WO2013039020A1 - Method for manufacturing photoelectric conversion device, electrode for photoelectric conversion device, photoelectric conversion device, and light-emitting device - Google Patents

Method for manufacturing photoelectric conversion device, electrode for photoelectric conversion device, photoelectric conversion device, and light-emitting device Download PDF

Info

Publication number
WO2013039020A1
WO2013039020A1 PCT/JP2012/072999 JP2012072999W WO2013039020A1 WO 2013039020 A1 WO2013039020 A1 WO 2013039020A1 JP 2012072999 W JP2012072999 W JP 2012072999W WO 2013039020 A1 WO2013039020 A1 WO 2013039020A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
photoelectric conversion
conductive wire
electrode
conductive
Prior art date
Application number
PCT/JP2012/072999
Other languages
French (fr)
Japanese (ja)
Inventor
善孝 長草
裕之 潮田
洋一 川村
Original Assignee
トヨタ自動車東日本株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2011/071049 external-priority patent/WO2013038535A1/en
Priority claimed from PCT/JP2011/071051 external-priority patent/WO2013038537A1/en
Application filed by トヨタ自動車東日本株式会社 filed Critical トヨタ自動車東日本株式会社
Priority to JP2013533649A priority Critical patent/JP5957787B2/en
Publication of WO2013039020A1 publication Critical patent/WO2013039020A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/791Starburst compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a photoelectric conversion device, an electrode for a photoelectric conversion device used for the photoelectric conversion device, a photoelectric conversion device using the same, and a light emitting device.
  • a photoelectric conversion device is a device that converts light into electrical energy and a device that converts electrical energy into light.
  • Examples of the former include solar cells, and examples of the latter include light emitting diodes.
  • the surface layer of the wafer is made an n-type semiconductor by vapor phase diffusion or implantation of n-type impurity ions into a p-type single crystal wafer.
  • a pn junction and a pin junction are formed.
  • a solar cell having a sandwich structure is manufactured by forming a front electrode and a back electrode.
  • a chalcopyrite solar cell will be described as an example. This is a solar cell provided with a CIGS layer made of a chalcopyrite compound (Cu (In + Ga) Se 2 ) containing Group I, Group III, and Group VI elements as a p-type light absorption layer (for example, Patent Documents) 1).
  • a CIGS layer made of a chalcopyrite compound (Cu (In + Ga) Se 2 ) containing Group I, Group III, and Group VI elements as a p-type light absorption layer (for example, Patent Documents) 1).
  • This solar cell with a CIGS layer generally has a back electrode 1 layer, which is a positive electrode made of a Mo metal layer, on a glass substrate such as a soda lime glass (SLG) substrate, and Na unevenness caused by the SLG substrate.
  • the multilayer structure includes a Na dip layer for prevention, a CIGS light absorption layer, an n-type buffer layer, and an outermost surface layer formed of a transparent electrode layer serving as a negative electrode.
  • the n-type buffer layer is made of CdS, ZnO, InS or the like
  • the transparent electrode layer is made of ZnOAl or the like.
  • the CIGS light absorbing layer is obtained by the following process. That is, the substrate itself provided with the In layer and the Cu—Ga layer as a precursor is accommodated in the annealing chamber and preheated. Thereafter, the precursor is converted into a CIGS layer by raising the temperature of the chamber to a temperature range of 500 to 520 ° C. while introducing H 2 Se gas through a gas introducing tube inserted into the annealing chamber.
  • an organic thin film solar cell using an organic semiconductor can be formed by a simple film forming method, and thus has attracted attention as a solar cell that is easy to manufacture and suitable for mass production.
  • Various organic thin-film solar cells having so-called bulk heterojunction structures and nanophase separation structures have been proposed. In these structures, since a wide contact interface between the p-type organic semiconductor and the n-type organic semiconductor can be secured, the photoelectric conversion efficiency can be improved.
  • Such an organic thin film solar cell is prepared, for example, by dissolving a hole transport material and an electron transport material in various solvents to prepare a material-containing liquid, and depositing the material-containing liquid on the surface of the electrode. It is manufactured by forming a photoelectric conversion layer including an organic semiconductor or an n-type organic semiconductor.
  • Patent Document 2 proposes an organic thin film solar cell in which an anode, a photoelectric conversion layer having a bulk heterojunction structure, and a cathode are sequentially laminated on one surface of a substrate.
  • a cathode is formed at a low temperature but also an organic metal by forming a laminated structure in which a cathode made of silver oxide and a reducing agent and an electron transport layer doped with an organic metal are applied in the vicinity of the cathode. It is said that the junction between the doped layer and the cathode is improved.
  • Patent Document 3 proposes a method of manufacturing a photovoltaic element or the like by joining a mesh electrode body woven with metal wires onto the surface of a photovoltaic body.
  • Patent Document 2 by wiring a metal wire, the aspect ratio between the thinness and thickness of the wire can be appropriately adjusted as compared with the wiring using printing, lithography, etc., the cost can be reduced, and the mesh can be woven. It is said that wiring can be speeded up.
  • the electrode on the light irradiation side needs to have good light transmittance and low electric resistance, and the electrode on the light irradiation side has to be formed by vapor deposition or plating of an expensive rare metal. Along with that, the manufacturing process was also complicated.
  • an organic EL material is confined between an aluminum plate and a glass substrate with ITO, and the outer peripheral edge is sealed, and the aluminum plate and ITO The organic EL was made to emit light by applying a voltage between the two. Moreover, the flexibility was provided to the light-emitting device using the aluminum foil instead of the aluminum plate, and using the transparent resin sheet with ITO instead of the glass substrate with ITO.
  • the liquid crystal display device is provided with a liquid crystal panel on a backlight illumination unit.
  • the liquid crystal panel is configured by bonding a TFT (Thin Film Transistor) substrate and a CF (Color Filer) substrate together and enclosing liquid crystal molecules therebetween.
  • the TFT substrate is a substrate on which TFT elements are formed in a matrix
  • the CF substrate is a substrate on which a color filter is formed.
  • the present invention provides a manufacturing method capable of easily manufacturing a flexible photoelectric conversion device while ensuring the performance of photoelectric conversion, and an electrode structure for producing a photoelectric conversion device that can be suitably used for this manufacturing method.
  • the first purpose is to provide it.
  • a second object of the present invention is to provide an electrode structure for a photoelectric conversion device that does not require light transmission as an electrode material, and a photoelectric conversion device using the same.
  • a third object of the present invention is to provide a light-emitting device with a simple structure and less flexibility.
  • a material-containing liquid containing at least one of a hole transport material and an electron transport material in a solvent is attached to an electrode structure.
  • a method of forming an organic semiconductor in contact with the electrode structure from a material adhered to the electrode structure, and a plurality of conductive wires and an arrangement adjusting wire for adjusting an arrangement interval of the plurality of conductive wires are prepared by using a solvent capable of dissolving the arrangement adjusting wire, and bringing the material containing liquid into contact with the electrode structure.
  • the organic semiconductor is formed by dissolving and attaching at least one material to the conductive wire. In this manufacturing method, it is particularly preferable to manufacture an organic semiconductor thin film solar cell.
  • an electrode structure in which conductive wires are spaced apart from each other by a predetermined interval by interposing an arrangement adjusting wire between conductive wires.
  • An electrode structure comprising a plurality of vertical wires made of a plurality of conductive wires and arrangement adjusting wires and a plurality of horizontal wires arranged intersecting the plurality of vertical wires can be prepared, and the arrangement adjusting wires can be dissolved. It is preferable to prepare the material-containing liquid using a solvent that cannot dissolve the horizontal wire.
  • a material-containing liquid containing a hole transport material and an electron transport material is prepared and brought into contact with the electrode structure, and the p-type organic semiconductor is formed in a state of being connected to some conductive wires, and n It is preferable to form the type organic semiconductor in a state where it is connected to the other part of the conductive wire.
  • the material-containing liquid may be attached to one side of the electrode structure.
  • an electrode structure having a plurality of electrode portions in which a plurality of conductive wires are integrated together with a placement adjusting wire and having a plurality of electrode portions opposed to each other is prepared, and a placement adjusting wire is prepared.
  • the material-containing liquid may be prepared using a solvent that can dissolve the support wire but cannot dissolve the support wire.
  • the electrode for producing a photoelectric conversion device used in such a production method is preferably one in which the solubility of the arrangement adjusting wire in the solvent for producing the photoelectric conversion device is larger than that of the conductive material.
  • an electrode for a photoelectric conversion device of the present invention is an electrode provided on one side of a photoelectric conversion layer that converts light and electric energy, and includes a plurality of vertical wires and a plurality of vertical wires.
  • the vertical wire and the horizontal wire intersect each other to form a net, and the vertical wire includes a plurality of first conductive wires, a plurality of second conductive wires, and a plurality of The first conductive wire and the second conductive wire are alternately arranged, and the first insulating wire is provided between the first conductive wire and the second conductive wire.
  • the horizontal wire is made of a second insulating wire, wherein the first conductive wire functions as a p-type electrode, and the second conductive wire functions as an n-type electrode.
  • a plurality of the first insulating wire rods may be provided between the first conductive wire rod and the second conductive wire rod 3 described above.
  • a photoelectric conversion device of the present invention includes a photoelectric conversion layer that converts light and electric energy, and a pair of electrodes provided on one side of the photoelectric conversion layer, One electrode and the other electrode are provided side by side, a p-layer organic semiconductor made of a hole transport material is provided on the one electrode, and an electron transport material is provided on the other electrode.
  • An n-layer organic semiconductor is provided, the one electrode functions as a p-type electrode, and the other electrode functions as an n-type electrode.
  • the p-layer organic semiconductor and the n-layer organic semiconductor are preferably covered with a transparent protective layer.
  • a p-layer organic semiconductor made of a hole transport material is provided on the first conductive wire with respect to the optoelectronic device electrode, and an electron transport material is provided on the second conductive wire.
  • the p-layer organic semiconductor and the n-layer organic semiconductor may be alternately arranged, for example, alternately formed on the same surface.
  • the same surface may be either a virtual surface or a substrate surface, but when formed on the substrate surface, it may be a flat substrate or a flexible substrate that can be bent.
  • the light-emitting device of the present invention is configured by arranging a light-emitting layer made of an organic EL material and the light-emitting layer, and alternately arranging one conductive wire and the other conductive wire. Alternating electrodes.
  • an arrangement adjusting wire extending in the same direction is provided between one conductive wire and the other conductive wire, and the arrangement adjusting wire has an interval between the one conductive wire and the other conductive wire. maintain.
  • a crossing wire extends in a direction crossing one conductive wire and the other conductive wire, and the crossing wire, one conductive wire, and the other conductive wire are knitted.
  • a crossing wire extends in a direction crossing one conductive wire, the other conductive wire, and the arrangement adjusting wire, and the crossing wire, one conductive wire, the other conductive wire, and the arrangement adjustment. Wires for use are knitted.
  • one wiring part in which one end of one conductive wire is connected to each other and the other wiring part in which the other end of the other conductive wire is connected to each other, one wiring part and the other wiring part When a voltage is applied to the light emitting layer, the light emitting layer emits light.
  • the method for manufacturing a photoelectric conversion device of the present invention since an electrode structure in which a plurality of conductive wires are integrally connected together with a wire for adjusting arrangement is used, even a conductive wire having flexibility can be easily arranged.
  • the arrangement interval of the plurality of conductive wires can be easily adjusted by the arrangement adjusting wire, and the state can be stably maintained at the time of manufacture. For this reason, it is possible to prevent variation in the arrangement interval of the plurality of conductive wires and to ensure the performance of photoelectric conversion.
  • the hole transport material of the material containing liquid is disposed at the portion where the arrangement adjusting wire is arranged.
  • an electron transport material can be arranged. Therefore, many organic semiconductors can be uniformly arranged between the conductive wires, and the performance of photoelectric conversion can be ensured. Therefore, it is possible to easily manufacture a photoelectric conversion device having flexibility while ensuring the performance of photoelectric conversion.
  • a plurality of conductive wires are integrated together with the arrangement adjusting wire, and the solubility of the arrangement adjusting wire in the solvent for producing the photoelectric conversion device is more than the conductive material. Since it is large, it can be suitably used to produce the photoelectric conversion device as described above.
  • the electrode has an alternately arranged planar electrode structure in which one electrode functioning as a p-type electrode and the other electrode functioning as an n-type electrode are formed on the same plane. Therefore, the transparent electrode material conventionally required as the electrode material becomes unnecessary.
  • a p-layer organic semiconductor is laminated on one electrode and an n-layer organic semiconductor is laminated thereon to form a pn junction, and the other electrode is transparent on the n-layer organic semiconductor. There is no need to sequentially stack the electrodes to form a photoelectric conversion device.
  • the electrode structure and photoelectric conversion device of the present invention can be produced on a flexible substrate such as a glass substrate. Since an organic semiconductor can be provided on the electrode by coating, the manufacturing process is not complicated, and the electrode can be manufactured at low cost.
  • the alternately arranged electrodes are provided in the light emitting layer.
  • one and the other conductive wires are alternately arranged, and if necessary, an arrangement adjusting wire is provided between them or another wire intersects with each other.
  • the resin molded sheet or film itself it is easily deformable such as curved by an external force.
  • the organic EL material is in close contact with the one and the other conductive wires themselves, the light emission performance is hardly affected even if they are curved.
  • the structure is extremely simple, and the productivity can be improved and the cost can be reduced.
  • FIG. 1st Embodiment of this invention It is sectional drawing of the photoelectric conversion device which concerns on 1st Embodiment of this invention. It is a perspective view which shows the electrode structure in the photoelectric conversion device shown in FIG. It is an enlarged view of the area
  • the photoelectric conversion device will be described assuming a solar cell as a device that converts light into electric energy, but the present invention can be similarly applied to a device that converts electric energy into light energy. .
  • FIG. 1 is a cross-sectional view of a photoelectric conversion device 1 according to the first embodiment of the present invention
  • FIG. 2 is a perspective view of the photoelectric conversion device.
  • the photoelectric conversion device 1 includes an insulating substrate 11, an electrode 12 provided on the upper surface of the substrate 11, a photoelectric conversion layer 13 that covers the electrode 12, and a protective layer 14 that covers the upper surface of the photoelectric conversion layer 13. It is configured. In FIG. 2, the display of the photoelectric conversion layer 13 and the protective layer 14 is omitted.
  • the base material 11 is formed in a sheet shape and has flexibility. For example, what was formed as a flexible substrate by PET etc. is used. In the first embodiment, as shown in FIG. 2, the base material 11 has a rectangular outline.
  • the short side is referred to as the first side 11A
  • the long side is referred to as the second side 11B.
  • the electrode 12 will be described with reference to FIG.
  • the electrode 12 extends along the first side 11 ⁇ / b> A of the base 11, and further has a plurality of vertical wires 12 ⁇ / b> A arranged at a predetermined pitch in the extending direction of the second side 11 ⁇ / b> B, and the second side 11 ⁇ / b> B of the base 11. And a plurality of horizontal wires 12B arranged at a predetermined pitch in the extending direction of the first side 11A.
  • the vertical wire 12A and the horizontal wire 12B are woven so as to intersect each other. That is, the electrode 12 is formed in a plain weave net shape.
  • first conductive wire 121, the second conductive wire 122, and the first insulating wire 123 are used. As shown in FIG. 2, the first conductive wire 121 and the second conductive wire 122 are alternately arranged on the substrate 11, and the first conductive wire 121 and the second conductive wire 122 are arranged between the first conductive wire 121 and the second conductive wire 122.
  • One insulating wire 123 is provided.
  • interval of the 1st conductive wire 121 and the 2nd conductive wire 122 is equivalent to the diameter of the cross section of the 1st insulated wire 123 pinched
  • a gap is provided between the members.
  • first conductive wire 121 and the second conductive wire 122 for example, a metal wire such as a copper wire or a stainless wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used.
  • One end 121E of each first conductive wire 121 is connected to the first bus bar 121A as shown in FIG.
  • Each second conductive wire 122 is connected to the second bus bar 122A at an end 122E located on the other end 121F side of the first conductive wire 121.
  • the first insulating wire 123 is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • a second insulating wire is used as the horizontal wire 12B extending along the second side 11B. Similar to the first insulating wire 123, the second insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • the first conductive wire 121, the second conductive wire 122, the first insulating wire 123 and the second insulating wire are set to a thickness of about 20 ⁇ m to 30 ⁇ m.
  • FIG. 3 is a schematic enlarged view of a circle A region in FIG.
  • the photoelectric conversion layer 13 is provided on one electrode, that is, the p-layer organic semiconductor 13A made of a hole transport material provided on the first conductive wire 121, and on the second conductive wire 122 serving as the other electrode, and electron transport.
  • an n-layer organic semiconductor 13B made of a material. Therefore, one first conductive wire 121 functions as a p-type electrode, and the other second conductive wire 122 functions as an n-type electrode.
  • the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B form a pn junction.
  • the p-layer organic semiconductor 13A is formed of a hole transport material.
  • a hole transport material in addition to triphenylamine (TAPC) represented by the chemical formula (1), TPD and other aromatic amines which are dimers of triphenylamine represented by the chemical formula (2), the chemical formula (3) ⁇ -NPD represented by formula (4), (DTP) DPPD represented by formula (4), m-MTDATA represented by formula (5), HTM1 represented by formula (6), 2-TNATA represented by formula (7) TPTE1 represented by the chemical formula (8), TCTA represented by the chemical formula (9), NTPA represented by the chemical formula (10), spiro-TAD represented by the chemical formula (11), TFREL represented by the chemical formula (12), etc. It is done.
  • the n-layer organic semiconductor 13B is formed of an electron transport material.
  • the electron transport material include Alq 3 represented by the chemical formula (13), BCP represented by the chemical formula (14), an oxadiazole derivative represented by the chemical formula (15), and an oxadiazole dimer represented by the chemical formula (16).
  • Alq 3 represented by the chemical formula (13)
  • BCP represented by the chemical formula (14)
  • triazole derivative represented by chemical formula (18) phenylquinoxaline derivative represented by chemical formula (19), silole derivative represented by chemical formula (20), and the like.
  • the first conductive wire 121 and the second conductive wire 122 constituting the photoelectric conversion device electrode 12 are formed side by side on the substrate 11, and the first conductive wire 121 and the second conductive wire 122 are further formed.
  • the p-layer organic semiconductor 13 ⁇ / b> A and the n-layer organic semiconductor 13 ⁇ / b> B are formed side by side on the substrate 11, similarly to the first conductive wire 121 and the second conductive wire 122. Therefore, the protective layer 14 can be formed without providing an electrode on the light incident surface as in Patent Document 2.
  • the protective layer 14 is provided so as to cover the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B.
  • the protective layer 14 is formed of, for example, a resin or the like as long as it is a material that transmits irradiation light such as sunlight.
  • a method for producing the photoelectric conversion device 1 shown in FIG. First, the base material 11 is prepared. Next, a first conductive wire 121, a second conductive wire 122, a 171 insulating wire 123, and a second insulating wire are prepared and plain woven. The electrode 15 formed by plain weaving is fixed on the base material 11 with, for example, an adhesive. Thereafter, a hole transport material to be the p-layer organic semiconductor 13A is applied to a predetermined portion, for example, the first conductive wire 121 as one electrode. For the application, for example, a printing method using an inkjet printer can be applied.
  • an electron transport material to be an n-layer organic semiconductor 13B is applied between the p layer and the p layer, for example, on the second conductive wire 122 as the other electrode.
  • a printing technique using an ink jet printer can be used as in the case of the p-layer organic semiconductor 13A.
  • a pn junction is formed by the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B.
  • the n-layer organic semiconductor 13B may be applied, and then the p-layer organic semiconductor 13A may be applied.
  • the photoelectric conversion device 1 is manufactured by forming the protective layer 14 by painting or the like. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 1 is manufactured.
  • the 1st conductive wire 121 and the 2nd conductive wire 122 which comprise the electrode 12 for photoelectric conversion devices are formed on the base material 11, Furthermore, the 1st conductive wire 121 and the 2nd conductive wire are formed.
  • a p-layer organic semiconductor 13 ⁇ / b> A and an n-layer organic semiconductor 13 ⁇ / b> B are formed on the substrate 11 so as to cover the wire 122. Therefore, the protective layer 14 can be formed without providing an electrode on the light incident surface as in Patent Document 2. Therefore, it is unnecessary to configure the electrode provided on the light irradiation side of Patent Document 2 with a transparent electrode, and it is not necessary to use a rare metal for the transparent electrode as a material. Al or the like can be used.
  • the electrode 12 is comprised with the net
  • the first embodiment of the present invention can be implemented with appropriate modifications within the scope of the present invention.
  • a configuration in which one first insulating wire 123 is provided between the first conductive wire 121 and the second conductive wire 122 has been described, but a plurality of the first insulated wire 123 may be provided.
  • the photoelectric conversion device may be configured by omitting the base material 11.
  • FIG. 4 is a view schematically showing a light emitting device according to the second embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a cross section of the light emitting portion of the light emitting device shown in FIG. 4, and
  • FIG. 6 is a diagram schematically showing the alternately arranged electrodes of the light emitting portion shown in FIG.
  • the light-emitting device 1 shown in 2nd Embodiment of this invention is equipped with the light emission part 2 and the control part 3, as shown in FIG.
  • the light emitting unit 2 includes a light emitting layer 13 made of an organic EL material and alternating electrodes 12 provided in the light emitting layer 13.
  • the light emitting layer 13 is formed in layers with various organic EL materials.
  • the alternating electrode 12 is configured such that one conductive wire 121 and the other conductive wire 122 extend in the same direction and are alternately arranged at intervals.
  • the photoelectric conversion device is the light emitting device 1
  • the photoelectric conversion layer is the light emitting layer 13
  • the photoelectric conversion device electrodes are the alternately arranged electrodes 12.
  • the alternating electrodes 12 may be provided at substantially the center in the thickness direction of the light emitting layer 13, but may be closer to either the upper or lower surface from the center surface.
  • the light emitting unit 2 may be provided with a thin transparent protective layer 14 on one or both upper and lower surfaces.
  • the alternating array electrode 12 is configured by providing an arrangement adjusting wire 15 that also extends in one direction between one conductive wire 121 that extends in one direction and the other wire 13 that extends in one direction. Yes. These one and other wires 12, 13 and the arrangement adjusting wire 15 are used as a horizontal wire, and the insulating wire 15 is used as a vertical wire. In addition, as shown in the drawing, the arrangement adjusting wire 15 may be not only one but also two or more between one conductive wire 121 and the other conductive wire 122.
  • the arrangement adjusting wire 15 extending in the vertical direction is arranged, and each of the wires 12 extending in the vertical direction is arranged.
  • 13 and 15 are cross-wired 16 extending in the horizontal direction and arranged in a lattice pattern with a plurality of wires arranged at intervals in the vertical direction.
  • the vertical and horizontal intervals of the lattice may be the same or substantially the same.
  • the one conductive wire 121 and the other conductive wire 122 are made of wire members having a circular cross section, an elliptical cross section, and a flat cross section, and may be monofilaments or multifilaments.
  • the filament may be a conductive wire made of metal or the like.
  • the metal may be plated on the outer periphery of the monofilament or multifilament, and the plating layer may be formed on the outer periphery of the filament.
  • the metal is preferably copper having a low resistivity, but may be other metals such as stainless steel.
  • the arrangement adjusting wire 15 and the crossing wire 16 are each made of a linear member having a circular cross section, an elliptical cross section, or a flat cross section, and may be monofilament or multifilament.
  • the crossing wire 16 is made of insulating fiber. It is preferable to use insulating fibers as the material of the wire 15 for adjusting the arrangement.
  • the material of the arrangement adjusting wire 15 and the crossing wire 16 is an organic solvent contained in the coating agent when the organic EL material is applied to one of the linear electrode group 12 and the other linear electrode group 13 and cured. May be dissolved.
  • the distance between the one conductive wire 121 and the arrangement adjusting wire 15 and the distance between the other conductive wire 122 and the arrangement adjusting conductive wire 15 are one conductive wire 121, the other conductive wire 122, and the arrangement adjusting conductivity.
  • the same order as the equivalent cross-sectional dimension of the wire 15 may be sufficient.
  • the conductive wires 121 and 13 and the arrangement adjusting wire 15 and the crossing wire 16 have a wire diameter of 20 to 35 ⁇ m, and a gap between the conductive wires 121 and 13 and the arrangement adjusting wire 15 is provided. Is 20 to 35 ⁇ m. The gap between the crossing wires 15 is 20 to 35 ⁇ m.
  • the thickness of the light emitting layer 13 is, for example, 40 to 80 ⁇ m.
  • the string-like thickness of each wire is approximately the same as the size of the mesh formed by these wires, or has the same order of dimensions. Accordingly, the gap between the wires is maintained by the wire 15 for adjusting the arrangement and the wire 16 for crossing.
  • the wire diameter of each wire is preferably uniform, but may be within a predetermined range with respect to the average diameter, for example, 80% to 120%. Thereby, the space
  • the arrangement adjusting wire 15 and the crossing wire 16 are provided to maintain a distance between one conductive wire 121 and the other conductive wire 122 until the organic EL material is cured. Therefore, when the organic EL material is cured by applying the organic EL material to the cloth knitted as described above to form the light emitting layer 13, the thickness of the light emitting layer 13 and the one conductive wire 121 and the other are increased. The conductive wire 122 is held. Note that the arrangement adjusting wire 15 and the crossing wire 16 do not need to be completely dissolved by the organic solvent, and may remain partially undissolved.
  • acrylic fibers or vinyl fibers can be used as the wires 15 for the arrangement adjustment and the crossing wires 16, and in this case, the coating agent contains an organic solvent such as toluene or acetic acid. It only has to be done.
  • the organic solvent can be appropriately selected according to the organic EL material, the curing agent, and the like.
  • the alternately arranged electrodes 12 are embedded in the light emitting layer 13, and at that time, the distance between the one conductive wire 121 and the other conductive wire 122 is substantially constant by the arrangement adjusting wire 15 and the crossing wire 16. Can be.
  • One end of one conductive wire 121 is mutually connected by one wiring part 5, and one end of the other conductive wire 122 is mutually connected by the other wiring part 6.
  • Each wiring unit 5, 6 is connected to the control unit 3 via the connection unit 4.
  • the control unit 3 applies a voltage between one wiring unit 5 and the other wiring unit 6. Thereby, a voltage can be applied to the organic EL molecules in the light emitting layer 13.
  • one conductive wire 121 extending in one direction and the other conductive wire 122 are arranged alternately in the light emitting layer 13.
  • “provided in the light emitting layer” means that each of the conductive wires 121 and the other conductive wires 122 in the alternate wiring electrode 14 is cut in a cross-section in a cross section and the surroundings are all organic EL molecules having a light emission image. It is not necessary to be in close contact, and includes cases where it is partially in close contact. That is, the voltage applied to one conductive wire 121 and the other conductive wire 122 may be applied to the organic EL molecules.
  • one conductive wire 121 and the other conductive wire 122 extending in the same direction are alternately arranged, and arrangement adjustment is performed as necessary between them.
  • the wire diameter of each wire is very small, the wire extending in the lateral direction may be referred to as weft and the wire extending in the vertical direction may be referred to as warp.
  • the light emitting unit 2 of the light emitting device 1 includes the alternately arranged electrodes 12 as described above, a voltage is applied between the one conductive wire 121 and the other conductive wire 122 to emit the light emitting layer 13.
  • the entire surface can emit light.
  • each of the wires 12, 13, 15 and the light emitting layer 13 extend in the vertical and horizontal directions, respectively, a thin film is used without using a glass substrate as in the prior art.
  • the ITO film since the ITO film is not formed on the sheet, the ITO film does not peel from the film or sheet.
  • the bending of the film or sheet itself is not hindered. Therefore, the light emitting unit 2 of the light emitting device 1 according to the second embodiment of the present invention can be freely deformed such as curved.
  • FIG. 7 is a diagram schematically showing a cross section of a light emitting unit in a light emitting device according to the third embodiment of the present invention
  • FIG. 8 is a diagram schematically showing alternating electrodes of the light emitting unit shown in FIG. .
  • the alternately arranged electrodes 12 in the light emitting unit 2 alternately arrange one conductive wire 121 and the other conductive wire 122, and arrange the arrangement adjusting wire 15 as one conductive wire. It differs in that it is not provided between 121 and the other conductive wire 122.
  • the arrangement adjusting wire 15 is provided between the one conductive wire 121 and the other conductive wire 122, and the solvent contained in the organic EL material, the curing agent, or the like is applied.
  • the light emitting section 2B may be manufactured by melting the arrangement adjusting wire 15. Or you may make it apply
  • FIG. 9 is a diagram schematically showing a cross-section of a light emitting unit in a light emitting device according to the fourth embodiment of the present invention.
  • the light emitting unit 2C of the light emitting device according to the fourth embodiment is different in that a color filter 18 is provided between the light emitting layer 13 and the protective layer 14 in the light emitting unit 2A shown in FIG. By providing the color filter 18, the contrast can be improved.
  • FIG. 10 is a diagram schematically showing a cross section of a light emitting unit in a light emitting device according to a fifth embodiment of the present invention.
  • a protective layer 14 is provided on one side of the light emitting layer 13 with a color filter 18 interposed therebetween.
  • a base material 11 is provided.
  • the conductive cloth is formed by providing a wire 15 for adjusting the arrangement between one conductive wire 121 and the other conductive wire 122, and making it cross-shaped with a crossing wire 15 in a direction perpendicular to them.
  • the alternating array electrode 12 is provided in the light emitting layer 13, and the alternating array electrode 12 is interposed between one conductive wire 121 and the other conductive wire 122.
  • An AC voltage having a frequency suitable for direct current or EL element emission is applied. Then, a voltage is applied to the organic EL molecules, and the light emitting layer 13 can emit light over the entire surface.
  • One conductive wire 121 and the other conductive wire 122 form the alternately arranged electrodes 12 which are provided in the light emitting layer 13.
  • the alternating array electrode 12 is provided with a wire 15 for adjusting the arrangement between the conductive wires 121 and 13 as necessary, and is knitted by the crossing wire 16 in a direction intersecting these, as if it is a fine yarn cloth. It is configured as.
  • a light emitting layer in which one or a plurality of organic EL materials are applied or immersed in these fine yarn cloths can be formed. In that case, a hardening
  • the formation of the light emitting layer in the second to fifth embodiments has not been described in detail, various known organic EL materials can be used.
  • a known technique such as an ink jet method can be used, or an immersion impregnation method or an infiltration method using a roller can be used.
  • each wire rod may be knitted to form a square mesh such as a square in plan view, but may be a mesh of other shapes such as a rhombus.
  • the light-emitting device can be used for billboard lighting such as advertisements and back lighting of liquid crystal display devices.
  • the photoelectric conversion device 1 includes a photoelectric conversion layer 13 having a p-type organic semiconductor 13A made of a hole transport material and an n-type organic semiconductor 13B made of an electron transport material, and a p-type electrode connected to the p-type organic semiconductor 13A.
  • the first conductive wire 121, the second conductive wire 122 as an n-type electrode connected to the n-type organic semiconductor 13B, and the protective layer 14 laminated so as to cover the surface of the photoelectric conversion layer 13 are provided.
  • the photoelectric conversion device 1 is disposed along the surface of the insulating substrate 11.
  • At least one of the first conductive wire 121 and the second conductive wire 122 is composed of a plurality of conductive wires 120 arranged side by side in substantially the same direction so as not to contact each other.
  • a horizontal wire 12B made of an insulating wire is arranged in a direction crossing these conductive wires 120.
  • a part of the plurality of conductive wires 120 is the first conductive wire 121 and the other conductive wire 120 is the second conductive wire 122, which are alternately arranged.
  • the plurality of conductive wire rods 120 constituting the first conductive wire rod 121 and the plurality of conductive wire rods 120 constituting the second conductive wire rod 122 are provided in substantially the same number, and bus bars 7 as wiring portions as shown in FIG. Can be connected to various circuits via the bus bar 7.
  • Each conductive wire 120 uses a flexible wire such as a metal wire such as a copper wire or a stainless steel wire, a synthetic fiber such as a resin, or a metal-plated fiber obtained by performing metal plating on the surface of various fibers such as a natural fiber. It is good to do.
  • the core fiber may be composed of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, vinyl resin, or the like.
  • the thickness of the plurality of conductive wires 120 may be different from each other, but it is preferable to use wires having the same thickness. Although not particularly limited, as an example, one having a wire diameter of 20 to 30 ⁇ m may be used.
  • Each horizontal wire 12B is made of an insulating wire, and it is preferable to use a flexible wire such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • a wire having the same thickness as that of the conductive wire 120 may be used as the horizontal wire 12B.
  • the photoelectric conversion layer 13 includes a p-type organic semiconductor 13A connected to the first conductive wire 121 and an n-type organic semiconductor 13B connected to the second conductive wire 122.
  • the p-type organic semiconductor 13A and the n-type organic semiconductor 13B are bonded at the contact interface to form a pn junction. It is preferable that the photoelectric conversion layer 13 is rich in flexibility.
  • the p-type organic semiconductor 13A is made of a hole transport material.
  • the hole transport material include aromatic amine, thiophene, phenylene-vinylene, thienylene-vinylene, carbazole, vinylcarbazole, pyrrole, acetylene, phthalocyanine, acene, porphyrin, derivatives, complexes, oligomers, and polymers thereof.
  • known organic compounds having electron acceptability that can be used as organic semiconductors can be used.
  • the n-type organic semiconductor 13B is made of an electron transport material.
  • the electron transport material include silole, fullerene, carbon nanotube, perylene, naphthalene, pyridine, phthalocyanine, quinoline, oxadiazole, triazole, distyrylarylene, derivatives, complexes, oligomers, and polymers thereof. Any known organic compound having an electron donating property that can be used as an organic semiconductor can be used.
  • p-type organic semiconductor 13A and n-type organic semiconductor 13B can be selected by combining those having the highest possible photoelectric conversion efficiency.
  • the thickness of the photoelectric conversion layer 13 is not particularly limited, but may be 1.2 to 2.0 times the wire diameter of the conductive wire 120, for example.
  • the photoelectric conversion device 1 since the first conductive wire 121, the second conductive wire 122, and the photoelectric conversion layer 13 have flexibility, the photoelectric conversion device 1 has sufficient flexibility. Therefore, it can arrange
  • an electrode preparation process for preparing the electrode structure 12 a material-containing liquid adjustment process for preparing a material-containing liquid 130 containing a hole transport material or an electron transport material, a hole transport material or an electron transport material
  • the photoelectric conversion device 1 is manufactured by a manufacturing method including a material adhering step for adhering to the electrode structure 12 and a semiconductor forming step for forming an organic semiconductor.
  • an electrode structure 12 for preparing a photoelectric conversion device in which a plurality of conductive wires 120 are integrally connected together with the arrangement adjusting wire 15 is prepared.
  • This electrode structure 12 may be prepared in advance.
  • the electrode structure 12 of this embodiment includes a plurality of vertical wires 12A having the plurality of conductive wires 120 and the arrangement adjusting wires 15 as described above, and a plurality of horizontal wires 12B intersecting the vertical wires 12A. By crossing these, it is a net made of plain weave.
  • the conductive wire 120 and the arrangement adjusting wire 15 of the vertical wire 12A are alternately arranged in substantially the same direction.
  • the number of the conductive wires 120 and the number of the arrangement adjusting wires 15 that are alternately arranged may be repeated by arranging one or both of them in plurality, but here, each of them is repeatedly arranged one by one.
  • the number or the like of the arrangement adjusting wires 15 arranged between the conductive wires 120 is preferably set according to the arrangement interval of the first conductive wires 121 and the second conductive wires 122 obtained after manufacture. It is preferable that the interval between the adjacent vertical wire rods 12A and the interval between the conductive wire rods 120 are adjusted to a suitably set range.
  • the conductive wire 120 of the vertical wire 12A is as described above, but the hole transport material contained in the material-containing liquid 130 is attached to a part of the conductive wire 120 that becomes the first conductive wire 121 of the vertical wire 12A.
  • the material may be selected so as to be easy and surface treatment may be performed.
  • a material may be selected or a surface treatment may be performed on the other conductive wire 120 that becomes the second conductive wire 122 so that the electron transport material contained in the material-containing liquid 130 is easily attached. .
  • the surface material of the conductive wire 120 constituting the first conductive wire 121 and the surface material of the conductive wire 120 constituting the second conductive wire 122 in a combination that causes a potential difference such as tin and copper.
  • the p-type organic semiconductor 13A or the n-type organic semiconductor 13B may be controlled to be generated as crystals or molecules on the surface of each conductive wire 120.
  • the arrangement adjusting wire 15 of the vertical wire 12A is made of a material that can be dissolved by the material-containing liquid 130 described later, and can be dissolved by a solvent selected according to the hole transport material and the electron transport material.
  • the arrangement adjusting wire 15 may be an insulating resin wire. Although not particularly limited, for example, a wire such as an acrylic resin or a vinyl resin may be used. If the thickness of the arrangement adjusting wire 15 is excessively large, the solubility is lowered or the interval between the conductive wires 120 is widened. On the other hand, if the thickness is excessively thin, it is difficult to secure the interval between the conductive wires 120.
  • the thickness of the wire 15 may be 0.5 to 1.0 times the wire diameter of the conductive wire 120.
  • the horizontal wire 12B may be simply arranged in a direction intersecting with the conductive wire 120 and the arrangement adjusting wire 15, but here, the horizontal wire 12B is arranged so as to intersect with the conductive wire 120 and the arrangement adjusting wire 15 up and down at predetermined intervals. ing.
  • the horizontal wire 12B is made of an insulating wire different from the arrangement adjusting wire 15, and is dissolved in a material-containing liquid 130 described later, that is, a solvent used according to the hole transport material and the electron transport material used.
  • the material is made of a material that is lower than the arrangement adjusting wire 15.
  • a wire such as polyester such as PET may be used.
  • the conductive wire 120 By integrating the vertical wire 12A together with the horizontal wire 12B, the conductive wire 120 can be held apart with the arrangement adjusting wire 15 interposed between the conductive wires 120. And can be placed stably with a gap.
  • the material-containing liquid 130 is prepared by containing at least one of the hole transport material and the electron transport material as described above in the solvent.
  • the material-containing liquid 130 needs to be prepared according to the material adhesion process.
  • the material-containing liquid 130 is separately brought into contact with the first conductive wire 121 and the second conductive wire 122 to form the p-type organic semiconductor 13A and the n-type semiconductor.
  • the material containing liquid 130 containing a hole transport material and the material containing liquid 130 containing an electron transport material are prepared separately.
  • the material-containing liquid 130 is prepared by including both transport materials in a solvent.
  • the hole transport material may be a precursor of an organic compound having an electron acceptability that can be used as an organic semiconductor in addition to the above-described materials, and the electron transport material may be an organic semiconductor other than the above-described materials.
  • the precursor of the organic compound which has the electron-donating property which can be used as these may be sufficient.
  • a desired compound may be generated by appropriately reacting in the subsequent steps.
  • the solvent for producing a photoelectric conversion device used for the material-containing liquid 130 may be a solvent in which a hole transport material or an electron transport material is dispersed, but a soluble solvent is preferable, and a volatile solvent. There may be. This solvent needs to be able to dissolve the wire 15 for adjusting the arrangement of the electrode structure 12 and preferably not to dissolve the horizontal wire 12B.
  • a solvent usually used when forming an organic semiconductor using each hole transport material or each electron transport material is used. it can.
  • a solvent usually used when forming an organic semiconductor using each hole transport material or each electron transport material is used.
  • it can.
  • toluene, xylene, acetic acid or the like is used.
  • This material-containing liquid 130 may further contain components such as an additive such as dicarboxylic acid for controlling orientation and a binder such as methacrylic acid for maintaining strength.
  • the material-containing liquid 130 is brought into contact with the electrode structure 12 to dissolve the arrangement adjusting wire 15, and the hole transport material and the electron transport material in the material-containing liquid 130 are removed from the electrode structure 12. It adheres to the conductive wire 120.
  • each is sequentially brought into contact with part or all of the electrode structure 12 to dissolve both the transport materials.
  • the material-containing liquid 130 it may be contacted at once.
  • the method of bringing the material-containing liquid 130 into contact with the electrode structure 12 and attaching the hole transport material or the electron transport material to the conductive wire 120 is not particularly limited.
  • the material-containing liquid 130 may be applied to the electrode structure 12 or may be printed by an inkjet printer, or the electrode structure 12 may be immersed in the material-containing liquid 130 and dipped.
  • the material-containing liquid 130 containing both transport materials is brought into contact with one side of the electrode structure 12.
  • the electrode structure 12 is placed on the substrate 11 as shown in FIG. 13 (a), and the material-containing liquid 130 is brought into contact as shown in FIG. 13 (b).
  • the arrangement adjusting wire 15 is dissolved by the solvent in the material-containing liquid 130.
  • the dissolved components of the arrangement adjusting wire 15 may be dispersed and left in the material-containing liquid 130 or may be replaced by the material-containing liquid 130 and removed.
  • the components of the arrangement adjusting wire 15 are dissolved in the material and arranged in this material.
  • the material-containing liquid 130 is disposed in the portion where the arrangement adjusting wire 15 has been disposed, and the hole transport material and the electron transport material of the material-containing liquid 130 are equivalent to other portions between and in the vicinity of the conductive wire 120. Be placed. Then, the hole transport material and the electron transport material adhere to the conductive wire 120 of the first conductive wire 121 and the conductive wire 120 of the second conductive wire 122, respectively.
  • a p-type organic semiconductor 13A is formed from a hole transport material or an electron transport material adhered to each conductive wire 120 of the electrode structure 12 together with the material-containing liquid 130.
  • the n-type organic semiconductor 13 ⁇ / b> B is formed in a state where it is connected to the other part of the conductive wire 120.
  • the solvent in the material-containing liquid 130 may be volatilized and dried, and after drying, heat treatment, annealing treatment, or the like may be performed. .
  • Such processing can be performed at a relatively low temperature.
  • a precursor is used as a hole transport material or an electron transport material
  • the precursor is converted into a hole transport material or an electron transport material by a treatment after drying, and the organic semiconductor 13A is connected to the conductive wire 120 while being connected to the conductive wire 120.
  • 13B can be formed. Even when the hole transport material or the electron transport material itself is used, it is possible to improve the photoelectric conversion performance of the obtained photoelectric conversion device 1 by performing a heat treatment or an annealing treatment after drying. is there.
  • the protective layer 14 is laminated on the entire surface of the photoelectric conversion layer 13.
  • a material such as a transparent resin that can transmit light received and emitted by the photoelectric conversion layer 13 can be used. Thereby, manufacture of the photoelectric conversion device 1 is completed.
  • the effect in the manufacturing method of the above-mentioned photoelectric conversion device 1 is demonstrated.
  • the electrode structure 12 integrates the plurality of conductive wires 120 together with the arrangement adjusting wire 15, even the flexible conductive wire 120 can be easily arranged.
  • the arrangement, shape, density, etc. of each conductive wire 120 can be adjusted to easily adjust the arrangement interval of the conductive wire 120, and the state Can be easily and stably maintained during production.
  • the electrode structures 12 are formed by accurately separating the conductive wires 120 from each other at a predetermined interval, so that each conductive wire 120 is stabilized at a desired interval. Can be arranged. Therefore, it is possible to prevent variation in the arrangement interval of the plurality of conductive wires 120 and ensure the performance of photoelectric conversion.
  • the arrangement adjusting wire 15 is dissolved by bringing the material containing liquid 130 into contact with the electrode structure 12, the hole transport material or the electron transport of the material containing liquid 130 is disposed at the portion where the arrangement adjusting wire 15 is arranged. Material can be placed. Therefore, more organic semiconductors 13A and 13B can be disposed uniformly between the conductive wires 120, and the performance of photoelectric conversion can be ensured. Therefore, it is possible to easily manufacture the photoelectric conversion device 1 having flexibility while ensuring the performance of photoelectric conversion.
  • An electrode structure 12 made of a net comprising a plurality of vertical wires 12A made up of a plurality of conductive wires 120 and arrangement adjusting wires 15 and a plurality of horizontal wires 12B arranged crossing the plurality of vertical wires 12A is prepared. Since the material-containing liquid 130 was prepared using a solvent capable of dissolving the arrangement adjusting wire 15 and not dissolving the horizontal wire 12B, the horizontal wire 12B is left on the photoelectric conversion layer 13 after the arrangement adjusting wire 15 is dissolved. Even if it is deformed during use, the photoelectric conversion layer 13 is not easily damaged, the durability of the photoelectric conversion device 1 can be improved, and the interval between the conductive wire members 120 can be maintained.
  • a material-containing liquid 130 containing a hole transport material and an electron transport material is prepared, and the p-type organic semiconductor 13A is formed in a state of being connected to a part of the conductive wire 120 using the material-containing liquid 130. Since the organic semiconductor 13B is formed in a state where it is connected to the other conductive wire 120, the p-type organic semiconductor 13A and the n-type organic semiconductor 13B can be formed at the same time, which is easier to manufacture.
  • the photoelectric conversion layer 13 having the organic semiconductors 13A and 13B is formed by adhering the material-containing liquid 130 to one side of the electrode structure 12, in the obtained photoelectric conversion device 1, the first conductive wire 121 and the second conductive wire are formed. 122 is arrange
  • this 6th Embodiment can be suitably changed within the scope of the present invention.
  • the example in which the material-containing liquid 130 is attached to one surface side of the electrode structure 12 has been described.
  • the first conductive wire 121 and the second conductive wire 122 may be embedded in the photoelectric conversion layer 13, or the protective layer 14 may be provided on both sides of the photoelectric conversion layer 13.
  • both surfaces can be used as light receiving and emitting surfaces.
  • the horizontal wire 12B is arranged as the electrode structure 12 has been described.
  • the horizontal wire 12B can be arranged in a predetermined position.
  • the wire 12B may not be used.
  • one electrode structure 12 is embedded in one photoelectric conversion layer 13, but a plurality of electrode structures 12 may be embedded in the same photoelectric conversion layer 13, A plurality of photoelectric conversion layers 13 may be stacked, and one or a plurality of electrode structures 12 may be embedded in each.
  • the example in which the horizontal wire 12B and the support wire 320 cannot be dissolved is described as the solvent.
  • the present invention may be used even if a solvent capable of dissolving the horizontal wire 12B and the support wire 320 is used. It is possible to apply In the said 6th Embodiment, although the example which melt
  • Photoelectric conversion device 11 Base material 12: Electrode 12A for photoelectric conversion device: Vertical wire 12B: Horizontal wire 121: First conductive wire 122: Second conductive wire 123: First insulating wire 13A: Organic semiconductor of p layer 13B: n-layer organic semiconductor 14: protective layer 19
  • Photoelectric conversion device 12 Electrode structure 121: p-type electrode 122: n-type electrode 12A: vertical wire 12B: horizontal wire 120: conductive wire 7: bus bar 15: arrangement adjusting wire 13: photoelectric conversion layer 13A: p-type Organic semiconductor 13B: n-type organic semiconductor 130: material-containing liquid 14: protective layer 11: base material 20: photoelectric conversion device 22: electrode structure 230: electrode part 320: support wire

Abstract

This photoelectric conversion device comprises: a photoelectric conversion layer (13) for performing a conversion between light and electrical energy; and a plurality of first conductive wire members (121) and a plurality of second conductive wire members (122) provided on one-surface side of the photoelectric conversion layer (13). The first conductive wire members and the second conductive wire members are arranged alternately. A p-layer organic semiconductor (13A) comprising a hole-transporting material is provided to each of the first conductive wire members (121). An n-layer organic semiconductor (13B) comprising an electron-transporting material is provided to each of the second conductive wire members (122). The first conductive wire members function as p-type electrodes, and the second conductive wire members function as n-type electrodes.

Description

光電変換デバイスの製造方法、光電変換デバイス用電極、光電変換デバイス及び発光装置Method for manufacturing photoelectric conversion device, electrode for photoelectric conversion device, photoelectric conversion device, and light emitting device
 本発明は、光電変換デバイスを製造する方法と、光電変換デバイスに用いられる光電変換デバイス用電極及びそれを用いた光電変換デバイス、並びに発光装置に関する。 The present invention relates to a method for producing a photoelectric conversion device, an electrode for a photoelectric conversion device used for the photoelectric conversion device, a photoelectric conversion device using the same, and a light emitting device.
 光電変換デバイスは、光を電気エネルギーに変換するデバイス及び電気エネルギーを光に変換するデバイスである。前者の例としては太陽電池などがあり、後者の例としては発光ダイオードなどがある。 A photoelectric conversion device is a device that converts light into electrical energy and a device that converts electrical energy into light. Examples of the former include solar cells, and examples of the latter include light emitting diodes.
 今日、クリーンエネルギーの一つとして太陽電池による電力供給の必要性が再認識されている。太陽電池には、Si太陽電池、化合物太陽電池のほか有機半導体薄膜太陽電池など各種のものがある。 Today, the need for solar power supply as a clean energy is recognized again. There are various types of solar cells, such as Si solar cells, compound solar cells, and organic semiconductor thin film solar cells.
 Si太陽電池の中で単結晶Si太陽電池を例にとって説明すると、p型の単結晶ウエハに気相拡散やn型不純物イオンの打ち込み等によってウエハの表面層をn型半導体にするなどして、pn接合やpin接合が作られる。そして表面電極と裏面電極とを形成してサンドイッチ構造の太陽電池が作製される。 For example, in the case of a single crystal Si solar cell among Si solar cells, the surface layer of the wafer is made an n-type semiconductor by vapor phase diffusion or implantation of n-type impurity ions into a p-type single crystal wafer. A pn junction and a pin junction are formed. A solar cell having a sandwich structure is manufactured by forming a front electrode and a back electrode.
 化合物太陽電池の中には各種のものがあるが、エネルギー変換効率が高く、経年変化による光劣化が起こりにくく、耐放射性特性に優れ、光吸収波長領域が広く、光吸収係数が大きいといった利点を有するカルコパイライト型太陽電池を例にとって説明する。これはI族、III族及びVI族の元素を構成成分とするカルコパイライト化合物(Cu(In+Ga)Se)から成るCIGS層をp型の光吸収層として備えた太陽電池である(例えば特許文献1)。 There are various types of compound solar cells, but they have the advantages of high energy conversion efficiency, low light degradation due to secular change, excellent radiation resistance, wide light absorption wavelength range, and large light absorption coefficient. A chalcopyrite solar cell will be described as an example. This is a solar cell provided with a CIGS layer made of a chalcopyrite compound (Cu (In + Ga) Se 2 ) containing Group I, Group III, and Group VI elements as a p-type light absorption layer (for example, Patent Documents) 1).
 このCIGS層を備えた太陽電池は、一般的に、ソーダライムガラス(SLG)基板といったガラス基板上に、Mo金属層からなる正極たる裏面電極1層と、SLG基板に由来して生じるNaムラを防止するためのNaディップ層と、CIGS光吸収層と、n型のバッファ層と、負極たる透明電極層による最外表面層と、を備えた多層積層構造で構成される。ここで、n型のバッファ層はCdS、ZnO、InSなどで形成され、透明電極層はZnOAlなどが用いられる。 This solar cell with a CIGS layer generally has a back electrode 1 layer, which is a positive electrode made of a Mo metal layer, on a glass substrate such as a soda lime glass (SLG) substrate, and Na unevenness caused by the SLG substrate. The multilayer structure includes a Na dip layer for prevention, a CIGS light absorption layer, an n-type buffer layer, and an outermost surface layer formed of a transparent electrode layer serving as a negative electrode. Here, the n-type buffer layer is made of CdS, ZnO, InS or the like, and the transparent electrode layer is made of ZnOAl or the like.
 この多層積層構造は、表面の受光部から照射光が入射すると、多層積層構造のp-n接合付近では、バンドギャップ以上のエネルギーを有する照射光によって励起されて一対の電子及び正孔が生じる。励起された電子と正孔とは拡散によりp-n接合部に達し、接合の内部電界により、電子がn領域に、正孔がp領域に集合して分離される。この結果、n領域が負に帯電し、p領域が正に帯電し、各領域に設けた電極間で電位差が生じる。この電位差を起電力として、各電極間を導線で結線したときに光電流が得られる。 In this multilayer laminated structure, when irradiation light enters from the light receiving portion on the surface, a pair of electrons and holes are generated in the vicinity of the pn junction of the multilayer laminated structure by being excited by the irradiation light having energy greater than the band gap. The excited electrons and holes reach the pn junction by diffusion, and the electrons are collected in the n region and the holes are separated in the p region due to the internal electric field of the junction. As a result, the n region is negatively charged, the p region is positively charged, and a potential difference is generated between the electrodes provided in each region. Using this potential difference as an electromotive force, a photocurrent is obtained when the electrodes are connected by a conductive wire.
 CIGS光吸収層は次のような工程によって得られる。即ち、In層とCu-Ga層とを積層状態にして前駆体として備える基板自体をアニール処理室内に収容してプレヒートを行う。その後、アニール処理室内に挿入したガス導入管によってHSeガスを導入しつつ室内を500乃至520℃の温度範囲に昇温することによって、前駆体をCIGS層に変換する。 The CIGS light absorbing layer is obtained by the following process. That is, the substrate itself provided with the In layer and the Cu—Ga layer as a precursor is accommodated in the annealing chamber and preheated. Thereafter, the precursor is converted into a CIGS layer by raising the temperature of the chamber to a temperature range of 500 to 520 ° C. while introducing H 2 Se gas through a gas introducing tube inserted into the annealing chamber.
 近年、有機半導体を用いた有機薄膜太陽電池は簡易な成膜法により形成できるため、製造が容易で大量生産に適した太陽電池として注目されている。この有機薄膜太陽電池として、所謂バルクヘテロジャンクション構造やナノ相分離構造を有するものが種々提案されている。これらの構造ではp型有機半導体とn型有機半導体との接触界面を広く確保できるため光電変換効率を向上できる。 In recent years, an organic thin film solar cell using an organic semiconductor can be formed by a simple film forming method, and thus has attracted attention as a solar cell that is easy to manufacture and suitable for mass production. Various organic thin-film solar cells having so-called bulk heterojunction structures and nanophase separation structures have been proposed. In these structures, since a wide contact interface between the p-type organic semiconductor and the n-type organic semiconductor can be secured, the photoelectric conversion efficiency can be improved.
 このような有機薄膜太陽電池は、例えば正孔輸送材料及び電子輸送材料を各種の溶媒に溶解して材料含有液を調製し、電極表面に材料含有液を付着させ、付着させた材料からp型有機半導体やn型有機半導体を備えた光電変換層を形成することで製造されている。 Such an organic thin film solar cell is prepared, for example, by dissolving a hole transport material and an electron transport material in various solvents to prepare a material-containing liquid, and depositing the material-containing liquid on the surface of the electrode. It is manufactured by forming a photoelectric conversion layer including an organic semiconductor or an n-type organic semiconductor.
 例えば下記特許文献2には、基板の一方面上に、陽極、バルクヘテロジャンクション構造を有する光電変換層、陰極が順に積層された有機薄膜太陽電池が提案されている。この特許文献1では、酸化銀と還元剤からなる陰極と、陰極近傍に有機金属をドープした電子輸送層を塗布した積層構造とすることにより、低温で陰極が形成されるだけでなく、有機金属ドープ層と陰極との接合が改良されるとしている。 For example, Patent Document 2 below proposes an organic thin film solar cell in which an anode, a photoelectric conversion layer having a bulk heterojunction structure, and a cathode are sequentially laminated on one surface of a substrate. In this patent document 1, not only a cathode is formed at a low temperature but also an organic metal by forming a laminated structure in which a cathode made of silver oxide and a reducing agent and an electron transport layer doped with an organic metal are applied in the vicinity of the cathode. It is said that the junction between the doped layer and the cathode is improved.
 一方、製造が容易で大量生産に適した光電変換デバイスの電極として、導電性を有する線材を使用したものが知られている。例えば下記特許文献3には、金属線を織った網状電極体を光起電力体の表面上に接合することで光起電力素子等を製造する方法が提案されている。この特許文献2では、金属線を配線することで、印刷やリソグラフィー等を用いた配線に比べて線の細さと厚みとのアスペクト比を適切に調整できると共に、コストを低減でき、また網状に織ることで配線を高速化できるとされている。 On the other hand, as an electrode of a photoelectric conversion device that is easy to manufacture and suitable for mass production, one using a conductive wire is known. For example, Patent Document 3 below proposes a method of manufacturing a photovoltaic element or the like by joining a mesh electrode body woven with metal wires onto the surface of a photovoltaic body. In Patent Document 2, by wiring a metal wire, the aspect ratio between the thinness and thickness of the wire can be appropriately adjusted as compared with the wiring using printing, lithography, etc., the cost can be reduced, and the mesh can be woven. It is said that wiring can be speeded up.
特開2006-196771号公報Japanese Patent Laid-Open No. 2006-196771 特開2011-124468号公報JP 2011-124468 A 特開2006-165149号公報JP 2006-165149 A
 しかしながら、従来の構造においては、pn接合となる領域を挟んで一対の電極を設けていた。そのため、光照射側の電極は、光透過性がよく、かつ電気抵抗が小さいものが必要となり、光照射側の電極は高価なレアメタルを蒸着やメッキにより形成しなければならなかった。それに伴い製造プロセスも複雑であった。 However, in the conventional structure, a pair of electrodes is provided across a region to be a pn junction. Therefore, the electrode on the light irradiation side needs to have good light transmittance and low electric resistance, and the electrode on the light irradiation side has to be formed by vapor deposition or plating of an expensive rare metal. Along with that, the manufacturing process was also complicated.
 従来の有機EL(Electro Luminescence)を用いた単色又はカラーの発光装置では、例えばアルミ板とITO付きガラス基板との間に有機EL材料を閉じ込めてその外周縁部を封止し、アルミ板とITOとの間に電圧を印加することで有機ELを発光させていた。また、アルミ板の代わりにアルミ箔を用い、ITO付きガラス基板の代わりにITO付き透明樹脂シートを用いて、発光装置にフレキシブル性を付与していた。 In a conventional monochromatic or color light emitting device using organic EL (Electro-Luminescence), for example, an organic EL material is confined between an aluminum plate and a glass substrate with ITO, and the outer peripheral edge is sealed, and the aluminum plate and ITO The organic EL was made to emit light by applying a voltage between the two. Moreover, the flexibility was provided to the light-emitting device using the aluminum foil instead of the aluminum plate, and using the transparent resin sheet with ITO instead of the glass substrate with ITO.
 このような発光装置は、面で一様に発光するため、液晶表示装置のバックライト照明として用いられている。液晶表示装置はバックライト照明部上に液晶パネルを設けている。液晶パネルは、TFT(Thin Film Transistor)基板とCF(Color Filer)基板とを貼り合わせてその間に液晶分子を封入して構成されていた。TFT基板とはTFT素子がマトリックス状に形成された基板であり、CF基板とはカラーフィルターが形成されている基板である。 Since such a light emitting device emits light uniformly on the surface, it is used as backlight illumination of a liquid crystal display device. The liquid crystal display device is provided with a liquid crystal panel on a backlight illumination unit. The liquid crystal panel is configured by bonding a TFT (Thin Film Transistor) substrate and a CF (Color Filer) substrate together and enclosing liquid crystal molecules therebetween. The TFT substrate is a substrate on which TFT elements are formed in a matrix, and the CF substrate is a substrate on which a color filter is formed.
 しかし従来の発光装置では、アルミ箔及びITO付き透明樹脂シートを用いても、湾曲には限界があった。なぜなら、有機EL材料からなる発光層が、アルミ箔やITOと層間で剥離してしまい、発光層全面に電圧が印加されず、発光ムラが生じるからである。 However, in the conventional light emitting device, there is a limit to bending even when using an aluminum foil and a transparent resin sheet with ITO. This is because the light emitting layer made of the organic EL material is peeled off between the aluminum foil and the ITO, and no voltage is applied to the entire surface of the light emitting layer, resulting in uneven light emission.
 さらに、正孔輸送材料や電子輸送材料を含有する材料含有液を用いた従来の光電変換デバイスの製造方法では、電極を保持するために基板が使用されるなど電極の柔軟性を確保し難く、十分な柔軟性を有する光電変換デバイスが得られなかった。しかも電極間にp型有機半導体及びn型有機半導体を多数配置することで、接触界面を広くして光電変換の性能を確保するため、電極間に配置される有機半導体が不足したり不均一に配置されたりすると、その分光電変換の性能が低下していた。 Furthermore, in the conventional method for producing a photoelectric conversion device using a material-containing liquid containing a hole transport material or an electron transport material, it is difficult to ensure flexibility of the electrode, such as using a substrate to hold the electrode, A photoelectric conversion device having sufficient flexibility could not be obtained. In addition, by arranging a large number of p-type organic semiconductors and n-type organic semiconductors between the electrodes to widen the contact interface and ensure the performance of photoelectric conversion, the organic semiconductors arranged between the electrodes are insufficient or non-uniform. If it is arranged, the performance of photoelectric conversion is lowered accordingly.
 従来の、導電性を有する導電線材を使用した柔軟性のある電極では、複数の線材を配列した際、各線材の位置ずれ、撓み、歪み、変形等の配置の乱れが生じることが多かった。線材の配置の乱れが生じると、電極間の間隔がばらつき、電極間に配置されるp型有機半導体及びn型有機半導体の存在量やキャリアの移動距離が不均一になり、光電変換の性能が低下していた。 In conventional flexible electrodes using conductive wires having conductivity, when a plurality of wires are arranged, the arrangement of the wires such as misalignment, bending, distortion, and deformation often occurs. When the arrangement of the wires is disturbed, the distance between the electrodes varies, the abundance of the p-type organic semiconductor and the n-type organic semiconductor arranged between the electrodes and the moving distance of the carriers become uneven, and the performance of photoelectric conversion is improved. It was falling.
 そこで本発明は、光電変換の性能を確保しつつ柔軟性を有する光電変換デバイスを容易に製造できる製造方法を提供すると共に、この製造方法に好適に使用できる光電変換デバイス作製用の電極構造体を提供することを第1の目的とする。 Therefore, the present invention provides a manufacturing method capable of easily manufacturing a flexible photoelectric conversion device while ensuring the performance of photoelectric conversion, and an electrode structure for producing a photoelectric conversion device that can be suitably used for this manufacturing method. The first purpose is to provide it.
 本発明の第2の目的は、電極材料として光透過性が要求されない光電変換デバイス用電極構造と、それを用いた光電変換デバイスを提供することにある。 A second object of the present invention is to provide an electrode structure for a photoelectric conversion device that does not require light transmission as an electrode material, and a photoelectric conversion device using the same.
 本発明の第3の目的は、簡単な構造でフレキシブル性の限界が少ない発光装置を提供することである。 A third object of the present invention is to provide a light-emitting device with a simple structure and less flexibility.
 上記第1の目的を達成する本発明の光電変換デバイスの製造方法は、正孔輸送材料及び電子輸送材料のうちの少なくとも一方の材料を溶媒中に含有させた材料含有液を電極構造体に付着させ、電極構造体に付着させた材料から有機半導体を電極構造体に接した状態で形成する方法において、複数の導電線材とこの複数の導電線材の配置間隔を調整するための配置調整用線材とを一体的に連結した電極構造体を準備し、配置調整用線材を溶解可能な溶媒を用いて材料含有液を調製し、材料含有液を電極構造体に接触させることで、配置調整用線材を溶解すると共に少なくとも一方の材料を導電線材に付着させて上記有機半導体を形成するものである。
 この製造方法では有機半導体薄膜太陽電池を製造するのが特に好適である。
In the method for producing a photoelectric conversion device of the present invention that achieves the first object, a material-containing liquid containing at least one of a hole transport material and an electron transport material in a solvent is attached to an electrode structure. And a method of forming an organic semiconductor in contact with the electrode structure from a material adhered to the electrode structure, and a plurality of conductive wires and an arrangement adjusting wire for adjusting an arrangement interval of the plurality of conductive wires; Are prepared by using a solvent capable of dissolving the arrangement adjusting wire, and bringing the material containing liquid into contact with the electrode structure. The organic semiconductor is formed by dissolving and attaching at least one material to the conductive wire.
In this manufacturing method, it is particularly preferable to manufacture an organic semiconductor thin film solar cell.
 この光電変換デバイスの製造方法では、導電線材間に配置調整用線材を介在させることで導電線材間を互いに所定間隔で離間させた電極構造体を準備するのがよい。
 複数の導電線材及び配置調整用線材からなる複数の縦線材と、複数の縦線材と交差して配置した複数の横線材とを備えた電極構造体を準備し、配置調整用線材を溶解可能で横線材を溶解不能な溶媒を用いて材料含有液を調製するのが好適である。
In this method of manufacturing a photoelectric conversion device, it is preferable to prepare an electrode structure in which conductive wires are spaced apart from each other by a predetermined interval by interposing an arrangement adjusting wire between conductive wires.
An electrode structure comprising a plurality of vertical wires made of a plurality of conductive wires and arrangement adjusting wires and a plurality of horizontal wires arranged intersecting the plurality of vertical wires can be prepared, and the arrangement adjusting wires can be dissolved. It is preferable to prepare the material-containing liquid using a solvent that cannot dissolve the horizontal wire.
 この製造方法では、正孔輸送材料及び電子輸送材料を含有した材料含有液を調製して電極構造体に接触させ、p型有機半導体を一部の導電線材に接続した状態で形成すると共に、n型有機半導体を他部の導電線材に接続した状態で形成するのが好ましい。 In this manufacturing method, a material-containing liquid containing a hole transport material and an electron transport material is prepared and brought into contact with the electrode structure, and the p-type organic semiconductor is formed in a state of being connected to some conductive wires, and n It is preferable to form the type organic semiconductor in a state where it is connected to the other part of the conductive wire.
 この製造方法では、材料含有液を電極構造体の片面側に付着させてもよい。
 また複数の導電線材が配置調整用線材とともに一体化された電極部を複数有し、複数の電極部が対向配置された状態で支持線材により支持された電極構造体を準備し、配置調整用線材を溶解可能で支持線材を溶解不能な溶媒を用いて材料含有液を調製してもよい。
In this manufacturing method, the material-containing liquid may be attached to one side of the electrode structure.
Also, an electrode structure having a plurality of electrode portions in which a plurality of conductive wires are integrated together with a placement adjusting wire and having a plurality of electrode portions opposed to each other is prepared, and a placement adjusting wire is prepared. The material-containing liquid may be prepared using a solvent that can dissolve the support wire but cannot dissolve the support wire.
 このような製造方法に使用する光電変換デバイス作製用の電極は、光電変換デバイス作製用の溶媒に対する配置調整用線材の溶解性が導電性材料より大きいものがよい。 The electrode for producing a photoelectric conversion device used in such a production method is preferably one in which the solubility of the arrangement adjusting wire in the solvent for producing the photoelectric conversion device is larger than that of the conductive material.
 上記第2の目的を達成するために、本発明の光電変換デバイス用電極は、光と電気エネルギーとを変換する光電変換層の片面側に設けられる電極であって、複数の縦線材と、複数の横線材と、を備え、上記縦線材と上記横線材とは1本ごとに交差してネットを構成し、上記縦線材は、複数の第1導電線材と複数の第2導電線材と複数の第1絶縁線材とからなり、上記第1導電線材と上記第2導電線材とは交互に並べられており、これらの第1導電線材と第2導電線材との間に上記第1絶縁線材が設けられ、上記横線材は第2絶縁線材からなり、上記第1導電線材がp型電極として機能し、上記第2導電線材がn型電極として機能することを特徴としている。
 前記第1絶縁線材は、前記第1導電線材と前3記第2導電線材との間に複数設けられていてもよい。
In order to achieve the second object, an electrode for a photoelectric conversion device of the present invention is an electrode provided on one side of a photoelectric conversion layer that converts light and electric energy, and includes a plurality of vertical wires and a plurality of vertical wires. The vertical wire and the horizontal wire intersect each other to form a net, and the vertical wire includes a plurality of first conductive wires, a plurality of second conductive wires, and a plurality of The first conductive wire and the second conductive wire are alternately arranged, and the first insulating wire is provided between the first conductive wire and the second conductive wire. The horizontal wire is made of a second insulating wire, wherein the first conductive wire functions as a p-type electrode, and the second conductive wire functions as an n-type electrode.
A plurality of the first insulating wire rods may be provided between the first conductive wire rod and the second conductive wire rod 3 described above.
 上記第2の目的を達成するために、本発明の光電変換デバイスは、光と電気エネルギーとを変換する光電変換層と、上記光電変換層の片面側に設けられる一対の電極と、を備え、一方の電極と他方の電極とが横並びに設けられており、上記一方の電極上には正孔輸送材料でなるp層の有機半導体が設けられ、上記他方の電極上には電子輸送材料でなるn層の有機半導体が設けられ、上記一方の電極がp型電極として機能し、上記他方の電極がn型電極として機能することを特徴としている。
 本発明において、好ましくは前記p層の有機半導体及び前記n層の有機半導体は透明の保護層で覆われている。
In order to achieve the second object, a photoelectric conversion device of the present invention includes a photoelectric conversion layer that converts light and electric energy, and a pair of electrodes provided on one side of the photoelectric conversion layer, One electrode and the other electrode are provided side by side, a p-layer organic semiconductor made of a hole transport material is provided on the one electrode, and an electron transport material is provided on the other electrode. An n-layer organic semiconductor is provided, the one electrode functions as a p-type electrode, and the other electrode functions as an n-type electrode.
In the present invention, the p-layer organic semiconductor and the n-layer organic semiconductor are preferably covered with a transparent protective layer.
 この光電変換デバイスは、前記光電子デバイス用電極に対して、前記第1導電線材上には正孔輸送材料でなるp層の有機半導体が設けられ、かつ前記第2導電線材上には電子輸送材料でなるn層の有機半導体が設けられ、上記p層の有機半導体及び上記n層の有機半導体が交互に並べられて、例えば同一面上に交互に形成されていてもよい。ここで同一面とは、仮想面又は基板面の何れであってもよいが、基板面に形成する場合は、それが平面基板であっても湾曲可能なフレキシブル基板であってもよい。 In this photoelectric conversion device, a p-layer organic semiconductor made of a hole transport material is provided on the first conductive wire with respect to the optoelectronic device electrode, and an electron transport material is provided on the second conductive wire. The p-layer organic semiconductor and the n-layer organic semiconductor may be alternately arranged, for example, alternately formed on the same surface. Here, the same surface may be either a virtual surface or a substrate surface, but when formed on the substrate surface, it may be a flat substrate or a flexible substrate that can be bent.
 上記第3の目的を達成するために、本発明の発光装置は、有機EL材料からなる発光層と、発光層内に設けられ、一方の導電線材と他方の導電線材とを交互に並べて構成した交互配列電極と、を備える。 In order to achieve the third object, the light-emitting device of the present invention is configured by arranging a light-emitting layer made of an organic EL material and the light-emitting layer, and alternately arranging one conductive wire and the other conductive wire. Alternating electrodes.
 好ましくは、一方の導電線材と他方の導電線材との間には、同一方向に延びる配置調整用の線材が設けられ、配置調整用の線材が一方の導電線材と他方の導電線材との間隔を維持する。 Preferably, an arrangement adjusting wire extending in the same direction is provided between one conductive wire and the other conductive wire, and the arrangement adjusting wire has an interval between the one conductive wire and the other conductive wire. maintain.
 好ましくは、一方の導電線材及び他方の導電線材と交差する方向に交差用の線材が延びており、交差用の線材と、一方の導電線材及び他方の導電線材とが編み込まれている。 Preferably, a crossing wire extends in a direction crossing one conductive wire and the other conductive wire, and the crossing wire, one conductive wire, and the other conductive wire are knitted.
 好ましくは、一方の導電線材、他方の導電線材及び配置調整用の線材と交差する方向に交差用の線材が延びており、交差用の線材と、一方の導電線材、他方の導電線材及び配置調整用の線材とが編み込まれている。 Preferably, a crossing wire extends in a direction crossing one conductive wire, the other conductive wire, and the arrangement adjusting wire, and the crossing wire, one conductive wire, the other conductive wire, and the arrangement adjustment. Wires for use are knitted.
 好ましくは、一方の導電線材の一端を相互に接続した一方の配線部と、他方の導電線材の他端を相互に接続した他方の配線部と、を備え、一方の配線部と他方の配線部とに電圧が印加されることにより、発光層が発光する。 Preferably, one wiring part in which one end of one conductive wire is connected to each other and the other wiring part in which the other end of the other conductive wire is connected to each other, one wiring part and the other wiring part When a voltage is applied to the light emitting layer, the light emitting layer emits light.
 本発明の光電変換デバイスの製造方法によれば、複数の導電線材を配置調整用線材とともに一体的に連結した電極構造体を用いるので、柔軟性を有する導電線材であっても容易に配置できることに加え、配置調整用線材により複数の導電線材の配置間隔を容易に調整でき、その状態を製造時に安定して保持できる。そのため複数の導電線材の配置間隔のばらつきを防止して光電変換の性能を確保することができる。 According to the method for manufacturing a photoelectric conversion device of the present invention, since an electrode structure in which a plurality of conductive wires are integrally connected together with a wire for adjusting arrangement is used, even a conductive wire having flexibility can be easily arranged. In addition, the arrangement interval of the plurality of conductive wires can be easily adjusted by the arrangement adjusting wire, and the state can be stably maintained at the time of manufacture. For this reason, it is possible to prevent variation in the arrangement interval of the plurality of conductive wires and to ensure the performance of photoelectric conversion.
 そして、材料含有液を電極構造体に接触させることで配置調整用線材を溶解するので、得られた光電変換デバイスでは、配置調整用線材が配置されていた部位に材料含有液の正孔輸送材料や電子輸送材料を配置することができる。そのため導電線材間により多くの有機半導体を均一に配置でき、光電変換の性能を確保できる。従って、光電変換の性能を確保しつつ柔軟性を有する光電変換デバイスを容易に製造することが可能である。 Then, since the arrangement adjusting wire is dissolved by bringing the material containing liquid into contact with the electrode structure, in the obtained photoelectric conversion device, the hole transport material of the material containing liquid is disposed at the portion where the arrangement adjusting wire is arranged. And an electron transport material can be arranged. Therefore, many organic semiconductors can be uniformly arranged between the conductive wires, and the performance of photoelectric conversion can be ensured. Therefore, it is possible to easily manufacture a photoelectric conversion device having flexibility while ensuring the performance of photoelectric conversion.
 この製造方法に用いる光電変換デバイス作製用の電極によれば、複数の導電線材が配置調整用線材とともに一体化され、光電変換デバイス作製用の溶媒に対する配置調整用線材の溶解性が導電性材料より大きいので、上述のような光電変換デバイスを製造するのに好適に使用できる。 According to the electrode for producing a photoelectric conversion device used in this manufacturing method, a plurality of conductive wires are integrated together with the arrangement adjusting wire, and the solubility of the arrangement adjusting wire in the solvent for producing the photoelectric conversion device is more than the conductive material. Since it is large, it can be suitably used to produce the photoelectric conversion device as described above.
 本発明の光電変換デバイス用電極によれば、電極が、p型電極として機能する一方の電極とn型電極として機能する他方の電極とが同一面上に形成された交互配列平面電極構造となっていることから、電極材料として従来必要としていた透明電極材料が不要となる。
 従来のように、一方の電極上にp層の有機半導体を積層しその上にn層の有機半導体を積層してpn接合を形成すると共に、このn層の有機半導体上に他方の電極として透明電極を順次積層して光電変換デバイスを構成する必要はない。
 本発明の電極構造や光電変換デバイスは、ガラス基板などのフレキシブル性のない基板上でもフレキシブル性のある基板上にも作製できる。電極上に塗布によって有機半導体を設け得るため、作製工程が複雑とならず、また、安価に作製することができる。
According to the photoelectric conversion device electrode of the present invention, the electrode has an alternately arranged planar electrode structure in which one electrode functioning as a p-type electrode and the other electrode functioning as an n-type electrode are formed on the same plane. Therefore, the transparent electrode material conventionally required as the electrode material becomes unnecessary.
Conventionally, a p-layer organic semiconductor is laminated on one electrode and an n-layer organic semiconductor is laminated thereon to form a pn junction, and the other electrode is transparent on the n-layer organic semiconductor. There is no need to sequentially stack the electrodes to form a photoelectric conversion device.
The electrode structure and photoelectric conversion device of the present invention can be produced on a flexible substrate such as a glass substrate. Since an organic semiconductor can be provided on the electrode by coating, the manufacturing process is not complicated, and the electrode can be manufactured at low cost.
 本発明の発光装置によれば、発光層内に交互配列電極が設けられている。交互配列電極は、一方及び他方の導電線材が交互に並んでおり、必要に応じてそれらの間に配置調整用の線材が設けられ又はこれらと別の線材が交差しているため、交互配列電極それ自体が樹脂成形シート又はフィルムとは異なって外力によって容易に湾曲など変形自在である。また、一方及び他方の導電線材それ自体に有機EL材料が密着するため、湾曲させても発光性能に影響し難い。さらに、構造も極めて簡単で、生産性が向上し低廉化可能である。 According to the light emitting device of the present invention, the alternately arranged electrodes are provided in the light emitting layer. In the alternating electrode, one and the other conductive wires are alternately arranged, and if necessary, an arrangement adjusting wire is provided between them or another wire intersects with each other. Unlike the resin molded sheet or film itself, it is easily deformable such as curved by an external force. In addition, since the organic EL material is in close contact with the one and the other conductive wires themselves, the light emission performance is hardly affected even if they are curved. In addition, the structure is extremely simple, and the productivity can be improved and the cost can be reduced.
本発明の第1実施形態に係る光電変換デバイスの断面図である。It is sectional drawing of the photoelectric conversion device which concerns on 1st Embodiment of this invention. 図1に示す光電変換デバイスにおける電極構造を示す斜視図である。It is a perspective view which shows the electrode structure in the photoelectric conversion device shown in FIG. 図1において符号Aで示す領域の拡大図である。It is an enlarged view of the area | region shown with the code | symbol A in FIG. 本発明の第2実施形態に係る発光装置を模式的に示す図である。It is a figure which shows typically the light-emitting device which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る発光装置のうち発光部の断面を模式的に示す図である。It is a figure which shows typically the cross section of the light emission part among the light-emitting devices which concern on 2nd Embodiment of this invention. 図5に示す発光部の交互配列電極を模式的に示す図である。It is a figure which shows typically the alternating array electrode of the light emission part shown in FIG. 本発明の第3実施形態に係る発光装置のうち発光部の断面を模式的に示す図である。It is a figure which shows typically the cross section of the light emission part among the light-emitting devices which concern on 3rd Embodiment of this invention. 図7に示す発光部の交互配列電極を模式的に示す図である。It is a figure which shows typically the alternating array electrode of the light emission part shown in FIG. 本発明の第4実施形態に係る発光装置のうち発光部の断面を模式的に示す図である。It is a figure which shows typically the cross section of the light emission part among the light-emitting devices which concern on 4th Embodiment of this invention. 本発明の第5実施形態に係る発光装置のうち発光部の断面を模式的に示す図である。It is a figure which shows typically the cross section of the light emission part among the light-emitting devices which concern on 5th Embodiment of this invention. 本発明の第6実施形態で製造される光電変換デバイスを示す断面図である。It is sectional drawing which shows the photoelectric conversion device manufactured by 6th Embodiment of this invention. 本発明の第6実施形態における光電変換デバイス製造用の電極構造体を模式的に示す斜視図である。It is a perspective view which shows typically the electrode structure for photoelectric conversion device manufacture in 6th Embodiment of this invention. (a)~(d)は本発明の第6実施形態における光電変換デバイスの製造工程の一部を説明するための部分断面図である。(A)-(d) is a fragmentary sectional view for demonstrating a part of manufacturing process of the photoelectric conversion device in 6th Embodiment of this invention. 本発明の第6実施形態の光電変換デバイスの変形例を示す断面図である。It is sectional drawing which shows the modification of the photoelectric conversion device of 6th Embodiment of this invention.
 以下、図面を参照しながら本発明について幾つかの実施形態により詳細に説明する。
[第1実施形態]
 第1実施形態では、光電変換デバイスが、光を電気エネルギーに変換するものとして太陽電池を想定して説明するが、電気エネルギーを光エネルギーに変換するものであっても同様に適用することができる。
Hereinafter, the present invention will be described in detail according to some embodiments with reference to the drawings.
[First Embodiment]
In the first embodiment, the photoelectric conversion device will be described assuming a solar cell as a device that converts light into electric energy, but the present invention can be similarly applied to a device that converts electric energy into light energy. .
 図1は本発明の第1実施形態に係る光電変換デバイス1の断面図であり、図2は光電変換デバイスの斜視図である。 FIG. 1 is a cross-sectional view of a photoelectric conversion device 1 according to the first embodiment of the present invention, and FIG. 2 is a perspective view of the photoelectric conversion device.
 光電変換デバイス1は、絶縁性の基材11と、基材11の上面に設けた電極12と、電極12を覆う光電変換層13と、光電変換層13の上面を覆う保護層14と、から構成されている。なお、図2では、光電変換層13と保護層14の表示を省略している。 The photoelectric conversion device 1 includes an insulating substrate 11, an electrode 12 provided on the upper surface of the substrate 11, a photoelectric conversion layer 13 that covers the electrode 12, and a protective layer 14 that covers the upper surface of the photoelectric conversion layer 13. It is configured. In FIG. 2, the display of the photoelectric conversion layer 13 and the protective layer 14 is omitted.
 基材11はシート状に形成され、可撓性を有する。例えば、PETなどによってフレキシブル基板として形成されたものを用いる。本第1実施形態では、図2に示すように基材11は輪郭が長方形に形成されている。以下、説明の便宜上、短い辺を第1辺11Aと呼び、長い辺を第2辺11Bとする。 The base material 11 is formed in a sheet shape and has flexibility. For example, what was formed as a flexible substrate by PET etc. is used. In the first embodiment, as shown in FIG. 2, the base material 11 has a rectangular outline. Hereinafter, for convenience of explanation, the short side is referred to as the first side 11A, and the long side is referred to as the second side 11B.
 図2を用いて電極12について説明する。電極12は、基材11の第1辺11Aに沿って延びていてさらに第2辺11Bの延出方向に所定のピッチで配置された複数の縦線材12Aと、基材11の第2辺11Bに沿って延びていてさらに第1辺11Aの延出方向に所定のピッチで配置された複数の横線材12Bと、を備えている。縦線材12Aと横線材12Bとは1本ごとに交差するように織られている。つまり電極12は平織りのネット状に形成されている。 The electrode 12 will be described with reference to FIG. The electrode 12 extends along the first side 11 </ b> A of the base 11, and further has a plurality of vertical wires 12 </ b> A arranged at a predetermined pitch in the extending direction of the second side 11 </ b> B, and the second side 11 </ b> B of the base 11. And a plurality of horizontal wires 12B arranged at a predetermined pitch in the extending direction of the first side 11A. The vertical wire 12A and the horizontal wire 12B are woven so as to intersect each other. That is, the electrode 12 is formed in a plain weave net shape.
 第1辺11Aに沿って延びる縦線材12Aとして、3種の線材を利用する。具体的には、第1導電線材121と第2導電線材122と第1絶縁線材123とを利用する。図2に示すように、第1導電線材121と第2導電線材122とは基材11上に交互に並べられており、これらの第1導電線材121と第2導電線材122との間に第1絶縁線材123が設けられている。なお、第1導電線材121と第2導電線材122との間隔は、それらの間に挟まれる第1絶縁線材123の断面の直径と同等であるが、図面では、構成の理解を容易にするために各部材同士の間に空隙を設けて表している。 Three types of wires are used as the vertical wire 12A extending along the first side 11A. Specifically, the first conductive wire 121, the second conductive wire 122, and the first insulating wire 123 are used. As shown in FIG. 2, the first conductive wire 121 and the second conductive wire 122 are alternately arranged on the substrate 11, and the first conductive wire 121 and the second conductive wire 122 are arranged between the first conductive wire 121 and the second conductive wire 122. One insulating wire 123 is provided. In addition, although the space | interval of the 1st conductive wire 121 and the 2nd conductive wire 122 is equivalent to the diameter of the cross section of the 1st insulated wire 123 pinched | interposed between them, in order to make an understanding of a structure easy in drawing. In the figure, a gap is provided between the members.
 これらの第1導電線材121と第2導電線材122として、例えば銅線、ステンレス線等の金属線、化学繊維の表面に金属めっき処理を施した線などを利用することができる。各第1導電線材121の一端部121Eは、図2に示すように第1のバスバー121Aに接続されている。各第2導電線材122は、第1導電線材121の他端部121F側に位置する端部122Eで第2のバスバー122Aに接続されている。 As the first conductive wire 121 and the second conductive wire 122, for example, a metal wire such as a copper wire or a stainless wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used. One end 121E of each first conductive wire 121 is connected to the first bus bar 121A as shown in FIG. Each second conductive wire 122 is connected to the second bus bar 122A at an end 122E located on the other end 121F side of the first conductive wire 121.
 第1絶縁線材123は、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。 The first insulating wire 123 is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
 第2辺11Bに沿って延びる横線材12Bとして第2絶縁線材が用いられる。第2絶縁線材は、第1絶縁線材123と同様に、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。 A second insulating wire is used as the horizontal wire 12B extending along the second side 11B. Similar to the first insulating wire 123, the second insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
 第1導電線材121、第2導電線材122、第1絶縁線材123及び第2絶縁線材は、20μm~30μm程度の太さに設定されている。 The first conductive wire 121, the second conductive wire 122, the first insulating wire 123 and the second insulating wire are set to a thickness of about 20 μm to 30 μm.
 次に、光電変換層13について説明する。図3は図1の円A領域の模式的拡大図である。光電変換層13は、一方の電極、つまり第1導電線材121上に設けられ正孔輸送材料でなるp層の有機半導体13Aと、他方の電極としての第2導電線材122上に設けられ電子輸送材料でなるn層の有機半導体13Bと、から構成されている。よって、一方の第1導電線材121はp型電極として機能し、他方の第2導電線材122はn型電極として機能する。p層の有機半導体13Aとn層の有機半導体13Bとはpn接合を形成している。 Next, the photoelectric conversion layer 13 will be described. FIG. 3 is a schematic enlarged view of a circle A region in FIG. The photoelectric conversion layer 13 is provided on one electrode, that is, the p-layer organic semiconductor 13A made of a hole transport material provided on the first conductive wire 121, and on the second conductive wire 122 serving as the other electrode, and electron transport. And an n-layer organic semiconductor 13B made of a material. Therefore, one first conductive wire 121 functions as a p-type electrode, and the other second conductive wire 122 functions as an n-type electrode. The p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B form a pn junction.
 次に、p層の有機半導体13Aとn層の有機半導体13Bの材料について説明する。p層の有機半導体13Aは、正孔輸送材料によって形成される。正孔輸送材料としては、化学式(1)で示されるトリフェニルアミン(TAPC)、化学式(2)で示されるトリフェニルアミンの二量体であるTPDその他の芳香族アミンのほか、化学式(3)で示されるα-NPD、化学式(4)で6示される(DTP)DPPD、化学式(5)で示されるm-MTDATA、化学式(6)で示されるHTM1、化学式(7)で示される2-TNATA、化学式(8)で示されるTPTE1、化学式(9)で示されるTCTA、化学式(10)で示されるNTPA、化学式(11)で示されるスピロ-TAD、化学式(12)で示されるTFLELなどが用いられる。 Next, materials of the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B will be described. The p-layer organic semiconductor 13A is formed of a hole transport material. As a hole transport material, in addition to triphenylamine (TAPC) represented by the chemical formula (1), TPD and other aromatic amines which are dimers of triphenylamine represented by the chemical formula (2), the chemical formula (3) Α-NPD represented by formula (4), (DTP) DPPD represented by formula (4), m-MTDATA represented by formula (5), HTM1 represented by formula (6), 2-TNATA represented by formula (7) TPTE1 represented by the chemical formula (8), TCTA represented by the chemical formula (9), NTPA represented by the chemical formula (10), spiro-TAD represented by the chemical formula (11), TFREL represented by the chemical formula (12), etc. It is done.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
 n層の有機半導体13Bは電子輸送材料によって形成される。電子輸送材料には、化学式(13)で示されるAlq、化学式(14)で示されるBCP、化学式(15)で示されるオキサジアゾール誘導体、化学式(16)で示されるオキサジアゾール二量体、化学式(17)で示されるスターバーストオキサジアゾール、化学式(18)で示されるトリアゾール誘導体、化学式(19)で示されるフェニルキノキサリン誘導体、化学式(20)で示されるシロール誘導体などが挙げられる。 The n-layer organic semiconductor 13B is formed of an electron transport material. Examples of the electron transport material include Alq 3 represented by the chemical formula (13), BCP represented by the chemical formula (14), an oxadiazole derivative represented by the chemical formula (15), and an oxadiazole dimer represented by the chemical formula (16). And starburst oxadiazole represented by chemical formula (17), triazole derivative represented by chemical formula (18), phenylquinoxaline derivative represented by chemical formula (19), silole derivative represented by chemical formula (20), and the like.
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
 以上のように、基材11上に、光電変換デバイス用電極12を構成する第1導電線材121と第2導電線材122とが並べて形成され、さらに第1導電線材121と第2導電線材122とを覆うように、p層の有機半導体13Aとn層の有機半導体13Bとが、第1導電線材121及び第2導電線材122と同様に、基材11上に並べて形成されている。よって、光が入射する面に、特許文献2のように電極を設けずに、保護層14とすることが可能となる。 As described above, the first conductive wire 121 and the second conductive wire 122 constituting the photoelectric conversion device electrode 12 are formed side by side on the substrate 11, and the first conductive wire 121 and the second conductive wire 122 are further formed. The p-layer organic semiconductor 13 </ b> A and the n-layer organic semiconductor 13 </ b> B are formed side by side on the substrate 11, similarly to the first conductive wire 121 and the second conductive wire 122. Therefore, the protective layer 14 can be formed without providing an electrode on the light incident surface as in Patent Document 2.
 保護層14は、p層の有機半導体13A及びn層の有機半導体13Bを被覆するように設けられている。保護層14については、太陽光などの照射光を透過する材料であればその種類は問わず、例えば樹脂等によって形成される。 The protective layer 14 is provided so as to cover the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B. The protective layer 14 is formed of, for example, a resin or the like as long as it is a material that transmits irradiation light such as sunlight.
 図1に示す光電変換デバイス1の製造方法について概略説明する。まず、基材11を用意する。次に、第1導電線材121、第2導電線材122、第171絶縁線材123、第2絶縁線材を用意し、平織りする。平織りして形成した電極15を基材11上に例えば接着剤などによって固定する。その後、p層の有機半導体13Aとなる正孔輸送材料を所定の箇所、例えば一方の電極としての第1導電線材121上に塗布する。塗布には、例えばインクジェットプリンタによる印刷方法を適用可能である。 A method for producing the photoelectric conversion device 1 shown in FIG. First, the base material 11 is prepared. Next, a first conductive wire 121, a second conductive wire 122, a 171 insulating wire 123, and a second insulating wire are prepared and plain woven. The electrode 15 formed by plain weaving is fixed on the base material 11 with, for example, an adhesive. Thereafter, a hole transport material to be the p-layer organic semiconductor 13A is applied to a predetermined portion, for example, the first conductive wire 121 as one electrode. For the application, for example, a printing method using an inkjet printer can be applied.
 次に、n層の有機半導体13Bとなる電子輸送材料をp層とp層との間、例えば他方の電極としての第2導電線材122上に塗布する。塗布には、p層の有機半導体13Aの場合と同様、インクジェットプリンタによる印刷技術を用いることができる。 Next, an electron transport material to be an n-layer organic semiconductor 13B is applied between the p layer and the p layer, for example, on the second conductive wire 122 as the other electrode. For the application, a printing technique using an ink jet printer can be used as in the case of the p-layer organic semiconductor 13A.
 これにより、p層の有機半導体13Aとn層の有機半導体13Bとによってpn接合が形成される。なお、n層の有機半導体13Bから塗布し、その後p層の有機半導体13Aを塗布してもよい。 Thereby, a pn junction is formed by the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B. The n-layer organic semiconductor 13B may be applied, and then the p-layer organic semiconductor 13A may be applied.
 最後に、保護層14を塗装などによって形成することで、光電変換デバイス1が作製される。なお、図1に示す光電変換デバイス1が作製される手法であれば上述の方法に限定されない。 Finally, the photoelectric conversion device 1 is manufactured by forming the protective layer 14 by painting or the like. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 1 is manufactured.
 このように本発明によれば、基材11上に、光電変換デバイス用電極12を構成する第1導電線材121と第2導電線材122とが形成され、さらに第1導電線材121と第2導電線材122とを覆うように、p層の有機半導体13Aとn層の有機半導体13Bとが基材11上に形成されている。従って、光が入射する面に、特許文献2のように電極を設けずに、保護層14とすることが可能となる。よって、特許文献2の光照射側に設ける電極を透明電極で構成することが不要であり、透明電極のためのレアメタルを材料として使用しなくて済むため、光電変換デバイス用の電極12はCuやAlなどを使用することができる。また、光電変換デバイス1は、電極12が可撓性を有するネットで構成されているため、平面状に形成した後に、曲面状の表面に取り付けることができる。 Thus, according to this invention, the 1st conductive wire 121 and the 2nd conductive wire 122 which comprise the electrode 12 for photoelectric conversion devices are formed on the base material 11, Furthermore, the 1st conductive wire 121 and the 2nd conductive wire are formed. A p-layer organic semiconductor 13 </ b> A and an n-layer organic semiconductor 13 </ b> B are formed on the substrate 11 so as to cover the wire 122. Therefore, the protective layer 14 can be formed without providing an electrode on the light incident surface as in Patent Document 2. Therefore, it is unnecessary to configure the electrode provided on the light irradiation side of Patent Document 2 with a transparent electrode, and it is not necessary to use a rare metal for the transparent electrode as a material. Al or the like can be used. Moreover, since the electrode 12 is comprised with the net | network which has flexibility, the photoelectric conversion device 1 can be attached to the curved surface after forming in planar shape.
 本発明の第1実施形態は、本発明の範囲において適宜変更して実施することができる。上記構成では、第1絶縁線材123が第1導電線材121と第2導電線材122との間に1本設けられる構成を説明したが、複数本設けられてもよい。また、光電変換デバイスは基材11を省略して構成されてもよい。 The first embodiment of the present invention can be implemented with appropriate modifications within the scope of the present invention. In the configuration described above, a configuration in which one first insulating wire 123 is provided between the first conductive wire 121 and the second conductive wire 122 has been described, but a plurality of the first insulated wire 123 may be provided. Further, the photoelectric conversion device may be configured by omitting the base material 11.
 〔第2実施形態〕
 図4は本発明の第2実施形態に係る発光装置を模式的に示す図である。図5は図4に示す発光装置のうち発光部の断面を模式的に示す図であり、図6は図5に示す発光部の交互配列電極を模式的に示す図である。
[Second Embodiment]
FIG. 4 is a view schematically showing a light emitting device according to the second embodiment of the present invention. FIG. 5 is a diagram schematically showing a cross section of the light emitting portion of the light emitting device shown in FIG. 4, and FIG. 6 is a diagram schematically showing the alternately arranged electrodes of the light emitting portion shown in FIG.
 本発明の第2実施形態に示す発光装置1は、図4に示すように、発光部2及び制御部3を備える。発光部2は、図5に示すように、有機EL材料からなる発光層13と、発光層13内に設けた交互配列電極12とからなる。発光層13は、各種有機EL材料によって層状に形成されたものである。交互配列電極12は、一方の導電線材121と他方の導電線材122とが同じ方向に延びて間隔をあけて交互に配列して構成される。
 第2乃至第5実施形態では、光電変換デバイスが発光装置1であり、光電変換層が発光層13で、光電変換デバイス用電極が交互配列電極12である。
The light-emitting device 1 shown in 2nd Embodiment of this invention is equipped with the light emission part 2 and the control part 3, as shown in FIG. As shown in FIG. 5, the light emitting unit 2 includes a light emitting layer 13 made of an organic EL material and alternating electrodes 12 provided in the light emitting layer 13. The light emitting layer 13 is formed in layers with various organic EL materials. The alternating electrode 12 is configured such that one conductive wire 121 and the other conductive wire 122 extend in the same direction and are alternately arranged at intervals.
In the second to fifth embodiments, the photoelectric conversion device is the light emitting device 1, the photoelectric conversion layer is the light emitting layer 13, and the photoelectric conversion device electrodes are the alternately arranged electrodes 12.
 図5に示すように、交互配列電極12は発光層13の厚み方向のほぼ中央に設けられてもよいが、中心面から上下の何れかの面に寄っていてもよい。発光部2は、図5に示すように、上下の一方又は双方の面に薄い透明保護層14が設けられてもよい。 As shown in FIG. 5, the alternating electrodes 12 may be provided at substantially the center in the thickness direction of the light emitting layer 13, but may be closer to either the upper or lower surface from the center surface. As shown in FIG. 5, the light emitting unit 2 may be provided with a thin transparent protective layer 14 on one or both upper and lower surfaces.
 交互配列電極12は、一方向に延びた一方の導電線材121と同じく一方向に延びた他方の線材13との間に、同じく一方向に延びた配置調整用の線材15を設けて構成されている。これら一方及び他方の線材12,13並びに配置調整用の線材15を横線材として、絶縁性の線材15を縦線材として、格子状に織り込まれ、網状に形成されてなる。なお、配置調整用の線材15は、図示するように、一方の導電線材121と他方の導電線材122との間で1本だけでなく2本以上であってもよい。 The alternating array electrode 12 is configured by providing an arrangement adjusting wire 15 that also extends in one direction between one conductive wire 121 that extends in one direction and the other wire 13 that extends in one direction. Yes. These one and other wires 12, 13 and the arrangement adjusting wire 15 are used as a horizontal wire, and the insulating wire 15 is used as a vertical wire. In addition, as shown in the drawing, the arrangement adjusting wire 15 may be not only one but also two or more between one conductive wire 121 and the other conductive wire 122.
 以下、具体的に説明する。縦方向に延びた一方の導電線材121と縦方向に延びた他方の導電線材122との間に、縦方向に延びた配置調整用の線材15が配置され、これら縦方向に延びた各線材12,13,15を横方向に延びた交差用の線材16を縦方向に間隔をあけて複数本ならべて格子状に編み込まれてなる。格子の縦横の間隔は同一又はほぼ同一であってもよい。 The details will be described below. Between the one conductive wire 121 extending in the vertical direction and the other conductive wire 122 extending in the vertical direction, the arrangement adjusting wire 15 extending in the vertical direction is arranged, and each of the wires 12 extending in the vertical direction is arranged. , 13 and 15 are cross-wired 16 extending in the horizontal direction and arranged in a lattice pattern with a plurality of wires arranged at intervals in the vertical direction. The vertical and horizontal intervals of the lattice may be the same or substantially the same.
 一方の導電線材121及び他方の導電線材122は、断面円形、断面楕円形、断面扁平等の線条部材からなり、モノフィラメントでもマルチフィラメントでもよい。フィラメントは金属などでなる導線でもよい。また、モノフィラメント、マルチフィラメントの外周に対し金属がメッキ処理され、メッキ層がフィラメントの外周に形成されたものでもよい。金属としては抵抗率の低い銅が好ましいが他の金属でもよく、ステンレスなどでもよい。 The one conductive wire 121 and the other conductive wire 122 are made of wire members having a circular cross section, an elliptical cross section, and a flat cross section, and may be monofilaments or multifilaments. The filament may be a conductive wire made of metal or the like. Moreover, the metal may be plated on the outer periphery of the monofilament or multifilament, and the plating layer may be formed on the outer periphery of the filament. The metal is preferably copper having a low resistivity, but may be other metals such as stainless steel.
 配置調整用の線材15、交差用の線材16は、何れも、断面円形、断面楕円形、断面扁平等の線条部材からなっており、モノフィラメントでもマルチフィラメントでもよい。 The arrangement adjusting wire 15 and the crossing wire 16 are each made of a linear member having a circular cross section, an elliptical cross section, or a flat cross section, and may be monofilament or multifilament.
 交差用の線材16は絶縁性の繊維からなる。配置調整用の線材15の素材も絶縁性の繊維を用いるのがよい。配置調整用の線材15、交差用の線材16の素材は、一方の線条電極群12、他方の線条電極群13に有機EL材料を塗布して硬化する際、塗布剤に含まれる有機溶媒によって溶解されるものであってもよい。 The crossing wire 16 is made of insulating fiber. It is preferable to use insulating fibers as the material of the wire 15 for adjusting the arrangement. The material of the arrangement adjusting wire 15 and the crossing wire 16 is an organic solvent contained in the coating agent when the organic EL material is applied to one of the linear electrode group 12 and the other linear electrode group 13 and cured. May be dissolved.
 一方の導電線材121と配置調整用の線材15の間隔、他方の導電線材122と配置調整用の導電線材15との間隔は、一方の導電線材121、他方の導電線材122、配置調整用の導電線材15の等価断面寸法と同じオーダーであってもよい。 The distance between the one conductive wire 121 and the arrangement adjusting wire 15 and the distance between the other conductive wire 122 and the arrangement adjusting conductive wire 15 are one conductive wire 121, the other conductive wire 122, and the arrangement adjusting conductivity. The same order as the equivalent cross-sectional dimension of the wire 15 may be sufficient.
 例えば、導電線材121,13と配置調整用の線材15、交差用の線材16は20~35μmの線径を有しており、導電線材121,13と配置調整用の線材15との間の隙間が20~35μmである。交差用の線材15同士の隙間は20~35μmである。これに対し、発光層13の厚みは、例えば40~80μmである。 For example, the conductive wires 121 and 13 and the arrangement adjusting wire 15 and the crossing wire 16 have a wire diameter of 20 to 35 μm, and a gap between the conductive wires 121 and 13 and the arrangement adjusting wire 15 is provided. Is 20 to 35 μm. The gap between the crossing wires 15 is 20 to 35 μm. On the other hand, the thickness of the light emitting layer 13 is, for example, 40 to 80 μm.
 本発明の実施形態では、各線材の紐状の太さが、これら線材で構成される網の目の大きさとほぼ同じ寸法であるか又は同じオーダーの寸法を有する。よって、配置調整用の線材15、交差用の線材16によって各線材同士の隙間が維持される。各線材については線径については均一なものがよいが、平均径に対して所定の範囲、例えば80%~120%の範囲であってもよい。これにより、一方の導電線材121と他方の導電線材122との間隔がほぼ一定に保たれる。 In the embodiment of the present invention, the string-like thickness of each wire is approximately the same as the size of the mesh formed by these wires, or has the same order of dimensions. Accordingly, the gap between the wires is maintained by the wire 15 for adjusting the arrangement and the wire 16 for crossing. The wire diameter of each wire is preferably uniform, but may be within a predetermined range with respect to the average diameter, for example, 80% to 120%. Thereby, the space | interval of the one conductive wire 121 and the other conductive wire 122 is kept substantially constant.
 配置調整用の線材15、交差用の線材16は、有機EL材料が硬化するまで、一方の導電線材121と他方の導電線材122との間隔を維持するために設けられるものである。それゆえ、上述したように編み込まれた布に有機EL材料を塗布などして有機EL材料が硬化して発光層13が形成されれば、発光層13の厚みで一方の導電線材121と他方の導電線材122が保持される。なお、配置調整用の線材15、交差用の線材16は、有機溶媒によって全てが溶解する必要はなく、部分的に溶解せず残存してもよい。 The arrangement adjusting wire 15 and the crossing wire 16 are provided to maintain a distance between one conductive wire 121 and the other conductive wire 122 until the organic EL material is cured. Therefore, when the organic EL material is cured by applying the organic EL material to the cloth knitted as described above to form the light emitting layer 13, the thickness of the light emitting layer 13 and the one conductive wire 121 and the other are increased. The conductive wire 122 is held. Note that the arrangement adjusting wire 15 and the crossing wire 16 do not need to be completely dissolved by the organic solvent, and may remain partially undissolved.
 配置調整用の線材15、交差用の線材16の線材としては、例えば、アクリル系繊維やビニル系繊維を用いることができ、この場合には、塗布剤にはトルエン、酢酸などの有機溶媒が含まれていればよい。有機溶剤は有機EL材料、硬化剤等に応じて適宜選択することができる。 For example, acrylic fibers or vinyl fibers can be used as the wires 15 for the arrangement adjustment and the crossing wires 16, and in this case, the coating agent contains an organic solvent such as toluene or acetic acid. It only has to be done. The organic solvent can be appropriately selected according to the organic EL material, the curing agent, and the like.
 以上説明したように、発光層13に交互配列電極12を埋設し、その際、配置調整用の線材15や交差用の線材16によって一方の導電線材121及び他方の導電線材122の間隔をほぼ一定にすることができる。 As described above, the alternately arranged electrodes 12 are embedded in the light emitting layer 13, and at that time, the distance between the one conductive wire 121 and the other conductive wire 122 is substantially constant by the arrangement adjusting wire 15 and the crossing wire 16. Can be.
 一方の導電線材121の一端は一方の配線部5で相互に接続され、他方の導電線材122の一端は他方の配線部6で相互に接続されている。各配線部5,6は、接続ユニット4を経由して制御部3に接続されている。 One end of one conductive wire 121 is mutually connected by one wiring part 5, and one end of the other conductive wire 122 is mutually connected by the other wiring part 6. Each wiring unit 5, 6 is connected to the control unit 3 via the connection unit 4.
 制御部3は、一方の配線部5と他方の配線部6との間に電圧を印加する。これにより、発光層13内の有機EL分子に電圧を印加することができる。 The control unit 3 applies a voltage between one wiring unit 5 and the other wiring unit 6. Thereby, a voltage can be applied to the organic EL molecules in the light emitting layer 13.
 本発明の第2実施形態に係る発光装置1では、発光層13内に一方向に延びた一方の導電線材121と他方の導電線材122とが交互に配列して設けられている。ここで、発光層内に設けられているとは、交互配線電極14における一方の導電線材121、他方の導電線材122の各線材を輪切りに断面でみてその周囲が全て発光像の有機EL分子と密着している必要はなく、一部密着している場合も含む。つまり、一方の導電線材121及び他方の導電線材122に印加した電圧が有機EL分子に加わればよい。 In the light emitting device 1 according to the second embodiment of the present invention, one conductive wire 121 extending in one direction and the other conductive wire 122 are arranged alternately in the light emitting layer 13. Here, “provided in the light emitting layer” means that each of the conductive wires 121 and the other conductive wires 122 in the alternate wiring electrode 14 is cut in a cross-section in a cross section and the surroundings are all organic EL molecules having a light emission image. It is not necessary to be in close contact, and includes cases where it is partially in close contact. That is, the voltage applied to one conductive wire 121 and the other conductive wire 122 may be applied to the organic EL molecules.
 本発明の第2実施形態に係る発光装置1における発光部2では、同じ方向に延びた一方の導電線材121と他方の導電線材122とが交互に配列して、その間に必要に応じて配置調整用の線材15を介在し、これらと交差する方向に交差用の線材16で格子状に配置されている。なお、各線材の線径が非常に小さい場合に、横に延びた線材を横糸、縦に延びた線材を縦糸と呼んでもよい。 In the light emitting unit 2 in the light emitting device 1 according to the second embodiment of the present invention, one conductive wire 121 and the other conductive wire 122 extending in the same direction are alternately arranged, and arrangement adjustment is performed as necessary between them. Are disposed in a grid pattern with intersecting wire rods 16 in the direction intersecting them. In addition, when the wire diameter of each wire is very small, the wire extending in the lateral direction may be referred to as weft and the wire extending in the vertical direction may be referred to as warp.
 本発明の第2実施形態による発光装置1の発光部2は上述したように交互配列電極12を有するため、一方の導電線材121と他方の導電線材122との間に電圧を加えて発光層13全面を発光させることができる。 Since the light emitting unit 2 of the light emitting device 1 according to the second embodiment of the present invention includes the alternately arranged electrodes 12 as described above, a voltage is applied between the one conductive wire 121 and the other conductive wire 122 to emit the light emitting layer 13. The entire surface can emit light.
 本発明の第2実施形態では、縦方向と横方向にそれぞれ延びた各線材12,13,15と発光層13とからなっていることから、従来のように、ガラス基板を用いずまた薄いフィルムやシート上にITO膜を形成していないため、フィルム又はシートからITO膜が剥離することもない。また、フィルム又はシートそれ自体が有する剛性により湾曲が妨げられることもない。よって、本発明の第2実施形態に係る発光装置1の発光部2は湾曲などの変形が自在である。 In the second embodiment of the present invention, since each of the wires 12, 13, 15 and the light emitting layer 13 extend in the vertical and horizontal directions, respectively, a thin film is used without using a glass substrate as in the prior art. In addition, since the ITO film is not formed on the sheet, the ITO film does not peel from the film or sheet. In addition, the bending of the film or sheet itself is not hindered. Therefore, the light emitting unit 2 of the light emitting device 1 according to the second embodiment of the present invention can be freely deformed such as curved.
〔他の発光装置の実施形態〕
 以下、発光装置の他の実施形態を説明する。なお、第2実施形態と同一又は対応する部材には同一の符号を付してある。
[Embodiments of other light emitting devices]
Hereinafter, other embodiments of the light emitting device will be described. In addition, the same code | symbol is attached | subjected to the member which is the same as that of 2nd Embodiment, or respond | corresponds.
 図7は本発明の第3実施形態に係る発光装置のうち発光部の断面を模式的に示す図であり、図8は図7に示す発光部の交互配列電極を模式的に示す図である。第3実施形態に係る発光装置1は、発光部2における交互配列電極12が、一方の導電線材121と他方の導電線材122とを交互に配列し、配置調整用の線材15を一方の導電線材121と他方の導電線材122との間に設けていない点で異なる。 FIG. 7 is a diagram schematically showing a cross section of a light emitting unit in a light emitting device according to the third embodiment of the present invention, and FIG. 8 is a diagram schematically showing alternating electrodes of the light emitting unit shown in FIG. . In the light emitting device 1 according to the third embodiment, the alternately arranged electrodes 12 in the light emitting unit 2 alternately arrange one conductive wire 121 and the other conductive wire 122, and arrange the arrangement adjusting wire 15 as one conductive wire. It differs in that it is not provided between 121 and the other conductive wire 122.
 第2実施形態で説明したように、一方の導電線材121と他方の導電線材122との間に配置調整用の線材15を設けておき、有機EL材料、硬化剤などに含まれる溶剤を塗布することにより、配置調整用の線材15を溶かすことによって発光部2Bが製造されてもよい。または、配置調整用の線材15を設けないで、有機EL材料、硬化剤などを含む塗布剤を塗布して硬化させるようにしてもよい。 As described in the second embodiment, the arrangement adjusting wire 15 is provided between the one conductive wire 121 and the other conductive wire 122, and the solvent contained in the organic EL material, the curing agent, or the like is applied. Thus, the light emitting section 2B may be manufactured by melting the arrangement adjusting wire 15. Or you may make it apply | coat and harden the coating agent containing organic EL material, a hardening | curing agent, etc., without providing the wire 15 for arrangement | positioning adjustment.
 図9は、本発明の第4実施形態に係る発光装置のうち発光部の断面を模式的に示す図である。第4実施形態に係る発光装置の発光部2Cは、図5に示す発光部2Aにおいて、発光層13と保護層14との間にカラーフィルター18を設けている点で異なる。カラーフィルター18を設けることにより、コントラストを向上させることができる。 FIG. 9 is a diagram schematically showing a cross-section of a light emitting unit in a light emitting device according to the fourth embodiment of the present invention. The light emitting unit 2C of the light emitting device according to the fourth embodiment is different in that a color filter 18 is provided between the light emitting layer 13 and the protective layer 14 in the light emitting unit 2A shown in FIG. By providing the color filter 18, the contrast can be improved.
 図10は、本発明の第5実施形態に係る発光装置のうち発光部の断面を模式的に示す図である。第5実施形態における発光部2Dでは、発光層13の一方にはカラーフィルター18を介在して保護層14を設けているが、発光層13の他方には、例えば透明樹脂からなるシート状又はフィルム状の基材11が設けられている。基材11の上に、交互配列電極を有する導電布を配置し、有機EL材料や硬化剤を含む塗布剤を塗布して硬化させ、その後、カラーフィルター18及び保護層14を順に配置することにより、発光部2Dが製造される。導電布は、一方の導電線材121と他方の導電線材122との間に配置調整用の線材15を設け、それらと直交する方向の交差用の線材15でアミ状にしたものである。 FIG. 10 is a diagram schematically showing a cross section of a light emitting unit in a light emitting device according to a fifth embodiment of the present invention. In the light emitting unit 2D according to the fifth embodiment, a protective layer 14 is provided on one side of the light emitting layer 13 with a color filter 18 interposed therebetween. On the other side of the light emitting layer 13, for example, a sheet or film made of a transparent resin is provided. A base material 11 is provided. By disposing a conductive cloth having alternating electrodes on the substrate 11, applying and curing a coating agent containing an organic EL material and a curing agent, and then sequentially arranging the color filter 18 and the protective layer 14 The light emitting unit 2D is manufactured. The conductive cloth is formed by providing a wire 15 for adjusting the arrangement between one conductive wire 121 and the other conductive wire 122, and making it cross-shaped with a crossing wire 15 in a direction perpendicular to them.
 以上説明したように、第2乃至第5の各実施形態では、交互配列電極12を発光層13内に設け、交互配列電極12のうち一方の導電線材121と他方の導電線材122との間に直流又はEL素子の発光に適した周波数の交流の電圧を印加する。すると、有機EL分子に電圧を印加され、発光層13を全面で発光させることができる。 As described above, in each of the second to fifth embodiments, the alternating array electrode 12 is provided in the light emitting layer 13, and the alternating array electrode 12 is interposed between one conductive wire 121 and the other conductive wire 122. An AC voltage having a frequency suitable for direct current or EL element emission is applied. Then, a voltage is applied to the organic EL molecules, and the light emitting layer 13 can emit light over the entire surface.
 一方の導電線材121及び他方の導電線材122により交互配列電極12としこれを発光層13内に設けている。その際、交互配列電極12は必要に応じて各導電線材121,13の間に配置調整用の線材15を設け、これらと交差する方向に交差用の線材16によって編み込みされ、あたかも微細糸の布として構成されている。
 これらの微細糸の布に、一又は複数の有機EL材料を塗布したり漬浸したりした発光層を形成することができる。その際、硬化剤、溶剤、触媒等を、有機EL材料に適応するように混在させる。
 第2乃至第5の実施形態での発光層の形成については詳細に説明していないが、有機EL材料としては公知の各種のものを使用することができる。有機EL材料を浸み込ませて硬化させる手法としては、公知の技術、例えばインクジェット法を用いて塗布したり、浸漬含浸法やローラーによる浸潤法を用いることができる。
One conductive wire 121 and the other conductive wire 122 form the alternately arranged electrodes 12 which are provided in the light emitting layer 13. At that time, the alternating array electrode 12 is provided with a wire 15 for adjusting the arrangement between the conductive wires 121 and 13 as necessary, and is knitted by the crossing wire 16 in a direction intersecting these, as if it is a fine yarn cloth. It is configured as.
A light emitting layer in which one or a plurality of organic EL materials are applied or immersed in these fine yarn cloths can be formed. In that case, a hardening | curing agent, a solvent, a catalyst, etc. are mixed so that it may adapt to organic EL material.
Although the formation of the light emitting layer in the second to fifth embodiments has not been described in detail, various known organic EL materials can be used. As a method of immersing and curing the organic EL material, a known technique such as an ink jet method can be used, or an immersion impregnation method or an infiltration method using a roller can be used.
 また、前述した説明のように、各線材を編み込むことで平面視において正方形などの矩形の網目としてもよいが、菱形など他の形状の網目となっていてもよい。 Further, as described above, each wire rod may be knitted to form a square mesh such as a square in plan view, but may be a mesh of other shapes such as a rhombus.
 これらの実施形態に係る発光装置は、広告などの看板照明や液晶表示装置のバック照明に用いることができる。 The light-emitting device according to these embodiments can be used for billboard lighting such as advertisements and back lighting of liquid crystal display devices.
[第6実施形態]
 まず、本実施形態で製造する光電変換デバイスについて、図11を用いて説明する。以下では、光電変換デバイス1として、光を電気エネルギーに変換する太陽電池についての例を説明するが、EL素子等のように電気エネルギーを光に変換するものであっても同様に適用できる。
[Sixth Embodiment]
First, the photoelectric conversion device manufactured by this embodiment is demonstrated using FIG. Below, the example about the solar cell which converts light into an electrical energy is demonstrated as the photoelectric conversion device 1, However, Even if it converts an electrical energy into light like an EL element etc., it is applicable similarly.
 光電変換デバイス1は、正孔輸送材料からなるp型有機半導体13A及び電子輸送材料からなるn型有機半導体13Bを有する光電変換層13と、p型有機半導体13Aに接続したp型電極としての第1導電線材121と、n型有機半導体13Bに接続したn型電極としての第2導電線材122と、光電変換層13の表面を被覆するように積層された保護層14と、を備えている。ここでは光電変換デバイス1が絶縁性の基材11の表面に沿って配置されている。 The photoelectric conversion device 1 includes a photoelectric conversion layer 13 having a p-type organic semiconductor 13A made of a hole transport material and an n-type organic semiconductor 13B made of an electron transport material, and a p-type electrode connected to the p-type organic semiconductor 13A. The first conductive wire 121, the second conductive wire 122 as an n-type electrode connected to the n-type organic semiconductor 13B, and the protective layer 14 laminated so as to cover the surface of the photoelectric conversion layer 13 are provided. Here, the photoelectric conversion device 1 is disposed along the surface of the insulating substrate 11.
 第1導電線材121及び第2導電線材122のうちの少なくとも一方、ここでは両方が、互いに接触しないように間隔を空けて略同じ向きで並べて配置された複数の導電線材120からなる。これらの導電線材120と交差する方向に、絶縁性の線材からなる横線材12Bが配置されている。複数の導電線材120の一部が第1導電線材121であり、他部の導電線材120が第2導電線材122であり、これらが交互に配置されている。
 第1導電線材121を構成する複数の導電線材120と第2導電線材122を構成する複数の導電線材120とは略同数設けられており、これらに図12のような配線部としてのバスバー7等が接続され、バスバー7を介して各種の回路に接続可能となっている。
At least one of the first conductive wire 121 and the second conductive wire 122, here both, is composed of a plurality of conductive wires 120 arranged side by side in substantially the same direction so as not to contact each other. A horizontal wire 12B made of an insulating wire is arranged in a direction crossing these conductive wires 120. A part of the plurality of conductive wires 120 is the first conductive wire 121 and the other conductive wire 120 is the second conductive wire 122, which are alternately arranged.
The plurality of conductive wire rods 120 constituting the first conductive wire rod 121 and the plurality of conductive wire rods 120 constituting the second conductive wire rod 122 are provided in substantially the same number, and bus bars 7 as wiring portions as shown in FIG. Can be connected to various circuits via the bus bar 7.
 各導電線材120は、銅線やステンレス線等の金属線、樹脂等の合成繊維や天然繊維等の各種繊維の表面に金属メッキ処理が施された金属メッキ繊維など、柔軟性に富む線材を使用するのがよい。金属メッキ繊維の場合、芯となる繊維としては例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成してもよい。 Each conductive wire 120 uses a flexible wire such as a metal wire such as a copper wire or a stainless steel wire, a synthetic fiber such as a resin, or a metal-plated fiber obtained by performing metal plating on the surface of various fibers such as a natural fiber. It is good to do. In the case of a metal-plated fiber, the core fiber may be composed of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, vinyl resin, or the like.
 これらの複数の導電線材120の太さはそれぞれ異なっていてもよいが、同じ太さの線材を用いるのが好ましい。特に限定されるものではないが一例として、線径が20~30μmのものを使用してもよい。 The thickness of the plurality of conductive wires 120 may be different from each other, but it is preferable to use wires having the same thickness. Although not particularly limited, as an example, one having a wire diameter of 20 to 30 μm may be used.
 各横線材12Bは絶縁性の線材からなり、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む線材を使用するのがよい。この横線材12Bとして導電線材120と同等の太さの線材を使用してもよい。横線材12Bが配置されることで縦方向と横方向とに連続した線材が配置され、光電変換デバイス1の面方向強度が向上する。 Each horizontal wire 12B is made of an insulating wire, and it is preferable to use a flexible wire such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin. A wire having the same thickness as that of the conductive wire 120 may be used as the horizontal wire 12B. By arranging the horizontal wire 12B, a continuous wire in the vertical direction and the horizontal direction is arranged, and the surface strength of the photoelectric conversion device 1 is improved.
 光電変換層13は、第1導電線材121に接続されたp型有機半導体13Aと第2導電線材122に接続されたn型有機半導体13Bとを有する。p型有機半導体13Aとn型有機半導体13Bとは接触界面で接合されてpn接合を形成している。この光電変換層13は柔軟性に富むものが好適である。 The photoelectric conversion layer 13 includes a p-type organic semiconductor 13A connected to the first conductive wire 121 and an n-type organic semiconductor 13B connected to the second conductive wire 122. The p-type organic semiconductor 13A and the n-type organic semiconductor 13B are bonded at the contact interface to form a pn junction. It is preferable that the photoelectric conversion layer 13 is rich in flexibility.
 p型有機半導体13Aは正孔輸送材料からなる。正孔輸送材料としては、例えば芳香族アミン、チオフェン、フェニレン-ビニレン、チエニレン-ビニレン、カルバゾール、ビニルカルバゾール、ピロール、アセチレン、フタロシアニン、アセン、ポルフィリン、これらの誘導体、錯体、オリゴマー又はポリマーなどであり、これらのうち、有機半導体として使用可能な電子受容性を有する公知の有機化合物を使用できる。 The p-type organic semiconductor 13A is made of a hole transport material. Examples of the hole transport material include aromatic amine, thiophene, phenylene-vinylene, thienylene-vinylene, carbazole, vinylcarbazole, pyrrole, acetylene, phthalocyanine, acene, porphyrin, derivatives, complexes, oligomers, and polymers thereof. Among these, known organic compounds having electron acceptability that can be used as organic semiconductors can be used.
 n型有機半導体13Bは電子輸送材料からなる。電子輸送材料としては、例えばシロール、フラーレン、カーボンナノチューブ、ペリレン、ナフタレン、ピリジン、フタロシアニン、キノリン、オキサジアゾール、トリアゾール、ジスチリルアリーレン、これらの誘導体、錯体、オリゴマー又はポリマーなどであり、これらのうち、有機半導体として使用可能な電子供与性を有する公知の有機化合物を使用できる。 The n-type organic semiconductor 13B is made of an electron transport material. Examples of the electron transport material include silole, fullerene, carbon nanotube, perylene, naphthalene, pyridine, phthalocyanine, quinoline, oxadiazole, triazole, distyrylarylene, derivatives, complexes, oligomers, and polymers thereof. Any known organic compound having an electron donating property that can be used as an organic semiconductor can be used.
 これらのp型有機半導体13A及びn型有機半導体13Bは、光電変換効率が出来るだけ高いものを組み合わせて選択することができる。この光電変換層13の厚みは特に限定されるものではないが、例えば導電線材120の線径の1.2~2.0倍としてもよい。 These p-type organic semiconductor 13A and n-type organic semiconductor 13B can be selected by combining those having the highest possible photoelectric conversion efficiency. The thickness of the photoelectric conversion layer 13 is not particularly limited, but may be 1.2 to 2.0 times the wire diameter of the conductive wire 120, for example.
 このような光電変換デバイス1では、第1導電線材121、第2導電線材122、光電変換層13が柔軟性を有するため、光電変換デバイス1は十分な柔軟性を有する。そのため基材11の平面又は曲面からなる表面に沿って自在に配置できる。 In such a photoelectric conversion device 1, since the first conductive wire 121, the second conductive wire 122, and the photoelectric conversion layer 13 have flexibility, the photoelectric conversion device 1 has sufficient flexibility. Therefore, it can arrange | position freely along the surface which consists of a plane of the base material 11 or a curved surface.
 次に、このような光電変換デバイス1を本実施形態の製造方法により製造する方法について、図12及び図13を用いて説明する。
 本実施形態では、電極構造体12を準備する電極準備工程と、正孔輸送材料や電子輸送材料を含有した材料含有液130を調製する材料含有液調整工程と、正孔輸送材料や電子輸送材料を電極構造体12に付着させる材料付着工程と、有機半導体を形成する半導体形成工程と、を備えた製造方法により光電変換デバイス1を製造する。
Next, a method for manufacturing such a photoelectric conversion device 1 by the manufacturing method of this embodiment will be described with reference to FIGS.
In this embodiment, an electrode preparation process for preparing the electrode structure 12, a material-containing liquid adjustment process for preparing a material-containing liquid 130 containing a hole transport material or an electron transport material, a hole transport material or an electron transport material The photoelectric conversion device 1 is manufactured by a manufacturing method including a material adhering step for adhering to the electrode structure 12 and a semiconductor forming step for forming an organic semiconductor.
 電極準備工程では、図12に示すように、複数の導電線材120を配置調整用線材15とともに一体的に連結した光電変換デバイス作製用の電極構造体12を準備する。この電極構造体12は予め作製されたものを使用してもよい。
 この実施形態の電極構造体12は、上述のような複数の導電線材120及び配置調整用線材15を有する複数の縦線材12Aと、縦線材12Aと交差する複数の横線材12Bと、を備え、これらが交差することで一体化された平織りの織布からなるネットとなっている。
In the electrode preparation step, as shown in FIG. 12, an electrode structure 12 for preparing a photoelectric conversion device in which a plurality of conductive wires 120 are integrally connected together with the arrangement adjusting wire 15 is prepared. This electrode structure 12 may be prepared in advance.
The electrode structure 12 of this embodiment includes a plurality of vertical wires 12A having the plurality of conductive wires 120 and the arrangement adjusting wires 15 as described above, and a plurality of horizontal wires 12B intersecting the vertical wires 12A. By crossing these, it is a net made of plain weave.
 縦線材12Aの導電線材120と配置調整用線材15とは、略同じ向きで交互に並べて配置されている。交互に配置する導電線材120の本数及び配置調整用線材15の本数は、一方又は双方を複数本づつ配置して繰り返してもよいが、ここではそれぞれ1本づつ繰り返して配置している。各導電線材120間に配置される配置調整用線材15の本数等は、製造後に得られる第1導電線材121及び第2導電線材122の配置間隔に応じて設定するのがよい。隣り合う縦線材12A間の間隔及び導電線材120間の間隔は、適宜設定した範囲に調整されることが好ましい。 The conductive wire 120 and the arrangement adjusting wire 15 of the vertical wire 12A are alternately arranged in substantially the same direction. The number of the conductive wires 120 and the number of the arrangement adjusting wires 15 that are alternately arranged may be repeated by arranging one or both of them in plurality, but here, each of them is repeatedly arranged one by one. The number or the like of the arrangement adjusting wires 15 arranged between the conductive wires 120 is preferably set according to the arrangement interval of the first conductive wires 121 and the second conductive wires 122 obtained after manufacture. It is preferable that the interval between the adjacent vertical wire rods 12A and the interval between the conductive wire rods 120 are adjusted to a suitably set range.
 縦線材12Aの導電線材120は上述の通りであるが、縦線材12Aの第1導電線材121となる一部の導電線材120には、材料含有液130に含有された正孔輸送材料が付着し易くなるように材料が選択され、表面処理が施されていてもよい。また第2導電線材122となる他部の導電線材120には、材料含有液130に含有された電子輸送材料が付着し易くなるように材料が選択され、或いは表面処理が施されていてもよい。 The conductive wire 120 of the vertical wire 12A is as described above, but the hole transport material contained in the material-containing liquid 130 is attached to a part of the conductive wire 120 that becomes the first conductive wire 121 of the vertical wire 12A. The material may be selected so as to be easy and surface treatment may be performed. In addition, a material may be selected or a surface treatment may be performed on the other conductive wire 120 that becomes the second conductive wire 122 so that the electron transport material contained in the material-containing liquid 130 is easily attached. .
 例えば、第1導電線材121を構成する導電線材120の表面材料と第2導電線材122を構成する導電線材120の表面材料とを、錫と銅等のように電位差が生じる組み合わせで選択することで、p型有機半導体13A又はn型有機半導体13Bが各導電線材120の表面に結晶又は分子として生成することを制御してもよい。 For example, by selecting the surface material of the conductive wire 120 constituting the first conductive wire 121 and the surface material of the conductive wire 120 constituting the second conductive wire 122 in a combination that causes a potential difference such as tin and copper. The p-type organic semiconductor 13A or the n-type organic semiconductor 13B may be controlled to be generated as crystals or molecules on the surface of each conductive wire 120.
 縦線材12Aの配置調整用線材15は、後述する材料含有液130により溶解可能な材料からなり、正孔輸送材料及び電子輸送材料に応じて選択される溶媒により溶解可能なものである。配置調整用線材15は絶縁性を有する樹脂製の線材であってもよい。特に限定されるものではないが、例えばアクリル樹脂、ビニル樹脂等の線材を用いてもよい。
 配置調整用線材15の太さは過剰に太いと溶解性が低下したり導電線材120間の間隔が広くなり、一方、過剰に細いと導電線材120間の間隔を確保し難くなるため、配置調整用線材15の太さは、例えば導電線材120の線径に対して0.5~1.0倍のようにしてもよい。
The arrangement adjusting wire 15 of the vertical wire 12A is made of a material that can be dissolved by the material-containing liquid 130 described later, and can be dissolved by a solvent selected according to the hole transport material and the electron transport material. The arrangement adjusting wire 15 may be an insulating resin wire. Although not particularly limited, for example, a wire such as an acrylic resin or a vinyl resin may be used.
If the thickness of the arrangement adjusting wire 15 is excessively large, the solubility is lowered or the interval between the conductive wires 120 is widened. On the other hand, if the thickness is excessively thin, it is difficult to secure the interval between the conductive wires 120. For example, the thickness of the wire 15 may be 0.5 to 1.0 times the wire diameter of the conductive wire 120.
 横線材12Bは、単に導電線材120及び配置調整用線材15と交差する方向に配置するだけでもよいが、ここでは所定間隔毎に上下に導電線材120及び配置調整用線材15と交差して配置している。
 この横線材12Bは、配置調整用線材15とは異なる絶縁性の線材からなり、後述する材料含有液130、即ち、使用される正孔輸送材料及び電子輸送材料に応じて使用される溶媒に対する溶解性が、配置調整用線材15よりも低い材料からなる。特に限定されるものではないが、例えばPET等のポリエステルなどの線材を用いてもよい。
The horizontal wire 12B may be simply arranged in a direction intersecting with the conductive wire 120 and the arrangement adjusting wire 15, but here, the horizontal wire 12B is arranged so as to intersect with the conductive wire 120 and the arrangement adjusting wire 15 up and down at predetermined intervals. ing.
The horizontal wire 12B is made of an insulating wire different from the arrangement adjusting wire 15, and is dissolved in a material-containing liquid 130 described later, that is, a solvent used according to the hole transport material and the electron transport material used. The material is made of a material that is lower than the arrangement adjusting wire 15. Although not particularly limited, for example, a wire such as polyester such as PET may be used.
 このような横線材12Bとともに縦線材12Aを一体化することで、導電線材120間に配置調整用線材15を介在させた状態で離間させて保持でき、導電線材120間を略全長にわたり互いに所定間隔で離間させて安定して配置できる。 By integrating the vertical wire 12A together with the horizontal wire 12B, the conductive wire 120 can be held apart with the arrangement adjusting wire 15 interposed between the conductive wires 120. And can be placed stably with a gap.
 材料含有液調整工程では、上述のような正孔輸送材料及び電子輸送材料のうちの少なくとも一方を溶媒中に含有させることで、材料含有液130を調製する。材料含有液130は材料付着工程に応じて調製する必要があり、例えば第1導電線材121と第2導電線材122とに、別々に材料含有液130を接触させてp型有機半導体13Aとn型有機半導体13Bとを形成する場合には、正孔輸送材料を含有する材料含有液130と電子輸送材料を含有する材料含有液130とを別々に調製する。ここでは両輸送材料を溶媒中に含有させることで材料含有液130を調製している。 In the material-containing liquid adjustment step, the material-containing liquid 130 is prepared by containing at least one of the hole transport material and the electron transport material as described above in the solvent. The material-containing liquid 130 needs to be prepared according to the material adhesion process. For example, the material-containing liquid 130 is separately brought into contact with the first conductive wire 121 and the second conductive wire 122 to form the p-type organic semiconductor 13A and the n-type semiconductor. When forming the organic semiconductor 13B, the material containing liquid 130 containing a hole transport material and the material containing liquid 130 containing an electron transport material are prepared separately. Here, the material-containing liquid 130 is prepared by including both transport materials in a solvent.
 正孔輸送材料としては、上述した材料の他に有機半導体として使用可能な電子受容性を有する有機化合物の前駆体であってもよく、電子輸送材料はとしては、上述した材料の他に有機半導体として使用可能な電子供与性を有する有機化合物の前駆体であってもよい。前駆体を用いる場合には、その後の工程において適宜反応させて所望の化合物を生成させればよい。 The hole transport material may be a precursor of an organic compound having an electron acceptability that can be used as an organic semiconductor in addition to the above-described materials, and the electron transport material may be an organic semiconductor other than the above-described materials. The precursor of the organic compound which has the electron-donating property which can be used as these may be sufficient. In the case of using a precursor, a desired compound may be generated by appropriately reacting in the subsequent steps.
 材料含有液130に使用する光電変換デバイス作製用の溶媒は、正孔輸送材料や電子輸送材料を分散させる溶媒であってもよいが、溶解可能な溶媒が好適であり、揮発性を有する溶媒であってもよい。この溶媒は電極構造体12の配置調整用線材15を溶解可能であることが必要であり、横線材12Bを溶解不能であるのが好ましい。 The solvent for producing a photoelectric conversion device used for the material-containing liquid 130 may be a solvent in which a hole transport material or an electron transport material is dispersed, but a soluble solvent is preferable, and a volatile solvent. There may be. This solvent needs to be able to dissolve the wire 15 for adjusting the arrangement of the electrode structure 12 and preferably not to dissolve the horizontal wire 12B.
 このような溶媒としては、配置調整用線材15及び横線材12Bに対する溶解性が確保できる限り、各正孔輸送材料や各電子輸送材料を用いて有機半導体を形成する際に通常用いられる溶媒を使用できる。本実施形態では、例えばトルエン、キシレン、酢酸等を使用する。この材料含有液130には、さらに配向制御ためのジカルボン酸のような添加剤、強度保持のためのメタクリル酸のようなバインダ等の成分を含有させていてもよい。 As such a solvent, as long as the solubility in the arrangement adjusting wire 15 and the horizontal wire 12B can be ensured, a solvent usually used when forming an organic semiconductor using each hole transport material or each electron transport material is used. it can. In the present embodiment, for example, toluene, xylene, acetic acid or the like is used. This material-containing liquid 130 may further contain components such as an additive such as dicarboxylic acid for controlling orientation and a binder such as methacrylic acid for maintaining strength.
 材料付着工程では、材料含有液130を電極構造体12に接触させることで、配置調整用線材15を溶解すると共に、材料含有液130中の正孔輸送材料や電子輸送材料を電極構造体12の導電線材120に付着させる。
 正孔輸送材料を溶解した材料含有液130と電子輸送材料を溶解した材料含有液130とを用いる場合には、それぞれを順次電極構造体12の一部又は全部に接触させ、両輸送材料を溶解した材料含有液130を用いる場合には一度に接触させればよい。
 材料含有液130を電極構造体12に接触させて正孔輸送材料や電子輸送材料を導電線材120に付着させる方法は特に限定されない。例えば材料含有液130を電極構造体12に塗布し、或いはインクジェットプリンタによる印刷により行ってもよく、電極構造体12を材料含有液130に浸漬してディッピングにより行ってもよい。
In the material adhesion step, the material-containing liquid 130 is brought into contact with the electrode structure 12 to dissolve the arrangement adjusting wire 15, and the hole transport material and the electron transport material in the material-containing liquid 130 are removed from the electrode structure 12. It adheres to the conductive wire 120.
In the case of using the material-containing liquid 130 in which the hole transport material is dissolved and the material-containing liquid 130 in which the electron transport material is dissolved, each is sequentially brought into contact with part or all of the electrode structure 12 to dissolve both the transport materials. When the material-containing liquid 130 is used, it may be contacted at once.
The method of bringing the material-containing liquid 130 into contact with the electrode structure 12 and attaching the hole transport material or the electron transport material to the conductive wire 120 is not particularly limited. For example, the material-containing liquid 130 may be applied to the electrode structure 12 or may be printed by an inkjet printer, or the electrode structure 12 may be immersed in the material-containing liquid 130 and dipped.
 この実施形態では、電極構造体12の片面側に両輸送材料を含有した材料含有液130を接触させている。まず図13(a)のように基材11上に電極構造体12を載置し、図13(b)のように材料含有液130を接触させることで、図13(c)のように、材料含有液130中の溶媒により配置調整用線材15を溶解する。
 溶解された配置調整用線材15の成分は材料含有液130に分散して残留させてもよく、材料含有液130により置換して除去してもよい。ここでは配置調整用線材15の成分を材料中に溶解してこの材料中に配置させている。
 これにより配置調整用線材15が配置されていた部位に材料含有液130が配置され、導電線材120間及びその近傍に材料含有液130の正孔輸送材料や電子輸送材料が他の部位と同等に配置される。そして正孔輸送材料や電子輸送材料が、それぞれ第1導電線材121の導電線材120や第2導電線材122の導電線材120に付着する。
In this embodiment, the material-containing liquid 130 containing both transport materials is brought into contact with one side of the electrode structure 12. First, the electrode structure 12 is placed on the substrate 11 as shown in FIG. 13 (a), and the material-containing liquid 130 is brought into contact as shown in FIG. 13 (b). As shown in FIG. 13 (c), The arrangement adjusting wire 15 is dissolved by the solvent in the material-containing liquid 130.
The dissolved components of the arrangement adjusting wire 15 may be dispersed and left in the material-containing liquid 130 or may be replaced by the material-containing liquid 130 and removed. Here, the components of the arrangement adjusting wire 15 are dissolved in the material and arranged in this material.
As a result, the material-containing liquid 130 is disposed in the portion where the arrangement adjusting wire 15 has been disposed, and the hole transport material and the electron transport material of the material-containing liquid 130 are equivalent to other portions between and in the vicinity of the conductive wire 120. Be placed. Then, the hole transport material and the electron transport material adhere to the conductive wire 120 of the first conductive wire 121 and the conductive wire 120 of the second conductive wire 122, respectively.
 半導体形成工程では、図13(c)に示すように、電極構造体12の各導電線材120に材料含有液130と共に付着させた正孔輸送材料又は電子輸送材料から、p型有機半導体13Aを一部の導電線材120に接続した状態で形成すると共に、n型有機半導体13Bを他部の導電線材120に接続した状態で形成する。 In the semiconductor formation step, as shown in FIG. 13C, a p-type organic semiconductor 13A is formed from a hole transport material or an electron transport material adhered to each conductive wire 120 of the electrode structure 12 together with the material-containing liquid 130. The n-type organic semiconductor 13 </ b> B is formed in a state where it is connected to the other part of the conductive wire 120.
 材料含有液130から有機半導体13A,13Bを形成するには、材料含有液130中の溶媒を揮発させて乾燥することで行ってもよく、乾燥後に更に加熱処理やアニール処理等を施してもよい。このような処理は比較的低温で行うことができる。
 正孔輸送材料や電子輸送材料として前駆体を用いた場合には、乾燥後の処理により前駆体を正孔輸送材料や電子輸送材料に転化させ、導電線材120に接続された状態で有機半導体13A,13Bを形成することができる。また正孔輸送材料や電子輸送材料自体を用いた場合であっても、乾燥後の加熱処理やアニール処理を施すことで、得られる光電変換デバイス1の光電変換の性能を向上することも可能である。
In order to form the organic semiconductors 13A and 13B from the material-containing liquid 130, the solvent in the material-containing liquid 130 may be volatilized and dried, and after drying, heat treatment, annealing treatment, or the like may be performed. . Such processing can be performed at a relatively low temperature.
When a precursor is used as a hole transport material or an electron transport material, the precursor is converted into a hole transport material or an electron transport material by a treatment after drying, and the organic semiconductor 13A is connected to the conductive wire 120 while being connected to the conductive wire 120. , 13B can be formed. Even when the hole transport material or the electron transport material itself is used, it is possible to improve the photoelectric conversion performance of the obtained photoelectric conversion device 1 by performing a heat treatment or an annealing treatment after drying. is there.
 その後、図13(d)に示すように、光電変換層13の表面全体に保護層14を積層する。この保護層14は、光電変換層13で受発光する光が透過可能な透明性を有する樹脂等の材料を用いることができる。
 これにより光電変換デバイス1の製造が終了する。
Thereafter, as shown in FIG. 13D, the protective layer 14 is laminated on the entire surface of the photoelectric conversion layer 13. For the protective layer 14, a material such as a transparent resin that can transmit light received and emitted by the photoelectric conversion layer 13 can be used.
Thereby, manufacture of the photoelectric conversion device 1 is completed.
 次に、上記した光電変換デバイス1の製造方法における作用効果について説明する。
 この製造方法によれば、電極構造体12が複数の導電線材120を配置調整用線材15とともに一体化されているので、柔軟性を有する導電線材120であっても容易に配置できる。また、配置調整用線材15の数、形状、配置等を調整することで、各導電線材120の配置、形状、密度等を調整して導電線材120の配置間隔を容易に調整できるとともに、その状態を製造時に容易に安定して保持できる。特に導電線材120間に配置調整用線材15を介在させることで、導電線材120間を互いに所定間隔で精度よく離間させて電極構造体12を形成したので、各導電線材120を所望の間隔で安定して配置できる。そのため、複数の導電線材120の配置間隔のばらつきを防止して光電変換の性能の確保が可能である。
Next, the effect in the manufacturing method of the above-mentioned photoelectric conversion device 1 is demonstrated.
According to this manufacturing method, since the electrode structure 12 integrates the plurality of conductive wires 120 together with the arrangement adjusting wire 15, even the flexible conductive wire 120 can be easily arranged. In addition, by adjusting the number, shape, arrangement, etc. of the arrangement adjusting wire 15, the arrangement, shape, density, etc. of each conductive wire 120 can be adjusted to easily adjust the arrangement interval of the conductive wire 120, and the state Can be easily and stably maintained during production. In particular, by arranging the arrangement adjusting wire 15 between the conductive wires 120, the electrode structures 12 are formed by accurately separating the conductive wires 120 from each other at a predetermined interval, so that each conductive wire 120 is stabilized at a desired interval. Can be arranged. Therefore, it is possible to prevent variation in the arrangement interval of the plurality of conductive wires 120 and ensure the performance of photoelectric conversion.
 また、材料含有液130を電極構造体12に接触させることで配置調整用線材15を溶解するので、配置調整用線材15が配置されていた部位に材料含有液130の正孔輸送材料や電子輸送材料を配置できる。そのため、導電線材120間にはより多くの有機半導体13A,13Bを均一に配置でき、光電変換の性能を確保することができる。
 従って、光電変換の性能を確保しつつ柔軟性を有する光電変換デバイス1を容易に製造することが可能である。
In addition, since the arrangement adjusting wire 15 is dissolved by bringing the material containing liquid 130 into contact with the electrode structure 12, the hole transport material or the electron transport of the material containing liquid 130 is disposed at the portion where the arrangement adjusting wire 15 is arranged. Material can be placed. Therefore, more organic semiconductors 13A and 13B can be disposed uniformly between the conductive wires 120, and the performance of photoelectric conversion can be ensured.
Therefore, it is possible to easily manufacture the photoelectric conversion device 1 having flexibility while ensuring the performance of photoelectric conversion.
 複数の導電線材120及び配置調整用線材15からなる複数の縦線材12Aと、複数の縦線材12Aと交差して配置した複数の横線材12Bとを備えたネットからなる電極構造体12を準備し、配置調整用線材15を溶解可能で横線材12Bを溶解不能な溶媒を用いて材料含有液130を調製したので、配置調整用線材15を溶解後に横線材12Bを光電変換層13に残留させることができ、使用時に変形させても光電変換層13が破損し難くて光電変換デバイス1の耐久性を向上でき、また各導電線材120間の間隔を保つことができる。 An electrode structure 12 made of a net comprising a plurality of vertical wires 12A made up of a plurality of conductive wires 120 and arrangement adjusting wires 15 and a plurality of horizontal wires 12B arranged crossing the plurality of vertical wires 12A is prepared. Since the material-containing liquid 130 was prepared using a solvent capable of dissolving the arrangement adjusting wire 15 and not dissolving the horizontal wire 12B, the horizontal wire 12B is left on the photoelectric conversion layer 13 after the arrangement adjusting wire 15 is dissolved. Even if it is deformed during use, the photoelectric conversion layer 13 is not easily damaged, the durability of the photoelectric conversion device 1 can be improved, and the interval between the conductive wire members 120 can be maintained.
 正孔輸送材料及び電子輸送材料を含有した材料含有液130を調製し、この材料含有液130を用いてp型有機半導体13Aを一部の導電線材120に接続した状態で形成すると共に、n型有機半導体13Bを他部の導電線材120に接続した状態で形成したので、p型有機半導体13A及びn型有機半導体13Bを同時に形成でき、より製造が容易である。 A material-containing liquid 130 containing a hole transport material and an electron transport material is prepared, and the p-type organic semiconductor 13A is formed in a state of being connected to a part of the conductive wire 120 using the material-containing liquid 130. Since the organic semiconductor 13B is formed in a state where it is connected to the other conductive wire 120, the p-type organic semiconductor 13A and the n-type organic semiconductor 13B can be formed at the same time, which is easier to manufacture.
 材料含有液130を電極構造体12の片面側に付着させて有機半導体13A,13Bを有する光電変換層13を形成したので、得られた光電変換デバイス1では第1導電線材121及び第2導電線材122が、光電変換層13の一方の面側にだけ配置されて他方の面側に配置されない。そのため、他方の面側を受光面として使用すれば、光電変換の性能を向上できる。 Since the photoelectric conversion layer 13 having the organic semiconductors 13A and 13B is formed by adhering the material-containing liquid 130 to one side of the electrode structure 12, in the obtained photoelectric conversion device 1, the first conductive wire 121 and the second conductive wire are formed. 122 is arrange | positioned only at the one surface side of the photoelectric converting layer 13, and is not arrange | positioned at the other surface side. Therefore, if the other surface side is used as the light receiving surface, the performance of photoelectric conversion can be improved.
 なお、この第6実施形態は本発明の範囲内で適宜変更可能である。
 例えば第6実施形態では、電極構造体12の一方の面側に材料含有液130を付着させた例について説明したが、図14に示すように、材料含有液130を電極構造体12の両面側に付着させることで、第1導電線材121及び第2導電線材122を光電変換層13内部に埋設してもよく、光電変換層13の両面側に保護層14を設けてもよい。このようにして製造した光電変換デバイス1では両面を受発光面として使用できる。
 第6実施形態では、電極構造体12として横線材12Bを配置した例について説明したが、導電線材120と配置調整用線材15とを一体化して所定位置に配置することが可能であれば、横線材12Bを使用しなくてもよい。
 上記第6実施形態では、一つの光電変換層13に一枚の電極構造体12を埋設するように構成したが、同じ光電変換層13に複数枚の電極構造体12を埋設してもよく、複数の光電変換層13を積層してそれぞれに1枚又は複数枚の電極構造体12を埋設してもよい。
In addition, this 6th Embodiment can be suitably changed within the scope of the present invention.
For example, in the sixth embodiment, the example in which the material-containing liquid 130 is attached to one surface side of the electrode structure 12 has been described. However, as shown in FIG. The first conductive wire 121 and the second conductive wire 122 may be embedded in the photoelectric conversion layer 13, or the protective layer 14 may be provided on both sides of the photoelectric conversion layer 13. In the photoelectric conversion device 1 manufactured as described above, both surfaces can be used as light receiving and emitting surfaces.
In the sixth embodiment, an example in which the horizontal wire 12B is arranged as the electrode structure 12 has been described. However, if the conductive wire 120 and the arrangement adjusting wire 15 can be integrated and arranged at a predetermined position, the horizontal wire 12B can be arranged in a predetermined position. The wire 12B may not be used.
In the sixth embodiment, one electrode structure 12 is embedded in one photoelectric conversion layer 13, but a plurality of electrode structures 12 may be embedded in the same photoelectric conversion layer 13, A plurality of photoelectric conversion layers 13 may be stacked, and one or a plurality of electrode structures 12 may be embedded in each.
 なお上記第6実施形態では、溶媒として横線材12Bや支持線材320を溶解不能なものを用いた例について説明したが、横線材12Bや支持線材320を溶解可能な溶媒を用いたとしても本発明を適用することは可能である。
 上記第6実施形態では、配置調整用線材15を完全に溶解した例について説明したが、配置調整用線材15が溶解後に一部残留したとしても、溶解量に応じて上述のような作用効果を得ることができるため、本発明を適用することが可能である。
In the sixth embodiment, the example in which the horizontal wire 12B and the support wire 320 cannot be dissolved is described as the solvent. However, the present invention may be used even if a solvent capable of dissolving the horizontal wire 12B and the support wire 320 is used. It is possible to apply
In the said 6th Embodiment, although the example which melt | dissolved the arrangement | positioning adjustment wire 15 completely was demonstrated, even if the arrangement adjustment wire 15 partially remained after melt | dissolution, the above effects are according to the amount of melt | dissolution. Therefore, the present invention can be applied.
[第1実施形態]
 1 :光電変換デバイス
11 :基材
12 :光電変換デバイス用の電極
12A :縦線材
12B :横線材
121 :第1導電線材
122 :第2導電線材
123 :第1絶縁線材
13A :p層の有機半導体
13B :n層の有機半導体
14 :保護層19請求の範囲
[First Embodiment]
1: Photoelectric conversion device 11: Base material 12: Electrode 12A for photoelectric conversion device: Vertical wire 12B: Horizontal wire 121: First conductive wire 122: Second conductive wire 123: First insulating wire 13A: Organic semiconductor of p layer 13B: n-layer organic semiconductor 14: protective layer 19
[第2乃至第5実施形態]
 1:発光装置
 2,2A,2B,2C,2D:発光部
 3:制御部
 4:接続ユニット
 5:一方の配線部
 6:他方の配線部
11:基材
12:交互配列電極
121:一方の導電線材
122:他方の導電線材
13:発光層
14:保護層
15:配置調整用の線材
16:交差用の線材
18:カラーフィルター
[Second to fifth embodiments]
1: Light-emitting device 2, 2A, 2B, 2C, 2D: Light-emitting unit 3: Control unit 4: Connection unit 5: One wiring unit 6: The other wiring unit 11: Substrate 12: Alternating electrode 121: One conductive Wire 122: Other conductive wire 13: Light emitting layer 14: Protective layer 15: Arrangement adjusting wire 16: Crossing wire 18: Color filter
[第6実施形態]
1 : 光電変換デバイス
12 : 電極構造体
121 : p型電極
122 : n型電極
12A : 縦線材
12B : 横線材
120 : 導電線材
7 : バスバー
15 : 配置調整用線材
13 : 光電変換層
13A : p型有機半導体
13B : n型有機半導体
130 : 材料含有液
14 : 保護層
11 : 基材
20 : 光電変換デバイス
22 : 電極構造体
230 : 電極部
320 : 支持線材
[Sixth Embodiment]
1: Photoelectric conversion device 12: Electrode structure 121: p-type electrode 122: n-type electrode 12A: vertical wire 12B: horizontal wire 120: conductive wire 7: bus bar 15: arrangement adjusting wire 13: photoelectric conversion layer 13A: p-type Organic semiconductor 13B: n-type organic semiconductor 130: material-containing liquid 14: protective layer 11: base material 20: photoelectric conversion device 22: electrode structure 230: electrode part 320: support wire

Claims (17)

  1.  正孔輸送材料及び電子輸送材料のうちの少なくとも一方の材料を溶媒中に含有させた材料含有液を電極構造体に付着させ、該電極構造体に付着させた材料から有機半導体を該電極構造体に接した状態で形成する光電変換デバイスの製造方法において、
     複数の導電線材を該導電線材の配置間隔を調整する配置調整用線材とともに一体的に連結した上記電極構造体を準備し、
     上記配置調整用線材を溶解可能な上記溶媒を用いて上記材料含有液を調製し、
     該材料含有液を上記電極構造体に接触させることで、上記配置調整用線材を溶解すると共に少なくとも上記一方の材料を上記導電線材に付着させて上記有機半導体を形成する、光電変換デバイスの製造方法。
    A material-containing liquid containing at least one of a hole transport material and an electron transport material in a solvent is attached to the electrode structure, and an organic semiconductor is removed from the material attached to the electrode structure. In the manufacturing method of the photoelectric conversion device formed in a state in contact with
    Preparing the electrode structure in which a plurality of conductive wires are integrally connected together with an arrangement adjusting wire for adjusting the arrangement interval of the conductive wires;
    Prepare the material-containing liquid using the solvent that can dissolve the arrangement adjustment wire,
    A method for producing a photoelectric conversion device, wherein the material-containing liquid is brought into contact with the electrode structure to dissolve the arrangement adjusting wire and to attach the at least one material to the conductive wire to form the organic semiconductor. .
  2.  前記導電線材間に前記配置調整用線材を介在させることで該導電線材間を互いに所定間隔で離間させた前記電極構造体を準備する、請求項1に記載の光電変換デバイスの製造方法。 The method for manufacturing a photoelectric conversion device according to claim 1, wherein the electrode structure is prepared by interposing the arrangement adjusting wire between the conductive wires so that the conductive wires are separated from each other at a predetermined interval.
  3.  前記複数の導電線材及び前記配置調整用線材からなる複数の縦線材と、該複数の縦線材と交差して配置した複数の横線材とを備えた前記電極構造体を準備し、
     上記配置調整用線材を溶解可能で上記横線材を溶解不能な前記溶媒を用いて前記材料含有液を調製する、請求項1に記載の光電変換デバイスの製造方法。
    Preparing the electrode structure including a plurality of vertical wires made of the plurality of conductive wires and the arrangement adjusting wire, and a plurality of horizontal wires arranged crossing the plurality of vertical wires;
    The method for producing a photoelectric conversion device according to claim 1, wherein the material-containing liquid is prepared using the solvent capable of dissolving the arrangement adjusting wire and not dissolving the horizontal wire.
  4.  前記正孔輸送材料及び前記電子輸送材料を含有した前記材料含有液を調製して前記電極構造体に接触させ、p型有機半導体を一部の前記導電線材に接続した状態で形成すると共にn型有機半導体を他部の上記導電線材に接続した状態で形成する、請求項1に記載の光電変換デバイスの製造方法。 The material-containing liquid containing the hole transport material and the electron transport material is prepared and brought into contact with the electrode structure, and a p-type organic semiconductor is formed in a state of being connected to some of the conductive wires and n-type The manufacturing method of the photoelectric conversion device of Claim 1 formed in the state which connected the organic semiconductor to the said electrically conductive wire of another part.
  5.  前記材料含有液を前記電極構造体の片面側に付着させる、請求項1に記載の光電変換デバイスの製造方法。 The method for producing a photoelectric conversion device according to claim 1, wherein the material-containing liquid is attached to one side of the electrode structure.
  6.  前記複数の導電線材が前記配置調整用線材とともに一体化された電極部を複数有し、該複数の電極部が対向配置された状態で支持線材により支持された前記電極構造体を準備し、
     上記配置調整用線材を溶解可能で上記支持線材を溶解不能な前記溶媒を用いて前記材料含有液を調製する、請求項1に記載の光電変換デバイスの製造方法。
    The plurality of conductive wires have a plurality of electrode portions integrated with the arrangement adjusting wire, and prepare the electrode structure supported by a support wire in a state in which the plurality of electrode portions are arranged to face each other.
    The method for producing a photoelectric conversion device according to claim 1, wherein the material-containing liquid is prepared using the solvent capable of dissolving the arrangement adjusting wire and not dissolving the support wire.
  7.  前記光電変換デバイスが有機半導体薄膜太陽電池である、請求項1乃至6の何れかに記載の光電変換デバイスの製造方法。 The method for producing a photoelectric conversion device according to any one of claims 1 to 6, wherein the photoelectric conversion device is an organic semiconductor thin film solar cell.
  8.  複数の導電線材を配置調整用線材とともに一体化した光電変換デバイス作製用の電極構造体であり、光電変換デバイス作製用の溶媒に対する上記配置調整用線材の溶解性が上記導電性材料より大きい、光電変換デバイス作製用電極。 An electrode structure for producing a photoelectric conversion device in which a plurality of conductive wires are integrated with an arrangement adjusting wire, and the solubility of the arrangement adjusting wire in a solvent for producing a photoelectric conversion device is larger than that of the conductive material. Electrode for producing a conversion device.
  9.  光と電気エネルギーとを変換する光電変換層の片面側に設けられる電極であって、
     複数の縦線材と、複数の横線材と、を備え、
     上記縦線材と上記横線材とは1本ごとに交差してネットを構成し、
     上記縦線材は、複数の第1導電線材と複数の第2導電線材と複数の第1絶縁線材とからなり、
     上記第1導電線材と上記第2導電線材とは交互に並べられており、これらの第1導電線材と第2導電線材との間に上記第1絶縁線材が設けられ、
     上記横線材は第2絶縁線材からなり、
     上記第1導電線材がp型電極として機能し、上記第2導電線材がn型電極として機能すること特徴とする、光電変換デバイス用電極。
    An electrode provided on one side of a photoelectric conversion layer that converts light and electrical energy,
    A plurality of vertical wires, and a plurality of horizontal wires,
    The vertical wire and the horizontal wire intersect each other to form a net,
    The vertical wire is composed of a plurality of first conductive wires, a plurality of second conductive wires, and a plurality of first insulating wires,
    The first conductive wire and the second conductive wire are alternately arranged, and the first insulating wire is provided between the first conductive wire and the second conductive wire,
    The horizontal wire is made of a second insulating wire,
    The electrode for a photoelectric conversion device, wherein the first conductive wire functions as a p-type electrode and the second conductive wire functions as an n-type electrode.
  10.  前記第1絶縁線材が、前記第1導電線材と前記第2導電線材との間に複数設けられていることを特徴とする、請求項9に記載の光電変換デバイス用電極。 10. The electrode for a photoelectric conversion device according to claim 9, wherein a plurality of the first insulating wire is provided between the first conductive wire and the second conductive wire.
  11.  光と電気エネルギーとを変換する光電変換層と、上記光電変換層の片面側に設けられる一対の電極と、を備えた光電変換デバイスであって、
     一方の電極と他方の電極とが横並びに設けられており、
     上記一方の電極上には正孔輸送材料でなるp層の有機半導体が設けられ、
     上記他方の電極上には電子輸送材料でなるn層の有機半導体が設けられ、
     上記一方の電極がp型電極として機能し、上記他方の電極がn型電極として機能することを特徴とする、光電変換デバイス。
    A photoelectric conversion device comprising a photoelectric conversion layer for converting light and electric energy, and a pair of electrodes provided on one side of the photoelectric conversion layer,
    One electrode and the other electrode are provided side by side,
    A p-layer organic semiconductor made of a hole transport material is provided on the one electrode,
    An n-layer organic semiconductor made of an electron transport material is provided on the other electrode,
    The photoelectric conversion device, wherein the one electrode functions as a p-type electrode and the other electrode functions as an n-type electrode.
  12.  前記p層の有機半導体及び前記n層の有機半導体は、透明の保護層で覆われている、請求項11に記載の光電変換デバイス。 The photoelectric conversion device according to claim 11, wherein the organic semiconductor of the p layer and the organic semiconductor of the n layer are covered with a transparent protective layer.
  13.  有機EL材料からなる発光層と、
     上記発光層内に設けられ一方の導電線材と他方の導電線材とを交互に並べて構成した交互配列電極と、
     を備える、発光装置。
    A light emitting layer made of an organic EL material;
    An alternately arranged electrode configured by alternately arranging one conductive wire and the other conductive wire provided in the light emitting layer;
    A light emitting device comprising:
  14.  前記一方の導電線材と前記他方の導電線材との間には、同一方向に延びる配置調整用の線材が設けられ、
     上記配置調整用の線材が前記一方の導電線材と前記他方の導電線材との間隔を維持する、請求項13に記載の発光装置。
    Between the one conductive wire and the other conductive wire, an arrangement adjusting wire extending in the same direction is provided,
    The light emitting device according to claim 13, wherein the arrangement adjusting wire maintains an interval between the one conductive wire and the other conductive wire.
  15.  前記一方の導電線材及び前記他方の導電線材と交差する方向に交差用の線材が延びており、
     上記交差用の線材と、前記一方の導電線材及び前記他方の導電線材とが編み込まれている、
     請求項13に記載の発光装置。
    A crossing wire extends in a direction crossing the one conductive wire and the other conductive wire,
    The wire for crossing, the one conductive wire and the other conductive wire are knitted,
    The light emitting device according to claim 13.
  16.  前記一方の導電線材、前記他方の導電線材及び前記配置調整用の線材と交差する方向に交差用の線材が延びており、
     上記交差用の線材と、前記一方の導電線材、前記他方の導電線材及び上記配置調整用の線材とが編み込まれている、請求項14に記載の発光装置。
    The crossing wire extends in a direction crossing the one conductive wire, the other conductive wire and the arrangement adjusting wire,
    The light emitting device according to claim 14, wherein the crossing wire, the one conductive wire, the other conductive wire, and the arrangement adjusting wire are knitted.
  17.  前記一方の導電線材の一端を相互に接続した一方の配線部と、前記他方の導電線材の他端を相互に接続した他方の配線部と、を備え、
     上記一方の配線部と上記他方の配線部とに電圧が印加されることにより、前記発光層が発光する、請求項13に記載の発光装置。
    One wiring portion that connects one end of the one conductive wire to each other, and the other wiring portion that connects the other end of the other conductive wire to each other,
    The light emitting device according to claim 13, wherein the light emitting layer emits light when a voltage is applied to the one wiring portion and the other wiring portion.
PCT/JP2012/072999 2011-09-14 2012-09-09 Method for manufacturing photoelectric conversion device, electrode for photoelectric conversion device, photoelectric conversion device, and light-emitting device WO2013039020A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013533649A JP5957787B2 (en) 2011-09-14 2012-09-09 Method for producing photoelectric conversion device and photoelectric conversion device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
PCT/JP2011/071049 WO2013038535A1 (en) 2011-09-14 2011-09-14 Photoelectric conversion device
JPPCT/JP2011/071051 2011-09-14
JPPCT/JP2011/071049 2011-09-14
PCT/JP2011/071051 WO2013038537A1 (en) 2011-09-14 2011-09-14 Electrode for photoelectric conversion devices, and photoelectric conversion device using same
JP2012-097189 2012-04-20
JP2012097189 2012-04-20
JP2012097190 2012-04-20
JP2012-097190 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013039020A1 true WO2013039020A1 (en) 2013-03-21

Family

ID=47883251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072999 WO2013039020A1 (en) 2011-09-14 2012-09-09 Method for manufacturing photoelectric conversion device, electrode for photoelectric conversion device, photoelectric conversion device, and light-emitting device

Country Status (2)

Country Link
JP (1) JP5957787B2 (en)
WO (1) WO2013039020A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200083298A1 (en) * 2018-09-12 2020-03-12 Kabushiki Kaisha Toshiba Radiation detector

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172778A (en) * 1981-09-02 1982-10-23 Sharp Corp Solar battery
JPH06151915A (en) * 1992-11-05 1994-05-31 Canon Inc Light generating element, and its manufacture, and manufacturing device used for it
JP2004103939A (en) * 2002-09-11 2004-04-02 Japan Science & Technology Corp Upright type superlattice, manufacturing method thereof, and device
JP2005011841A (en) * 2003-06-16 2005-01-13 Japan Science & Technology Agency Vertical junction organic photovoltaic device and its manufacturing method
JP2005533349A (en) * 2002-07-17 2005-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent device having a two-dimensional array
JP2006165149A (en) * 2004-12-06 2006-06-22 Canon Inc Photovolatic element, photovolatic element aggregate, photovolatic element module and manufacturing method of the same
JP2007052953A (en) * 2005-08-16 2007-03-01 Sony Corp Display element and method of manufacturing same, and electrode material for display element
JP2008135657A (en) * 2006-11-29 2008-06-12 Konica Minolta Holdings Inc Photoelectric conversion element, manufacturing method thereof, and radiograph detector
JP2008311121A (en) * 2007-06-15 2008-12-25 Fujikura Ltd Photoelectric transfer element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120593A (en) * 1973-03-16 1974-11-18
JP3767057B2 (en) * 1996-12-28 2006-04-19 カシオ計算機株式会社 Electroluminescent device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172778A (en) * 1981-09-02 1982-10-23 Sharp Corp Solar battery
JPH06151915A (en) * 1992-11-05 1994-05-31 Canon Inc Light generating element, and its manufacture, and manufacturing device used for it
JP2005533349A (en) * 2002-07-17 2005-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent device having a two-dimensional array
JP2004103939A (en) * 2002-09-11 2004-04-02 Japan Science & Technology Corp Upright type superlattice, manufacturing method thereof, and device
JP2005011841A (en) * 2003-06-16 2005-01-13 Japan Science & Technology Agency Vertical junction organic photovoltaic device and its manufacturing method
JP2006165149A (en) * 2004-12-06 2006-06-22 Canon Inc Photovolatic element, photovolatic element aggregate, photovolatic element module and manufacturing method of the same
JP2007052953A (en) * 2005-08-16 2007-03-01 Sony Corp Display element and method of manufacturing same, and electrode material for display element
JP2008135657A (en) * 2006-11-29 2008-06-12 Konica Minolta Holdings Inc Photoelectric conversion element, manufacturing method thereof, and radiograph detector
JP2008311121A (en) * 2007-06-15 2008-12-25 Fujikura Ltd Photoelectric transfer element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200083298A1 (en) * 2018-09-12 2020-03-12 Kabushiki Kaisha Toshiba Radiation detector

Also Published As

Publication number Publication date
JP5957787B2 (en) 2016-07-27
JPWO2013039020A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
EP1432050B1 (en) Large organic devices and methods of fabricating large organic devices
JP5683589B2 (en) Photoelectric device manufacturing method
US7749794B2 (en) Method of preparing electrode
US20060090791A1 (en) Photovoltaic cell with mesh electrode
CN110112305B (en) QLED device, manufacturing method thereof, display panel and display device
US20110297996A1 (en) Electronic device and method of manufacturing the same
US20090189515A1 (en) Laminated interconnects for organic opto-electronic device modules and methods
TWI524515B (en) Optoelectronic device array
US20070108539A1 (en) Stable organic devices
US20070017568A1 (en) Methods of transferring photovoltaic cells
KR20110074518A (en) Method for producing an organic radiation-emitting component and organic radiation-emitting component
WO2012050043A1 (en) Organic electro-luminescence light-emitting device and production method of same
WO2013039019A1 (en) Electrode for photoelectric conversion device, and photoelectric conversion device
JP5957787B2 (en) Method for producing photoelectric conversion device and photoelectric conversion device
WO2012102269A1 (en) Organic electroluminescent element and illumination device
JP6083675B2 (en) Display device, electrode for photoelectric conversion device, photoelectric conversion device, and method for manufacturing photoelectric conversion device
WO2013038540A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
CN109994650B (en) Film and preparation method and application thereof
WO2013038537A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
WO2013038539A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
JP7445734B2 (en) Contact between optoelectronic components
CN116997224A (en) Photoelectric device, preparation method thereof and display device
WO2013038538A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
CN116634822A (en) Method for manufacturing perovskite and silver nanowire composite photoelectric device
CN116973719A (en) Detection device and detection method of photoelectric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013533649

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12831114

Country of ref document: EP

Kind code of ref document: A1