JP2010001555A - Nanoparticle coated with silica, nanoparticle deposited substrate, and method for producing them - Google Patents

Nanoparticle coated with silica, nanoparticle deposited substrate, and method for producing them Download PDF

Info

Publication number
JP2010001555A
JP2010001555A JP2008163708A JP2008163708A JP2010001555A JP 2010001555 A JP2010001555 A JP 2010001555A JP 2008163708 A JP2008163708 A JP 2008163708A JP 2008163708 A JP2008163708 A JP 2008163708A JP 2010001555 A JP2010001555 A JP 2010001555A
Authority
JP
Japan
Prior art keywords
silane coupling
coupling agent
silica
group
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008163708A
Other languages
Japanese (ja)
Inventor
Takashi Narishima
隆 成島
Hidezo Tokumitsu
秀造 徳光
Shunichi Nito
俊一 仁藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2008163708A priority Critical patent/JP2010001555A/en
Publication of JP2010001555A publication Critical patent/JP2010001555A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)
  • Inert Electrodes (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Compounds Of Iron (AREA)
  • Silicon Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nanoparticle coated with silica, which has high dispersing properties in a solvent and is easily fixed on a substrate and the like. <P>SOLUTION: The nanoparticle coated with silica includes: a core formed of a nanoparticle; a shell which is made from a silicon compound and is provided around the core so as to cover the core; and a first silane coupling agent which deposits around the shell and has 7 or more carbon atoms. One end of the first silane coupling agent is coupled with a Si element in the shell, and the other end has a reactive functional group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シリカで被覆されたナノ粒子の表面を有機化合物で修飾したシリカ被覆ナノ粒子、その製造方法、および、シリカ被覆ナノ粒子の分散液に関するものである。本発明のシリカ被覆ナノ粒子は、基板上に配列させることで、高密度磁気記録媒体、磁気抵抗効果素子、非線形光学デバイス、燃料電池電極などに応用可能である。   The present invention relates to silica-coated nanoparticles in which the surface of nanoparticles coated with silica is modified with an organic compound, a method for producing the same, and a dispersion of silica-coated nanoparticles. The silica-coated nanoparticles of the present invention can be applied to high-density magnetic recording media, magnetoresistive elements, nonlinear optical devices, fuel cell electrodes, and the like by arranging them on a substrate.

近年、化学合成法にて作製された1nmから数百nmの大きさのナノ粒子について数多くの研究がなされ、その製造法が数多く報告されている。   In recent years, many studies have been made on nanoparticles having a size of 1 nm to several hundreds of nm produced by chemical synthesis methods, and many production methods have been reported.

中でも酸化鉄、Co、FePtといった磁性体ナノ粒子は、高密度磁気記録媒体や磁気抵抗効果素子だけでなく、MRI用造影剤や磁気温熱療法の発熱体といった医療関連技術への応用も注目を集めている。   In particular, magnetic nanoparticles such as iron oxide, Co, and FePt are attracting attention not only for high-density magnetic recording media and magnetoresistive elements, but also for medical-related technologies such as MRI contrast agents and heating elements for magnetic thermotherapy. ing.

磁性体ナノ粒子をこれらの技術に応用するためには、耐候性の向上や生体毒性を抑えるために、化学的に安定なシリカ等の酸化物シェルによってナノ粒子の表面を被覆することが好ましい。   In order to apply magnetic nanoparticles to these technologies, it is preferable to coat the surfaces of the nanoparticles with a chemically stable oxide shell such as silica in order to improve weather resistance and suppress biotoxicity.

また、ナノ粒子表面を有機配位子で修飾する場合、通常、ナノ粒子表面の金属原子と有機配位子の配位原子(N、O、Sなど)が配位結合を作ることを利用して、有機配位子がナノ粒子表面に固定化されている。ここで、ナノ粒子表面をシリカで被覆した上で有機配位子を固定化する方が、有機配位子とナノ粒子表面のシリカが、シランカップリング剤を介してより強固な共有結合で固定化されるので、有機配位子の脱離による溶媒分散性の低下を防ぐことができる。   In addition, when the nanoparticle surface is modified with an organic ligand, it is usually used that the metal atom on the nanoparticle surface and the coordination atom (N, O, S, etc.) of the organic ligand form a coordinate bond. Thus, an organic ligand is immobilized on the nanoparticle surface. Here, when the organic ligand is immobilized after the nanoparticle surface is coated with silica, the organic ligand and the silica on the nanoparticle surface are immobilized by a stronger covalent bond via a silane coupling agent. Therefore, it is possible to prevent a decrease in solvent dispersibility due to elimination of the organic ligand.

特許文献1では、金属酸化物コアをシリカで被覆した後にアルコール洗浄を行って、表面に水酸基を導入した後、大過剰にシランカップリング剤を加えて130℃、20時間反応させることによって、表面修飾を行っている。   In Patent Document 1, after a metal oxide core is coated with silica, alcohol washing is performed, a hydroxyl group is introduced to the surface, a silane coupling agent is added in large excess, and the reaction is performed at 130 ° C. for 20 hours. Modification is performed.

特許文献2では、シクロヘキサンにポリオキシエチレンノニルフェニルエーテル(IGEPAL(商標登録)CO−520として市販)を添加し、AgNO水溶液を加えて室温で撹拌することで、油中水型の逆ミセルを形成し、これにヒドラジンを加えてAgNOを還元することで、逆ミセル中にAgナノ粒子を取り込んだナノ粒子逆ミセルコンポジットを含む分散液を作製し、そこにオルト珪酸テトラエチル(TEOS)とアンモニア水を加えて室温で24時間撹拌することでAgナノ粒子表面にシリカシェルを形成し、シリカ被覆Agナノ粒子を含む逆ミセルコンポジット分散液を作製している。次にシランカップリング剤のエタノール溶液を前記逆ミセルコンポジット分散液に加えて反応させることでシリカシェル表面をシランカップリング剤で修飾している。 In Patent Document 2, polyoxyethylene nonylphenyl ether (commercially available as IGEPAL (registered trademark) CO-520) is added to cyclohexane, an aqueous AgNO 3 solution is added, and the mixture is stirred at room temperature, whereby water-in-oil reverse micelles are Forming this, adding hydrazine to reduce AgNO 3 , thereby producing a dispersion containing a nano-particle reverse micelle composite in which Ag nanoparticles are incorporated in reverse micelles, and tetraethyl orthosilicate (TEOS) and ammonia therein. By adding water and stirring at room temperature for 24 hours, a silica shell is formed on the surface of the Ag nanoparticles, and a reverse micelle composite dispersion containing silica-coated Ag nanoparticles is prepared. Next, the silica shell surface is modified with the silane coupling agent by adding an ethanol solution of the silane coupling agent to the reverse micelle composite dispersion and causing the reaction.

以上のように、ナノ粒子表面を有機配位子で修飾する目的として、ナノ粒子の溶媒分散性を向上させることが挙げられるが、その他の目的として、微粒子を基板上に配列させる際の結合手としての役割を有機配位子に持たせることも知られている。特許文献3では、基板表面に分子末端に官能基を有する単分子膜を形成し、一方でナノ粒子表面に分子末端に官能基を有する単分子膜を形成し、それぞれの官能基同士により形成される化学結合を利用して、基板上にナノ粒子を配列させる方法が記載されている。この方法によれば、基板とナノ粒子との結合が、基板上の末端官能基を利用してなされるため、基板上にナノ粒子の単層膜が形成可能であり、現在、自己組織化膜の形成方法として注目されている。特許文献3では、ナノ粒子の溶媒分散性については触れられていないが、ナノ粒子表面を修飾している有機配位子として、末端に反応性官能基を有することが必須となっている。   As described above, the purpose of modifying the surface of the nanoparticle with an organic ligand is to improve the solvent dispersibility of the nanoparticle. However, as another purpose, the bonding mechanism when the fine particles are arranged on the substrate is mentioned. It is also known to give the organic ligand the role of In Patent Document 3, a monomolecular film having a functional group at the molecular end is formed on the surface of the substrate, while a monomolecular film having a functional group at the molecular end is formed on the nanoparticle surface. A method for arranging nanoparticles on a substrate using a chemical bond is described. According to this method, since the bonding between the substrate and the nanoparticles is performed using the terminal functional group on the substrate, it is possible to form a monolayer film of the nanoparticles on the substrate. It is attracting attention as a forming method. In Patent Document 3, the solvent dispersibility of the nanoparticles is not mentioned, but it is essential to have a reactive functional group at the terminal as an organic ligand that modifies the nanoparticle surface.

特開2007-269770号公報JP 2007-269770 JP 特表2008-501509号公報Special table 2008-501509 gazette 特許第3597507号公報Japanese Patent No. 3597507

特許文献1の方法では、シランカップリング剤を均一系で反応させているため、反応系中の至るところでシランカップリング剤の脱水縮合反応が起こってしまい、シランカップリング剤が重合したポリマーが副生成物として大量に発生してしまうという欠点がある。   In the method of Patent Document 1, since the silane coupling agent is reacted in a homogeneous system, a dehydration condensation reaction of the silane coupling agent occurs everywhere in the reaction system, and the polymer obtained by polymerizing the silane coupling agent is a secondary agent. There is a disadvantage that it is generated in large quantities as a product.

また、特許文献1の方法において、末端に反応性官能基を有するシランカップリング剤を用いた場合、シリカ被覆ナノ粒子の表面をシランカップリング剤で修飾する際に130℃という高温を要するので、シランカップリング剤末端の反応性官能基が分解または酸化してしまう恐れがあり、採用できない。   Further, in the method of Patent Document 1, when a silane coupling agent having a reactive functional group at the terminal is used, a high temperature of 130 ° C. is required when modifying the surface of the silica-coated nanoparticles with the silane coupling agent. The reactive functional group at the terminal of the silane coupling agent may be decomposed or oxidized and cannot be used.

特許文献2の方法では、逆ミセル内でのみシランカップリング剤の加水分解と脱水縮合が起こるため、シリカシェル表面にのみシランカップリング剤が結合しやすい。しかしながら、特許文献2の方法において、本発明者が末端に反応性官能基を有するシランカップリング剤を用いて実験した結果、溶媒分散性が著しく低下することが判明した。得られた分散液をTEM観察したところ、複数の粒子が凝集してコンポジットを形成していることが判明した。   In the method of Patent Document 2, hydrolysis and dehydration condensation of the silane coupling agent occurs only in the reverse micelle, so that the silane coupling agent is easily bonded only to the silica shell surface. However, in the method of Patent Document 2, as a result of experiments conducted by the present inventor using a silane coupling agent having a reactive functional group at the terminal, it has been found that the solvent dispersibility is remarkably lowered. Observation of the obtained dispersion by TEM revealed that a plurality of particles aggregated to form a composite.

高密度磁気記録媒体や磁気抵抗効果素子または非線形光学デバイスを作製する際には、基板上に独立した粒子1つ1つを規則的に並べる必要があるため、複数の粒子を含むコンポジットを形成してしまうと使用できない。   When manufacturing a high-density magnetic recording medium, a magnetoresistive effect element, or a nonlinear optical device, since it is necessary to regularly arrange individual particles on a substrate, a composite including a plurality of particles is formed. If you do not use it.

本発明は、コンポジットを形成しにくい、溶媒分散性が高いシリカ被覆ナノ粒子およびその分散液を提供することを目的とする。また、本発明は、末端に反応性官能基を有することで、基板等と化学結合を形成可能なシリカ被覆ナノ粒子およびその分散液を提供することを目的とする。また、本発明は、容易にこれらを製造可能な製造方法を提供することを目的とする。   An object of the present invention is to provide silica-coated nanoparticles that are difficult to form a composite and have high solvent dispersibility, and dispersions thereof. Another object of the present invention is to provide a silica-coated nanoparticle capable of forming a chemical bond with a substrate or the like by having a reactive functional group at the terminal, and a dispersion thereof. Moreover, an object of this invention is to provide the manufacturing method which can manufacture these easily.

本発明は、基板等に固定化するためのナノ粒子を提供することが目的である。ナノ粒子を被覆するシリカシェル表面に付着するシランカップリング剤の末端に、反応性官能基を導入する最大の目的は、基板や他の分子との結合を形成することである。その目的を達成するためには、反応性官能基は粒子の外側に揃って向いていなければならない。このように反応性官能基の向きを揃えるためには、シランカップリング剤のアルコキシド部位(すなわち、反応性官能基とは他端)が加水分解してシラノールとなったときに、それらの部位のみが優先してアンモニア水逆ミセル内に入り、シリカシェル表面と脱水縮合する必要がある。   An object of the present invention is to provide nanoparticles for immobilization on a substrate or the like. The primary purpose of introducing reactive functional groups at the end of the silane coupling agent attached to the surface of the silica shell that coats the nanoparticles is to form bonds with the substrate and other molecules. In order to achieve that purpose, the reactive functional groups must be aligned to the outside of the particle. In order to align the direction of the reactive functional group in this way, when the alkoxide part of the silane coupling agent (that is, the other end of the reactive functional group) is hydrolyzed into silanol, only those parts are Needs to enter the reverse reverse micelle of ammonia water and dehydrate and condense with the silica shell surface.

先述のように、特許文献2の方法において、本発明者が末端に反応性官能基を有するシランカップリング剤を用いて実験した結果、溶媒分散性が著しく低下することが判明した。得られた分散液をTEM観察したところ、複数の粒子が凝集してコンポジットを形成していることが判明した。これについて本発明者らは次のように考察した。すなわち、特許文献2にて使用しているアミノプロピルトリメトキシシラン(APS)は、炭素数3個のアミノプロピル基を1個持つが、炭素数3個では分子内で疎水性部位の占める割合が小さく、APS分子全体では極性が強くなるため、アンモニア水逆ミセル中に分子が容易に進入できる。このような場合、APSの分子の向きはランダムになるので、アミノ基を揃って外側に向けることは困難である。またアンモニア水逆ミセル内でのAPS分子の向きがランダムになると、APSが加水分解した際に生じるシラノール基が外側を向くことが可能になるので、隣接粒子のシリカシェルまたは隣接粒子表面に結合したAPSと脱水縮合して粒子同士が繋がって、複数の粒子を含むコンポジットを形成してしまう、と推測した。   As described above, in the method of Patent Document 2, the present inventor conducted an experiment using a silane coupling agent having a reactive functional group at the terminal, and as a result, it was found that the solvent dispersibility was significantly reduced. Observation of the obtained dispersion by TEM revealed that a plurality of particles aggregated to form a composite. The present inventors considered this as follows. That is, the aminopropyltrimethoxysilane (APS) used in Patent Document 2 has one aminopropyl group having 3 carbon atoms, but the proportion of hydrophobic sites in the molecule is 3 in 3 molecules. Since the polarity is small and the whole APS molecule is strong, the molecule can easily enter the reverse micelle of ammonia water. In such a case, since the orientation of the molecules of APS is random, it is difficult to align the amino groups and face them outward. In addition, when the orientation of the APS molecules in the ammonia water reverse micelle is random, the silanol group generated when the APS is hydrolyzed can be directed outward, so that it binds to the silica shell of the adjacent particle or the surface of the adjacent particle. It was presumed that the particles were connected by dehydration condensation with APS to form a composite containing a plurality of particles.

高密度磁気記録媒体や磁気抵抗効果素子または非線形光学デバイスを作製する際には、基板上に独立した粒子1つ1つを規則的に並べる必要があるため、複数の粒子を含むコンポジットを形成してしまうと使用できない。   When manufacturing a high-density magnetic recording medium, a magnetoresistive effect element, or a nonlinear optical device, since it is necessary to regularly arrange individual particles on a substrate, a composite including a plurality of particles is formed. If you do not use it.

また、機能性官能基(または反応性官能基)は、多くの場合極性を持つため、機能性官能基が外側に向いて揃った場合シリカ被覆ナノ粒子の無極性溶媒に対する分散性が低下し、機能性官能基同士が水素結合等を形成し粒子が凝集しやすくなる。   In addition, since the functional functional group (or reactive functional group) is often polar, when the functional functional group is aligned outward, the dispersibility of the silica-coated nanoparticles in the nonpolar solvent decreases, Functional functional groups form hydrogen bonds and the like, and particles tend to aggregate.

本発明者らは、シランカップリング剤分子全体の極性を小さくすることにより、このような問題を解消できることができると考えた。具体的には、シランカップリング剤分子中の疎水性部位の割合を大きくすることを検討した。   The present inventors considered that such a problem can be solved by reducing the polarity of the entire silane coupling agent molecule. Specifically, an increase in the proportion of hydrophobic sites in the silane coupling agent molecule was studied.

そこで、これらの状況を踏まえて本発明者らが鋭意検討したところ、シリカ被覆されたナノ粒子表面を末端にアミノ基、メルカプト基、水酸基、エポキシ基、シアノ基、イソシアネート基またはビニル基といった反応性官能基を有する炭素数7以上のアルキル鎖を持つシランカップリング剤(本発明における第1のシランカップリング剤)を使用することにより目的を達成しうることを見いだした。このようなシランカップリング剤であれば、シランカップリング剤分子自体が大きいこと、また、シランカップリング剤分子全体として極性が分散している(疎水性部位が長い)ため、アルカリ性逆ミセル水中に分子が進入する際、シラノール基側が優先的に進入することが可能であり、その結果、反応性官能基が外側を向いたシリカ被覆ナノ粒子を得ることが可能となる、と考えられる。   In view of these circumstances, the inventors of the present invention have intensively studied and found that the surface of the silica-coated nanoparticles is terminated with a reactivity such as amino group, mercapto group, hydroxyl group, epoxy group, cyano group, isocyanate group or vinyl group. It has been found that the object can be achieved by using a silane coupling agent having a functional group-containing alkyl chain having 7 or more carbon atoms (first silane coupling agent in the present invention). In such a silane coupling agent, the silane coupling agent molecule itself is large, and the polarity of the silane coupling agent molecule as a whole is dispersed (has a long hydrophobic site). It is considered that when a molecule enters, the silanol group side can preferentially enter, and as a result, it is possible to obtain silica-coated nanoparticles with reactive functional groups facing outward.

さらに、第1のシランカップリング剤に加えて、反応性官能基を有さないシランカップリング剤(本発明における第2のシランカップリング剤)をさらに混合して使用することが、溶媒分散性や基板への固定化の観点から好ましいことを見いだした。第1のシランカップリング剤のみの場合は、長期保管した場合など、コンポジットの形成が確認されることがあったが、第2のシランカップリング剤を併用した場合は、そのような現象は確認されず、溶媒分散性が高いことがわかった。また、第1のシランカップリング剤のみの場合は、基板へ固定化させた際、ナノ粒子の密度があまり向上しない場合があったが、第2のシランカップリング剤を併用した場合には、そのような現象は確認されず、基板へ高密度にナノ粒子を固定化できることがわかった。この理由について、本発明者らは、すべてのシランカップリング剤の末端に反応性官能基があると、反応性官能基同士の相互作用で、溶媒中や基板上で凝集が起こるためであると考えている。そのため、溶媒分散性を向上させるために、反応性官能基を有さないシランカップリング剤を混合することが好ましいと考えた。このような目的で第2のシランカップリング剤を併用するため、なるべく溶媒側に表出しつつ、かつ、第1のシランカップリング剤末端の反応性官能基の結合の妨げにならないような分子長を有するように、第2のシランカップリング剤を選定する必要がある。そのため、第1および第2のシランカップリング剤の炭素数は同等であることが好ましい。   Furthermore, in addition to the first silane coupling agent, a silane coupling agent having no reactive functional group (second silane coupling agent in the present invention) may be further mixed and used. And found it preferable from the viewpoint of immobilization on a substrate. In the case of only the first silane coupling agent, the formation of a composite was sometimes confirmed when stored for a long time, but such a phenomenon was confirmed when the second silane coupling agent was used in combination. No solvent dispersibility was found. In addition, in the case of only the first silane coupling agent, the density of the nanoparticles may not be significantly improved when immobilized on the substrate, but when the second silane coupling agent is used in combination, Such a phenomenon was not confirmed, and it was found that nanoparticles can be immobilized on the substrate at a high density. For this reason, the present inventors say that if there are reactive functional groups at the ends of all silane coupling agents, aggregation occurs in the solvent or on the substrate due to the interaction between the reactive functional groups. thinking. Therefore, in order to improve the solvent dispersibility, it was considered preferable to mix a silane coupling agent having no reactive functional group. Since the second silane coupling agent is used in combination for this purpose, the molecular length is expressed as much as possible on the solvent side and does not hinder the binding of the reactive functional group at the terminal of the first silane coupling agent. It is necessary to select the second silane coupling agent so as to have Therefore, it is preferable that the first and second silane coupling agents have the same carbon number.

また、第1のシランカップリング剤の炭素数(NC1)と、前記第2のシランカップリング剤の炭素数(NC2)との差(NC1−NC2)は、−1、0、1、2、3のいずれかであることが好ましい。差が−1の場合、「シリカシェル〜第1のシランカップリング剤の反応性官能基末端」と「シリカシェル〜第2のシランカップリング剤の末端」の長さが略同等ということになり、上述のように、「溶媒分散性の向上」および「基板への固定度向上」の両立という観点から好ましい。差が0〜3においては、差が小さい方が「溶媒分散性の向上」および「基板への固定度向上」の両立という観点から好ましいが、この範囲であれば、両立可能であることを確認している。 In addition, the difference (N C1 −N C2 ) between the carbon number (N C1 ) of the first silane coupling agent and the carbon number (N C2 ) of the second silane coupling agent is −1, 0, One of 1, 2, and 3 is preferable. When the difference is −1, the lengths of “silica shell to the reactive functional group terminal of the first silane coupling agent” and “silica shell to the terminal of the second silane coupling agent” are substantially equal. As described above, it is preferable from the viewpoint of coexistence of “improving solvent dispersibility” and “improving the degree of fixation to a substrate”. When the difference is 0 to 3, it is preferable that the difference is smaller from the viewpoint of coexistence of “improvement of solvent dispersibility” and “improvement of fixing degree to the substrate”. is doing.

また、本発明の第1および第2のシランカップリング剤中の炭化水素基は、基板上へ固定化させる際に、自己組織化により六方最密充填構造を形成しやすいという観点からは、直鎖炭化水素であることが好ましいことがわかった。   In addition, the hydrocarbon groups in the first and second silane coupling agents of the present invention are straightforward from the viewpoint that a hexagonal close-packed structure can be easily formed by self-assembly when they are immobilized on a substrate. It has been found that it is preferably a chain hydrocarbon.

また、本発明の第1および第2のシランカップリング剤中の炭化水素基は、溶媒への分散性という観点からは、分岐構造の炭化水素の方がより好ましいことがわかった。但し、本発明の目的を考慮すると、第1のシランカップリング剤が分岐構造の場合、ナノ粒子から離れている方の側鎖の末端に反応性官能基が具備されている必要があることはもちろんである。   Moreover, it turned out that the hydrocarbon group in the 1st and 2nd silane coupling agent of this invention has the more preferable branched structure hydrocarbon from a viewpoint of the dispersibility to a solvent. However, in view of the object of the present invention, when the first silane coupling agent has a branched structure, it is necessary that a reactive functional group is provided at the end of the side chain far from the nanoparticle. Of course.

本発明におけるコア材料(ナノ粒子材料)としては、金属(単成分系、多成分系を含む)または酸化物材料が挙げられる。例えば、FePt、CoPt、InP、CdSe、ZnSe、ZnS、Co、Au、Ag、鉄酸化物、チタン酸化物、ジルコニア酸化物などが挙げられる。   Examples of the core material (nanoparticle material) in the present invention include metals (including single-component and multi-component systems) and oxide materials. Examples thereof include FePt, CoPt, InP, CdSe, ZnSe, ZnS, Co, Au, Ag, iron oxide, titanium oxide, and zirconia oxide.

本発明は、基板等に固定化するためのナノ粒子を提供することが目的である。基板等とナノ粒子との固定化は化学結合による行うため、化学結合するための結合手として、シリカ被覆ナノ粒子に付着したシランカップリング剤の末端に、反応性官能基を導入している。化学結合させるための基板等と反応性官能基との組み合わせとしては、例えば次のような組み合わせが挙げられる。Auとメルカプト基(配位結合)、Ptとメルカプト基(配位結合)、Ptとアミノ基(配位結合)、アルミナ(表面に水酸基あり)と水酸基(脱水縮合による共有結合)、チタニア(表面に水酸基あり)と水酸基(脱水縮合による共有結合)、アルミナ(表面に水酸基あり)とイソシアネート基(共有結合)、Ptとシアノ基(共有結合)、Ruとシアノ基(共有結合)、Si(表面に水素あり)とビニル基(共有結合)などが挙げられる。なお、上記記載中の結合種はあくまで相当する可能性が高い結合種であり、これに限られるものではない。上述のように、本発明のナノ粒子を基板等へ固定化する際には、基板表面に予め反応性官能基を形成する必要がないため、簡単な方法で基板等への固定化が可能となる。   An object of the present invention is to provide nanoparticles for immobilization on a substrate or the like. Since immobilization of the substrate and the nanoparticles is performed by chemical bonding, a reactive functional group is introduced at the terminal of the silane coupling agent attached to the silica-coated nanoparticles as a bond for chemical bonding. Examples of the combination of the substrate and the like for chemical bonding and the reactive functional group include the following combinations. Au and mercapto group (coordination bond), Pt and mercapto group (coordination bond), Pt and amino group (coordination bond), alumina (having a hydroxyl group on the surface) and hydroxyl group (covalent bond by dehydration condensation), titania (surface) Hydroxyl group) and hydroxyl group (covalent bond by dehydration condensation), alumina (having a hydroxyl group on the surface) and isocyanate group (covalent bond), Pt and cyano group (covalent bond), Ru and cyano group (covalent bond), Si (surface And a vinyl group (covalent bond). In addition, the bond type in the above description is a bond type that has a high possibility of being equivalent to the end, and is not limited thereto. As described above, when the nanoparticles of the present invention are immobilized on a substrate or the like, it is not necessary to previously form a reactive functional group on the surface of the substrate, so that it can be immobilized on the substrate or the like by a simple method. Become.

本発明のシリカ被覆ナノ粒子の製造方法は、(I)有機配位子で表面を保護された金属または酸化物ナノ粒子を、無極性有機溶媒に均一分散させた後、非イオン性界面活性剤を添加し、塩基を添加した水を加えて(例えば室温で)撹拌することにより、ナノ粒子を取り込んだナノ粒子逆ミセルコンポジットを含む分散液を作製するステップと、(II)(I)の溶液にオルトケイ酸化合物(例えば、オルト珪酸テトラエチル(TEOS))を加えて(例えば室温で)撹拌することにより、ナノ粒子表面にシリカシェルを形成するステップと、(III)反応性官能基を有するアルキル鎖を持つ第1のシランカップリング剤と、反応性官能基を有さないアルキル鎖を有する第2のシランカップリング剤とを混合して加えることにより、シリカシェルの外周にシランカップリング剤を導入するステップと、を有することを特徴とする。   The method for producing silica-coated nanoparticles of the present invention comprises (I) a nonionic surfactant after uniformly dispersing metal or oxide nanoparticles whose surface is protected with an organic ligand in a nonpolar organic solvent. And adding a base-added water and stirring (for example, at room temperature) to prepare a dispersion containing a nanoparticle reverse micelle composite incorporating nanoparticles, and a solution of (II) (I) An orthosilicate compound (for example, tetraethylorthosilicate (TEOS)) and stirring (for example, at room temperature) to form a silica shell on the nanoparticle surface; and (III) an alkyl chain having a reactive functional group By adding a first silane coupling agent having an alkyl chain and a second silane coupling agent having an alkyl chain having no reactive functional group, Introducing a silane coupling agent on the peripheral, and having a.

本発明は、以下の構成を有する。
(構成1)ナノ粒子からなるコアと、
前記コアの周囲に前記コアを被覆するように設けられた珪素化合物からなるシェルと、
前記シェルの周囲に付着した炭素数7以上の炭化水素基を有する第1のシランカップリング剤と、
を有し、
前記第1のシランカップリング剤は、
一端は前記シェル中のSi元素と結合し、他端は反応性官能基を具備するシリカ被覆ナノ粒子。
(構成2)前記シェルの周囲に、
前記第1のシランカップリング剤の炭化水素基の炭素数と同等の炭素数の炭化水素基を有し、かつ、反応性官能基を具備しない第2のシランカップリング剤が付着してなる構成1のシリカ被覆ナノ粒子。
(構成3)前記反応性官能基が、アミノ基、メルカプト基、水酸基、エポキシ基、シアノ基、イソシアネート基、ビニル基から選ばれる官能基である構成1又は2のシリカ被覆ナノ粒子。
(構成4)前記コアが、FePt、CoPt、InP、CdSe、ZnSe、ZnS、Co、Au、Ag、鉄酸化物、チタン酸化物、ジルコニア酸化物のいずれかである構成1〜3のいずれかのシリカ被覆ナノ粒子。
(構成5)前記第1のシランカップリング剤の炭化水素基の炭素数(NC1)と、前記第2のシランカップリング剤の炭化水素基の炭素数(NC2)との差(NC1−NC2)が、−1〜3である構成1〜4のいずれかのシリカ被覆ナノ粒子。
(構成6)構成1〜5のいずれかに記載のシリカ被覆ナノ粒子が、基板上に、前記反応性官能基を介して化学結合により単層で固定化されているシリカ被覆ナノ粒子堆積基板。
(構成7)(A)有機溶媒中に、非イオン性界面活性剤、ナノ粒子、およびアルカリ性水溶液を添加して、ナノ粒子を内包したアルカリ性逆ミセル水を形成させる工程、
(B)前記(A)工程の反応液にオルトケイ酸化合物を添加し、前記ナノ粒子の周囲に、珪素化合物を形成する工程、
(C)前記(B)工程で得られた反応液に、先端に反応性官能基を具備した炭素数7以上の炭化水素基を有する第1のシランカップリング剤と、炭素数が前記シランカップリング剤の炭素数と同等であり、かつ先端に反応性官能基を具備しない第2のシランカップリング剤と、を添加して、前記珪素化合物表面をシランカップリング剤で修飾する工程、
を有する構成1〜6のいずれかのシリカ被覆ナノ粒子の製造方法。
(構成8)前記工程(C)において、前記第1のシランカップリング剤と前記第2のシランカップリング剤との添加比(モル比)を、0.5:9.5〜5:5とする構成7のシリカ被覆ナノ粒子の製造方法。
(構成9)前記工程(C)において、前記第1のシランカップリング剤と前記第2のシランカップリング剤との添加比(モル比)を、2:8〜4:6とする構成7のシリカ被覆ナノ粒子の製造方法。
(構成10)前記反応性官能基と基板との間で化学結合を形成させることにより、構成1〜6のいずれかのシリカ被覆金属ナノ粒子を単層のみ固定化させるナノ粒子堆積基板の製造方法。
The present invention has the following configuration.
(Configuration 1) A core composed of nanoparticles,
A shell made of a silicon compound provided to cover the core around the core;
A first silane coupling agent having a hydrocarbon group having 7 or more carbon atoms attached around the shell;
Have
The first silane coupling agent is
One end is bonded to the Si element in the shell, and the other end is a silica-coated nanoparticle having a reactive functional group.
(Configuration 2) Around the shell,
A structure in which a second silane coupling agent having a hydrocarbon group having the same carbon number as the hydrocarbon group of the first silane coupling agent and not having a reactive functional group is attached. 1 silica-coated nanoparticles.
(Configuration 3) The silica-coated nanoparticles according to Configuration 1 or 2, wherein the reactive functional group is a functional group selected from an amino group, a mercapto group, a hydroxyl group, an epoxy group, a cyano group, an isocyanate group, and a vinyl group.
(Configuration 4) Any one of Configurations 1 to 3, wherein the core is any one of FePt, CoPt, InP, CdSe, ZnSe, ZnS, Co, Au, Ag, iron oxide, titanium oxide, and zirconia oxide. Silica coated nanoparticles.
(Configuration 5) Difference (N C1 ) between the carbon number (N C1 ) of the hydrocarbon group of the first silane coupling agent and the carbon number (N C2 ) of the hydrocarbon group of the second silane coupling agent -N C2 ) is a silica-coated nanoparticle according to any one of constitutions 1 to 4, wherein the compound is −1 to 3.
(Configuration 6) A silica-coated nanoparticle deposition substrate in which the silica-coated nanoparticles according to any one of Configurations 1 to 5 are immobilized on the substrate in a single layer by chemical bonding via the reactive functional group.
(Configuration 7) (A) A step of adding a nonionic surfactant, nanoparticles, and an alkaline aqueous solution to an organic solvent to form alkaline reverse micelle water enclosing the nanoparticles,
(B) A step of adding an orthosilicate compound to the reaction solution of the step (A) to form a silicon compound around the nanoparticles,
(C) a first silane coupling agent having a hydrocarbon group having 7 or more carbon atoms having a reactive functional group at the tip thereof in the reaction solution obtained in the step (B), and the carbon number of the silane cup Adding a second silane coupling agent having the same number of carbon atoms as the ring agent and not having a reactive functional group at the tip, and modifying the surface of the silicon compound with the silane coupling agent;
The manufacturing method of the silica coating nanoparticle in any one of the structures 1-6 which have these.
(Configuration 8) In the step (C), the addition ratio (molar ratio) of the first silane coupling agent and the second silane coupling agent is 0.5: 9.5 to 5: 5. The manufacturing method of the silica coating nanoparticle of the structure 7 to do.
(Configuration 9) In the step (C), the addition ratio (molar ratio) of the first silane coupling agent and the second silane coupling agent is 2: 8 to 4: 6. A method for producing silica-coated nanoparticles.
(Configuration 10) A method for producing a nanoparticle-deposited substrate in which only a single layer of the silica-coated metal nanoparticles according to configurations 1 to 6 is fixed by forming a chemical bond between the reactive functional group and the substrate. .

本発明によれば、溶媒分散性の高い、基板等への固定化が容易なシリカ被覆ナノ粒子、シリカ被覆ナノ粒子分散液、およびその効率的な製造方法を提供することができる。   According to the present invention, it is possible to provide a silica-coated nanoparticle, a silica-coated nanoparticle dispersion liquid having high solvent dispersibility and easy to be immobilized on a substrate, and an efficient production method thereof.

本発明の代表的な実施例は、以下の通りであるが、これらの例によってなんら限定されるものではない。   Representative examples of the present invention are as follows, but are not limited to these examples.

有機配位子で表面を保護された金属または酸化物ナノ粒子をシクロヘキサンなどの無極性有機溶媒に均一分散させた後、ポリオキシエチレンノニルフェニルエーテル(IGEPAL(商標登録)CO−520として市販)などの非イオン性界面活性剤を添加し、アンモニア等の塩基を添加した水を加えて室温で10〜30分撹拌することで、油中水型の逆ミセルを形成し、その中にナノ粒子を取り込んだナノ粒子逆ミセルコンポジットを含む分散液を作製した。   After uniformly dispersing metal or oxide nanoparticles whose surface is protected with an organic ligand in a nonpolar organic solvent such as cyclohexane, polyoxyethylene nonylphenyl ether (commercially available as IGEPAL (registered trademark) CO-520), etc. The nonionic surfactant is added, water to which a base such as ammonia is added, and the mixture is stirred at room temperature for 10 to 30 minutes to form water-in-oil reverse micelles. A dispersion containing the incorporated nanoparticle reverse micelle composite was prepared.

前記ナノ粒子逆ミセルコンポジットを含む分散液に、オルト珪酸テトラエチル(TEOS)を加えて室温で2〜5日撹拌することでナノ粒子表面にシリカシェルを形成し、シリカ被覆ナノ粒子を含む逆ミセルコンポジット分散液を作製した。   To the dispersion containing the nanoparticle reverse micelle composite, tetraethyl orthosilicate (TEOS) is added and stirred at room temperature for 2 to 5 days to form a silica shell on the surface of the nanoparticle, and the reverse micelle composite containing silica-coated nanoparticles. A dispersion was prepared.

前記シリカ被覆ナノ粒子を含む逆ミセルコンポジット分散液に、長鎖アルキル基の先端に反応性官能基を持つ第1のシランカップリング剤と、長鎖アルキル基を持つ第2のシランカップリング剤を混合して加え、室温で2〜5日撹拌することでシリカシェル表面をシランカップリング剤で修飾し、無極性有機溶媒をエバポレーターで除去した後にメタノールにて粒子を洗浄し、遠心分離を行うことで表面修飾されたシリカ被覆ナノ粒子を回収した。   In the reverse micelle composite dispersion containing the silica-coated nanoparticles, a first silane coupling agent having a reactive functional group at the tip of a long chain alkyl group and a second silane coupling agent having a long chain alkyl group are added. Add the mixture, stir at room temperature for 2-5 days, modify the silica shell surface with a silane coupling agent, remove the nonpolar organic solvent with an evaporator, wash the particles with methanol, and centrifuge The silica-coated nanoparticles surface-modified with were recovered.

前記長鎖アルキル基の先端に反応性官能基を持つ第1のシランカップリング剤として、メルカプト基、アミノ基、ヒドロキシル基、エポキシ基、シアノ基、イソシアネートおよび二重結合などを末端に持ち、かつ炭素数が7〜17のアルキル鎖を1個から3個持つシランカップリング剤が挙げられる。これらの長鎖アルキル基の先端に反応性官能基を持つシランカップリング剤は単独で使用することもできるし、また2種類以上を組み合わせて使用することもできる。   As a first silane coupling agent having a reactive functional group at the tip of the long chain alkyl group, it has a mercapto group, an amino group, a hydroxyl group, an epoxy group, a cyano group, an isocyanate and a double bond at the end, and Examples thereof include silane coupling agents having 1 to 3 alkyl chains having 7 to 17 carbon atoms. These silane coupling agents having a reactive functional group at the tip of the long chain alkyl group can be used alone or in combination of two or more.

前記長鎖アルキル基を持つ第2のシランカップリング剤として、炭素数が8から18のアルキル鎖を1個から3個持つシランカップリング剤が挙げられる。これらの長鎖アルキル基を持つシランカップリング剤はアルキル鎖内に不飽和結合を1個以上含むこともできる。これらの長鎖アルキル基を持つシランカップリング剤は単独で使用することもできるし、また2種類以上を組み合わせて使用することもできる。   Examples of the second silane coupling agent having the long chain alkyl group include silane coupling agents having 1 to 3 alkyl chains having 8 to 18 carbon atoms. These silane coupling agents having a long-chain alkyl group can also contain one or more unsaturated bonds in the alkyl chain. These silane coupling agents having a long chain alkyl group can be used alone or in combination of two or more.

以下、本発明の実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   Examples Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1
(1)FePtナノ粒子のSiOシェルによる被覆工程
シクロヘキサン20mlにIGEPAL(商標登録)CO−520を0.94mlと平均粒径6nmのFePtナノ粒子0.8mgを加え均一分散させた。その後、25%アンモニア水80μlを加えて室温で30分間撹拌を行い、TEOSを80μl加えて室温で3日間撹拌を行った。
Example 1
(1) Coating process of FePt nanoparticles with SiO 2 shell To 20 ml of cyclohexane, 0.94 ml of IGEPAL (registered trademark) CO-520 and 0.8 mg of FePt nanoparticles having an average particle diameter of 6 nm were added and uniformly dispersed. Thereafter, 80 μl of 25% aqueous ammonia was added and stirred at room temperature for 30 minutes, and 80 μl of TEOS was added and stirred at room temperature for 3 days.

(2)SiO被覆FePtナノ粒子よる被覆工程
上記(1)にて得られた反応溶液に、ドデシルトリメトキシシラン24μl(38μmol)と11−メルカプトウンデシルトリメトキシシラン10μl(16μmol)を加えた後、室温で3日間撹拌を行った。得られた反応溶液にメタノールを加え遠心分離を行うことで生成物を単離し、塩化メチレンに均一分散させた。得られた粒子の透過型電子顕微鏡(TEM)観察の結果を図1に示す。平均粒径6nmのFePtコア部の周りに約10nmの厚みでSiOシェルが被覆されていることが確認できた。
(2) Coating step with SiO 2 coated FePt nanoparticles After adding 24 μl (38 μmol) of dodecyltrimethoxysilane and 10 μl (16 μmol) of 11-mercaptoundecyltrimethoxysilane to the reaction solution obtained in (1) above. The mixture was stirred at room temperature for 3 days. The product was isolated by adding methanol to the obtained reaction solution and centrifuging, and uniformly dispersed in methylene chloride. The results of observation of the obtained particles by a transmission electron microscope (TEM) are shown in FIG. It was confirmed that the SiO 2 shell was coated with a thickness of about 10 nm around the FePt core portion having an average particle diameter of 6 nm.

(3)表面修飾SiO被覆FePtナノ粒子のAu基板上への固定化
Auで表面をコートしたガラス基板を、得られたナノ粒子の塩化メチレン分散液に1日浸漬させた。分散液から取り出した後、基板を塩化メチレン中で5分間超音波洗浄を行った。超音波洗浄後のAuコートガラス基板表面の走査型電子顕微鏡(SEM)観察の結果を図2に示す。粒子が基板表面に密に付着している様子が伺え、Auコートガラス基板上にナノ粒子を固定化できたことが確認された。
(3) Immobilization of surface-modified SiO 2 coated FePt nanoparticles on Au substrate A glass substrate whose surface was coated with Au was immersed in a methylene chloride dispersion of the obtained nanoparticles for 1 day. After removal from the dispersion, the substrate was ultrasonically cleaned in methylene chloride for 5 minutes. FIG. 2 shows the results of scanning electron microscope (SEM) observation of the surface of the Au-coated glass substrate after ultrasonic cleaning. It was confirmed that the particles were closely attached to the substrate surface, and it was confirmed that the nanoparticles could be immobilized on the Au-coated glass substrate.

比較例1
実施例1(1)にて得られた反応溶液に、3−メルカプトプロピルトリメトキシシラン(MPS)13μl(54μmol)を加えた後、室温で3日間撹拌を行った。得られた反応溶液にメタノールを加え遠心分離を行うことで生成物を単離し、トルエンに均一分散させた。TEM観察の結果、図3に示すように、ナノ粒子同士の凝集が観察された。
Comparative Example 1
To the reaction solution obtained in Example 1 (1), 13 μl (54 μmol) of 3-mercaptopropyltrimethoxysilane (MPS) was added, followed by stirring at room temperature for 3 days. The product was isolated by adding methanol to the obtained reaction solution and centrifuging, and uniformly dispersed in toluene. As a result of TEM observation, aggregation of nanoparticles was observed as shown in FIG.

実施例2
実施例1(1)にて得られた反応溶液に、ドデシルトリメトキシシラン31μl(49μmol)と11−メルカプトウンデシルトリメトキシシラン3μl(5μmol)を加えた後、室温で3日間撹拌を行った。得られた反応溶液にメタノールを加え遠心分離を行うことで生成物を単離し、トルエンに均一分散させた。TEM観察の結果、実施例1同様に平均粒径6nmのFePtコア部の周りに約10nmの厚みでSiOシェルが被覆されていることが確認できた。また、実施例1(3)と同様にAuコートガラス基板上へのナノ粒子固定化を試みた。SEM観察の結果、粒子が基板表面に密に付着している様子が伺え、Auコートガラス基板上にナノ粒子を固定化できたことが確認された。
Example 2
To the reaction solution obtained in Example 1 (1), 31 μl (49 μmol) of dodecyltrimethoxysilane and 3 μl (5 μmol) of 11-mercaptoundecyltrimethoxysilane were added, followed by stirring at room temperature for 3 days. The product was isolated by adding methanol to the obtained reaction solution and centrifuging, and uniformly dispersed in toluene. As a result of TEM observation, it was confirmed that the SiO 2 shell was coated with a thickness of about 10 nm around the FePt core portion having an average particle diameter of 6 nm as in Example 1. Further, as in Example 1 (3), an attempt was made to immobilize nanoparticles on an Au-coated glass substrate. As a result of SEM observation, it was confirmed that the particles were closely attached to the substrate surface, and it was confirmed that the nanoparticles could be immobilized on the Au-coated glass substrate.

実施例3
実施例1(1)にて得られた反応溶液にドデシルトリメトキシシラン17μl(27μmol)と11−メルカプトウンデシルトリメトキシシラン17μl(27μmol)を加えた後、室温で3日間撹拌を行った。得られた反応溶液にメタノールを加え遠心分離を行うことで生成物を単離し、塩化メチレンに均一分散させた。TEM観察の結果、実施例1同様に平均粒径6nmのFePtコア部の周りに10nmの厚みでSiOシェルが被覆されていることが確認できた。また、実施例1(3)と同様にAuコートガラス基板上へのナノ粒子固定化を試みた。SEM観察の結果、粒子が基板表面に密に付着している様子が伺え、Auコートガラス基板上にナノ粒子を固定化できたことがわかった。
Example 3
After adding 17 μl (27 μmol) of dodecyltrimethoxysilane and 17 μl (27 μmol) of 11-mercaptoundecyltrimethoxysilane to the reaction solution obtained in Example 1 (1), the mixture was stirred at room temperature for 3 days. The product was isolated by adding methanol to the obtained reaction solution and centrifuging, and uniformly dispersed in methylene chloride. As a result of TEM observation, it was confirmed that the SiO 2 shell was coated with a thickness of 10 nm around the FePt core portion having an average particle diameter of 6 nm as in Example 1. Further, as in Example 1 (3), an attempt was made to immobilize nanoparticles on an Au-coated glass substrate. As a result of SEM observation, it was observed that the particles were closely attached to the substrate surface, and it was found that the nanoparticles could be immobilized on the Au-coated glass substrate.

実施例4
実施例1(1)にて得られた反応溶液にオクチルトリメトキシシラン24μl(38μmol)と7−メルカプトヘプチルトリメトキシシラン10μl(16μmol)を加えた後、室温で3日間撹拌を行った。得られた反応溶液にメタノールを加え遠心分離を行うことで生成物を単離し、塩化メチレンに均一分散させた。TEM観察の結果、実施例1同様に平均粒径6nmのFePtコア部の周りに10nmの厚みでSiOシェルが被覆されていることが確認できた。また、実施例1(3)と同様にAuコートガラス基板上へのナノ粒子固定化を試みた。SEM観察の結果、粒子が基板表面に密に付着している様子が伺え、Auコートガラス基板上にナノ粒子を固定化できたことがわかった。
Example 4
After adding 24 μl (38 μmol) of octyltrimethoxysilane and 10 μl (16 μmol) of 7-mercaptoheptyltrimethoxysilane to the reaction solution obtained in Example 1 (1), the mixture was stirred at room temperature for 3 days. The product was isolated by adding methanol to the obtained reaction solution and centrifuging, and uniformly dispersed in methylene chloride. As a result of TEM observation, it was confirmed that the SiO 2 shell was coated with a thickness of 10 nm around the FePt core portion having an average particle diameter of 6 nm as in Example 1. Further, as in Example 1 (3), an attempt was made to immobilize nanoparticles on an Au-coated glass substrate. As a result of SEM observation, it was observed that the particles were closely attached to the substrate surface, and it was found that the nanoparticles could be immobilized on the Au-coated glass substrate.

実施例5
実施例1(1)にて得られた反応溶液にオクチルトリメトキシシラン24μl(38μmol)と11−メルカプトウンデシルトリメトキシシラン10μl(16μmol)を加えた後、室温で3日間撹拌を行った。得られた反応溶液にメタノールを加え遠心分離を行うことで生成物を単離し、塩化メチレンに均一分散させた。TEM観察の結果、実施例1同様に平均粒径6nmのFePtコア部の周りに約10nmの厚みでSiOシェルが被覆されていることが確認できた。また、実施例1(3)と同様にAuコートガラス基板上へのナノ粒子固定化を試みた。SEM観察の結果、粒子が基板表面に密に付着している様子が伺え、Auコートガラス基板上にナノ粒子を固定化できたことがわかった。
Example 5
After adding 24 μl (38 μmol) of octyltrimethoxysilane and 10 μl (16 μmol) of 11-mercaptoundecyltrimethoxysilane to the reaction solution obtained in Example 1 (1), the mixture was stirred at room temperature for 3 days. The product was isolated by adding methanol to the obtained reaction solution and centrifuging, and uniformly dispersed in methylene chloride. As a result of TEM observation, it was confirmed that the SiO 2 shell was coated with a thickness of about 10 nm around the FePt core portion having an average particle diameter of 6 nm as in Example 1. Further, as in Example 1 (3), an attempt was made to immobilize nanoparticles on an Au-coated glass substrate. As a result of SEM observation, it was observed that the particles were closely attached to the substrate surface, and it was found that the nanoparticles could be immobilized on the Au-coated glass substrate.

実施例6
実施例1(1)にて得られた反応溶液にドデシルトリメトキシシラン24μl(38μmol)と11−アミノウンデシルトリメトキシシラン10μl(16μmol)を加えた後、室温で3日間撹拌を行った。得られた反応溶液にメタノールを加え遠心分離を行うことで生成物を単離し、塩化メチレンに均一分散させた。TEM観察の結果、実施例1同様に平均粒径6nmのFePtコア部の周りに約10nmの厚みでSiOシェルが被覆されていることが確認できた。また、実施例1(3)と同様の方法にてPtコートガラス基板上へのナノ粒子固定化を試みた。SEM観察の結果、粒子が基板表面に密に付着している様子が伺え、Ptコートガラス基板上にナノ粒子を固定化できたことがわかった。
Example 6
After adding 24 μl (38 μmol) of dodecyltrimethoxysilane and 10 μl (16 μmol) of 11-aminoundecyltrimethoxysilane to the reaction solution obtained in Example 1 (1), the mixture was stirred at room temperature for 3 days. The product was isolated by adding methanol to the obtained reaction solution and centrifuging, and uniformly dispersed in methylene chloride. As a result of TEM observation, it was confirmed that the SiO 2 shell was coated with a thickness of about 10 nm around the FePt core portion having an average particle diameter of 6 nm as in Example 1. In addition, nanoparticle immobilization on a Pt-coated glass substrate was attempted in the same manner as in Example 1 (3). As a result of SEM observation, it was found that the particles were closely attached to the substrate surface, and it was found that the nanoparticles could be immobilized on the Pt-coated glass substrate.

実施例7
実施例1(1)にて得られた反応溶液にドデシルトリメトキシシラン24μl(38μmol)と11−ヒドロキシウンデシルトリメトキシシラン10μl(16μmol)を加えた後、室温で3日間撹拌を行った。得られた反応溶液にメタノールを加え遠心分離を行うことで生成物を単離し、塩化メチレンに均一分散させた。TEM観察の結果、実施例1同様に平均粒径6nmのFePtコア部の周りに約10nmの厚みでSiOシェルが被覆されていることが確認できた。また、実施例1(3)と同様の方法にてAlコートガラス基板上へのナノ粒子固定化を試みた。SEM観察の結果、粒子が基板表面に密に付着している様子が伺え、Alコートガラス基板上にナノ粒子を固定化できたことがわかった。
Example 7
After adding 24 μl (38 μmol) of dodecyltrimethoxysilane and 10 μl (16 μmol) of 11-hydroxyundecyltrimethoxysilane to the reaction solution obtained in Example 1 (1), the mixture was stirred at room temperature for 3 days. The product was isolated by adding methanol to the obtained reaction solution and centrifuging, and uniformly dispersed in methylene chloride. As a result of TEM observation, it was confirmed that the SiO 2 shell was coated with a thickness of about 10 nm around the FePt core portion having an average particle diameter of 6 nm as in Example 1. In addition, an attempt was made to immobilize nanoparticles on an Al 2 O 3 coated glass substrate in the same manner as in Example 1 (3). As a result of SEM observation, it was found that the particles were closely attached to the substrate surface, and it was found that the nanoparticles could be immobilized on the Al 2 O 3 coated glass substrate.

実施例8
(1)CoPtナノ粒子のSiOシェルによる被覆工程
シクロヘキサン20mlにIGEPAL(商標登録)CO−520を0.94mlと平均粒径4nmのCoPtナノ粒子0.9mgを加え均一分散させた。その後、25%アンモニア水80μlを加えて室温で30分間撹拌を行い、TEOSを80μl加えて室温で3日間撹拌を行った。
Example 8
(1) Coating process of CoPt nanoparticles with SiO 2 shell To 20 ml of cyclohexane, 0.94 ml of IGEPAL (registered trademark) CO-520 and 0.9 mg of CoPt nanoparticles having an average particle diameter of 4 nm were added and uniformly dispersed. Thereafter, 80 μl of 25% aqueous ammonia was added and stirred at room temperature for 30 minutes, and 80 μl of TEOS was added and stirred at room temperature for 3 days.

(2)SiO被覆CoPtナノ粒子よる被覆工程
上記(1)にて得られた反応溶液に、ドデシルトリメトキシシラン24μl(38μmol)と11−メルカプトウンデシルトリメトキシシラン10μl(16μmol)を加えた後、室温で3日間撹拌を行った。得られた反応溶液にメタノールを加え遠心分離を行うことで生成物を単離し、塩化メチレンに均一分散させた。得られた粒子の透過型電子顕微鏡(TEM)観察の結果は、図1と同等であった。平均粒径4nmのCoPtコア部の周りに約10nmの厚みでSiOシェルが被覆されていることが確認できた。 また、実施例1(3)と同様にAuコートガラス基板上へのナノ粒子固定化を試みた。SEM観察の結果、粒子が基板表面に密に付着している様子が伺え、Auコートガラス基板上にナノ粒子を固定化できたことがわかった。
(2) Coating step with SiO 2 coated CoPt nanoparticles After adding 24 μl (38 μmol) of dodecyltrimethoxysilane and 10 μl (16 μmol) of 11-mercaptoundecyltrimethoxysilane to the reaction solution obtained in (1) above. The mixture was stirred at room temperature for 3 days. The product was isolated by adding methanol to the obtained reaction solution and centrifuging, and uniformly dispersed in methylene chloride. The results of observation of the obtained particles with a transmission electron microscope (TEM) were the same as those in FIG. It was confirmed that the SiO 2 shell was coated with a thickness of about 10 nm around the CoPt core portion having an average particle diameter of 4 nm. Further, as in Example 1 (3), an attempt was made to immobilize nanoparticles on an Au-coated glass substrate. As a result of SEM observation, it was observed that the particles were closely attached to the substrate surface, and it was found that the nanoparticles could be immobilized on the Au-coated glass substrate.

実施例9
(1)Feナノ粒子のSiOシェルによる被覆工程
シクロヘキサン20mlにIGEPAL(商標登録)CO−520を0.94mlと平均粒径10nmのFeナノ粒子1.0mgを加え均一分散させた。その後、25%アンモニア水80μlを加えて室温で30分間撹拌を行い、TEOSを60μl加えて室温で3日間撹拌を行った。
Example 9
(1) Coating step of Fe 2 O 3 nanoparticles with SiO 2 shell Uniform dispersion by adding 0.94 ml of IGEPAL (registered trademark) CO-520 and 1.0 mg of Fe 2 O 3 nanoparticles with an average particle diameter of 10 nm to 20 ml of cyclohexane I let you. Thereafter, 80 μl of 25% aqueous ammonia was added and stirred at room temperature for 30 minutes, and 60 μl of TEOS was added and stirred at room temperature for 3 days.

(2)SiO被覆Feナノ粒子よる被覆工程
上記(1)にて得られた反応溶液に、ドデシルトリメトキシシラン24μl(38μmol)と11−メルカプトウンデシルトリメトキシシラン10μl(16μmol)を加えた後、室温で3日間撹拌を行った。得られた反応溶液にメタノールを加え遠心分離を行うことで生成物を単離し、塩化メチレンに均一分散させた。得られた粒子の透過型電子顕微鏡(TEM)観察の結果は、図1と同等であった。平均粒径10nmのFeコア部の周りに約8nmの厚みでSiOシェルが被覆されていることが確認できた。 また、実施例1(3)と同様にAuコートガラス基板上へのナノ粒子固定化を試みた。SEM観察の結果、粒子が基板表面に密に付着している様子が伺え、Auコートガラス基板上にナノ粒子を固定化できたことがわかった。
(2) Coating step with SiO 2 coated Fe 2 O 3 nanoparticles To the reaction solution obtained in (1) above, 24 μl (38 μmol) of dodecyltrimethoxysilane and 10 μl (16 μmol) of 11-mercaptoundecyltrimethoxysilane were added. After the addition, the mixture was stirred at room temperature for 3 days. The product was isolated by adding methanol to the obtained reaction solution and centrifuging, and uniformly dispersed in methylene chloride. The results of observation of the obtained particles with a transmission electron microscope (TEM) were the same as those in FIG. It was confirmed that the SiO 2 shell was coated with a thickness of about 8 nm around the Fe 2 O 3 core portion having an average particle diameter of 10 nm. Further, as in Example 1 (3), an attempt was made to immobilize nanoparticles on an Au-coated glass substrate. As a result of SEM observation, it was observed that the particles were closely attached to the substrate surface, and it was found that the nanoparticles could be immobilized on the Au-coated glass substrate.

実施例10
(1)Auナノ粒子のSiOシェルによる被覆工程
シクロヘキサン20mlにIGEPAL(商標登録)CO−520を0.94mlと平均粒径4nmのAuナノ粒子1.0mgを加え均一分散させた。その後、25%アンモニア水80μlを加えて室温で30分間撹拌を行い、TEOSを80μl加えて室温で3日間撹拌を行った。
Example 10
(1) Coating step of Au nanoparticles with SiO 2 shell To 20 ml of cyclohexane, 0.94 ml of IGEPAL (registered trademark) CO-520 and 1.0 mg of Au nanoparticles having an average particle diameter of 4 nm were added and uniformly dispersed. Thereafter, 80 μl of 25% aqueous ammonia was added and stirred at room temperature for 30 minutes, and 80 μl of TEOS was added and stirred at room temperature for 3 days.

(2)SiO被覆Auナノ粒子よる被覆工程
上記(1)にて得られた反応溶液に、ドデシルトリメトキシシラン24μl(38μmol)と11−メルカプトウンデシルトリメトキシシラン10μl(16μmol)を加えた後、室温で3日間撹拌を行った。得られた反応溶液にメタノールを加え遠心分離を行うことで生成物を単離し、塩化メチレンに均一分散させた。得られた粒子の透過型電子顕微鏡(TEM)観察の結果は、図1と同等であった。平均粒径4nmのAuコア部の周りに約10nmの厚みでSiOシェルが被覆されていることが確認できた。 また、実施例1(3)と同様にAuコートガラス基板上へのナノ粒子固定化を試みた。SEM観察の結果、粒子が基板表面に密に付着している様子が伺え、Auコートガラス基板上にナノ粒子を固定化できたことがわかった。
(2) Coating step with SiO 2 -coated Au nanoparticles After adding 24 μl (38 μmol) of dodecyltrimethoxysilane and 10 μl (16 μmol) of 11-mercaptoundecyltrimethoxysilane to the reaction solution obtained in (1) above The mixture was stirred at room temperature for 3 days. The product was isolated by adding methanol to the obtained reaction solution and centrifuging, and uniformly dispersed in methylene chloride. The results of observation of the obtained particles with a transmission electron microscope (TEM) were the same as those in FIG. It was confirmed that the SiO 2 shell was coated with a thickness of about 10 nm around the Au core portion having an average particle diameter of 4 nm. Further, as in Example 1 (3), an attempt was made to immobilize nanoparticles on an Au-coated glass substrate. As a result of SEM observation, it was observed that the particles were closely attached to the substrate surface, and it was found that the nanoparticles could be immobilized on the Au-coated glass substrate.

実施例11
実施例1(1)にて得られた反応溶液に、11−メルカプトウンデシルトリメトキシシラン17μl(54μmol)を加えた後、室温で3日間撹拌を行った。得られた反応溶液にメタノールを加え遠心分離を行うことで生成物を単離し、トルエンに均一分散させた。得られた粒子の透過型電子顕微鏡(TEM)観察の結果を図4に示す。平均粒径6nmのFePtコア部の周りに約10nmの厚みでSiOシェルが被覆されていることが確認できたが、実施例1よりは分散性が劣ることがわかった。また、実施例1(3)と同様にAuコートガラス基板上へのナノ粒子固定化を試みた。超音波洗浄後のAuコートガラス基板表面の走査型電子顕微鏡(SEM)観察の結果を図5に示す。粒子が基板表面に密に付着している様子が伺え、Auコートガラス基板上にナノ粒子を固定化できたことが確認されたが、実施例1よりは固定化密度が劣ることがわかった。
Example 11
After adding 17 μl (54 μmol) of 11-mercaptoundecyltrimethoxysilane to the reaction solution obtained in Example 1 (1), the mixture was stirred at room temperature for 3 days. The product was isolated by adding methanol to the obtained reaction solution and centrifuging, and uniformly dispersed in toluene. The result of transmission electron microscope (TEM) observation of the obtained particles is shown in FIG. Although it was confirmed that the SiO 2 shell was coated with a thickness of about 10 nm around the FePt core portion having an average particle diameter of 6 nm, it was found that the dispersibility was inferior to that of Example 1. Further, as in Example 1 (3), an attempt was made to immobilize nanoparticles on an Au-coated glass substrate. FIG. 5 shows the results of scanning electron microscope (SEM) observation of the surface of the Au-coated glass substrate after ultrasonic cleaning. It was confirmed that the particles were densely adhered to the substrate surface, and it was confirmed that the nanoparticles could be immobilized on the Au-coated glass substrate, but it was found that the immobilization density was inferior to that of Example 1.

本発明のシリカ被覆ナノ粒子は、溶媒分散性の高い、基板等への固定化が容易なシリカ被覆ナノ粒子、シリカ被覆ナノ粒子分散液、およびその効率的な製造方法を提供することができる。本発明により、取扱が簡便なシリカ被覆ナノ粒子を提供することができる。本発明のシリカ被覆ナノ粒子を基板等の上に配列させることで、高密度磁気記録媒体、磁気抵抗効果素子、非線形光学デバイス、燃料電池電極などに応用可能である。   The silica-coated nanoparticle of the present invention can provide a silica-coated nanoparticle, a silica-coated nanoparticle dispersion liquid, and a method for efficiently producing the silica-coated nanoparticle that have high solvent dispersibility and can be easily immobilized on a substrate or the like. According to the present invention, silica-coated nanoparticles that are easy to handle can be provided. By arranging the silica-coated nanoparticles of the present invention on a substrate or the like, it can be applied to high-density magnetic recording media, magnetoresistive elements, nonlinear optical devices, fuel cell electrodes, and the like.

本発明の実施例1で得られたシリカ被覆ナノ粒子を示すTEM写真である。It is a TEM photograph which shows the silica coating nanoparticle obtained in Example 1 of this invention. 本発明の実施例1で得られた、Auコートガラス基板上に固定されたシリカ被覆ナノ粒子を示すSEM写真である。It is a SEM photograph which shows the silica coating nanoparticle fixed in Au coated glass substrate obtained in Example 1 of this invention. 比較例1で得られた凝集ナノ粒子を示すTEM写真である。4 is a TEM photograph showing aggregated nanoparticles obtained in Comparative Example 1. 本発明の実施例11で得られたシリカ被覆ナノ粒子を示すTEM写真である。It is a TEM photograph which shows the silica coating nanoparticle obtained in Example 11 of this invention. 本発明の実施例11で得られた、Auコートガラス基板上に固定されたシリカ被覆ナノ粒子を示すSEM写真である。It is a SEM photograph which shows the silica coating nanoparticle fixed in Au coated glass substrate obtained in Example 11 of this invention.

Claims (10)

ナノ粒子からなるコアと、
前記コアの周囲に前記コアを被覆するように設けられた珪素化合物からなるシェルと、
前記シェルの周囲に付着した炭素数7以上の炭化水素基を有する第1のシランカップリング剤と、
を有し、
前記第1のシランカップリング剤は、
一端は前記シェル中のSi元素と結合し、他端は反応性官能基を具備することを特徴とするシリカ被覆ナノ粒子。
A core of nanoparticles,
A shell made of a silicon compound provided to cover the core around the core;
A first silane coupling agent having a hydrocarbon group having 7 or more carbon atoms attached around the shell;
Have
The first silane coupling agent is
One end is combined with the Si element in the shell, and the other end is provided with a reactive functional group.
前記シェルの周囲に、
前記第1のシランカップリング剤の炭化水素基の炭素数と同等の炭素数の炭化水素基を有し、かつ、反応性官能基を具備しない第2のシランカップリング剤が付着してなることを特徴とする請求項1に記載のシリカ被覆ナノ粒子。
Around the shell,
A second silane coupling agent having a hydrocarbon group having the same carbon number as the hydrocarbon group of the first silane coupling agent and not having a reactive functional group is attached. The silica-coated nanoparticles according to claim 1.
前記反応性官能基が、アミノ基、メルカプト基、水酸基、エポキシ基、シアノ基、イソシアネート基、ビニル基から選ばれる官能基であることを特徴とする請求項1又は2に記載のシリカ被覆ナノ粒子。   The silica-coated nanoparticle according to claim 1 or 2, wherein the reactive functional group is a functional group selected from an amino group, a mercapto group, a hydroxyl group, an epoxy group, a cyano group, an isocyanate group, and a vinyl group. . 前記コアが、FePt、CoPt、InP、CdSe、ZnSe、ZnS、Co、Au、Ag、鉄酸化物、チタン酸化物、ジルコニア酸化物のいずれかであることを特徴とする請求項1〜3のいずれかに記載のシリカ被覆ナノ粒子。   4. The core according to claim 1, wherein the core is any one of FePt, CoPt, InP, CdSe, ZnSe, ZnS, Co, Au, Ag, iron oxide, titanium oxide, and zirconia oxide. The silica-coated nanoparticles according to claim 1. 前記第1のシランカップリング剤の炭化水素基の炭素数(NC1)と、前記第2のシランカップリング剤の炭化水素基の炭素数(NC2)との差(NC1−NC2)が、−1〜3であることを特徴とする請求項1〜4のいずれかに記載のシリカ被覆ナノ粒子。 Difference between the number of carbon atoms (N C1 ) of the hydrocarbon group of the first silane coupling agent and the number of carbon atoms (N C2 ) of the hydrocarbon group of the second silane coupling agent (N C1 −N C2 ) The silica-coated nanoparticles according to any one of claims 1 to 4, wherein -1 to -3. 請求項1〜5のいずれかに記載のシリカ被覆ナノ粒子が、基板上に、前記反応性官能基を介して化学結合により単層で固定化されていることを特徴とするナノ粒子堆積基板。   A nanoparticle-deposited substrate, wherein the silica-coated nanoparticles according to any one of claims 1 to 5 are immobilized on the substrate in a single layer by chemical bonding via the reactive functional group. (A)有機溶媒中に、非イオン性界面活性剤、ナノ粒子、およびアルカリ性水溶液を添加して、ナノ粒子を内包したアルカリ性逆ミセル水を形成させる工程、
(B)前記(A)工程の反応液にオルトケイ酸化合物を添加し、前記ナノ粒子の周囲に、珪素化合物を形成する工程、
(C)前記(B)工程で得られた反応液に、先端に反応性官能基を具備した炭素数7以上の炭化水素基を有する第1のシランカップリング剤と、炭素数が前記シランカップリング剤の炭素数と同等であり、かつ先端に反応性官能基を具備しない第2のシランカップリング剤と、を添加して、前記珪素化合物表面をシランカップリング剤で修飾する工程、
を有することを特徴とする請求項1〜6のいずれかに記載のシリカ被覆ナノ粒子の製造方法。
(A) A step of adding a nonionic surfactant, nanoparticles, and an aqueous alkaline solution in an organic solvent to form alkaline reverse micelle water enclosing the nanoparticles,
(B) A step of adding an orthosilicate compound to the reaction solution of the step (A) to form a silicon compound around the nanoparticles,
(C) a first silane coupling agent having a hydrocarbon group having 7 or more carbon atoms having a reactive functional group at the tip thereof in the reaction solution obtained in the step (B), and the carbon number of the silane cup Adding a second silane coupling agent having the same number of carbon atoms as the ring agent and not having a reactive functional group at the tip, and modifying the surface of the silicon compound with the silane coupling agent;
The method for producing silica-coated nanoparticles according to any one of claims 1 to 6, wherein:
前記工程(C)において、前記第1のシランカップリング剤と前記第2のシランカップリング剤との添加比(モル比)を、0.5:9.5〜5:5とすることを特徴とする請求項7に記載のシリカ被覆ナノ粒子の製造方法。   In the step (C), an addition ratio (molar ratio) between the first silane coupling agent and the second silane coupling agent is set to 0.5: 9.5 to 5: 5. The method for producing silica-coated nanoparticles according to claim 7. 前記工程(C)において、前記第1のシランカップリング剤と前記第2のシランカップリング剤との添加比(モル比)を、2:8〜4:6とすることを特徴とする請求項7に記載のシリカ被覆ナノ粒子の製造方法。   The addition ratio (molar ratio) of the first silane coupling agent and the second silane coupling agent in the step (C) is set to 2: 8 to 4: 6. 8. The method for producing silica-coated nanoparticles according to 7. 前記反応性官能基と基板との間で化学結合を形成させることにより、請求項1〜6のいずれかに記載のシリカ被覆金属ナノ粒子を単層のみ固定化させることを特徴とするナノ粒子堆積基板の製造方法。   Nanoparticle deposition characterized by immobilizing only a single layer of silica-coated metal nanoparticles according to any one of claims 1 to 6 by forming a chemical bond between the reactive functional group and a substrate. A method for manufacturing a substrate.
JP2008163708A 2008-06-23 2008-06-23 Nanoparticle coated with silica, nanoparticle deposited substrate, and method for producing them Withdrawn JP2010001555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008163708A JP2010001555A (en) 2008-06-23 2008-06-23 Nanoparticle coated with silica, nanoparticle deposited substrate, and method for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008163708A JP2010001555A (en) 2008-06-23 2008-06-23 Nanoparticle coated with silica, nanoparticle deposited substrate, and method for producing them

Publications (1)

Publication Number Publication Date
JP2010001555A true JP2010001555A (en) 2010-01-07

Family

ID=41583495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163708A Withdrawn JP2010001555A (en) 2008-06-23 2008-06-23 Nanoparticle coated with silica, nanoparticle deposited substrate, and method for producing them

Country Status (1)

Country Link
JP (1) JP2010001555A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136457A1 (en) * 2010-04-28 2011-11-03 광주과학기술원 Method for manufacturing a gold core/insulator shell nanostructure using a novel peptide
CN103920491A (en) * 2014-03-05 2014-07-16 上海师范大学 Yolk-eggshell structured catalyst and preparation method and application thereof
DE102013213645A1 (en) * 2013-07-12 2015-01-15 Siemens Aktiengesellschaft Highly filled matrix-bonded anisotropic high-performance permanent magnets and method for their production
WO2016009926A1 (en) * 2014-07-17 2016-01-21 国立大学法人東京大学 Magnetic material loaded with magnetic alloy particles and method for producing said magnetic material
CN105664887A (en) * 2016-03-14 2016-06-15 中国地质大学(武汉) Preparation method of functional magnetic silicon balls
KR20180072650A (en) * 2018-06-22 2018-06-29 대구대학교 산학협력단 Oxygen-reduction electrocatalyst based on asymmetrical core-shell nanoparticle structure and preparing method of the same
JP2018172778A (en) * 2011-09-12 2018-11-08 国立研究開発法人産業技術総合研究所 Continuous synthesizing method of core shell structure nanoparticle with metal core and oxide shell, continuous synthesizing device and core shell structure nanoparticle
KR20190012141A (en) * 2016-06-02 2019-02-08 엠. 테크닉 가부시키가이샤 Silicon compound coated metal fine particles
CN112467138A (en) * 2020-09-09 2021-03-09 珠海中科兆盈丰新材料科技有限公司 Aluminum-doped silicon-carbon composite material, preparation method thereof and lithium ion battery
CN113020589A (en) * 2021-02-26 2021-06-25 昆山宝创新能源科技有限公司 Stable metal lithium powder and preparation method and application thereof
WO2021150720A1 (en) * 2020-01-21 2021-07-29 Nanoclear Technologies, Inc. Monolayer deposition of nanoparticles

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136457A1 (en) * 2010-04-28 2011-11-03 광주과학기술원 Method for manufacturing a gold core/insulator shell nanostructure using a novel peptide
KR101223659B1 (en) 2010-04-28 2013-01-17 광주과학기술원 Method for Synthesizing Gold-insulator Core-shell Nanostructure Using Novel Peptide
JP2018172778A (en) * 2011-09-12 2018-11-08 国立研究開発法人産業技術総合研究所 Continuous synthesizing method of core shell structure nanoparticle with metal core and oxide shell, continuous synthesizing device and core shell structure nanoparticle
DE102013213645A1 (en) * 2013-07-12 2015-01-15 Siemens Aktiengesellschaft Highly filled matrix-bonded anisotropic high-performance permanent magnets and method for their production
CN103920491A (en) * 2014-03-05 2014-07-16 上海师范大学 Yolk-eggshell structured catalyst and preparation method and application thereof
WO2016009926A1 (en) * 2014-07-17 2016-01-21 国立大学法人東京大学 Magnetic material loaded with magnetic alloy particles and method for producing said magnetic material
JPWO2016009926A1 (en) * 2014-07-17 2017-05-25 国立大学法人 東京大学 Magnetic material carrying magnetic alloy particles and method for producing the magnetic material
US20170213624A1 (en) * 2014-07-17 2017-07-27 Tanaka Kikinzoku Kogyo K.K. Magnetic material loaded with magnetic alloy particles and method for producing said magnetic material
CN105664887A (en) * 2016-03-14 2016-06-15 中国地质大学(武汉) Preparation method of functional magnetic silicon balls
KR102366636B1 (en) * 2016-06-02 2022-02-23 엠. 테크닉 가부시키가이샤 Silicon compound-coated metal microparticles
KR20190012141A (en) * 2016-06-02 2019-02-08 엠. 테크닉 가부시키가이샤 Silicon compound coated metal fine particles
KR102507578B1 (en) 2016-06-02 2023-03-08 엠. 테크닉 가부시키가이샤 Silicon compound-coated metal particles
KR20220028151A (en) * 2016-06-02 2022-03-08 엠. 테크닉 가부시키가이샤 Silicon compound-coated metal particles
KR20180072650A (en) * 2018-06-22 2018-06-29 대구대학교 산학협력단 Oxygen-reduction electrocatalyst based on asymmetrical core-shell nanoparticle structure and preparing method of the same
KR102183156B1 (en) 2018-06-22 2020-11-25 대구대학교 산학협력단 Oxygen-reduction electrocatalyst based on asymmetrical core-shell nanoparticle structure and preparing method of the same
WO2021150720A1 (en) * 2020-01-21 2021-07-29 Nanoclear Technologies, Inc. Monolayer deposition of nanoparticles
US11890640B2 (en) 2020-01-21 2024-02-06 Nanoclear Technologies, Inc. Monolayer deposition of nanoparticles
CN112467138A (en) * 2020-09-09 2021-03-09 珠海中科兆盈丰新材料科技有限公司 Aluminum-doped silicon-carbon composite material, preparation method thereof and lithium ion battery
CN113020589A (en) * 2021-02-26 2021-06-25 昆山宝创新能源科技有限公司 Stable metal lithium powder and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2010001555A (en) Nanoparticle coated with silica, nanoparticle deposited substrate, and method for producing them
Li et al. Efficient synthesis of carbon nanotube–nanoparticle hybrids
Guerrero‐Martínez et al. Recent progress on silica coating of nanoparticles and related nanomaterials
KR101765585B1 (en) Ceramic hybrid coating film, ceramic hybrid multi-layer coating film, method for preparing the same, and head lamp for automobile including the same
US6548264B1 (en) Coated nanoparticles
KR20170024378A (en) Graphene-containing organic-inorganic hybrid coating film, and method for preparing the same
Phillips et al. Nanocrystalline Precursors for the Co‐Assembly of Crack‐Free Metal Oxide Inverse Opals
Liu et al. Rational synthesis and tailored optical and magnetic characteristics of Fe 3 O 4–Au composite nanoparticles
KR101765587B1 (en) Coating composition for preparing graphene oxide-containing organic-inorganic hybrid coating film, and method for preparing the same
US20070053824A1 (en) Method of forming carbon nanotubes
US20060204754A1 (en) Metal nano-particles coated with silicon oxide and manufacturing method thereof
US20090078914A1 (en) Methods and devices for electrophoretic deposition of a uniform carbon nanotube composite film
JP5673895B1 (en) Core-shell type nanoparticles and method for producing the same
US8735174B2 (en) Coated colloidal materials
Xue et al. A facile method to prepare a series of SiO2@ Au core/shell structured nanoparticles
Irzhak The interphase layer in polymer nanocomposites
JP2010138018A (en) Carbon nanotube coated uniformly with ultrathin nanoprecise organically modified silica layer
WO2009031714A1 (en) Solvent-dispersible particle
Wu et al. An imine-based approach to prepare amine-functionalized Janus gold nanoparticles
TWI403464B (en) Preparation of Core - shell Structure Composite Particles
KR100809694B1 (en) Method for producing carbon nanotubes
JP2008001941A (en) Composite material, and its manufacturing method
JP6097490B2 (en) Method for producing oxide
JP5315704B2 (en) Fine particle-filled mesoporous body and method for producing the same
KR101726077B1 (en) Composite of inorganic paticle-catechol and method for preparing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906