WO2013038520A1 - 組電池 - Google Patents

組電池 Download PDF

Info

Publication number
WO2013038520A1
WO2013038520A1 PCT/JP2011/070979 JP2011070979W WO2013038520A1 WO 2013038520 A1 WO2013038520 A1 WO 2013038520A1 JP 2011070979 W JP2011070979 W JP 2011070979W WO 2013038520 A1 WO2013038520 A1 WO 2013038520A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
duct
assembled battery
cooling
cooling plate
Prior art date
Application number
PCT/JP2011/070979
Other languages
English (en)
French (fr)
Inventor
菅 厚夫
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to PCT/JP2011/070979 priority Critical patent/WO2013038520A1/ja
Publication of WO2013038520A1 publication Critical patent/WO2013038520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/308Detachable arrangements, e.g. detachable vent plugs or plug systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an assembled battery in which a plurality of secondary batteries are electrically connected.
  • An assembled battery mounted on a hybrid electric vehicle or a pure electric vehicle is configured by combining a number of secondary batteries (hereinafter referred to as single battery cells) such as lithium ion batteries and nickel metal hydride batteries.
  • the unit cells constituting the assembled battery generate heat due to internal resistance during charging and discharging, and as the temperature rises, performance deterioration with respect to life such as capacity reduction is likely to occur.
  • the temperature rise of the single battery cell be as small as possible from the viewpoint of battery life.
  • a method of cooling the single battery cells constituting the assembled battery there is a method of cooling the single battery cells by thermally coupling the surface of the battery container of the single battery cells to a cooling plate through an insulating sheet.
  • Patent Document 1 proposes an assembled battery having a configuration in which the bottom surfaces of a plurality of unit cells are thermally coupled to one surface of a cooling plate via an insulating sheet.
  • the cooling plate absorbs heat transmitted from the bottom surface of the single battery cell, and includes a refrigerant flow path for transferring the absorbed heat to the outside of the assembled battery.
  • the battery container of the single battery cell has a rectangular parallelepiped shape, an external terminal is provided on one surface of the battery container, The surface is preferably opposed to one surface of the battery container.
  • the battery pack has an integrated mechanism that assembles a plurality of single battery cells side by side, and the integrated mechanism has a plurality of side-by-side arrangements. It is preferable to have a holder disposed between the single battery cells and a pair of end plates as heat coupling members that sandwich the plurality of juxtaposed single battery cells.
  • the present invention is an assembled battery incorporated in a power storage device mounted on a hybrid electric vehicle or a pure electric vehicle, and a prismatic lithium ion secondary battery (hereinafter referred to as a single battery cell).
  • a single battery cell a prismatic lithium ion secondary battery
  • An embodiment applied to a plurality of assembled batteries will be described.
  • symbol was attached
  • Each battery cell 101 has a flat rectangular parallelepiped shape, and is arranged side by side so that main surfaces having a large area among the side surfaces face each other. Adjacent single battery cells 101 are arranged with their directions reversed so that the positions of the positive external terminal 104 and the negative external terminal 105 protruding from the upper surface of the single battery cell 101 are reversed.
  • each adjacent unit cell 101 is electrically connected by a bus bar 109 which is a metal flat plate-like conductive member. That is, the plurality of single cells 101 constituting the assembled battery 100 according to the present embodiment are electrically connected in series.
  • the plurality of unit cells 101 arranged side by side are connected to a pair of end plates 120A, from both ends in the arrangement direction (longitudinal direction of the assembled battery 100) via battery holders 140A, 140B. It is clamped by 120B.
  • the material of the end plates 120A and 120B is a material excellent in thermal conductivity, for example, aluminum.
  • the end plates 120 ⁇ / b> A and 120 ⁇ / b> B are rectangular flat plates corresponding to the main surface of the single battery cell 101. Through holes (not shown) are provided at both ends in the width direction of the end plates 120A and 120B, and a shaft 130 described later is inserted into the through holes.
  • a step 125 is provided at the lower end of each of the end plates 120A and 120B.
  • the step portion 125 is in contact with a cooling plate 180 described later. That is, the end plates 120A and 120B are directly thermally coupled to the cooling plate 180 at the step portions 125, respectively.
  • the battery holders 140 ⁇ / b> A and 140 ⁇ / b> B are side contact portions 141 ⁇ / b> A and 141 ⁇ / b> B (see FIG. 1) that are in contact with the narrow side surface of the single battery cell 101, and the upper surface side contact that is in contact with the upper surface of the single battery cell 101.
  • Insulating portions 143A and 143B (see FIGS. 1 to 3) interposed between the unit cells 142A and 142B (see FIGS. 1 and 2) and the single battery cell 101 or between the single battery cell 101 and the end plates 120A and 120B. And have.
  • a through hole (not shown) is provided at the center in the height direction of the side surface side contact portions 141A and 141B of the battery holders 140A and 140B, and a shaft 130 described later is inserted into the through hole.
  • the shaft 130 is inserted into the through holes provided at both ends in the width direction of the two end plates 120A and 120B and the through holes provided in the battery holders 140A and 140B. .
  • ⁇ Male screws are formed at both ends of the shaft 130.
  • the battery holders 140A and 140B sandwiched between the two end plates 120A and 120B are held in a compressed state by a predetermined amount. . Accordingly, each single battery cell 101 is held by the end plates 120A and 120B via the battery holders 140A and 140B.
  • the insulating portions 143A and 143B are interposed between the single battery cells 101 or between the end plates 120A and 120B and the single battery cell 101, insulation is ensured and a set of the single battery cells 101 is provided. A relative position in the longitudinal direction of the battery 100 is defined.
  • FIG. 4 is a perspective view showing the single battery cell 101
  • FIG. 5 is a perspective view showing the wound electrode group 170 accommodated in the battery container of the single battery cell 101.
  • the unit cell 101 includes a battery container having a battery can 102A and a battery lid 102B. Both the battery can 102A and the battery lid 102B are made of aluminum.
  • the battery can 102A has a rectangular box shape having an opening at one end.
  • the battery lid 102B has a rectangular flat plate shape and is welded so as to close the opening of the battery can 102A. That is, the battery lid 102B seals the battery can 102A.
  • the battery container has a hollow rectangular parallelepiped shape, with the wide main surfaces facing each other, the narrow and narrow surfaces facing each other, and the surface of the battery lid 102B and the bottom surface of the battery can 102A facing each other.
  • the battery can 102A accommodates a wound electrode group 170, which is a power storage element, covered with an insulating film 179 such as a polypropylene film.
  • the wound electrode group 170 is configured by laminating a long positive electrode 174 and a negative electrode 175 by winding them in a flat shape with a separator 173 interposed therebetween.
  • the positive electrode 174 has a positive electrode foil 171 and a positive electrode active material mixture layer 176 formed by coating a positive electrode active material mixture on both surfaces of the positive electrode foil 171.
  • the negative electrode 175 includes a negative electrode foil 172 and a negative electrode active material mixture layer 177 formed by coating a negative electrode active material mixture on both surfaces of the negative electrode foil 172. Charging / discharging is performed between the positive electrode active material and the negative electrode active material.
  • the positive foil 171 is an aluminum foil having a thickness of about 30 ⁇ m
  • the negative foil 172 is a copper foil having a thickness of about 20 ⁇ m.
  • the material of the separator 173 is a porous polyethylene resin.
  • One end of the wound electrode group 170 in the width direction is laminated with an uncoated portion (exposed portion of the positive foil 171) where the positive electrode active material mixture layer 176 is not formed.
  • the other portion is a portion where an uncoated portion (exposed portion of the negative electrode foil 172) where the negative electrode active material mixture layer 177 is not formed is laminated.
  • the positive external terminal 104 is a positive electrode of the wound electrode group 170, that is, a laminated portion of an uncoated portion (exposed portion of the positive foil 171) on the positive electrode side, through an aluminum positive electrode collector (not shown) (see FIG. 5). ) Is electrically connected.
  • the negative electrode external terminal 105 is connected to a negative electrode of the wound electrode group 170 via a copper negative electrode current collector (not shown), that is, a laminated portion of an uncoated portion (exposed portion of the negative electrode foil 172) on the negative electrode side (see FIG. 5). Is electrically connected.
  • male threads are respectively formed in the cylindrical portions exposed to the outside of the unit cell 101.
  • the positive external terminal 104 and the negative external terminal 105 of the adjacent unit cell 101 are electrically connected by a bus bar 109 made of a metal plate material.
  • the bus bar 109 is fastened to the positive external terminal 104 and the negative external terminal 105 by a nut (not shown).
  • a liquid injection part 107 is provided in the battery lid 102 ⁇ / b> B.
  • the liquid injection part 107 has a liquid injection hole for injecting an electrolytic solution into the battery container.
  • the liquid injection hole is sealed with a liquid injection plug after the electrolyte is injected.
  • the liquid injection stopper is fixed to the battery lid 102B by welding.
  • the electrolytic solution for example, a non-aqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a carbonate-based organic solvent such as ethylene carbonate can be used.
  • LiPF 6 lithium hexafluorophosphate
  • a gas discharge valve 103 is formed at the center of the battery lid 102B.
  • the gas discharge valve 103 provided on the container surface of the unit cell 101 is formed by partially thinning the battery lid 102B by pressing so that the degree of stress concentration during internal pressure action is relatively high. .
  • a predetermined pressure for example, about 1 MPa
  • the gas discharge valve 103 is preferentially broken, and the gas is discharged toward the upper outside of the battery container.
  • a duct 110 is provided at the top of the assembled battery 100 to guide the gas discharged from the gas discharge valve 103 of each of the plurality of unit cells 101 to the outside of the vehicle.
  • the material of the duct 110 is a material excellent in thermal conductivity, for example, aluminum.
  • Duct 110 is formed so as to extend along the longitudinal direction of battery pack 100.
  • a gas exhaust path 111 is formed inside the duct 110, that is, the inside of the duct 110 is hollow.
  • a duct introduction port 112 which is a gas introduction opening to the duct 110 is formed.
  • the duct introduction port 112 communicates with the gas exhaust path 111 extending in the longitudinal direction.
  • the duct inlet 112 is provided so as to include the gas discharge valve 103 of each unit cell 101 (see FIGS. 3 and 6).
  • the duct 110 is provided with a leg portion 113 that comes into contact with the upper end surfaces of the end plates 120A and 120B. As shown in FIGS. 1 and 2, the leg portion 113 is formed with a mounting portion 113 b that protrudes outward in the width direction of the battery pack 100. As shown in FIG. 1, a through hole 113a is formed in the attachment portion 113b.
  • the leg portion 113 of the duct 110 is brought into contact with the upper end surfaces of the end plates 120A and 120B, the bolt 113c is inserted into the through hole 113a of the mounting portion 113b, and the bolt 113c is a screw provided on the upper end surface of the end plates 120A and 120B.
  • the duct 110 is fixed to the end plates 120A and 120B by being mounted in the hole 123 (see FIG. 6).
  • a seal member 150 is provided at a connection portion between the gas discharge valve 103 and the duct 110 in order to prevent gas from leaking to the outside. Is arranged.
  • the material of the seal member 150 is a resin having moderate elasticity, good insulation, and good thermal conductivity, such as silicon rubber.
  • the thermal conductivity of silicon rubber used for the seal member 150 is preferably about 1 to 5 W / m ⁇ K.
  • FIG. 6 is a schematic plan view of the assembled battery 100 with the duct 110 removed.
  • the seal member 150 is formed in a rectangular parallelepiped shape extending along the longitudinal direction of the assembled battery 100. As shown in FIGS. 3 and 6, the seal member 150 is disposed between the duct 110 and the battery cover 102 ⁇ / b> B along the duct 110, and a gap between the lower surface of the duct 110 and the connection portion of the gas exhaust valve 103. Is buried. In other words, the upper surface of the seal member 150 is in contact with the lower surface of the duct 110 and the lower surface of the seal member 150 is in contact with the outer surface of the battery lid 102B.
  • the seal member 150 is provided with an opening 151 corresponding to the gas discharge valve 103 of each unit cell 101 and the duct introduction port 112 of the duct 110.
  • the seal member 150 is held in a compressed state by the duct 110 and the battery lid 102B. Thereby, the airtightness of the gas exhaust path 111 of the duct 110 is ensured. Since the gas exhaust path 111 of the duct 110 and the gas exhaust valve 103 of the single battery cell 101 are hermetically connected by the seal member 150, the gas does not leak to the outside when the gas exhaust valve 103 is cleaved. It is introduced into the exhaust path 111 and guided to the outside of the assembled battery 100 through the gas exhaust path 111.
  • a joint portion 119 is extended at one end of the assembled battery 100 in the longitudinal direction in the gas exhaust path 111.
  • the joint portion 119 is connected to a hose (not shown) that guides gas to the outside of the vehicle.
  • the battery pack 100 includes a cooling plate 180 at the bottom.
  • the material of the cooling plate 180 is a material excellent in thermal conductivity, for example, aluminum.
  • the cooling plate 180 is formed in a rectangular parallelepiped shape, and as shown in FIG. 3, a cooling medium flow path 183 through which a cooling medium such as an ethylene glycol aqueous solution flows is linearly provided.
  • One end of the cooling plate 180 is provided with a refrigerant inlet 181 into which a cooling medium is introduced, and the other end of the cooling plate 180 is provided with a refrigerant outlet 182 through which the cooling medium is discharged.
  • the cooling medium flows from left to right in the figure.
  • an insulating sheet 189 is interposed between the upper surface of the cooling plate 180 and the bottom surface of the battery can 102A.
  • the insulating sheet 189 is a heat conductive sheet based on silicon and has good heat conductivity and good electrical insulation.
  • the insulating sheet 189 is preferably a thermal conductive sheet having a thermal conductivity of about 1 to 5 W / m ⁇ K.
  • the insulating sheet 189 further has appropriate flexibility and adhesiveness, and both the single battery cell 101 and the cooling plate 180 have a gap between the bottom surface of the battery can 102A and the top surface of the cooling plate 180. Are in contact with each other.
  • the cooling plate 180 and the battery holders 140A and 140B are fastened by a clip 190 made of an elastic member.
  • the shaft 130 is inserted into the through holes of the side surface contact portions 141A and 141B in the battery holders 140A and 140B, the battery holders 140A and 140B are integrally coupled.
  • the battery is driven by the elastic force of the clip 190.
  • the holders 140A and 140B are pressed against the cooling plate 180 side.
  • the battery holders 140 ⁇ / b> A and 140 ⁇ / b> B press the single battery cell 101 downward by the upper surface side contact portions 142 ⁇ / b> A and 142 ⁇ / b> B.
  • the insulating sheet 189 having flexibility is compressed by a predetermined amount, and the unit cell 101 is thermally coupled to the cooling plate 180 through the insulating sheet 189.
  • the temperature rise at the top of the unit cell 101 is suppressed as follows.
  • the outer surface of the battery lid 102B is thermally coupled to the duct 110 via the seal member 150, the heat generated inside the single battery cell 101 is transferred from the battery lid 102B to the seal member 150. Is transmitted to the duct 110.
  • the duct 110 is directly thermally coupled to the end plates 120A and 120B at the legs 113, the heat transmitted to the duct 110 is directly transmitted to the end plates 120A and 120B.
  • the end plates 120 ⁇ / b> A and 120 ⁇ / b> B are directly and thermally coupled to the cooling plate 180 at the step portion 125, so that the heat transmitted to the end plates 120 ⁇ / b> A and 120 ⁇ / b> B is Communicate directly to.
  • the heat transmitted to the cooling plate 180 is absorbed by the cooling medium and transferred to the outside of the assembled battery 100.
  • the heat generated inside the single battery cell 101 and transferred to the battery lid 102B is transferred to the cooling medium through the seal member 150, the duct 110, the end plates 120A and 120B, and the cooling plate 180.
  • the temperature rise at the top of the cell 101 is suppressed.
  • the difference between the temperature at the top of the unit cell 101 and the temperature at the bottom of the unit cell 101 is reduced.
  • the duct 110 disposed at the upper part of the assembled battery 100 and the cooling plate 180 disposed at the lower part of the assembled battery 100 are thermally coupled by the end plates 120A and 120B. Thereby, not only the lower part of the single battery cell 101 but the upper part of the single battery cell 101 can be cooled.
  • the cooling plate 180 is provided below the plurality of single battery cells 101, and the duct 110 disposed above the plurality of single battery cells 101 is configured as a heat transfer path. The temperature difference between the upper part and the lower part can be reduced, and the temperature distribution of each single battery cell 101 can be relaxed.
  • the duct 110 is thermally coupled to the cooling plate 180, when the gas discharge valve 103 is cleaved and high-temperature gas or electrolyte is ejected, the gas exhaust path of the duct 110 The gas or electrolyte passing through 111 can also be cooled. That is, according to the present embodiment, the temperature of the gas or electrolyte discharged from the gas discharge valve 103 can be lowered to reduce the ignition potential.
  • the duct 110 is configured as a heat transfer path, a dedicated heat conduction member for thermally coupling the upper surface of each unit cell 101 and the end plates 120A and 120B is newly provided separately from the duct 110. There is no need.
  • the end plates 120A and 120B that are constituent members of the integrated mechanism of the assembled battery 100 are members that thermally couple the duct 110 and the cooling plate 180, the duct 110 and the cooling plate 180 are separated from the end plates 120A and 120B. There is no need to newly provide a dedicated heat conduction member for thermally connecting the two.
  • the coolant channel 183 is formed inside the cooling plate 180, and the single battery cell 101 on the cooling plate 180 is cooled by flowing a coolant such as an ethylene glycol aqueous solution through the coolant channel 183.
  • a coolant such as an ethylene glycol aqueous solution
  • the present invention is not limited to this.
  • a cooling plate 280 provided with a plurality of fins 288 may be adopted as a cooling body, and an air cooling method for cooling the cooling plate 280 with cooling air may be adopted.
  • the cooling plate 280 can be cooled by blowing cooling air between the fins 288 by a fan (not shown) from the side of the assembled battery 200, which is the same as in the above embodiment.
  • the liquid cooling method is preferable because a liquid having a larger heat capacity than the air cooling method is used as a cooling medium, and the plurality of single battery cells 101 arranged over a wide range can be cooled uniformly.
  • thermo coupling plate 320 such as an aluminum plate is disposed between the battery cells 101 as shown in FIG.
  • the plate 180 may be thermally coupled.
  • the duct 110 and the cooling plate 180 may be thermally coupled by both the end plates 120A and 120B and the thermal coupling plate 320.
  • the duct 110 is disposed on the upper part of the assembled battery 100, the upper surface of the unit cell 101 is thermally coupled to the duct 110 via the seal member 150, and the lower part of the assembled battery 100 is cooled.
  • the present invention is not limited thereto.
  • the present invention can also be applied. In this case, the temperature distribution between the side portion of the unit cell 101 near the cooling plate 180 and the upper part of the unit cell 101 near the duct 110 can be relaxed.
  • silicon rubber is used as the material of the seal member 150
  • a heat conductive sheet based on silicon is used as the material of the insulating sheet 189.
  • Various materials having good thermal conductivity can be used.
  • a material based on acrylic can be employed as the material of the seal member 150 and the insulating sheet 189.
  • the material of the insulating sheet 189 is not limited to the case of adopting a flexible material, and various heat conductive members having high insulation, thermal conductivity, and rigidity can be employed.
  • various materials such as the material of the insulating sheet 189, various materials such as aluminum nitride, silicon nitride, aluminum oxide, and diamond-like carbon can be employed.
  • the present invention is not limited to this.
  • Various materials having good thermal conductivity such as aluminum alloy, stainless steel, and nickel can be used.
  • the coolant channel 183 may be formed such that the cooling medium that has flowed in from one end of the cooling plate 180 is folded back near the other end of the cooling plate 180 and flows out from one end of the cooling plate 180.
  • a plurality of folded portions may be provided, and various routes of the refrigerant flow path 183 can be adopted.
  • the number of refrigerant channels 183 is not limited to one, and a plurality of refrigerant channels 183 may be provided.
  • bus bar 109 is attached by a nut (not shown) has been described.
  • the present invention is not limited to this, and the bus bar 109 may be attached by welding.
  • the materials of the positive electrode external terminal 104, the positive electrode current collector, and the positive electrode foil 171 are not limited to aluminum, and may be an aluminum alloy.
  • the material of the negative electrode external terminal 105, the negative electrode current collector, and the negative electrode foil 172 is not limited to copper, and may be a copper alloy.
  • the power storage element accommodated in the battery can 102A is not limited to the case where the positive electrode 174 and the negative electrode 175 are wound around the separator 173, and is not limited to a plurality of positive electrodes. It is good also as a laminated electrode group which laminated
  • the present invention is not limited to this.
  • the present invention can be applied to a laminate-sealed battery, and besides the lithium ion secondary battery, the present invention can be applied to various batteries in which a storage element such as a nickel metal hydride battery is accommodated in a battery container.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 組電池は、電池容器の一の面にガス排出弁を有する複数の単電池セルと、複数の単電池セルの各々のガス排出弁から排出されるガスを案内するダクトと、ダクトと電池容器の一の面との間に設けられ、ダクト内部に形成されるガス排気経路とガス排出弁とを気密して接続するシール部材と、電池容器の他の面を冷却する冷却体と、ダクトと、冷却体とを熱的に結合する熱結合部材とを備え、単電池セルの一の面の熱が、シール部材、ダクトおよび熱結合部材を介して冷却体に伝えられる構成となっている。

Description

組電池
 本発明は、複数の二次電池を電気的に接続した組電池に関する。
 ハイブリッド電気自動車や純粋な電気自動車に搭載される組電池は、たとえば、リチウムイオン電池、ニッケル水素電池等の多数の二次電池(以下、単電池セルと記す)を組み合わせて構成される。組電池を構成する単電池セルは、充放電の際、内部抵抗に起因した発熱が生じ、温度が上昇するほど、容量減少等の寿命に関する性能劣化が起こりやすくなる。
 単電池セルの温度上昇は、電池寿命の観点からできるだけ小さくすることが望ましい。組電池を構成する単電池セルを冷却する方法として、単電池セルの電池容器の表面を絶縁シートを介して冷却プレートに熱結合させ、単電池セルを冷却する方法がある。
 特許文献1には、冷却プレートの一面に絶縁シートを介して複数の単電池セルの底面を熱結合させた構成の組電池が提案されている。冷却プレートは、単電池セルの底面から伝わった熱を吸収し、吸収した熱を組電池の外部へ移送する冷媒の流路を内部に備えている。
日本国特開2009-110832号公報
 特許文献1に記載の組電池では、単電池セルの底面に絶縁シートを介して冷却プレートを熱結合させているため、単電池セルの底面に近い部分の温度に比べて、底面から離れた部分、たとえば単電池セルの上面に近い部分の温度が高くなり、単電池セル内の温度分布が大きくなる傾向がある。
 単電池セルの性能を長期間に亘って維持するためには、単電池セルの温度を適切な温度範囲内に保つ必要がある。単電池セル内に大きな温度分布が生じると、単電池セルの許容温度範囲が狭くなり、セル温度管理上望ましくない。
 本発明の第1の態様によると、組電池は、電池容器の一の面にガス排出弁を有する複数の単電池セルと、複数の単電池セルの各々のガス排出弁から排出されるガスを案内するダクトと、ダクトと電池容器の一の面との間に設けられ、ダクト内部に形成されるガス排気経路とガス排出弁とを気密して接続するシール部材と、電池容器の他の面を冷却する冷却体と、ダクトと冷却体とを熱的に結合する熱結合部材とを備え、単電池セルの一の面の熱が、シール部材、ダクトおよび熱結合部材を介して冷却体に伝えられる。
 本発明の第2の態様によると、第1の態様の組電池において、単電池セルの電池容器は直方体形状であり、電池容器の一の面には外部端子が設けられ、電池容器の他の面は電池容器の一の面に対向しているのが好ましい。
 本発明の第3の態様によると、第1または2の態様の組電池において、複数の単電池セルを並置して一体的に組み立てる一体化機構を有し、一体化機構は、並置した複数の単電池セルの間に配置されるホルダと、並置した複数の単電池セルを挟持する、熱結合部材としての一対のエンドプレートとを有しているのが好ましい。
 本発明の第4の態様によると、第3の態様の組電池において、複数の単電池セル間に配置され、ダクトと冷却体とを熱的に結合する補助熱結合部材をさらに備えているのが好ましい。
 本発明の第5の態様によると、第1ないし4のいずれか1の態様の組電池において、冷却体は、内部に冷却媒体が流れる冷媒流路を有する冷却プレートと、冷却プレートと電池容器の他の面との間に介在される絶縁シートとを有しているのが好ましい。
 本発明によれば、組電池を構成する各単電池セルの温度分布を緩和できる。
本発明の実施の形態に係る組電池の外観斜視図。 図1のII-II線切断断面模式図。 図1のIII-III線切断断面模式図。 図1の単電池セルを示す斜視図。 図1の単電池セルの電池容器に収容される捲回電極群を示す斜視図。 ダクトを取り除いた組電池の平面模式図。 冷却システムを示す図。 本発明の変形例に係る組電池の外観斜視図。 本発明の変形例に係る組電池の部分側面断面模式図。
 以下、図面を参照して、本発明をハイブリッド電気自動車や純粋な電気自動車に搭載される蓄電装置に組み込まれる組電池であって、角形リチウムイオン二次電池(以下、単電池セルと記す)を複数備えた組電池に適用した実施の形態について説明する。なお、同様の形状、同種の材質の構成要素には、同一の符号を付けた。
 図1は、本発明の実施の形態に係る組電池100の外観斜視図である。図2は、図1のII-II線切断断面模式図であり、図3は、図1のIII-III線切断断面模式図である。図1に示すように、組電池100は、8個の単電池セル101を有している。複数の単電池セル101は、並べて配置されており、後述するエンドプレート120A,120B、電池ホルダ140A,140Bおよびシャフト130を含んで構成される一体化機構によって一体的に組み立てられている。
 各単電池セル101は、扁平な直方体形状であって、側面のうちで広い面積を有する主面同士が対向するように並べて配置されている。隣接する単電池セル101同士は、単電池セル101の上面から突設される正極外部端子104および負極外部端子105の位置が逆転するように、向きが反転して配置されている。
 図1に示すように、隣り合う各単電池セル101の正極外部端子104と負極外部端子105とは金属製の平板状導電部材であるバスバー109によって電気的に接続されている。すなわち、本実施の形態に係る組電池100を構成する複数の単電池セル101は、電気的に直列に接続されている。
 両端に配置される単電池セル101における一方の単電池セル101(図中手前側の単電池セル101)の正極外部端子104、および、他方の単電池セル101(図中奥側の単電池セル101)の負極外部端子105には、不図示の他の組電池に電気的に直列または並列に不図示の導電部材により接続されるか、不図示の電力取り出し用の配線に不図示の導電部材により接続される。
 図1~図3に示すように、並置された複数の単電池セル101は、電池ホルダ140A,140Bを介して、配列方向(組電池100の長手方向)の両端側から一対のエンドプレート120A,120Bにより挟持されている。エンドプレート120A,120Bの材質は、熱伝導性に優れた材質であり、たとえばアルミニウムである。エンドプレート120A,120Bは、単電池セル101の主面に対応した矩形平板状とされている。エンドプレート120A,120Bの幅方向両端には貫通孔(不図示)が設けられており、貫通孔には後述するシャフト130が挿通されている。
 図1および図2に示すように、エンドプレート120A,120Bのそれぞれの下端部には、段差部125が設けられている。段差部125は後述する冷却プレート180に当接されている。つまり、エンドプレート120A,120Bは、それぞれ段差部125において冷却プレート180に対して直接に熱結合されている。
 図1~図3に示すように、2枚のエンドプレート120A,120Bの間には、複数の電池ホルダ140A,140Bが配置されている。電池ホルダ140A,140Bの材質は、絶縁性を有する樹脂である。各単電池セル101間には第1電池ホルダ140Aが配置されている。両端に配置される単電池セル101と、エンドプレート120A,120Bとの間には、第2電池ホルダ140Bが配置されている。
 電池ホルダ140A,140Bは、単電池セル101の幅狭側面に当接される側面側当接部141A,141B(図1参照)と、単電池セル101の上面に当接される上面側当接部142A,142B(図1および図2参照)と、単電池セル101間または単電池セル101とエンドプレート120A,120Bとの間に介在される絶縁部143A,143B(図1~図3参照)とを有している。電池ホルダ140A,140Bの側面側当接部141A,141Bの高さ方向中央には貫通孔(不図示)が設けられており、この貫通孔には後述するシャフト130が挿通されている。
 上記したように、2枚のエンドプレート120A,120Bのそれぞれの幅方向両端に設けられた貫通孔、ならびに、各電池ホルダ140A,140Bに設けられた貫通孔には、シャフト130が挿通されている。
 シャフト130の両端部には、おねじが形成されている。エンドプレート120A,120Bの外側からナット131をシャフト130の両端部に装着することで、2枚のエンドプレート120A,120Bに挟まれた電池ホルダ140A,140Bが所定量圧縮された状態で保持される。したがって、各単電池セル101が電池ホルダ140A,140Bを介してエンドプレート120A,120Bにより保持される。
 各単電池セル101同士の間やエンドプレート120A,120Bと単電池セル101との間に絶縁部143A,143Bが介在しているため、絶縁性が確保されるとともに、各単電池セル101の組電池100の長手方向における相対位置が規定される。
 図1および図2に示すように、ナット131がシャフト130に装着されることで、エンドプレート120A,120Bは内側に押圧され、段差部125が後述する冷却プレート180の表面に当接され、エンドプレート120A,120Bが冷却プレート180に熱的に結合される。
 組電池100を構成する単電池セル101について説明する。組電池100を構成する複数の単電池セル101は、いずれも同様の構造である。図4は、単電池セル101を示す斜視図であり、図5は単電池セル101の電池容器に収容される捲回電極群170を示す斜視図である。
 図4に示すように、単電池セル101は、電池缶102Aと電池蓋102Bとを有する電池容器を備えている。電池缶102Aおよび電池蓋102Bの材質は、いずれもアルミニウムである。電池缶102Aは、一端部に開口を有する矩形箱状とされる。電池蓋102Bは、矩形平板状であって、電池缶102Aの開口を塞ぐように溶接されている。つまり、電池蓋102Bは、電池缶102Aを封止している。
 電池容器は、中空の直方体形状とされ、幅の広い主面同士が対向し、幅の狭い幅狭面同士が対向し、電池蓋102Bの表面と電池缶102Aの底面とが対向している。
 図3に示すように、電池缶102Aには、蓄電要素である捲回電極群170がポリプロピレンフィルムなどの絶縁フィルム179に覆われた状態で収容されている。捲回電極群170は、図5に示すように、長尺状の正極電極174および負極電極175をセパレータ173を介在させて扁平状に捲回することで積層して構成されている。
 正極電極174は、正極箔171と、正極箔171の両面に正極活物質合剤が塗工されて形成される正極活物質合剤層176とを有する。負極電極175は、負極箔172と、負極箔172の両面に負極活物質合剤が塗工されて形成される負極活物質合剤層177とを有する。正極活物質と負極活物質との間では、充放電が行われる。正極箔171は、厚さ30μm程度のアルミニウム箔であり、負極箔172は、厚さ20μm程度の銅箔である。セパレータ173の素材は多孔質のポリエチレン樹脂である。
 捲回電極群170の幅方向(捲回方向に直交する方向)の両端部は、一方が正極活物質合剤層176が形成されていない未塗工部(正極箔171の露出部)が積層された部分とされ、他方が負極活物質合剤層177が形成されていない未塗工部(負極箔172の露出部)が積層された部分とされている。
 図4に示すように、電池蓋102Bには、正極外部端子104および負極外部端子105が配設されている。正極外部端子104の材質はアルミニウムであり、負極外部端子105の材質は銅である。正極外部端子104および負極外部端子105は、電池蓋102Bの両端部近傍に設けられた貫通孔に、絶縁性の樹脂材料からなるガスケット106を介して挿着されている。ガスケット106は、正極外部端子104と電池蓋102Bの貫通孔との間、ならびに、負極外部端子105と電池蓋102Bの貫通孔との間にそれぞれ設けられ、電解液が漏れ出さないように、電池容器を密閉している。
 正極外部端子104は、図示しないアルミニウム製の正極集電体を介して、捲回電極群170の正極、すなわち正極側の未塗工部(正極箔171の露出部)の積層部(図5参照)に電気的に接続されている。負極外部端子105は、図示しない銅製の負極集電体を介して、捲回電極群170の負極、すなわち負極側の未塗工部(負極箔172の露出部)の積層部(図5参照)に電気的に接続されている。
 正極外部端子104および負極外部端子105において単電池セル101の外に露出している円柱部には、それぞれおねじが形成されている。図1に示すように、隣接する単電池セル101の正極外部端子104と負極外部端子105とは、金属製の板材からなるバスバー109によって電気的に接続される。バスバー109は、図示しないナットによって正極外部端子104、負極外部端子105に締結されている。
 図4に示すように、電池蓋102Bには、注液部107が設けられている。注液部107には、電池容器内に電解液を注入するための注液孔が穿設されている。注液孔は、電解液注入後に注液栓によって封止される。注液栓は、溶接によって電池蓋102Bに固定される。電解液としては、たとえば、エチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF)等のリチウム塩が溶解された非水電解液を用いることができる。電解液が電池缶102Aに注入されると、捲回電極群170の内部全域には、電解液が含浸される。
 図4に示すように、電池蓋102Bの中央部分には、ガス排出弁103が形成されている。単電池セル101の容器表面に設けられるガス排出弁103は、内圧作用時の応力集中度合が相対的に高くなるように、プレスによって電池蓋102Bを部分的に薄肉化することで形成されている。これにより、電池缶102A内が所定圧力(たとえば、約1MPa)に達すると、ガス排出弁103が優先的に破壊されて、ガスが電池容器の外部上方に向かって排出される。
 図1~図3に示すように、組電池100の上部には、複数の単電池セル101の各々のガス排出弁103から排出されるガスを車両外部に案内するダクト110が設けられている。ダクト110の材質は、熱伝導性に優れた材質であり、たとえばアルミニウムである。ダクト110は、組電池100の長手方向に沿って延在するように形成されている。図3に示すように、ダクト110の内部にはガス排気経路111が形成されている、すなわちダクト110の中は空洞になっている。
 各単電池セル101のガス排出弁103に対応する位置には、ダクト110へのガス導入用開口であるダクト導入口112が形成されている。ダクト導入口112は、長手方向に延在するガス排気経路111まで連通されている。ダクト導入口112は、各単電池セル101のガス排出弁103を包含するように設けられている(図3および図6参照)。
 ダクト110には、エンドプレート120A,120Bの上端面に当接される脚部113が設けられている。図1および図2に示すように、脚部113には組電池100の幅方向外側に向かって突出する取付部113bが形成されている。図1に示すように、取付部113bには、貫通孔113aが形成されている。
 ダクト110の脚部113をエンドプレート120A,120Bの上端面に当接させ、取付部113bの貫通孔113aにボルト113cを挿通させ、ボルト113cをエンドプレート120A,120Bの上端面に設けられたねじ孔123(図6参照)に装着することで、ダクト110がエンドプレート120A,120Bに固定される。
 図3に示すように、単電池セル101のガス排出弁103が開裂した際、ガスが外部に漏れることを防止するために、ガス排出弁103とダクト110との接続部には、シール部材150が配設されている。シール部材150の材質は、適度な弾性と、良好な絶縁性、および、良好な熱伝導性を有する樹脂であり、たとえば、シリコンゴムである。なお、シール部材150に用いられるシリコンゴムの熱伝導率としては、1~5W/m・K程度のものが好ましい。
 図6は、ダクト110を取り除いた組電池100の平面模式図である。シール部材150は、組電池100の長手方向に沿って延びる直方体形状に形成されている。図3および図6に示すように、シール部材150は、ダクト110に沿うようにして、ダクト110と電池蓋102Bとの間に配置され、ダクト110の下面とガス排出弁103の接続部における隙間を埋めている。換言すれば、シール部材150の上面がダクト110の下面に密着するように当接され、シール部材150の下面が電池蓋102Bの外表面に密着するように当接されている。シール部材150には、各単電池セル101のガス排出弁103およびダクト110のダクト導入口112に対応して、開口151が設けられている。
 上記したように、ダクト110をボルト113cによりエンドプレート120A,120Bに締め付け固定すると、ダクト110と電池蓋102Bとによってシール部材150が所定量圧縮された状態で保持される。これにより、ダクト110のガス排気経路111の気密性が確保される。ダクト110のガス排気経路111と、単電池セル101のガス排出弁103とがシール部材150により気密に接続されているため、ガス排出弁103が開裂したときに、ガスは外部に漏れることなくガス排気経路111に導入され、ガス排気経路111を通って、組電池100の外部へ案内される。
 図1~図3に示すように、ガス排気経路111における組電池100の長手方向の一端には、ジョイント部119が延設されている。ジョイント部119には、車両外部へガスを導くホース(不図示)が接続される。
 図1~図3に示すように、組電池100は下部に冷却プレート180を備えている。冷却プレート180の材質は、熱伝導性に優れた材質であり、たとえばアルミニウムである。冷却プレート180は、直方体形状に形成され、図3に示すように、内部にエチレングリコール水溶液などの冷却媒体が流れる冷媒流路183が直線的に設けられている。冷却プレート180の一端には冷却媒体が導入される冷媒入口部181が設けられ、冷却プレート180の他端には冷却媒体が排出される冷媒出口部182が設けられている。冷却媒体は、図中左方から右方に向かって流れる。
 図3に示すように、冷却プレート180の上面と、電池缶102Aの底面との間には絶縁シート189が介在されている。絶縁シート189は、シリコンを基材とした熱伝導性シートであり、良好な熱伝導性と良好な電気的絶縁性を有している。絶縁シート189には、熱伝導率1~5W/m・K程度の熱伝導性シートを採用することが好ましい。
 絶縁シート189は、さらに適度な柔軟性と粘着性を有しており、電池缶102Aの底面と冷却プレート180の上面との間に隙間ができないように、単電池セル101および冷却プレート180の双方に密着するように当接されている。
 図1に示すように、冷却プレート180と電池ホルダ140A,140Bとは、弾性部材からなるクリップ190により締結される。なお、上記したようにシャフト130が各電池ホルダ140A,140Bにおける側面側当接部141A,141Bの貫通孔に挿通されているため、各電池ホルダ140A,140Bは一体的に結合されている。
 したがって、図1に示すように、クリップ190の一方の爪を冷却プレート180の凹部に装着し、クリップ190の他方の爪を所定の電池ホルダ140Aの凹部に装着すると、クリップ190の弾性力により電池ホルダ140A,140Bが冷却プレート180側に押さえつけられる。図1、図2および図6に示すように、電池ホルダ140A,140Bは上面側当接部142A,142Bにより単電池セル101を下方に押しつける。柔軟性を有する絶縁シート189は所定量だけ圧縮され、単電池セル101が絶縁シート189を介して冷却プレート180に熱結合される。
 図7は、冷却システムの構成を示す図である。冷却システムは、ポンプ11と、タンク12と、ラジエータ13と、それらを接続する配管14とを含んで構成される。ポンプ11は、冷却媒体を冷却システム内において循環させる。ラジエータ13は、組電池100を構成する各単電池セル101で発生した熱を奪って暖められた冷却媒体を大気との間で熱交換することで冷却する。冷却プレート180は、冷却システムのポンプ吐出側に設けられる。タンク12は、冷却媒体を一時的に貯蔵するバッファの役割を持ち、温度変化などによる冷却媒体の体積変化を吸収してポンプ11に冷却媒体を安定して供給する。
 このように構成された組電池100では、単電池セル101内部で発生した熱が、単電池セル101の電池缶102Aの底面から絶縁シート189を介して冷却プレート180に伝わり、冷却媒体に吸収される。冷却媒体に吸収された熱は、冷却媒体が冷媒流路183を流れることで、組電池100の外部に移送される。その結果、単電池セル101の下部が効果的に冷却される。
 さらに本実施の形態に係る組電池100では、単電池セル101の上部の温度上昇が以下のようにして抑制される。図3に示すように、電池蓋102Bの外表面がシール部材150を介してダクト110に熱的に結合されているため、単電池セル101内部で発生した熱は、電池蓋102Bからシール部材150を介してダクト110に伝わる。ダクト110は、脚部113でエンドプレート120A,120Bに直接に熱的に結合されているため、ダクト110に伝わった熱は、エンドプレート120A,120Bに直接伝わる。図1および図2に示すように、エンドプレート120A,120Bは、段差部125で冷却プレート180に直接に熱的に結合されているため、エンドプレート120A,120Bに伝わった熱は、冷却プレート180に直接伝わる。冷却プレート180に伝わった熱は、冷却媒体に吸収され、組電池100の外部に移送される。
 このように、単電池セル101の内部で発生して電池蓋102Bに伝わった熱が、シール部材150、ダクト110、エンドプレート120A,120Bおよび冷却プレート180を介して冷却媒体に伝わるため、単電池セル101の上部の温度上昇が抑制される。その結果、単電池セル101の上部の温度と、単電池セル101の下部の温度との差が小さくなる。
 以上説明した本実施の形態によれば、以下のような作用効果を奏することができる。
 (1)組電池100の上部に配置されるダクト110と、組電池100の下部に配置される冷却プレート180とをエンドプレート120A,120Bにより熱的に結合した。これにより、単電池セル101の下部だけでなく単電池セル101の上部も冷却できる。このように、複数の単電池セル101の下方に冷却プレート180を設けるとともに、複数の単電池セル101の上方に配置されるダクト110を伝熱経路として構成することで、各単電池セル101の上部と下部の温度差を小さくでき、各単電池セル101の温度分布を緩和できる。
 (2)(1)により、単電池セル101の上部を積極的に冷却する構成を有していない従来の組電池に比べて、性能を長期に亘って維持できる組電池100を提供できる。
 (3)(1)により、組電池100の許容温度範囲が大きくなるため、セル温度管理を容易に行うことのできる組電池100を提供できる。
 (4)本実施の形態では、ダクト110が冷却プレート180に熱的に結合されているため、ガス排出弁103が開裂し、高温のガスや電解液が噴出した際、ダクト110のガス排気経路111を通過するガスや電解液を冷却することもできる。つまり、本実施の形態によれば、ガス排出弁103から排出されるガスや電解液の温度を低下させて、引火ポテンシャルを低減することもできる。
 (5)ダクト110を伝熱経路として構成したため、ダクト110とは別に各単電池セル101上面とエンドプレート120A,120Bとを熱的に結合するための専用の熱伝導部材を新たに配設する必要がない。
 (6)組電池100の一体化機構の構成部材であるエンドプレート120A,120Bをダクト110と冷却プレート180とを熱結合する部材としたため、エンドプレート120A,120Bとは別にダクト110と冷却プレート180とを熱的に結合するための専用の熱伝導部材を新たに配設する必要がない。
 (7)(5)および(6)により、組電池100の大型化および高コスト化が防止される。
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
 (1)上記実施の形態では、冷却プレート180の内部に冷媒流路183を形成し、冷媒流路183にエチレングリコール水溶液などの冷却媒体を流すことで冷却プレート180上の単電池セル101を冷却する液礼方式の冷却方法を採用したが、本発明はこれに限定されない。
 たとえば、図8に示すように、複数のフィン288が設けられた冷却プレート280を冷却体として採用し、冷却風により冷却プレート280を冷却する空冷方式の冷却方法を採用してもよい。図8の矢印で示すように、組電池200の側方からファン(不図示)により冷却風をフィン288間に送風することで、冷却プレート280を冷却することができ、上記実施形態と同様の効果を奏する。なお、液冷方式は、空冷方式に比べて熱容量の大きい液体を冷却媒体とするため、広範囲に亘って配列される複数の単電池セル101を均等に冷却できるため好適である。
 (2)上記実施の形態では、ダクト110と冷却プレート180とをエンドプレート120A,120Bにより熱的に結合する構成について説明したが本発明はこれに限定されない。たとえば、エンドプレート120A,120Bを熱結合部材とせずに、図9に示すように、単電池セル101間にアルミニウム板などの熱結合板320を配置して、熱結合板320によりダクト110と冷却プレート180とを熱的に結合してもよい。エンドプレート120A,120Bおよび熱結合板320の両方により、ダクト110と冷却プレート180とを熱的に結合してもよい。
 (3)上記実施の形態では、組電池100の上部にダクト110を配置して単電池セル101の上面をシール部材150を介してダクト110に熱的に結合させ、組電池100の下部に冷却プレート180を配置して単電池セル101の下面を絶縁シート189を介して冷却プレート180に熱的に結合させた構成について説明したが、本発明はこれに限定されない。冷却プレート180を組電池100の一方の側部あるいは両側部に配置させて、単電池セル101の一方の側面あるいは単電池セル101の両側面と、冷却プレート180とを熱的に結合させる構成についても本発明を適用できる。この場合、冷却プレート180近傍の単電池セル101の側部と、ダクト110近傍の単電池セル101上部との温度分布を緩和させることができる。
 (4)上記実施の形態では、シール部材150の材質にはシリコンゴムを採用し、絶縁シート189の材質には、シリコンを基材とした熱伝導性シートを採用したが、本発明はこれに限定されない。熱伝導性の良好な種々の材料を採用できる。たとえば、シール部材150および絶縁シート189の材質には、アクリルを基材とした材質を採用できる。絶縁シート189の材質には、柔軟性を有する材料を採用する場合に限定されることもなく、絶縁性、熱伝導性および剛性の高い種々の熱伝導性部材を採用できる。たとえば、絶縁シート189の材質には、窒化アルミニウム、窒化ケイ素、酸化アルミニウム、ダイヤモンドライクカーボンなどの種々の材料を採用できる。
 (5)上記実施の形態では、冷却プレート180、エンドプレート120A,120B、ダクト110および電池容器の材質には、アルミニウムを採用したが、本発明はこれに限定されない。アルミニウム合金、ステンレススチール、ニッケル等の熱伝導性の良好な種々の材料を採用できる。
 (6)上記実施の形態では、冷却プレート180に形成される冷媒流路183を直線的に設ける例について説明したが、本発明はこれに限定されない。冷媒流路183は、冷却プレート180の一端から流入させた冷却媒体を冷却プレート180の他端近傍で折り返し、冷却プレート180の一端から流出するように形成してもよい。折り返し部は、複数設けてもよいし、冷媒流路183のルートは、種々採用できる。冷媒流路183の本数も1本に限定されることなく、複数本の冷媒流路183を設けてもよい。
 (7)上記実施の形態では、バスバー109をナット(不図示)により取り付ける構成について説明したが、本発明はこれに限定されず、溶接によりバスバー109を取り付けてもよい。
 (8)正極外部端子104、正極集電体および正極箔171の材質は、アルミニウムに限定されることなく、アルミニウム合金としてもよい。負極外部端子105、負極集電体および負極箔172の材質は、銅に限定されることなく、銅合金としてもよい。
 (9)電池缶102Aに収容される蓄電要素は、正極電極174と負極電極175とをセパレータ173を介して捲回した捲回電極群170とする場合に限定されることなく、複数枚の正極電極と負極電極とをセパレータを介して積層した積層電極群としてもよい。
 (10)組電池100を構成する単電池セル101として、リチウムイオン二次電池を一例に説明したが本発明はこれに限定されない。たとえば、ラミネート封止の電池に関しても適用され、また、リチウムイオン二次電池以外に、ニッケル水素電池などの蓄電要素を電池容器内に収容する種々の電池に本発明を適用できる。
 (11)本発明において、ダクト110はエンドプレート120A,120Bに熱的に結合されていればよく、締結手段は上記したようにボルト113cに限定されない。たとえば、クリップ状の締結部材により、ダクト110とエンドプレート120A,120Bとを熱的に結合させてもよい。
 (12)本発明において、エンドプレート120A,120Bは冷却プレート180に熱的に結合されていればよく、上記したようにシャフト130とナット131とによりエンドプレート120A,120Bを挟持して、エンドプレート120A,120Bの段差部125で冷却プレート180に熱結合させる場合に限定されない。たとえば、ねじ等の締結部材によりエンドプレート120A,120Bと冷却プレート180とを熱的に結合させてもよい。
 (13)本発明において、単電池セル101は冷却プレート180に熱的に結合されていればよく、締結手段は上記したようにクリップ190に限定されない。たとえば、ねじ等の締結部材により電池ホルダ140A,140Bを固定することで単電池セル101と冷却プレート180とを熱的に結合してもよい。
 (14)上記実施の形態では、冷却プレート180と電池容器との間に絶縁シート189を介在させる例について説明したが、本発明はこれに限定されない。冷却プレート180の材質に、熱伝導性および絶縁性の良好な材質を採用した場合には、絶縁シート189を省略できる。
 (15)上述した実施の形態では、ハイブリッド自動車や電気自動車に搭載される蓄電装置に組み込まれる組電池100について説明したが本発明はこれに限定されない。他の電動車両、たとえばハイブリッド電車などの鉄道車両、バスなどの乗合自動車、トラックなどの貨物自動車、バッテリ式フォークリフトトラックなどの産業車両などの蓄電装置に利用可能な組電池に本発明を適用してもよい。定置用の蓄電装置に組み込まれる組電池に本発明を適用してもよい。
 本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
 

Claims (5)

  1.  電池容器の一の面にガス排出弁を有する複数の単電池セルと、
     前記複数の単電池セルの各々のガス排出弁から排出されるガスを案内するダクトと、
     前記ダクトと前記電池容器の一の面との間に設けられ、前記ダクト内部に形成されるガス排気経路と前記ガス排出弁とを気密して接続するシール部材と、
     前記電池容器の他の面を冷却する冷却体と、
     前記ダクトと前記冷却体とを熱的に結合する熱結合部材とを備え、
     前記単電池セルの一の面の熱が、前記シール部材、前記ダクトおよび前記熱結合部材を介して前記冷却体に伝えられる組電池。
  2.  請求項1に記載の組電池において、
     前記単電池セルの電池容器は直方体形状であり、
     前記電池容器の一の面には外部端子が設けられ、
     前記電池容器の他の面は前記電池容器の一の面に対向している組電池。
  3.  請求項1または2に記載の組電池において、
     前記複数の単電池セルを並置して一体的に組み立てる一体化機構を有し、
     前記一体化機構は、前記並置した複数の単電池セルの間に配置されるホルダと、
     前記並置した複数の単電池セルを挟持する、前記熱結合部材としての一対のエンドプレートとを有している組電池。
  4.  請求項3に記載の組電池において、
     前記複数の単電池セル間に配置され、前記ダクトと前記冷却体とを熱的に結合する補助熱結合部材をさらに備えている組電池。
  5.  請求項1ないし4のいずれか1項に記載の組電池において、
     前記冷却体は、内部に冷却媒体が流れる冷媒流路を有する冷却プレートと、前記冷却プレートと前記電池容器の他の面との間に介在される絶縁シートとを有している組電池。
     
     
PCT/JP2011/070979 2011-09-14 2011-09-14 組電池 WO2013038520A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070979 WO2013038520A1 (ja) 2011-09-14 2011-09-14 組電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070979 WO2013038520A1 (ja) 2011-09-14 2011-09-14 組電池

Publications (1)

Publication Number Publication Date
WO2013038520A1 true WO2013038520A1 (ja) 2013-03-21

Family

ID=47882779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070979 WO2013038520A1 (ja) 2011-09-14 2011-09-14 組電池

Country Status (1)

Country Link
WO (1) WO2013038520A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20120466A1 (it) * 2012-09-04 2014-03-05 Ferrari Spa Sistema di accumulo di energia elettrica per un veicolo con propulsione elettrica
JP2015138647A (ja) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 接続ユニット
CN106654104A (zh) * 2017-02-13 2017-05-10 深圳市沃特玛电池有限公司 电池模组
CN110024211A (zh) * 2017-07-31 2019-07-16 株式会社Lg化学 用于电池单体的套盒和包括所述套盒的电池模块
CN111146381A (zh) * 2018-11-06 2020-05-12 丰田自动车株式会社 电池组
US20210218082A1 (en) * 2018-09-26 2021-07-15 Vehicle Energy Japan Inc. Battery pack
WO2023206828A1 (zh) * 2022-04-28 2023-11-02 上海兰钧新能源科技有限公司 电池箱箱体结构、电芯和电池包

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185894A (ja) * 2004-11-30 2006-07-13 Nec Lamilion Energy Ltd フィルム外装電気デバイス集合体
JP2009170258A (ja) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd バッテリシステム
JP2009238644A (ja) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd 車両用の電源装置
JP2010080135A (ja) * 2008-09-24 2010-04-08 Sanyo Electric Co Ltd バッテリシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185894A (ja) * 2004-11-30 2006-07-13 Nec Lamilion Energy Ltd フィルム外装電気デバイス集合体
JP2009170258A (ja) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd バッテリシステム
JP2009238644A (ja) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd 車両用の電源装置
JP2010080135A (ja) * 2008-09-24 2010-04-08 Sanyo Electric Co Ltd バッテリシステム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20120466A1 (it) * 2012-09-04 2014-03-05 Ferrari Spa Sistema di accumulo di energia elettrica per un veicolo con propulsione elettrica
US9397324B2 (en) 2012-09-04 2016-07-19 Ferrari S.P.A. System for the storage of electrical energy for a vehicle with electric propulsion
JP2015138647A (ja) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 接続ユニット
WO2015110891A1 (en) * 2014-01-22 2015-07-30 Toyota Jidosha Kabushiki Kaisha Connection unit
CN106654104A (zh) * 2017-02-13 2017-05-10 深圳市沃特玛电池有限公司 电池模组
CN110024211A (zh) * 2017-07-31 2019-07-16 株式会社Lg化学 用于电池单体的套盒和包括所述套盒的电池模块
JP2020502737A (ja) * 2017-07-31 2020-01-23 エルジー・ケム・リミテッド バッテリーセル用カートリッジ及びそれを含むバッテリーモジュール
EP3540847A4 (en) * 2017-07-31 2020-03-18 LG Chem, Ltd. CARTRIDGE FOR BATTERY CELL AND BATTERY MODULE THEREFOR
US11616260B2 (en) 2017-07-31 2023-03-28 Lg Energy Solution, Ltd. Cartridge for battery cell and battey module including the same
US20210218082A1 (en) * 2018-09-26 2021-07-15 Vehicle Energy Japan Inc. Battery pack
CN111146381A (zh) * 2018-11-06 2020-05-12 丰田自动车株式会社 电池组
WO2023206828A1 (zh) * 2022-04-28 2023-11-02 上海兰钧新能源科技有限公司 电池箱箱体结构、电芯和电池包

Similar Documents

Publication Publication Date Title
KR101130043B1 (ko) 냉각 효율성이 향상된 전지모듈
JP5541250B2 (ja) 二次電池
JP5108618B2 (ja) 電池ホルダ
KR101307992B1 (ko) 높은 효율성의 냉각 구조를 포함하는 전지모듈
WO2013038520A1 (ja) 組電池
KR101218751B1 (ko) 냉각 효율성이 향상된 중대형 전지팩
KR101609212B1 (ko) 냉매 및 배기 가스의 혼합을 방지하는 구조를 포함하는 전지모듈
KR101205181B1 (ko) 신규한 구조의 냉각부재와 이를 포함하는 전지모듈
KR101359905B1 (ko) 조립 생산성이 향상된 냉각부재와 이를 포함하는 전지모듈
CN107681076B (zh) 蓄电部件和蓄电组件
EP2573860B1 (en) Compact cooling member having superior stability, and battery module comprising same
KR101293989B1 (ko) 냉각 효율성이 향상된 냉각부재와 이를 포함하는 전지모듈
JP5096038B2 (ja) バッテリパック構造
KR101501026B1 (ko) 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈
JP5993615B2 (ja) 蓄電モジュール
JP5527172B2 (ja) 蓄電装置
WO2010150489A1 (ja) 蓄電ユニット
US20120177965A1 (en) Battery module with excellent cooling efficiency and compact structure and middle or large-sized battery pack
JP5830336B2 (ja) 電池モジュール
KR20120096133A (ko) 냉각 효율성이 향상된 냉각부재와 이를 포함하는 전지모듈
KR20160040799A (ko) 효율적인 냉각 구조의 전지팩 케이스
KR20150025308A (ko) 냉매 및 배기 가스의 혼합을 방지하는 구조를 포함하는 전지모듈
US20220140452A1 (en) Battery and manufacturing method thereof
KR101908441B1 (ko) 이차전지모듈
KR101898292B1 (ko) 전지팩 어셈블리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP