monomer unit, average molecular weight 40,000) as a polymer dispersant is dissolved in ethylene glycol as a reaction solution solvent, The solution was sent to the reaction tube 3 and heated with microwaves to synthesize palladium nanoparticles (average diameter: 8 nanometers, CV value: 13%). The heating temperature was 170 ° C., and the liquid feeding speed was 6 mL / h. The solution containing the palladium nanoparticles synthesized in the previous reaction tube 3 was sent to the first static mixer 9, and the solution containing the palladium nanoparticles and the same amount of ethanol were mixed. Subsequently, TEOS and an ethanol solution containing water and dimethylamine were mixed in the second static mixer 9 and fed to the reaction tube 10 at the subsequent stage. After mixing with the mixer, the palladium concentration was 0.00004M, the TEOS concentration was 0.0088M, the dimethylamine concentration was 0.06M, water was 12M, and the flow rate was 300 mL / h. FIG. 10 shows a TEM image of the palladium core / silica shell nanoparticles when the solution was collected in a container without performing microwave heating in the subsequent reaction tube 10 and kept at room temperature for 1 hour. As shown in FIG. 10, it can be seen that palladium nanoparticles are present at the center, and a silica shell (thickness 20 nm) is formed on the surface of the palladium nanoparticles. The particle size distribution of the palladium core / silica shell under these synthesis conditions was an average diameter of 48 nanometers and a CV value of 7%.
図2に示される装置構成例(ただし、2つ目のミキサー9の下流側には流動型反応管10が配置されており、マイクロ波による加熱手段、TM010キャビティ4、マイクロ波発振器・照射口5などは備えていなくてもよい。)を用いて、パラジウムコア・シリカシェルナノ粒子の合成を行った。流動型反応管3および10は実施例1の反応管と同様である。金属前駆体として塩化パラジウム(2mM)を用い、高分子分散剤としてのポリビニルピロリドン(モノマーユニットあたり50mM、平均分子量40,000)を反応液溶媒であるエチレングリコールに溶解させて、シリンジポンプで前段の反応管3に送液し、マイクロ波加熱することでパラジウムナノ粒子(平均直径8ナノメートル、CV値13%)を合成した。加熱温度は170℃、送液速度は6mL/hであった。前段の反応管3で合成されたパラジウムナノ粒子を含む溶液を1つ目のスタティックミキサー9へ送液し、パラジウムナノ粒子を含む溶液と同量のエタノールとを混合した。引き続き2つ目のスタティックミキサー9にて、TEOSと、水およびジメチルアミンを含んだエタノール溶液とが混合され、後段の反応管10に送液された。ミキサー混合後のパラジウム濃度は0.00004M、TEOS濃度は0.0088M、ジメチルアミン濃度は0.06M、水は12Mであり、流量は300mL/hであった。後段の反応管10においてマイクロ波加熱を行わずに溶液を容器に回収し、室温で1時間保持した場合におけるパラジウムコア・シリカシェルナノ粒子のTEM像を図10に示す。図10に示されるように、中心にパラジウムナノ粒子を有し、パラジウムナノ粒子の表面にシリカシェル(厚さ20ナノメートル)が形成されていることがわかる。この合成条件におけるパラジウムコア・シリカシェルの粒子径分布は平均直径48ナノメートル、CV値7%であった。 Example 7
An apparatus configuration example shown in FIG. 2 (however, a flow
実施例8
図2に示される装置構成例(ただし、2つ目のミキサー9の下流側には流動型反応管10が配置されており、マイクロ波による加熱手段、TM010キャビティ4、マイクロ波発振器・照射口5などは備えていなくてもよい。)を用いて、ニッケルコア・シリカシェルナノ粒子の合成を行った。流動型反応管3および10は実施例1の反応管と同様である。金属前駆体として酢酸ニッケル4水和物(5mM)を用い、高分子分散剤としてのポリビニルピロリドン(モノマーユニットあたり100mM、平均分子量40,000)、さらにニッケルナノ粒子の大きさを制御するためのジオクチルアミン(10mM)を反応液溶媒であるエチレングリコールに溶解させて、シリンジポンプで前段の反応管3に送液し、マイクロ波加熱することでニッケルナノ粒子(平均直径15ナノメートル、CV値13%)を合成した。加熱温度は170℃、送液速度は1mL/hであった。前段の反応管3で合成されたニッケルナノ粒子を含む溶液を1つ目のスタティックミキサー9へ送液し、ニッケルナノ粒子を含む溶液と同量のエタノールとを混合した。引き続き2つ目のスタティックミキサー9にて、TEOSと、水およびジメチルアミンを含んだエタノール溶液とが混合され、後段の反応管10に送液された。ミキサー混合後の流量は50mL/hであり、ニッケル濃度は0.0001M、TEOS濃度は0.0088M、ジメチルアミン濃度は0.06M、水は12Mであった。後段の反応管10においてマイクロ波加熱を行わずに溶液を容器に回収し、室温で1時間保持した場合におけるニッケルコア・シリカシェルナノ粒子のTEM像を図11に示す。図11に示されるように、中心にニッケルナノ粒子(粒子径15ナノメートル)を有し、ニッケルナノ粒子の表面にシリカシェル(厚さ20ナノメートル)が形成されていることがわかる。この条件で合成したニッケルコア・シリカシェルの粒子径分布は平均直径55ナノメートル、CV値8%であった。 Example 8
An apparatus configuration example shown in FIG. 2 (however, a flowtype reaction tube 10 is arranged downstream of the second mixer 9, and heating means by microwave, TM010 cavity 4, microwave oscillator / irradiation port 5 may not be provided), and nickel core / silica shell nanoparticles were synthesized. The fluid type reaction tubes 3 and 10 are the same as the reaction tube of Example 1. Nickel acetate tetrahydrate (5 mM) is used as a metal precursor, polyvinylpyrrolidone (100 mM per monomer unit, average molecular weight 40,000) as a polymer dispersant, and dioctyl for controlling the size of nickel nanoparticles Amine (10 mM) is dissolved in ethylene glycol, which is a reaction solvent, and is sent to the previous reaction tube 3 with a syringe pump, and heated by microwaves to form nickel nanoparticles (average diameter 15 nm, CV value 13%) ) Was synthesized. The heating temperature was 170 ° C., and the liquid feeding speed was 1 mL / h. The solution containing nickel nanoparticles synthesized in the previous reaction tube 3 was sent to the first static mixer 9, and the solution containing nickel nanoparticles and the same amount of ethanol were mixed. Subsequently, TEOS and an ethanol solution containing water and dimethylamine were mixed in the second static mixer 9 and fed to the reaction tube 10 at the subsequent stage. The flow rate after mixing with the mixer was 50 mL / h, the nickel concentration was 0.0001M, the TEOS concentration was 0.0088M, the dimethylamine concentration was 0.06M, and water was 12M. FIG. 11 shows a TEM image of the nickel core / silica shell nanoparticles when the solution was collected in a container without performing microwave heating in the subsequent reaction tube 10 and kept at room temperature for 1 hour. As shown in FIG. 11, it can be seen that nickel nanoparticles (particle diameter: 15 nanometers) are present at the center, and a silica shell (thickness: 20 nanometers) is formed on the surface of the nickel nanoparticles. The particle size distribution of the nickel core / silica shell synthesized under these conditions was an average diameter of 55 nanometers and a CV value of 8%.
図2に示される装置構成例(ただし、2つ目のミキサー9の下流側には流動型反応管10が配置されており、マイクロ波による加熱手段、TM010キャビティ4、マイクロ波発振器・照射口5などは備えていなくてもよい。)を用いて、ニッケルコア・シリカシェルナノ粒子の合成を行った。流動型反応管3および10は実施例1の反応管と同様である。金属前駆体として酢酸ニッケル4水和物(5mM)を用い、高分子分散剤としてのポリビニルピロリドン(モノマーユニットあたり100mM、平均分子量40,000)、さらにニッケルナノ粒子の大きさを制御するためのジオクチルアミン(10mM)を反応液溶媒であるエチレングリコールに溶解させて、シリンジポンプで前段の反応管3に送液し、マイクロ波加熱することでニッケルナノ粒子(平均直径15ナノメートル、CV値13%)を合成した。加熱温度は170℃、送液速度は1mL/hであった。前段の反応管3で合成されたニッケルナノ粒子を含む溶液を1つ目のスタティックミキサー9へ送液し、ニッケルナノ粒子を含む溶液と同量のエタノールとを混合した。引き続き2つ目のスタティックミキサー9にて、TEOSと、水およびジメチルアミンを含んだエタノール溶液とが混合され、後段の反応管10に送液された。ミキサー混合後の流量は50mL/hであり、ニッケル濃度は0.0001M、TEOS濃度は0.0088M、ジメチルアミン濃度は0.06M、水は12Mであった。後段の反応管10においてマイクロ波加熱を行わずに溶液を容器に回収し、室温で1時間保持した場合におけるニッケルコア・シリカシェルナノ粒子のTEM像を図11に示す。図11に示されるように、中心にニッケルナノ粒子(粒子径15ナノメートル)を有し、ニッケルナノ粒子の表面にシリカシェル(厚さ20ナノメートル)が形成されていることがわかる。この条件で合成したニッケルコア・シリカシェルの粒子径分布は平均直径55ナノメートル、CV値8%であった。 Example 8
An apparatus configuration example shown in FIG. 2 (however, a flow
なお、以上の説明では、前段と後段に分けて製造する実施形態を例にとって本発明を説明したが、前記のように、この形態は、前段の流通型反応管および後段の流通型反応管のそれぞれ又はいずれか一方を複数設けて、行う場合も包含する。たとえば図3に示されるように後段を複数の流通型反応管で行ってもよい。このとき、マイクロ波加熱する前後段の流通型反応管の数は特に限定されない。たとえば、前後段の流通型反応管の少なくとも1つもしくは複数またはすべての流通型反応管をマイクロ波加熱してもよい。また、複数の前後段の流通型反応管を設ける態様は特に限定されず、複数の、前後段の流通型反応管は直列に配置されてもよく、並列に配置されてもよい。
また、前後段の流通型反応管の他に、金属前駆体、溶媒、酸化物前駆体、アミン溶液などの原料、または、金属ナノ粒子を含む溶液などを流通または混合する流通管を設けてもよい。たとえば、前段の流通型反応管よりもさらに前段に流通管を設けることができる。また、前後段の流通型反応管の間に流通管を設けることができる。さらに、後段の流通型反応管のさらに後段に流通管を設けることもできる。
少なくとも流通型反応管やミキサーを着脱可能に設けることが好ましい。このようにすることによって、製造するナノ粒子の種類や形態を多様化したり、品質の制御をしたりし易くなり、製造コストを低減することができるなど本発明の効果を一層大ならしめることができる。
また、以上の説明では、酸化物としてシリカを例にとって説明したが、酸化物は酸化物前駆体が加水分解できるものとしてシリカに限られず、アルミナ、ジルコニアなどもあり、歩留まりのよい、安価なコアシェル粒子および複合ナノ粒子を合成することができる。
以上、実施例を含めて本発明を説明したが、本発明はこれに狭く限定されるものではなく、本発明の技術思想に基づいて多くのバリエーションを可能とするものであり、本発明の連続合成方法および/または連続合成装置を用いて合成された複合ナノ粒子も本発明に属するものである。この複合ナノ粒子は、異なる種類の、ナノ粒子および酸化物粒子が複合したナノ粒子であって、たとえば、ナノ粒子が金属粒子で酸化物がその表面の一部に付着した複合ナノ粒子などが挙げられる。より具体的には、複合ナノ粒子には、実施例4のようにコアシェル構造ナノ粒子の表面にシリカで被覆されていない白金ナノ粒子が付着した複合ナノ粒子、および、実施例5のように白金ナノ粒子の表面に粒子状のシリカが付着して白金コアの周囲を被覆した複合ナノ粒子などが包含される。したがって、本発明の連続合成方法および/または連続合成装置はこのような複合ナノ粒子を合成できる。本発明のコアシェル構造ナノ粒子は、その用途の一つである触媒の活性から様々な化学反応プロセスで用いることができる。 In the above description, the present invention has been described with reference to an embodiment in which the production is divided into the former stage and the latter stage. However, as described above, this embodiment can be applied to the first-stage flow reaction tube and the second-stage flow reaction tube. A case where a plurality of each or any one of them is provided is also included. For example, as shown in FIG. 3, the subsequent stage may be performed with a plurality of flow-type reaction tubes. At this time, the number of flow-type reaction tubes before and after the microwave heating is not particularly limited. For example, at least one or a plurality or all of the flow reaction tubes at the front and rear stages may be heated by microwaves. In addition, a mode in which a plurality of front and rear flow-type reaction tubes are provided is not particularly limited, and a plurality of front and rear flow-type reaction tubes may be arranged in series or in parallel.
In addition to the flow reaction tubes at the front and rear stages, a flow tube for circulating or mixing a raw material such as a metal precursor, a solvent, an oxide precursor, an amine solution, or a solution containing metal nanoparticles may be provided. Good. For example, a flow tube can be provided further upstream than the flow reaction tube of the previous step. Moreover, a flow pipe can be provided between the front and rear flow type reaction tubes. Furthermore, a flow tube can be provided further downstream of the flow reaction tube at the subsequent stage.
It is preferable that at least a flow type reaction tube and a mixer are detachably provided. By doing so, it is possible to diversify the types and forms of the nanoparticles to be produced, to easily control the quality, and to further reduce the production cost, thereby further enhancing the effects of the present invention. it can.
In the above description, silica has been described as an example of the oxide. However, the oxide is not limited to silica because the oxide precursor can be hydrolyzed, and there are alumina, zirconia, and the like. Particles and composite nanoparticles can be synthesized.
The present invention has been described above including the embodiments. However, the present invention is not limited to this, and many variations are possible based on the technical idea of the present invention. Composite nanoparticles synthesized using a synthesis method and / or a continuous synthesis apparatus also belong to the present invention. This composite nanoparticle is a nanoparticle composed of different types of nanoparticles and oxide particles, for example, composite nanoparticles in which the nanoparticles are metal particles and the oxide is attached to a part of the surface. It is done. More specifically, the composite nanoparticles include composite nanoparticles in which platinum nanoparticles not coated with silica are attached to the surface of the core-shell structured nanoparticles as in Example 4, and platinum as in Example 5. Examples include composite nanoparticles in which particulate silica adheres to the surface of the nanoparticles and covers the periphery of the platinum core. Therefore, the continuous synthesis method and / or continuous synthesis apparatus of the present invention can synthesize such composite nanoparticles. The core-shell structured nanoparticles of the present invention can be used in various chemical reaction processes due to the activity of the catalyst, which is one of their uses.
また、前後段の流通型反応管の他に、金属前駆体、溶媒、酸化物前駆体、アミン溶液などの原料、または、金属ナノ粒子を含む溶液などを流通または混合する流通管を設けてもよい。たとえば、前段の流通型反応管よりもさらに前段に流通管を設けることができる。また、前後段の流通型反応管の間に流通管を設けることができる。さらに、後段の流通型反応管のさらに後段に流通管を設けることもできる。
少なくとも流通型反応管やミキサーを着脱可能に設けることが好ましい。このようにすることによって、製造するナノ粒子の種類や形態を多様化したり、品質の制御をしたりし易くなり、製造コストを低減することができるなど本発明の効果を一層大ならしめることができる。
また、以上の説明では、酸化物としてシリカを例にとって説明したが、酸化物は酸化物前駆体が加水分解できるものとしてシリカに限られず、アルミナ、ジルコニアなどもあり、歩留まりのよい、安価なコアシェル粒子および複合ナノ粒子を合成することができる。
以上、実施例を含めて本発明を説明したが、本発明はこれに狭く限定されるものではなく、本発明の技術思想に基づいて多くのバリエーションを可能とするものであり、本発明の連続合成方法および/または連続合成装置を用いて合成された複合ナノ粒子も本発明に属するものである。この複合ナノ粒子は、異なる種類の、ナノ粒子および酸化物粒子が複合したナノ粒子であって、たとえば、ナノ粒子が金属粒子で酸化物がその表面の一部に付着した複合ナノ粒子などが挙げられる。より具体的には、複合ナノ粒子には、実施例4のようにコアシェル構造ナノ粒子の表面にシリカで被覆されていない白金ナノ粒子が付着した複合ナノ粒子、および、実施例5のように白金ナノ粒子の表面に粒子状のシリカが付着して白金コアの周囲を被覆した複合ナノ粒子などが包含される。したがって、本発明の連続合成方法および/または連続合成装置はこのような複合ナノ粒子を合成できる。本発明のコアシェル構造ナノ粒子は、その用途の一つである触媒の活性から様々な化学反応プロセスで用いることができる。 In the above description, the present invention has been described with reference to an embodiment in which the production is divided into the former stage and the latter stage. However, as described above, this embodiment can be applied to the first-stage flow reaction tube and the second-stage flow reaction tube. A case where a plurality of each or any one of them is provided is also included. For example, as shown in FIG. 3, the subsequent stage may be performed with a plurality of flow-type reaction tubes. At this time, the number of flow-type reaction tubes before and after the microwave heating is not particularly limited. For example, at least one or a plurality or all of the flow reaction tubes at the front and rear stages may be heated by microwaves. In addition, a mode in which a plurality of front and rear flow-type reaction tubes are provided is not particularly limited, and a plurality of front and rear flow-type reaction tubes may be arranged in series or in parallel.
In addition to the flow reaction tubes at the front and rear stages, a flow tube for circulating or mixing a raw material such as a metal precursor, a solvent, an oxide precursor, an amine solution, or a solution containing metal nanoparticles may be provided. Good. For example, a flow tube can be provided further upstream than the flow reaction tube of the previous step. Moreover, a flow pipe can be provided between the front and rear flow type reaction tubes. Furthermore, a flow tube can be provided further downstream of the flow reaction tube at the subsequent stage.
It is preferable that at least a flow type reaction tube and a mixer are detachably provided. By doing so, it is possible to diversify the types and forms of the nanoparticles to be produced, to easily control the quality, and to further reduce the production cost, thereby further enhancing the effects of the present invention. it can.
In the above description, silica has been described as an example of the oxide. However, the oxide is not limited to silica because the oxide precursor can be hydrolyzed, and there are alumina, zirconia, and the like. Particles and composite nanoparticles can be synthesized.
The present invention has been described above including the embodiments. However, the present invention is not limited to this, and many variations are possible based on the technical idea of the present invention. Composite nanoparticles synthesized using a synthesis method and / or a continuous synthesis apparatus also belong to the present invention. This composite nanoparticle is a nanoparticle composed of different types of nanoparticles and oxide particles, for example, composite nanoparticles in which the nanoparticles are metal particles and the oxide is attached to a part of the surface. It is done. More specifically, the composite nanoparticles include composite nanoparticles in which platinum nanoparticles not coated with silica are attached to the surface of the core-shell structured nanoparticles as in Example 4, and platinum as in Example 5. Examples include composite nanoparticles in which particulate silica adheres to the surface of the nanoparticles and covers the periphery of the platinum core. Therefore, the continuous synthesis method and / or continuous synthesis apparatus of the present invention can synthesize such composite nanoparticles. The core-shell structured nanoparticles of the present invention can be used in various chemical reaction processes due to the activity of the catalyst, which is one of their uses.
本発明の連続合成方法および連続合成装置によって合成された金属コア・酸化物シェル構造ナノ粒子および複合ナノ粒子を、電子材料、触媒、センサー、バイオ材料、分子ラベル(分子標識)、診断用マーカー、画像形成材料、光学材料、半導体、工業触媒に用いることによって当該分野の製品等の品質向上とコストダウンを一層進めることができる。
Metal core / oxide shell structure nanoparticles and composite nanoparticles synthesized by the continuous synthesis method and continuous synthesis apparatus of the present invention are converted into electronic materials, catalysts, sensors, biomaterials, molecular labels (molecular labels), diagnostic markers, By using it as an image forming material, an optical material, a semiconductor, or an industrial catalyst, it is possible to further improve the quality and cost of products in this field.
本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
本願は、2011年9月12日に日本国で特許出願された特願2011-198001に基づく優先権を主張するものであり、これらはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。
This application claims priority based on Japanese Patent Application No. 2011-198001 filed in Japan on September 12, 2011, all of which are incorporated herein by reference. As part of.
1 送液ポンプ
2 反応液
3 反応管
4 TM010キャビティ
5 マイクロ波発振器・照射口
6 電界モニター
7 温度計
8 送液ポンプ
9 ミキサー
10 反応管
11 生成溶液
12 反応管
13 送液ポンプ(希釈用)
14 ミキサー(希釈用)
15 酸化物シェルの厚さを計測する機器
16 生成溶液取り出し口 1Liquid feed pump 2 Reaction liquid 3 Reaction tube 4 TM 010 cavity 5 Microwave oscillator / irradiation port 6 Electric field monitor 7 Thermometer 8 Liquid feed pump 9 Mixer 10 Reaction tube 11 Product solution 12 Reaction tube 13 Liquid feed pump (for dilution)
14 Mixer (for dilution)
15 Equipment for measuringoxide shell thickness 16 Product solution outlet
2 反応液
3 反応管
4 TM010キャビティ
5 マイクロ波発振器・照射口
6 電界モニター
7 温度計
8 送液ポンプ
9 ミキサー
10 反応管
11 生成溶液
12 反応管
13 送液ポンプ(希釈用)
14 ミキサー(希釈用)
15 酸化物シェルの厚さを計測する機器
16 生成溶液取り出し口 1
14 Mixer (for dilution)
15 Equipment for measuring
Claims (18)
- 少なくとも一段の流通型反応管を含む前段の流通型反応管により直径1~100ナノメートルの金属ナノ粒子を連続的に合成し、少なくとも一段の流通型反応管を含む後段の流通型反応管において酸化物前駆体を加水分解することで金属ナノ粒子の周囲に酸化物被膜を連続的に形成させる金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法であって、少なくとも前記前段の流通型反応管をマイクロ波により均一加熱することを特徴とする金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。 Metal nanoparticles having a diameter of 1 to 100 nanometers are continuously synthesized by a preceding flow reaction tube including at least one flow reaction tube, and oxidized in a subsequent flow reaction tube including at least one flow reaction tube. A metal core / oxide shell core-shell structured nanoparticle continuous synthesis method in which an oxide film is continuously formed around metal nanoparticles by hydrolyzing a precursor of the metal precursor, and at least the previous flow-type reaction A method for continuously synthesizing core-shell structured nanoparticles of metal core / oxide shell, characterized in that the tube is uniformly heated by microwaves.
- 前記前段の流通型反応管と前記後段の流通型反応管とをマイクロ波により均一加熱することを特徴とする請求項1に記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。 The method for continuously synthesizing core-shell structured nanoparticles of a metal core / oxide shell according to claim 1, wherein the first-stage flow-type reaction tube and the second-stage flow-type reaction tube are uniformly heated by microwaves.
- 前記の前後段の流通型反応管の間にミキサーを配置し、前記前段の流通型反応管から流出した金属コア粒子を含む溶液に前記ミキサーを用いて酸化物前駆体を混合したのち、前記後段の流通型反応管に流入させることを特徴とする請求項1又は2に記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。 A mixer is disposed between the upstream and downstream flow-type reaction tubes, and after mixing the oxide precursor into the solution containing the metal core particles flowing out of the upstream flow-type reaction tube, the post-stage 3. The method for continuously synthesizing core-shell structured nanoparticles of a metal core / oxide shell according to claim 1 or 2, wherein
- 前記金属コア粒子の表面を高分子分散剤によって保護することを特徴とする請求項1~3のいずれか1項に記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。 4. The method for continuously synthesizing core-shell structured nanoparticles of a metal core / oxide shell according to claim 1, wherein the surface of the metal core particles is protected with a polymer dispersant.
- 前記後段の流通型反応管から回収された生成溶液を静置することで、酸化物被膜を形成させることを特徴とする請求項1~4のいずれか1項に記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。 The metal core / oxide shell according to any one of claims 1 to 4, wherein an oxide film is formed by allowing the product solution recovered from the subsequent flow reaction tube to stand still. Of continuous synthesis of core-shell structured nanoparticles.
- 前記後段の流通型反応管から回収された生成溶液を、水またはアルコール化合物を用いて希釈することで、酸化物被膜の厚さを制御する請求項1~5のいずれか1項に記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。 The metal according to any one of claims 1 to 5, wherein the thickness of the oxide film is controlled by diluting the product solution recovered from the subsequent flow-type reaction tube with water or an alcohol compound. A continuous synthesis method for core / shell nanoparticles of core / oxide shell.
- 前記酸化物被膜の膜厚を1~100ナノメートルに制御する請求項1~6のいずれか1項に記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。 The method for continuously synthesizing core / shell nanoparticles of metal core / oxide shell according to any one of claims 1 to 6, wherein the thickness of the oxide film is controlled to 1 to 100 nanometers.
- 前記金属コアとして銀ナノ粒子を、シェルとして酸化物を有する請求項1~7のいずれか1項に記載の銀コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。 The method for continuously synthesizing core-shell structured nanoparticles of a silver core / oxide shell according to any one of claims 1 to 7, wherein the metal core has silver nanoparticles and the shell has an oxide.
- 前記金属コアとして白金ナノ粒子を、シェルとして酸化物を有する請求項1~7のいずれか1項に記載の白金コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。 The method for continuously synthesizing core-shell structured nanoparticles of platinum core / oxide shell according to any one of claims 1 to 7, wherein the metal core has platinum nanoparticles and the shell has oxide.
- 前記金属コアとしてパラジウムナノ粒子を、シェルとして酸化物を有する請求項1~7のいずれか1項に記載のパラジウムコア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。 The method for continuously synthesizing core-shell structured nanoparticles of palladium core / oxide shell according to any one of claims 1 to 7, wherein the metal core has palladium nanoparticles and the shell has oxide.
- 前記金属コアとしてニッケルナノ粒子を、シェルとして酸化物を有する請求項1~7のいずれか1項に記載のニッケルコア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法。 The method for continuously synthesizing core-shell structured nanoparticles of nickel core / oxide shell according to any one of claims 1 to 7, wherein the metal core has nickel nanoparticles and the shell has oxide.
- 少なくとも一段の流通型反応管をそれぞれ含む前後段の流通型反応管を有し、少なくとも前記前段の流通型反応管をマイクロ波により均一加熱する手段を有し、前記前段の流通型反応管が金属コア合成用の反応管であり、前記後段の流通型反応管が酸化物シェル合成用の反応管であることを特徴とするコアシェル構造ナノ粒子の連続合成装置。 A front and rear flow type reaction tube each including at least one flow type reaction tube; and at least means for heating the previous flow type reaction tube by microwaves, wherein the previous flow type reaction tube is a metal An apparatus for continuous synthesis of core-shell structured nanoparticles, characterized in that it is a reaction tube for core synthesis, and the downstream reaction tube is a reaction tube for oxide shell synthesis.
- 前記の前後段の流通型反応管の間に少なくとも一つのミキサーが挿入されていることを特徴とする請求項12に記載のコアシェル構造ナノ粒子の連続合成装置。 The apparatus for continuous synthesis of core-shell structured nanoparticles according to claim 12, wherein at least one mixer is inserted between the front and rear flow-type reaction tubes.
- 前記ミキサーが複数接続されていることを特徴とする請求項13に記載のコアシェル構造ナノ粒子の連続合成装置。 14. The continuous synthesis apparatus for core-shell structured nanoparticles according to claim 13, wherein a plurality of the mixers are connected.
- ナノ粒子の粒径および/または酸化物シェルの厚さを測定できる計測手段を有することを特徴とする請求項12~14のいずれか1項に記載のコアシェル構造ナノ粒子の連続合成装置。 15. The apparatus for continuously synthesizing core-shell structured nanoparticles according to any one of claims 12 to 14, further comprising measuring means capable of measuring the particle diameter of the nanoparticles and / or the thickness of the oxide shell.
- 前記後段の流通型反応管を流動してきた生成溶液を取り出す生成溶液取り出し口が設けられていることを特徴とする請求項12~15のいずれか1項に記載のコアシェル構造ナノ粒子の連続合成装置。 The continuous synthesis apparatus for core-shell structured nanoparticles according to any one of claims 12 to 15, further comprising a product solution outlet for taking out a product solution that has flowed through the downstream flow reaction tube. .
- 少なくとも1つのミキサーおよび/または前記の前後段の流通型反応管は着脱可能に設けられていることを特徴とする請求項12~16のいずれか1項に記載のコアシェル構造ナノ粒子の連続合成装置。 The apparatus for continuous synthesis of core-shell structured nanoparticles according to any one of claims 12 to 16, wherein at least one mixer and / or the upstream and downstream flow-type reaction tubes are detachably provided. .
- 請求項1~11のいずれか1項に記載の金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法および/または請求項12~17のいずれか1項に記載のコアシェル構造ナノ粒子の連続合成装置を用いて合成されたことを特徴とするコアシェル構造ナノ粒子。 The method for continuously synthesizing the core-shell structured nanoparticles of the metal core / oxide shell according to any one of claims 1 to 11 and / or the continuation of the core-shell structured nanoparticles according to any one of claims 12 to 17. A core-shell structured nanoparticle synthesized using a synthesizer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013533692A JP6303499B2 (en) | 2011-09-12 | 2012-09-12 | Continuous synthesis method and continuous synthesis apparatus for core / shell nanoparticles of metal core / oxide shell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-198001 | 2011-09-12 | ||
JP2011198001 | 2011-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013039117A1 true WO2013039117A1 (en) | 2013-03-21 |
Family
ID=47883342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/073361 WO2013039117A1 (en) | 2011-09-12 | 2012-09-12 | Continuous synthesis method for metal core and oxide shell core-shell structure nanoparticles, continuous synthesis apparatus for same, and core-shell structure nanoparticles |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6303499B2 (en) |
WO (1) | WO2013039117A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150093597A (en) * | 2014-02-07 | 2015-08-18 | 도요타 지도샤(주) | Method and apparatus for producing core-shell type metal nanoparticles |
JP2015223535A (en) * | 2014-05-26 | 2015-12-14 | 株式会社新光化学工業所 | Palladium core-platinum shell nanoparticles, and production apparatus and production method of the same |
JP2017506354A (en) * | 2013-11-15 | 2017-03-02 | ザ ユニバーシティ オブ ユタ リサーチ ファウンデイション | Nanoparticle optical filtering method and apparatus |
JP2017226916A (en) * | 2016-06-20 | 2017-12-28 | 株式会社新光化学工業所 | Production method of fine particles and production apparatus and fine particles |
JP2018009183A (en) * | 2016-06-02 | 2018-01-18 | エム・テクニック株式会社 | Silicon compound coated-metal fine particle |
US10234608B2 (en) | 2013-11-15 | 2019-03-19 | University Of Utah Research Foundation | Nanoparticle light filtering method and apparatus |
US10281627B2 (en) | 2013-11-15 | 2019-05-07 | University Of Utah Research Foundation | Nanoparticle light filtering method and apparatus |
US10359552B2 (en) | 2011-01-17 | 2019-07-23 | University Of Utah Research Foundation | Methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles |
JP2020041011A (en) * | 2018-09-06 | 2020-03-19 | 国立研究開発法人産業技術総合研究所 | Organic pigment treatment device and organic pigment treatment method |
JP2020043051A (en) * | 2018-09-06 | 2020-03-19 | 国立研究開発法人産業技術総合研究所 | Microwave processing apparatus, microwave processing method, and chemical reaction method |
JP2020080233A (en) * | 2018-11-12 | 2020-05-28 | 国立研究開発法人産業技術総合研究所 | Microwave processing device, microwave processing method, heating processing method, and chemical reaction method |
CN113290239A (en) * | 2021-05-21 | 2021-08-24 | 宁波广新纳米材料有限公司 | Preparation method of nano metal coated powder |
JP7543317B2 (en) | 2019-07-02 | 2024-09-02 | ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド | Core-shell particles and methods of making and using same |
JP7572702B2 (en) | 2018-09-06 | 2024-10-24 | 国立研究開発法人産業技術総合研究所 | Microwave processing device, microwave processing method, and chemical reaction method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005023704A1 (en) * | 2003-09-04 | 2005-03-17 | National Institute Of Advanced Industrial Science And Technology | Process for producing composite microparticle, composite microparticle production apparatus and composite microparticle |
JP2009530497A (en) * | 2006-03-20 | 2009-08-27 | コミツサリア タ レネルジー アトミーク | Coated nanoparticles, especially coated nanoparticles with a core-shell structure |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6833019B1 (en) * | 2003-01-31 | 2004-12-21 | The United States Of America As Represented By The Secretary Of The Navy | Microwave assisted continuous synthesis of nanocrystalline powders and coatings using the polyol process |
EP2033229B1 (en) * | 2006-06-19 | 2012-07-04 | Cabot Corporation | Photovoltaic conductive features and processes for forming same |
JP2010001555A (en) * | 2008-06-23 | 2010-01-07 | Hoya Corp | Nanoparticle coated with silica, nanoparticle deposited substrate, and method for producing them |
JP5300014B2 (en) * | 2009-03-10 | 2013-09-25 | 独立行政法人産業技術総合研究所 | Method and apparatus for continuous microwave irradiation to fluid |
JP5769287B2 (en) * | 2009-12-05 | 2015-08-26 | 国立研究開発法人産業技術総合研究所 | Method for producing metal fine particles |
-
2012
- 2012-09-12 WO PCT/JP2012/073361 patent/WO2013039117A1/en active Application Filing
- 2012-09-12 JP JP2013533692A patent/JP6303499B2/en active Active
-
2017
- 2017-11-24 JP JP2017225393A patent/JP6551495B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005023704A1 (en) * | 2003-09-04 | 2005-03-17 | National Institute Of Advanced Industrial Science And Technology | Process for producing composite microparticle, composite microparticle production apparatus and composite microparticle |
JP2009530497A (en) * | 2006-03-20 | 2009-08-27 | コミツサリア タ レネルジー アトミーク | Coated nanoparticles, especially coated nanoparticles with a core-shell structure |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10605970B2 (en) | 2011-01-17 | 2020-03-31 | University Of Utah Research Foundation | Methods, systems, and apparatus for modulating circadian cycles |
US11672944B2 (en) | 2011-01-17 | 2023-06-13 | University Of Utah Research Foundation | Methods, systems, and apparatus for modulating or reducing photophobic responses |
US10359552B2 (en) | 2011-01-17 | 2019-07-23 | University Of Utah Research Foundation | Methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles |
US10281627B2 (en) | 2013-11-15 | 2019-05-07 | University Of Utah Research Foundation | Nanoparticle light filtering method and apparatus |
JP2020098357A (en) * | 2013-11-15 | 2020-06-25 | ザ ユニバーシティ オブ ユタ リサーチ ファウンデイション | Nanoparticle light filtering method and apparatus |
JP7138127B2 (en) | 2013-11-15 | 2022-09-15 | ザ ユニバーシティ オブ ユタ リサーチ ファウンデイション | Nanoparticle light filtering method and apparatus |
JP2017506354A (en) * | 2013-11-15 | 2017-03-02 | ザ ユニバーシティ オブ ユタ リサーチ ファウンデイション | Nanoparticle optical filtering method and apparatus |
US10914877B2 (en) | 2013-11-15 | 2021-02-09 | University Of Utah Research Foundation | Nanoparticle light filtering method and apparatus |
US10234608B2 (en) | 2013-11-15 | 2019-03-19 | University Of Utah Research Foundation | Nanoparticle light filtering method and apparatus |
KR101717834B1 (en) * | 2014-02-07 | 2017-03-17 | 도요타 지도샤(주) | Method and apparatus for producing core-shell type metal nanoparticles |
TWI659672B (en) * | 2014-02-07 | 2019-05-11 | 豐田自動車股份有限公司 | Method and apparatus for producing core-shell type metal nanoparticles |
US10076745B2 (en) | 2014-02-07 | 2018-09-18 | Toyota Jidosha Kabushiki Kaisha | Method and apparatus for producing core-shell type metal nanoparticles |
KR20150093597A (en) * | 2014-02-07 | 2015-08-18 | 도요타 지도샤(주) | Method and apparatus for producing core-shell type metal nanoparticles |
JP2015147986A (en) * | 2014-02-07 | 2015-08-20 | トヨタ自動車株式会社 | Method and apparatus for producing core-shell type metal nanoparticle |
JP2015223535A (en) * | 2014-05-26 | 2015-12-14 | 株式会社新光化学工業所 | Palladium core-platinum shell nanoparticles, and production apparatus and production method of the same |
JP2018009183A (en) * | 2016-06-02 | 2018-01-18 | エム・テクニック株式会社 | Silicon compound coated-metal fine particle |
JP2017226916A (en) * | 2016-06-20 | 2017-12-28 | 株式会社新光化学工業所 | Production method of fine particles and production apparatus and fine particles |
JP2020041011A (en) * | 2018-09-06 | 2020-03-19 | 国立研究開発法人産業技術総合研究所 | Organic pigment treatment device and organic pigment treatment method |
JP7177637B2 (en) | 2018-09-06 | 2022-11-24 | 国立研究開発法人産業技術総合研究所 | Organic pigment treatment device and organic pigment treatment method |
JP2020043051A (en) * | 2018-09-06 | 2020-03-19 | 国立研究開発法人産業技術総合研究所 | Microwave processing apparatus, microwave processing method, and chemical reaction method |
JP7572702B2 (en) | 2018-09-06 | 2024-10-24 | 国立研究開発法人産業技術総合研究所 | Microwave processing device, microwave processing method, and chemical reaction method |
JP2020080233A (en) * | 2018-11-12 | 2020-05-28 | 国立研究開発法人産業技術総合研究所 | Microwave processing device, microwave processing method, heating processing method, and chemical reaction method |
JP7145500B2 (en) | 2018-11-12 | 2022-10-03 | 国立研究開発法人産業技術総合研究所 | Microwave treatment device, microwave treatment method, heat treatment method and chemical reaction method |
JP7543317B2 (en) | 2019-07-02 | 2024-09-02 | ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド | Core-shell particles and methods of making and using same |
CN113290239A (en) * | 2021-05-21 | 2021-08-24 | 宁波广新纳米材料有限公司 | Preparation method of nano metal coated powder |
CN113290239B (en) * | 2021-05-21 | 2022-12-06 | 宁波广新纳米材料有限公司 | Preparation method of nano metal coated powder |
Also Published As
Publication number | Publication date |
---|---|
JP6303499B2 (en) | 2018-04-04 |
JP2018172778A (en) | 2018-11-08 |
JP6551495B2 (en) | 2019-07-31 |
JPWO2013039117A1 (en) | 2015-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6551495B2 (en) | Continuous synthesis method and continuous synthesis apparatus for core-shell structured nanoparticles of metal core / oxide shell and core-shell structured nanoparticles | |
Mirzaei et al. | Characterization and optical studies of PVP-capped silver nanoparticles | |
Sreeram et al. | Microwave assisted template synthesis of silver nanoparticles | |
CN102892533B (en) | Process for production of nickel nanoparticles | |
Csapó et al. | Synthesis and characterization of Ag/Au alloy and core (Ag)–shell (Au) nanoparticles | |
Elci et al. | Synthesis of tin oxide-coated gold nanostars and evaluation of their surface-enhanced Raman scattering activities | |
JP6436305B2 (en) | Metal fine particle production method and metal fine particle production apparatus | |
JP4958082B2 (en) | Nanoparticles for LPR sensor, method for producing nanoparticle, slurry, paint, coating film, and LPR sensor | |
JP2013510953A (en) | Island metal coating and synthesis method | |
Choi et al. | Polydopamine-based concentric nanoshells with programmable architectures and plasmonic properties | |
CN102784926A (en) | Method for preparing spherical nano-silver particles | |
Wang et al. | Microwave-assisted synthesis of silver nanoparticles in alkalic carboxymethyl chitosan solution | |
CN105127441B (en) | A kind of preparation method of platinum nano microcrystalline dispersion | |
CN106862581B (en) | A kind of concave surface gold@silver platinum Heterogeneous Composite nanoparticle and preparation method thereof with superior catalytic and absorbing properties | |
Gomez et al. | Metallic bismuth nanoparticles: Towards a robust, productive and ultrasound assisted synthesis from batch to flow-continuous chemistry | |
Pauzi et al. | Microwave-assisted synthesis of ZnO nanoparticles stabilized with gum arabic: Effect of microwave irradiation time on ZnO nanoparticles size and morphology | |
CN105689701A (en) | Rapid preparation method of AU@Cu2O nanocomposite in yolk-shell structure | |
Alahmad et al. | Preparation of colloidal silver nanoparticles and structural characterization | |
Olteanu et al. | “One-pot” synthesis of fluorescent Au@ SiO2 and SiO2@ Au nanoparticles | |
Fan et al. | Efficient one pot synthesis of chitosan-induced gold nanoparticles by microwave irradiation | |
Bryan et al. | Preparation of THPC-generated silver, platinum, and palladium nanoparticles and their use in the synthesis of Ag, Pt, Pd, and Pt/Ag nanoshells | |
CN105215347B (en) | A kind of Zinc Oxide and gold nano grain composite and preparation method thereof | |
Luo et al. | Synthesis of multi-branched gold nanoparticles by reduction of tetrachloroauric acid with Tris base, and their application to SERS and cellular imaging | |
CN107051429A (en) | A kind of platinum bimetallic nanocatalyst of controllable structure and its preparation method and application | |
Han et al. | Synthesis of Ag-SiO 2 composite nanospheres and their catalytic activity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12831553 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013533692 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12831553 Country of ref document: EP Kind code of ref document: A1 |