WO2013039026A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2013039026A1
WO2013039026A1 PCT/JP2012/073017 JP2012073017W WO2013039026A1 WO 2013039026 A1 WO2013039026 A1 WO 2013039026A1 JP 2012073017 W JP2012073017 W JP 2012073017W WO 2013039026 A1 WO2013039026 A1 WO 2013039026A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
straight
channel
power module
straight flow
Prior art date
Application number
PCT/JP2012/073017
Other languages
French (fr)
Japanese (ja)
Inventor
和也 横山
晃伸 中條
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2013533653A priority Critical patent/JP6281840B2/en
Publication of WO2013039026A1 publication Critical patent/WO2013039026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a work machine equipped with a power conversion device having a cooling function.
  • hybrid work machines equipped with an engine and electric motor have been developed.
  • an inverter power converter
  • IPM internal magnet embedded
  • a DC-DC converter is used to control charging / discharging of the battery.
  • a U-shaped curved cooling pipe is used.
  • cooling pipe When the cooling pipe is bent, the internal flow is separated. When separation occurs in the flow, the cooling capacity of the portion decreases. For this reason, the cooling capacity varies depending on the location, and sufficient cooling capacity may not be obtained depending on the location. A partial decrease in cooling capacity causes a failure of a semiconductor element or the like used in the power conversion device. In particular, since the work machine may be used in a severe environment of high temperature, it is desirable to ensure a sufficient cooling capacity.
  • a cooling plate including a flow path for flowing a cooling medium;
  • a work machine equipped with a power converter having a power module attached to the cooling plate and thermally coupled to the cooling plate,
  • the flow path is disposed at a side of the first linear flow path for flowing the cooling medium in a first direction, and a second direction opposite to the first direction.
  • the second straight flow path for flowing the cooling medium through the first straight flow path, the first straight flow path, and the second straight flow path are changed, and the traveling direction of the cooling medium flowing through the first straight flow path is changed.
  • a work machine is provided in which the area of the region where the second straight channel and the power module overlap is larger than the area of the region where the first straight channel and the power module overlap.
  • a cooling plate including a flow path for flowing a cooling medium;
  • a work machine equipped with a power converter having a power module attached to the cooling plate and thermally coupled to the cooling plate,
  • the flow path is disposed at a side of the first linear flow path for flowing the cooling medium in a first direction, and a second direction opposite to the first direction.
  • the second straight flow path for flowing the cooling medium through the first straight flow path, the first straight flow path, and the second straight flow path are changed, and the traveling direction of the cooling medium flowing through the first straight flow path is changed.
  • a curved flow path that flows into the second straight flow path With respect to the width direction of the first straight flow path, the power module passes through the center of curvature of the portion having the minimum curvature radius of the curved flow path and is based on a virtual straight line parallel to the first direction.
  • a work machine is provided that is mounted at a position biased toward the second straight flow path.
  • ⁇ Local temperature rise of the power module can be suppressed. Thereby, the reliability of a power converter device can be improved. As a result, the work machine can be continuously operated.
  • FIG. 1A is a plan view of the power conversion apparatus according to the first embodiment
  • FIGS. 1B and 1C are cross-sectional views taken along one-dot chain lines 1B-1B and 1C-1C in FIG. 1A, respectively.
  • FIG. 2 is a diagram illustrating a simulation result of the temperature distribution of the cooling plate and the flow velocity in the flow path of the power conversion device according to the first embodiment.
  • FIG. 3 is a diagram illustrating a simulation result of the temperature distribution of the cooling plate of the power converter according to the comparative example and the flow velocity in the flow path.
  • 4A and 4B are cross-sectional views of the power converter according to the second embodiment.
  • 5A is a plan view of the power conversion device according to the third embodiment, and FIG.
  • FIG. 5B is a cross-sectional view taken along one-dot chain line 5B-5B in FIG. 5A.
  • 6A and 6B are plan views of the power converter according to the fourth embodiment.
  • FIG. 7 is a plan view of the power converter according to the fifth embodiment.
  • 8A and 8B are cross-sectional views of a power conversion device according to the sixth embodiment and its modification, respectively.
  • FIG. 9 is a plan view of the work machine according to the seventh embodiment.
  • FIG. 10 is a side view of the work machine according to the seventh embodiment.
  • FIG. 11 is a side view of the work machine according to the eighth embodiment.
  • FIG. 1A is a plan view of the power conversion apparatus according to the first embodiment.
  • the power module 50 is fixed to the surface of the cooling plate 20 and is thermally coupled to the cooling plate 20.
  • the power module 50 is an electronic component such as an inverter circuit or a converter circuit, and includes a semiconductor element such as an insulated gate bipolar transistor (IGBT).
  • IGBT insulated gate bipolar transistor
  • a cooling channel 21 is formed inside the cooling plate 20.
  • the cooling flow path 21 includes a first straight flow path 21B connected to the cooling medium introduction pipe 23 and extending in a first direction (right direction in FIG. 1A).
  • a second straight channel 21D is formed on the side of the first straight channel 21B (upward in FIG. 1A).
  • the curved channel 21C continues from the downstream end of the first linear channel 21B to the upstream end of the second linear channel 21D.
  • the cooling medium that has flowed through the first straight flow path 21B changes the traveling direction in the curved flow path 21C and flows into the second straight flow path 21D.
  • a downstream end 21 ⁇ / b> E of the second straight channel 21 ⁇ / b> D is connected to the cooling medium discharge pipe 24.
  • the vicinity of the upstream end 21A of the first straight channel 21B is tapered so that the width increases toward the downstream.
  • the width W of the first straight channel 21B other than the tapered portion is constant.
  • the vicinity of the downstream end 21E of the second straight channel 21D is tapered so that the width increases toward the upstream.
  • the width of the second straight channel 21D other than the tapered portion is equal to the width W of the first straight channel 21B.
  • the width of the curved channel 21C is also equal to the width W of the first straight channel 21B.
  • the tapered portion functions as a runway until the turbulent flow becomes stable when the cross section of the flow path suddenly changes.
  • the length of the runway is preferably about 10 times the equivalent pipe diameter.
  • A is the cross-sectional area of the first straight channel 21B
  • Wp is the wet edge length of the first straight channel 21B (the length of the wall surface in the channel cross section).
  • the area of the region A2 where the second straight channel 21D and the power module 50 overlap is larger than the area of the region A1 where the first straight channel 21B and the power module 50 overlap.
  • the power module 50 is arranged so as to be biased toward the second straight flow path 21D with reference to an imaginary straight line passing through the center of curvature CC of the curved flow path 21C and parallel to the first direction. That is, the center line 50C of the power module 50 is shifted to the second straight flow path 21D side with respect to the virtual straight line IL passing through the center of curvature CC and parallel to the first direction.
  • the entire area of the second straight channel 21D overlaps the power module 50 in the width direction.
  • only a part of the first straight channel 21B overlaps the power module 50 in the width direction. More specifically, the path outside the first straight channel 21 ⁇ / b> B does not overlap the power module 50.
  • the power module 50 includes a metal base plate 51 and a semiconductor element 52 attached thereon.
  • the semiconductor element 52 is, for example, an IGBT or the like.
  • the semiconductor element 52 is sealed with a resin 53.
  • the power module 50 is fixed to the cooling plate 20 with the base plate 51 facing the cooling plate 20.
  • FIG. 1B shows an example in which two semiconductor elements 52 are incorporated in one power module 50, three or more semiconductor elements may be incorporated. Six semiconductor elements are incorporated in the power module 50 that drives the three-phase AC motor.
  • a cooling channel 21 is formed inside the cooling plate 20.
  • a first straight channel 21B and a second straight channel 21D appear in the cross section shown in FIG. 1B, and a curved channel 21C appears in the cross section shown in FIG. 1C.
  • the cross section of the cooling flow path 21 has a flat shape with the smallest dimension in the thickness direction of the cooling plate 20. That is, the dimension H in the thickness direction of the cooling channel 21 is smaller than the dimension W in the width direction.
  • the center line 50C of the power module 50 is shifted to the second straight flow path 21D side with respect to the curvature center CC.
  • a ridge-like convex portion 21F is formed on the upper surface of the cooling flow channel 21 (the surface closer to the surface to which the power module 50 is attached) along the flow direction of the cooling medium.
  • the cooling channel 21 can be formed by casting aluminum.
  • the radius of curvature is limited by the diameter of the pipe.
  • the radius of curvature of the curved flow path 21C can be freely set.
  • FIG. 2 shows a simulation result of the temperature distribution of the cooling plate 20 of the power converter according to the first embodiment and the flow velocity in the cooling flow path 21.
  • a region VL having a relatively low flow velocity, a region VM having a medium flow velocity, and a region VH having a high flow velocity are shown by changing the hatch interval.
  • isotherms T1 to T10 are indicated by broken lines at a temperature interval of 2 ° C. The temperature of the isotherm T1 is the lowest and the temperature of the isotherm T10 is the highest.
  • the flow velocity of the path that flows into the curved flow path 21C from the inner path in the first linear flow path 21B and goes to the outer path in the second straight flow path 21D is relatively fast.
  • the flow velocity of the path that leads from the outer path in the first straight flow path 21B to the outer path in the curved flow path 21C and the flow speed of the inner path in the second straight flow path 21D are relatively I understand that it is slow. In the region where the flow rate is low, the cooling capacity is relatively low, and in the region where the flow rate is high, the cooling capacity is relatively high.
  • FIG. 3 shows a simulation result of the temperature distribution of the cooling plate 20 of the power conversion device according to the comparative example and the flow velocity in the cooling flow path 21.
  • the shape of the cooling channel 21 of the comparative example is the same as that of the first embodiment.
  • the area of the region overlapping with the first straight flow path 21B is equal to the area of the region overlapping with the second straight flow path 21D.
  • the center of curvature CC is located on the center line 50C of the power module 50.
  • the power module 50 overlaps with the first straight flow path 21B in the entire width direction of the first straight flow path 21B.
  • Isothermal lines T1 to T15 are indicated by broken lines at a temperature interval of 2 ° C.
  • the temperature of the isotherm T1 is the lowest and the temperature of the isotherm T15 is the highest.
  • the temperature of the region corresponding to the outer path in the first straight channel 21B is high. This is due to the low cooling capacity of this part due to the slow flow rate.
  • Example 1 as shown in FIG. 2, the power module 50 is not disposed on the outer path in the first straight flow path 21B. For this reason, the remarkable raise of the temperature of the area
  • the flow velocity of the inner path in the second straight channel 21D is also slow, this part is close to the first straight channel 21B. For this reason, a decrease in the cooling capacity due to the cooling medium flowing in the inner path in the second straight flow path 21D is compensated by the cooling medium flowing in the inner path in the first straight flow path 21B.
  • the comparative example shown in FIG. 3 there is no flow path further outside the outer path in the first straight flow path 21 ⁇ / b> B. . Thereby, it is considered that the temperature of the corresponding portion in the outer path in the first straight channel 21B is remarkably increased.
  • a local temperature increase of the power module 50 can be suppressed and the reliability can be improved.
  • the edge of the power module 50 is disposed between the first straight channel 21B and the second straight channel 21D.
  • the cooling flow path 21 flat in the thickness direction is formed.
  • the area where the power module 50 and the cooling channel 21 overlap can be widened.
  • 60% or more of the power module 50 can be configured to overlap the cooling channel 21.
  • the area of the overlapping area is 60% or more of the area of the power module 50.
  • the radius of curvature is limited by the diameter of the pipe. For this reason, it is difficult to make the area of the power module 50 that overlaps the cooling pipeline 40% or more of the entire power module.
  • Example 2 4A and 4B are sectional views of the power converter according to the second embodiment.
  • the top view of the power converter device by Example 2 is the same as the top view of Example 1 shown to FIG. 1A.
  • FIGS. 1B and 1C are cross-sectional views taken along one-dot chain lines 1B-1B and 1C-1C in FIG. 1A, respectively.
  • Example 2 the convex portion 21F illustrated in FIGS. 1B and 1C is not formed, and the bottom surface and the top surface of the cooling channel 21 are both flat.
  • the center line 50C of the power module 50 is shifted to the second straight flow path 21D side with respect to the curvature center CC.
  • the relative positional relationship between the cooling flow path 21 and the power module 50 in a plan view is the same as the relationship of the first embodiment. For this reason, like Example 1, the local temperature rise of the power module 50 can be suppressed and reliability can be improved.
  • FIG. 5A is a plan view of the power conversion device according to the third embodiment.
  • differences from the power conversion apparatus according to the first embodiment illustrated in FIGS. 1A to 1C will be described, and description of the same configuration will be omitted.
  • Example 3 the first linear flow channel 21B is separated into an inner flow channel 21Ba and an outer flow channel 21Bb arranged outside the first flow channel 21B in the width direction.
  • the sum of the width W1 of the inner channel 21Ba and the width W2 of the outer channel 21Bb is the same as the width W of the second straight channel 21D.
  • the curved channel 21C is also separated into the inner channel 21Ca and the outer channel 21Cb.
  • the widths of the inner channel 21Ca and the outer channel 21Cb are the same as the widths of the inner channel 21Ba and the outer channel 21Bb, respectively.
  • the inner channel 21Ca and the outer channel 21Cb gradually approach toward the downstream and merge into one channel until reaching the upstream end of the second linear channel 21D.
  • the power module 50 overlaps the inner flow path 21Ba in the first straight flow path 21B, but does not overlap the outer flow path 21Bb.
  • a portion corresponding to the inner path in the outer flow path 21Bb may overlap the power module 50. Also in this case, the portion corresponding to the outer path in the outer flow path 21Bb does not overlap the power module 50.
  • the power module 50 is fixed to the cooling plate 20 with screws 55. Some screws 55 are disposed between the inner flow path 21Ba and the outer flow path 21Bb.
  • FIG. 5B shows a cross-sectional view taken along one-dot chain line 5B-5B in FIG. 5A.
  • the 1st linear flow path 21B and the 2nd linear flow path 21D are formed.
  • the first straight channel 21B is separated into an inner channel 21Ba and an outer channel 21Bb.
  • Some screws 55 are arranged between the inner flow path 21Ba and the outer flow path 21Bb. The screw 55 reaches a position deeper than the upper surface of the first straight channel 21B.
  • the upper surface of the cooling channel 21 may have a shape in which a convex portion 21F is formed as shown in FIGS. 1B and 1C, or may be flat as shown in FIGS. 4A and 4B.
  • Example 3 the power module 50 overlaps only a part of the first linear flow path 21B, and the path outside the first linear flow path 21B does not overlap the power module 50. For this reason, like Example 1, the local temperature rise of the power module 50 can be suppressed and reliability can be improved.
  • the cooling plate 20 interposed between the cooling flow path 21 and the power module 50 may be made as thin as possible. preferable. It is difficult to attach the screw 55 to the thinned portion.
  • a thick portion for inserting the screw 55 can be secured.
  • the interval between the inner channel 21Ba and the outer channel 21Bb needs to be sufficient to insert and fix the screw 55. However, in order not to disturb the flow of the cooling medium, it is preferable to set the distance between the two to 100 mm or less. Similarly to the first embodiment, the distance from the edge of the power module 50 to the outer edge of the outer flow path 21Bb of the first linear flow path 21B is preferably set to 1/4 or more of the width W.
  • FIG. 6A is a plan view of the power conversion device according to the fourth embodiment.
  • differences from the power conversion apparatus according to the first embodiment illustrated in FIGS. 1A to 1C will be described, and description of the same configuration will be omitted.
  • Example 1 only one curved channel 21C is arranged, but in Example 4, a plurality of curved channels are arranged. That is, the cooling flow path 21 has a meandering shape in which straight flow paths and curved flow paths are alternately continued.
  • the most upstream straight flow path 21B may be considered in association with the first straight flow path 21B of the first embodiment.
  • the power module 50 overlaps only a part of the most upstream linear flow channel 21B in the width direction of the cooling flow channel 21, and the outer path in the most upstream linear flow channel 21B overlaps the power module 50. Absent.
  • the entire area of the straight flow path other than the most upstream straight flow path overlaps the power module 50 in the width direction.
  • the center line 50C of the power module 50 is downstream of the virtual straight line IL passing through the center of curvature CC of the central curved flow path 21C and parallel to the longitudinal direction of the straight flow path 21B. It is shifted to the side of the straight flow path on the side.
  • Example 4 an outer path in the most upstream linear flow path 21 ⁇ / b> B exists outside the edge of the power module 50. For this reason, like Example 1, the local temperature rise of the power module 50 can be suppressed and reliability can be improved.
  • the edge of the power module 50 is between the most upstream linear flow path 21B and the adjacent straight flow path 21D (corresponding to the second straight flow path 21D of the first embodiment).
  • the power module 50 may be attached to the cooling plate 20 so as to be disposed.
  • the power module 50 passes through the center of curvature CC of the central curved flow path 21C and is parallel to the virtual straight line IL parallel to the longitudinal direction of the straight flow path 21B.
  • the center line 50C is shifted to the downstream straight channel side.
  • Example 5 In FIG. 7, the top view of the power converter device by Example 5 is shown. Hereinafter, differences from the power conversion apparatus according to the first embodiment illustrated in FIGS. 1A to 1C will be described, and description of the same configuration will be omitted.
  • the cooling channel 21 includes a first linear channel 21B, a curved channel 21C, and a second linear channel 21D.
  • the first straight channel 21B allows the cooling medium to flow in a first direction (upward in FIG. 7).
  • the second straight channel 21D is disposed on the side of the first straight channel 21B, and allows the cooling medium to flow in a direction opposite to the first direction (downward in FIG. 7).
  • the curved channel 21C connects the downstream end of the first linear channel 21B to the upstream end of the second linear channel 21D.
  • 21 C of curved flow paths are once curved in the direction away from 2nd linear flow path 21D as it leaves
  • the power module 50 is related to the width direction of the first linear channel 21B. It is attached at a position biased toward the second straight channel 21D. In the fifth embodiment, both the first straight flow path 21B and the second straight flow path 21D overlap the power module 50 in the entire area in the width direction.
  • the virtual straight line IL passing through the center of curvature CC of the curved flow path 21C and parallel to the longitudinal direction of the straight flow path 21B and the center line 50C of the power module 50 are shifted from each other, as in the first embodiment. Yes.
  • the curved flow path 21C is once curved outward, the flow velocity of the outer path in the first straight flow path 21B is not slow compared to the example shown in FIG. For this reason, the dispersion
  • FIG. 8A shows a cross-sectional view of the power converter according to the sixth embodiment.
  • the cooling plate 20 and the power module 50 have the same configuration as the power conversion device according to any one of the first to fifth embodiments.
  • a cooling channel 21 is formed in the cooling plate 20.
  • a curved channel 21C appears in the cross section shown in FIG.
  • a cooling medium discharge pipe 24 is connected to the cooling flow path 21.
  • the cooling medium introduction pipe 23 (FIG. 1A) does not appear in the cross section of FIG.
  • the cooling plate 20 and the power module 50 are accommodated in the housing 60.
  • the housing 60 includes a lower container 61 and an upper lid 62.
  • the cooling plate 20 is fixed to the bottom surface of the lower container 61.
  • the upper lid 62 closes the opening of the lower container 61.
  • the cooling medium introduction pipe 23 and the cooling medium discharge pipe 24 pass through the side surface of the lower container 61 and are led out to the outside of the housing 60.
  • cooling plate 20 and the lower container 61 may be integrally cast.
  • FIG. 9 is a plan view of an excavator as an example of the work machine according to the seventh embodiment.
  • An upper swing body 70 is attached to the lower traveling body 71 via a swing bearing 73.
  • the upper swing body 70 includes an engine 74, a main pump 75, a swing electric motor 76, an oil tank 77, a cooling fan 78, a seat 79, a power storage module 80, a motor generator 83, a motor generator inverter 90, A turning inverter 91 and a condenser converter 92 are mounted.
  • the engine 74 generates power by burning fuel.
  • the engine 74, the main pump 75, and the motor generator 83 transmit and receive torque to and from each other via the torque transmission mechanism 81.
  • the main pump 75 supplies pressure oil to a hydraulic cylinder such as the boom 82.
  • the motor generator 83 is driven by the power of the engine 74 to generate power (power generation operation).
  • the generated power is supplied to the power storage module 80, and the power storage module 80 is charged.
  • the motor generator 83 is driven by the electric power from the power storage module 80 and generates power for assisting the engine 74 (assist operation).
  • the oil tank 77 stores oil of the hydraulic circuit.
  • the cooling fan 78 suppresses an increase in the oil temperature of the hydraulic circuit. The operator sits on the seat 79 and operates the hybrid excavator.
  • a power conversion device is used for the motor generator inverter 90, the turning inverter 91, and the capacitor converter 92.
  • FIG. 10 shows a partially broken side view of the shovel according to the seventh embodiment.
  • An upper swing body 70 is mounted on the lower traveling body 71 via a swing bearing 73.
  • the upper swing body 70 includes a swing frame 70A, a cover 70B, and a cabin 70C.
  • the swivel frame 70A functions as a support structure for the cabin 70C and various components.
  • the cover 70B covers various components mounted on the turning frame 70A, for example, the power storage module 80, the condenser converter 92, and the like.
  • a seat 79 (FIG. 9) is accommodated in the cabin 70C.
  • the turning electric motor 76 (FIG. 9) turns the turning frame 70A to be driven clockwise or counterclockwise with respect to the lower traveling body 71.
  • a boom 82 is attached to the upper swing body 70.
  • the boom 82 swings up and down with respect to the upper swing body 70 by a hydraulically driven boom cylinder 107.
  • An arm 85 is attached to the tip of the boom 82.
  • the arm 85 swings in the front-rear direction with respect to the boom 82 by an arm cylinder 108 that is hydraulically driven.
  • a bucket 86 is attached to the tip of the arm 85.
  • the bucket 86 swings in the vertical direction with respect to the arm 85 by a hydraulically driven bucket cylinder 109.
  • the power storage module 80 is mounted on the turning frame 70 ⁇ / b> A via a power storage module mount 95 and a damper (vibration isolation device) 96.
  • the capacitor converter 92 is mounted on the turning frame 70 ⁇ / b> A via a converter mount 97 and a damper 98.
  • Cover 70 ⁇ / b> B covers power storage module 80.
  • the turning electric motor 76 (FIG. 9) is driven by the electric power supplied from the power storage module 80. In addition, the turning electric motor 76 generates regenerative electric power by converting kinetic energy into electric energy.
  • the power storage module 80 is charged by the generated regenerative power.
  • FIG. 11 is a partially cutaway side view of a cargo handling work vehicle (forklift) as an example of the work machine according to the eighth embodiment.
  • the cargo handling work vehicle according to the eighth embodiment includes a fork 111, wheels 112, an instrument panel 113, a handle 114, a lever 115, and a seat 116.
  • a traveling motor inverter 120 and a condenser converter 121 are mounted on the chassis via a damper or the like. Any one of the power conversion devices of the first to sixth embodiments is used for the inverter 120 for the traveling motor and the converter 121 for the electric storage device.
  • the travel motor inverter 120 supplies power to the travel motor.
  • the capacitor converter 121 charges and discharges the capacitor.
  • the driver gets on the seat 116 and operates the handle 114, the plurality of levers 115, the accelerator pedal, the brake pedal, and other various switches.
  • operations such as raising and lowering the fork 111, advancing and retreating the cargo handling work vehicle, and turning right and left are performed.
  • By combining these operations it is possible to load and unload packages and carry them.
  • the power conversion device Since the power conversion device according to any one of the first to sixth embodiments is used, the local increase in the temperature of the power module in the inverter for driving motor 120 and the converter for capacitor 121 is suppressed, and the reliability is improved. Can do.
  • the power module 50 (for example, FIGS. 1A to 1C) included in the power converters according to the first to sixth embodiments described above has only one phase of the three-phase AC motor (one of the U phase, the V phase, and the W phase).
  • three power converters may be prepared corresponding to the U phase, the V phase, and the W phase.
  • a three-phase power converter for a three-phase AC motor can be configured.
  • a configuration in which a plurality of (for example, three) power converters including the power module 50 and the cooling plate 20 shown in the first to sixth embodiments are stacked in the vertical direction (thickness direction of the cooling plate 20) may be employed. Good.
  • Example 1 Based on the above-mentioned Example 1 to Example 8, the invention described in the following supplementary notes is disclosed.
  • a cooling plate including a flow path for flowing a cooling medium; A power module attached to the cooling plate and thermally coupled to the cooling plate; The flow path is disposed at a side of the first linear flow path for flowing the cooling medium in a first direction, and a second direction opposite to the first direction.
  • the second straight flow path for flowing the cooling medium through the first straight flow path, the first straight flow path, and the second straight flow path are changed, and the traveling direction of the cooling medium flowing through the first straight flow path is changed.
  • a curved flow path that flows into the second straight flow path, The power conversion device, wherein an area of a region where the second straight channel and the power module overlap is larger than an area of a region where the first straight channel and the power module overlap.
  • the width of the first straight flow path is equal to the width of the second straight flow path, and the second straight flow is related to the width direction of the first straight flow path and the second straight flow path.
  • the power conversion device according to attachment 2 wherein an entire area of the road overlaps with the power module, but at least a part of the first straight flow path does not overlap with the power module in the width direction.
  • the first straight channel is separated into an outer channel and an inner channel with respect to the width direction, and the outer channel and the inner channel are the second linear channel in the curved channel. 3.
  • Appendix 4 The power conversion device according to any one of appendices 1 to 3, wherein a ridge-like convex portion along a flow direction of the cooling medium is formed on an inner surface of the flow path on a side where the power module is attached. .
  • a cooling plate including a flow path for flowing a cooling medium; A power module attached to the cooling plate and thermally coupled to the cooling plate; The flow path is disposed at a side of the first linear flow path for flowing the cooling medium in a first direction, and a second direction opposite to the first direction.
  • the second straight flow path for flowing the cooling medium through the first straight flow path, the first straight flow path, and the second straight flow path are changed, and the traveling direction of the cooling medium flowing through the first straight flow path is changed.
  • a curved flow path that flows into the second straight flow path With respect to the width direction of the first straight flow path, the power module passes through the center of curvature of the portion having the minimum curvature radius of the curved flow path and is based on a virtual straight line parallel to the first direction.
  • the power converter attached to the position biased toward the second straight flow path.
  • Cooling plate 21 Flow path 21A Upstream end 21B First straight flow path (most upstream straight flow path) 21Ba Inner channel 21Bb Outer channel 21C Curved channel 21D Second linear channel 21E Downstream end 21F Convex portion 21G Most downstream linear channel 23 Cooling medium introduction pipe 24 Cooling medium discharge pipe 50 Power module 51 Base plate 52 Semiconductor element 53 Sealing resin 55 Screw 60 Housing 61 Lower container 62 Upper lid 70 Upper turning body 70A Turning frame 70B Cover 70C Cabin 71 Lower traveling body 73 Turning bearing 74 Engine 75 Main pump 76 Turning electric motor 77 Oil tank 78 Cooling fan 79 Seat 80 Power storage module 81 Torque transmission mechanism 82 Boom 83 Motor generator 85 Arm 86 Bucket 90 Motor generator inverter 91 Turning inverter 92 Capacitor converter 95 Storage module mount 96 Damper (anti-vibration device) 97 Mount for converter 98 Damper 107 Boom cylinder 108 Arm cylinder 109 Bucket cylinder 111 Fork 112 Wheel 113 Instrument panel 114

Abstract

Flow paths for a cooling medium are formed in a cooling plate. A power module is attached to the cooling plate and is thermally bonded to the cooling plate. The flow paths include: a first straight flow path that causes the cooling medium to flow in a first direction; a second straight flow path arranged to the side of the first straight flow path, and which causes the cooling medium to flow in a second direction opposite to the first direction; and a curved flow path connected to the first straight flow path and the second straight flow path, that changes the direction of progress for the cooling medium that has flowed along the first straight flow path, and causes same to flow along the second straight flow path. The area of the region where the second straight flow path and the power module overlap is larger than the area of the region where the first straight flow path and the power module overlap. A power conversion device including the cooling plate and the power module is mounted in a work machine.

Description

作業機械Work machine
 本発明は、冷却機能を備えた電力変換装置を搭載した作業機械に関する。 The present invention relates to a work machine equipped with a power conversion device having a cooling function.
 近年、エンジンと電動機を搭載したハイブリッド型作業機械の開発が進められている。ハイブリッド型作業機械において、内部磁石埋込型(IPM)モータ等の同期電動機の駆動に、直流電力を交流電力に変換するインバータ(電力変換装置)が用いられる。また、蓄電器の充放電の制御に、DC-DCコンバータが用いられる。インバータやDC-DCコンバータ等の電力変換装置を冷却するために、U字状に湾曲した冷却用配管が用いられる。 In recent years, hybrid work machines equipped with an engine and electric motor have been developed. In a hybrid work machine, an inverter (power converter) that converts DC power into AC power is used to drive a synchronous motor such as an internal magnet embedded (IPM) motor. In addition, a DC-DC converter is used to control charging / discharging of the battery. In order to cool a power converter such as an inverter or a DC-DC converter, a U-shaped curved cooling pipe is used.
特開2010-187526号公報JP 2010-187526 A 特開2010-11671号公報JP 2010-11671 A
 冷却用配管を湾曲させると、その内部の流れに剥離が生じる。流れに剥離が生じると、その部分の冷却能力が低下する。このため、冷却能力に、場所によるばらつきが生じ、場所によって十分な冷却能力が得られない場合がある。冷却能力の部分的な低下は、電力変換装置に用いられている半導体素子等の故障の原因になる。特に、作業機械は、高温の過酷な環境下で使用される場合があるため、十分な冷却能力を確保しておくことが望まれる。 ¡When the cooling pipe is bent, the internal flow is separated. When separation occurs in the flow, the cooling capacity of the portion decreases. For this reason, the cooling capacity varies depending on the location, and sufficient cooling capacity may not be obtained depending on the location. A partial decrease in cooling capacity causes a failure of a semiconductor element or the like used in the power conversion device. In particular, since the work machine may be used in a severe environment of high temperature, it is desirable to ensure a sufficient cooling capacity.
 本発明の一観点によると、
 冷却媒体を流す流路を含む冷却板と、
 前記冷却板に取り付けられて、該冷却板に熱的に結合するパワーモジュールと
を有する電力変換装置が搭載された作業機械であって、
 前記流路は、第1の向きに冷却媒体を流す第1の直線流路と、前記第1の直線流路の側方に配置され、前記第1の向きとは反対向きの第2の向きに冷却媒体を流す第2の直線流路と、前記第1の直線流路及び前記第2の直線流路に連続し、前記第1の直線流路を流れてきた冷却媒体の進行方向を変えて、前記第2の直線流路に流入させる湾曲流路とを含み、
 前記第2の直線流路と前記パワーモジュールとが重なる領域の面積が、前記第1の直線流路と前記パワーモジュールとが重なる領域の面積より大きい作業機械が提供される。
According to one aspect of the invention,
A cooling plate including a flow path for flowing a cooling medium;
A work machine equipped with a power converter having a power module attached to the cooling plate and thermally coupled to the cooling plate,
The flow path is disposed at a side of the first linear flow path for flowing the cooling medium in a first direction, and a second direction opposite to the first direction. The second straight flow path for flowing the cooling medium through the first straight flow path, the first straight flow path, and the second straight flow path are changed, and the traveling direction of the cooling medium flowing through the first straight flow path is changed. A curved flow path that flows into the second straight flow path,
A work machine is provided in which the area of the region where the second straight channel and the power module overlap is larger than the area of the region where the first straight channel and the power module overlap.
 本発明の他の観点によると、
 冷却媒体を流す流路を含む冷却板と、
 前記冷却板に取り付けられて、該冷却板に熱的に結合するパワーモジュールと
を有する電力変換装置が搭載された作業機械であって、
 前記流路は、第1の向きに冷却媒体を流す第1の直線流路と、前記第1の直線流路の側方に配置され、前記第1の向きとは反対向きの第2の向きに冷却媒体を流す第2の直線流路と、前記第1の直線流路及び前記第2の直線流路に連続し、前記第1の直線流路を流れてきた冷却媒体の進行方向を変えて、前記第2の直線流路に流入させる湾曲流路とを含み、
 前記湾曲流路の最小曲率半径を有する部分の曲率中心を通過し、前記第1の向きと平行な仮想直線を基準として、前記パワーモジュールは、前記第1の直線流路の幅方向に関して、前記第2の直線流路の方に偏った位置に取り付けられている作業機械が提供される。
According to another aspect of the invention,
A cooling plate including a flow path for flowing a cooling medium;
A work machine equipped with a power converter having a power module attached to the cooling plate and thermally coupled to the cooling plate,
The flow path is disposed at a side of the first linear flow path for flowing the cooling medium in a first direction, and a second direction opposite to the first direction. The second straight flow path for flowing the cooling medium through the first straight flow path, the first straight flow path, and the second straight flow path are changed, and the traveling direction of the cooling medium flowing through the first straight flow path is changed. A curved flow path that flows into the second straight flow path,
With respect to the width direction of the first straight flow path, the power module passes through the center of curvature of the portion having the minimum curvature radius of the curved flow path and is based on a virtual straight line parallel to the first direction. A work machine is provided that is mounted at a position biased toward the second straight flow path.
 パワーモジュールの局所的な温度上昇を抑制することができる。これにより、電力変換装置の信頼性を高めることができる。これにより、作業機械を継続的に運転することが可能になる。 ¡Local temperature rise of the power module can be suppressed. Thereby, the reliability of a power converter device can be improved. As a result, the work machine can be continuously operated.
図1Aは、実施例1による電力変換装置の平面図であり、図1B及び図1Cは、それぞれ図1Aの一点鎖線1B-1B、1C-1Cにおける断面図である。1A is a plan view of the power conversion apparatus according to the first embodiment, and FIGS. 1B and 1C are cross-sectional views taken along one-dot chain lines 1B-1B and 1C-1C in FIG. 1A, respectively. 図2は、実施例1による電力変換装置の冷却板の温度分布、及び流路内の流速のシミュレーション結果を示す図である。FIG. 2 is a diagram illustrating a simulation result of the temperature distribution of the cooling plate and the flow velocity in the flow path of the power conversion device according to the first embodiment. 図3は、比較例による電力変換装置の冷却板の温度分布、及び流路内の流速のシミュレーション結果を示す図である。FIG. 3 is a diagram illustrating a simulation result of the temperature distribution of the cooling plate of the power converter according to the comparative example and the flow velocity in the flow path. 図4A及び図4Bは、実施例2による電力変換装置の断面図である。4A and 4B are cross-sectional views of the power converter according to the second embodiment. 図5Aは、実施例3による電力変換装置の平面図であり、図5Bは、図5Aの一点鎖線5B-5Bにおける断面図である。5A is a plan view of the power conversion device according to the third embodiment, and FIG. 5B is a cross-sectional view taken along one-dot chain line 5B-5B in FIG. 5A. 図6A及び図6Bは、実施例4による電力変換装置の平面図である。6A and 6B are plan views of the power converter according to the fourth embodiment. 図7は、実施例5による電力変換装置の平面図である。FIG. 7 is a plan view of the power converter according to the fifth embodiment. 図8A及び図8Bは、それぞれ実施例6及びその変形例による電力変換装置の断面図である。8A and 8B are cross-sectional views of a power conversion device according to the sixth embodiment and its modification, respectively. 図9は、実施例7による作業機械の平面図である。FIG. 9 is a plan view of the work machine according to the seventh embodiment. 図10は、実施例7による作業機械の側面図である。FIG. 10 is a side view of the work machine according to the seventh embodiment. 図11は、実施例8による作業機械の側面図である。FIG. 11 is a side view of the work machine according to the eighth embodiment.
 [実施例1]
 図1Aに、実施例1による電力変換装置の平面図を示す。冷却板20の表面に、パワーモジュール50が固定され、冷却板20に熱的に結合している。パワーモジュール50は、例えばインバータ回路、コンバータ回路等の電子部品であり、絶縁ゲートバイポーラトランジスタ(IGBT)等の半導体素子を含む。
[Example 1]
FIG. 1A is a plan view of the power conversion apparatus according to the first embodiment. The power module 50 is fixed to the surface of the cooling plate 20 and is thermally coupled to the cooling plate 20. The power module 50 is an electronic component such as an inverter circuit or a converter circuit, and includes a semiconductor element such as an insulated gate bipolar transistor (IGBT).
 冷却板20の内部に、冷却用流路21が形成されている。冷却用流路21は、冷却媒体導入管23に接続され、第1の方向(図1Aにおいて右方向)に延びる第1の直線流路21Bを含む。第1の直線流路21Bの側方(図1Aにおいて上方)に、第2の直線流路21Dが形成されている。湾曲流路21Cが、第1の直線流路21Bの下流端から第2の直線流路21Dの上流端に連続する。第1の直線流路21Bを流れてきた冷却媒体が、湾曲流路21Cで進行方向を変えて、第2の直線流路21Dに流れ込む。第2の直線流路21Dの下流端21Eが、冷却媒体排出管24に接続されている。 A cooling channel 21 is formed inside the cooling plate 20. The cooling flow path 21 includes a first straight flow path 21B connected to the cooling medium introduction pipe 23 and extending in a first direction (right direction in FIG. 1A). A second straight channel 21D is formed on the side of the first straight channel 21B (upward in FIG. 1A). The curved channel 21C continues from the downstream end of the first linear channel 21B to the upstream end of the second linear channel 21D. The cooling medium that has flowed through the first straight flow path 21B changes the traveling direction in the curved flow path 21C and flows into the second straight flow path 21D. A downstream end 21 </ b> E of the second straight channel 21 </ b> D is connected to the cooling medium discharge pipe 24.
 第1の直線流路21Bの上流端21Aの近傍は、下流に向かって幅が広くなるテーパ状とされている。テーパ状の部分以外の第1の直線流路21Bの幅Wは一定である。第2の直線流路21Dの下流端21Eの近傍は、上流に向かって幅が広くなるテーパ状とされている。テーパ状の部分以外の第2の直線流路21Dの幅は、第1の直線流路21Bの幅Wと等しい。また、湾曲流路21Cの幅も、第1の直線流路21Bの幅Wと等しい。 The vicinity of the upstream end 21A of the first straight channel 21B is tapered so that the width increases toward the downstream. The width W of the first straight channel 21B other than the tapered portion is constant. The vicinity of the downstream end 21E of the second straight channel 21D is tapered so that the width increases toward the upstream. The width of the second straight channel 21D other than the tapered portion is equal to the width W of the first straight channel 21B. The width of the curved channel 21C is also equal to the width W of the first straight channel 21B.
 テーパ状の部分は、流路断面が急激に変化したときに、乱れた流れが安定になるまでの助走路として機能する。助走路の長さは、等価管直径の10倍程度とすることが好ましい。等価管直径Deは、
 De=4A/Wp
と定義される。ここで、Aは、第1の直線流路21Bの断面積、Wpは、第1の直線流路21Bの濡れ縁長さ(流路断面における壁面の長さ)である。
The tapered portion functions as a runway until the turbulent flow becomes stable when the cross section of the flow path suddenly changes. The length of the runway is preferably about 10 times the equivalent pipe diameter. The equivalent pipe diameter De is
De = 4A / Wp
Is defined. Here, A is the cross-sectional area of the first straight channel 21B, and Wp is the wet edge length of the first straight channel 21B (the length of the wall surface in the channel cross section).
 第2の直線流路21Dとパワーモジュール50とが重なる領域A2の面積が、第1の直線流路21Bとパワーモジュール50とが重なる領域A1の面積より大きい。湾曲流路21Cの曲率中心CCを通過し、第1の方向に平行な仮想直線を基準として、パワーモジュール50は、第2の直線流路21Dの側に偏って配置されている。すなわち、曲率中心CCを通過し、第1の方向に平行な仮想直線ILに対して、パワーモジュール50の中心線50Cが、第2の直線流路21D側にずれている。第2の直線流路21Dは、その幅方向に関して全域がパワーモジュール50と重なっている。これに対し、第1の直線流路21Bは、その幅方向に関して、一部分のみしかパワーモジュール50と重なっていない。より具体的には、第1の直線流路21Bの外側の経路は、パワーモジュール50と重なっていない。 The area of the region A2 where the second straight channel 21D and the power module 50 overlap is larger than the area of the region A1 where the first straight channel 21B and the power module 50 overlap. The power module 50 is arranged so as to be biased toward the second straight flow path 21D with reference to an imaginary straight line passing through the center of curvature CC of the curved flow path 21C and parallel to the first direction. That is, the center line 50C of the power module 50 is shifted to the second straight flow path 21D side with respect to the virtual straight line IL passing through the center of curvature CC and parallel to the first direction. The entire area of the second straight channel 21D overlaps the power module 50 in the width direction. On the other hand, only a part of the first straight channel 21B overlaps the power module 50 in the width direction. More specifically, the path outside the first straight channel 21 </ b> B does not overlap the power module 50.
 図1B及び図1Cに、それぞれ図1Aの一点鎖線1B-1B、1C-1Cにおける断面図を示す。パワーモジュール50は、金属製のベース板51と、その上に取り付けられた半導体素子52とを含む。半導体素子52は、例えば、IGBT等である。半導体素子52は、樹脂53で封止されている。パワーモジュール50は、ベース板51が冷却板20に対向する姿勢で、冷却板20に固定されている。図1Bでは、1つのパワーモジュール50に2つの半導体素子52が組み込まれた事例を示したが、半導体素子を3個以上組み込んでもよい。三相交流電動機を駆動するパワーモジュール50には、6個の半導体素子が組み込まれている。 1B and 1C are cross-sectional views taken along one-dot chain lines 1B-1B and 1C-1C in FIG. 1A, respectively. The power module 50 includes a metal base plate 51 and a semiconductor element 52 attached thereon. The semiconductor element 52 is, for example, an IGBT or the like. The semiconductor element 52 is sealed with a resin 53. The power module 50 is fixed to the cooling plate 20 with the base plate 51 facing the cooling plate 20. Although FIG. 1B shows an example in which two semiconductor elements 52 are incorporated in one power module 50, three or more semiconductor elements may be incorporated. Six semiconductor elements are incorporated in the power module 50 that drives the three-phase AC motor.
 冷却板20の内部に、冷却用流路21が形成されている。図1Bに示した断面には、第1の直線流路21Bと第2の直線流路21Dとが現れており、図1Cに示した断面には、湾曲流路21Cが現れている。冷却用流路21の断面は、冷却板20の厚さ方向に関する寸法が最も小さい扁平な形状を有する。すなわち、冷却用流路21の厚さ方向の寸法Hは、幅方向の寸法Wよりも小さい。パワーモジュール50の中心線50Cが、曲率中心CCに対して、第2の直線流路21D側にずれている。 A cooling channel 21 is formed inside the cooling plate 20. A first straight channel 21B and a second straight channel 21D appear in the cross section shown in FIG. 1B, and a curved channel 21C appears in the cross section shown in FIG. 1C. The cross section of the cooling flow path 21 has a flat shape with the smallest dimension in the thickness direction of the cooling plate 20. That is, the dimension H in the thickness direction of the cooling channel 21 is smaller than the dimension W in the width direction. The center line 50C of the power module 50 is shifted to the second straight flow path 21D side with respect to the curvature center CC.
 冷却用流路21の上面(パワーモジュール50が取り付けられた表面に近い方の面)に、冷却媒体の流れの方向に沿う尾根状の凸部21Fが形成されている。凸部21Fが形成されていることにより、冷却媒体と冷却板20とが接触する領域の面積が大きくなる。これにより、冷却板20から冷却媒体への熱伝達効率を高めることができる。 A ridge-like convex portion 21F is formed on the upper surface of the cooling flow channel 21 (the surface closer to the surface to which the power module 50 is attached) along the flow direction of the cooling medium. By forming the convex portion 21F, the area of the region where the cooling medium and the cooling plate 20 are in contact with each other is increased. Thereby, the heat transfer efficiency from the cooling plate 20 to a cooling medium can be improved.
 冷却用流路21は、アルミニウムの鋳造により形成することができる。直線状の管路を湾曲させて流路を形成する場合には、曲率半径が管路の直径によって制限される。流路の形成に鋳造を適用することにより、湾曲流路21Cの曲率半径を自由に設定することができる。 The cooling channel 21 can be formed by casting aluminum. When a flow path is formed by curving a straight pipe, the radius of curvature is limited by the diameter of the pipe. By applying casting to the formation of the flow path, the radius of curvature of the curved flow path 21C can be freely set.
 図2に、実施例1による電力変換装置の冷却板20の温度分布、及び冷却用流路21内の流速のシミュレーション結果を示す。相対的に流速の遅い領域VL、中程度の流速の領域VM、及び流速の速い領域VHを、ハッチの間隔を変えて示す。また、温度間隔2℃ごとに、等温線T1~T10を破線で示す。等温線T1の温度が最も低く、等温線T10の温度が最も高い。 FIG. 2 shows a simulation result of the temperature distribution of the cooling plate 20 of the power converter according to the first embodiment and the flow velocity in the cooling flow path 21. A region VL having a relatively low flow velocity, a region VM having a medium flow velocity, and a region VH having a high flow velocity are shown by changing the hatch interval. In addition, isotherms T1 to T10 are indicated by broken lines at a temperature interval of 2 ° C. The temperature of the isotherm T1 is the lowest and the temperature of the isotherm T10 is the highest.
 第1の直線流路21B内の内側の経路から湾曲流路21Cに流入し、第2の直線流路21D内の外側の経路に向かう経路の流速が相対的に速いことがわかる。また、第1の直線流路21B内の外側の経路から湾曲流路21C内の外側の経路に繋がる経路の流速、及び第2の直線流路21D内の内側の経路の流速が、相対的に遅いことがわかる。流速の遅い領域で、冷却能力が相対的に低く、流速の速い領域では、冷却能力が相対的に高い。 It can be seen that the flow velocity of the path that flows into the curved flow path 21C from the inner path in the first linear flow path 21B and goes to the outer path in the second straight flow path 21D is relatively fast. In addition, the flow velocity of the path that leads from the outer path in the first straight flow path 21B to the outer path in the curved flow path 21C and the flow speed of the inner path in the second straight flow path 21D are relatively I understand that it is slow. In the region where the flow rate is low, the cooling capacity is relatively low, and in the region where the flow rate is high, the cooling capacity is relatively high.
 図3に、比較例による電力変換装置の冷却板20の温度分布、及び冷却用流路21内の流速のシミュレーション結果を示す。比較例の冷却用流路21の形状は、実施例1のものと同等である。比較例では、パワーモジュール50が、第1の直線流路21Bと重なる領域の面積と、第2の直線流路21Dと重なる領域の面積とが等しい。曲率中心CCが、パワーモジュール50の中心線50C上に位置する。パワーモジュール50は、第1の直線流路21Bの幅方向の全域において、第1の直線流路21Bと重なっている。 FIG. 3 shows a simulation result of the temperature distribution of the cooling plate 20 of the power conversion device according to the comparative example and the flow velocity in the cooling flow path 21. The shape of the cooling channel 21 of the comparative example is the same as that of the first embodiment. In the comparative example, in the power module 50, the area of the region overlapping with the first straight flow path 21B is equal to the area of the region overlapping with the second straight flow path 21D. The center of curvature CC is located on the center line 50C of the power module 50. The power module 50 overlaps with the first straight flow path 21B in the entire width direction of the first straight flow path 21B.
 流速の分布は、図2に示した実施例1の場合とほぼ同様の傾向を示している。温度間隔2℃ごとに、等温線T1~T15を破線で示す。等温線T1の温度が最も低く、等温線T15の温度が最も高い。 The distribution of the flow velocity shows almost the same tendency as in the case of Example 1 shown in FIG. Isothermal lines T1 to T15 are indicated by broken lines at a temperature interval of 2 ° C. The temperature of the isotherm T1 is the lowest and the temperature of the isotherm T15 is the highest.
 図2と図3とを比較すると、比較例による電力変換装置の等温線の密度が、実施例1による電力変換装置の等温線の密度よりも高いことがわかる。すなわち、比較例の方が、温度のばらつきが大きい。 2 is compared with FIG. 3, it can be seen that the density of the isotherm of the power converter according to the comparative example is higher than the density of the isotherm of the power converter according to the first embodiment. That is, the variation in temperature is larger in the comparative example.
 特に、比較例においては、第1の直線流路21B内の外側の経路に対応する領域の温度が高いことがわかる。これは、流速が遅いために、この部分の冷却能力が低いことに起因する。 In particular, in the comparative example, it can be seen that the temperature of the region corresponding to the outer path in the first straight channel 21B is high. This is due to the low cooling capacity of this part due to the slow flow rate.
 実施例1では、図2に示したように、第1の直線流路21B内の外側の経路上には、パワーモジュール50が配置されていない。このため、第1の直線流路21B内の外側の経路に対応する領域の温度の著しい上昇を抑制することができる。第2の直線流路21D内の内側の経路の流速も遅いが、この部分は、第1の直線流路21Bに近い。このため、第2の直線流路21D内の内側の経路を流れる冷却媒体による冷却能力の低下が、第1の直線流路21B内の内側の経路を流れる冷却媒体によって補償される。これに対し、図3に示した比較例においては、第1の直線流路21B内の外側の経路よりもさらに外側には、流路が存在しないため、この部分の冷却能力の低下が補償されない。これにより、第1の直線流路21B内の外側の経路に対応部分の温度が著しく上昇していると考えられる。 In Example 1, as shown in FIG. 2, the power module 50 is not disposed on the outer path in the first straight flow path 21B. For this reason, the remarkable raise of the temperature of the area | region corresponding to the path | route of the outer side in the 1st linear flow path 21B can be suppressed. Although the flow velocity of the inner path in the second straight channel 21D is also slow, this part is close to the first straight channel 21B. For this reason, a decrease in the cooling capacity due to the cooling medium flowing in the inner path in the second straight flow path 21D is compensated by the cooling medium flowing in the inner path in the first straight flow path 21B. On the other hand, in the comparative example shown in FIG. 3, there is no flow path further outside the outer path in the first straight flow path 21 </ b> B. . Thereby, it is considered that the temperature of the corresponding portion in the outer path in the first straight channel 21B is remarkably increased.
 上述のように、実施例1の構成を採用することにより、パワーモジュール50の局所的な温度上昇を抑制し、信頼性を高めることができる。 As described above, by adopting the configuration of the first embodiment, a local temperature increase of the power module 50 can be suppressed and the reliability can be improved.
 パワーモジュール50の、第1の直線流路21Bと重なっている縁の近傍の局所的な温度上昇を抑制するために、パワーモジュール50の縁から、第1の直線流路21Bの外側の縁までの距離を、第1の直線流路21Bの幅Wの1/4以上にすることが好ましい。また、第1の直線流路21Bとパワーモジュール50とが重ならないようにしてもよい。この場合には、パワーモジュール50の縁が、第1の直線流路21Bと第2の直線流路21Dとの間に配置される。 In order to suppress a local temperature rise in the vicinity of the edge of the power module 50 that overlaps the first straight flow path 21B, from the edge of the power module 50 to the outer edge of the first straight flow path 21B. Is preferably ¼ or more of the width W of the first straight channel 21B. Moreover, you may make it the 1st linear flow path 21B and the power module 50 not overlap. In this case, the edge of the power module 50 is disposed between the first straight channel 21B and the second straight channel 21D.
 また、実施例1では、厚さ方向に扁平な冷却用流路21が形成されている。このため、断面がほぼ円形の冷却管路をU字状に湾曲させて形成した冷却構造に比べて、パワーモジュール50と冷却用流路21とが重なる領域を広くすることができる。例えば、平面視において、パワーモジュール50のうち、60%以上の領域が、冷却用流路21に重なる構成とすることができる。実施例1においては、両者が重なっている領域の面積が、パワーモジュール50の面積の60%以上である。これに対し、冷却管路を湾曲させて流路を作製する場合には、曲率半径が管路の直径によって制限される。このため、パワーモジュール50のうち冷却管路と重なる領域を、パワーモジュール全域の40%以上にすることは困難である。 Further, in the first embodiment, the cooling flow path 21 flat in the thickness direction is formed. For this reason, compared with the cooling structure formed by curving a substantially circular cooling pipe line in a U shape, the area where the power module 50 and the cooling channel 21 overlap can be widened. For example, in a plan view, 60% or more of the power module 50 can be configured to overlap the cooling channel 21. In the first embodiment, the area of the overlapping area is 60% or more of the area of the power module 50. On the other hand, when the flow path is produced by curving the cooling pipe, the radius of curvature is limited by the diameter of the pipe. For this reason, it is difficult to make the area of the power module 50 that overlaps the cooling pipeline 40% or more of the entire power module.
 [実施例2]
 図4A及び図4Bに、実施例2による電力変換装置の断面図を示す。以下、図1A~図1Cに示した実施例1による電力変換装置との相違点について説明し、同一の構成については説明を省略する。実施例2による電力変換装置の平面図は、図1Aに示した実施例1の平面図と同一である。
[Example 2]
4A and 4B are sectional views of the power converter according to the second embodiment. Hereinafter, differences from the power conversion apparatus according to the first embodiment illustrated in FIGS. 1A to 1C will be described, and description of the same configuration will be omitted. The top view of the power converter device by Example 2 is the same as the top view of Example 1 shown to FIG. 1A.
 図4A及び図4Bは、それぞれ図1Aの一点鎖線1B-1B、1C-1Cにおける断面図を示す。実施例2では、図1B及び図1Cに示した凸部21Fが形成されておらず、冷却用流路21の底面及び上面が、いずれも平坦である。実施例1と同様に、パワーモジュール50の中心線50Cが、曲率中心CCに対して、第2の直線流路21D側にずれている。 4A and 4B are cross-sectional views taken along one-dot chain lines 1B-1B and 1C-1C in FIG. 1A, respectively. In Example 2, the convex portion 21F illustrated in FIGS. 1B and 1C is not formed, and the bottom surface and the top surface of the cooling channel 21 are both flat. As in the first embodiment, the center line 50C of the power module 50 is shifted to the second straight flow path 21D side with respect to the curvature center CC.
 実施例2においても、冷却用流路21とパワーモジュール50との、平面視における相対的な位置関係が、実施例1の関係と同一である。このため、実施例1と同様に、パワーモジュール50の局所的な温度上昇を抑制し、信頼性を高めることができる。 Also in the second embodiment, the relative positional relationship between the cooling flow path 21 and the power module 50 in a plan view is the same as the relationship of the first embodiment. For this reason, like Example 1, the local temperature rise of the power module 50 can be suppressed and reliability can be improved.
 [実施例3]
 図5Aに、実施例3による電力変換装置の平面図を示す。以下、図1A~図1Cに示した実施例1による電力変換装置との相違点について説明し、同一の構成については説明を省略する。
[Example 3]
FIG. 5A is a plan view of the power conversion device according to the third embodiment. Hereinafter, differences from the power conversion apparatus according to the first embodiment illustrated in FIGS. 1A to 1C will be described, and description of the same configuration will be omitted.
 実施例3では、第1の直線流路21Bが、幅方向に関して内側流路21Baと、それよりも外側に配置された外側流路21Bbとに分離されている。内側流路21Baの幅W1と、外側流路21Bbの幅W2との合計は、第2の直線流路21Dの幅Wと同一である。 In Example 3, the first linear flow channel 21B is separated into an inner flow channel 21Ba and an outer flow channel 21Bb arranged outside the first flow channel 21B in the width direction. The sum of the width W1 of the inner channel 21Ba and the width W2 of the outer channel 21Bb is the same as the width W of the second straight channel 21D.
 内側流路21Baと外側流路21Bbとに対応して、湾曲流路21Cも、内側流路21Caと外側流路21Cbとに分離されている。内側流路21Ca、外側流路21Cbの幅は、それぞれ内側流路21Ba、外側流路21Bbの幅と同一である。内側流路21Caと外側流路21Cbとは、下流に向かって徐々に近づき、第2の直線流路21Dの上流端に至るまでに1本の流路に合流する。 Corresponding to the inner channel 21Ba and the outer channel 21Bb, the curved channel 21C is also separated into the inner channel 21Ca and the outer channel 21Cb. The widths of the inner channel 21Ca and the outer channel 21Cb are the same as the widths of the inner channel 21Ba and the outer channel 21Bb, respectively. The inner channel 21Ca and the outer channel 21Cb gradually approach toward the downstream and merge into one channel until reaching the upstream end of the second linear channel 21D.
 パワーモジュール50は、第1の直線流路21Bのうち、内側流路21Baと重なるが、外側流路21Bbとは重ならない。なお、外側流路21Bb内の内側の経路に対応する部分が、パワーモジュール50と重なるようにしてもよい。この場合にも、外側流路21Bb内の外側の経路に対応する部分は、パワーモジュール50と重ならない。 The power module 50 overlaps the inner flow path 21Ba in the first straight flow path 21B, but does not overlap the outer flow path 21Bb. A portion corresponding to the inner path in the outer flow path 21Bb may overlap the power module 50. Also in this case, the portion corresponding to the outer path in the outer flow path 21Bb does not overlap the power module 50.
 パワーモジュール50は、ネジ55により、冷却板20に固定されている。一部のネジ55は、内側流路21Baと外側流路21Bbとの間に配置される。 The power module 50 is fixed to the cooling plate 20 with screws 55. Some screws 55 are disposed between the inner flow path 21Ba and the outer flow path 21Bb.
 図5Bに、図5Aの一点鎖線5B-5Bにおける断面図を示す。冷却板20内に、第1の直線流路21B及び第2の直線流路21Dが形成されている。第1の直線流路21Bは、内側流路21Baと外側流路21Bbとに分離されている。一部のネジ55が、内側流路21Baと外側流路21Bbとの間に配置されている。ネジ55は、第1の直線流路21Bの上面よりも深い位置まで到達している。 FIG. 5B shows a cross-sectional view taken along one-dot chain line 5B-5B in FIG. 5A. In the cooling plate 20, the 1st linear flow path 21B and the 2nd linear flow path 21D are formed. The first straight channel 21B is separated into an inner channel 21Ba and an outer channel 21Bb. Some screws 55 are arranged between the inner flow path 21Ba and the outer flow path 21Bb. The screw 55 reaches a position deeper than the upper surface of the first straight channel 21B.
 冷却用流路21の上面は、図1B、図1Cに示したように、凸部21Fが形成された形状としてもよいし、図4A、図4Bに示したように、平坦にしてもよい。 The upper surface of the cooling channel 21 may have a shape in which a convex portion 21F is formed as shown in FIGS. 1B and 1C, or may be flat as shown in FIGS. 4A and 4B.
 実施例3においても、パワーモジュール50が、第1の直線流路21Bの一部分にのみ重なっており、第1の直線流路21Bの外側の経路は、パワーモジュール50と重なっていない。このため、実施例1と同様に、パワーモジュール50の局所的な温度上昇を抑制し、信頼性を高めることができる。 Also in Example 3, the power module 50 overlaps only a part of the first linear flow path 21B, and the path outside the first linear flow path 21B does not overlap the power module 50. For this reason, like Example 1, the local temperature rise of the power module 50 can be suppressed and reliability can be improved.
 パワーモジュール50から、冷却用流路21を流れる冷却媒体までの熱抵抗を小さくするために、冷却用流路21と、パワーモジュール50との間に介在する冷却板20を、なるべく薄くすることが好ましい。薄くされた部分には、ネジ55を取り付けることが困難である。実施例3では、第1の直線流路21Bを、内側流路21Baと外側流路21Bbとに分離することにより、ネジ55を挿入するための厚い部分を確保することができる。 In order to reduce the thermal resistance from the power module 50 to the cooling medium flowing through the cooling flow path 21, the cooling plate 20 interposed between the cooling flow path 21 and the power module 50 may be made as thin as possible. preferable. It is difficult to attach the screw 55 to the thinned portion. In the third embodiment, by separating the first linear flow path 21B into the inner flow path 21Ba and the outer flow path 21Bb, a thick portion for inserting the screw 55 can be secured.
 内側流路21Baと外側流路21Bbとの間隔は、ネジ55を挿入して固定するために十分な間隔にする必要がある。ただし、冷却媒体の流れを妨げないようにするために、両者の間隔を100mm以下にすることが好ましい。また、実施例1と同様に、パワーモジュール50の縁から、第1の直線流路21Bの外側流路21Bbの外側の縁までの距離を、幅Wの1/4以上とすることが好ましい。 The interval between the inner channel 21Ba and the outer channel 21Bb needs to be sufficient to insert and fix the screw 55. However, in order not to disturb the flow of the cooling medium, it is preferable to set the distance between the two to 100 mm or less. Similarly to the first embodiment, the distance from the edge of the power module 50 to the outer edge of the outer flow path 21Bb of the first linear flow path 21B is preferably set to 1/4 or more of the width W.
 [実施例4]
 図6Aに、実施例4による電力変換装置の平面図を示す。以下、図1A~図1Cに示した実施例1による電力変換装置との相違点について説明し、同一の構成については説明を省略する。
[Example 4]
FIG. 6A is a plan view of the power conversion device according to the fourth embodiment. Hereinafter, differences from the power conversion apparatus according to the first embodiment illustrated in FIGS. 1A to 1C will be described, and description of the same configuration will be omitted.
 実施例1では、湾曲流路21Cが1つのみ配置されていたが、実施例4では、湾曲流路が複数個配置されている。すなわち、冷却用流路21が、直線流路と湾曲流路とが交互に連続する蛇行形状を有する。この場合、最も上流側の直線流路21Bを、実施例1の第1の直線流路21Bに対応付けて考えればよい。パワーモジュール50は、冷却用流路21の幅方向に関して、最も上流側の直線流路21Bの一部分のみと重なり、最も上流側の直線流路21B内の外側の経路は、パワーモジュール50と重なっていない。最も上流の直線流路以外の直線流路は、その幅方向に関して全域がパワーモジュール50と重なっている。 In Example 1, only one curved channel 21C is arranged, but in Example 4, a plurality of curved channels are arranged. That is, the cooling flow path 21 has a meandering shape in which straight flow paths and curved flow paths are alternately continued. In this case, the most upstream straight flow path 21B may be considered in association with the first straight flow path 21B of the first embodiment. The power module 50 overlaps only a part of the most upstream linear flow channel 21B in the width direction of the cooling flow channel 21, and the outer path in the most upstream linear flow channel 21B overlaps the power module 50. Absent. The entire area of the straight flow path other than the most upstream straight flow path overlaps the power module 50 in the width direction.
 中央の湾曲流路21Cの曲率中心CCを通過し、直線流路21Bの長手方向に平行な仮想直線ILに対して、パワーモジュール50の中心線50Cが、実施例1の場合と同様に、下流側の直線流路の側にずれている。 As with the first embodiment, the center line 50C of the power module 50 is downstream of the virtual straight line IL passing through the center of curvature CC of the central curved flow path 21C and parallel to the longitudinal direction of the straight flow path 21B. It is shifted to the side of the straight flow path on the side.
 実施例4においても、パワーモジュール50の縁よりも外側に、最も上流側の直線流路21B内の外側の経路が存在する。このため、実施例1と同様に、パワーモジュール50の局所的な温度上昇を抑制し、信頼性を高めることができる。 Also in Example 4, an outer path in the most upstream linear flow path 21 </ b> B exists outside the edge of the power module 50. For this reason, like Example 1, the local temperature rise of the power module 50 can be suppressed and reliability can be improved.
 図6Bに示すように、パワーモジュール50の縁が、最も上流側の直線流路21Bと、その隣の直線流路21D(実施例1の第2の直線流路21Dに相当)との間に配置されるように、パワーモジュール50を冷却板20に取り付けてもよい。この場合も、図6Aの実施例4の場合と同様に、中央の湾曲流路21Cの曲率中心CCを通過し、直線流路21Bの長手方向に平行な仮想直線ILに対して、パワーモジュール50の中心線50Cが、下流側の直線流路の側にずれている。 As shown in FIG. 6B, the edge of the power module 50 is between the most upstream linear flow path 21B and the adjacent straight flow path 21D (corresponding to the second straight flow path 21D of the first embodiment). The power module 50 may be attached to the cooling plate 20 so as to be disposed. In this case as well, as in the case of Example 4 in FIG. 6A, the power module 50 passes through the center of curvature CC of the central curved flow path 21C and is parallel to the virtual straight line IL parallel to the longitudinal direction of the straight flow path 21B. The center line 50C is shifted to the downstream straight channel side.
 [実施例5]
 図7に、実施例5による電力変換装置の平面図を示す。以下、図1A~図1Cに示した実施例1による電力変換装置との相違点について説明し、同一の構成については説明を省略する。
[Example 5]
In FIG. 7, the top view of the power converter device by Example 5 is shown. Hereinafter, differences from the power conversion apparatus according to the first embodiment illustrated in FIGS. 1A to 1C will be described, and description of the same configuration will be omitted.
 実施例5においても、冷却用流路21は、第1の直線流路21B、湾曲流路21C、及び第2の直線流路21Dを含む。第1の直線流路21Bは、第1の向き(図7において上向き)に冷却媒体を流す。第2の直線流路21Dは、第1の直線流路21Bの側方に配置され、第1の向きとは反対向き(図7において下向き)に冷却媒体を流す。湾曲流路21Cは、第1の直線流路21Bの下流端を、第2の直線流路21Dの上流端に接続する。湾曲流路21Cは、第1の直線流路21Bの下流端から離れるに従って、一旦、第2の直線流路21Dから遠ざかる方向に湾曲し、その後、第2の直線流路21Dに繋がる。 Also in Example 5, the cooling channel 21 includes a first linear channel 21B, a curved channel 21C, and a second linear channel 21D. The first straight channel 21B allows the cooling medium to flow in a first direction (upward in FIG. 7). The second straight channel 21D is disposed on the side of the first straight channel 21B, and allows the cooling medium to flow in a direction opposite to the first direction (downward in FIG. 7). The curved channel 21C connects the downstream end of the first linear channel 21B to the upstream end of the second linear channel 21D. 21 C of curved flow paths are once curved in the direction away from 2nd linear flow path 21D as it leaves | separates from the downstream end of 1st linear flow path 21B, and are connected with 2nd linear flow path 21D after that.
 湾曲流路21Cの最小曲率半径を有する部分の曲率中心CCを通過し、第1の向きと平行な仮想直線ILを基準として、パワーモジュール50は、第1の直線流路21Bの幅方向に関して、第2の直線流路21Dの方に偏った位置に取り付けられている。実施例5においては、第1の直線流路21B及び第2の直線流路21Dの双方が、幅方向に関して、全域においてパワーモジュール50と重なっている。 With reference to the virtual straight line IL passing through the center of curvature CC of the curved channel 21C having the minimum radius of curvature and parallel to the first direction, the power module 50 is related to the width direction of the first linear channel 21B. It is attached at a position biased toward the second straight channel 21D. In the fifth embodiment, both the first straight flow path 21B and the second straight flow path 21D overlap the power module 50 in the entire area in the width direction.
 湾曲流路21Cの曲率中心CCを通過し、直線流路21Bの長手方向に平行な仮想直線ILと、パワーモジュール50の中心線50Cとは、実施例1の場合と同様に、相互にずれている。 The virtual straight line IL passing through the center of curvature CC of the curved flow path 21C and parallel to the longitudinal direction of the straight flow path 21B and the center line 50C of the power module 50 are shifted from each other, as in the first embodiment. Yes.
 湾曲流路21Cが、一旦、外側に向かって湾曲しているため、第1の直線流路21B内の外側の経路の流速が、図2に示した例に比べて遅くならない。このため、パワーモジュール50の温度の面内分布のばらつきを抑制することができる。 Since the curved flow path 21C is once curved outward, the flow velocity of the outer path in the first straight flow path 21B is not slow compared to the example shown in FIG. For this reason, the dispersion | variation in the in-plane distribution of the temperature of the power module 50 can be suppressed.
 [実施例6]
 図8Aに、実施例6による電力変換装置の断面図を示す。冷却板20及びパワーモジュール50は、実施例1~実施例5のいずれかによる電力変換装置と同一の構成を有する。冷却板20内に冷却用流路21が形成されている。図8に示した断面には、湾曲流路21Cが現れている。冷却媒体排出管24が、冷却用流路21に接続されている。冷却媒体導入管23(図1A)は、図8の断面には現れない。
[Example 6]
FIG. 8A shows a cross-sectional view of the power converter according to the sixth embodiment. The cooling plate 20 and the power module 50 have the same configuration as the power conversion device according to any one of the first to fifth embodiments. A cooling channel 21 is formed in the cooling plate 20. A curved channel 21C appears in the cross section shown in FIG. A cooling medium discharge pipe 24 is connected to the cooling flow path 21. The cooling medium introduction pipe 23 (FIG. 1A) does not appear in the cross section of FIG.
 冷却板20及びパワーモジュール50が、筐体60内に収容されている。筐体60は、下部容器61と上蓋62とを含む。冷却板20は、下部容器61の底面に固定されている。上蓋62は、下部容器61の開口部を塞いでいる。冷却媒体導入管23及び冷却媒体排出管24が、下部容器61の側面を貫通して、筐体60の外側まで導出されている。 The cooling plate 20 and the power module 50 are accommodated in the housing 60. The housing 60 includes a lower container 61 and an upper lid 62. The cooling plate 20 is fixed to the bottom surface of the lower container 61. The upper lid 62 closes the opening of the lower container 61. The cooling medium introduction pipe 23 and the cooling medium discharge pipe 24 pass through the side surface of the lower container 61 and are led out to the outside of the housing 60.
 なお、図8Bに示すように、冷却板20と下部容器61とを一体的に鋳造してもよい。 In addition, as shown in FIG. 8B, the cooling plate 20 and the lower container 61 may be integrally cast.
 [実施例7]
 図9に、実施例7による作業機械の例としてショベルの平面図を示す。下部走行体71に、旋回軸受け73を介して、上部旋回体70が取り付けられている。上部旋回体70に、エンジン74、メインポンプ75、旋回用電動モータ76、油タンク77、冷却ファン78、座席79、蓄電モジュール80、電動発電機83、電動発電機用インバータ90、
旋回用インバータ91、及び蓄電器用コンバータ92が搭載されている。エンジン74は、燃料の燃焼により動力を発生する。エンジン74、メインポンプ75、及び電動発電機83が、トルク伝達機構81を介して相互にトルクの送受を行う。メインポンプ75は、ブーム82等の油圧シリンダに圧油を供給する。
[Example 7]
FIG. 9 is a plan view of an excavator as an example of the work machine according to the seventh embodiment. An upper swing body 70 is attached to the lower traveling body 71 via a swing bearing 73. The upper swing body 70 includes an engine 74, a main pump 75, a swing electric motor 76, an oil tank 77, a cooling fan 78, a seat 79, a power storage module 80, a motor generator 83, a motor generator inverter 90,
A turning inverter 91 and a condenser converter 92 are mounted. The engine 74 generates power by burning fuel. The engine 74, the main pump 75, and the motor generator 83 transmit and receive torque to and from each other via the torque transmission mechanism 81. The main pump 75 supplies pressure oil to a hydraulic cylinder such as the boom 82.
 電動発電機83は、エンジン74の動力によって駆動され、発電を行う(発電運転)。発電された電力は、蓄電モジュール80に供給され、蓄電モジュール80が充電される。また、電動発電機83は、蓄電モジュール80からの電力によって駆動され、エンジン74をアシストするための動力を発生する(アシスト運転)。油タンク77は、油圧回路の油を貯蔵する。冷却ファン78は、油圧回路の油温の上昇を抑制する。操作者は、座席79に着座して、ハイブリッド型ショベルを操作する。 The motor generator 83 is driven by the power of the engine 74 to generate power (power generation operation). The generated power is supplied to the power storage module 80, and the power storage module 80 is charged. In addition, the motor generator 83 is driven by the electric power from the power storage module 80 and generates power for assisting the engine 74 (assist operation). The oil tank 77 stores oil of the hydraulic circuit. The cooling fan 78 suppresses an increase in the oil temperature of the hydraulic circuit. The operator sits on the seat 79 and operates the hybrid excavator.
 電動発電機用インバータ90、旋回用インバータ91、及び蓄電器用コンバータ92には、実施例1~実施例6のいずれかによる電力変換装置が用いられる。 A power conversion device according to any one of the first to sixth embodiments is used for the motor generator inverter 90, the turning inverter 91, and the capacitor converter 92.
 図10に、実施例7によるショベルの部分破断側面図を示す。下部走行体71に、旋回軸受け73を介して上部旋回体70が搭載されている。上部旋回体70は、旋回フレーム70A、カバー70B、及びキャビン70Cを含む。旋回フレーム70Aは、キャビン70C、及び種々の部品の支持構造体として機能する。カバー70Bは、旋回フレーム70Aに搭載された種々の部品、例えば蓄電モジュール80、蓄電器用コンバータ92等を覆う。キャビン70C内に座席79(図9)が収容されている。 FIG. 10 shows a partially broken side view of the shovel according to the seventh embodiment. An upper swing body 70 is mounted on the lower traveling body 71 via a swing bearing 73. The upper swing body 70 includes a swing frame 70A, a cover 70B, and a cabin 70C. The swivel frame 70A functions as a support structure for the cabin 70C and various components. The cover 70B covers various components mounted on the turning frame 70A, for example, the power storage module 80, the condenser converter 92, and the like. A seat 79 (FIG. 9) is accommodated in the cabin 70C.
 旋回用電動モータ76(図9)が、その駆動対象である旋回フレーム70Aを、下部走行体71に対して、時計回り、または反時計周りに旋回させる。上部旋回体70に、ブーム82が取り付けられている。ブーム82は、油圧駆動されるブームシリンダ107により、上部旋回体70に対して上下方向に揺動する。ブーム82の先端に、アーム85が取り付けられている。アーム85は、油圧駆動されるアームシリンダ108により、ブーム82に対して前後方向に揺動する。アーム85の先端にバケット86が取り付けられている。バケット86は、油圧駆動されるバケットシリンダ109により、アーム85に対して上下方向に揺動する。 The turning electric motor 76 (FIG. 9) turns the turning frame 70A to be driven clockwise or counterclockwise with respect to the lower traveling body 71. A boom 82 is attached to the upper swing body 70. The boom 82 swings up and down with respect to the upper swing body 70 by a hydraulically driven boom cylinder 107. An arm 85 is attached to the tip of the boom 82. The arm 85 swings in the front-rear direction with respect to the boom 82 by an arm cylinder 108 that is hydraulically driven. A bucket 86 is attached to the tip of the arm 85. The bucket 86 swings in the vertical direction with respect to the arm 85 by a hydraulically driven bucket cylinder 109.
 蓄電モジュール80が、蓄電モジュール用マウント95及びダンパ(防振装置)96を介して、旋回フレーム70Aに搭載されている。蓄電器用コンバータ92は、コンバータ用マウント97及びダンパ98を介して、旋回フレーム70Aに搭載されている。カバー70Bが蓄電モジュール80を覆う。蓄電モジュール80から供給される電力によって、旋回用電動モータ76(図9)が駆動される。また、旋回用電動モータ76は、運動エネルギを電気エネルギに変換することによって回生電力を発生する。発生した回生電力によって、蓄電モジュール80が充電される。 The power storage module 80 is mounted on the turning frame 70 </ b> A via a power storage module mount 95 and a damper (vibration isolation device) 96. The capacitor converter 92 is mounted on the turning frame 70 </ b> A via a converter mount 97 and a damper 98. Cover 70 </ b> B covers power storage module 80. The turning electric motor 76 (FIG. 9) is driven by the electric power supplied from the power storage module 80. In addition, the turning electric motor 76 generates regenerative electric power by converting kinetic energy into electric energy. The power storage module 80 is charged by the generated regenerative power.
 実施例1~実施例6のいずれかによる電力変換装置を用いているため、電動発電機用インバータ90、旋回用インバータ91、及び蓄電器用コンバータ92内のパワーモジュールの局所的な温度上昇を抑制し、信頼性を高めることができる。 Since the power conversion device according to any one of the first to sixth embodiments is used, a local temperature rise of the power modules in the motor generator inverter 90, the turning inverter 91, and the capacitor converter 92 is suppressed. , Can increase the reliability.
 [実施例8]
 図11に、実施例8による作業機械の例として荷役作業車両(フォークリフト)の部分破断側面図を示す。実施例8による荷役作業車両は、フォーク111、車輪112、インストルメントパネル113、ハンドル114、レバー115、及び座席116を含む。車台に、走行モータ用インバータ120及び蓄電器用コンバータ121が、ダンパ等を介して搭載されている。走行モータ用インバータ120及び蓄電器用コンバータ121には、実施例1~実施例6のいずれかの電力変換装置が用いられる。走行モータ用インバータ120は、走行用モータに電力を供給する。蓄電器用コンバータ121は、蓄電器の充放電を行う。
[Example 8]
FIG. 11 is a partially cutaway side view of a cargo handling work vehicle (forklift) as an example of the work machine according to the eighth embodiment. The cargo handling work vehicle according to the eighth embodiment includes a fork 111, wheels 112, an instrument panel 113, a handle 114, a lever 115, and a seat 116. A traveling motor inverter 120 and a condenser converter 121 are mounted on the chassis via a damper or the like. Any one of the power conversion devices of the first to sixth embodiments is used for the inverter 120 for the traveling motor and the converter 121 for the electric storage device. The travel motor inverter 120 supplies power to the travel motor. The capacitor converter 121 charges and discharges the capacitor.
 運転者が、座席116に搭乗し、ハンドル114、複数のレバー115、アクセルペダル、ブレーキペダル、その他の各種スイッチを操作する。これらの操作により、フォーク111の昇降、荷役作業車両の前進と後退、右折と左折等の動作が行われる。これらの動作を組み合わせることにより、荷物の積み降ろし、搬送等を行うことができる。 The driver gets on the seat 116 and operates the handle 114, the plurality of levers 115, the accelerator pedal, the brake pedal, and other various switches. By these operations, operations such as raising and lowering the fork 111, advancing and retreating the cargo handling work vehicle, and turning right and left are performed. By combining these operations, it is possible to load and unload packages and carry them.
 実施例1~実施例6のいずれかによる電力変換装置を用いているため、走行モータ用インバータ120及び蓄電器用コンバータ121内のパワーモジュールの温度の局所的な上昇を抑制し、信頼性を高めることができる。 Since the power conversion device according to any one of the first to sixth embodiments is used, the local increase in the temperature of the power module in the inverter for driving motor 120 and the converter for capacitor 121 is suppressed, and the reliability is improved. Can do.
 上記実施例1~6による電力変換装置に含まれるパワーモジュール50(例えば図1A~図1C)が、三相交流電動機の1相(U相、V相、W相のうちの1つ)のみの制御を行う場合、U相、V相、W相に対応して3個の電力変換装置を準備すればよい。この場合、実施例1~6に示したパワーモジュール50と冷却板20とからなる電力変換装置を、複数個(例えば3個)、横方向(冷却板20の面内方向)に配置することにより、三相交流電動機の三相分の電力変換装置を構成することができる。また、実施例1~6に示したパワーモジュール50と冷却板20とからなる電力変換装置を、複数個(例えば3個)、縦方向(冷却板20の厚さ方向)に積み重ねた構成としてもよい。 The power module 50 (for example, FIGS. 1A to 1C) included in the power converters according to the first to sixth embodiments described above has only one phase of the three-phase AC motor (one of the U phase, the V phase, and the W phase). When performing control, three power converters may be prepared corresponding to the U phase, the V phase, and the W phase. In this case, by arranging a plurality (for example, three) of power converters composed of the power module 50 and the cooling plate 20 shown in the first to sixth embodiments in the lateral direction (in-plane direction of the cooling plate 20). A three-phase power converter for a three-phase AC motor can be configured. Further, a configuration in which a plurality of (for example, three) power converters including the power module 50 and the cooling plate 20 shown in the first to sixth embodiments are stacked in the vertical direction (thickness direction of the cooling plate 20) may be employed. Good.
 以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
 上述の実施例1~実施例8に基づき、下記の付記に記載された発明を開示する。 Based on the above-mentioned Example 1 to Example 8, the invention described in the following supplementary notes is disclosed.
 (付記1)
 冷却媒体を流す流路を含む冷却板と、
 前記冷却板に取り付けられて、該冷却板に熱的に結合するパワーモジュールと
を有し、
 前記流路は、第1の向きに冷却媒体を流す第1の直線流路と、前記第1の直線流路の側方に配置され、前記第1の向きとは反対向きの第2の向きに冷却媒体を流す第2の直線流路と、前記第1の直線流路及び前記第2の直線流路に連続し、前記第1の直線流路を流れてきた冷却媒体の進行方向を変えて、前記第2の直線流路に流入させる湾曲流路とを含み、
 前記第2の直線流路と前記パワーモジュールとが重なる領域の面積が、前記第1の直線流路と前記パワーモジュールとが重なる領域の面積より大きい電力変換装置。
(Appendix 1)
A cooling plate including a flow path for flowing a cooling medium;
A power module attached to the cooling plate and thermally coupled to the cooling plate;
The flow path is disposed at a side of the first linear flow path for flowing the cooling medium in a first direction, and a second direction opposite to the first direction. The second straight flow path for flowing the cooling medium through the first straight flow path, the first straight flow path, and the second straight flow path are changed, and the traveling direction of the cooling medium flowing through the first straight flow path is changed. A curved flow path that flows into the second straight flow path,
The power conversion device, wherein an area of a region where the second straight channel and the power module overlap is larger than an area of a region where the first straight channel and the power module overlap.
 (付記2)
 前記第1の直線流路の幅と、前記第2の直線流路の幅とが等しく、前記第1の直線流路及び前記第2の直線流路の幅方向に関して、前記第2の直線流路の全域が前記パワーモジュールと重なっているが、前記第1の直線流路は、幅方向に関して少なくとも一部分は前記パワーモジュールと重なっていない付記2に記載の電力変換装置。
(Appendix 2)
The width of the first straight flow path is equal to the width of the second straight flow path, and the second straight flow is related to the width direction of the first straight flow path and the second straight flow path. The power conversion device according to attachment 2, wherein an entire area of the road overlaps with the power module, but at least a part of the first straight flow path does not overlap with the power module in the width direction.
 (付記3)
 前記第1の直線流路は、幅方向に関して外側流路と内側流路とに分離されており、前記外側流路及び内側流路は、前記湾曲流路内において、前記第2の直線流路に至る前に1本の流路に合流する付記1または2に記載の電力変換装置。
(Appendix 3)
The first straight channel is separated into an outer channel and an inner channel with respect to the width direction, and the outer channel and the inner channel are the second linear channel in the curved channel. 3. The power conversion device according to appendix 1 or 2, which joins one flow path before reaching.
 (付記4)
 前記流路の、前記パワーモジュールが取り付けられた側の内面に、冷却媒体の流れの方向に沿う尾根状の凸部が形成されている付記1乃至3のいずれか1項に記載の電力変換装置。
(Appendix 4)
The power conversion device according to any one of appendices 1 to 3, wherein a ridge-like convex portion along a flow direction of the cooling medium is formed on an inner surface of the flow path on a side where the power module is attached. .
 (付記5)
 前記第1の直線流路の断面積と、前記第2の直線流路の断面積とは、同一である付記1乃至4のいずれか1項に記載の電力変換装置。
(Appendix 5)
The power conversion device according to any one of appendices 1 to 4, wherein a cross-sectional area of the first straight flow path and a cross-sectional area of the second straight flow path are the same.
 (付記6)
 平面視において、前記パワーモジュールのうち、前記流路と重なっている領域が、前記パワーモジュールの全域の60%以上である付記1乃至5のいずれか1項に記載の電力変換装置。
(Appendix 6)
6. The power conversion device according to claim 1, wherein a region of the power module that overlaps the flow path is 60% or more of the entire area of the power module in plan view.
 (付記7)
 冷却媒体を流す流路を含む冷却板と、
 前記冷却板に取り付けられて、該冷却板に熱的に結合するパワーモジュールと
を有し、
 前記流路は、第1の向きに冷却媒体を流す第1の直線流路と、前記第1の直線流路の側方に配置され、前記第1の向きとは反対向きの第2の向きに冷却媒体を流す第2の直線流路と、前記第1の直線流路及び前記第2の直線流路に連続し、前記第1の直線流路を流れてきた冷却媒体の進行方向を変えて、前記第2の直線流路に流入させる湾曲流路とを含み、
 前記湾曲流路の最小曲率半径を有する部分の曲率中心を通過し、前記第1の向きと平行な仮想直線を基準として、前記パワーモジュールは、前記第1の直線流路の幅方向に関して、前記第2の直線流路の方に偏った位置に取り付けられている電力変換装置。
(Appendix 7)
A cooling plate including a flow path for flowing a cooling medium;
A power module attached to the cooling plate and thermally coupled to the cooling plate;
The flow path is disposed at a side of the first linear flow path for flowing the cooling medium in a first direction, and a second direction opposite to the first direction. The second straight flow path for flowing the cooling medium through the first straight flow path, the first straight flow path, and the second straight flow path are changed, and the traveling direction of the cooling medium flowing through the first straight flow path is changed. A curved flow path that flows into the second straight flow path,
With respect to the width direction of the first straight flow path, the power module passes through the center of curvature of the portion having the minimum curvature radius of the curved flow path and is based on a virtual straight line parallel to the first direction. The power converter attached to the position biased toward the second straight flow path.
 (付記8)
 前記湾曲流路は、前記第1の直線流路の下流端から離れるに従って、一旦、前記第2の直線流路から遠ざかる方向に湾曲し、その後、前記第2の直線流路に繋がる付記7に記載の電力変換装置。
(Appendix 8)
As the curved channel is separated from the downstream end of the first linear channel, the curved channel is once bent in a direction away from the second linear channel, and then connected to the second linear channel. The power converter described.
20 冷却板
21 流路
21A 上流端
21B 第1の直線流路(最も上流側の直線流路)
21Ba 内側流路
21Bb 外側流路
21C 湾曲流路
21D 第2の直線流路
21E 下流端
21F 凸部
21G 最も下流側の直線流路
23 冷却媒体導入管
24 冷却媒体排出管
50 パワーモジュール
51 ベース板
52 半導体素子
53 封止樹脂
55 ネジ
60 筐体
61 下部容器
62 上蓋
70 上部旋回体
70A 旋回フレーム
70B カバー
70C キャビン
71 下部走行体
73 旋回軸受け
74 エンジン
75 メインポンプ
76 旋回用電動モータ
77 油タンク
78 冷却ファン
79 座席
80 蓄電モジュール
81 トルク伝達機構
82 ブーム
83 電動発電機
85 アーム
86 バケット
90 電動発電機用インバータ
91 旋回用インバータ
92 蓄電器用コンバータ
95 蓄電モジュール用マウント
96 ダンパ(防振装置)
97 コンバータ用マウント
98 ダンパ
107 ブームシリンダ
108 アームシリンダ
109 バケットシリンダ
111 フォーク
112 車輪
113 インストルメントパネル
114 ハンドル
115 レバー
116 座席
120 走行モータ用インバータ
121 蓄電器用コンバータ
20 Cooling plate 21 Flow path 21A Upstream end 21B First straight flow path (most upstream straight flow path)
21Ba Inner channel 21Bb Outer channel 21C Curved channel 21D Second linear channel 21E Downstream end 21F Convex portion 21G Most downstream linear channel 23 Cooling medium introduction pipe 24 Cooling medium discharge pipe 50 Power module 51 Base plate 52 Semiconductor element 53 Sealing resin 55 Screw 60 Housing 61 Lower container 62 Upper lid 70 Upper turning body 70A Turning frame 70B Cover 70C Cabin 71 Lower traveling body 73 Turning bearing 74 Engine 75 Main pump 76 Turning electric motor 77 Oil tank 78 Cooling fan 79 Seat 80 Power storage module 81 Torque transmission mechanism 82 Boom 83 Motor generator 85 Arm 86 Bucket 90 Motor generator inverter 91 Turning inverter 92 Capacitor converter 95 Storage module mount 96 Damper (anti-vibration device)
97 Mount for converter 98 Damper 107 Boom cylinder 108 Arm cylinder 109 Bucket cylinder 111 Fork 112 Wheel 113 Instrument panel 114 Handle 115 Lever 116 Seat 120 Motor drive inverter 121 Battery converter

Claims (8)

  1.  冷却媒体を流す流路を含む冷却板と、
     前記冷却板に取り付けられて、該冷却板に熱的に結合するパワーモジュールと
    を有する電力変換装置が搭載された作業機械であって、
     前記流路は、第1の向きに冷却媒体を流す第1の直線流路と、前記第1の直線流路の側方に配置され、前記第1の向きとは反対向きの第2の向きに冷却媒体を流す第2の直線流路と、前記第1の直線流路及び前記第2の直線流路に連続し、前記第1の直線流路を流れてきた冷却媒体の進行方向を変えて、前記第2の直線流路に流入させる湾曲流路とを含み、
     前記第2の直線流路と前記パワーモジュールとが重なる領域の面積が、前記第1の直線流路と前記パワーモジュールとが重なる領域の面積より大きい作業機械。
    A cooling plate including a flow path for flowing a cooling medium;
    A work machine equipped with a power converter having a power module attached to the cooling plate and thermally coupled to the cooling plate,
    The flow path is disposed at a side of the first linear flow path for flowing the cooling medium in a first direction, and a second direction opposite to the first direction. The second straight flow path for flowing the cooling medium through the first straight flow path, the first straight flow path, and the second straight flow path are changed, and the traveling direction of the cooling medium flowing through the first straight flow path is changed. A curved flow path that flows into the second straight flow path,
    A work machine in which an area of a region where the second straight channel and the power module overlap is larger than an area of a region where the first straight channel and the power module overlap.
  2.  前記第1の直線流路の幅と、前記第2の直線流路の幅とが等しく、前記第1の直線流路及び前記第2の直線流路の幅方向に関して、前記第2の直線流路の全域が前記パワーモジュールと重なっているが、前記第1の直線流路は、幅方向に関して少なくとも一部分は前記パワーモジュールと重なっていない請求項1に記載の作業機械。 The width of the first straight flow path is equal to the width of the second straight flow path, and the second straight flow is related to the width direction of the first straight flow path and the second straight flow path. 2. The work machine according to claim 1, wherein an entire area of the path overlaps with the power module, but at least a part of the first linear flow path does not overlap with the power module in the width direction.
  3.  前記第1の直線流路は、幅方向に関して外側流路と内側流路とに分離されており、前記外側流路及び内側流路は、前記湾曲流路内において、前記第2の直線流路に至る前に1本の流路に合流する請求項1または2に記載の作業機械。 The first straight channel is separated into an outer channel and an inner channel with respect to the width direction, and the outer channel and the inner channel are the second linear channel in the curved channel. The work machine according to claim 1 or 2, wherein the work machine merges into one flow path before reaching the position.
  4.  前記流路の、前記パワーモジュールが取り付けられた側の内面に、冷却媒体の流れの方向に沿う尾根状の凸部が形成されている請求項1乃至3のいずれか1項に記載の作業機械。 The work machine according to any one of claims 1 to 3, wherein a ridge-like convex portion along a flow direction of the cooling medium is formed on an inner surface of the flow path on a side where the power module is attached. .
  5.  前記第1の直線流路の断面積と、前記第2の直線流路の断面積とは、同一である請求項1乃至4のいずれか1項に記載の作業機械。 The work machine according to any one of claims 1 to 4, wherein a cross-sectional area of the first straight channel and a cross-sectional area of the second straight channel are the same.
  6.  平面視において、前記パワーモジュールのうち、前記流路と重なっている領域が、前記パワーモジュールの全域の60%以上である請求項1乃至5のいずれか1項に記載の作業機械。 The work machine according to any one of claims 1 to 5, wherein a region of the power module that overlaps the flow path in a plan view is 60% or more of the entire area of the power module.
  7.  冷却媒体を流す流路を含む冷却板と、
     前記冷却板に取り付けられて、該冷却板に熱的に結合するパワーモジュールと
    を有する電力変換装置が搭載された作業機械であって、
     前記流路は、第1の向きに冷却媒体を流す第1の直線流路と、前記第1の直線流路の側方に配置され、前記第1の向きとは反対向きの第2の向きに冷却媒体を流す第2の直線流路と、前記第1の直線流路及び前記第2の直線流路に連続し、前記第1の直線流路を流れてきた冷却媒体の進行方向を変えて、前記第2の直線流路に流入させる湾曲流路とを含み、
     前記湾曲流路の最小曲率半径を有する部分の曲率中心を通過し、前記第1の向きと平行な仮想直線を基準として、前記パワーモジュールは、前記第1の直線流路の幅方向に関して、前記第2の直線流路の方に偏った位置に取り付けられている作業機械。
    A cooling plate including a flow path for flowing a cooling medium;
    A work machine equipped with a power converter having a power module attached to the cooling plate and thermally coupled to the cooling plate,
    The flow path is disposed at a side of the first linear flow path for flowing the cooling medium in a first direction, and a second direction opposite to the first direction. The second straight flow path for flowing the cooling medium through the first straight flow path, the first straight flow path, and the second straight flow path are changed, and the traveling direction of the cooling medium flowing through the first straight flow path is changed. A curved flow path that flows into the second straight flow path,
    With respect to the width direction of the first straight flow path, the power module passes through the center of curvature of the portion having the minimum curvature radius of the curved flow path and is based on a virtual straight line parallel to the first direction. A work machine attached to a position biased toward the second straight flow path.
  8.  前記湾曲流路は、前記第1の直線流路の下流端から離れるに従って、一旦、前記第2の直線流路から遠ざかる方向に湾曲し、その後、前記第2の直線流路に繋がる請求項7に記載の作業機械。 8. The curved channel is once bent in a direction away from the second linear channel as it moves away from the downstream end of the first linear channel, and then connected to the second linear channel. The working machine described in.
PCT/JP2012/073017 2011-09-15 2012-09-10 Work machine WO2013039026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013533653A JP6281840B2 (en) 2011-09-15 2012-09-10 Work machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-201922 2011-09-15
JP2011201922 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013039026A1 true WO2013039026A1 (en) 2013-03-21

Family

ID=47883256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073017 WO2013039026A1 (en) 2011-09-15 2012-09-10 Work machine

Country Status (2)

Country Link
JP (1) JP6281840B2 (en)
WO (1) WO2013039026A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107567239A (en) * 2017-07-24 2018-01-09 广东美的暖通设备有限公司 Radiating subassembly and refrigeration plant
US10362712B2 (en) 2015-12-22 2019-07-23 Fujitsu Limited Heat receiver, cooling unit, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016397A1 (en) * 1998-09-16 2000-03-23 Hitachi, Ltd. Electronic device
JP2008091700A (en) * 2006-10-03 2008-04-17 Toyota Motor Corp Semiconductor device
JP2010027963A (en) * 2008-07-23 2010-02-04 Shindengen Electric Mfg Co Ltd Cooler
JP2010272870A (en) * 2009-05-22 2010-12-02 Ls Industrial Systems Co Ltd Water-cooling type cooler, and inverter including the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046482A (en) * 2000-07-31 2002-02-12 Honda Motor Co Ltd Heat sink type cooling device
JP2005197454A (en) * 2004-01-07 2005-07-21 Mitsubishi Electric Corp Cooler
JP2006303306A (en) * 2005-04-22 2006-11-02 Nissan Motor Co Ltd Power module
JP2009121758A (en) * 2007-11-15 2009-06-04 Mitsubishi Electric Corp Heat exchanger and cryogenic system
JP4819071B2 (en) * 2008-02-06 2011-11-16 本田技研工業株式会社 Electric vehicle and cooling method for DC / DC converter for vehicle
JP2010114121A (en) * 2008-11-04 2010-05-20 Daikin Ind Ltd Heat radiator of electrical component
JP5419437B2 (en) * 2008-12-17 2014-02-19 三菱電機株式会社 Air conditioning combined water heater
JP5352359B2 (en) * 2009-07-08 2013-11-27 本田技研工業株式会社 Semiconductor device module cooling device
JP5813300B2 (en) * 2010-08-23 2015-11-17 三桜工業株式会社 Cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016397A1 (en) * 1998-09-16 2000-03-23 Hitachi, Ltd. Electronic device
JP2008091700A (en) * 2006-10-03 2008-04-17 Toyota Motor Corp Semiconductor device
JP2010027963A (en) * 2008-07-23 2010-02-04 Shindengen Electric Mfg Co Ltd Cooler
JP2010272870A (en) * 2009-05-22 2010-12-02 Ls Industrial Systems Co Ltd Water-cooling type cooler, and inverter including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10362712B2 (en) 2015-12-22 2019-07-23 Fujitsu Limited Heat receiver, cooling unit, and electronic device
CN107567239A (en) * 2017-07-24 2018-01-09 广东美的暖通设备有限公司 Radiating subassembly and refrigeration plant

Also Published As

Publication number Publication date
JP6281840B2 (en) 2018-02-21
JPWO2013039026A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP5102902B2 (en) Excavator
JP5686716B2 (en) Power storage module and work machine
JP6292205B2 (en) Vehicle underfloor structure
JP4355366B2 (en) High-voltage harness wiring structure for vehicles
JP5356543B2 (en) Drive control device for work vehicle
WO2013145671A1 (en) Industrial machine
JP5545411B2 (en) Electronic equipment casing
JP6787204B2 (en) Automotive high voltage unit case, high voltage unit, and vehicle
EP2435268A1 (en) Vehicle battery cooling structure
CN102029954A (en) Vehicle high voltage cable layout structure
JP2013215080A (en) Electric power conversion apparatus and work machine
JP5968228B2 (en) Excavator
JP5975838B2 (en) Electric work vehicle and cooling method for power supply device for electric work vehicle
JP6281840B2 (en) Work machine
JP2012040893A (en) Hybrid vehicle
JP5583917B2 (en) Hybrid construction machine
JP2010173568A (en) Supporting structure of power control unit
JP2013175588A (en) Vehicular control device and vehicle
EP4070980B1 (en) Vehicle drive unit
JP6213974B2 (en) Work machine
JP2009153264A (en) Cooling structure of power control unit
JP5236433B2 (en) Hybrid construction machine
JP2008062849A (en) Exhaust structure of industrial vehicle
JP2013069967A (en) Electric power converting device and work machine
JP2020006811A (en) Battery case

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831705

Country of ref document: EP

Kind code of ref document: A1