WO2013039019A1 - Electrode for photoelectric conversion device, and photoelectric conversion device - Google Patents

Electrode for photoelectric conversion device, and photoelectric conversion device Download PDF

Info

Publication number
WO2013039019A1
WO2013039019A1 PCT/JP2012/072998 JP2012072998W WO2013039019A1 WO 2013039019 A1 WO2013039019 A1 WO 2013039019A1 JP 2012072998 W JP2012072998 W JP 2012072998W WO 2013039019 A1 WO2013039019 A1 WO 2013039019A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
photoelectric conversion
organic semiconductor
conversion device
layer
Prior art date
Application number
PCT/JP2012/072998
Other languages
French (fr)
Japanese (ja)
Inventor
善孝 長草
裕之 潮田
Original Assignee
トヨタ自動車東日本株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2011/071054 external-priority patent/WO2013038540A1/en
Priority claimed from PCT/JP2011/071050 external-priority patent/WO2013038536A1/en
Priority claimed from PCT/JP2011/071049 external-priority patent/WO2013038535A1/en
Application filed by トヨタ自動車東日本株式会社 filed Critical トヨタ自動車東日本株式会社
Priority to JP2013533648A priority Critical patent/JP5881050B2/en
Publication of WO2013039019A1 publication Critical patent/WO2013039019A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/83Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising arrangements for extracting the current from the cell, e.g. metal finger grid systems to reduce the serial resistance of transparent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode for a photoelectric conversion device used for a photoelectric conversion device and a photoelectric conversion device using the same.
  • a photoelectric conversion device is a device that converts light into electrical energy and a device that converts electrical energy into light.
  • Examples of the former include solar cells, and examples of the latter include light emitting diodes.
  • the Si solar cell will be described taking a single crystal Si solar cell as an example.
  • a pn junction or a pin junction is formed by making the surface layer of the wafer an n-type semiconductor by vapor phase diffusion or implantation of n-type impurity ions into a p-type single crystal wafer.
  • a solar cell having a sandwich structure is manufactured by forming a front electrode and a back electrode.
  • This chalcopyrite solar cell includes a CIGS layer made of a chalcopyrite compound (Cu (In + Ga) Se 2 ) containing elements of Group I, Group III, and Group VI as constituent components as a p-type light absorption layer.
  • a chalcopyrite compound Cu (In + Ga) Se 2
  • Group I, Group III, and Group VI as constituent components as a p-type light absorption layer.
  • This solar cell with a CIGS layer generally prevents a back electrode layer, which is a positive electrode made of a Mo metal layer, on a glass substrate such as a soda lime glass (SLG) substrate, and Na unevenness caused by the SLG substrate.
  • a back electrode layer which is a positive electrode made of a Mo metal layer
  • SLG soda lime glass
  • a back electrode layer which is a positive electrode made of a Mo metal layer
  • a glass substrate such as a soda lime glass (SLG) substrate
  • SLG soda lime glass
  • the CIGS light absorbing layer is obtained by the following process. That is, the substrate itself provided with the In layer and the Cu—Ga layer as a precursor is accommodated in the annealing chamber and preheated. Thereafter, the precursor is converted into a CIGS layer by raising the temperature of the chamber to a temperature range of 500 to 520 ° C. while introducing H 2 Se gas through the gas introduction tube inserted into the annealing chamber.
  • organic semiconductor thin film solar cells are attracting attention as solar cells suitable for mass production because they can be formed by a coating method.
  • the organic solar cell has a so-called bulk heterojunction structure in which an organic donor material and an organic acceptor material are mixed.
  • an organic thin-film solar cell capable of forming a cathode on a flexible substrate by coating and a low-temperature process has been developed (for example, Patent Document 2).
  • an organic semiconductor thin-film solar cell has a structure in which an anode, a photoelectric conversion layer having a bulk heterojunction structure, and a cathode are sequentially laminated on one surface of a substrate, and the cathode is oxidized by coating. It consists of silver and a reducing agent, and the electron transport layer is formed by doping an organic metal in the vicinity of the cathode by coating, so that not only the cathode is formed at a low temperature, but also the bonding between the organic metal doped layer and the cathode is achieved. It is going to be improved.
  • the light irradiation side electrode is required to have good light transmittance and low electrical resistance.
  • the light irradiation side electrode needs to be formed by vapor deposition or plating of an expensive rare metal.
  • the process steps are complicated accordingly.
  • an object of the present invention is to provide an electrode for a photoelectric conversion device that does not require optical transparency as an electrode material and a photoelectric conversion device using the same.
  • the electrode for a photoelectric conversion device of the present invention has one electrode and the other electrode formed on the same surface, one electrode functions as a p-type electrode, and the other electrode Functions as an n-type electrode.
  • one electrode and the other electrode are provided side by side.
  • the one electrode and the other electrode are preferably composed of comb electrodes having a structure in which a plurality of electrode fingers are electrically connected at one end, and the electrode fingers of one electrode and the electrode fingers of the other electrode Are lined up alternately.
  • One electrode and the other electrode can be formed of either Cu or Al.
  • the photoelectric conversion device of the present invention comprises the electrode for a photoelectric conversion device of the present invention, a p-layer organic semiconductor made of a hole transport material provided on one electrode, and an electron transport material provided on the other electrode.
  • an n-layer organic semiconductor, and the p-layer organic semiconductor and the n-layer organic semiconductor are alternately formed on the same surface.
  • the photoelectric conversion device of the present invention includes the above-mentioned electrode for a photoelectric conversion device, an n-layer organic semiconductor made of an electron transport material provided on one electrode, and a p made of a hole transport material provided on the other electrode.
  • a p-layer organic semiconductor and an n-layer organic semiconductor are alternately formed on the same surface.
  • the p-layer organic semiconductor and the n-layer organic semiconductor are covered with a transparent protective layer.
  • an electrode for a photoelectric conversion device is formed on an insulating base material having a plurality of through holes according to a pattern, and the base material surface while filling the through holes of the base material with a conductive material
  • one electrode is mutually connected by the electroconductive film formed in the back surface of a base material.
  • one electrode has the protrusion part protruded from the surface of the base material.
  • the external connection part of one electrode is provided on the back surface of the base material, and the external connection part of the other electrode is provided on the surface of the base material.
  • One electrode and the other electrode can be formed of either Cu or Al.
  • the photoelectric conversion device of the present invention includes the above-described electrode for a photoelectric conversion device, a p-layer organic semiconductor made of a hole transport material provided on one electrode, and an n transport material made of an electron transport material provided on the other electrode.
  • a p-layer organic semiconductor and an n-layer organic semiconductor are alternately formed on the same surface.
  • the p-layer organic semiconductor and the n-layer organic semiconductor are covered with a transparent protective layer.
  • one electrode functioning as a p-type electrode and the other electrode functioning as an n-type electrode can be formed on one surface side of the photoelectric conversion device, There is no need to provide an electrode on the surface to be irradiated.
  • This electrode for a photoelectric conversion device can be produced on a substrate having no flexibility or a substrate having flexibility. Since an organic semiconductor can be provided on the electrode by coating, the manufacturing process is not complicated, and the electrode can be manufactured at a low cost.
  • Photoelectric conversion device 2 Electrode for photoelectric conversion device 3, 4: Electrode 5: Photoelectric conversion layer 6: p-layer organic semiconductor 7: n-layer organic semiconductor 8: protective layer 9: light 10: photoelectric conversion device 11: Substrate 12: Electrode for photoelectric conversion device 13: One electrode 14: The other electrode 13a, 14a: Electrode finger 13b, 14b: Connection electrode 13c: Lead-out electrode 13d, 14d: Connection terminal with external wiring 15: P layer Organic semiconductor 16: n-layer organic semiconductor 17: protective layer 18: photoelectric conversion layer 19: light 20: photoelectric conversion device 21: base material 21a: through hole 22 of base material: electrode 23 for photoelectric conversion device: one electrode 23a: Electrode body (dot electrode) 23b: Filling part (via conductor part) 23c: Wiring electrode portion 23d: External connection portion 24: Other electrode 24d: Connection portion with external wiring (external connection portion) 25: p-layer organic semiconductor 26: n-layer organic semiconductor 27: protective layer 28: conductive material 29: gap
  • the photoelectric conversion device will be described assuming a solar cell as a device that converts light into electric energy, but the present invention can be similarly applied to a device that converts electric energy into light energy.
  • FIG. 1 is a cross-sectional view of a photoelectric conversion device 1 according to the first embodiment of the present invention.
  • a photoelectric conversion device 1 according to an embodiment of the present invention includes a pair of electrodes 3 and 4 arranged side by side, and a photoelectric conversion layer 5 that covers the pair of electrodes 3 and 4. I have.
  • the one electrode 3 and the other electrode 4 are provided side by side on the same surface, for example, on the substrate, with a predetermined distance from each other.
  • a p-layer organic semiconductor 6 made of a hole transport material is provided on one electrode 3.
  • An n-layer organic semiconductor 7 made of an electron transport material is provided on the other electrode 4.
  • the p-layer organic semiconductor 6 and the n-layer organic semiconductor 7 are arranged laterally adjacent to each other to form a pn junction.
  • the p-layer organic semiconductor 6 and the n-layer organic semiconductor 7 include the pn junction surface.
  • a protective layer 8 is provided so as to cover the entire surface.
  • the p-layer organic semiconductor 6 is formed of a hole transport material.
  • a hole transport material in addition to triphenylamine (TAPC) represented by the chemical formula (1), TPD and other aromatic amines which are dimers of triphenylamine represented by the chemical formula (2), the chemical formula (3) ⁇ -NPD represented by formula (4), (DTP) DPPD represented by formula (4), m-MTDATA represented by formula (5), HTM1 represented by formula (6), 2-TNATA represented by formula (7), TPTE1 represented by chemical formula (8), TCTA represented by chemical formula (9), NTPA represented by chemical formula (10), spiro-TAD represented by chemical formula (11), TFREL represented by chemical formula (12), etc. are used. .
  • the n-layer organic semiconductor 7 is formed of an electron transport material.
  • the electron transport material include Alq 3 represented by the chemical formula (13), BCP represented by the chemical formula (14), an oxadiazole derivative represented by the chemical formula (15), and an oxadiazole dimer represented by the chemical formula (16).
  • Alq 3 represented by the chemical formula (13)
  • BCP represented by the chemical formula (14)
  • triazole derivative represented by chemical formula (18) phenylquinoxaline derivative represented by chemical formula (19), silole derivative represented by chemical formula (20), and the like.
  • the protective layer 8 is formed of a resin or the like, for example, as long as it is a material that transmits light 9 such as sunlight.
  • the same surface may be either a virtual surface or a substrate surface, but when a pair of electrodes 3 and 4 is formed on a substrate surface, it is a flexible substrate that can be bent even if it is a flat substrate. There may be.
  • An appropriate method such as vapor deposition, sputtering, or plating is used to form the electrode. Photolithographic techniques may be used as necessary.
  • One electrode 3 and the other electrode 4 are formed by the same process.
  • a hole transport material to be the p-layer organic semiconductor 6 is applied to a predetermined portion, for example, one electrode 3.
  • a printing method using an inkjet printer can be applied.
  • an electron transport material to be the n-layer organic semiconductor 7 is applied between the p layer and the p layer, for example, the other electrode 4.
  • a printing technique using an inkjet printer can be used for coating.
  • a pn junction is formed by the p-layer organic semiconductor 6 and the n-layer organic semiconductor 7.
  • the n-layer organic semiconductor 7 may be applied, and then the p-layer organic semiconductor 6 may be applied.
  • the photoelectric conversion device 1 is manufactured by forming the protective layer 8 by painting or the like. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 1 is manufactured.
  • the photoelectric conversion device electrode 2 is formed such that one electrode 3 functioning as a p-type electrode and the other electrode 4 functioning as an n-type electrode are arranged side by side.
  • An alternating array planar electrode structure is formed. Therefore, it is not necessary to provide a transparent electrode on the organic semiconductor.
  • the photoelectric conversion device 1 can be manufactured on a non-flexible substrate such as a glass substrate or on a flexible substrate. Since an organic semiconductor can be provided on the electrode by coating, the manufacturing process is not complicated, and the organic semiconductor can be manufactured at low cost.
  • FIG. 2 is a cross-sectional view of a photoelectric conversion device according to the second embodiment of the present invention.
  • the photoelectric conversion device 10 according to the second embodiment of the present invention includes an insulating base material 11 and one electrode as a photoelectric conversion device electrode 12 formed on the surface of the base material 11. 13 and the other electrode 14, a p-layer organic semiconductor 15 made of a hole transport material provided on one electrode 13, and an n-layer organic semiconductor 16 made of an electron transport material provided on the other electrode 14. And a protective layer 17 provided so as to cover the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16.
  • the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 form a pn junction.
  • a photoelectric conversion layer 18 is formed by the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16.
  • one electrode 13 and the other electrode 14 are formed on the surface of the substrate 11 as the photoelectric conversion device electrode 12, and the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 are photoelectrically connected. It is formed side by side on the conversion device electrode 12. Therefore, it is not necessary to provide an electrode on the surface on which the light 19 is incident as in Patent Document 2, and it is not necessary to use a rare metal as a material because a transparent electrode is not provided on the light irradiation side.
  • the photoelectric conversion device electrode 12 can be formed of Cu, Al, or the like.
  • the base material 11 can be applied to various types such as a glass substrate, a resin substrate, and a printed board.
  • a resin substrate or the like is used as the base material 11, the mounting surface of the photoelectric conversion device may not be a flat surface but may be a curved surface.
  • FIG. 3 is a plan view showing an electrode structure in the photoelectric conversion device shown in FIG. 2, and FIG. 4 is an enlarged view of a region A in FIG.
  • one electrode 13 and the other electrode 14 are configured as comb electrodes.
  • the comb-tooth electrode has a structure in which a plurality of electrode fingers 13a and 14a arranged in a comb-like shape in parallel at an appropriate interval are electrically connected at one end by connection electrodes 13b and 14b.
  • connection electrode 13b and the other connection electrode 14b are arranged opposite to each other, and the electrode fingers 13a and 14a are arranged within a distance, so that the electrode finger 13a of one electrode and the electrode of the other electrode The fingers 14a are alternately arranged.
  • an interdigital electrode is formed by one electrode 13 and the other electrode 14.
  • the interdigital electrode is composed of comb electrodes interleaved with each other, and the electrode fingers 13a and electrode fingers 14a of the comb electrodes are alternately arranged.
  • One electrode 13 and the other electrode 14 are respectively connected to electrode fingers 13a and 14a, connection electrodes 13b and 14b for connecting one end thereof, and one end of the connection electrodes 13b and 14b for connection to an external wiring. It has the routing electrodes 13c and 14c extending to the terminals 13d and 14d.
  • each electrode finger 13a, 14a is formed extending in the left-right direction, and the electrode finger 13a and the electrode finger 14a are alternately arranged in a predetermined direction in a direction substantially perpendicular to the extending direction. The same number is arranged at intervals.
  • the left end of each electrode finger 13a is connected to the connection electrode 14b, and the lead-out electrode 13c extends from the lower end of the connection electrode 14b to the connection terminal 13d with the external wiring along the aforementioned extending direction.
  • the right end of each electrode finger 14a is connected to the connection electrode 14b, and a connection terminal 14d for external wiring is formed at the lower end of the connection electrode 14b. In other words, depending on the position of the connection terminal with the external wiring, the lead electrode may not be necessary.
  • the p-layer organic semiconductor 15 is formed on at least the electrode finger 13 a of the one electrode 13, and the n-layer organic semiconductor 16 is formed on at least the electrode finger 14 a of the other electrode 14. Therefore, the electrode finger 13a of one electrode 13 functions as a p-type electrode, and the electrode finger 14a of the other electrode 14 functions as an n-type electrode.
  • the photoelectric conversion layer 18 is comprised by forming the organic semiconductors 15 and 16.
  • the p-layer organic semiconductor 15 is formed of various hole transport materials exemplified in the first embodiment.
  • the n-layer organic semiconductor 16 is formed of various electron transport materials exemplified in the first embodiment.
  • the protective layer 17 is formed of, for example, a resin or the like as long as it is a material that transmits irradiation light such as sunlight.
  • An appropriate method such as vapor deposition, sputtering, or plating is used for electrode formation. Photolithographic techniques may be used as necessary.
  • One electrode 13 and the other electrode 14 are formed by the same process.
  • a hole transport material to be the p-layer organic semiconductor 15 is applied to a predetermined portion, for example, one electrode 13 by a printing method using, for example, an ink jet printer.
  • an electron transport material to be the n-layer organic semiconductor 16 is applied between the p layer and the p layer, for example, the other electrode 14.
  • a printing technique using an inkjet printer can be used for the application.
  • a pn junction is formed by the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16.
  • the n-layer organic semiconductor 16 may be applied, and then the p-layer organic semiconductor 15 may be applied.
  • the photoelectric conversion device 10 is manufactured by forming the protective layer 17 by painting or the like. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 10 illustrated in FIG. 2 is manufactured.
  • a p-layer organic semiconductor is stacked on one electrode and an n-layer organic semiconductor is stacked thereon to form a pn junction as in the prior art.
  • a transparent electrode is sequentially laminated as the other electrode to form a photoelectric conversion device. That is, one electrode 13 functioning as a p-type electrode and the other electrode 14 functioning as an n-type electrode are alternately arranged on the same plane. Therefore, it is not necessary to provide a transparent electrode on the organic semiconductor.
  • the photoelectric conversion device 10 can be manufactured on a non-flexible substrate such as a glass substrate or a flexible substrate. Since an organic semiconductor can be provided on the electrode by coating, the manufacturing process is not complicated, and the organic semiconductor can be manufactured at low cost.
  • FIG. 5 is a cross-sectional view of a photoelectric conversion device according to the third embodiment of the present invention.
  • an insulating base material 21 having a plurality of through holes 21 a according to a pattern and the through holes 21 a of the base material 21 are filled with a conductive material 28 and exposed to the surface of the base material 21.
  • the other electrode 24 provided with, for example, a gap 29 so as not to contact the one electrode 23 on the surface of the base material 21, and provided on the one electrode 23 a p-layer organic semiconductor 25, an n-layer organic semiconductor 26 provided on the other electrode 24, a protective layer 27 provided to cover the p-layer organic semiconductor 25 and the n-layer organic semiconductor 26, Consists of.
  • the one electrode 23 and the other electrode 24 are formed so as to be alternately arranged on the upper surface side of the base material 21 in the direction in which the surface expands, and constitute the photoelectric conversion device electrode 22.
  • the p-layer organic semiconductor 25 and the n-layer organic semiconductor 26 are alternately stacked on the electrodes 23 and 24 to form the photoelectric conversion layer 30. Therefore, the protective layer 26 can be disposed on the surface side on which the light 31 is incident without providing an electrode as in Patent Document 2. Thereby, it is not necessary to use a rare metal as a material so that the electrode has optical transparency.
  • One electrode 23 and the other electrode 24 can use Cu, Al, or the like.
  • the interface between the one electrode 23 and the photoelectric conversion layer 30 and the interface between the other electrode 24 and the photoelectric conversion layer 30 are not only arranged on the same plane, Since it can arrange
  • the external connection portion 23d of one electrode 23 is provided on the back surface of the base material 21, the external connection portion 24d of the other electrode 24 is provided on the surface of the base material 21, and the external connection portions 23d and 24d are provided. Provided with the base material 21 in between. Therefore, one external connection terminal can be connected to the external connection portions 23d and 24d. This external connection terminal forms two conductive paths.
  • the base material 21 can be various types such as a ceramic substrate such as a glass substrate, a resin substrate, a printed circuit board, and the like.
  • a resin substrate or the like is used as the base material 21, the mounting surface of the photoelectric conversion device 20 may not be a flat surface but may be a curved surface.
  • One electrode 23 will be described. As shown in FIG. 5, with respect to one electrode 23, the through hole 21 a of the base material 21 is filled with the conductive material 28 and one end thereof is exposed at least on the surface of the base material 21. It becomes the main body 23a.
  • the conductive material 28, particularly the filling portion 23b, may be referred to as a via conductor portion.
  • FIG. 6 is a plan view showing an electrode structure in the photoelectric conversion device shown in FIG. 5, and FIG. 7 is an enlarged view of a region B in FIG.
  • dot-like electrode main body portions 23 a are arranged on the surface of the base material 21 at intervals in the row direction, and they are also arranged at intervals in the column direction.
  • the electrode main body portions 23a are formed at intervals in each row, and the odd-numbered electrode main body portions 23a and the even-numbered electrode main body portions 23a are in the row direction. It is staggered and is provided alternately. That is, they are not aligned in the column direction.
  • the electrode main body portions 23a may be aligned in the row direction and the column direction, and may be arranged in a matrix at intervals.
  • each electrode main body 23 a preferably has its tip projecting from the surface of the substrate 21.
  • An organic semiconductor dot is formed on the protruding tip by coating. Since the tip of the electrode main body portion 23a protrudes from the surface of the substrate 21, the connection between the n-layer organic conductor 26 and the electrode main body portion 23a is ensured.
  • One electrode 23 extends from the electrode main body portion 23 a protruding from the surface of the base material 21 to the back surface of the base material 21 by a filling portion 28 b in which the through hole 21 a of the base material 21 is filled with the conductive material 28.
  • the filling portions 23b are electrically connected to each other by a wiring electrode portion 23c formed on the back surface of the substrate 21.
  • An end portion of the wiring electrode portion 23c serves as an external connection portion 23d.
  • the filling portions 23b can be electrically connected to each other according to the planar shape.
  • the other electrode 24 will be described. Corresponding to each electrode body 23a of one electrode 23 being arranged in a dot shape on the surface of the substrate 21, the other electrode 24 is not in contact with each electrode body 23a. Further, a conductive layer is formed on the surface of the base material 21 so as to surround each electrode main body 23a. That is, the other electrode 24 is formed so as to surround each electrode main body 23 a on the same surface as the surface of the base 21 on which the electrode main body 23 a of one electrode 23 is provided on the surface of the base 21. The parts of the other electrodes 24 arranged with the gaps 29 provided in the electrode bodies 23a are connected to each other. Further, the peripheral edge portion of the other electrode 24 functions as a connection portion 24d with an external wiring.
  • the organic semiconductors 25 and 26 are provided on the one electrode 23 and the other electrode 24, respectively.
  • a p-layer organic semiconductor 25 is formed on the electrode body 23 a of one electrode 23, and an n-layer organic semiconductor 26 is formed on the other electrode 24. . Therefore, the electrode body 23a of one electrode 23 functions as a p-type electrode, and the portion of the other electrode 24 covered with the n-type organic semiconductor 26 functions as an n-type electrode.
  • an n-layer organic semiconductor is formed on the electrode body 23 a of one electrode 23, and a p-layer organic semiconductor is formed on the other electrode 24. It may be formed.
  • the electrode body portion 23a of one electrode 23 functions as an n-type electrode, and the portion of the other electrode 24 covered with a p-type organic semiconductor functions as a p-type electrode.
  • the p-layer organic semiconductor 25 is formed of various hole transport materials exemplified in the first embodiment.
  • the n-layer organic semiconductor 26 is formed of various electron transport materials exemplified in the first embodiment.
  • a photoelectric conversion layer 30 is formed by the p-layer organic semiconductor 26 and the n-layer organic semiconductor 25.
  • the protective layer 27 may be formed of, for example, a resin or the like as long as it is a material that transmits light 31 such as sunlight.
  • the metal in a portion where one electrode and the other electrode are not formed is removed by etching or the like, and the one electrode and the other A seed electrode is formed as a source of the electrode.
  • one electrode and the other electrode may be formed by a printing method without using the plating process.
  • a hole transport material to be the p-layer organic semiconductor 25 is applied to a predetermined portion, for example, one electrode 23 by, for example, a printing method using an ink jet printer.
  • an electron transport material to be the n-layer organic semiconductor 26 is applied between the p layer and the p layer, for example, the other electrode 24.
  • a printing technique using an ink jet printer may be used for coating.
  • a pn junction is formed by the p-layer organic semiconductor 25 and the n-layer organic semiconductor 26.
  • the n-layer organic semiconductor 26 may be applied, and then the p-layer organic semiconductor 25 may be applied.
  • the photoelectric conversion device 20 is manufactured by forming the protective layer 27 by painting or the like. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 5 is manufactured.
  • the third embodiment of the present invention may be appropriately changed depending on device performance, design, and the like.
  • the pattern in plan view of one electrode 23 and the other electrode 24 is not limited to that shown in FIG. 7 and can be changed as appropriate.
  • the electrode body 23a of one electrode 23 is rectangular in plan view, but may be a triangle, polygon, circle, ellipse, or other geometric pattern.
  • FIG. 8 is a plan view showing a modification of the photoelectric conversion device electrode.
  • the through hole 21a is formed as a rhombus in plan view on the base material 21, the electrode body 23a of one electrode 23 is formed in a rhombus, and the other electrode is formed as a pattern in which rhombus similar to the electrode body 23a is arranged in a matrix. May be.
  • the one electrode 23 and the other electrode 24 are separated from each other as in the above configuration example.
  • the area of each electrode may be a geometric pattern that is uniform between the p-type electrode and the n-type electrode.

Abstract

An electrode (22) for a photoelectric conversion device, the electrode being arranged on one side of a photoelectric conversion layer (30), is configured by arranging one electrode (23) functioning as a p-type electrode and another electrode (24) functioning as an n-type electrode on substantially the same surface. It is thereby possible to provide a variety of types of photoelectric conversion devices (20) without using a transparent electrode material.

Description

光電変換デバイス用電極及び光電変換デバイスElectrode for photoelectric conversion device and photoelectric conversion device
 本発明は、光電変換デバイスに用いられる光電変換デバイス用電極と、それを用いた光電変換デバイスに関する。 The present invention relates to an electrode for a photoelectric conversion device used for a photoelectric conversion device and a photoelectric conversion device using the same.
 光電変換デバイスは、光を電気エネルギーに変換するデバイス及び電気エネルギーを光に変換するデバイスである。前者の例としては太陽電池などがあり、後者の例としては発光ダイオードなどがある。 A photoelectric conversion device is a device that converts light into electrical energy and a device that converts electrical energy into light. Examples of the former include solar cells, and examples of the latter include light emitting diodes.
 今日、クリーンエネルギーの一つとして太陽電池による電力供給の必要性が再認識されている。太陽電池にはSi太陽電池、化合物太陽電池、有機半導体薄膜太陽電池など各種のものがある。 Today, the need for solar power supply as a clean energy is recognized again. There are various types of solar cells such as Si solar cells, compound solar cells, and organic semiconductor thin film solar cells.
 Si太陽電池について単結晶Si太陽電池を例にとって説明する。p型の単結晶ウエハに気相拡散やn型不純物イオンの打ち込み等によってウエハの表面層をn型半導体にするなどしてpn接合やpin接合が作られる。そして表面電極と裏面電極とを形成してサンドイッチ構造の太陽電池が作製される。 The Si solar cell will be described taking a single crystal Si solar cell as an example. A pn junction or a pin junction is formed by making the surface layer of the wafer an n-type semiconductor by vapor phase diffusion or implantation of n-type impurity ions into a p-type single crystal wafer. A solar cell having a sandwich structure is manufactured by forming a front electrode and a back electrode.
 化合物太陽電池の中には各種のものがある。ここでは、エネルギー変換効率が高く、経年変化による光劣化が起こりにくく、耐放射性特性に優れ、光吸収波長領域が広く、光吸収係数が大きいといった利点を有するカルコパイライト型太陽電池を例にとって説明する。このカルコパイライト型太陽電池は、I族、III族及びVI族の元素を構成成分とするカルコパイライト化合物(Cu(In+Ga)Se)から成るCIGS層をp型の光吸収層として備えたものである(例えば特許文献1)。 There are various types of compound solar cells. Here, a chalcopyrite solar cell, which has advantages such as high energy conversion efficiency, low light deterioration due to secular change, excellent radiation resistance, a wide light absorption wavelength region, and a large light absorption coefficient, will be described as an example. . This chalcopyrite solar cell includes a CIGS layer made of a chalcopyrite compound (Cu (In + Ga) Se 2 ) containing elements of Group I, Group III, and Group VI as constituent components as a p-type light absorption layer. There is (for example, Patent Document 1).
 このCIGS層を備えた太陽電池は、一般的に、ソーダライムガラス(SLG)基板といったガラス基板上に、Mo金属層からなる正極たる裏面電極層と、SLG基板に由来して生じるNaムラを防止するためのNaディップ層と、CIGS光吸収層と、n型のバッファ層と、負極たる透明電極層による最外表面層と、を備えた多層積層構造で構成される。ここで、n型のバッファ層はCdS、ZnO、InSなどで形成され、透明電極層はZnOAlなどが用いられる。 This solar cell with a CIGS layer generally prevents a back electrode layer, which is a positive electrode made of a Mo metal layer, on a glass substrate such as a soda lime glass (SLG) substrate, and Na unevenness caused by the SLG substrate. For forming a multilayer structure including a Na dip layer, a CIGS light absorption layer, an n-type buffer layer, and an outermost surface layer formed of a transparent electrode layer as a negative electrode. Here, the n-type buffer layer is made of CdS, ZnO, InS or the like, and the transparent electrode layer is made of ZnOAl or the like.
 この多層積層構造にあっては、表面の受光部から照射光が入射すると、多層積層構造のp-n接合付近では、バンドギャップ以上のエネルギーを有する照射光によって励起されて一対の電子及び正孔が生じる。励起された電子と正孔とは、拡散によりp-n接合部に達し、接合の内部電界により、電子がn領域に、正孔がp領域に集合して分離される。この結果、n領域が負に帯電し、p領域が正に帯電し、各領域に設けた電極間で電位差が生じる。この電位差を起電力として、各電極間を導線で結線したときに光電流が得られる。 In this multilayer laminated structure, when irradiation light enters from the light receiving portion on the surface, a pair of electrons and holes are excited in the vicinity of the pn junction of the multilayer laminated structure by the irradiation light having energy greater than the band gap. Occurs. The excited electrons and holes reach the pn junction by diffusion, and the electrons are separated into the n region and the holes are collected in the p region by the internal electric field of the junction. As a result, the n region is negatively charged, the p region is positively charged, and a potential difference is generated between the electrodes provided in each region. Using this potential difference as an electromotive force, a photocurrent is obtained when the electrodes are connected by a conductive wire.
 CIGS光吸収層は次のような工程によって得られる。即ち、In層とCu-Ga層とを積層状態にして前駆体として備える基板自体をアニール処理室内に収容してプレヒートを行う。その後、アニール処理室内に挿入したガス導入管によってHSeガスを導入しつつ、室内を500乃至520℃の温度範囲に昇温することによって、前駆体をCIGS層に変換する。 The CIGS light absorbing layer is obtained by the following process. That is, the substrate itself provided with the In layer and the Cu—Ga layer as a precursor is accommodated in the annealing chamber and preheated. Thereafter, the precursor is converted into a CIGS layer by raising the temperature of the chamber to a temperature range of 500 to 520 ° C. while introducing H 2 Se gas through the gas introduction tube inserted into the annealing chamber.
 これに対し、有機半導体薄膜太陽電池は塗布法によって形成することができるため、大量生産に適した太陽電池として注目されている。有機太陽電池は、有機ドナー材料と有機アクセプター材料を混合した、所謂バルクヘテロジャンクション構造を有している。その中でも、塗布及び低温プロセスでフレキシブル基板への陰極形成を可能とした有機薄膜太陽電池が開発されている(例えば、特許文献2)。 On the other hand, organic semiconductor thin film solar cells are attracting attention as solar cells suitable for mass production because they can be formed by a coating method. The organic solar cell has a so-called bulk heterojunction structure in which an organic donor material and an organic acceptor material are mixed. Among them, an organic thin-film solar cell capable of forming a cathode on a flexible substrate by coating and a low-temperature process has been developed (for example, Patent Document 2).
 特許文献2によれば、有機半導体薄膜太陽電池が、基板の一方面上に、陽極、バルクヘテロジャンクション構造を有する光電変換層及び陰極が順に積層された構造を有していて、陰極が塗布により酸化銀と還元剤からなり、電子輸送層が塗布により陰極近傍に有機金属をドープして形成されていることにより、低温で陰極が形成されるだけでなく、有機金属ドープ層と陰極との接合が改良されるとしている。 According to Patent Document 2, an organic semiconductor thin-film solar cell has a structure in which an anode, a photoelectric conversion layer having a bulk heterojunction structure, and a cathode are sequentially laminated on one surface of a substrate, and the cathode is oxidized by coating. It consists of silver and a reducing agent, and the electron transport layer is formed by doping an organic metal in the vicinity of the cathode by coating, so that not only the cathode is formed at a low temperature, but also the bonding between the organic metal doped layer and the cathode is achieved. It is going to be improved.
特開2006-196771号公報Japanese Patent Laid-Open No. 2006-196771 特開2011-124468号公報JP 2011-124468 A
 しかしながら、従来の構造においては、pn接合となる領域を挟んで一対の電極を設ける必要があった。そのため、光照射側の電極は、光透過性がよく、かつ電気抵抗が小さいものが要求されており、そのために、光照射側の電極は高価なレアメタルを蒸着やメッキにより形成する必要がある。またそれに伴いプロセス工程が複雑であった。 However, in the conventional structure, it is necessary to provide a pair of electrodes across a region that becomes a pn junction. For this reason, the light irradiation side electrode is required to have good light transmittance and low electrical resistance. For this reason, the light irradiation side electrode needs to be formed by vapor deposition or plating of an expensive rare metal. In addition, the process steps are complicated accordingly.
 そこで、本発明は、電極材料として光透過性を要求しない、光電変換デバイス用電極とそれを用いた光電変換デバイスを提供することを目的とする。 Therefore, an object of the present invention is to provide an electrode for a photoelectric conversion device that does not require optical transparency as an electrode material and a photoelectric conversion device using the same.
 上記目的を達成するため、本発明の光電変換デバイス用電極は、同一面上に一方の電極と他方の電極とが形成されてなり、一方の電極がp型電極として機能し、他方の電極がn型電極として機能する。
 好ましくは、一方の電極と他方の電極とは横並びに一つずつ設けられる。一方の電極及び他方の電極は、好ましくは、複数本の電極指が一端で電気的に接続された構造を有する櫛歯電極で構成され、一方の電極の電極指と他方の電極の電極指とが交互に並んでいる。一方の電極及び他方の電極はCu、Alの何れかで形成され得る。
In order to achieve the above object, the electrode for a photoelectric conversion device of the present invention has one electrode and the other electrode formed on the same surface, one electrode functions as a p-type electrode, and the other electrode Functions as an n-type electrode.
Preferably, one electrode and the other electrode are provided side by side. The one electrode and the other electrode are preferably composed of comb electrodes having a structure in which a plurality of electrode fingers are electrically connected at one end, and the electrode fingers of one electrode and the electrode fingers of the other electrode Are lined up alternately. One electrode and the other electrode can be formed of either Cu or Al.
 本発明の光電変換デバイスは、本発明の光電変換デバイス用電極と、一方の電極上に設けられ正孔輸送材料でなるp層の有機半導体と、他方の電極上に設けられ電子輸送材料でなるn層の有機半導体と、を備え、p層の有機半導体及びn層の有機半導体が同一面上に互い違いに形成されている。
 本発明の光電変換デバイスは、上述の光電変換デバイス用電極と、一方の電極上に設けられ電子輸送材料でなるn層の有機半導体と、他方の電極上に設けられ正孔輸送材料でなるp層の有機半導体と、を備え、p層の有機半導体及びn層の有機半導体が同一面上に互い違いに形成されている。
 好ましくは、p層の有機半導体及びn層の有機半導体は透明の保護層で覆われている。
The photoelectric conversion device of the present invention comprises the electrode for a photoelectric conversion device of the present invention, a p-layer organic semiconductor made of a hole transport material provided on one electrode, and an electron transport material provided on the other electrode. an n-layer organic semiconductor, and the p-layer organic semiconductor and the n-layer organic semiconductor are alternately formed on the same surface.
The photoelectric conversion device of the present invention includes the above-mentioned electrode for a photoelectric conversion device, an n-layer organic semiconductor made of an electron transport material provided on one electrode, and a p made of a hole transport material provided on the other electrode. A p-layer organic semiconductor and an n-layer organic semiconductor are alternately formed on the same surface.
Preferably, the p-layer organic semiconductor and the n-layer organic semiconductor are covered with a transparent protective layer.
 上記目的を達成するために、本発明の光電変換デバイス用電極は、パターンに従って複数の貫通穴を有する絶縁性の基材と、基材の貫通穴を導電材で充填しつつ基材の表面に露出するように形成された一方の電極と、基材の表面で一方の電極との間に隙間を有するように設けられた他方の電極と、を有する。
 好ましくは、一方の電極は、基材の裏面に形成された導電性の被膜によって相互に接続されている。
 好ましくは、一方の電極は、基材の表面から張り出した突出部を有している。
 好ましくは、一方の電極の外部接続部が基材の裏面に設けられ、他方の電極の外部接続部が基材の表面に設けられる。一方の電極及び他方の電極は、Cu、Alの何れかで形成され得る。
In order to achieve the above object, an electrode for a photoelectric conversion device according to the present invention is formed on an insulating base material having a plurality of through holes according to a pattern, and the base material surface while filling the through holes of the base material with a conductive material One electrode formed so as to be exposed, and the other electrode provided so as to have a gap between the one electrode on the surface of the substrate.
Preferably, one electrode is mutually connected by the electroconductive film formed in the back surface of a base material.
Preferably, one electrode has the protrusion part protruded from the surface of the base material.
Preferably, the external connection part of one electrode is provided on the back surface of the base material, and the external connection part of the other electrode is provided on the surface of the base material. One electrode and the other electrode can be formed of either Cu or Al.
 本発明の光電変換デバイスは、上述の光電変換デバイス用電極と、一方の電極上に設けられ正孔輸送材料でなるp層の有機半導体と、他方の電極上に設けられ電子輸送材料でなるn層の有機半導体と、を備え、p層の有機半導体及びn層の有機半導体が同一面上に交互に形成されている。
 好ましくは、p層の有機半導体及びn層の有機半導体は透明の保護層で覆われている。
The photoelectric conversion device of the present invention includes the above-described electrode for a photoelectric conversion device, a p-layer organic semiconductor made of a hole transport material provided on one electrode, and an n transport material made of an electron transport material provided on the other electrode. A p-layer organic semiconductor and an n-layer organic semiconductor are alternately formed on the same surface.
Preferably, the p-layer organic semiconductor and the n-layer organic semiconductor are covered with a transparent protective layer.
 本発明によれば、電極が、p型電極として機能する一方の電極とn型電極として機能する他方の電極とが光電変換デバイスの一方の面側に形成することが可能であるため、光の照射する面側に電極を設ける必要がない。この光電変換デバイス用電極は、フレキシブル性のない基板上でもフレキシブル性のある基板上にも作製することができる。この電極上に塗布によって有機半導体を設けることができるため、作製工程が複雑とならず、また、安価に作製することができる。 According to the present invention, since one electrode functioning as a p-type electrode and the other electrode functioning as an n-type electrode can be formed on one surface side of the photoelectric conversion device, There is no need to provide an electrode on the surface to be irradiated. This electrode for a photoelectric conversion device can be produced on a substrate having no flexibility or a substrate having flexibility. Since an organic semiconductor can be provided on the electrode by coating, the manufacturing process is not complicated, and the electrode can be manufactured at a low cost.
本発明の第1実施形態に係る光電変換デバイスの断面図である。It is sectional drawing of the photoelectric conversion device which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る光電変換デバイスの断面図である。It is sectional drawing of the photoelectric conversion device which concerns on 2nd Embodiment of this invention. 図2に示す光電変換デバイスにおける電極構造を示す平面図である。It is a top view which shows the electrode structure in the photoelectric conversion device shown in FIG. 図3において符号Aの領域の拡大図である。FIG. 4 is an enlarged view of a region A in FIG. 3. 本発明の第3実施形態に係る光電変換デバイスの断面図である。It is sectional drawing of the photoelectric conversion device which concerns on 3rd Embodiment of this invention. 図5に示す光電変換デバイスにおける電極構造を示す平面図である。It is a top view which shows the electrode structure in the photoelectric conversion device shown in FIG. 図6に示す符号Bの領域の拡大図である。It is an enlarged view of the area | region of the code | symbol B shown in FIG. 第3実施形態に係る光電変換デバイスにおける電極構造の変形例を示す平面図である。It is a top view which shows the modification of the electrode structure in the photoelectric conversion device which concerns on 3rd Embodiment.
1:光電変換デバイス
2:光電変換デバイス用電極
3,4:電極
5:光電変換層
6:p層の有機半導体
7:n層の有機半導体
8:保護層
9:光
10:光電変換デバイス
11:基材
12:光電変換デバイス用電極
13:一方の電極
14:他方の電極
13a,14a:電極指
13b,14b:接続用電極
13c:引き回し電極
13d,14d:外部配線との接続端子
15:p層の有機半導体
16:n層の有機半導体
17:保護層
18:光電変換層
19:光
20:光電変換デバイス
21:基材
21a:基材の貫通穴
22:光電変換デバイス用電極
23:一方の電極
23a:電極本体部(ドット状電極) 
23b:充填部(ビア導体部)
23c:配線電極部
23d:外部接続部
24:他方の電極
24d:外部配線との接続部(外部接続部)
25:p層の有機半導体
26:n層の有機半導体
27:保護層
28:導電材
29:隙間
30:光電変換層
31:光
1: Photoelectric conversion device 2: Electrode for photoelectric conversion device 3, 4: Electrode 5: Photoelectric conversion layer 6: p-layer organic semiconductor 7: n-layer organic semiconductor 8: protective layer 9: light 10: photoelectric conversion device 11: Substrate 12: Electrode for photoelectric conversion device 13: One electrode 14: The other electrode 13a, 14a: Electrode finger 13b, 14b: Connection electrode 13c: Lead- out electrode 13d, 14d: Connection terminal with external wiring 15: P layer Organic semiconductor 16: n-layer organic semiconductor 17: protective layer 18: photoelectric conversion layer 19: light 20: photoelectric conversion device 21: base material 21a: through hole 22 of base material: electrode 23 for photoelectric conversion device: one electrode 23a: Electrode body (dot electrode)
23b: Filling part (via conductor part)
23c: Wiring electrode portion 23d: External connection portion 24: Other electrode 24d: Connection portion with external wiring (external connection portion)
25: p-layer organic semiconductor 26: n-layer organic semiconductor 27: protective layer 28: conductive material 29: gap 30: photoelectric conversion layer 31: light
 以下図面を参照しながら、本発明の実施形態を詳細に説明する。ここでは、特に光電変換デバイスが、光を電気エネルギーに変換するものとして太陽電池を想定して説明するが、電気エネルギーを光エネルギーに変換するものであっても同様に適用することができる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, the photoelectric conversion device will be described assuming a solar cell as a device that converts light into electric energy, but the present invention can be similarly applied to a device that converts electric energy into light energy.
〔第1実施形態〕
 図1は、本発明の第1実施形態に係る光電変換デバイス1の断面図である。図1に示すように、本発明の実施形態に係る光電変換デバイス1は、横並びに配置された電極3,4の対と、電極3,4の対の上を覆う光電変換層5と、を備えている。
[First Embodiment]
FIG. 1 is a cross-sectional view of a photoelectric conversion device 1 according to the first embodiment of the present invention. As shown in FIG. 1, a photoelectric conversion device 1 according to an embodiment of the present invention includes a pair of electrodes 3 and 4 arranged side by side, and a photoelectric conversion layer 5 that covers the pair of electrodes 3 and 4. I have.
 一方の電極3と他方の電極4とは互いに所定の距離をあけて同一面上、例えば基材上に横並びに設けられる。一方の電極3の上には、正孔輸送材料でなるp層の有機半導体6が設けられる。他方の電極4上には、電子輸送材料でなるn層の有機半導体7が設けられる。p層の有機半導体6及びn層の有機半導体7は互いに横に隣接して配置されてpn接合を形成しており、pn接合面を含んでp層の有機半導体6及びn層の有機半導体7の表面全体を被覆するように保護層8が設けられる。 The one electrode 3 and the other electrode 4 are provided side by side on the same surface, for example, on the substrate, with a predetermined distance from each other. On one electrode 3, a p-layer organic semiconductor 6 made of a hole transport material is provided. An n-layer organic semiconductor 7 made of an electron transport material is provided on the other electrode 4. The p-layer organic semiconductor 6 and the n-layer organic semiconductor 7 are arranged laterally adjacent to each other to form a pn junction. The p-layer organic semiconductor 6 and the n-layer organic semiconductor 7 include the pn junction surface. A protective layer 8 is provided so as to cover the entire surface.
 p層の有機半導体6は、正孔輸送材料によって形成される。正孔輸送材料としては、化学式(1)で示されるトリフェニルアミン(TAPC)、化学式(2)で示されるトリフェニルアミンの二量体であるTPDその他の芳香族アミンのほか、化学式(3)で示されるα-NPD、化学式(4)で示される(DTP)DPPD、化学式(5)で示されるm-MTDATA、化学式(6)で示されるHTM1、化学式(7)で示される2-TNATA、化学式(8)で示されるTPTE1、化学式(9)で示されるTCTA、化学式(10)で示されるNTPA、化学式(11)で示されるスピロ-TAD、化学式(12)で示されるTFLELなどが用いられる。 The p-layer organic semiconductor 6 is formed of a hole transport material. As a hole transport material, in addition to triphenylamine (TAPC) represented by the chemical formula (1), TPD and other aromatic amines which are dimers of triphenylamine represented by the chemical formula (2), the chemical formula (3) Α-NPD represented by formula (4), (DTP) DPPD represented by formula (4), m-MTDATA represented by formula (5), HTM1 represented by formula (6), 2-TNATA represented by formula (7), TPTE1 represented by chemical formula (8), TCTA represented by chemical formula (9), NTPA represented by chemical formula (10), spiro-TAD represented by chemical formula (11), TFREL represented by chemical formula (12), etc. are used. .
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
 n層の有機半導体7は電子輸送材料によって形成される。電子輸送材料には、化学式(13)で示されるAlq、化学式(14)で示されるBCP、化学式(15)で示されるオキサジアゾール誘導体、化学式(16)で示されるオキサジアゾール二量体、化学式(17)で示されるスターバーストオキサジアゾール、化学式(18)で示されるトリアゾール誘導体、化学式(19)で示されるフェニルキノキサリン誘導体、化学式(20)で示されるシロール誘導体などが挙げられる。 The n-layer organic semiconductor 7 is formed of an electron transport material. Examples of the electron transport material include Alq 3 represented by the chemical formula (13), BCP represented by the chemical formula (14), an oxadiazole derivative represented by the chemical formula (15), and an oxadiazole dimer represented by the chemical formula (16). And starburst oxadiazole represented by chemical formula (17), triazole derivative represented by chemical formula (18), phenylquinoxaline derivative represented by chemical formula (19), silole derivative represented by chemical formula (20), and the like.
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
 保護層8については、太陽光などの光9を透過する材料であればその種類は問わず、例えば樹脂等によって形成される。 The protective layer 8 is formed of a resin or the like, for example, as long as it is a material that transmits light 9 such as sunlight.
 図1に示す光電変換デバイス1の製造方法について概略説明する。まず、電極3,4の対を同一面上に形成する。ここで同一面とは、仮想面又は基板面の何れであってもよいが、電極3,4の対を基板面に形成する場合は、それが平面基板であっても湾曲可能なフレキシブル基板であってもよい。電極の形成には蒸着、スパッタリング又はメッキなどの適宜の方法が用いられる。必要に応じてフォトリソグラフィー技術を用いてもよい。一方の電極3、他方の電極4は同一の工程により形成される。 A method for producing the photoelectric conversion device 1 shown in FIG. First, a pair of electrodes 3 and 4 is formed on the same plane. Here, the same surface may be either a virtual surface or a substrate surface, but when a pair of electrodes 3 and 4 is formed on a substrate surface, it is a flexible substrate that can be bent even if it is a flat substrate. There may be. An appropriate method such as vapor deposition, sputtering, or plating is used to form the electrode. Photolithographic techniques may be used as necessary. One electrode 3 and the other electrode 4 are formed by the same process.
 その後、p層の有機半導体6となる正孔輸送材料を所定の箇所、例えば一方の電極3に塗布する。塗布には、例えばインクジェットプリンタによる印刷方法を適用可能である。 Thereafter, a hole transport material to be the p-layer organic semiconductor 6 is applied to a predetermined portion, for example, one electrode 3. For the application, for example, a printing method using an inkjet printer can be applied.
 次に、n層の有機半導体7となる電子輸送材料をp層とp層との間、例えば他方の電極4に塗布する。塗布にはp層の有機半導体6の場合と同様、インクジェットプリンタによる印刷技術を用いることができる。 Next, an electron transport material to be the n-layer organic semiconductor 7 is applied between the p layer and the p layer, for example, the other electrode 4. As in the case of the p-layer organic semiconductor 6, a printing technique using an inkjet printer can be used for coating.
 これにより、p層の有機半導体6とn層の有機半導体7とによってpn接合が形成される。なお、n層の有機半導体7から塗布し、その後p層の有機半導体6を塗布してもよい。 Thereby, a pn junction is formed by the p-layer organic semiconductor 6 and the n-layer organic semiconductor 7. Alternatively, the n-layer organic semiconductor 7 may be applied, and then the p-layer organic semiconductor 6 may be applied.
 最後に、保護層8を塗装などによって形成することで、光電変換デバイス1が作製される。なお、図1に示す光電変換デバイス1が作製される手法であれば上述の方法に限定されない。 Finally, the photoelectric conversion device 1 is manufactured by forming the protective layer 8 by painting or the like. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 1 is manufactured.
 本実施形態に係る光電変換デバイス1によれば、光電変換デバイス用電極2が、p型電極として機能する一方の電極3と、n型電極として機能する他方の電極4とが横並びに形成されて交互配列平面電極構造を構成している。そのため、有機半導体の上に透明電極を設ける必要がない。光電変換デバイス1は、ガラス基板などのフレキシブル性のない基板上にも又はフレキシブル性のある基板上にも作製することができる。電極上に塗布によって有機半導体を設けることができるため、作製工程が複雑とならず、また、安価に作製することができる。 According to the photoelectric conversion device 1 according to the present embodiment, the photoelectric conversion device electrode 2 is formed such that one electrode 3 functioning as a p-type electrode and the other electrode 4 functioning as an n-type electrode are arranged side by side. An alternating array planar electrode structure is formed. Therefore, it is not necessary to provide a transparent electrode on the organic semiconductor. The photoelectric conversion device 1 can be manufactured on a non-flexible substrate such as a glass substrate or on a flexible substrate. Since an organic semiconductor can be provided on the electrode by coating, the manufacturing process is not complicated, and the organic semiconductor can be manufactured at low cost.
〔第2実施形態〕
 図2は、本発明の第2実施形態に係る光電変換デバイスの断面図である。図2に示すように、本発明の第2実施形態に係る光電変換デバイス10は、絶縁性の基材11と、基材11の面上に形成された光電変換デバイス用電極12として一方の電極13及び他方の電極14と、一方の電極13上に設けられて正孔輸送材料でなるp層の有機半導体15と、他方の電極14上に設けられ電子輸送材料でなるn層の有機半導体16と、p層の有機半導体15及びn層の有機半導体16を被覆するように設けられる保護層17とで構成される。p層の有機半導体15とn層の有機半導体16とはpn接合を形成している。また、p層の有機半導体15とn層の有機半導体16により光電変換層18が形成される。
[Second Embodiment]
FIG. 2 is a cross-sectional view of a photoelectric conversion device according to the second embodiment of the present invention. As shown in FIG. 2, the photoelectric conversion device 10 according to the second embodiment of the present invention includes an insulating base material 11 and one electrode as a photoelectric conversion device electrode 12 formed on the surface of the base material 11. 13 and the other electrode 14, a p-layer organic semiconductor 15 made of a hole transport material provided on one electrode 13, and an n-layer organic semiconductor 16 made of an electron transport material provided on the other electrode 14. And a protective layer 17 provided so as to cover the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16. The p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 form a pn junction. Further, a photoelectric conversion layer 18 is formed by the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16.
 このように、一方の電極13と他方の電極14とが基材11の面上に並んで光電変換デバイス用電極12として形成され、p層の有機半導体15とn層の有機半導体16とが光電変換デバイス用電極12の上に並べて形成される。よって、光19が入射する面に、特許文献2のように電極を設ける必要がなく、光照射側に透明電極を設けないためレアメタルを材料として使用しなくて済む。光電変換デバイス用電極12はCuやAlなどにより形成することができる。 In this way, one electrode 13 and the other electrode 14 are formed on the surface of the substrate 11 as the photoelectric conversion device electrode 12, and the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 are photoelectrically connected. It is formed side by side on the conversion device electrode 12. Therefore, it is not necessary to provide an electrode on the surface on which the light 19 is incident as in Patent Document 2, and it is not necessary to use a rare metal as a material because a transparent electrode is not provided on the light irradiation side. The photoelectric conversion device electrode 12 can be formed of Cu, Al, or the like.
 基材11は、ガラス基板、樹脂基板、プリント基板等、各種のものが適用可能である。基材11として樹脂基板等を用いた場合には、光電変換デバイスの取付面が平面でなくても湾曲した曲面であっても構わない。 The base material 11 can be applied to various types such as a glass substrate, a resin substrate, and a printed board. When a resin substrate or the like is used as the base material 11, the mounting surface of the photoelectric conversion device may not be a flat surface but may be a curved surface.
 一方の電極13及び他方の電極14について説明する。図3は、図2に示す光電変換デバイスにおける電極構造を示す平面図であり、図4は図3においてAの領域の拡大図である。図3に示すように、一方の電極13及び他方の電極14は櫛歯電極として構成されている。櫛歯電極は、適宜の間隔で並行して櫛歯状に配置された複数本の電極指13a,14aが、一端で接続用電極13b,14bによって電気的に接続された構造を有する。一方の接続用電極13bと他方の接続用電極14bとが互いに対向配置され、それらの電極指13a,14aが間隔内に配置されることで、一方の電極の電極指13aと他方の電極の電極指14aとが交互に並んでいる。 One electrode 13 and the other electrode 14 will be described. 3 is a plan view showing an electrode structure in the photoelectric conversion device shown in FIG. 2, and FIG. 4 is an enlarged view of a region A in FIG. As shown in FIG. 3, one electrode 13 and the other electrode 14 are configured as comb electrodes. The comb-tooth electrode has a structure in which a plurality of electrode fingers 13a and 14a arranged in a comb-like shape in parallel at an appropriate interval are electrically connected at one end by connection electrodes 13b and 14b. One connection electrode 13b and the other connection electrode 14b are arranged opposite to each other, and the electrode fingers 13a and 14a are arranged within a distance, so that the electrode finger 13a of one electrode and the electrode of the other electrode The fingers 14a are alternately arranged.
 つまり、一方の電極13及び他方の電極14によりインターデジタル電極が形成されている。インターデジタル電極は互いに間挿し合う櫛歯電極で構成されており、各櫛歯電極の電極指13aと電極指14aとが交互に並んでいる。 That is, an interdigital electrode is formed by one electrode 13 and the other electrode 14. The interdigital electrode is composed of comb electrodes interleaved with each other, and the electrode fingers 13a and electrode fingers 14a of the comb electrodes are alternately arranged.
 一方の電極13及び他方の電極14は、それぞれ、電極指13a,14aと、その一端を接続する接続用電極13b,14bと、その接続用電極13b,14bの一端に接続され外部配線との接続端子13d,14dまで延びる引き回し電極13c,14cとを有する。 One electrode 13 and the other electrode 14 are respectively connected to electrode fingers 13a and 14a, connection electrodes 13b and 14b for connecting one end thereof, and one end of the connection electrodes 13b and 14b for connection to an external wiring. It has the routing electrodes 13c and 14c extending to the terminals 13d and 14d.
 図3に示す場合にあっては、各電極指13a,14aが左右方向に延びて形成されており、その延設方向にほぼ直交する方向に電極指13aと電極指14aとが交互に所定の間隔をあけて同数本並んでいる。各電極指13aの左一端が接続用電極14bに接続され、引き回し電極13cがその接続用電極14bの下端から前述の延設方向に沿って外部配線との接続端子13dまで延びている。一方、各電極指14aの右一端が接続用電極14bに接続され、接続用電極14bの下端に外部配線との接続端子14dが形成されている。つまり、外部配線との接続端子の位置によっては引き回し電極が不要となる場合もある。 In the case shown in FIG. 3, each electrode finger 13a, 14a is formed extending in the left-right direction, and the electrode finger 13a and the electrode finger 14a are alternately arranged in a predetermined direction in a direction substantially perpendicular to the extending direction. The same number is arranged at intervals. The left end of each electrode finger 13a is connected to the connection electrode 14b, and the lead-out electrode 13c extends from the lower end of the connection electrode 14b to the connection terminal 13d with the external wiring along the aforementioned extending direction. On the other hand, the right end of each electrode finger 14a is connected to the connection electrode 14b, and a connection terminal 14d for external wiring is formed at the lower end of the connection electrode 14b. In other words, depending on the position of the connection terminal with the external wiring, the lead electrode may not be necessary.
 一方の電極13のうち少なくとも電極指13a上には、p層の有機半導体15が形成され、他方の電極14のうち少なくとも電極指14a上には、n層の有機半導体16が形成される。よって、一方の電極13のうち電極指13aはp型電極として機能し、他方の電極14のうち電極指14aはn型電極として機能する。このように有機半導体15,16が形成されることにより、光電変換層18が構成される。 The p-layer organic semiconductor 15 is formed on at least the electrode finger 13 a of the one electrode 13, and the n-layer organic semiconductor 16 is formed on at least the electrode finger 14 a of the other electrode 14. Therefore, the electrode finger 13a of one electrode 13 functions as a p-type electrode, and the electrode finger 14a of the other electrode 14 functions as an n-type electrode. Thus, the photoelectric conversion layer 18 is comprised by forming the organic semiconductors 15 and 16.
 p層の有機半導体15は、第1実施形態で例示した各種の正孔輸送材料によって形成される。n層の有機半導体16は、第1実施形態で例示した各種の電子輸送材料によって形成される。保護層17については、太陽光などの照射光を透過する材料であればその種類は問わず、例えば樹脂等によって形成される。 The p-layer organic semiconductor 15 is formed of various hole transport materials exemplified in the first embodiment. The n-layer organic semiconductor 16 is formed of various electron transport materials exemplified in the first embodiment. The protective layer 17 is formed of, for example, a resin or the like as long as it is a material that transmits irradiation light such as sunlight.
 図2に示す光電変換デバイス10の製造方法について概略説明する。まず、基材11を用意し、この基材11上に所定間隔をおいて一方の電極13及び他方の電極14を形成する。電極形成には蒸着、スパッタリング又はメッキなどの適宜の方法が用いられる。必要に応じてフォトリソグラフィー技術を用いてもよい。一方の電極13、他方の電極14は同一の工程により形成される。 A method for manufacturing the photoelectric conversion device 10 shown in FIG. First, a base material 11 is prepared, and one electrode 13 and the other electrode 14 are formed on the base material 11 at a predetermined interval. An appropriate method such as vapor deposition, sputtering, or plating is used for electrode formation. Photolithographic techniques may be used as necessary. One electrode 13 and the other electrode 14 are formed by the same process.
 その後、p層の有機半導体15となる正孔輸送材料を所定の箇所、例えば一方の電極13に、例えばインクジェットプリンタによる印刷方法により塗布する。 Thereafter, a hole transport material to be the p-layer organic semiconductor 15 is applied to a predetermined portion, for example, one electrode 13 by a printing method using, for example, an ink jet printer.
 次に、n層の有機半導体16となる電子輸送材料をp層とp層との間、例えば他方の電極14に塗布する。塗布には、p層の有機半導体15の場合と同様、インクジェットプリンタによる印刷技術を用いることができる。 Next, an electron transport material to be the n-layer organic semiconductor 16 is applied between the p layer and the p layer, for example, the other electrode 14. As in the case of the p-layer organic semiconductor 15, a printing technique using an inkjet printer can be used for the application.
 こうして、p層の有機半導体15とn層の有機半導体16とによってpn接合が形成される。なお、n層の有機半導体16から塗布しその後p層の有機半導体15を塗布してもよい。 Thus, a pn junction is formed by the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16. The n-layer organic semiconductor 16 may be applied, and then the p-layer organic semiconductor 15 may be applied.
 最後に、保護層17を塗装などによって形成することにより、光電変換デバイス10が作製される。なお、図2に示す光電変換デバイス10が作製される手法であれば上述の方法に限定されない。 Finally, the photoelectric conversion device 10 is manufactured by forming the protective layer 17 by painting or the like. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 10 illustrated in FIG. 2 is manufactured.
 第2実施形態では、従来のように、一方の電極上にp層の有機半導体を積層し、その上にn層の有機半導体を積層してpn接合を形成すると共に、n層の有機半導体上に他方の電極として透明電極を順次積層して光電変換デバイスを構成していない。つまり、p型電極として機能する一方の電極13と、n型電極として機能する他方の電極14とが、同一面上に交互に配列されている。そのため、有機半導体上に透明電極を設ける必要がない。光電変換デバイス10は、ガラス基板などのフレキシブル性のない基板上にも或いはフレキシブル性のある基板上にも作製できる。電極上に塗布によって有機半導体を設けることができるため、作製工程が複雑とならず、また、安価に作製することができる。 In the second embodiment, a p-layer organic semiconductor is stacked on one electrode and an n-layer organic semiconductor is stacked thereon to form a pn junction as in the prior art. A transparent electrode is sequentially laminated as the other electrode to form a photoelectric conversion device. That is, one electrode 13 functioning as a p-type electrode and the other electrode 14 functioning as an n-type electrode are alternately arranged on the same plane. Therefore, it is not necessary to provide a transparent electrode on the organic semiconductor. The photoelectric conversion device 10 can be manufactured on a non-flexible substrate such as a glass substrate or a flexible substrate. Since an organic semiconductor can be provided on the electrode by coating, the manufacturing process is not complicated, and the organic semiconductor can be manufactured at low cost.
〔第3実施形態〕
 図5は、本発明の第3実施形態に係る光電変換デバイスの断面図である。第3実施形態に係る光電変換デバイス20は、パターンに従って複数の貫通穴21aを有する絶縁性の基材21と、基材21の貫通穴21aを導電材28で充填し基材21の表面に露出して形成された一方の電極23と、基材21の表面で一方の電極23と接触しないよう例えば隙間29を有するように設けられた他方の電極24と、一方の電極23上に設けられたp層の有機半導体25と、他方の電極24上に設けられたn層の有機半導体26と、p層の有機半導体25及びn層の有機半導体26を被覆するように設けられる保護層27と、で構成される。
[Third Embodiment]
FIG. 5 is a cross-sectional view of a photoelectric conversion device according to the third embodiment of the present invention. In the photoelectric conversion device 20 according to the third embodiment, an insulating base material 21 having a plurality of through holes 21 a according to a pattern and the through holes 21 a of the base material 21 are filled with a conductive material 28 and exposed to the surface of the base material 21. One electrode 23 formed in this manner, the other electrode 24 provided with, for example, a gap 29 so as not to contact the one electrode 23 on the surface of the base material 21, and provided on the one electrode 23 a p-layer organic semiconductor 25, an n-layer organic semiconductor 26 provided on the other electrode 24, a protective layer 27 provided to cover the p-layer organic semiconductor 25 and the n-layer organic semiconductor 26, Consists of.
 一方の電極23及び他方の電極24は、基材21の上面側で当該面の広がる方向へ交互に並べられるように形成され、光電変換デバイス用電極22を構成する。その光電変換デバイス用電極22上に、p層の有機半導体25とn層の有機半導体26とが交互に電極23,24上に重ねて並べられ、光電変換層30が形成される。よって、光31が入射する面側には、特許文献2のように電極を設けずに、保護層26を配置することが可能となる。これにより、電極が光透過性を有するようにレアメタルを材料として使用しなくて済む。一方の電極23及び他方の電極24はCuやAlなどを使用することができる。 The one electrode 23 and the other electrode 24 are formed so as to be alternately arranged on the upper surface side of the base material 21 in the direction in which the surface expands, and constitute the photoelectric conversion device electrode 22. On the photoelectric conversion device electrode 22, the p-layer organic semiconductor 25 and the n-layer organic semiconductor 26 are alternately stacked on the electrodes 23 and 24 to form the photoelectric conversion layer 30. Therefore, the protective layer 26 can be disposed on the surface side on which the light 31 is incident without providing an electrode as in Patent Document 2. Thereby, it is not necessary to use a rare metal as a material so that the electrode has optical transparency. One electrode 23 and the other electrode 24 can use Cu, Al, or the like.
 第3の実施形態では、一方の電極23の光電変換層30との界面と他方の電極24の光電変換層30との界面とがほぼ同一面に配置されるのみならず、配線の取り出し部位を基材21の表面と裏面に配置できるため、取り出し配線の構造が複雑化しない。また、一方の電極23の外部接続部23dが基材21の裏面に設けられ、他方の電極24の外部接続部24dが基材21の表面に設けられ、しかも、各外部接続部23d,24dが基材21を挟んで設けられる。よって、外部接続部23d,24dに一つの外部接続端子を接続することもできる。なお、この外部接続端子は、2つの導電パスを形成している。 In the third embodiment, the interface between the one electrode 23 and the photoelectric conversion layer 30 and the interface between the other electrode 24 and the photoelectric conversion layer 30 are not only arranged on the same plane, Since it can arrange | position on the surface and the back surface of the base material 21, the structure of extraction wiring is not complicated. Further, the external connection portion 23d of one electrode 23 is provided on the back surface of the base material 21, the external connection portion 24d of the other electrode 24 is provided on the surface of the base material 21, and the external connection portions 23d and 24d are provided. Provided with the base material 21 in between. Therefore, one external connection terminal can be connected to the external connection portions 23d and 24d. This external connection terminal forms two conductive paths.
 基材21は、ガラス基板などのセラミック基板、樹脂基板、プリント基板等、各種のものが適用可能である。基材21として樹脂基板等を用いた場合には、光電変換デバイス20の取付面が平面でなくても湾曲した曲面であっても構わない。 The base material 21 can be various types such as a ceramic substrate such as a glass substrate, a resin substrate, a printed circuit board, and the like. When a resin substrate or the like is used as the base material 21, the mounting surface of the photoelectric conversion device 20 may not be a flat surface but may be a curved surface.
 一方の電極23について説明する。図5に示すように、一方の電極23については、基材21の貫通穴21aに導電材28が充填されてその一端が少なくとも基材21の表面に露出することで、その露出した部分が電極本体部23aとなる。導電材28、特に充填部23bは、ビア導体部と呼んでもよい。 One electrode 23 will be described. As shown in FIG. 5, with respect to one electrode 23, the through hole 21 a of the base material 21 is filled with the conductive material 28 and one end thereof is exposed at least on the surface of the base material 21. It becomes the main body 23a. The conductive material 28, particularly the filling portion 23b, may be referred to as a via conductor portion.
 図6は、図5に示す光電変換デバイスにおける電極構造を示す平面図であり、図7は図6においてBの領域の拡大図である。基材21の表面にドット状の電極本体部23aが、図6に示すように、行方向に間隔をおいて並んでおり、かつそれらが列方向にも間隔をおいて並んでいる。図5及び図6に示す形態にあっては、電極本体部23aが各行毎に間隔をあけて形成されており、かつ奇数行の電極本体部23aと偶数行の電極本体部23aとは行方向にずれて互い違いに設けられている。つまり列方向に整列していない。各電極本体部23aは行方向と列方向とに沿って整列し、それぞれ間隔をあけてマトリックス状に配置されていてもよい。 6 is a plan view showing an electrode structure in the photoelectric conversion device shown in FIG. 5, and FIG. 7 is an enlarged view of a region B in FIG. As shown in FIG. 6, dot-like electrode main body portions 23 a are arranged on the surface of the base material 21 at intervals in the row direction, and they are also arranged at intervals in the column direction. 5 and 6, the electrode main body portions 23a are formed at intervals in each row, and the odd-numbered electrode main body portions 23a and the even-numbered electrode main body portions 23a are in the row direction. It is staggered and is provided alternately. That is, they are not aligned in the column direction. The electrode main body portions 23a may be aligned in the row direction and the column direction, and may be arranged in a matrix at intervals.
 各電極本体部23aは図5に示すように、その先端が基材21の表面から張り出して突出していることが好ましい。この突出した先端には塗布によって有機半導体のドットが形成される。電極本体部23aの先端が基材21の表面から張り出していることで、n層の有機導電体26と電極本体部23aとの接続が確実になる。 As shown in FIG. 5, each electrode main body 23 a preferably has its tip projecting from the surface of the substrate 21. An organic semiconductor dot is formed on the protruding tip by coating. Since the tip of the electrode main body portion 23a protrudes from the surface of the substrate 21, the connection between the n-layer organic conductor 26 and the electrode main body portion 23a is ensured.
 一方の電極23は、基材21の表面から張り出した電極本体部23aから、基材21の貫通穴21aに導電材28が充填されてなる充填部28bにより基材21の裏面まで延びている。充填部23b同士は、基材21の裏面に形成された配線電極部23cによって電気的につながれている。配線電極部23cの端部が外部接続部23dとなる。ここで、配線電極部23cを所定の平面形状とすることにより、充填部23b同士をその平面形状に応じて電気的に接続することができる。 One electrode 23 extends from the electrode main body portion 23 a protruding from the surface of the base material 21 to the back surface of the base material 21 by a filling portion 28 b in which the through hole 21 a of the base material 21 is filled with the conductive material 28. The filling portions 23b are electrically connected to each other by a wiring electrode portion 23c formed on the back surface of the substrate 21. An end portion of the wiring electrode portion 23c serves as an external connection portion 23d. Here, by making the wiring electrode portion 23c have a predetermined planar shape, the filling portions 23b can be electrically connected to each other according to the planar shape.
 他方の電極24について説明する。基材21の表面には、一方の電極23の各電極本体部23aがドット状に並んで設けられているのに対応して、他方の電極24が、各電極本体部23aに接触しないよう、さらに各電極本体部23aを囲むように基材21の表面に導電層として形成されている。つまり、他方の電極24は、基材21の表面に一方の電極23の各電極本体部23aが設けられる基材21の面と同じ面に各電極本体部23aを囲むように形成されている。各電極本体23aに隙間29を設けて配置される他の電極24の部分同士は、互いに接続されている。さらに、他方の電極24の周縁部は、外部配線との接続部24dとして機能する。 The other electrode 24 will be described. Corresponding to each electrode body 23a of one electrode 23 being arranged in a dot shape on the surface of the substrate 21, the other electrode 24 is not in contact with each electrode body 23a. Further, a conductive layer is formed on the surface of the base material 21 so as to surround each electrode main body 23a. That is, the other electrode 24 is formed so as to surround each electrode main body 23 a on the same surface as the surface of the base 21 on which the electrode main body 23 a of one electrode 23 is provided on the surface of the base 21. The parts of the other electrodes 24 arranged with the gaps 29 provided in the electrode bodies 23a are connected to each other. Further, the peripheral edge portion of the other electrode 24 functions as a connection portion 24d with an external wiring.
 本実施形態にあっては、このような一方の電極23及び他方の電極24の上に、有機半導体25,26がそれぞれ設けられている。図5に示す形態にあっては、一方の電極23の電極本体部23a上にはp層の有機半導体25が形成され、他方の電極24の上にはn層の有機半導体26が形成される。よって、一方の電極23の電極本体部23aがp型電極として機能し、他方の電極24のうちn型の有機半導体26で覆われている部分はn型電極として機能する。 In the present embodiment, the organic semiconductors 25 and 26 are provided on the one electrode 23 and the other electrode 24, respectively. In the form shown in FIG. 5, a p-layer organic semiconductor 25 is formed on the electrode body 23 a of one electrode 23, and an n-layer organic semiconductor 26 is formed on the other electrode 24. . Therefore, the electrode body 23a of one electrode 23 functions as a p-type electrode, and the portion of the other electrode 24 covered with the n-type organic semiconductor 26 functions as an n-type electrode.
 図5に示す形態とは逆に、図示を省略するが、一方の電極23の電極本体部23a上にはn層の有機半導体が形成され、他方の電極24の上にp層の有機半導体が形成されてもよい。この形態では、一方の電極23の電極本体部23aがn型電極として機能し、他方の電極24のうちp型の有機半導体で覆われている部分はp型電極として機能する。 Contrary to the configuration shown in FIG. 5, although not shown, an n-layer organic semiconductor is formed on the electrode body 23 a of one electrode 23, and a p-layer organic semiconductor is formed on the other electrode 24. It may be formed. In this embodiment, the electrode body portion 23a of one electrode 23 functions as an n-type electrode, and the portion of the other electrode 24 covered with a p-type organic semiconductor functions as a p-type electrode.
 p層の有機半導体25は、第1の実施形態で例示した各種の正孔輸送材料によって形成される。n層の有機半導体26は、第1実施形態で例示した各種の電子輸送材料によって形成される。p層の有機半導体26とn層の有機半導体25とで光電変換層30が形成される。保護層27については、太陽光などの光31を透過する材料であればその種類は問わず、例えば樹脂等によって形成し得る。 The p-layer organic semiconductor 25 is formed of various hole transport materials exemplified in the first embodiment. The n-layer organic semiconductor 26 is formed of various electron transport materials exemplified in the first embodiment. A photoelectric conversion layer 30 is formed by the p-layer organic semiconductor 26 and the n-layer organic semiconductor 25. The protective layer 27 may be formed of, for example, a resin or the like as long as it is a material that transmits light 31 such as sunlight.
 図5に示す光電変換デバイス20の製造方法について概略説明する。まず、基材に所定のパターンで複数の貫通穴21aを開ける。 A method for manufacturing the photoelectric conversion device 20 shown in FIG. First, a plurality of through holes 21a are formed in a predetermined pattern in the base material.
 次に、貫通穴21aを開けた基材を無電解メッキで基材の全表面をメッキした後に、一方の電極及び他方の電極を形成しない部分の金属をエッチング等により取り除き、一方の電極及び他方の電極の元となる種電極を形成する。 Next, after plating the whole surface of the base material by electroless plating on the base material with the through holes 21a, the metal in a portion where one electrode and the other electrode are not formed is removed by etching or the like, and the one electrode and the other A seed electrode is formed as a source of the electrode.
 そして、必要に応じてマスクをかぶせて電解メッキ処理を行い、貫通穴21aに導電材27を充填して一方の電極23及び他方の電極24を形成する。なお、メッキ処理を用いず、印刷法により一方の電極及び他方の電極を形成してもよい。 Then, if necessary, an electroplating process is performed by covering the mask, and the conductive material 27 is filled in the through hole 21a to form one electrode 23 and the other electrode 24. Note that one electrode and the other electrode may be formed by a printing method without using the plating process.
 その後、p層の有機半導体25となる正孔輸送材料を所定の箇所、例えば一方の電極23に、例えばインクジェットプリンタによる印刷方法により塗布する。 Thereafter, a hole transport material to be the p-layer organic semiconductor 25 is applied to a predetermined portion, for example, one electrode 23 by, for example, a printing method using an ink jet printer.
 次に、n層の有機半導体26となる電子輸送材料をp層とp層との間、例えば他方の電極24に塗布する。塗布にはp層の有機半導体25の場合と同様、インクジェットプリンタによる印刷技術を用いてもよい。 Next, an electron transport material to be the n-layer organic semiconductor 26 is applied between the p layer and the p layer, for example, the other electrode 24. As in the case of the p-layer organic semiconductor 25, a printing technique using an ink jet printer may be used for coating.
 これにより、p層の有機半導体25とn層の有機半導体26とによってpn接合が形成される。なお、n層の有機半導体26から塗布しその後p層の有機半導体25を塗布してもよい。 Thereby, a pn junction is formed by the p-layer organic semiconductor 25 and the n-layer organic semiconductor 26. The n-layer organic semiconductor 26 may be applied, and then the p-layer organic semiconductor 25 may be applied.
 最後に、保護層27を塗装などによって形成することで、光電変換デバイス20が作製される。なお、図5に示す光電変換デバイス1が作製される手法であれば上述の方法に限定されない。 Finally, the photoelectric conversion device 20 is manufactured by forming the protective layer 27 by painting or the like. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 5 is manufactured.
 本発明の第3実施形態はデバイス性能や設計等により適宜変更しても構わない。例えば、一方の電極23と他方の電極24の平面視によるパターンは図7に示すものに限らず、適宜変更することができる。図7では、一方の電極23の電極本体部23aは平面視で矩形であるが、三角形、多角形、円形、楕円、その他の幾何学模様であってもよい。 The third embodiment of the present invention may be appropriately changed depending on device performance, design, and the like. For example, the pattern in plan view of one electrode 23 and the other electrode 24 is not limited to that shown in FIG. 7 and can be changed as appropriate. In FIG. 7, the electrode body 23a of one electrode 23 is rectangular in plan view, but may be a triangle, polygon, circle, ellipse, or other geometric pattern.
 図8は、光電変換デバイス用電極の変形例を示す平面図である。基材21で貫通穴21aを平面視で菱形として、一方の電極23の電極本体部23aを菱形に形成し、他方の電極を電極本体部23aと相似した菱形をマトリックス状に配置したパターンとして形成してもよい。この場合、上記構成例と同様に、一方の電極23と他方の電極24とが離間するように構成することは勿論である。このように、各電極の面積がp型電極とn型電極とで等しく一様な幾何学パターンとしてもよい。 FIG. 8 is a plan view showing a modification of the photoelectric conversion device electrode. The through hole 21a is formed as a rhombus in plan view on the base material 21, the electrode body 23a of one electrode 23 is formed in a rhombus, and the other electrode is formed as a pattern in which rhombus similar to the electrode body 23a is arranged in a matrix. May be. In this case, it is a matter of course that the one electrode 23 and the other electrode 24 are separated from each other as in the above configuration example. In this way, the area of each electrode may be a geometric pattern that is uniform between the p-type electrode and the n-type electrode.

Claims (13)

  1.  パターンに従って複数の貫通穴を有する絶縁性の基材と、
     上記基材の貫通穴を導電材で充填し上記基材の表面に露出させて形成された一方の電極と、
     上記基材の表面で上記一方の電極との間に隙間を有するように設けられた他方の電極と、
     を有する、光電変換デバイス用電極。
    An insulating substrate having a plurality of through holes according to a pattern;
    One electrode formed by filling the through hole of the base material with a conductive material and exposing the surface of the base material;
    The other electrode provided so as to have a gap between the one electrode and the surface of the substrate;
    An electrode for a photoelectric conversion device.
  2.  前記一方の電極は、前記基材の裏面に形成された導電性の被膜によって相互に接続されている、請求項1に記載の光電変換デバイス用電極。 The electrode for a photoelectric conversion device according to claim 1, wherein the one electrode is connected to each other by a conductive film formed on a back surface of the base material.
  3.  前記一方の電極は、前記基材の表面から張り出した突出部を有している、請求項1に記載の光電変換デバイス用電極。 The electrode for a photoelectric conversion device according to claim 1, wherein the one electrode has a protruding portion protruding from the surface of the base material.
  4.  前記一方の電極の外部接続部が前記基材の裏面に設けられ、前記他方の電極の外部接続部が前記基材の表面に設けられる、請求項1に記載の光電変換デバイス用電極。 The electrode for a photoelectric conversion device according to claim 1, wherein the external connection portion of the one electrode is provided on the back surface of the base material, and the external connection portion of the other electrode is provided on the surface of the base material.
  5.  前記一方の電極及び前記他方の電極が、Cu、Alの何れかで形成されている、請求項1に記載の光電変換デバイス用電極。 The electrode for a photoelectric conversion device according to claim 1, wherein the one electrode and the other electrode are formed of Cu or Al.
  6.  請求項1乃至5の何れかに記載の光電変換デバイス用電極と、
     前記一方の電極上に設けられ正孔輸送材料でなるp層の有機半導体と、
     前記他方の電極上に設けられ電子輸送材料でなるn層の有機半導体と、
     を備え、
     上記p層の有機半導体及び上記n層の有機半導体が同一面上に互い違いに形成されている、光電変換デバイス。
    An electrode for a photoelectric conversion device according to any one of claims 1 to 5,
    A p-layer organic semiconductor made of a hole transport material provided on the one electrode;
    An n-layer organic semiconductor made of an electron transport material provided on the other electrode;
    With
    The photoelectric conversion device in which the organic semiconductor of the p layer and the organic semiconductor of the n layer are alternately formed on the same surface.
  7.  請求項1乃至5の何れかに記載の光電変換デバイス用電極と、
     前記一方の電極上に設けられ電子輸送材料でなるn層の有機半導体と、
     前記他方の電極上に設けられ正孔輸送材料でなるp層の有機半導体と、
     を備え、
     上記p層の有機半導体及び上記n層の有機半導体が同一面上に互い違いに形成されている、光電変換デバイス。
    An electrode for a photoelectric conversion device according to any one of claims 1 to 5,
    An n-layer organic semiconductor made of an electron transport material provided on the one electrode;
    A p-layer organic semiconductor made of a hole transport material provided on the other electrode;
    With
    The photoelectric conversion device in which the organic semiconductor of the p layer and the organic semiconductor of the n layer are alternately formed on the same surface.
  8.  同一面上に一方の電極と他方の電極とが形成されてなり、
     上記一方の電極がp型電極として機能し、上記他方の電極がn型電極として機能する、光電変換デバイス用電極。
    One electrode and the other electrode are formed on the same surface,
    An electrode for a photoelectric conversion device, wherein the one electrode functions as a p-type electrode and the other electrode functions as an n-type electrode.
  9.  前記一方の電極と前記他方の電極とが横並びに一つずつ設けられている、請求項8に記載の光電変換デバイス用電極。 The electrode for a photoelectric conversion device according to claim 8, wherein the one electrode and the other electrode are provided side by side.
  10.  前記一方の電極及び前記他方の電極は、複数本の電極指が一端で電気的に接続された構造を有する櫛歯電極で構成され、
     前記一方の電極の電極指と前記他方の電極の電極指とが交互に並んでいる、請求項8に記載の光電変換デバイス用電極。
    The one electrode and the other electrode are composed of comb electrodes having a structure in which a plurality of electrode fingers are electrically connected at one end,
    The electrode for a photoelectric conversion device according to claim 8, wherein the electrode fingers of the one electrode and the electrode fingers of the other electrode are alternately arranged.
  11.  前記一方の電極及び前記他方の電極がCu、Alの何れかで形成されている、請求項8に記載の光電変換デバイス用電極。 The electrode for a photoelectric conversion device according to claim 8, wherein the one electrode and the other electrode are formed of Cu or Al.
  12.  請求項8乃至11の何れかに記載の光電変換デバイス用電極と、
     前記一方の電極上に設けられ正孔輸送材料でなるp層の有機半導体と、
     前記他方の電極上に設けられ電子輸送材料でなるn層の有機半導体と、を備え、
     上記p層の有機半導体及び上記n層の有機半導体が同一面上に交互に形成されている、光電変換デバイス。
    An electrode for a photoelectric conversion device according to any one of claims 8 to 11,
    A p-layer organic semiconductor made of a hole transport material provided on the one electrode;
    An n-layer organic semiconductor made of an electron transport material provided on the other electrode,
    A photoelectric conversion device, wherein the p-layer organic semiconductor and the n-layer organic semiconductor are alternately formed on the same surface.
  13.  前記p層の有機半導体及び前記n層の有機半導体は透明の保護層で覆われている、請求項6、7又は12に記載の光電変換デバイス。 The photoelectric conversion device according to claim 6, wherein the p-layer organic semiconductor and the n-layer organic semiconductor are covered with a transparent protective layer.
PCT/JP2012/072998 2011-09-14 2012-09-09 Electrode for photoelectric conversion device, and photoelectric conversion device WO2013039019A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013533648A JP5881050B2 (en) 2011-09-14 2012-09-09 Photoelectric conversion device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
PCT/JP2011/071054 WO2013038540A1 (en) 2011-09-14 2011-09-14 Electrode for photoelectric conversion devices, and photoelectric conversion device using same
JPPCT/JP2011/071049 2011-09-14
PCT/JP2011/071050 WO2013038536A1 (en) 2011-09-14 2011-09-14 Electrode for photoelectric conversion devices, and photoelectric conversion device using same
PCT/JP2011/071049 WO2013038535A1 (en) 2011-09-14 2011-09-14 Photoelectric conversion device
JPPCT/JP2011/071054 2011-09-14
JPPCT/JP2011/071050 2011-09-14

Publications (1)

Publication Number Publication Date
WO2013039019A1 true WO2013039019A1 (en) 2013-03-21

Family

ID=47883250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072998 WO2013039019A1 (en) 2011-09-14 2012-09-09 Electrode for photoelectric conversion device, and photoelectric conversion device

Country Status (1)

Country Link
WO (1) WO2013039019A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016105186A1 (en) * 2014-12-23 2016-06-30 Stichting Energieonderzoek Centrum Nederland Method of making a current collecting grid for solar cells
WO2017056082A1 (en) * 2015-10-02 2017-04-06 Solarpaint Ltd. Electrode arrangement and method of production thereof
KR101869270B1 (en) * 2018-01-04 2018-06-21 김상관 LED Traffic Signal
CN109423602A (en) * 2017-09-01 2019-03-05 株式会社爱发科 Mask plate and film build method
EP3357101A4 (en) * 2015-10-02 2019-06-12 Alliance for Sustainable Energy, LLC Heterojunction perovskite photovoltaic devices and methods of making the same
US20200083298A1 (en) * 2018-09-12 2020-03-12 Kabushiki Kaisha Toshiba Radiation detector
JP2021101461A (en) * 2019-12-24 2021-07-08 西松建設株式会社 Photoelectric conversion element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172778A (en) * 1981-09-02 1982-10-23 Sharp Corp Solar battery
JP2004103939A (en) * 2002-09-11 2004-04-02 Japan Science & Technology Corp Upright type superlattice, manufacturing method thereof, and device
JP2005011841A (en) * 2003-06-16 2005-01-13 Japan Science & Technology Agency Vertical junction organic photovoltaic device and its manufacturing method
WO2008014248A2 (en) * 2006-07-25 2008-01-31 Applied Materials, Inc. Thin film photovoltaic module wiring for improved efficiency
JP2008135657A (en) * 2006-11-29 2008-06-12 Konica Minolta Holdings Inc Photoelectric conversion element, manufacturing method thereof, and radiograph detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172778A (en) * 1981-09-02 1982-10-23 Sharp Corp Solar battery
JP2004103939A (en) * 2002-09-11 2004-04-02 Japan Science & Technology Corp Upright type superlattice, manufacturing method thereof, and device
JP2005011841A (en) * 2003-06-16 2005-01-13 Japan Science & Technology Agency Vertical junction organic photovoltaic device and its manufacturing method
WO2008014248A2 (en) * 2006-07-25 2008-01-31 Applied Materials, Inc. Thin film photovoltaic module wiring for improved efficiency
JP2008135657A (en) * 2006-11-29 2008-06-12 Konica Minolta Holdings Inc Photoelectric conversion element, manufacturing method thereof, and radiograph detector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016105186A1 (en) * 2014-12-23 2016-06-30 Stichting Energieonderzoek Centrum Nederland Method of making a current collecting grid for solar cells
NL2014040B1 (en) * 2014-12-23 2016-10-12 Stichting Energieonderzoek Centrum Nederland Method of making a curent collecting grid for solar cells.
RU2709421C2 (en) * 2014-12-23 2019-12-17 Недерландсе Органисати Вор Тугепаст-Натюрветенсхаппелейк Ондерзук Тно Method of making current collector grid for photocells
US11581502B2 (en) 2014-12-23 2023-02-14 Nederlandse Organisatie Voortoegepast-Natuurwetenschappelijk Onderzoek Tno Method of making a current collecting grid for solar cells
WO2017056082A1 (en) * 2015-10-02 2017-04-06 Solarpaint Ltd. Electrode arrangement and method of production thereof
EP3357101A4 (en) * 2015-10-02 2019-06-12 Alliance for Sustainable Energy, LLC Heterojunction perovskite photovoltaic devices and methods of making the same
US10734165B2 (en) 2015-10-02 2020-08-04 Alliance For Sustainable Energy, Llc Heterojunction perovskite photovoltaic devices and methods of making the same
CN109423602A (en) * 2017-09-01 2019-03-05 株式会社爱发科 Mask plate and film build method
KR101869270B1 (en) * 2018-01-04 2018-06-21 김상관 LED Traffic Signal
US20200083298A1 (en) * 2018-09-12 2020-03-12 Kabushiki Kaisha Toshiba Radiation detector
JP2021101461A (en) * 2019-12-24 2021-07-08 西松建設株式会社 Photoelectric conversion element
JP7418736B2 (en) 2019-12-24 2024-01-22 西松建設株式会社 Photoelectric conversion element

Similar Documents

Publication Publication Date Title
WO2013039019A1 (en) Electrode for photoelectric conversion device, and photoelectric conversion device
KR101164345B1 (en) Wiring member between elements, photoelectric conversion element, and photoelectric conversion element connecting body and photoelectric conversion module using the wiring member between elements and the photoelectric conversion element
US8981208B2 (en) Solar cell
US10276737B2 (en) Solar cell and solar cell module
US20130087192A1 (en) Photovoltaic device
JPWO2008090718A1 (en) Solar cell, solar cell array and solar cell module
US11538950B2 (en) Solar cell panel
JP2009130116A (en) Inter-element wiring member, photoelectric conversion element, photoelectric conversion element connector using these, and photoelectric conversion module
KR20100026710A (en) Manufacturing method for thin-film type solar cell and the same thereof
CN102194900B (en) Solar cell and manufacture method thereof
KR101395792B1 (en) Integrated Photovoltaic Module
US20120037219A1 (en) Solar cell
KR101092468B1 (en) Solar cell and manufacturing mehtod of the same
WO2013038540A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
KR101135585B1 (en) Solar cell and method for manufacturing the same
EP3447805B1 (en) Solar cell panel
JP5881050B2 (en) Photoelectric conversion device
US20220085226A1 (en) Four-terminal tandem solar cell
WO2013038536A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
US20130025650A1 (en) Photovoltaic power generation device and manufacturing method thereof
US20170012144A1 (en) Solar cell and solar cell module
WO2013038539A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
WO2013038537A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
WO2013038535A1 (en) Photoelectric conversion device
KR101806972B1 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013533648

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12831371

Country of ref document: EP

Kind code of ref document: A1